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CHAPTER 6

Weather, Climate and the Nature 
of Predictability

David J. Brayshaw

Abstract The prediction and simulation of future weather and climate is a 
key ingredient in good weather risk management. This chapter briefly 
reviews the nature and underlying sources of predictability on timescales 
from hours-ahead to centuries-ahead. The traditional distinction between 
‘weather’ and ‘climate’ predictions is described, and the role of recent sci-
entific developments in driving a convergence of these two classic problems 
is highlighted. The chapter concludes by outlining and comparing the two 
main strategies used for creating weather and climate predictions, and dis-
cussing the challenges of using predictions in quantitative applications.

Keywords Weather prediction • Climate prediction • Predictability • 
Chaos • Modelling

IntroductIon

A long-standing challenge for meteorology and climate science has been 
to develop techniques capable of producing predictions and simulations of 
the weather and climate across a range of timescales. Although these 
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 timescales should be viewed as a continuum, it is nevertheless helpful to 
identify a number of discrete timescales, ranging from very near term 
‘nowcasting’ to climate change projections over centuries and millennia, 
as shown in Fig. 6.1.

This chapter briefly reviews how the nature of predictability differs 
across prediction timescales, identifies the major strategies used to create 
predictions and discusses some of the general challenges with using pre-
dictions in quantitative applications.

the nature of PredIctabIlIty

To understand weather and climate forecasting, it is important to under-
stand the character of the physical system one is seeking to predict. The 
atmosphere (and the climate system more broadly) can be viewed as an 
example of a chaotic system (e.g., Lorenz 1963), associated with two dis-
tinct ‘types’ of predictability (Lorenz 1975, see also Schneider and Griffies 
1999). These types—and their relationships to different timescales of 
weather and climate—are discussed herein.

Due to the complexity of the atmosphere (or climate) system, it is help-
ful to discuss predictability with reference to an analogous but simpler 
chaotic system. The Lorenz model contains three inter-dependent vari-
ables (U, X and Y) evolving deterministically over time. Each of the three 
dimensions can be understood as representing a meteorological quantity 
in analogy (e.g., eastward wind, northward wind and temperature). A 
typical atmosphere-only climate model will, however, have in excess of 
~106 dimensions: one each for six key meteorological properties (wind in 
the horizontal and vertical, temperature, water vapour and surface pres-
sure) at each point on a 3-dimensional grid (perhaps 192 × 120 × 30). 
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Fig. 6.1 Weather and climate timescales, forecasting tools and datasets
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In some cases, the time evolution of the equations may also include a sto-
chastic (random) component rather than being purely deterministic. The 
equations of the Lorenz model may be written in finite difference form:

 
X X Y X tt t t t= + −( ) − − −1 1 1α δ

 

 
Y Y X U Y tt t t t t= + −( ) − + − − − −1 1 1 1β δ

 

 
U U X Y U tt t t t t= + −[ ]− − − −1 1 1 1γ δ

 

where α, β and γ are constant parameters, subscripts denote time-steps, 
and δt is the interval between adjacent time-steps. Following Palmer 
(1999), ϵ is used to denote a small external forcing (for the initial discus-
sion it is assumed that ϵ = 0).

The time evolution of the Lorenz system can be represented as a trajec-
tory (or path) in phase space.1 Figure 6.2a shows a short section of a tra-
jectory as an example: from an initial state near (U, X, Y) = (33, 15, 18), 
the model evolves to a state (24,-12,-18) over a ‘time’ interval ∑δt = 0.7. 
If the model is allowed to evolve for a longer period to produce a more 
extended trajectory (referred to as an attractor), a fuller view of the sys-
tem’s properties emerges (Fig.  6.2b). The attractor clearly shows two 
lobes, with the system preferring to occupy states in one or the other of 
the lobes.
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Fig. 6.2 The Lorenz model and initial condition problems, using α = 10, β = 28, 
γ = 8/3 and ϵ = 0. See text for discussion
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Figure 6.2 can be used to illustrate an example of an initial condition 
problem or ‘predictability of the first kind’. Consider at some time t1 that 
observations of the system are taken, and found to be U1 = 30 and X1 = 
4. Assume that each of these measurements is subject to an observa-
tional error, ∆U1 = ∆X1 = 1, and Y1 is unobservable in practice.2 The 
systems current position in phase space is, therefore, not known exactly, 
but can be constrained to a relatively small region of phase space indi-
cated by the black box in Fig. 6.2b. A prediction of the system’s state at 
some future snapshot in time, t2 = t1 + ∆t is sought—that is, we wish to 
predict the exact values of U2 and X2. This is analogous to weather fore-
casting: we ‘know’ the weather today and wish to predict the weather 
tomorrow.

There are many possible phase space trajectories that are consistent 
with the available knowledge of the initial conditions at time t1. A 
selection of these are shown in Fig. 6.2c: some lead to the left lobe 
(black lines), whereas others remain in the right lobe B (grey lines). In 
consequence, a relatively small error in estimating the starting state 
(∆U1 = ∆X1 = 1) grows rapidly to a large error in the prediction (∆U2 
~ ∆X2 ~ 30). The rate of error growth is, however, very dependent on 
the initial state and the forecast time horizon considered; in this exam-
ple there is very low predictability but, if the initial conditions corre-
spond to some other regions of the attractor, there may be much more 
predictability (i.e., smaller errors), at least over short time horizons 
(i.e., small ∆t).

The evolution, shape and position of a trajectory are also sensitive to 
the model’s parameters (α, β and γ), typically referred to as boundary 
conditions. Figure  6.3 shows the original attractor from the previous 
figure (in black) and a new attractor (in grey)—the only difference is a 
small change in one of the boundary conditions, ϵ. Clearly, one can 
detect a change in the probability distribution of the observable quan-
tity, U, as indicated by the relative frequency distributions in the bottom 
panel in Fig.  6.3. This is an example of ‘predictability of the second 
kind’, which concerns the ability to predict changes in the attractor in 
response to changes in external boundary conditions.3 Clearly, if the 
response is large, then it can be more readily detected against the ‘inter-
nal’ variability corresponding to trajectories moving within a single 
attractor.

Traditional climate change simulations studying the equilibrium cli-
mate under a future greenhouse gas concentration scenario can be viewed 
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as an example of second kind predictability: it is a boundary condition 
prediction problem where one seeks to understand how the statistics of 
climate differ between two different sets of boundary conditions (e.g., 
Meehl et al. 2007).

If numerical weather prediction (NWP) (days-ahead) and long-term 
climate change simulations (decades-ahead) can be considered as  examples 
of initial condition and boundary condition problems, then it is clear that 
much lies between these two extremes. It is therefore helpful to consider 
the timescales involved in the system one is seeking to predict.

The climate system in general contains many different components, 
varying on a wide range of timescales (Fig. 6.4). At forecast lead times of 
1–2 days, it is typically sufficient to focus on the evolution of the faster 
components alone (e.g., troposphere and land-surface temperature) as the 
slower components (e.g., ocean temperature, ice sheets) change little dur-
ing the lifetime of the prediction. Indeed, at very short lead times (min-
utes to hours) many aspects of the large-scale flow in the troposphere may 
even be considered fixed. Conversely, at longer forecast lead times, the 
evolution of slower components become significant (e.g., ocean circula-
tion, land-surface moisture, ice sheets, sea ice and snow cover). For a pre-
diction of tomorrow’s weather in London, it may, therefore, be sufficient 
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Fig. 6.3 The Lorenz model and the long-term equilibrium climate change prob-
lem. The black and grey curves show two simulations with different boundary 
conditions (parameters as in Fig. 6.2, but with ϵ = 10 for the grey curve). See text 
for discussion
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to neglect small changes in the temperature of the North Atlantic ocean’s 
surface, but the same cannot be said for predicting the seasonal-average 
temperature over Europe several months in advance.

Weather and climate predictions (as outlined in Fig. 6.1)—particularly 
those in the range of several days to a few decades—are therefore a mixture 
of initial and boundary condition problems, and have been the subject of 
much research in recent years. This can be illustrated by considering, for 
example, a seasonal forecast. In such a forecast, the state of the troposphere 
and land-surface temperature change much more quickly (~days) than the 
forecast horizon (~months). From the perspective of these components, 
the problem is therefore boundary condition prediction and predictability 
of the second kind (i.e., the intention is to predict the statistical properties 
of the troposphere rather than estimate its state at a specific snapshot in 
time). However, for the ocean surface, soil moisture, snow cover and strato-
sphere—which only change slowly over the timescale of the forecast—the 
challenge is to determine the specific evolution, therefore concerns predict-
ability of the first kind where initial conditions play a key role.

PredIctIon StrategIeS

There are two broad categories of predictive models used in weather and 
climate forecasting: statistical and dynamical. The primary characteristics 
of each are outlined below.
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Fig. 6.4 Indicative timescales of selected components in the climate system
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Statistical Models

Statistical predictions come in many forms and are in widespread use 
throughout academia and industry for many problems. Conceptually, 
these models are simple: historical observations are interrogated to find 
relationships between a predictand and a set of potential predictors. These 
historical relationships are then assumed to remain fixed into the future 
and are used to create a prediction. Common examples include single- or 
multi-variate autoregressive models (or more sophisticated versions such 
as ARMA and GARCH), artificial neural networks, support vector 
machines and ‘analogue’-based techniques.

Statistical models are an undoubtedly powerful prediction tool. It must, 
however, be recognised that there are limitations and dangers associated 
with this approach. The process of statistical modelling is essentially ad- 
hoc: the predictors to be used are not necessarily known a priori (unless 
informed by some prior physical or dynamical process understanding), and 
must, therefore, be established afresh for each new predictand. The ability 
to identify statistical relationships between predictors and predictand is 
also constrained by the quantity and quality of the available historic data: 
the records must be sufficiently long and homogeneous to robustly estab-
lish statistical relationships between variables. Finally, statistical models 
trained on historic data may ultimately be a rather poor guide for a climate 
system subject to changing boundary conditions (e.g., greenhouse gas 
concentrations). This is perhaps particularly the case for longer range fore-
casts where many plausible future states will simply not have been recorded 
in historic observations

Dynamical Models

In contrast to statistical models, dynamical prediction models numerically 
simulate the behaviour of the system itself and are the basis of the weather 
forecasts provided by most operational weather services. In NWP, the 
atmosphere is represented by fundamental physical equations based on the 
laws of motion, thermodynamics and conservation of mass. The equations 
are discretised in space and time (i.e., the atmosphere is divided into grid 
boxes) and solved iteratively in each grid box, advancing time-step by 
time-step. Additional physical and dynamical processes such as clouds, 
precipitation and radiation are represented through ‘parameterization 
schemes’ at the grid box level.
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As discussed in section ‘The Nature of Predictability’, initial condition 
errors in NWP can grow rapidly over a short period (Fig.  6.2c) and 
‘ensemble forecasting’ is widely used. An NWP ensemble consists of a 
large set of N individual ‘member’ weather forecast simulations, each 
starting from a slightly different set of initial or boundary conditions (all 
of which are consistent with the observations, subject to observational 
error). Typically, the set of initial conditions chosen will seek to maximise 
the difference between the ensemble members at the targeted forecast 
time—that is, to capture the widest possible range of uncertainty associ-
ated with errors in the initial conditions. Such forecasts, although still 
‘predictions of the first kind’, provide N different potential realisations of 
the future weather state and must be interpreted probabilistically (typically 
N ~ 50 in many present NWP systems) with the ‘spread’ of outcomes in a 
good forecast system providing an indication of the predictability available 
from the particular set of initial conditions used.

Beyond a few days to a couple of weeks, additional climate system com-
ponents must also be included in addition to the atmosphere (see Fig. 6.4 
and section ‘The Nature of Predictability’), such as the stratosphere, 
oceans and sea ice. The resulting dynamical models draw strongly on the 
heritage of General Circulation Models (GCMs). First developed in the 
1960s–1980s—see, for example, Smagorinsky et al. 1965 for a very early 
example—and continually developed since, GCMs are identical in concept 
to NWP models—insofar as they represent a physical model of the system 
one is attempting to predict or understand—but as they include more 
physical processes and must be run over longer timescales, they typically 
use much coarser resolution grid boxes than NWP. As in NWP, the use of 
ensembles in climate model simulations is common. In this case, however, 
the ensemble is typically used to sample several different sources of uncer-
tainty4: natural climate variability (Deser et  al. 2012), initial condition 
uncertainty (Scaife et al. 2014), parametric uncertainty (Stainforth et al. 
2005) or model structural uncertainty (Taylor et al. 2012).

The power of dynamical models to simulate weather and climate is con-
siderable. The skill of NWP models at lead times of several days ahead has 
increased continuously over recent decades, and GCMs are now used to 
produce very sophisticated realisations of physical phenomena affecting a 
wide range of industrial sectors. There are, however, limitations. NWP and 
GCM models are computationally expensive compared to statistical mod-
els, leading to a three-way trade-off between resolution (grid size), physical 
complexity (number of processes modelled) and computational feasibility 
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(number of model years simulated and ensemble size). All dynamical mod-
els are subject to biases and/or growth of prediction error from many 
sources, such as deficiencies in model formulation (numerical approxima-
tions, missing processes), parametric uncertainty (ill- constrained proper-
ties in parameterisation schemes) and initial conditions. Before predictions 
are used, care should be taken to establish whether dynamical models pro-
duce a reliable representation of any particular phenomena of interest

Summary and dIScuSSIon

There are good reasons to believe that predictability exists in weather and 
climate forecasting across a range of timescales from hours to decades and 
beyond. This predictability may take one of two forms: either a prediction 
of the specific evolution of the weather (an initial condition problem) or 
else a prediction of the statistical properties of the climate (a boundary 
condition problem). Weather and climate forecasts in the intermediate 
range (several days to decades) typically incorporate some aspects of both 
forms of predictability, and a probabilistic approach to the resulting fore-
cast is essential.

Both the statistical and dynamical approaches discussed above have 
great power in terms of achieving predictive skill. It is, however, empha-
sised that the two approaches should be seen as being complementary 
toolkits rather than competing philosophical strategies. Statistical meth-
ods are often used to ‘calibrate’ dynamical model output (reduce bias 
when compared against point observations) and configure dynamical 
models forecasts (e.g., by statistically identifying key boundary conditions 
such as sea-surface temperature patterns). Conversely, dynamical models 
enable deeper process understanding (helping to identify robust predic-
tors for statistical models) and—with care—can be used to extend datasets 
by providing plausible artificially generated climate data (statistical robust-
ness and rare events, including effects of a changing climate).

noteS

1. Only two dimensions are shown, the Y-axis (not shown) is perpendicular to 
the page.

2. Many environmental properties, while observable in principle, cannot be 
observed well in practice. A good example is the deep ocean interior which 
is very sparsely sampled observationally.
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3. This response to boundary condition errors also acts to limit the predictabil-
ity for the evolution any single trajectory run from a specific set of initial 
conditions.

4. It should be noted that, like GCM ensembles, NWP ensembles may include 
sampling of model and parameter uncertainty. Indeed, recent developments 
have seen NWP and GCM models begin to converge in many respects, as 
NWP models include more Earth system components (e.g., coupling the 
atmosphere to ocean models) and the grid-resolution of GCMs increases.
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Open Access  This chapter is distributed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits use, duplication, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to 
the original author(s) and the source, a link is provided to the Creative Commons 
license and any changes made are indicated.

The images or other third party material in this chapter are included in the 
work’s Creative Commons license, unless indicated otherwise in the credit line; if 
such material is not included in the work’s Creative Commons license and the 
respective action is not permitted by statutory regulation, users will need to obtain 
permission from the license holder to duplicate, adapt or reproduce the material.
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