
A data model of the Climate and Forecast
metadata conventions (CF-1.6) with a
software implementation (cf-python v2.1)
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Hassell, D. ORCID: https://orcid.org/0000-0001-5106-7502,
Gregory, J. ORCID: https://orcid.org/0000-0003-1296-8644,
Blower, J., Lawrence, B. N. ORCID: https://orcid.org/0000-
0001-9262-7860 and Taylor, K. E. (2017) A data model of the
Climate and Forecast metadata conventions (CF-1.6) with a
software implementation (cf-python v2.1). Geoscientific Model
Development, 10 (12). pp. 4619-4646. ISSN 1991-9603 doi:
10.5194/gmd-10-4619-2017 Available at
https://centaur.reading.ac.uk/74998/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.5194/gmd-10-4619-2017

Publisher: European Geosciences Union

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

http://www.reading.ac.uk/centaur

Geosci. Model Dev., 10, 4619–4646, 2017
https://doi.org/10.5194/gmd-10-4619-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.

A data model of the Climate and Forecast metadata conventions
(CF-1.6) with a software implementation (cf-python v2.1)
David Hassell1, Jonathan Gregory1,2, Jon Blower3, Bryan N. Lawrence1, and Karl E. Taylor4

1National Centre for Atmospheric Science, Department of Meteorology, University of Reading, Reading, UK
2Met Office Hadley Centre, Exeter, Exeter, UK
3Institute for Environmental Analytics, University of Reading, Reading, UK
4Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, CA, USA

Correspondence: David Hassell (david.hassell@ncas.ac.uk)

Received: 29 June 2017 – Discussion started: 10 July 2017
Revised: 31 October 2017 – Accepted: 2 November 2017 – Published: 19 December 2017

Abstract. The CF (Climate and Forecast) metadata conven-
tions are designed to promote the creation, processing, and
sharing of climate and forecasting data using Network Com-
mon Data Form (netCDF) files and libraries. The CF con-
ventions provide a description of the physical meaning of
data and of their spatial and temporal properties, but they de-
pend on the netCDF file encoding which can currently only
be fully understood and interpreted by someone familiar with
the rules and relationships specified in the conventions docu-
mentation. To aid in development of CF-compliant software
and to capture with a minimal set of elements all of the infor-
mation contained in the CF conventions, we propose a for-
mal data model for CF which is independent of netCDF and
describes all possible CF-compliant data. Because such data
will often be analysed and visualised using software based on
other data models, we compare our CF data model with the
ISO 19123 coverage model, the Open Geospatial Consortium
CF netCDF standard, and the Unidata Common Data Model.
To demonstrate that this CF data model can in fact be imple-
mented, we present cf-python, a Python software library that
conforms to the model and can manipulate any CF-compliant
dataset.

1 Introduction

Network Common Data Form (netCDF) supports a view of
data as a collection of self-describing, portable objects that
can be accessed through standardised software libraries. For
climate scientists, as well as others, it has become a popu-

lar way to create, access, and share array-orientated scientific
data (Rew and Davis, 1990; Rew et al., 2006). In this context,
“self-describing” means that a file contains, for each data
array, an associated description of what it represents scien-
tifically, i.e. metadata. NetCDF was developed and is main-
tained at Unidata, part of the US University Corporation for
Atmospheric Research (UCAR).

The CF (Climate and Forecast) metadata conventions
(Eaton et al., 2011, http://cfconventions.org) are a set of rules
for storing geoscientific data in netCDF files, with the aims
of describing the data, enabling users to identify comparable
data held in different files, and facilitating the development
of software to extract, process, analyse, and display the data.
Initially CF was developed for gridded data from climate and
forecast models of the atmosphere and ocean, but its use has
subsequently extended to other geosciences, and to observa-
tions as well as numerical models. The use of CF is recom-
mended where applicable by Unidata.

CF metadata are designed to be interpretable without ref-
erence to external tables, readable by humans, easily parsable
by programmes, and minimally redundant, which reduces the
potential for inconsistencies. The development of CF began
in 1999 and has proceeded incrementally, with new features
added only when called for by common use cases, and with
consideration of how the change might impact data produc-
ers. Archival of data is a major purpose of netCDF, for which
reason backwards compatibility is an important considera-
tion. So far, no backwards-incompatible change has been
made to the CF conventions, meaning that a file written with

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://cfconventions.org

4620 D. Hassell et al.: A CF-1.6 data model

a previous release of CF would still be compliant with the
most recent version.

In general, CF tells data producers how they can provide
information they think is important for understanding their
data, but it mandates very little metadata. Projects which rec-
ommend or require the use of the CF conventions may of
course impose additional requirements on data producers,
as is done, for instance, by the Coupled Model Intercom-
parison Project (https://pcmdi.llnl.gov/mips/cmip5/CMIP5_
output_metadata_requirements.pdf), which in its fifth phase
(CMIP5) serves more than 4.2 petabytes of CF-compliant
netCDF (CF-netCDF) data.

In this paper, we present a data model which is based on
the version of the CF conventions (1.6) which was the latest
release at the time of writing. (Since then, 1.7 has been re-
leased; see Sect. 7.) By a “data model”, we mean an abstract
interpretation of the data, that identifies the elements of the
dataset and their scientific intent, and describes how they are
related to one another and to the real or model world from
which the data were derived. A data model is necessary be-
cause it imposes the rules, constraints, and relationships con-
necting metadata to the data that are needed to imagine how
the quantities included in the dataset should be combined and
processed scientifically.

The netCDF interface that underlies CF has an explicit
data model (the yellow layer in Fig. 1). CF is defined by
the CF-netCDF conventions (the blue layer). The conven-
tions have been widely adopted and there are many software
applications that work with CF datasets, but up to now a com-
prehensive CF data model has not been explicitly proposed
(the Open Geospatial Consortium is discussed in Sect. 5.2).
Those writing software to process CF-compliant files have
implicitly or explicitly adopted data models to serve their
own needs, not necessarily considering the whole of the CF
convention. Possible CF data models may differ regarding
concepts which are more abstract than the storage syntax of
netCDF files, and which are therefore not spelled out by the
CF convention but become relevant when the data are ma-
nipulated or visualised. Divergent interpretations of the data
can lead to misunderstandings, inconsistencies, and ineffi-
ciencies, and impair the linking of independently developed
software tools which might be needed together for the anal-
ysis of CF data.

Our aim is to create an explicit data model for CF (the
green layer in Fig. 1) to provide an interpretation of the con-
ceptual structure of CF which is consistent, comprehensive,
and as far as possible independent of the netCDF data model
(the yellow layer). We believe that an explicit comprehensive
data model will lead to the CF conventions being better un-
derstood, will provide guidance during the development of
future extensions to the CF conventions, and will help soft-
ware developers to design CF-compliant data-processing ap-
plications and to build interfaces to other explicit data mod-
els.

Without a data model: With a data model:

CF data model

netCDF data model (NC)

CF-netCDF conventions (CN)

Multiple applications using
one interpretation

netCDF data model (NC)

CF-netCDF conventions (CN)

App

Multiple applications using
multiple interpretations

App App AppApp App

Figure 1. The benefits of having a CF data model. The CF-netCDF
conventions (CN) rely on the netCDF data model (NC) and, at
present, a software application is forced to make its own interpreta-
tion of the CF-netCDF conventions – an interpretation that is likely
to be different from that of other applications. The aim of this paper
is to propose a comprehensive CF data model that provides a consis-
tent interpretation of the conventions, thereby facilitating compati-
bility across applications that adopt it. This by no means precludes
a variety of software implementations, as there is still considerable
flexibility in mapping data model elements onto the data objects
needed for a particular application.

1.1 Design criteria for a CF data model

The primary requirement of a data model is that it should be
able to describe all existing and conceivable CF-compliant
datasets. If we have been successful, then software libraries
that adopt our CF data model in constructing their internal
data structures will be able to represent and manipulate any
CF-compliant dataset.

For our data model, we define a minimal set of elements
that are sufficient for accommodating all aspects of the CF
conventions. We restrict the elements of a data model to those
that are explicitly mentioned in CF, but our data model ele-
ments do not have to be irreducible in that a data model ele-
ment could describe more than one CF entity. For example,
in CF, coordinates and coordinate bounds are distinct enti-
ties, but coordinate bounds cannot exist without coordinates.
Therefore, it makes sense in our data model to group them
into a single element.

Similarly, while it is possible to introduce additional ele-
ments not presently needed or used by CF, we believe this
would not be desirable because it would increase the likeli-
hood of a data model becoming outdated or inconsistent with
future versions of CF.

The CF data model should also be independent of the en-
coding, meaning that it should not be constrained by the parts
of the CF conventions which describe explicitly how to store
(i.e. encode) metadata in a netCDF file. The virtue of this is
that should netCDF ever fail to meet the community needs,

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

https://pcmdi.llnl.gov/mips/cmip5/CMIP5_output_metadata_requirements.pdf
https://pcmdi.llnl.gov/mips/cmip5/CMIP5_output_metadata_requirements.pdf

D. Hassell et al.: A CF-1.6 data model 4621

we shall already have set the groundwork for applying CF to
other file formats.

1.2 Layout of the paper

In Sect. 3, we introduce the key elements of the CF conven-
tions and describe how they are encoded in netCDF files.
The relationships between the elements of the CF conven-
tions and our proposed CF data model are described in
Sect. 4. This data model is compared with other data mod-
els in Sect. 5, and a software implementation is presented in
Sect. 6. How our CF data model and its software implemen-
tation may evolve is discussed in Sect. 7, and a summary and
conclusions are given in Sect. 8.

2 The netCDF data model

The existing CF conventions are for use with netCDF files
following the netCDF “classic” data model (the yellow layer
in Fig. 1). A brief summary of this explicit data model is
useful since the CF conventions cannot be described without
reference to elements of netCDF.

The netCDF classic data model is described using Unified
Modeling Language (UML) in Fig. 2. UML provides a stan-
dard way to visualise the components of a system and how
they relate to each other. In UML, different styles of arrows
denote different types of relationship (Table 1). Appendix A
provides a primer on the subset of UML used in this paper,
and is recommended for readers new to this style of diagram.

NetCDF classic files contain data in named variables,
which can be single numbers (with no dimensions), one-
dimensional arrays (vectors), or multi-dimensional arrays,
and the dimensions are declared by name in the file. Vari-
ables can be of integer, floating point, or character data
types. Variables may have attributes, of any data type, at-
tached. Attributes can have a single value or consist of a
one-dimensional array. NetCDF files also have “global” file
attributes which provide information about the dataset as a
whole. NetCDF library software has functions to define di-
mensions, variables, and attributes, and write and read data.

It is important to appreciate that netCDF itself has no other
semantics; for example, while coordinates can be stored in
variables and described by attributes, the meanings of these
variables and attributes and relationships between them and
the variables containing data are not defined by netCDF.
NetCDF makes no prescriptions or restrictions regarding the
type of metadata which may be stored in the simple data
structures that it offers. This flexibility is intended to provide
a scope for users and scientific disciplines to develop their
own conventions for encoding semantics so that datasets are
sufficiently described by those who create them and that they
remain valid for those who store and use them. CF is an ex-
ample of this.

Variable

+ name: string
+ type: DataTypes

«enumeration»
DataTypes

 char
 byte
 short
 int
 float
 double

Dimension

+ isUnlimited: boolean
+ length: int
+ name: string

File

Attribute

+ name: string
+ type: DataTypes

Data Values

Scalar or 1-
D Array

Ordered list
of
dimensions
defines
shape of
data array

File Attribute

0..*

0..*

0..*

0..*

0..*

Figure 2. Key components of the netCDF classic data model (corre-
sponding to the yellow “NC” layer in Fig. 1) described using UML
(Appendix A). Files consist of global attributes, dimensions, and
variables. Variables contain attributes and data, and attributes also
contain data. Variables, attributes, and dimensions all contain prop-
erties, such as a “name” which identifies them in the file. A data
array has a data type for all of its elements (e.g. “double” for 64-bit
floating point numbers).

The original classic netCDF data model has been “en-
hanced” with the addition of several new features, including
the ability to organise variables in hierarchical groups. Here,
we adopt only one of the new features: we regard the char-
acter string as a data type, whereas the classic model treats
strings as arrays of individual characters. Logically, these
treatments are equivalent, but because strings are easier to
manipulate in software codes, it is very likely that they will
become a part of CF in the future.

3 The CF conventions

In this section, we briefly describe how the most impor-
tant of the CF conventions are encoded in netCDF files. We
do not consider any conventions accepted after version 1.6
(see Sect. 7 for a discussion on the inclusion of newer con-
ventions). The comprehensive definition of CF, which in-
cludes many extra details, can be found on the CF website
(http://cfconventions.org). A netCDF file that encodes an ex-
ample of each aspect of the conventions that we describe is
shown in Fig. 3. This example file is presented in Common
Data Language (CDL; Rew et al., 1997) – a human-readable
notation for netCDF data that is easily produced by netCDF
library software.

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

http://cfconventions.org

4622 D. Hassell et al.: A CF-1.6 data model

Table 1. The UML class associations used in this paper. See Fig. A1 for a worked example.

UML association Description

class-B class-A
Class-B is a special kind of class-A

class-D
class-E

Class-D is a special kind of class-E (but class-E is not shown on the diagram)

class-B class-C
Instances of class-C can be included in an instance of class-B but cannot exist independently

class-B class-F
Instances of class-F can be included in an instance of class-B or can exist independently

class-B class-D
An instance of class-B is associated with an instance of class-D but class-D is independent of class-B

In order to reduce storage occupied by netCDF files, the
CF conventions provide for lossy packing of data values and
non-lossy compression eliminating missing data values. Al-
though practically valuable, these mechanisms do not affect
our conceptual data model and so we have chosen to describe
them in Appendix B rather than in this section.

3.1 Conventions from the netCDF user guide
and COARDS

Unidata provides a netCDF user guide (NUG) (Rew et al.,
1997), in which they propose some netCDF conventions. CF
makes use of these conventions, so we regard them as part
of the CF conventions as well (the blue layer in Fig. 1), and
they are illustrated in Fig. 3. A one-dimensional variable that
has the same name as its dimension (z, x, and y in Fig. 3)
is regarded as a coordinate variable. Since CF introduces
other types of variables for coordinate data, we sometimes
refer to the kind defined in the netCDF user guide as a co-
ordinate variable “in the NUG sense”. (By the phrase “co-
ordinate variable”, the CF standard document consistently
means “coordinate variable in the NUG sense”.) We describe
the various kinds of coordinate variables in more detail later
(Sect. 3.3). The netCDF user guide proposes a number of
conventional attributes; some of these are explicitly included
in CF. The guide also contains a statement that it is always
allowable to make use of attributes that are not standard-
ised by CF. Some of the Unidata attributes recognised by
CF contain scientific metadata, e.g. source, for the prove-
nance of the data, and the units of data values (further dis-
cussed in Sect. 3.8). Others concern the encoding in netCDF
files, e.g. Conventions, stating the netCDF conventions
to which the file adheres (line 73 of Fig. 3) and the specifica-
tion of a missing data value with missing_value (line 53
of Fig. 3, indicating that values of −1030 correspond to cells
for which no data are available, such as ocean points for a
quantity measured only over land).

When originally conceived, CF was an extension of the
pre-existing COARDS (Cooperative Ocean/Atmosphere Re-
search Data Service) netCDF conventions (http://www.ferret.

noaa.gov/noaa_coop/coop_cdf_profile.html). For the sake of
backward compatibility of datasets, although CF is now
much more comprehensive and flexible than COARDS, CF
explicitly upholds some COARDS conventions, which we
therefore regard also as part of CF.

3.2 The data and the domain

The overarching purpose of the conventions is to provide
conforming datasets with sufficient metadata that they are
self-describing, in the sense that each variable in the file has
an associated description of what it represents, and that each
value can be located (usually in space and time). To meet
this objective, we define a data variable V (which might, for
example, represent air temperature), over a domain d ,

V ≡ V (d), (1)

where d represents a set of discrete “locations” in what gen-
erally would be a multi-dimensional space, either in the real
world or in a model’s simulated world. Thus, V is a function
of all its independent dimensions. For example, a variable
that is a function of physical location alone would have a
three-dimensional discretised domain,

d ≡ d(z,y,x), (2)

comprising discretised axes of height (z), latitude (y), and
longitude (x) (Fig. 4). In CF, the domain may have fewer
than three spatial axes, and it may also have any number of
non-spatial axes, as in the common case of a variable that is a
function time (t). A CF-netCDF file may contain N data vari-
ables and M domains, where M ≤N . Conversely, this means
that a given domain may have one or more data variables de-
fined at each of its locations. For instance, there could be
values for both air temperature and relative humidity at each
location in the domain d(z,y,x).

In CF-netCDF, the values and the description of V are
stored in a netCDF variable, called a “data variable”. The
concept of a domain is not mentioned in the CF conven-
tions, because it does not correspond to any single entity in
the netCDF file. The domain is stored in a number of other

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html
http://www.ferret.noaa.gov/noaa_coop/coop_cdf_profile.html

D. Hassell et al.: A CF-1.6 data model 4623

netcdf example_file { // 1
dimensions: // 2
 z = 20 ; // Domain axis construct 3
 y = 110 ; // Domain axis construct 4
 x = 106 ; // Domain axis construct 5
 bounds = 2 ; // 6
variables: // 7
 double t ; // Domain axis and dimension coordinate construct 8
 t:standard_name = "time" ; // 9
 t:units = "days since 20161201" ; // 10
 t:calendar = "gregorian" ; // 11
 t:bounds = "t_bounds" ; // 12
 double z(z) ; // Dimension coordinate and domain ancillary construct 13
 z:standard_name = "atmosphere_sigma_coordinate" ; // 14
 z:positive = "down" ; // 15
 z:units = "1" ; // 16
 z:formula_terms = "sigma: z ps: PS ptop: PTOP" ; // Coordinate reference construct 17
 z:bounds = "z_bounds" ; // 18
 double y(y) ; // Dimension coordinate construct 19
 y:standard_name = "projection_y_coordinate" ; // 20
 y:units = "km" ; // 21
 y:bounds = "y_bounds" ; // 22
 double x(x) ; // Dimension coordinate construct 23
 x:standard_name = "projection_x_coordinate" ; // 24
 x:units = "km" ; // 25
 x:bounds = "x_bounds" ; // 26
 double lon(y, x) ; // Auxiliary coordinate construct 27
 lon:standard_name = "longitude" ; // 28
 lon:units = "degrees_east" ; // 29
 double lat(y, x) ; // Auxiliary coordinate construct 30
 lat:standard_name = "latitude" ; // 31
 lat:units = "degrees_north" ; // 32
 double t_bounds(bounds) ; // Part of a dimension coordinate construct 33
 double z_bounds(z, bounds) ; // Part of a dimension coordinate and domain ancillary construct 34
 z_bounds:formula_terms = "sigma: z_bounds ps: PS ptop: PTOP" ; // 35
 double y_bounds(y, bounds) ; // Part of a dimension coordinate construct 36
 double x_bounds(x, bounds) ; // Part of a dimension coordinate construct 37
 double cell_area(y, x) ; // Cell measures construct 38
 cell_area:standard_name = "area" ; // 39
 cell_area:units = "m2" ; // 40
 char lambert_conformal ; // Coordinate reference construct 41
 lambert_conformal:grid_mapping_name = "lambert_conformal_conic" ; // 42
 lambert_conformal:standard_parallel = 25. ; // 43
 lambert_conformal:longitude_of_central_meridian = 265. ; // 44
 lambert_conformal:latitude_of_projection_origin = 25. ; // 45
 double PS(y, x) ; // Domain ancillary construct 46
 PS:standard_name = "surface_air_pressure" ; // 47
 PS:units = "Pa" ; // 48
 double PTOP(y, x) ; // Domain ancillary construct 49
 PTOP:standard_name = "air_pressure" ; // 50
 PTOP:units = "Pa" ; // 51
 double temp(z, y, x) ; // Field construct 52
 temp.missing_value = 1.0e30 ; // 53
 temp:standard_name = "air_temperature" ; // 54
 temp:units = "K" ; // 55
 temp:cell_methods = "t: mean (interval: 1 day)" ; // Cell method construct 56
 temp:coordinates = "t lat lon" ; // 57
 temp:cell_measures = "area: cell_area" ; // 58
 temp:grid_mapping = "lambert_conformal" ; // 59
 temp:ancillary_variables = "temp_error_limit" ; // 60
 double total_wv(y, x) ; // Field construct 61
 total_wv:standard_name = "atmosphere_mass_content_of_water_vapor" ; // 62
 total_wv:units = "kg m2" ; // 63
 total_wv:cell_methods = "t: maximum" ; // Cell method construct 64
 total_wv:coordinates = "t lat lon" ; // 65
 total_wv:cell_measures = "area: cell_area" ; // 66
 total_wv:grid_mapping = "lambert_conformal" ; // 67
 double temp_error_limit(z, y, x) ; // Field ancillary construct 68
 temp_error_limit:standard_name = "air_temperature standard_error" ; // 69
 temp_error_limit:units = "K" ; // 70
 // 71
// global attributes: // 72
 :Conventions = "CF1.6" ; // 73
 :source = "climate model" ; // 74
} // 75

Figure 3. A CDL representation of the CF-netCDF file used for examples in Sect. 3 and to demonstrate the software implementation in
Sect. 6. Data values have been omitted for brevity. Each line has a comment on the right-hand side (beginning with //) that gives the line
number and notes the data model constructs (Sect. 4) which correspond to netCDF dimensions, variables, and attributes.

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4624 D. Hassell et al.: A CF-1.6 data model

La
tit

ud
e

Height = 1.5 m
Longitude

Figure 4. An example domain defined by three dimensions, one of
which is single valued (height).

variables and attributes that are linked to the data variable in
various ways defined by the conventions. For instance, temp
is a data variable (line 52 in Fig. 3) with a four-dimensional
domain. Its z, y, x, and t dimensions each have an associ-
ated coordinate variable specifying the location at each point
along the dimension (the t dimension being implied by the
t scalar coordinate variable; see Sect. 3.3 for details). Note
that it is not possible to store a domain in the absence of
any data variables (i.e. N ≥ 1), because in the absence of a
data variable, CF-netCDF lacks mechanisms to associate the
variables from which a domain could be defined. This does
not mean that it is disallowed to create a dataset that contains
only elements of a domain, but rather that the CF conventions
only allow for them to be interpreted collectively as a domain
when they are associated with at least one data variable (see
Sect. “Interpreting CF-netCDF files” for an example and fur-
ther discussion).

Within a CF-netCDF file, dimensions and coordinate vari-
ables may be used in the definition of multiple domains,
thus reducing redundancy. In our example file, total_wv
is a data variable containing the vertical integral of atmo-
spheric water vapour (line 61 in Fig. 3) that has a different
domain than the temp data variable. Its t , y, and x dimen-
sions and their coordinates (see Sect. 3.3) are identical to
those of temp, so they need not be replicated, but it does
not require the z dimension.

3.3 Dimensions and coordinates

NetCDF dimensions establish the size of the index space of
data variables, e.g. lines 3–5 in Fig. 3, which specify sizes
of 106, 110, and 20 for the x, y, and z dimensions, respec-
tively. Each point of the domain of temp is thus defined
by a unique set of three indices i = 0, . . . , 105, j = 0, . . . ,
109, and k = 0, . . . , 19. NetCDF coordinate variables (in
the NUG sense) supply the independent variables on which
the data depend. Coordinate variables must be numeric and
strictly monotonic, so that each element has a unique value.
In our example, we have three coordinate variables, with val-
ues z(k), y(j), and x(i). Each dimension, with its coordi-
nate variable if it has one, constitutes an axis of the multi-
dimensional space of the domain. The CF conventions quite
often use the word “axis” to refer to the physical interpreta-
tion of the dimensions of the data.

In many cases, each dimension of a domain can be fully
described by a single, strictly monotonic coordinate vari-
able (e.g. time, height, latitude, longitude). For more com-
plicated cases, however, such as parametric vertical coordi-
nates (e.g. dimensionless atmosphere sigma coordinates), CF
provides a way to record how to compute, from the original
dimensional coordinates, dimensional coordinates identify-
ing the location of the data in physical space (in the case of
sigma, the air pressure). This information is encoded with
the standard_name and formula_terms attributes of
a parametric coordinate variable, e.g. lines 14 and 17 in
Fig. 3. The standard_name attribute defines the formula
for calculating the dimensional coordinates, which needs to
be looked up in the CF conventions document, and the for-
mula_terms attribute specifies the values of the formula’s
terms. The atmosphere_sigma_coordinate formula
specified in Fig. 3 calculates air pressure from ptop+sigma∗
(ps− ptop), where the values of “ptop” (pressure at the top
of the model), “sigma” (the dimensionless coordinates), and
“ps” (surface pressure) are taken from the netCDF variables
referenced by the formula_terms attribute.

CF also defines “auxiliary coordinate variables” to pro-
vide mandatory or optional coordinate information which is
additional or alternative to that contained in the coordinate
variables in the NUG sense. Auxiliary coordinate variables
can be string valued, may contain missing values, and are
not necessarily monotonic. For example, we might like to
associate the coordinates of a vertical axis with model level
number as well as sigma coordinate or to provide location
information and station names for the points in a time series
(as in Fig. 5). An auxiliary coordinate variable is encoded as
a netCDF variable that is referenced by the coordinates
attribute of a data variable and spans at least one of that data
variable’s dimensions, e.g. lines 27, 30, and 57 in Fig. 3. Co-
ordinate variables (in the NUG sense) and auxiliary coordi-
nate variables (defined by CF) rely on different semantics,
and the latter is not a special type of the former, even though
they share many characteristics.

An important and mandatory use of auxiliary coordi-
nates is to supply latitude and longitude locations of each
point when the horizontal axes of a grid are themselves
not latitude and longitude (e.g. if they refer to a rotated
North Pole or are based on a map projection, as is the
case for x and y in the example of Fig. 3, and sketched
in Fig. 6). For this case, the latitude and longitude auxil-
iary coordinate variables are two-dimensional and can be
used to indirectly locate a point horizontally, so that V =

V (yj ,xi) with longitude= longitude(yj ,xi), and latitude=
latitude(yj ,xi), as in lines 27 and 30 of Fig. 3. Given this
information, the data can be located in space by generic ap-
plications even if they are ignorant of the rules used to con-
struct the projection. However, CF also provides for informa-
tion about the grid construction to be included in a netCDF
file by defining a “grid mapping” variable, which is refer-

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4625

11:00
12:00
13:00
14:00
15:00
16:00

Ti
m

e

point
54 38 40 51

Ham
bu

rg

Prin
cet

on

10 −122 −75 −1
Live

rm
ore

Read
ing

name(point,string_max_length)

Long(point)
Lat(point)

Figure 5. Auxiliary coordinate variables store “alternative” coordi-
nates for dimensions.

enced by the grid_mapping attribute of a data variable,
e.g. lines 41 and 59 in Fig. 3.

Some axes have only a single coordinate value. Regret-
tably, single-valued coordinates are often omitted from meta-
data, although they are very useful; for example, the time
information for a field sampled at a single time, for in-
stance, 12:15 Z on 14 July 2015, or the level of a single-
level field, e.g. air temperature at a height of 1.5 m (Fig. 4).
For convenience in storing single-valued coordinates, CF
defines a third type of variable containing coordinate data,
namely a “scalar coordinate variable”, which requires less
netCDF machinery than a dimension of size unity. It is a
zero-dimensional netCDF variable that is referenced by the
coordinates attribute of a data variable, e.g. lines 8 and
57 in Fig. 3.

Calendar time in CF (year, month, day, hour, minute, sec-
ond) is encoded with units “time unit since reference date–
time” (e.g. line 9 in Fig. 3). The encoded coordinates are the
elapsed times since the reference and as such are useful for
computing time differences. CF does not use strings for time
because they cannot be used for such computations, are in-
convenient to standardise, take more storage space, and can-
not always be ordered monotonically. The encoding depends
on the calendar (e.g. line 10 in Fig. 3), which defines the per-
mitted values of the reference date (year, month, and day).
The format of the units string conforms to udunits syntax
(Sect. 3.8), but the udunits software supports only the real-
world Julian/Gregorian calendar and hence is not sufficient
for use with CF, which recognises a wide selection of calen-
dars, including those for climate models and palaeoclimate.
For instance, 31 August 2003 is a valid date in the real-world
Gregorian calendar but not in the “360-day” calendar, which
has 12 30-day months. In the Gregorian calendar, 12:00 Z on
29 February 2000 is 36 583.5 days since 00:00 Z on 1 Jan-
uary 1900, but it is 36 058.5 days in the 360-day calendar.

y(
y)

x (x)

Figure 6. For grid axes based on a map projection, two-dimensional
auxiliary coordinate variables must be used to store longitude and
latitude values for each location (latitude–longitude lines dashed;
grid lines solid).

3.4 Discrete axes and sampling geometries

A “discrete axis” is one which is not associated with any
“continuous” coordinate or auxiliary coordinate variables.
A variable is continuous along an axis if it makes physi-
cal sense to interpolate along that axis between its values.
If that is not the case, then either there are no coordinate
values or the coordinate values are discrete indices, whose
order may or may not be meaningful. Consider, for exam-
ple, an ensemble of model experiments, each of which pro-
duces a data variable V (t,z,y,x) containing air pressure as
a function of time and spatial location. It may be conve-
nient to combine the data variables into a single variable
V (e, t,z,y,x), where e is the ensemble dimension, defining
a discrete axis of ensemble members. The members could be
identified by a numeric monotonic coordinate variable with
the same name as the dimension containing a member num-
ber. Alternatively, it is common for them to be identified by
one or more strings, which we could store in auxiliary co-
ordinate variables with the ensemble dimension containing,
for instance, model names or experiment names. It usually
would not make sense to interpolate between ensemble mem-
bers, and their order may be immaterial.

An important use of discrete axes in CF is to store data
from a collection of “discrete sampling geometries” (DSGs)
in a single data variable. In a DSG, the data have a lower di-
mensionality than the space–time domain, because they ap-
ply to a point or path within the domain. For example, a col-
lection of time series of surface air temperature at meteoro-
logical stations can be stored in a two-dimensional data vari-
able (Fig. 5) with a dimension that is the discrete axis for the
stations (the “point” axis) and a dimension for the time se-
ries values (the “time” axis). Auxiliary coordinate variables
for the discrete axis can be used to provide location infor-
mation and station names (Fig. 5). Although the stations are
physically located in two or three spatial dimensions, these

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4626 D. Hassell et al.: A CF-1.6 data model

have been combined into the one discrete axis. Other exam-
ples of DSGs are a vertical profile (variation along a verti-
cal axis at a fixed time and spatial location) and a trajectory
(variation along a path through space as a function of time).
A DSG may also be called a “feature” and the type of DSG
is called its “feature type”. The feature type (point, time se-
ries, trajectory, profile, etc.) describes the DSG and specifies
the dimensionality of the data within the space–time domain.
Prior to the introduction of DSGs in version 1.6 of CF, the
concept of DSG features was implicit in the sense that they
could be inferred from the existence of a discrete axis and
well-defined coordinate and auxiliary coordinate variables,
but they were not formally described. In general, the netCDF
file attribute featureType specifies the DSG feature type
for every data variable in the file; but in the cases where the
featureType attribute is permitted to be missing, the feature
type may be inferred from the dimensions and space–time
coordinates alone.

Many DSGs many be stored in one file, but they might
have different coordinates, e.g. each time series might have
its own set of sampling times (different days or hours of ob-
servation), or each profile might have its own set of vertical
levels (e.g. air pressure reported by radiosondes). If each fea-
ture in a large collection is stored as an individual data vari-
able with its own dimensions and coordinate, the file will be
cumbersome. If they are combined into a single data variable,
a one-dimensional coordinate variable would need to contain
the union of all the coordinates (times, levels, etc.) required,
and the dimension of the combined data variable might be
much larger than needed for the available data, containing a
lot of missing data elements.

As an alternative, CF provides three other methods for
storing collections of data on DSGs, all intended to allow
data with different dimensionality to be stored in a single
data variable without wasting so much space. In the “incom-
plete multi-dimensional array” representation, the dimension
required for the longest feature is used for all features, so that
the shorter features must be padded with missing values; this
sacrifices storage space to achieve simplicity for reading and
writing. The “contiguous ragged array” and “indexed ragged
array” representations eliminate the need for padding and
thus reduce further the storage required, but they are more
complex to pack and unpack. In the former case, each fea-
ture in the collection occupies a contiguous block, requiring
the size of each feature to be known at the time that it is
created. In the latter case, the values of each feature in the
collection are interleaved. This representation can therefore
be used for real-time data streams that contain reports from
many sources, with the data being written as they arrive. The
ragged array representations are described in more detail in
Appendix B.

Because these storage methods were introduced (in CF
version 1.6) at the same time as the recognition and definition
of feature types, the two are often thought of as belonging
together, but this causes confusion. The featureType is meta-

data, and it refers to the physical construction and interpre-
tation of a DSG data variable. The three new storage mecha-
nisms for DSGs do not involve any new or distinct physical
concepts.

3.5 Bounds and cells

It is often necessary to know the extent of a cell as well as the
grid point location, e.g. to calculate the area of a latitude–
longitude box or the thickness of a vertical layer. If cell
bounds are not provided, then there is no default assumption
about cell sizes (an application might reasonably assume that
grid points are at the centres of non-overlapping cells, but
that is not required by CF).

CF provides a way to attach bounds variables to any vari-
able containing coordinate data. A bounds variable has an
extra dimension to index the vertices of the cells. The sim-
plest case is shown for a one-dimensional coordinate vari-
able in Fig. 7. In this case, the values p(i) may be a se-
ries of successive time instants, for example, midday on 6
and 7 November, bounded by b(i,q) at midnight on 6, 7,
and 8 November, with q = 0,1. While the bounds for a one-
dimensional coordinate variable of dimension (n) could of-
ten be stored in a vector of dimension (n+1), CF uses (n,2)

instead as shown because it is convenient for use with the
netCDF unlimited dimension, and because it allows cells to
be non-contiguous or overlapping. The bounds can be used
to test contiguity; in the figure, cell i and cell i+ 1 are con-
tiguous because b(i+ 1,0)= b(i,1). For multi-dimensional
auxiliary coordinate variables, such as the two-dimensional
latitude and longitude variables illustrated above, we have
to supply the coordinates of each vertex of the polygon and
contiguity can similarly be tested by coincidence of vertices.
A bounds variable is encoded as a netCDF variable that is
referenced by the bounds attribute of a coordinate or aux-
iliary coordinate variable and spans the same dimensions (as
well as the extra dimension defining the number of vertices),
e.g. lines 6, 22, and 36 in Fig. 3.

Some applications require information about the size,
shape, or location of the cells that cannot be deduced without
specialist knowledge which is not guaranteed to be available.
For example, in computing the mean of several cell values,
it is often appropriate to “weight” the values by area, but for
some grids (such as some types of spherical geodesic grids)
the cell perimeter is not uniquely defined by its vertices and
so the area cannot be inferred from the available information.
For this case, CF provides cell measures variables which con-
tain such information and are encoded as netCDF variables
which are referenced by the cell_measures attribute of a
data variable and span a subset of the data variable’s dimen-
sions, e.g. lines 38 and 58 in Fig. 3.

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4627

p(i) p(i+1)

b(i,0) b(i+1,0)

b(i,1) b(i+1,1)

Figure 7. A one-dimensional coordinate variable with grid points
p(i) and cell boundaries b(i,q), i = 1, . . .,n; q = 0,1.

3.6 Variation within cells

CF describes variation within cells by use of “cell meth-
ods”. By default, it is assumed that intensive quantities ap-
ply at grid points, e.g. temperature values apply at the spa-
tial points and instants of time specified by their coordinates,
while extensive quantities apply to the entire grid cell, e.g. a
precipitation amount (kg m−2) is an accumulation in time.
The method may be different for each axis, e.g. precipita-
tion amount is intensive in space even though it is exten-
sive in time. Because the default is not always obvious, it is
recommended that the method be stated explicitly for every
axis. Non-default methods include operations such as mean,
maximum, minimum, and standard deviation. A zonal-mean
variable, for instance, has a cell methods attribute that spec-
ifies it is a mean over longitude. A time series of daily max-
imum values has cell methods indicating that the values are
maxima within their cells in time. The operations recorded
by cell methods might affect more than one axis at once,
e.g. for the cell methods necessary to describe maximum of
the ocean meridional overturning stream function within a
depth–latitude cell.

By default, the method for horizontal cells is assumed to
have been evaluated over the entire area of the cell. It is, how-
ever, possible to limit consideration to only a portion of a cell,
e.g. to record that values apply only to the fractions of cells
which are land (as opposed to sea).

A further use of cell methods is to characterise climatolog-
ical statistics where a series of data points represent sets of
subintervals which are not contiguous. There are three kinds
to consider:

1. corresponding portions of the annual cycle in a set of
years, e.g. decadal averages for January;

2. corresponding portions of a range of days, e.g. the aver-
age diurnal cycle in April 1997; and

3. both at once, e.g. the average winter daily minimum
temperature from the years 1961 to 1990.

In the latter example, the bounds are 00:00 Z 1 Decem-
ber 1961 (beginning of the first day of the first winter) and
00:00 Z 1 March 1991 (end of the last day of the last win-
ter), and the cell methods indicate the values are a minimum
within days, a mean over a season, and a mean over years.

Cell methods are encoded in the cell_methods at-
tribute of a data variable, e.g. line 56 in Fig. 3. In this ex-
ample, the cell method t: mean (interval: 1 day)
specifies that data values are means over the time dimension
(i.e. temporal averages) calculated from daily samples. Note
that this netCDF file does not contain a dimension for time,
but it is sufficient that one is implied by the time scalar coor-
dinate variable on line 8.

3.7 Ancillary data

When metadata to describe the data depend on location
within the domain, they are stored in independent variables
called ancillary data variables. For example, each value of
an array of instrument data may have associated measures of
uncertainty or of the status of the recording instrument. An
ancillary data variable is encoded as a netCDF variable that
is referenced by the ancillary_variables attribute of
a data variable and spans a subset of the data variable’s di-
mensions, e.g. lines 60 and 68 in Fig. 3.

3.8 Units and standard name

A range of attributes is available, introduced by the netCDF
user guide or CF, providing metadata for interpreting the val-
ues of individual variables or about the dataset as a whole. In
this section, we discuss the two most important of these.

CF requires all variables with values (data variables, co-
ordinate variables, etc.) to have units unless they contain di-
mensionless numbers or cell boundary values. The units are
specified by a string attribute (e.g. lines 9 and 55 of Fig. 3),
formatted according to the Unidata udunits conventions (Em-
merson, 2007), which support many possible units and vari-
eties of syntax, e.g. metre, meter, meters, m, km, cm, second,
s, kelvin, K, Pa, W m-2, W/m∧2, kg/m2/s, 1 (or any number).
Many non-SI units are also supported by udunits, e.g. de-
gree, degree_north, degree_N, percent (equivalent to 0.01),
ppm (equivalent to 1e-6), mbar, mile, degC, degF, hours, and
days.

For systematic identification of the physical quantity con-
tained in variables, CF defines a “standard name” string at-
tribute (e.g. lines 28, 54 and 62 of Fig. 3), with permissible
values listed in the standard name table (http://cfconventions.
org/standard-names.html), which includes precise defini-
tions. The standard name table is managed by a community
process and is continually expanding – version 44 of the ta-
ble, released in May 2017, contains 2847 standard names.

CF also upholds the use of the “long name” defined by
the netCDF user guide, but this is ad hoc. In contrast, the
CF standard names are consistently constructed and docu-
mented. As CF is applicable to many areas of geoscience,
the standard names have to be more self-explanatory and
informative than would suffice for any one area. For in-
stance, there is no name for plain “potential temperature”,
since we have to distinguish air potential temperature and

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

http://cfconventions.org/standard-names.html
http://cfconventions.org/standard-names.html

4628 D. Hassell et al.: A CF-1.6 data model

Scalar
Coordinate

Variable

Data
Variable

Boundary
Variable

NC::Variable

Auxillary
Coordinate

Variable

Grid Mapping
Variable

«abstract»
Generic

Coordinate
Variable

Coordinate
Variable

Cell Measure
Variable

Ancillary Data
Variable

NC::Dimension

Dimension

NC::Attribute

Formula Terms

Cell Methods

0..1

1..*

0..*

0..*

0..*

Figure 8. The relationships between CF-netCDF elements (corresponding to the blue CN layer in Fig. 1) and their corresponding netCDF
variables, dimensions, and attributes (the yellow NC layer in Fig. 1) described using UML (Appendix A). It is useful to define an abstract
generic coordinate variable that can be used to refer to coordinates when the their type (coordinate, auxiliary, or scalar coordinate variable) is
not an issue. The CF convention details the mechanisms which are used in the netCDF file to express the relationships among the CF-netCDF
elements, but these are not shown in the UML.

sea water potential temperature. Standard names are often
longer than the terms familiarly used by the experts in par-
ticular discipline, because they answer the question, “What
does this mean?”, rather than the question, “What do you
call this?”. For example, the quantity often called “precip-
itable water” by meteorologists has the standard name of
atmosphere_mass_content_of_water_vapor. Standard names
have a detailed description which further defines parts of
the name; for example, the description of the standard name
land_ice_calving_rate notes that “land ice” means glaciers,
ice caps, and ice sheets resting on bedrock, and the land
ice calving rate is the rate at which ice is lost per unit area
through calving into the ocean. Each standard name also
implies particular physical dimensions (mass, length, time,
and other dimensions corresponding to SI base units, ex-
pressed as a “canonical unit”); for example, large-scale rain-
fall amount (canonical unit kg m−2), large-scale rainfall flux
(kg m−2 s−1), and large-scale rainfall rate (m s−1) are all dif-
ferent in CF, although they might all be vaguely referred to
as “large-scale rain”.

Standard names have been defined for both more
general and more specific quantities, for different
applications, e.g. ocean_mixed_layer_thickness and
ocean_mixed_layer_thickness_defined_by_temperature.
Some standard names require the existence of ad-
ditional metadata and/or constraints on the val-
ues of the variables with which they are associ-
ated. For example, the standard name of down-
welling_radiance_per_unit_wavelength_in_air requires
there to be a coordinate variable storing the radiation
wavelength.

The CF conventions use size one or scalar coordinate vari-
ables (Sect. 3.3) and the cell_methods attribute (Sect. 3.6) to
describe some aspects of a variable, and this means standard
names do not always correspond to identities of variables in
other file formats. For instance, to describe the time-mean
air temperature at 1.5 m above the ground, air_temperature
alone is the standard name; “time-mean” is described by
cell_methods and the height as a coordinate.

4 A CF data model

The aspects of the CF conventions discussed in Sect. 3
(i.e. CF-netCDF elements) are listed in Table 2 and shown
(in blue) with their interrelationships in UML (Appendix A)
in Fig. 8. The CF-netCDF elements and the relationships
among them could be regarded as defining a CF data model
(rather like that described in Sect. 5.2) to which any CF-
compliant dataset may be mapped. It is not the data model
that we propose, however, because it does not meet all of
the design criteria described in Sect. 1.1. Our CF data model
(the green layer in Fig. 1) has been derived from these CF-
netCDF elements and relationships with the aims of remov-
ing aspects specific to the netCDF encoding, and reducing
the number of elements, whilst retaining the ability to de-
scribe the CF conventions fully. The elements of our CF data
model are called “constructs”, a term chosen to differentiate
from the CF-netCDF elements previously defined and to be
programming language-neutral (i.e. as opposed to “object”
or “structure”). In this section, we relate the constructs to
the CF-netCDF elements of Sect. 3, which in turn relates the

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4629

Table 2. The elements of the CF-netCDF conventions, a brief description of each, and the section in which it is described in more detail. The
relationships to netCDF entities are shown in Fig. 8.

CF-netCDF element Description Section

Data variable Scientific data discretised within a domain 3.2
Dimension Independent axis of the domain 3.3
Coordinate variable Unique coordinates for a single axis 3.3
Auxiliary coordinate variable Additional or alternative coordinates for any axes 3.3
Scalar coordinate variable Coordinate for an implied size one axis 3.3
Grid mapping variable Horizontal coordinate system 3.3
Boundary variable Cell vertices 3.5
Cell measure variable Cell areas or volumes 3.5
Ancillary data variable Metadata that depend on the domain 3.7
Formula terms attribute Vertical coordinate system 3.3
Feature type attribute Characteristics of discrete sampling geometry 3.4
Cell methods attribute Description of variation within cells 3.6

CF-netCDF elements to the components of netCDF files. To
clarify these connections, the example netCDF file shown in
Fig. 3 indicates how its elements relate to the constructs of
our CF data model.

4.1 The field construct

The field construct is central to our CF data model and in-
cludes all the other constructs (Fig. 9). A field corresponds
to a CF-netCDF data variable with all of its metadata. All
CF-netCDF elements are mapped to some element of the CF
field construct, as we describe in following subsections, and
the field constructs completely contain all the data and meta-
data which can be extracted from the file using the CF con-
ventions. Note that the constructs contained by the field con-
struct cannot exist independently, as is indicated by the na-
ture of the class associations shown in Fig. 9 (see Table 1 for
details).

The field construct consists of a data array and the defi-
nition of its domain (i.e. V (d) in Eq. 1), ancillary metadata
fields defined over the same domain, and cell method con-
structs to describe how the cell values represent the varia-
tion of the physical quantity within the cells of the domain
(Fig. 9). Because the CF conventions do not mention the con-
cept of the domain, we do not regard it as a construct of the
data model. Instead, the domain is defined collectively by
various other constructs included in the field. All of the data
model constructs are listed in Table 3, which refers to the
sections and figures in which they are fully described. All of
the constructs contained by the field construct are optional
(as indicated by “0..*” in Fig. 9). The only component of the
field which is mandatory is the data array.

The field construct also has optional properties to de-
scribe aspects of the data that are independent of the domain.
These correspond to some netCDF attributes of variables
(e.g. the units, long_name, and standard_name; Sect. 3.8),
and some netCDF global file attributes (e.g. “history” and

“institution”). We use the term “property”, rather than “at-
tribute”, because not all CF-netCDF attributes are proper-
ties in this sense – some CF-netCDF attributes are used to
point to (i.e. reference) other netCDF variables and so only
describe the data indirectly (e.g. the “coordinates” attribute;
Sect. 3.3), and others have structural functions in the CF-
netCDF file (e.g. the “Conventions” attribute). In the data
model, we consider that netCDF global file attributes apply
to every data variable in the file, except where they are su-
perseded by netCDF data variable attributes with the same
name. This interpretation of global file attributes is not stated
in the CF conventions, but for our data model it is necessary
because there is no notion of a file. Hence, metadata stored in
attributes of the file as a whole have to be transferred to the
field construct. If present, the global file attribute featureType
applies to every data variable in the file with a discrete sam-
pling geometry (Sect. 3.4). Hence, we regard feature type as
a property of the field construct.

The standard_name property (Sect. 3.8) constrains the
units property (i.e. only certain units are consistent with each
standard name) and in some cases also the dimensions that
a data variable must have. These constraints, however, do
not supply any further information – they are just for self-
consistency. This is also the case for the feature type prop-
erty, which imposes some requirements on the axes the do-
main must have. Following our aim of constructing a mini-
mal data model, we do not regard the standard name nor fea-
ture type as separate constructs within the field, because they
do not depend on any other construct for their interpretation.
This is unlike a cell method, for instance, which depends on
the data variable’s dimensions for its interpretation.

4.2 Domain axis construct and the data array

A domain axis construct (Fig. 10) specifies the number of
points along an independent axis of the domain. It comprises
a positive integer representing the size of the axis. In CF-

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4630 D. Hassell et al.: A CF-1.6 data model

Table 3. The constructs of our CF data model, a brief description of each, and the section in which it is described in more detail. The
relationships between the constructs and CF-netCDF elements are shown in Figs. 9–11.

CF construct Description Section

Field Scientific data discretised within a domain 4.1
Domain axis Independent axes of the domain 4.2
Dimension coordinate Domain cell locations 4.3
Auxiliary coordinate Domain cell locations 4.3
Coordinate reference Domain coordinate systems 4.4
Domain ancillary Cell locations in alternative coordinate systems 4.5
Cell measure Domain cell size or shape 4.6
Field ancillary Ancillary metadata which vary within the domain 4.7
Cell method Describes how data represent variation within cells 4.8

netCDF, it is usually defined either by a netCDF dimension or
by a scalar coordinate variable, which implies a domain axis
of size one (Sect. 3.3). The field construct’s data array spans
the domain axis constructs of the domain, with the optional
exception of size one axes, because their presence makes no
difference to the order of the elements. Hence, the data array
may be zero-dimensional (i.e. scalar) if there are no domain
axis constructs of size greater than one.

When a collection of DSG features has been combined in a
data variable using the incomplete orthogonal or ragged rep-
resentations to save space, the axis size has to be inferred, but
we regard this as an aspect of unpacking the data, rather than
its conceptual description. In practice, the unpacked data ar-
ray may be dominated by missing values (as could occur, for
example, if all features in a collection of time series had no
common time coordinates), in which case it may be prefer-
able to view the collection as if each DSG feature were a
separate variable (Sect. 3.4), each one corresponding to a dif-
ferent field construct.

4.3 Coordinates: dimension coordinate and
auxiliary constructs

Coordinate constructs (Fig. 10) provide information which
locate the cells of the domain and which depend on a sub-
set of the domain axis constructs. As previously discussed,
there are two distinct types of coordinate construct: a dimen-
sion coordinate construct provides monotonic numeric coor-
dinates for a single domain axis, and an auxiliary coordinate
construct provides any type of coordinate information for one
or more of the domain axes.

In both cases, the coordinate construct consists of a data
array of the coordinate values which spans a subset of the do-
main axis constructs, an optional array of cell bounds record-
ing the extents of each cell, and properties to describe the
coordinates (in the same sense as for the field construct). An
array of cell bounds spans the same domain axes as its coor-
dinate array, with the addition of an extra dimension whose
size is that of the number of vertices of each cell. This extra
dimension does not correspond to a domain axis construct

since it does not relate to an independent axis of the domain
(for example, the bounds dimension defined at line 6 in
Fig. 3 does not correspond to a domain axis construct). Note
that, for climatological time axes, the bounds are interpreted
in a special way indicated by the cell method constructs.

The dimension coordinate construct is able to unambigu-
ously describe cell locations because a domain axis can be
associated with at most one dimension coordinate construct,
whose data array values must all be non-missing and strictly
monotonically increasing or decreasing. They must also all
be of the same numeric data type. If cell bounds are provided,
then each cell must have exactly two vertices. CF-netCDF
coordinate variables and numeric scalar coordinate variables
correspond to dimension coordinate constructs.

Auxiliary coordinate constructs have to be used, instead of
dimension coordinate constructs, when a single domain axis
requires more then one set of coordinate values, when co-
ordinate values are not numeric, strictly monotonic, or con-
tain missing values, or when they vary along more than one
domain axis construct simultaneously. CF-netCDF auxiliary
coordinate variables and non-numeric scalar coordinate vari-
ables correspond to auxiliary coordinate constructs.

If a domain axis construct does not correspond to a con-
tinuous physical quantity, then it is not necessary for it to be
associated with a dimension coordinate construct. For exam-
ple, this is the case for an axis that runs over ocean basins or
area types, or for a domain axis that indexes a time series at
scattered points. In such cases, one-dimensional auxiliary co-
ordinate constructs could be used to store coordinate values.
These axes are discrete axes in CF-netCDF.

4.4 Coordinate reference construct

The domain may contain various coordinate systems, each
of which is constructed from a subset of the dimension and
auxiliary coordinate constructs. For example, the domain of a
four-dimensional field construct may contain horizontal (y–
x), vertical (z), and temporal (t) coordinate systems. There
may be more than one of each of these, if there is more than
one coordinate construct applying to a particular spatiotem-

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4631

«construct»
FieldAncillary

«construct»
DomainAncillary

«construct»
AuxiliaryCoordinate

«construct»
CellMethod

«construct»
CoordinateReference

«construct»
DimensionCoordinate

«construct»
DomainAxis

«construct»
Field

«construct»
CellMeasure

«concept»
Domain

«abstract»
Generic

Coordinate
Construct

Variable

CN::Data
Variable

0..*

uses
parent

0..*

0..*

0..*

0..*

1..*

0..*

0..*

0..*

0..*

Figure 9. The nine constructs of our CF data model (corresponding
to the green layer in Fig. 1) described using UML (Appendix A). In
this and all other CF data model diagrams, the CF data model con-
structs are labelled with the “construct” stereotype to distinguish
them from other data model elements which appear in other dia-
grams as green boxes with no label. The field construct corresponds
to a CF-netCDF data variable. Relationships between other con-
structs and CF-netCDF are given in Figs. 10 and 11. The domain
provides the linkage between the field construct and the constructs
which describe measurement locations and cell properties. It is not
a construct of the data model (see Sect. 4.1) but an abstract concept
that is useful for understanding it. Similarly, it is useful to define
an abstract generic coordinate construct that can be used to refer to
coordinates when the their type (dimension or auxiliary coordinate
construct) is not an issue.

poral dimension (for example, there could be both latitude–
longitude and y–x projection coordinate systems). In gen-
eral, a coordinate system may be constructed implicitly from
any subset of the coordinate constructs, yet a coordinate con-
struct does not need to be explicitly or exclusively associated
with any coordinate system.

A coordinate system of the field construct can be explicitly
defined by a coordinate reference construct (Fig. 11) which
relates the coordinate values of the coordinate system to lo-
cations in a planetary reference frame and consists of the fol-
lowing:

– The dimension coordinate and auxiliary coordinate con-
structs that define the coordinate system to which the

coordinate reference construct applies. Note that the co-
ordinate values are not relevant to the coordinate refer-
ence construct, only their properties.

– A definition of a datum specifying the zeroes of the di-
mension and auxiliary coordinate constructs which de-
fine the coordinate system. The datum may be explic-
itly indicated via properties, or it may be implied by the
metadata of the contained dimension and auxiliary coor-
dinate constructs. Note that the datum may contain the
definition of a geophysical surface which corresponds to
the zero of a vertical coordinate construct, and this may
be required for both horizontal and vertical coordinate
systems.

– A coordinate conversion, which defines a formula for
converting coordinate values taken from the dimension
or auxiliary coordinate constructs to a different coordi-
nate system. A term of the conversion formula can be
a scalar or vector parameter which does not depend on
any domain axis constructs, may have units (such as a
reference pressure value), or may be a descriptive string
(such as the projection name “mercator”), or it can be a
domain ancillary construct (such as one containing spa-
tially varying orography data).

For y–x coordinates, the coordinate conversion is either
a map projection, which converts between Cartesian coordi-
nates and spherical or ellipsoidal coordinates on the vertical
datum, or a conversion between different spherical coordi-
nate systems (as in the case of rotated pole coordinates). In
the case of z coordinates, the conversion is between a co-
ordinate construct with parameterised values (such as ocean
sigma coordinates) and a coordinate construct with dimen-
sional values (such as depths), again with respect to the ver-
tical datum.

In some cases, the datum is not required as it is already de-
scribed by the dimension and auxiliary coordinate constructs.
This is the case in CF for the two-dimensional geographical
latitude–longitude coordinate system based upon a spherical
Earth, which is assumed to have a datum at 0◦ N, 0◦ E. Simi-
larly, the coordinate conversion is not required if no other co-
ordinate systems are described. Some parts of the coordinate
reference construct may not be relevant to a given coordinate
construct which it contains. The relevant parts are determined
by an application using the coordinate reference construct.
For example, for a coordinate reference construct which con-
tained coordinate constructs for y–x projection and latitude
and longitude coordinates, a datum comprising a reference
ellipsoid would apply to all of them, but projection parame-
ters would only apply to the projection coordinates.

In CF-netCDF, coordinate system information that is not
found in coordinate or auxiliary coordinate variables is stored
in a grid mapping variable or the formula_terms attribute of a
coordinate variable, for horizontal or vertical coordinate vari-
ables, respectively. Although these two cases are arranged

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4632 D. Hassell et al.: A CF-1.6 data model

CN::Scalar Coordinate
Variable

«construct»
DimensionCoordinate

constraints
{has one unique DomainAxis}
{numeric, strictly, monotonic, no missing values}

either/or

«abstract»
Generic

Coordinate
Construct

«construct»
DomainAxis

«construct»
AuxiliaryCoordinate

Coordinates are
related to
DomainAxis via the
(implicit) domain
mapping held by the
parent field.

CN::Auxiliary
Coordinate

Variable

Variable
CN::Boundary

Variable

Variable

«abstract»
CN::Generic
Coordinate

Variable

CN::Coordinate
Variable

Dimension
CN::

Dimension

either/or

1

0..1

0..1

0..1

Figure 10. The relationship between domain axis, dimension coordinate, and auxiliary coordinate constructs (Sect. 4.2 and 4.3) and CF-
netCDF described using UML (Appendix A). A dimension or auxiliary coordinate construct is defined by a CF-netCDF coordinate, scalar
coordinate, or auxiliary coordinate variable, and the associated CF-netCDF boundary variable if it exists. A generic coordinate construct
spans one or more domain axis constructs, but the mapping of which ones is only held by the parent field construct.

differently in CF-netCDF, each one contains, sometimes im-
plicitly, a datum or a coordinate conversion formula (or both)
and so may be mapped to a coordinate reference construct.
A grid mapping name or the standard name of a parametric
vertical coordinate corresponds to a string-valued scalar pa-
rameter of a coordinate conversion formula. A grid mapping
parameter which has more than one value (as is possible with
the “standard parallel” attribute) corresponds to a vector pa-
rameter of a coordinate conversion formula. A data variable
referenced by a formula_terms attribute corresponds to the
term of a coordinate conversion formula – either a domain
ancillary construct or, if it is zero-dimensional, a scalar pa-
rameter.

4.5 Domain ancillary construct

A domain ancillary construct (Fig. 11) provides information
which is needed for computing the location of cells in an al-
ternative coordinate system. It is the value of a term of a co-
ordinate conversion formula that contains a data array, which
is zero-dimensional or which depends on one or more of the
domain axes.

It also contains an optional array of cell bounds recording
the extents of each cell (only applicable if the array contains
coordinate data) and properties to describe the data (in the
same sense as for the field construct). An array of cell bounds

spans the same domain axes as the data array, with the addi-
tion of an extra dimension whose size is that of the number
of vertices of each cell.

CF-netCDF variables named by the formula_terms at-
tribute of a CF-netCDF coordinate variable correspond to do-
main ancillary constructs. These CF-netCDF variables may
be coordinate, scalar coordinate, or auxiliary coordinate vari-
ables, or they may be data variables. For example, in a coor-
dinate conversion for converting between ocean sigma and
height coordinate systems, the value of the “depth” term for
horizontally varying distance from ocean datum to sea floor
would correspond to a domain ancillary construct. In the case
of a named term being a type of coordinate variable, that vari-
able will correspond to an independent domain ancillary con-
struct in addition to the coordinate construct.

4.6 Cell measure construct

A cell measure (Fig. 9) construct provides information that
is needed about the size or shape of the cells and that de-
pends on a subset of the domain axis constructs. Cell mea-
sure constructs have to be used when the size or shape of the
cells cannot be deduced from the dimension or auxiliary co-
ordinate constructs without special knowledge that a generic
application cannot be expected to have.

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4633

«construct»
DomainAncillary

«construct»
CoordinateReference

«enumeration»
CN::

NamedFormulae

CoordinateConversion

constraints
{Can only one be associated
with one of GridMapping or
Formula Terms}

«abstract»
Generic

Coordinate
Construct

Datum

CN::Formula
Terms

«abstract»
CN::Generic
Coordinate

Variable

CN::Data
Variable

CN::Grid Mapping
Variable

either/or

0..*
0..1

0..1

0..*

0..*

0..1

0..*

0..*

0..1

0..1

Figure 11. The relationship between coordinate reference and domain ancillary constructs (Sect. 4.4 and 4.5) and CF-netCDF described
using UML (Appendix A). A coordinate reference construct is defined either by a grid mapping variable or a formula_terms attribute of
a CF-netCDF coordinate variable. The coordinate reference construct is composed of generic coordinate constructs, a datum, and a coordinate
conversion formula. The coordinate conversion formula is usually defined by a named formula in the CF conventions. A domain ancillary
construct term of a coordinate conversion formula is defined by a CF-netCDF data variable or a CF-netCDF generic coordinate variable.

The cell measure construct consists of a numeric array
of the metric data which span a subset of the domain axis
constructs, and properties to describe the data (in the same
sense as for the field construct). The properties must contain
a “measure” property, which indicates which metric of the
space it supplies, e.g. cell horizontal areas, and a units prop-
erty consistent with the measure property, e.g. m2. It is as-
sumed that the metric does not depend on axes of the domain
which are not spanned by the array, along which the values
are implicitly propagated. CF-netCDF cell measure variables
correspond to cell measure constructs.

4.7 Field ancillary constructs

The field ancillary construct (Fig. 9) provides metadata
which are distributed over the same sampling domain as the
field itself. For example, if a data variable holds a variable
retrieved from a satellite instrument, a related ancillary data
variable might provide the uncertainty estimates for those re-
trievals (varying over the same spatiotemporal domain).

The field ancillary construct consists of an array of the
ancillary data, which is zero-dimensional or which depends
on one or more of the domain axes, and properties to de-
scribe the data (in the same sense as for the field construct).
It is assumed that the data do not depend on axes of the do-
main which are not spanned by the array, along which the
values are implicitly propagated. CF-netCDF ancillary data
variables correspond to field ancillary constructs. Note that
a field ancillary construct is constrained by the domain def-
inition of the parent field construct but does not contribute

to the domain’s definition, unlike, for instance, an auxiliary
coordinate construct or domain ancillary construct.

4.8 Cell method construct

The cell method constructs (Fig. 9) describe how the cell val-
ues represent the variation of the physical quantity within its
cells – the structure of the data at a higher resolution. A single
cell method construct consists of a set of axes (see below), a
“method” property which describes how a value of the field
construct’s data array describes the variation of the quantity
within a cell over those axes (e.g. a value might represent the
cell area average), and properties serving to indicate more
precisely how the method was applied (e.g. recording the
spacing of the original data, or the fact the method was ap-
plied only over El Niño years).

The field construct may contain an ordered sequence of
cell method constructs describing multiple processes which
have been applied to the data, e.g. a temporal maximum of
the areal mean has two components – a mean and a maxi-
mum – each acting over different sets of axes. It is an ordered
sequence because the methods specified are not necessarily
commutative. There are properties to indicate climatological
time processing, e.g. multiannual means of monthly maxima,
in which case multiple cell method constructs need to be con-
sidered together to define a special interpretation of boundary
coordinate array values. The cell_methods attribute of a CF-
netCDF data variable corresponds to one or more cell method
constructs.

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4634 D. Hassell et al.: A CF-1.6 data model

The axes over which a cell method applies are either a sub-
set of the domain axis constructs or a collection of strings
which identify axes that are not part of the domain. The lat-
ter case is particularly useful when the coordinate range for
an axis cannot be precisely defined, making it impossible to
define a domain axis construct. For example, a climatologi-
cal time mean might be based on data which are not available
over the same time periods at every horizontal location – use-
ful information can still be conveyed by recording the fact the
data have been temporally averaged without specifying the
range of times. The strings which identify such axes are well
defined in that they must be standard names (e.g. time, lon-
gitude) or the special string “area”, indicating a combination
of horizontal axes.

5 Relationship to other data models

A data model does not exist on its own, and those exploiting
it will need to interpret it in the context of other data mod-
els with which they already work, whether they are implicit
or explicit (Sect. 1.1). Often a clear, unambiguous, and uni-
versally agreed (or even agreeable) mapping between data
models is not possible. Nativi et al. (2008), who establish a
mapping between the Unidata Common Data Model and rel-
evant international standards, discuss many of the relevant
issues. Here, we confine ourselves to drawing some parallels
between our explicit CF data model and selected other data
modelling activities. We begin with the ISO 19123 coverage
model, which provides an abstract view of the problem arena.

Readers who are not familiar with other data models may
wish to omit this section on a first reading, as it is not re-
quired to understand the CF conventions, the CF data model
presented here, nor the software implementation of Sect. 6.

5.1 The ISO 19123 coverage model

ISO 19123 (International Standards Organisation, 2007) pro-
vides a language and conceptual schema for describing “cov-
erages”, that is, for datasets which assign data values to spec-
ified data locations (in space and/or time). ISO 19123 builds
on a range of other ISO standards for geographical informa-
tion, collectively known as the ISO 191xx series.

An ISO 191xx coverage may be viewed as a function
whose inputs are spatiotemporal positions (the “domain”)
which are related to outputs comprising values of one or
more geographical features (the “range” of the coverage).
Thus, a coverage is notionally a function over a domain
which has a range of values. Within ISO 19123, two types
of coverage are defined: discrete and continuous. The for-
mer is the most relevant here (see Fig. 12a), having a domain
which consists of a set of “domain objects”, themselves de-
scribed by spatial objects and temporal primitives. In such a
coverage, all the objects must share the same coordinate ref-
erence system. Coordinate reference systems themselves can

be compound, but the simplest single coordinate reference
system effectively consists of a datum and a set of coordi-
nates (which might include one or more parametric coordi-
nates) defining a coordinate system. Although the language
of much of the ISO 19123 specification is cast in terms of
simple geospatial coordinates, these abstract coordinate sys-
tems are in fact fully general – although many ISO-compliant
implementations restrict them to geospatial coordinates – and
cannot reflect the full generality of CF coordinates such as
wavelengths, ensembles, etc. UML diagrams (Appendix A)
for the full ISO 19123 model are given in Fig. 12.

For point data, a discrete coverage is nearly identical to a
CF field construct (V (d), as described in Sect. 3). However,
a CF field construct explicitly describes a single variable on
a domain, whilst a discrete coverage allows for multiple vari-
ables on a shared domain. (In ISO 19123, such variables are
termed “features”, not to be confused with “sampling fea-
tures” discussed below.) It is also worth noting that many,
but not all, netCDF files containing CF data may well have
CF data with a shared implied spatiotemporal domain, and
such files may well map rather directly onto the coverage
model, but as we have seen, this is not always the case, not
least because multiple domain descriptions may appear in a
given file.

Discrete coverages themselves can be further specialised
into a set of more specialised coverages: sampling the do-
main with sets of points, a grid of points, or sets of curves,
surfaces, or solids.

Of these, the most important (in terms of our CF data
model) is the DiscreteGridPointCoverage (Fig. 12b). This re-
lates a domain of grid points laid out in a grid to a range of
values in GridValueMatrix. The grid can be defined in three
different ways: as a set of grid points (with their own co-
ordinates), as a “rectified” grid (a grid utilising a datum and
coordinate vectors for which there is an affine transformation
between the coordinates and those of an external coordinate
reference system), or a referenceable grid which provides
parametric relations between a position using a coordinate
tuple and a position in a planetary reference frame using a
specific coordinate reference system. The values can appear
in a grid matrix, which defines how the sequence of values is
laid out against the positioning exposed via the domain grid
(in any of the three forms).

There is a clear correspondence between the CF dimen-
sion coordinate construct and an ISO coordinate reference
system as used in a rectified grid, and between the underly-
ing concepts of ISO parametric coordinate reference systems
within a referenceable grid and a CF domain described us-
ing CF auxiliary coordinate constructs. This correspondence
together supports the identification of an ISO grid (which it-
self carries little information apart from a name and a list of
axes) with the abstract notion of a CF domain described by
CF coordinate reference constructs.

Even with an ISO rectified grid, which has the easi-
est correspondence with CF, there are subtle but impor-

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4635

(a) Coverage basics: domain, range, and coordinates

CV_GridPoint

CV_Grid

DirectPosition

+ coordinateValue

constraints
{In the context of a
coverage, if no SC_CRS,
must use the CRS of the
parent coverage}

TM_GeometricPrimitive

SC_CompoundCRS

Instants and periods are defined using
temporal coordinate reference systems
which include calendars etc and are defined
in ISO19108.

SC_SingleCRS

SC_ParametericCRS

CV_AttributeValues

SC_CRS

CV_DiscreteCoverage

GM_Object

+ boundary:
GM_Boundary

+ representativePoint:
DirectPosition

constraints
{All objects in the
domain must share a
common CRS}

CD_ParametricDatum

CD, CS: ISO19111
CV: ISO19123
GM: ISO19107
TM: ISO19108

CS_CoordinateSystem

CD_Datum

CV_DomainObject

2..*

0..*

0..*0..11

0..*

1..*

Domain

1

0..*

Spatial
composition

1..*

Range

1..*

0..*

0..*
Temporal

composition

1

(b) Discrete grid point coverages and relation to cells, coordinates, and footprints.

CV_DomainObject

CV_GridPoint

CV_Grid

+ axisNames: char [1..*]
+ dimensions: int

CV_DiscreteCoverage

CV_GridCells

ISO grid coverages do not
need to implement grid
cells, but if they do, they
are notionally defined by
the corners made up by
the grid points. The
CV_FootPrint
represents the sampling
space associated with the
grid point.

CV_DiscreteGridPointCoverage

CV_GridValueMatrix

+ values: Record

CV_FootPrint

CV_RectifiedGrid

CV_ReferenceableGrid

1..*

Domain

1..*

Range evaluator

SampleSpace

Positioning

1..*
4..*

1..*

Valuation

Figure 12. Key concepts within the ISO 19123 view of coverages and the associated coordinate systems: a) as applied to a specific coverage:

the discrete coverage, which relates a domain of objects to a a set of attribute values; b) an expanded view of the relationship of discrete

grid point coverages to grid cells, grid footprints, and three different ways of thinking about the grids (set of coordinates, rectified, and

referenceable grids). Note the comment box defining the two-letter labels of each element (e.g. CV means that this elements comes the the

ISO 19123 data model). See also figure 9 in Dominico and Nativi (2013). Further relationships and details are discussed in the text.

26

Figure 12. Key concepts within the ISO 19123 view of coverages and the associated coordinate systems: (a) as applied to a specific coverage:
the discrete coverage, which relates a domain of objects to a set of attribute values; (b) an expanded view of the relationship of discrete
grid point coverages to grid cells, grid footprints, and three different ways of thinking about the grids (set of coordinates, rectified, and
referenceable grids). Note the comment box defining the two-letter labels of each element (e.g. CV indicates that this element comes from
the ISO 19123 data model). See also Fig. 9 in Dominico and Nativi (2013). Further relationships and details are discussed in the text.

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4636 D. Hassell et al.: A CF-1.6 data model

Coordinate axes

Cell bounds

CV_GridCell

CF cell

CV_FootPrint

Figure 13. The relationship between ISO grid cells and footprints,
and CF cells described by cell bounds.

tant differences in the treatment of coordinates, proba-
bly the most important of which is that the CF equiva-
lent of the ISO datum is often held in the standard name
of the coordinate construct. For example, a CF coordi-
nate construct with a standard name of height means the
coordinate is with reference to the surface, i.e. the bot-
tom of the atmosphere (distinct from other valid vertical
coordinates such as height_above_reference_ellipsoid and
height_above_sea_floor). These coordinates are all distinct
geophysical quantities, with vertical datums of the surface,
the reference ellipsoid, and the sea floor, respectively, though
they all have the same canonical unit of measure (metres) and
direction (values increase for locations further above the da-
tum).

Where a more precise specification of the datum may be
needed (for example, the figure of the reference ellipsoid or
the reference point for a latitude–longitude coordinate sys-
tem where it is not the default of the intersection of the Equa-
tor and the Greenwich meridian), it can be supplied by the
coordinate reference construct, not the standard name. This
CF separation of grid mapping datum from coordinates adds
value because changing the datum does not alter the geophys-
ical nature of the coordinate and its interpretation. The parti-
tioning is suitable and convenient for many purposes of data
analysis, in which coordinate constructs are processed inde-
pendently, without the need for awareness of a full ISO coor-
dinate reference system (CRS). It arises from the generality
of CF, in which spatiotemporal coordinates are used having
a wider variety than in the geographic information system
(GIS); non-spatiotemporal coordinates are also needed; and
the data are often from idealised worlds (such as in climate
models).

Whether grid cells are described directly or implied via
referenceable or rectified grids, it is important to note that
in the ISO world, the cells lie between the edges laid out by
the coordinates, whereas by contrast the notion of a cell in
CF – defined by the cell measure construct (Sect. 4.6) – is
more directly analogous (Fig. 13) to the FootPrint in an ISO
coverage which represents the sample space associated with
a grid point (Fig. 12b). There is also a richer set of semantics
in CF associated with the cell method construct (Sect. 4.8).

It might appear that some of the more complex geometries
underlying CF fields which are expressed on domains sam-
pled using the CF DSG features best be mapped onto other
specialisations of DiscreteCoverages – this is the approach
taken by Nativi et al. (2008) who use the DiscreteCurve-
Coverage for mapping ISO coverages onto Unidata Common
Data Model (Sect. 5.3) profile and trajectory data. However,
we would assert that the underlying semantics of CF as ex-
pressed by the concept of cells are generalisable to multi-
dimensional sampling inside the DiscreteGridPoint cover-
age. This is in part why we see the CF sampling feature types
as simply specialisations of the CF field, possibly with a spe-
cific storage pattern. This simple mapping between CF “do-
mains” and ISO DiscreteGridPoint coverage is also the ap-
proach taken by the Open Geospatial Consortium (OGC) CF-
netCDF extension standard (Sect. 5.2 below) which describes
another set of possible relationships between CF-netCDF and
ISO 19123, albeit without the higher-level CF constructs we
introduce here.

ISO 19156 Observations and Measurements (International
Standards Organisation, 2011) introduces sampling features
with a range of geometric spatial properties (e.g. sampling
along a curve, such as a trajectory). CF discrete sampling ge-
ometries can be mapped onto these sampling features, but it
is important to note that ISO 19156 explicitly expects actual
observation (or simulation) values to be subsampled. Thus,
the observations are amenable to recording with more gen-
eral discrete coverages, just as we have done here by treating
all CF discrete sampling geometries as CF field constructs,
optionally labelled with a feature type property to help un-
derstand the intended use of the axes.

5.2 The OGC CF-netCDF standard

The Open Geospatial Consortium standard introduced above
(Dominico and Nativi, 2013) in the context of complex ge-
ometries presents their own CF data model: the CF-netCDF
extension model. Their model differs from ours in four major
ways:

1. It is not the complete CF version 1.6 (for example, it
does not appear to include ancillary data variables).

2. Their model makes some elements of CF mandatory, in
order to facilitate the ISO 19123 coverage interoperabil-
ity, which is their target.

3. It is tied to the netCDF format.

4. It is constructed in order to map as closely as possible
onto the ISO 19123 coverage model but without being
faithful to CF; so, for example, it introduces the notion
of a CF coordinate system including a notional Hori-
zontalCRS, which is independent of explicitly identi-
fied horizontal and vertical coordinates (their Fig. 4).
By contrast, we have only introduced new concepts as
abstractions where they help interpret and use CF itself

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4637

(again, for example, in our case the domain and abstract
coordinate).

The last of these points is of course subjective. We would ar-
gue that our approach is the most consistent with a faithful
model of CF, but it is clear that CF itself currently admits a
multitude of possible interpretative models as well as a mul-
titude of correct (if limited and/or constrained) implementa-
tions such as this one.

5.3 The Unidata Common Data Model

The Unidata Common Data Model (CDM; Unidata, 2014a)
is an abstract data model for scientific datasets that is a super-
set of the netCDF classic and enhanced data models (Sect. 2).
In addition to netCDF, and similarly to the CF data model
presented here, it consists of multiple layers:

– a data access layer, which handles data reading and
writing, and merges the netCDF enhanced, OPeNDAP
(Open-source Project for a Network Data Access Pro-
tocol, https://www.opendap.org) and HDF (Hierarchi-
cal Data Format, https://www.hdfgroup.org) data mod-
els to create a common application programming inter-
face (API);

– a coordinate system layer, which handles the coordi-
nates of data arrays;

– a feature type layer, which handles similar notions to
those we express with CF field constructs and the CF
sampling feature types; and

– a mature Java-based implementation which reads, ma-
nipulates, and writes the CDM sampling features.

The CDM data access layer has a broader scope than ours
(being about more than just netCDF). If we consider that
most of the CF standard as expressed in our data model is
about handling coordinates, cells, and domains, then our CF
data model corresponds to CDM coordinate system layer,
with the various CF feature types of our CF data model field
constructs corresponding to the CDM feature type layer. The
cf-python software (Sect. 6) corresponds to the CDM Java
implementation, but our CF data model is intended to be use-
ful outside the context of our cf-python application.

The CDM data access layer handles more data types
(Fig. 14), in particular structures and sequences which allow
more complex data types and the iteration through data of (a
priori) unknown length. These data types are not yet required
by CF-netCDF (Sect. 2), so we do not consider them in our
CF data model.

Within the coordinate system layer, there is much closer
correspondence between the CDM and our CF data model.

– A CF dimension or auxiliary coordinate construct maps
to a CDM CoordinateAxis.

CDM Variable

+ name
+ shape

+ read()

CDM CoordinateSystem

CDM CoordinateAxis

+ axisType

CDM CoordinateTransform

+ parameters

«enumeration»
CDM AxisType

 Time
 Lat
 Lon
 Height
 Pressure
 GeoX
 GeoY
 GeoZ
 RadialAziumuth
 RadialElevation
 RadialDistance
 RunTime
 Ensemble

«enumeration»
DataType

 byte
 short
 int
 long
 float
 double
 char
 String
 Sequence
 Structure
 enum
 opaque

0..*

0..1

0..*

1..*

Figure 14. Key characteristics of the Unidata Common Data Model.
There is a wider variety of fundamental data types than is supported
by the netCDF classic data model; and the coordinate system in-
cludes the option of coordinate axes of specific types for use in the
feature types, which limits the flexibility of the CDM data model.

– The datum and coordinate conversion components of a
CF coordinate reference construct are components of a
CDM CoordinateTransform.

– A CF coordinate reference construct maps to a CDM
CoordinateSystem.

The last of these has one exception: a CDM CoordinateSys-
tem must contain at least one CDM CoordinateAxis, whereas
CF dimension and auxiliary coordinate constructs are op-
tional in a CF coordinate reference construct. In other words,
our CF data model can record a coordinate system datum in
the absence of coordinate values. This is useful when the CF
field construct properties, rather than its coordinates, define
the extent of the data array.

A CDM CoordinateAxis may be subtyped into axes which
can be specifically exploited by the sampling feature types
in the CDM feature type layer, where there are significant
differences from our CF data model. The CDM feature type
implementation is discussed in Unidata (2014b); CDM im-
plements feature collections as collections of point features
in such a way that a profile, for example, is a collection of
point features along a vertical line, and so a profile collection
is a nested point feature collection. Similarly, a trajectory fea-
ture is a collection of points along a path through time and
space, with collections which are nested point feature collec-
tions (Fig. 15). Other CDM feature types are built from this
base. The CDM data model exposes these concepts directly.
By contrast, our CF data model does not expose any of these
ideas directly, with the interpretation left entirely to software

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

https://www.opendap.org
https://www.hdfgroup.org

4638 D. Hassell et al.: A CF-1.6 data model

CDM feature
collection

CDM point feature
collection

CDM point feature

CDM profile
feature

CDM nested point
feature collection

CDM trajectory
feature

CDM trajectory
feature

collection

CDM profile
feature

collection

Figure 15. The relationship between features, feature types, and
feature collections in the Unidata Common Data Model. Only the
simplest feature types are shown; more complicated features are
built from these basic elements (Unidata, 2014b).

implementations: our CF data model simply exposes the ap-
propriate coordinates and their interpretation is either infer-
able from the nature of those coordinates or is made explicit
via the feature type property, which is effectively a constraint
with a label (Sect. 4.1).

6 cf-python: a data model implementation

A key use of our data model is to enable the creation of
wholly CF-compliant software, i.e. software that can repre-
sent and manipulate any CF-compliant dataset. Such soft-
ware corresponds to one of the application boxes in Fig. 1.
cf-python is a data analysis software library written for the
Python programming language that implements the CF data
model presented here for its internal data structures and so
is able to process any CF-compliant dataset. It is, however,
not strict about CF compliance so that partially conformant
datasets may be ingested and their deficiencies corrected
with the API. cf-python is open-source software and is free
to download and install from the Python package index at
https://pypi.python.org/pypi/cf-python.

cf-python implements the data model constructs and their
relationships exactly as shown in Figs. 9–11, but we refer
to the cf-python realisations of CF data model constructs as
“objects” in order to distinguish between abstract concepts
and their instantiated counterparts. cf-python (version 2.1)
can read field objects from netCDF files or create new field
objects, manipulate field objects in memory, and write field
objects to netCDF files. Once a field object exists a range of
operations are possible, including to

– create, delete, and modify a field object’s data and meta-
data;

– select and subspace field objects according to their
metadata;

– perform arithmetic, comparison, and other mathemati-
cal operations involving field objects;

– collapse axes by statistical operations;

– perform operations with date–time data;

– regrid fields to new domains using the Earth System
Modeling Framework high-performance software in-
frastructure (O’Kuinghttons et al., 2016); and

– visualise field objects by interfacing with the cf-plot
Python package, which is also open source and freely
available at https://pypi.python.org/pypi/cf-plot.

All of these operations are “metadata aware”, which means
that parameters needed for an operation need not be fully
specified by the user, provided that field objects have suffi-
cient metadata to infer the parameters unambiguously. This
is greatly facilitated by having a data model, because all stan-
dardised metadata are stored in a fully defined manner and
so the required parameters may be inferred unambiguously.
In practice, a field object’s metadata may be incomplete, in
which case the user should use the cf-python API to sup-
plement the metadata. For example, the cf-python command
h=f.regrids(g) will create a new field object h which
has the data from field object f regridded to the latitude–
longitude plane of the domain of field object g. If the do-
mains of f and g are not sufficiently described for this oper-
ation, then an error will be raised that states which informa-
tion is missing. The full API documentation is available as
part of the cf-python installation, as well as via the Python
package index.

How cf-python implements the data model may be seen
by using the library to read the CF-netCDF file described
in Fig. 3 and inspecting the field objects that it creates.
The code listed in Fig. 16 demonstrates importing the li-
brary and reading this netCDF file within the interactive
Python shell, in which a command is preceded by the >> >

prompt and followed by any printed output. After import-
ing the cf-python library (import cf), the netCDF file
example_file.nc described in Fig. 3 is read into the
variable f, which is a list of the file’s two field objects –
one containing air temperature data and the other contain-
ing the vertical integral of atmospheric water vapour data.
See Sect. “Interpreting CF-netCDF files” for a discussion on
why only two field objects were created from the 17 netCDF
variables in the file. The one-line description of each field
object shows the size and physical nature of the data array
dimensions and the units of the data array values. In Fig. 17,
the first of the two field objects is selected and labelled t,
and a more detailed look at its metadata is generated with
the dump function. This exposes the constructs of the data
model which have been instantiated for this field object and

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

https://pypi.python.org/pypi/cf-python
https://pypi.python.org/pypi/cf-plot

D. Hassell et al.: A CF-1.6 data model 4639

>>> import cf
>>> f = cf.read('example_file.nc')
>>> f
[<CF Field: air_temperature(atmosphere_sigma_coordinate(20), projection_y_coordinate(110), projection_x_coordinate(106)) K>,
 <CF Field: atmosphere_mass_content_of_water_vapor(projection_y_coordinate(110), projection_x_coordinate(106)) kg m2>]

Figure 16. Reading a file using cf-python.

shows the field object’s properties (standard_name and
source instantiated from lines 54 and 74 of Fig. 3). The
output describes

– one field object;

– four domain axis objects and their sizes, including one
which is implied by the “time” CF-netCDF scalar coor-
dinate variable;

– one cell method object indicating that each data array
value is a time average constructed from daily samples;

– one field ancillary object describing the uncertainty of
the data array values;

– four dimension coordinate objects, each one spanning a
unique domain axis object;

– two multi-dimensional auxiliary coordinate objects for
true latitude and true longitude coordinates (as required
by the CF conventions when the horizontal dimension
coordinates are not canonical geographical latitudes and
longitudes);

– three domain ancillary objects utilised by the coordinate
reference objects;

– two coordinate reference objects: a vertical, atmosphere
sigma coordinate system which references the domain
ancillary objects and the vertical dimension coordinate
object, and a horizontal Lambert conformal conic coor-
dinate system which references the horizontal auxiliary
and dimension coordinate objects; and

– one cell measure object containing horizontal cell areas.

The one-to-one correspondence between the data model
and cf-python’s interpretation of CF may also be demon-
strated by inspecting the objects from which field object t
is composed. In Fig. 18, the constructs function is used
to return all of these objects, each having a similar name
in camel case to its CF data model counterpart (e.g. a do-
main axis construct is represented by a DomainAxis object).
This output demonstrates that it is only the field object which
stores information on the whole domain. For example, the
latitude auxiliary coordinate object has a two-dimensional
data array shape of 110×106 but does not record what these
dimensions physically represent (Fig. 10). The cell method
object does, however, store references to the domain axes
to which it applies (Sect. 4.8) – the “dim3” in this example

refers to the size one domain axis object, which is identified
by the field object alone as being a time axis by virtue of the
“time” dimension coordinate object associated with it.

Whilst field object t contains at least one instance of every
type of data model construct, it is more common for field ob-
jects to contain a subset of the possible data constructs. Fig-
ure 19 shows the detailed description of two other cf-python
field objects. The first of these (p) is of medium complexity
and contains only domain axis, cell method, and dimension
coordinate objects. In this case, the cell method and time di-
mension coordinate objects collectively state that the data are
30-year averages of monthly minima. The second of the field
objects (q) is minimally complex and contains no other data
model constructs, yet is still CF compliant. In this case, the
data array is scalar and there are no coordinates, so domain
axes are not necessary.

Interpreting CF-netCDF files

Any variable in a CF-netCDF file can always be viewed as
a data variable in addition to any metadata role it may have,
simply by choosing to ignore any other variables that may
reference it. For example, a variable that is named by the
“coordinates” attribute of a data variable is always an auxil-
iary coordinate variable (Sect. 3.3), but this metadata status
is conferred solely by the “coordinates” attribute, so by ig-
noring it this variable also becomes a data variable.

When a CF-netCDF file is read, a decision must be taken
as to which variables are the data variables. By default, cf-
python assumes that only unreferenced variables are data
variables that instantiate field objects (variables temp and
total_wv in Fig. 3). It is possible, however, to override this
default behaviour so that some or all referenced variables in-
stantiate field objects in addition to instantiating other, meta-
data objects. For example, the variable PS in Fig. 3 will al-
ways create a domain ancillary object but may also, if re-
quested, create an independent field object for surface air
pressure.

An interesting situation arises if a netCDF file contains
only CF-netCDF coordinate variables and their associated
dimensions. It may be natural to assume that these coordi-
nate variables define a single domain, but without the explicit
links provided by a data variable the existence of a domain
cannot be assumed by the software. These coordinate vari-
ables are not referenced by a data variable but they are ex-
plicitly defined as “coordinates”. When reading such a file,
cf-python by default creates no field objects (because only
coordinates have been defined), and also no dimension coor-

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4640 D. Hassell et al.: A CF-1.6 data model

>>> t = f[0]
>>> t.dump()

Field: air_temperature

source = 'climate model'
standard_name = 'air_temperature'

Domain Axis: time(1)
Domain Axis: atmosphere_sigma_coordinate(20)
Domain Axis: projection_y_coordinate(110)
Domain Axis: projection_x_coordinate(106)

Data(atmosphere_sigma_coordinate(20), projection_y_coordinate(110), projection_x_coordinate(106)) = [[[276.66, ..., 304.78]]] K

Cell Method: time: mean (interval: 1 day)

Field Ancillary: air_temperature standard_error
 standard_name = 'air_temperature standard_error'
 Data(atmosphere_sigma_coordinate(20), projection_y_coordinate(110), projection_x_coordinate(106)) = [[[1.88, ..., 0.15]]] K

Dimension Coordinate: atmosphere_sigma_coordinate
 positive = 'down'
 standard_name = 'atmosphere_sigma_coordinate'
 Data(atmosphere_sigma_coordinate(20)) = [0.992, ..., 0.003]
 Bounds(atmosphere_sigma_coordinate(20), 2) = [[1.0, ..., 0.0]]

Dimension Coordinate: projection_y_coordinate
 standard_name = 'projection_y_coordinate'
 Data(projection_y_coordinate(110)) = [0.0, ..., 109.0] km
 Bounds(projection_y_coordinate(110), 2) = [[0.5, ..., 109.5]] km

Dimension Coordinate: projection_x_coordinate
 standard_name = 'projection_x_coordinate'
 Data(projection_x_coordinate(106)) = [0.0, ..., 105.0] km
 Bounds(projection_x_coordinate(106), 2) = [[0.5, ..., 105.5]] km

Dimension Coordinate: time
 standard_name = 'time'
 Data(time(1)) = [20170701T00:00:00Z] gregorian
 Bounds(time(1), 2) = [[20170101T00:00:00Z, 20180101T00:00:00Z]] gregorian

Auxiliary Coordinate: latitude
 standard_name = 'latitude'
 Data(projection_y_coordinate(110), projection_x_coordinate(106)) = [[75.32, ..., 22.89]] degrees_north

Auxiliary Coordinate: longitude
 standard_name = 'longitude'
 Data(projection_y_coordinate(110), projection_x_coordinate(106)) = [[45.98, ..., 73.57]] degrees_east

Domain Ancillary: atmosphere_sigma_coordinate
 standard_name = 'atmosphere_sigma_coordinate'
 Data(atmosphere_sigma_coordinate(20)) = [0.992, ..., 0.003]
 Bounds(atmosphere_sigma_coordinate(20), 2) = [[1.0, ..., 0.0]]

Domain Ancillary: surface_air_pressure
 standard_name = 'surface_air_pressure'
 Data(projection_y_coordinate(110), projection_x_coordinate(106)) = [[100399.82, ..., 99241.16]] Pa

Domain Ancillary: air_pressure
 standard_name = 'air_pressure'
 Data(projection_y_coordinate(110), projection_x_coordinate(106)) = [[500.46, ..., 498.19]] Pa

Coordinate Reference: atmosphere_sigma_coordinate
 standard_name = atmosphere_sigma_coordinate
 ps = Domain Ancillary: surface_air_pressure
 ptop = Domain Ancillary: air_pressure
 sigma = Domain Ancillary: atmosphere_sigma_coordinate
 Coordinate = Dimension Coordinate: atmosphere_sigma_coordinate

Coordinate Reference: lambert_conformal_conic
 grid_mapping_name = lambert_conformal_conic
 latitude_of_projection_origin = 25.0
 longitude_of_central_meridian = 265.0
 standard_parallel = 25.0
 Coordinate = Auxiliary Coordinate: latitude
 Coordinate = Auxiliary Coordinate: longitude
 Coordinate = Dimension Coordinate: projection_y_coordinate
 Coordinate = Dimension Coordinate: projection_x_coordinate

Cell Measure: area
 standard_name = 'area'
 Data(projection_y_coordinate(110), projection_x_coordinate(106)) = [[2456198746.45, ..., 2500013469.6]] m2

Figure 17. A detailed inspection of a field object’s metadata.

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4641

>>> t.constructs()
[<CF Field: air_temperature(atmosphere_sigma_coordinate(20), projection_y_coordinate(110), projection_x_coordinate(106)) K>,
 <CF DomainAxis: 106>,
 <CF DomainAxis: 1>,
 <CF DomainAxis: 20>,
 <CF DomainAxis: 110>,
 <CF CellMethod: dim3: mean (interval: 1 day)>,
 <CF FieldAncillary: air_temperature standard_error(20, 110, 106) K>,
 <CF DimensionCoordinate: projection_x_coordinate(106) km>,
 <CF DimensionCoordinate: time(1) gregorian>,
 <CF DimensionCoordinate: atmosphere_sigma_coordinate(20) 1>,
 <CF DimensionCoordinate: projection_y_coordinate(110) km>,
 <CF AuxiliaryCoordinate: latitude(110, 106) degrees_north>,
 <CF AuxiliaryCoordinate: longitude(110, 106) degrees_east>,
 <CF CoordinateReference: lambert_conformal_conic>,
 <CF CoordinateReference: atmosphere_sigma_coordinate>,
 <CF DomainAncillary: atmosphere_sigma_coordinate(20) 1>,
 <CF DomainAncillary: surface_air_pressure(110, 106) Pa>,
 <CF DomainAncillary: air_pressure(110, 106) Pa>,
 <CF CellMeasure: area(110, 106) m2>]

Figure 18. The cf-python class instances which correspond to CF data model constructs.

>>> q.dump()

Field: specific_humidity

long_name = 'specific humidity at atmosphere lower boundary'
standard_name = 'surface_specific_humidity'

Domain Axis: time(12)
Domain Axis: latitude(64)
Domain Axis: longitude(128)

Data(time(12), latitude(64), longitude(128)) = [[[0.006348, ..., 0.098766]]]

Cell Method: time: minimum within years
Cell Method: time: mean over years

Dimension Coordinate: time
 axis = 'T'
 standard_name = 'time'
 Data(time(12)) = [19601216T12:00:00Z, ..., 19611116T00:00:00Z] noleap
 Bounds(time(12), 2) = [[19601201T00:00:00Z, ..., 19901201T00:00:00Z]] noleap

Dimension Coordinate: latitude
 axis = 'Y'
 standard_name = 'latitude'
 Data(latitude(64)) = [87.8638, ..., 87.8638] degrees_north
 Bounds(latitude(64), 2) = [[90.0, ..., 90.0]] degrees_north

Dimension Coordinate: longitude
 axis = 'X'
 standard_name = 'longitude'
 Data(longitude(128)) = [0.0, ..., 357.1875] degrees_east
 Bounds(longitude(128), 2) = [[1.40625, ..., 358.59375]] degrees_east

>>> p.dump()

Field: precipitation_flux

standard_name = 'precipitation_flux'

Data() = 1.45 kg m2 s1

Figure 19. Examples of cf-python field objects of medium and minimal complexity.

dinate objects (as dimension coordinate constructs can only
exist within a field construct; see Sect. 4.1). As is the case
with referenced variables, it is possible to override the default
behaviour such that an independent field object is instanti-
ated from each coordinate variable. This example highlights
the issues arising from the absence of an explicit domain el-
ement in CF (Sect. 3.2).

7 Evolution of a CF data model and cf-python

A number of new features have recently been introduced
in version 1.7 of the CF conventions, published in Septem-
ber 2017, and there is no doubt that the CF conventions will
continue to evolve and meet the needs of the scientific com-
munity for representing more types of data. Any CF data
model will therefore have to adapt to future enhancements.
This is why our CF data model was designed with a minimal

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4642 D. Hassell et al.: A CF-1.6 data model

number of simple constructs in mind (Sect. 1.1). We suggest
that such a design is more flexible and therefore more likely
(but not guaranteed) to meet future requirements.

A CF data model could guide the development of CF by
providing a framework for ensuring that proposed changes
fit into CF in a logical, rather than just a pragmatic, way. A
proposed enhancement would be assessed to see if its new
features map onto the existing data model. If they do, then
the enhancement may be incorporated in the CF conventions
with no change to the existing data model.

As an example, it is instructive to consider one of the en-
hancements accepted into CF at version 1.7, namely the abil-
ity to store a cell measure variable (Sect. 3.5) in a differ-
ent netCDF file to that of its data variable (http://cf-trac.llnl.
gov/trac/ticket/145). This is the first occurrence in CF of an
atomic dataset not being identical to a single file and poses
important questions on how software might be expected to
link multiple files and on the consequences of one of the files
going missing, thereby losing information from the dataset.
From a CF data model perspective, however, this is clearly
just an artefact of the dataset encoding, from which the data
model is independent by design. Whether a dataset is in one
file, or spread across many files, the logical relationships be-
tween a field construct and its various metadata constructs,
such as the cell measure construct, remain unchanged.

If a change does not map onto the existing data model and
cannot be modified to do so, the data model will need to be
modified to accommodate the new features. This modifica-
tion will be either backwards compatible or backwards in-
compatible. The former (preferable) case occurs if the data
model may be extended or generalised in some way that al-
lows the new features but does not affect its existing con-
structs and relationships. The latter case occurs if a change
is required that would affect the interpretation of existing
datasets and the design of software built around the data
model. Much effort has been already been put into avoiding
backward incompatibilities in CF, so that older datasets are
still parsable by newer software, but doing so is not a rule but
a “best practice” that could be overridden if the community
consensus were that the benefits in doing so outweighed any
inconvenience.

It is the authors’ intention to ensure that the cf-python soft-
ware library is kept up to date with the latest version of CF
conventions and the CF data model presented here. To facil-
itate this, work is underway to create a reference implemen-
tation of this data model, which in essence will be like cf-
python but without any of its higher-level functionality (such
as regridding methods). This reference implementation will
then be imported back into cf-python to provide not only
its data model representation but also a “read” method for
mapping datasets onto field constructs and a “write” method
for mapping field constructs to new netCDF files. The refer-
ence implementation will be easier to understand and main-
tain than cf-python, could be used by other Python packages
for manipulating CF datasets, and also has the potential to be

used as a test bed for proposed new features of CF. This ref-
erence implementation will be open source (like cf-python),
so any interested parties may contribute to its maintenance
and development.

8 Summary and conclusions

In this paper, we have presented a formal data model for
the CF conventions, identifying the fundamental elements of
CF and showing how they relate to each other. We have de-
scribed the CF conventions in terms of their relationship to
the physical world (real or simulated) and in terms of their
netCDF encoding, and these steps led to our identifying the
elements which contribute to a CF data model. The CF con-
ventions themselves have been influenced by their netCDF
encoding, and therefore our CF data model is indirectly influ-
enced by netCDF, although it aims to be independent of the
encoding. We have discussed the relationships of our CF data
model to other data models which address the problem of
storing data and metadata, and we have presented a software
implementation of this CF data model capable of manipu-
lating any CF-compliant dataset. We have described possible
ways in which this CF data model and the cf-python software
library may evolve over time.

It is important to note that our CF data model is a descrip-
tion of what CF is, rather than what it ought to be, either in
our opinion or anyone else’s. We believe that there is little
doubt that a CF data model is of considerable value, and this
has been recognised by the CF community, which highlights
that a CF data model will aid future developments in the CF
conventions and make it easier to create CF-compliant soft-
ware (http://cf-trac.llnl.gov/trac/ticket/88). In addition, the
existence of a data model can help resolve conflicts in the
interpretation of the conventions document. For example, a
discussion on the CF mailing list regarding the interpreta-
tion of CF-netCDF scalar coordinate variables was resolved
with some assistance from a developmental version of the
data model (http://cf-trac.llnl.gov/trac/ticket/104). There are
other discussions on unintended ambiguities that have not
been resolved, however, and this is unsatisfactory for those
who need to manipulate datasets or create software for that
purpose.

Creating an explicit data model before the CF conventions
were written would arguably have been preferable. A data
model created a priori increases the likelihood that the prob-
lem space (i.e. storing and manipulating data and metadata)
is fully spanned and encourages coherent implementations,
which could be file storage syntaxes or software codes, the
latter being a stated goal of CF. For example, in CF-netCDF,
horizontal and vertical coordinate reference systems are de-
scribed with very different structures – the grid mapping vari-
able and formula_terms attribute, respectively – a situation
that would likely not have occurred if a comprehensive CF
data model already existed. Writing a CF data model a pos-

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

http://cf-trac.llnl.gov/trac/ticket/145
http://cf-trac.llnl.gov/trac/ticket/145
http://cf-trac.llnl.gov/trac/ticket/88
http://cf-trac.llnl.gov/trac/ticket/104

D. Hassell et al.: A CF-1.6 data model 4643

teriori clearly cannot bring about all of these benefits, as the
coverage of the problem space and file storage syntax is a
given, but it can still be of use to software implementations
and future developments in the conventions.

We believe that the data model proposed here is a complete
and correct description of CF, because we have yet to find a
case for which our implementation in the cf-python library
fails to represent or misrepresents a CF-compliant dataset.
Moreover, the development of cf-python proves that is possi-
ble to implement our CF data model. We consider that our CF
data model is simpler and more flexible than other such mod-
els, because it defines a small number of general constructs
rather than many specialised ones. While the latter approach
is closer to an object-orientated software implementation, our
aim is to describe CF in a way which is independent of any
software.

If this CF data model were to be accepted by the commu-
nity as a formal part of the CF conventions, then any future
enhancements would have to be incorporated into the data
model as part of the public discussion that leads to the ac-
ceptance of every enhancement. Version 1.7 of the CF con-

ventions has been recently published and it is the authors’
intention to review all of the new features for compatibil-
ity with this CF data model. As these enhancements have
already been finalised, any conflict will necessarily force a
change in the data model. Once up to date with version 1.7,
the data model may then be considered in parallel with the
discussions on enhancements for subsequent releases. Struc-
tural differences between different versions of the CF con-
ventions would be plain to see if each release contains a data
model, thus making it easier to write software that can cope
with any backward incompatibilities that may have been in-
troduced.

Code availability. The code of cf-python is open source and freely
downloadable at https://doi.org/10.5281/zenodo.832255 (Hassell
and Gregory, 2017). It is also available from its online repository at
https://bitbucket.org/cfpython/cf-python and from the Python pack-
age index at https://pypi.python.org/pypi/cf-python.

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

https://doi.org/10.5281/zenodo.832255
https://bitbucket.org/cfpython/cf-python
https://pypi.python.org/pypi/cf-python

4644 D. Hassell et al.: A CF-1.6 data model

Appendix A: A UML primer

Throughout this paper, we rely on UML to construct dia-
grams that define the key relationships of the entities de-
scribed in CF-netCDF files and in our data model. These di-
agrams show relationships between “classes” like those used
in an object-orientated programming language or like data
types in Fortran. The relationship of an “instance of a class”
to its class is like that of a particular variable to its data type.
A class is like a species of animal, and an instance of a class
is like an individual animal. Classes can be included in other
classes, just as components are included in the definitions of
derived data types in Fortran, and organs comprise the body
of an animal.

For reference in interpreting our UML diagrams, we de-
scribe the subset of UML used here. As depicted in Ta-
ble 1, arrows and symbols are used to show different types
of relationship between classes. Some relationships include
a “cardinality” which indicates the number of instances of
one class that may be associated with an instance of an-
other. If there is a number (for instance, n) present at class
Y where there is an arrow from class X to class Y , it indi-
cates that there must be exactly n instances of class Y associ-
ated with class X. These cardinalities can also be associated
with ranges. For example, 0..1 means zero or one instance(s)
of class Y may be associated with class X, and 0..∗ means
any number of instances of class Y may be associated with
class X. All of these relationships, along with techniques
used to add further information to classes and associations,
are shown in the worked example of Fig. A1.

The UML diagram elements relating to netCDF (Sect. 2),
the CF-netCDF encoding and our CF data model (Sect. 4)
are coloured yellow, blue, and green, respectively. In addi-
tion, an element from a data model that is not the main focus
of the diagram has its name prefixed with an identifier for
its model – “NC” for netCDF and “CN” for CF-netCDF. For
example, in Fig. 8, which is focused on the CF-netCDF con-
ventions, the yellow “NC::Dimension” element is the same
as the “Dimension” element from Fig. 2, the main diagram
for the netCDF data model.

class-A

class-B

class-C

constraints
{Might be constrained
in some way}

class-E

class-D

This is an informational
note about one or more
classes or associations.

class-F

0..1

Association

0..*

Figure A1. A worked example demonstrating the subset of UML
used in this paper (see Table 1 for definitions of the class associ-
ations). Class-B is a subclass of class-A, and class-D is subclass
of class-E. An instance of class-B includes one instance of class-
C (that cannot exist independently) and may include zero or one
instance(s) of class-F (that can exist independently). An instance
of class-B is related to any number of instances of class-D (with
the relationship being described by the label “Association”). An in-
stance of class-C is constrained to exhibit some behaviour. There is
a general comment concerning class-D and class-C.

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

D. Hassell et al.: A CF-1.6 data model 4645

Appendix B: Optimising dataset storage and
creation in CF-netCDF

An important goal of the CF conventions is that datasets
should be efficient to create, store, and subsequently read,
where efficiency is a measure of the time taken for software
to carry out a task or the amount of computer data storage
required for a file. The conventions describe various tech-
niques for optimising these requirements. A CF-netCDF file
that uses any of the optimisation techniques can always be
recast without them and still contain exactly the same sci-
entific information; therefore, the optimisation mechanisms
do not affect the data model described in Sect. 4. It is com-
mon for a CF-netCDF file to not require optimisation, but in
the cases where it may be applied, an unoptimised file could
suffer by being less readable by humans, consuming more
storage or being slower to create. The example file shown in
Fig. 3 does not include any of these techniques, but many ex-
amples may be found in the CF conventions document (Eaton
et al., 2011).

These parts of the CF convention were devised because the
netCDF classic file format and API do not offer any meth-
ods for compression. However, the netCDF-4 API supports
lossless compression of variables stored in files (Rew et al.,
2006). This method does not affect the variables as they ap-
pear to the user of the data and hence has no impact on our
CF data model.

B1 Packing

Storage space in netCDF files may be reduced by a packing,
i.e. by altering the data in a way that reduces their precision.
Lossy compression may be essential for the archiving of the
huge volumes of data produced by modern high-resolution
models (Baker et al., 2016). This is achieved through the
simple use of the variable attributes scale_factor and
add_offset. After the data values of a variable have been
read, they are to be multiplied by the scale_factor, and
have add_offset added to them (if both attributes are
present, the data are scaled before the offset is added). Un-
packed values are assumed to have the same data type as
the packing attributes, thus making it possible to store 64-bit
floating point data as 16-bit unsigned integers, for instance.
In this example, a loss of precision is likely to arise because
an unpacked value can only take one of 216 possible values.

B2 Compression

As well as external methods of compression applied to the
file, CF has support for space saving by identifying unwanted
missing data. Such compression techniques store the data
more efficiently and result in no precision loss.

B2.1 Gathering

Compression by gathering combines axes of a multi-
dimensional array into a new, discrete axis (the “list” dimen-
sion) whilst omitting the missing values and thus reducing
the number of values that need to be stored. The information
needed to uncompress the data is stored in a separate variable
(the “list” variable) that contains the indices needed to un-
compress the data. A list variable is encoded as a coordinate
variable that has a compress attribute which names the di-
mensions that have been compressed. For example, a variable
that spans x, y, and t axes but has missing data values at all
points over the ocean could have its x and y dimensions com-
pressed to a new dimension (called “landpoint”, for instance)
whose size is the number of land points. The stored variable
would then span only the landpoint and t dimensions.

B2.2 Ragged array representations

A collection of DSG features may be stored using the con-
tiguous or indexed ragged array representation, which min-
imises the amount of file storage required (Sect. 3.4). In both
cases, the “instance” dimension that distinguishes between
different features is combined with the number of elements of
each feature to create a compressed “sample” dimension. The
entire collection may then be stored in an array that spans the
sample dimension, and the contiguous and ragged array rep-
resentations provide different techniques for populating this
array and uncompressing it to find the values for individual
features.

In the contiguous case, each feature in the collection occu-
pies a contiguous block, and so can be used only if the size of
each feature is known at the time that it is created. It requires
a “count” variable that gives the size of each block and is en-
coded as a netCDF variable with a sample_dimension
attribute that names the sample dimension.

For indexed ragged arrays, the values of each feature in
the collection are interleaved along the sample dimension.
The canonical use case for this representation is the stor-
age of real-time data streams that contain reports from many
sources; the data can be written as they arrive. It requires
an “index” variable that specifies the feature that each ele-
ment of the sample dimension belongs to and is encoded as a
netCDF variable with an instance_dimension attribute
that names the instance dimension.

It is also possible to combine contiguous and indexed
ragged array representations, which is useful for cases such
as writing real-time data streams that contain vertical profiles
from many trajectories, arriving randomly, with the data for
each entire profile written all at once.

www.geosci-model-dev.net/10/4619/2017/ Geosci. Model Dev., 10, 4619–4646, 2017

4646 D. Hassell et al.: A CF-1.6 data model

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We would like to thank Mark Hedley, Anto-
nio Cofiño, Martin Juckes, Alison Pamment, and Paulo Ceppi for
comments that greatly improved the manuscript. We are also in-
debted to members of the CF community, whose considerable ef-
forts ensure the continuing success of the CF conventions – in par-
ticular, those who took part in the data model discussions that took
place on the CF mailing list.

The research leading to these results has received funding
from the core budget of the UK National Centre for Atmospheric
Science, the European Research Council, and the European
Commission’s Seventh Framework programme (from ERC project
“Seachange”, number 247220; and FW7 project “IS-ENES2”,
number 312979). Work by Karl E. Taylor was performed under
the auspices of the US Department of Energy (USDOE) by
Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344 with support from the Regional and Global
Climate Modeling Program of the USDOE’s Office of Science.

Edited by: Steve Easterbrook
Reviewed by: Venkatramani Balaji and Brian Eaton

References

Baker, A. H., Hammerling, D. M., Mickelson, S. A., Xu, H., Stolpe,
M. B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samaras-
inghe, S., De Simone, F., Carbone, F., Gencarelli, C. N., Den-
nis, J. M., Kay, J. E., and Lindstrom, P.: Evaluating lossy data
compression on climate simulation data within a large ensemble,
Geosci. Model Dev., 9, 4381–4403, https://doi.org/10.5194/gmd-
9-4381-2016, 2016.

Dominico, B. and Nativi, S. (Eds.): CF-netCDF3 Data Model Ex-
tension Standard, no. OGC 11-165r2 in Open GIS Standard,
Open Geospatial Consortium, 3.1rd Edn., Wayland, MA, USA,
2013.

Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S., Caron,
J., Signell, R., Bentley, P., Rappa, G., Höck, H., Pamment,
A., and Juckes, M.: NetCDF Climate and Forecast (CF) Meta-
data Conventions V1.6, available at: http://cfconventions.org/
cf-conventions/v1.6.0/cf-conventions.html (last access: 11 De-
cember 2017), 2011.

Emmerson, S.: UDUNITS-2 package, available at: http://www.
unidata.ucar.edu/software/udunits (last access: 11 Decem-
ber 2017), 2007.

Hassell, D. and Gregory, J.: cf-python,
https://doi.org/10.5281/zenodo.832255, 2017.

International Standards Organisation: ISO19123: Geographic In-
formation; Schema for Coverage Geometry and Functions, ISO,
Geneva, Switzerland, 2007.

International Standards Organisation: ISO19156: Geographic Infor-
mation – Observations and Measurements, ISO, Geneva, 2011.

Nativi, S., Caron, J., Domenico, B., and Bigagli, L.: Unidata’s
Common Data Model Mapping to the ISO 19123 Data Model,
Earth Sci. Inform., 1, 59–78, https://doi.org/10.1007/s12145-
008-0011-6, 2008.

O’Kuinghttons, R., Koziol, B., Oehmke, R., DeLuca, C., Theurich,
G., Li, P., and Jacob, J.: ESMPy and OpenClimateGIS: Python
Interfaces for High Performance Grid Remapping and Geospatial
Dataset Manipulation, Geophys. Res. Abstr., EGU2016-10050,
EGU General Assembly 2016, Vienna, Austria, 2016.

Rew, R. and Davis, G.: NetCDF: An Interface for Scientific Data
Access, IEEE Computer Graphics and Applications, 10, 76–82,
https://doi.org/10.1109/38.56302, 1990.

Rew, R., Davis, G., Emmerson, S., and Davies, H.: NetCDF User’s
Guide, available at: http://www.unidata.ucar.edu/software/
netcdf/docs/user_guide.html (last access: 11 December 2017),
1997.

Rew, R., Hartnett, E., and Caron, J.: NetCDF-4: Software Imple-
menting an Enhanced Data Model for the Geosciences, AMS,
Atlanta, 2006.

Unidata: Common Data Model, available at: http://www.unidata.
ucar.edu/software/thredds/current/netcdf-java/CDM/ (last ac-
cess: 11 December 2017), 2014a.

Unidata: Point Feature Datasets, available at: http://www.
unidata.ucar.edu/software/thredds/current/netcdf-java/reference/
FeatureDatasets/PointFeatures.html (last access: 11 Decem-
ber 2017), 2014b.

Geosci. Model Dev., 10, 4619–4646, 2017 www.geosci-model-dev.net/10/4619/2017/

https://doi.org/10.5194/gmd-9-4381-2016
https://doi.org/10.5194/gmd-9-4381-2016
http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html
http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html
http://www.unidata.ucar.edu/software/udunits
http://www.unidata.ucar.edu/software/udunits
https://doi.org/10.5281/zenodo.832255
https://doi.org/10.1007/s12145-008-0011-6
https://doi.org/10.1007/s12145-008-0011-6
https://doi.org/10.1109/38.56302
http://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html
http://www.unidata.ucar.edu/software/netcdf/docs/user_guide.html
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM/
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/CDM/
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/reference/FeatureDatasets/PointFeatures.html
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/reference/FeatureDatasets/PointFeatures.html
http://www.unidata.ucar.edu/software/thredds/current/netcdf-java/reference/FeatureDatasets/PointFeatures.html

	Abstract
	Introduction
	Design criteria for a CF data model
	Layout of the paper

	The netCDF data model
	The CF conventions
	Conventions from the netCDF user guide and COARDS
	The data and the domain
	Dimensions and coordinates
	Discrete axes and sampling geometries
	Bounds and cells
	Variation within cells
	Ancillary data
	Units and standard name

	A CF data model
	The field construct
	Domain axis construct and the data array
	Coordinates: dimension coordinate and auxiliary constructs
	Coordinate reference construct
	Domain ancillary construct
	Cell measure construct
	Field ancillary constructs
	Cell method construct

	Relationship to other data models
	The ISO 19123 coverage model
	The OGC CF-netCDF standard
	The Unidata Common Data Model

	cf-python: a data model implementation
	Evolution of a CF data model and cf-python
	Summary and conclusions
	Code availability
	Appendix A: A UML primer
	Appendix B: Optimising dataset storage and creation in CF-netCDF
	Appendix B1: Packing
	Appendix B2: Compression
	Appendix B2.1: Gathering
	Appendix B2.2: Ragged array representations

	Competing interests
	Acknowledgements
	References

