
The impact of air–sea interactions on the 
representation of tropical precipitation 
extremes 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Hirons, L. C. ORCID: https://orcid.org/0000-0002-1189-7576, 
Klingaman, N. P. ORCID: https://orcid.org/0000-0002-2927-
9303 and Woolnough, S. J. ORCID: https://orcid.org/0000-
0003-0500-8514 (2018) The impact of air–sea interactions on 
the representation of tropical precipitation extremes. Journal of
Advances in Modeling Earth Systems, 10 (2). pp. 550-559. 
ISSN 1942-2466 doi: 10.1002/2017MS001252 Available at 
https://centaur.reading.ac.uk/75095/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1002/2017MS001252 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


RESEARCH ARTICLE
10.1002/2017MS001252

The Impact of Air-Sea Interactions on the Representation of
Tropical Precipitation Extremes
L. C. Hirons1,2 , N. P. Klingaman1 , and S. J. Woolnough1

1Department of Meteorology, National Centre for Atmospheric Science, University of Reading, Reading, Berkshire, UK,
2Department of Meteorology, University of Reading, Reading, Berkshire, UK

Abstract The impacts of air-sea interactions on the representation of tropical precipitation extremes are
investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to
two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with
31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the
effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all
simulations have a consistent mean state with very small SST biases against present-day climatology. 31d
overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the
coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-
only attribution and time-slice experiments may overestimate the strength and duration of precipitation
extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local
thermodynamic feedbacks between convection, surface fluxes, and SST.

1. Introduction

Tropical precipitation extremes affect the livelihoods of billions of people: from severe flooding caused by
the most extreme heavy rainfall events—such as that seen in southern India in November–December
2015—to severe drought caused by an unseasonal lack of rainfall—such as in southern Africa in December
2015. These extremes present a significant ongoing challenge to water resource planning.

General circulation models (GCMs), which are our best tools for understanding current and future changes
in tropical precipitation extremes, generally agree that anthropogenic climate change is affecting the fre-
quency and intensity of extremes (Senevirante et al., 2012). However, there remains considerable intermo-
del spread in the projected increase of precipitation extremes (Kharin et al., 2013), especially in the tropics
(O’Gorman, 2015; O’Gorman & Schneider, 2009), where models often also underestimate the present-day
frequency of extreme precipitation (e.g., Allan & Soden, 2008; Asadieh & Krakauer, 2015).

Much of the uncertainty in projections of tropical precipitation extremes ultimately stems from deficiencies
in current, state-of-the-art GCMs. For example, deep convective systems, which produce the majority of
tropical extreme rainfall, are not well represented (Rossow et al., 2013). Changes in tropical precipitation
extremes have been shown to be more sensitive to changes to the model physics (e.g., to the convective
parameterization) than a significant future warming perturbation (Wilcox & Donner, 2006).

Many studies investigating regional changes in tropical precipitation use atmosphere-only GCMs (AGCMs)
with prescribed sea-surface temperatures (SSTs; e.g., Coppola & Giorgi, 2005; Deser & Phillips, 2009; Kop-
parla et al., 2013). However, such studies neglect two-way interactions between the atmosphere and the
ocean. Not only can SST anomalies influence the stability of the atmospheric boundary layer and hence the
strength and location of convection, but, through changing the surface fluxes of heat, moisture, and
momentum, convective events can feedback on the ocean and change SST and ocean stratification. Air-sea
interactions have been shown to affect the attribution of decadal precipitation change (e.g., Dong et al.,
2017), as well as the representation of precipitation extremes in many tropical regions (e.g., reducing precip-
itation during peak rainfall in southern Africa; Ratnam et al., 2015).

While such studies suggest that atmosphere-ocean GCMs with full dynamical oceans (AOGCMs) differ from
AGCMs in their distributions of precipitation extremes, these differences are often complicated by large
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changes in the mean state between AOGCMs and AGCMs, and should therefore be interpreted with cau-
tion. Additionally, air-sea interactions on subseasonal scales within such AOGCMs are often poorly resolved
due to insufficient vertical ocean resolution and only a daily coupling frequency, which can degrade the
representation of tropical subseasonal variability (e.g., Bernie et al., 2005; Klingaman et al., 2011; Tseng
et al., 2015). The present study employs an AGCM coupled to many columns of a high vertical resolution
ocean-mixed-layer model. Within this modeling framework air-sea interactions are well-resolved both spa-
tially—the near-surface vertical resolution of the ocean is �1 m—and temporally—the atmosphere and
ocean are coupled every 3 h. Furthermore, the application of ocean temperature and salinity corrections
(section 2.1; Hirons et al., 2015) ensures the coupled model has a near-observed mean ocean state, which
limits the impact of SST biases on the results. Therefore, this framework allows a clean identification of the
impact of air-sea interactions on the representation of tropical precipitation extremes.

2. Model, Methods, and Data

2.1. Model
We use the Global Ocean-Mixed-Layer coupled configuration of the Met Office Unified Model (MetUM-
GOML1; Hirons et al., 2015), comprising the MetUM Global Atmosphere 3.0 (GA3; Arribas et al., 2011; Walters
et al., 2011) coupled to the Multi-Column K Profile Parameterization ocean (MC-KPP; see Hirons et al. (2015)
for details), with a 3 h coupling frequency. Depth-varying temperature and salinity corrections, required to
represent the mean oceanic advection and account for biases in the atmospheric surface fluxes, are applied
to constrain the mean ocean state in MetUM-GOML toward the 1980–2009 climatology from the Met Office
ocean analysis (Smith & Murphy, 2007). This results in minimal SST biases against observations (see Hirons
et al., 2015, Figure 1b). The latitudinal extent of the air-sea coupling is defined by the maximum extent of
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Figure 1. (a) GA3-clim MJJAS mean precipitation. Impact of interannual SST variability (c; GA3–31d minus GA3-clim) and air-sea coupling (e; GOML1 minus
GA3–31d) on MJJAS mean precipitation. (b, d, f) As (a, c, e), but for NDJFM mean precipitation.
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the seasonally varying sea-ice edge; beyond that the atmosphere is forced by the repeating mean annual
cycle of SSTs from the Met Office ocean analysis above.

The simulations use N216 horizontal resolution, which is 0.838 longitude 3 0.558 latitude with 85 points in
the vertical and a model lid at 85 km. Three sets of simulations, each totaling 100 years (1 3 40 year and
2 3 30 year simulations), have been run. ‘‘GOML1’’ describes the MetUM-GOML1 coupled integrations.
These are compared with two 100 year sets of GA3 simulations forced by (a) 31 day smoothed daily SSTs
from GOML1 (‘‘GA3–31d’’) and (b) a repeating mean annual cycle of daily climatological SSTs from GOML1
(‘‘GA3-clim’’).

The framework used in this study enables a clean identification of the role that air-sea interactions play in
the representation of tropical precipitation extremes. Within this framework, the impact of introducing
interannual variability in SST in an atmosphere-only model (GA3–31d minus GA3-clim; hereafter referred to
as ‘‘interannual SST variability’’) can be separated from the impact of introducing subseasonal air-sea feed-
backs (GOML1 minus GA3–31d; hereafter referred to as ‘‘air-sea coupling’’), using a model with a close-to-
observed mean SST (Hirons et al., 2015).

2.2. Defining Extremes
Although there are many methods to define an extreme event (e.g., Schar et al., 2016), in its broadest sense
a climate extreme is the occurrence of a climate variable above (or below) a threshold near the upper (or
lower) tail of the observed distribution (Senevirante et al., 2012). The properties of such an extreme event
can be characterized in terms of: (a) frequency—the number of times such a threshold is exceeded; (b)
intensity—the magnitude by which the threshold is exceeded; and (c) persistence—the length of time the
threshold is exceeded. We consider an example of each property of extreme precipitation. Of course, there
is also subjectivity in the choice of an extreme threshold. This study aims to address this issue by applying a
set of extreme diagnostics with different thresholds.

3. Results

Tropical precipitation extremes are considered in terms of (a) frequency using percentile thresholds (section
3.2), (b) intensity using return value thresholds (section 3.3), and (c) persistence using standard deviation
thresholds (section 3.4). In this analysis, GA3-clim is used as a baseline climate and changes due to introduc-
ing interannual SST variability and air-sea coupling are assessed against that baseline. Before assessing the
impact on tropical precipitation extremes, it is important to understand the impact of coupling and interan-
nual SST variability on the mean rainfall, to interpret if differences in simulated extremes are due to shifts in
the overall precipitation distribution caused by a change in the mean.

3.1. Impact of Air-Sea Interactions on Mean Rainfall
The seasonal migration of the Inter-tropical Convergence Zone (ITCZ) requires distinguishing between sea-
sons when investigating the sensitivity of tropical precipitation extremes. Two seasons are considered: an
extended summer (May–September, MJJAS) when the ITCZ lies north of the equator (Figure 1a); and an
extended winter (November–March, NDJFM) when the ITCZ lies south of the equator (Figure 1b).

During MJJAS introducing interannual SST variability in MetUM-GA3 reduces precipitation in the equatorial
Indian Ocean (IO) and Maritime Continent (MC) islands by more than 2 mm d21 and increases precipitation
further north, especially over the West Pacific (Figure 1c). This pattern suggests that the net effect of inter-
annual SST variability is to shift the ITCZ slightly further north, which reduces biases in GA3-clim over the
equatorial IO. However, it does not improve the underestimation of Indian summer monsoon rainfall, which
is a long-standing MetUM bias (Johnson et al., 2015; Ringer et al., 2006). The spatial pattern of the impact of
interannual SST variability during NDJFM is similar to MJJAS but much smaller in magnitude (Figure 1d). Air-
sea coupling has little additional impact on mean precipitation in either season (Figures 1e and 1f). This
analysis shows that, with the possible exception of the impact of interannual SST variability in MJJAS, the
three simulations exhibit highly similar mean tropical precipitation.

3.2. Frequency
Changes in the frequency of tropical precipitation extremes are assessed using a threshold of the 95th
percentile of daily precipitation. Figures 2a and 2b show the frequency with which the 95th percentile of
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GA3-clim is exceeded by GOML1 during MJJAS and NDJFM, respectively. This total change is broken down
into the impacts from interannual SST variability (Figures 2c and 2d) and air-sea coupling (Figures 2e and
2f). During MJJAS the total change in the 95th percentile (Figure 2a) shows an increase in extreme wet
events in the western north Pacific, which is a result of interannual SST variability (Figure 2c), and a reduc-
tion in extreme wet events in the equatorial IO and MC region, which is largely a result of air-sea coupling.
The spatial pattern of changes in the frequency of extremes in MJJAS is linked to changes in the mean
MJJAS precipitation (Figure 1e).

This is not the case, however, in NDJFM: there was little change in mean precipitation but there are large
changes in extremes across the tropical oceans. During NDJFM the interannual SST variability increases the
frequency of wet events across the central Pacific (Figure 2d) while air-sea coupling reduces wet extremes
across the IO and MC (Figure 2f). The change in Figure 2d is likely due to introducing interannual SST vari-
ability into the central Pacific. While MetUM-GOML lacks ocean dynamics and therefore cannot simulate the
El Ni~no Southern Oscillation (ENSO), the model produces very weak thermodynamically driven ENSO-like
SST variability around the dateline that can drive Indo-Pacific interannual precipitation variability.

Over land, where changes in tropical precipitation extremes will have the largest human impact, the small
reduction in precipitation extremes over southern India in MJJAS (Figure 2a) and over northern Africa in
NDJFM (Figure 2b) are a result of interannual SST variability (Figures 2c and 2d) rather than air-sea coupling.

3.3. Intensity
One method for analyzing climate extremes is to calculate the return value of a climate measure (x) by fit-
ting a Generalized Extreme Value (GEV) distribution to the data at each grid point (e.g., Kharin et al., 2013,
2007). The maximum-likelihood method was used here for estimating the three GEV distribution parameters
of location, scale, and shape. These parameters are then used to calculate the t-year return value which is
the value that is exceeded by the climate measure x with probability p51=t. GEV analysis is applied to the
seasonal maximum daily precipitation in MJJAS and NDJFM (i.e., to 100 values at each grid point for each
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Figure 2. (a) GOML1 frequency of exceeding the daily MJJAS 95th percentile of GA3-clim precipitation. (c) As (a), but for GA3–31d exceeding the GA3-clim 95th
percentile. (e) As (a), but for GOML1 exceeding the GA3–31d 95th percentile. (b, d, f) As (a, c, e), but for NDJFM.
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100 year experiment). These have been applied to a range of t values but are shown for t 5 20, to calculate
a 20 year return value (P20), or an annual exceedance probability of 5%.

The GEV analysis was applied to global precipitation in MJJAS and NDJFM, but coherent regions of signifi-
cant changes were found only in the tropics. Figures 3a and 3b show P20 for GA3-clim MJJAS and NDJFM
maximum precipitation. The largest values of P20, above 150 mm d21, are located in the off-equatorial
regions of the tropics and extratropics and mostly occur over the oceans. P20 values below 25 mm d21

occur in regions of tropical marine stratocumulus off the west coast of Africa and South America and across
northern Africa where there is very little total precipitation. There are further local minima, below 50 mm
d21, over the MC islands and equatorial Pacific. The latitudinal migration of regions with the heaviest P20

follows the seasonal migration of the ITCZ (Figures 1a and 1b).

Figures 3c, 3d and 3e, 3f show the impact on P20 of interannual SST variability and air-sea coupling, respec-
tively. Ratios are only shown where there is no overlap between the 95% confidence intervals of the two
simulations. Figures 3c and 3d show that introducing interannual SST variability increases P20 across the
tropical oceans; this is the expected thermodynamic effect given the nonlinear relationship between SST
and precipitation (i.e., a warm SST anomaly will cause a larger-amplitude change in precipitation than a
cold SST anomaly of the same magnitude; Spencer & Slingo, 2003). In MJJAS, there are also significant
increases in P20 over northern Australia, the southeast Asian peninsula and parts of northern and eastern
Africa. The largest increases in P20 are seen north of the equator in the western Pacific Ocean during MJJAS
(Figure 3c). However, changes in extremes in this region during this season are likely partly due to an
increase in mean precipitation there (Figure 1c). Air-sea coupling has the opposite effect of reducing P20

across the tropical Indo-Pacific (Figures 3e and 3f). This reduction is seen in both seasons and is most
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Figure 3. 20 year return values of MJJAS maximum of daily precipitation (P20) from 100 years of GA3-clim simulation (a), mm d21. Ratio showing the impact of
interannual SST variability on P20 (c; GA3–31d/GA3-clim) and the impact of air-sea coupling on P20 (e; GOML1/GA3–31d). The extreme value statistics are obtained
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coherent in the eastern IO and MC. There are also reductions in P20 over the southern tip of India in MJJAS
and over North Africa in NDJFM. The reductions in the intensity of oceanic extremes with air-sea coupling
are consistent with negative thermodynamic feedbacks occurring through the SST in the coupled system
(i.e., an increase in convection increases surface fluxes out of ocean, which leads to a reduction in SST, a
reduction in convection, and a reduction in the surface fluxes out of the ocean—a negative feedback). We
explore these feedbacks further in section 3.4.

Although Figures 2 and 3 identify similar regions where tropical precipitation extremes are sensitive to air-
sea coupling and interannual SST variability, the pattern correlations between these Figures are very small.
The largest pattern correlation is 0.286 between Figures 2c and 3c.

3.4. Persistence
While the intensity and frequency of extremes are important, it is often persistent extremes, where natural
and human systems are under continued pressure, which have substantial social impacts. Changes in the
persistence of precipitation extremes are measured by the frequency of consecutive days exceeding a par-
ticular threshold (Figure 4). The threshold, chosen to reflect local interannual variability, is one standard
deviation from the daily climatological value. Although this is not the most intense threshold, it enables a
sufficient sample size to draw meaningful conclusions from the data.

The analysis was initially carried out for the frequency of n consecutive days exceeding this precipitation
threshold with n51; . . . ; 10. The clearest distinction was found among the simulations for n< 3 (less than 3
consecutive days; Figures 4a, 4b, 4e, 4f, 4i, and 4j and n> 5 (greater than 5 consecutive days; Figures 4c, 4d,
4g, 4h, 4k, and 4l); these are referred to as ‘‘short-lived’’ and ‘‘long-lived’’ extremes respectively and are the
focus of the results shown here. During MJJAS and NDJFM, interannual SST variability reduces the frequency
of short-lived extremes (Figures 4e and 4f) and increases the frequency of long-lived extremes (Figures 4g
and 4h) over the tropical oceans. However, for both short-lived and long-lived extremes there is an increase
in the total amount of precipitation falling in extreme events (not shown). This means that, although there
are fewer short-lived extremes in GA3–31d compared with GA3-clim, those short-lived extremes are more
intense. Interannual SST variability also reduces short-lived extremes over some tropical land regions, for
example, central Australia, and southern Pakistan during MJJAS (Figure 4e) and over northwest Africa dur-
ing NDJFM (Figure 4f). Increases in long-lived persistent extremes are evident over land regions of Borneo
and northern South America during MJJAS (Figure 4g) and over Somalia and eastern Brazil during NDJFM
(Figure 4h).

The impact of air-sea coupling is generally opposite to that of interannual SST variability, increasing the fre-
quency of short-lived extremes (Figures 4i and 4j) and reducing the frequency of long-lived extremes (Fig-
ures 4k and 4l) over the tropical oceans. Air-sea coupling reduces the total precipitation falling in extreme
events for both short-lived and long-lived extremes. Therefore, although there are more short-lived extreme
events in GOML1 compared with GA3–31d, those short-lived extremes are less intense. The largest changes
in the frequency of short-lived and long-lived extremes due to air-sea coupling are confined to the Indo-
Pacific region and are colocated with regions of large mean rainfall in each season (Figures 1a and 1b). Over
land, air-sea coupling increases short-lived precipitation extremes in central Australia and coastal Pakistan
during MJJAS (Figure 4i) whereas it reduces short-lived extremes over northern Africa (Figure 4j) during
NDJFM, although in this season this is a region of very low mean rainfall (Figure 1b).

The increase in persistence of oceanic extremes between GA3–31d and GA3-clim agrees with previous stud-
ies that have shown that increasing SST variability in atmosphere-only models induces strong positive sub-
seasonal SST-surface-flux-precipitation relationships, which are inconsistent with the negative relationships
found in observations (e.g., DeMott et al., 2015; Pegion & Kirtman, 2008; Rajendran & Kitoh, 2006). Introduc-
ing air-sea feedbacks damps these relationships through the negative thermodynamic feedbacks described
in the previous section, reducing the persistence of precipitation extremes.

We assess the relationship between precipitation, SSTs, and surface fluxes during long-lived, persistent
extremes in the tropical Indo-Pacific (Figure 5). The diagram shows composite anomalies for extreme events
that persist above one standard deviation from the mean for at least 5 consecutive days (similar extreme
definition as Figure 4). The peak in SST in GOML1 occurs up to 8 days before the maximum in precipitation,
while in GA3–31d the SST anomalies are warm throughout the event. The associated maximum and
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Figure 4. Frequency per year of (a, b) short-lived and (c, d) long-lived extremes for GA3-clim MJJAS and NDJFM mean. Short-lived and long-lived extremes are
defined as less than 3 and greater than 5 days exceeding one standard deviation from the daily climatology, respectively. (e–h) show the impact of interannual
SST variability (GA3–31d/GA3-clim) on (e, f) short-lived and (g, h) long-lived extremes during (e, g) MJJAS and (f, h) NDJFM. (i–l) The impact of air-sea coupling
(GOML1/GA3–31d) on (i, j) short-lived and (k, l) long-lived extremes during (i, k) MJJAS and (j, l) NDJFM. Grey shading in (g, h, k, l) masks regions where the fre-
quency of long-lived extremes is less than 0.1 yr21.

Journal of Advances in Modeling Earth Systems 10.1002/2017MS001252

HIRONS ET AL. 7



minimum in latent heat flux (LHF) and shortwave flux (SWF), respectively, coincide with the maximum in
precipitation. However, GA3–31d exhibits stronger negative SWF and positive LHF anomalies which persist
for longer. In GOML1, the changes in surface fluxes lead to a clear cooling of SST during the extreme event.
This negative thermodynamic feedback limits the event lifetime in GOML1 relative to GA3–31d. These find-
ings are consistent with Figure 4.

4. Discussion and Conclusions

Changes in tropical precipitation extremes with air-sea coupling have been investigated in simulations with
a coupled atmosphere-mixed-layer-ocean model and an atmosphere-only model driven by the coupled-
model SSTs. Our experiment design allows the sensitivity to interannual SST variability to be separated from
the presence of air-sea coupling feedbacks. The coupled model includes well-resolved air-sea interactions
on subseasonal scales, while employing temperature and salinity corrections to keep the ocean mean state
close to observations (modeling setup as in Hirons et al. (2015)). Therefore, not only are the coupled and
atmosphere-only mean states consistent, but, because they are close to observations, there is a limited
influence of coupled-model SST errors on our conclusions. A variety of extreme diagnostics have been
applied to analyze the impact on the frequency, intensity, and persistence of tropical precipitation extremes
during extended summer (MJJAS) and winter (NDJFM) seasons.

We have shown that MetUM-GA3 forced by 31 day smoothed MetUM-GOML1 SSTs overestimates the fre-
quency, intensity, and persistence of tropical precipitation extremes relative to the MetUM-GOML1 simulations
that generated the SST forcing. Coupled air-sea interactions damp rainfall variability, leading to less frequent,
and intense tropical precipitation extremes (Figures 2e, 2f, 3e, and 3f) that are also shorter-lived (Figures 4e–
4h and 5). These changes are seen in both seasons and are not directly linked to a change in the mean rainfall
(Figures 1e and 1f). The damping of rainfall variability and extremes with air-sea interactions is likely due to
negative local thermodynamic feedbacks in the coupled system through convection, surface fluxes, and SST.

Most of the overestimation of extremes in GA3–31d relative to GOML1 occurs over the tropical oceans, sug-
gesting that the interannual SST variability increases rainfall variability locally, resulting in more intense,
longer-lived extremes (Figures 4 and 5). During MJJAS some of this overestimation can be linked to the
change to the mean tropical precipitation (Figure 1c), however, during NDJFM this is not the case (Figure
1d). Comparing GA3–31d with GA3-clim demonstrates that SST variability drives the increase in extremes in
GA3–31d relative to GOML1. GA3-clim provides an estimate of the non-SST-forced characteristics of
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Figure 5. Lead-lag diagram of precipitation, SST, latent heat (LHF), and shortwave (SWF) flux anomalies during long-lived extreme events averaged over the Tropi-
cal Indo-Pacific [25S–25N, 60E–120W]. The definition of extreme here is similar to that of Figure 4—at least 5 consecutive days above one standard deviation from
the mean. Lag 0 refers to the largest magnitude of that extreme event. GA3-clim, GA3–31d, and GOML1 are shown by the black, red, and blue lines, respectively.
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extremes in GA3. Differences between GOML1 and GA3–31d suggest that attribution studies or time-slice
experiments employing atmosphere-only models (e.g., Coppola & Giorgi, 2005; Kopparla et al., 2013) may
overestimate the intensity and persistence of tropical precipitation extremes because they lack coupled
feedbacks. Prescribing SSTs in an atmosphere-only model increases tropical precipitation extremes relative
to the coupled model that generated those SSTs in the first place.

Changes in the characteristics of tropical precipitation extremes are not confined to oceanic regions; there
are also land regions such as southern India (Figures 2a, 2c, and 3e), northern Africa (Figures 2b, 2d, 3f, 4f,
and 4j) and central Australia (Figures 3c, 4e, and 4i) that are sensitive to the inclusion of air-sea interactions.
While some studies suggest that air-sea interactions only affect internal variability and would not change
the outcome of future projections (e.g., He & Soden, 2016), others have shown that decadal changes in
extreme precipitation, especially during the summer monsoons in East Asia and Australia, exhibited consid-
erable sensitivity to air-sea interactions (e.g., Dong et al., 2017). These sensitivities highlight that any conclu-
sions drawn from future modeling studies about the impacts of precipitation extremes, whether of the
current or future climate, should be interpreted in the context of the modeling framework used.

MetUM has substantial biases in climatological precipitation over tropical land masses; for example, it does
not adequately capture Indian summer monsoon rainfall (Johnson et al., 2015). It also has a weak represen-
tation of tropical subseasonal variability; for example, the eastward propagation of the Madden-Julian oscil-
lation is poorly simulated (Klingaman, 2014). It is therefore important to improve understanding of these
model deficiencies, as they are likely to affect the representation of tropical precipitation extremes.

It would also be interesting to extend this analysis to other GCMs to investigate the consistency of the
impact of air-sea interactions on tropical precipitation extremes. Another potentially illuminating extension
of this work would be to investigate the role that air-sea interactions play on the frequency, intensity, and
persistence of dry extremes in the tropics.

In the results shown here the oceanic temperature and salinity corrections—required to account for biases
in atmospheric surface fluxes and represent mean oceanic advection—have been calculated to produce a
near-observed mean state. Similar MetUM-GOML experiments could be conducted for attribution or
climate-change studies by recalculating the corrections to reproduce the ocean mean state of any particular
year/period (for attribution studies) or future scenario (for climate-change studies).
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