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Abstract 22 

Cold ions of plasmaspheric origin have been observed to abundantly appear in the 23 

magnetospheric side of the Earth’s magnetopause. These cold ions could affect the magnetic 24 

reconnection processes at the magnetopause by changing the Alfvén velocity and the 25 

reconnection rate, while they could also be heated in the reconnection layer during the 26 

ongoing reconnections. We report in situ observations from a partially crossing of a 27 

reconnection layer near the subsolar magnetopause. During this crossing, step-like 28 

accelerating processes of the cold ions were clearly observed, suggesting that the inflow cold 29 

ions may be separately accelerated by the rotation discontinuity and slow shock inside the 30 

reconnection layer.  31 

Key words: cold ions, magnetic reconnection, ions acceleration of ions, magnetopause 32 

Introduction 33 

Cold ions (few eV) of plasmaspheric origin are often observed in the outer magnetosphere 34 

and the magnetospheric side of magnetopause, which are in the form of drainage plumes 35 

mainly driven there by convection electric field during the high geomagnetic activity [1-7], 36 

and are carried there by plasmaspheric wind via combinational consequence of corotation 37 

and convection electric field during quiet geomagnetic activity [6-11].  Cold ions from the 38 

polar ionosphere can also directly reach the dayside magnetopause along the magnetic field 39 

lines via outflow [12]. When the cold ions reach the dayside magnetopause, they may be 40 

involved in, and influenced by, magnetic reconnection in the magnetopause current sheet 41 

[5,13-17]. On reaching the magnetopause, it has long been thought to be lost to 42 

interplanetary space as the field lines are opened by reconnection [13, 18-22]. 43 

The operation of MR is expected to result in a reconnection layer with characteristic ion and 44 

electron diffusion regions and an X-line of the central, null (zero) field and associated 45 

bundles of reconnected flux (flux tubes, moving in predictable ways from the magnetic 46 
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merging line) during periods of ongoing or intermittent reconnection [23-27]. Previous 47 

theories and simulations predicted that there are several boundaries within the reconnection 48 

layer, which can accelerate the ions at the associated area [28, 29]. Different models, 49 

however, predicted different boundaries [28, 29]. In the ideal MHD simulation, rotational 50 

discontinuities (RD), slow shocks or slow expansion fan (SS/SEF), and contact discontinuity 51 

(CD) are present in the reconnection layer [28], while in the hybrid simulation, the contact 52 

discontinuity cannot be identified due to the mixing of ions from the magnetosheath and 53 

magnetosphere, and slow shocks and slow expansion waves are modified [29]. At the 54 

magnetopause, the Alfvén wave is an intermediate wave or shock and transmitted through 55 

RD, thus, people often talk about RD and Alfvén wave together [30]. Observations 56 

confirmed the existence of the RDs and SS/SEF [31, 32].  Recent laboratory experiments 57 

and particle-in-cell simulations also suggested that the Hall effects can produce a strong 58 

electric field in the reconnection plane that is strongest across the separatrices, which 59 

separates the incoming field line region from the exhaust of reconnected field lines [33, 34]. 60 

Dipolarization fronts and flux ropes in the reconnection region of the magnetotail can also 61 

accelerate the particles, especially the electrons [35-39]. Clear separated acceleration 62 

signatures are difficult, despite recent access to multi-point sampling on small and meso-63 

scale, owing to the fact that most of the encounters are highly dynamic. We report here one 64 

of the first, clear partial transitions through a reconnection layer near the subsolar 65 

magnetopause, which shows clear accelerations of the cold ions in the reconnection layer. 66 

 67 

Observations and Results 68 

Figure 1 summarizes conditions on 17 January 2013, where the IMF and solar wind data 69 

come from the NASA OMNIWeb and has been shifted 5 minutes from the nose of bow 70 

shock to the subsolar dayside magnetopause. The IMF was steadily southward after 17:00 71 
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UT (Bz  10nT), the solar wind dynamic pressure was initially typical (PSW  5nPa) but 72 

then fell to unusually low values ( 0.1nPa) (Fig. 1a and b).  We have projected polar maps 73 

of ionospheric total electron into the equatorial plane using the same procedure as in Walsh 74 

et al. [40] (except a more adaptive magnetic field model [41] and magnetopause model [42] 75 

were used – see supplementary materials). This procedure has been used to compare the 76 

storm enhanced density (SED) plumes identified at low altitudes GPS total electron content 77 

(TEC) map with the plasmaspheric drainage plume determined by EUV imaging from the 78 

IMAGE spacecraft [43], and with the in situ plasma observations by THEMIS (Time History 79 

of Events and Macroscale Interactions during Substorms mission [44]) satellites [40], which 80 

indicated that SED plumes are associated with the erosion of the outer plasmasphere 81 

(plasmaspheric plume) by strong sub-auroral polarization stream (SAPS) electric fields [43, 82 

45].   Figure 1(c) is a keogram of the mapped TEC from the noon meridian as a function of 83 

time.  Early in the time period, the high-density plasma plume from the dusk plasmasphere 84 

contacted the near-noon magnetopause but this was not the case later in the period (see also 85 

extended data in supplementary materials). The blue line in Fig. 1(c) is the inbound pass of 86 

spacecraft E of the THEMIS mission, which was close to the noon-midnight meridian and 87 

subsolar region (Fig. 1d and e).  The mapping used in Walsh et al. [40] assumed that density 88 

variations in the topside ionosphere form fully field-aligned structures that map all the way 89 

to the equatorial plane.  If this assumption is valid, THEMIS-E should have detected 90 

ionospheric plasma just inside the magnetopause during this pass. Figure 2 not only 91 

confirms that this was the case, it tells us about the subsequent evolution of this plasma.   92 

THEMIS-E first encountered energetic magnetospheric ions (see Fig. 2e at energy E 10
4
eV) 93 

around 18:17:50 and the magnetosheath current sheet at 18:21:50 (see Fig. 2a) when BL 94 

turns positive and the bipolar FTE signature in BN is seen [40].  What we identify as 95 

accelerated ionospheric ions (see below) were first seen at 18:22:30 (Fig. 2e at E< 100 eV) 96 
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causing the ion density Ni to be larger than even in the magnetosheath (Fig. 2b). Later, 97 

(18:28:30-18:29:50, 18:36:10-18:38:10 and 18:46:50-18:47:50) periods of closed field lines 98 

deep in the plasmasheet (where ion temperature Ti is high and Ni low) were encountered, 99 

readily identified in Fig. 2(b) and 2(c). Between the first two of these periods the satellite 100 

returned to the reconnection layer (the regions between the two separatrices of the 101 

reconnection) and observed a variable mixture of magnetosheath and magnetospheric 102 

plasma, however between the second two, the spacecraft remained in the magnetosphere and 103 

saw un-accelerated ionospheric ions  (E < 20eV in Fig. 2e), which caused Ni to rise but Ti to 104 

fall without any sheath plasma being present.  Thus THEMIS-E was seeing the arrival of the 105 

low energy plasma as Fig. 1(c) predicts it should.   106 

There are some small intervals in these data that prove the putative ionospheric plasma in the 107 

reconnection layer does indeed come from the unaccelerated population seen in the outer 108 

magnetosphere. The first of these was a brief entry into an accelerated flow region near 109 

18:30 (when VL briefly reached 180 kms
-1

), the second around 18:38:35 (when Fig. 2d 110 

shows VL reached 100 kms
-1

).  Figure 2(g)-2(l) concentrate on the second of these events.   111 

At 18:35:35 THEMIS-E observed a sharp transition from magnetosheath-dominated to 112 

magnetosphere-dominated plasma (Fig.2k and Fig.2l). There is no current sheet but a weak 113 

indication of accelerated flow in VL.  After this, the ionospheric component was seen at E < 114 

20eV but then weakened.  The persistent negative VN component (roughly approximate VX in 115 

GSM coordinates, Fig.2j) reveals that this was caused by inward motion of the 116 

magnetopause.  At 18:37:30, VN was further negative, and this in-out motion of the 117 

magnetopause briefly returned the satellite to the reconnection layer. Figure 2(g) shows that 118 

the satellite crossed the current sheet twice (characterized by BL components change the sign 119 

twice around 18:38:00 UT) with a strong guide field (BM component). Figure 2(k) shows that 120 

low-energy ionospheric plasma was step-like accelerated up to about 80eV and shows a 121 
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reverse “U” type structure with steps around 18:38:30 UT before the sequence was reversed 122 

on the way out of the event. The accelerated flow had a peak magnitude of VL  100 kms
-1

 123 

which corresponds to 63 eV energy for protons and hence the observed energy is consistent 124 

with the derived velocity moment (which assumes the ions detected were protons).  The 125 

continuous energy increase on the way into and decrease on the way out of this event proves 126 

that the lower-energy ions in the accelerated flow region came from the ionospheric 127 

population seen in the magnetosphere near the magnetopause. The lack of any such 128 

dispersion for the higher energy ions seen during the event (E  500 eV) shows they came 129 

from the magnetosheath due to the reconnection. The magnetosheath ions reached the 130 

spacecraft at about 18:38:27 UT (ion edge) and disappeared after about 18:38:45 UT (ion 131 

edge). The electron edge, first observation of magnetosheath electrons, is observed at about 132 

18:38:24 and 18:39:24 UT, which was referred as the separatrix of the reconnection layer 133 

[46, 47]. It is worth noting that the time duration between the latter electron and ion edges 134 

encountering was much longer than the former ones, which may be because the reconnection 135 

layer was slow down (the ion velocity clearly decreased (Fig. 2j)) and made THEMIS E stay 136 

much longer between the latter electron and ion edges.  137 

 138 

Discussions  139 

Figure 2(k) shows a reverse “U” type structure with steps for the low-energy ionospheric 140 

plasma around 18:38:30 UT. What happened there when the spacecraft crossed the 141 

magnetopause boundary? Vaivads et al. [46] suggested that there is an Alfvén edge or RD 142 

between the electron and ion edges on the mangetospheric side of the current sheet. From 143 

Fig. 2, we have identified two electron edges at about 18:38:24 and 18:39:24 UT, and two 144 

ion edges at about 18:38:27 and 18:38:45UT, respectively. If there is RD between electron 145 

and ion edges, we should observe clear rotations of the magnetic field when the spacecraft 146 
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crossed the RD. We have plotted the 3D magnetic field vectors along the orbit tracks of 147 

THEMIS E for the interval of 18:38:00-18:39:30 UT (Fig. 3a).  From Figure 3a, we can find 148 

the magnetic field was main in northward at the beginning, but started to rotate earthward 149 

and duskward at about 18:38:25 UT, and then gradually rotated back from about 18:38:33 150 

UT. These rotations of the magnetic field suggested there are RDs during this crossing.  We 151 

also have performed a Walén test for the interval of 18:38:19-18:39:35 UT and found there 152 

is a good de-Hoffman-Teller (HT) frame for this reconnection layer with a velocity (VHT) of 153 

278.16 km/s and [-0.49, -0.01, 0.87] in GSE coordinates and a well Walén relation with a 154 

slope of 0.98 between the Alfvén velocity and the residual plasma velocity in the HT frame 155 

(Fig. 3b). These suggest that there was an RD at the magnetospheric side of the reconnection 156 

layer indeed. Ideal MHD simulation suggested that the ratio of upstream and downstream 157 

magnetic field can be used to identify that the discontinuity is a slow shock or slow 158 

expansion fan by using the following equation [28, 31].  159 

1/2

t2 t1 2 1η=(B /B )={1+β (1-P /P )}  160 

where Bt is the discontinuity tangential magnetic field and P is particle pressure, and 161 

subscripts 1 and 2 represent to upstream and downstream of the discontinuity. For a slow 162 

shock (SS), η<1 , and for a slow expansion fan, η>1 , [28, 31]. In our case, the P1 is about 163 

0.02 nPa and P2 is about 0.14 nPa, and the mean plasma 
2

0β=2Pμ /B 0.13  , which gives 164 

η 0.47  and suggests this discontinuity is a slow shock. The basic characteristics of slow 165 

shocks are that the magnetic fields are refracted towards the shock normal with a decrease of 166 

their tangential component and total strength when the shock front passed them [28, 48]. In 167 

our case, the magnetic field was refracted towards shock normal which is roughly 168 

antiparallel to the boundary normal n due to the magnetopause inward motion during the 169 

interval of interest, and the trangential component (roughly BL) and total strength of the 170 

magnetic field all decreased (Fig. 2 and Fig. 3a). Thus, these calculations and observations 171 
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suggest that there were RD and SS been observed indeed when THEMIS E partially crossed 172 

the reconnection layer. These are consistent with the time elapsed since reconnection of the 173 

given field lines crossed. 174 

Ion accelerations often occurred due to the dispersion of phase-steepened Alfvén wave 175 

and/or through shock drift acceleration or diffusion shock acceleration when they crossed an 176 

RD or SS [49].  Thus, the reverse “U” type structure in the low-energy ionospheric ions seen 177 

by THEMIS-E suggests that these ions were step-like accelerated by the boundaries within 178 

the reconnection layer, when the THEMIS-E crossed the separatrix, RD and SS on the 179 

magnetospheric side and the SS on the magnetosheath side, respectively (Fig. 4). The energy 180 

of the ions also seems step-like decrease when the spacecraft moved back and crossed these 181 

boundaries again to the magnetosphere due to the sunward and northward motion of the 182 

reconnection layer (schematic shown in Fig. 4). Although the 3s time resolution of the 183 

THEMIS data may trend to make the ion spectrum looks stepped, it still can clearly show 184 

that the accelerations associated with the boundaries within the reconnection layer make the 185 

ion energy sharply increase in a very short time interval.  186 

To escape the magnetosphere, ions must reach beyond the tail reconnection site before the 187 

re-closure of magnetic field lines (as for the red trajectory in Fig.5). These ions will not 188 

receive as much (or any) of the Coriolis acceleration experienced by ions rising from the 189 

low-altitude cleft ion fountain source [50-52]. They are likely to be accelerated if the field 190 

line catches them up due to increased Alfvén speed at the magnetopause with increasingly 191 

negative X. The combined data clearly demonstrate a path for ionospheric plasma, collected 192 

in the outer plasmasphere, to enter into accelerated flow along the magnetopause driven by 193 

magnetic reconnection.  All ion species in this region would have the velocity VL of 100 kms
-

194 

1
 near along the field line, but is this adequate for escape?  The data on this day provide an 195 

estimate of how long the field lines remain open.  At ionospheric heights, the ionization 196 
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tongue breaks up into polar cap patches and the TEC maps allow us to follow their evolution 197 

[53,54].   It has been shown [53, 54] that patches only escape the nightside polar cap and 198 

move onto sunward-convecting closed field lines when the field lines are reclosed in the tail. 199 

On the day studied here, as shown in Zhang et al. [53], this yields at least 2 hours before 200 

open field lines are reclosed. By then, if the accelerated ionospheric ions keep their velocity 201 

and move along the field lines, they would have moved at least 113 RE 202 

E(100 2 3600 / 6370 113R )   , placing them at X < 93 RE down the tail (allowing for 203 

20RE around the dayside magnetopause).  Most estimates of even distant reconnection sites 204 

are at X >> 90 RE.  It is therefore almost certain that the ionospheric ions seen here 205 

reaching the dayside magnetopause and being accelerated by reconnection did escape the 206 

magnetosphere. Thus, detached plasmaspheric plasma reaching a dayside magnetopause 207 

reconnection site would be very efficient at expelling large fluxes of ionospheric plasma into 208 

interplanetary space (schematic shown in Fig.5), if these plasmas gain enough energy 209 

(acceleration) and keep their velocity moving along the field lines. Because the GPS 210 

observations used here are routinely available, this opens up a genuine possibility of 211 

monitoring the loss of atmospheric material via this mechanism on a continuous basis and 212 

studying its variations with season and solar wind conditions. 213 

 214 

Conclusions 215 

Cold ions of plasmaspheric plume have been observed both in the projected GPS TEC data 216 

and in the in situ plasma data from THEMIS satellite near the dayside magnetopause. 217 

THEMIS-E partially crossed a reconnection layer near the subsolar magnetopause and 218 

clearly observed step-like accelerating processes of these cold ions. The observations 219 

suggest that the inflow cold ions may be separately accelerated by the rotation discontinuity 220 

(or Alfvén wave) and slow shock inside the reconnection layer.  221 Formatted: Font color: Auto
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Figure Captions: 361 

Fig. 1. (Color online) Data from 17 January 2013.  (a) The interplanetary magnetic field X, Z 362 

and Y components (in the GSM frame). (b) The solar wind dynamic pressure PSW. (c) A 363 

keogram showing total electron content mapped from the noon meridian to the equatorial 364 

plane using the Tsyganenko T96 model [41], as a function of time. The black line shows the 365 

magnetopause position from a different model [42] and the blue line the path of THEMIS-E. 366 

(d) and (e) The orbit tracks of THEMIS-E relative to the modelled magnetopause position in 367 

XZGSE and XYGSE plane (GSE is geocentric solar ecliptic coordinate system). 368 

Fig. 2. (Color online) THEMIS-E spacecraft data for (a-f) 18:10-18:50 and (g-l) detail of 369 

18:35-18:40. Fields and flows are shown in magnetopause (MP) aligned “LM ” coordinates 370 

during the time interval around the MP crossing of the spacecraft (about 18:38:07-18:38:32 371 

UT), where N is the magnetopause normal, L is in the (ZGSM, N) plane and M completes a 372 

left-handed set (GSM is the geocentric solar magnetic coordinate system) with l = (0.77，-373 

0.03，0.64), m = (-0.63，0.14，0.76) and n = (0.11, 0.99, -0.09) in GSM coordinates. (a and 374 

g) Magnetic field components (BL, BM and BN in blue, green and red); (b and h) ion density, 375 

Ni; (c and i) ion temperature, Ti; (d and j) ion velocities (VL, VM and VN in blue, green and red); 376 

(e and k) and (f and l) ion and electron energy-time spectrogram of differential energy flux 377 

for all pitch angles, respectively.  The associated regions, crossed by the spacecraft, are 378 

presented as horizontal thick color lines with labels below panels f and l. 379 

Fig. 3. (Color online) A 3D plot of the magnetic field data and a Walén test of plasma data 380 

measured by THEMIS E. (a) The 3D magnetic field vectors in GSE coordinates along the 381 

orbit tracks of THEMIS E for the interval of 18:38:00-18:39:30 UT. The vectors have been 382 

separated and colored every 30 seconds. The blue and magenta vectors (with arrows) present 383 

the directions of deHoffmann-Teller frame velocity (VHT) and the mean boundary normal n. 384 

(b) A Walén test of the reconnection layer crossing for the interval of 18:38:19-18:39:35 UT. 385 
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The colored dots represent the three components of the velocity in GSE coordinates (Red for 386 

VX, green for VY, and blue for VZ). 387 

Fig. 4. (Color online) Schematics of the structure of the reconnection layer and the 388 

acceleration processes of the ions on the trajectory of the spacecraft. An asymmetrical 389 

reconnection layer is often seen on the dayside magnetopause since the plasma and magnetic 390 

field parameters are different in the magnetosphere (Msp) and magnetosheath (Msh). 391 

Fig. 5. (Color online) Schematics of ionospheric ion outflow. The X direction, from the 392 

centre of the Earth to the centre of the Sun, is to the left.  The brown line is the outer 393 

boundary of the magnetosphere, the magnetopause, inside which are three distinct regions: 394 

the tail lobes (black) contain “open” magnetic field lines that thread the magnetopause which 395 

are generated in the Dungey cycle during periods of southward IMF by magnetic 396 

reconnection at the dayside magnetopause (at the yellow dot) and re-closed by reconnection 397 

in the tail (at the red dot) [23]. The plasmasheet (dark grey) contains closed field lines which 398 

connect the ionospheres in the two hemispheres and never thread the magnetopause. Closed 399 

field lines convect sunward in the Dungey cycle. The plasmasphere (in white) is also on 400 

closed field lines and has higher plasma densities than the plasmasheet because magnetic flux 401 

tube volumes are smaller and can be filled by outflows from the ionosphere. The coloured 402 

lines show trajectories for ions of plasmaspheric origin from reconnection acceleration region 403 

(see text). Note that all ions are moving along the magnetic field lines but trajectories are not 404 

field-aligned because the field lines move as part of the Dungey convection cycle. Higher 405 

energy ion trajectories (red arrows) are closer to field aligned than lower energy ones (in 406 

mauve) because they have higher field parallel velocity. 407 
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