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Abstract  16 

The effect of botanical diversity on supply of polyunsaturated fatty acids (PUFA) to 17 

ruminants in vitro, and the fatty acid (FA) composition of muscle in lambs was 18 

investigated. Six plant species, commonly grown as part of UK herbal ley mixtures 19 

(Trifolium pratense, Lotus corniculatus, Achillea millefolium, Centaurea nigra, Plantago 20 

lanceolata and Prunella vulgaris), were assessed for FA profile, and in vitro 21 

biohydrogenation of constituent PUFA, to estimate intestinal supply of PUFA available 22 

for absorption by ruminants. Modelling the in vitro data suggested that  L. Corniculatus 23 

and P. Vulgaris had the greatest potential to increase 18:3 n-3 supply to ruminants, 24 

having the highest amounts escaping in vitro biohydrogenation . Biodiverse pastures 25 

were established using the six selected species, under-sown in a perennial ryegrass-26 
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based sward. Lambs were grazed (~50 days) on biodiverse or control pastures and 27 

the effects on the FA composition of m. longissimus thoracis (lean and subcutaneous 28 

fat) and m. semimembranosus (lean) were determined. Biodiverse pasture increased 29 

18:2 n-6 and 18:3 n-3 contents of m. semimembranosus (+14.8 and +7.2 mg/100g 30 

tissue respectively) and the subcutaneous fat of m. l. thoracis (+158 and +166 mg/100g 31 

tissue respectively) relative to feeding a perennial ryegrass pasture. However, there 32 

was no effect on total concentrations of saturated FA in the tissues studied. It was 33 

concluded that enhancing biodiversity had a positive impact on muscle FA profile 34 

reflected by increased levels of total PUFA.  35 

 36 

Keywords: Biodiversity; multispecies swards; fatty acids; biohydrogenation; lamb 37 

muscle 38 

 39 

Implications  40 

The improvement of muscle fatty acid (FA) profile in lambs through increased 41 

polyunsaturated fatty acid (PUFA) concentration achieved in the present study adds to 42 

the growing body of evidence supporting the replacement of monoculture pasture with 43 

biodiverse mixtures. By including a greater proportion of species that were found to 44 

promote PUFA supply to ruminant tissues, such as selfheal and birdsfoot trefoil, 45 

biodiverse seed mixtures could be formulated to optimise the FA profile of resulting 46 

ruminant food products. However, the seemingly low persistence of these species 47 

within a competitive mixed sward remains a challenge to commercial uptake. 48 

 49 

Introduction  50 
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There is increasing interest in low-input biodiverse pasture as a sustainable forage for 51 

grass-based ruminant production systems (Luescher et al., 2014). However, to-date, 52 

little work has focused on the ability of individual plants within biodiverse pastures to 53 

beneficially modify the fatty acid (FA) profile of ruminant food products, with the aim of 54 

increasing mono- and polyunsaturated fatty acids (MUFA, PUFA) and decreasing 55 

saturated fatty acid (SFA) concentrations (Elgersma, 2015). Certain plant species 56 

(Asteraceae, Apiaceae, Rosaceae, Cyperaceae) have been positively correlated with 57 

PUFA in milk (Collomb et al., 2002). In ruminant muscle, biodiverse systems have been 58 

associated with enhanced PUFA concentrations in lambs (Whittington et al., 2006; 59 

Campidonico et al., 2016) and Lourenco et al. (2007) reported increased 60 

concentrations of docosahexaenoic acid (DHA; a very long chain n-3 PUFA) in the 61 

intramuscular fat of lambs grazing a biodiverse pasture compared with an intensive 62 

ryegrass pasture. However, few studies have attempted to relate species composition 63 

within a biodiverse sward to the FA supplied by the plants and their potential to alter 64 

the composition of ruminant food products. Identifying which species have the most 65 

potential for improving the resulting FA composition in ruminant products could aid in 66 

designing targetted seed mixtures for this purpose. For example, red clover (Trifolium 67 

pratense) and certain other perennial forage species contain enhanced levels of 68 

polyphenol oxidase, which can prevent lipolysis and subsequent rumen 69 

biohydrogenation of plant PUFA (Dewhurst et al., 2006; Lee et al., 2014). In addition, 70 

plants containing condensed tannins may protect PUFA from biohydrogenation, and 71 

thus enhance PUFA concentration in ruminant products (Campidonico et al., 2016; 72 

Girard et al., 2016a). However, the degree of PUFA protection can be influenced by 73 

the concentration, chemical structure, and degree of polymerisation of the condensed 74 

tannins, which  can vary both within and between plant species (Azuhnwi et al., 2013). 75 
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This may explain why certain tannin containing species appear to affect FA profile to a 76 

greater extent than others. Girard et al. (2016b) observed that sainfoin (Onobrychis 77 

viciifolia) raised PUFA concentration in cheese to a greater extent than birdsfoot trefoil 78 

(Lotus corniculatus), with both providing similar amounts of alpha-linolenic acid (18:3 79 

n-3) to the animal. Therefore, the objectives of the present study, were to (i) determine 80 

the impact of a range of species on PUFA biohydrogenation in vitro, and (ii) determine 81 

the impact of increasing pasture botanical biodiversity by including selected plant 82 

species, on the FA profile of lamb meat. 83 

 84 

Material and methods  85 

Experiment 1: In vitro biohydrogenation of selected species 86 

Sample collection. Six “candidate” plant species - birdsfoot trefoil (Lotus corniculatus), 87 

knapweed (Centaurea nigra), ribwort plantain (Plantago lanceolate), red clover 88 

(Trifolium pratense), selfheal (Prunella vulgaris) and yarrow (Achillea millefolium) - 89 

were selected from a larger group of species, due to containing relatively high 90 

concentrations of 18:2 n-6 and 18:3 n-3, and being relatively easy to establish (Kliem 91 

et al., 2006). The entire above-ground plant material of each plant was collected from 92 

one of several already established plots on four separate occasions during the growing 93 

season (Kliem et al., 2006), mixed well and transported to the laboratory. Samples 94 

were stored at -20°C before being lyophilised and milled (<1 mm).   95 

 96 

In vitro biohydrogenation. To Wheaton flasks (capacity 125 ml), 1.0 g (+/- 0.01 g) of 97 

each freeze-dried and milled sample was accurately weighed in triplicate, and 90 ml of 98 

a reduced anaerobic buffer (Theodorou et al., 1994) added. Flasks were warmed to 99 

39ºC prior to inoculation with 10 ml strained bovine rumen fluid collected approximately 100 
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2 h post-feeding from two lactating dairy cows receiving a total mixed diet comprising 101 

50:50 forage:concentrate (DM basis), with the forage portion being predominantly 102 

maize silage. Flasks were loosely stoppered and vented via a needle. Flasks were 103 

incubated at 39ºC with regular mixing by agitation of the bottles. Three flasks per plant 104 

species were removed following 0, 3, 6, 9, 12, 24 and 48 h incubation, flask contents 105 

were frozen at -20ºC and then lyophilised. Lyophilised residue was mixed and stored 106 

at -20ºC before subsequent FA analysis. 107 

 108 

Fatty acid analysis. FA analysis of the whole plant material prior to in vitro 109 

biohydrogenation was performed on triplicate sub-samples of freeze-dried plant 110 

material, using a method based on Sukhija and Palmquist (1988) with toluene for 111 

extraction and 2% (v/v) sulphuric acid in methanol for methylation. Resulting FA methyl 112 

esters (FAME) were analysed on a Varian 3400 CX Gas Chromatograph equipped 113 

with a flame-ionization detector, using a temperature programme (Shingfield et al., 114 

2003). Identification of FAME peaks was completed using a known external standard 115 

(GLC463, Nu-Check Prep., MN, USA). Individual FA concentrations were normalised 116 

according to the total lipid content, determined as ether extract (MAFF, 1986). The 117 

contents of individual FA were reported on an oven DM basis following measurement 118 

of the residual DM content of the freeze-dried samples (after oven drying at 100oC for 119 

18 h).  120 

 121 

Biohydrogenation residues were analysed for FA composition using a method based 122 

on Folch et al. (1957) and methylated using a bi-methylation method (base-catalysed 123 

then acid-catalysed) derived from Kramer and Zhou (2001). A known amount of 124 

internal standard (Heneicosanoic acid methyl ester, H3265, Sigma-Aldrich, UK) was 125 
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added prior to methylation in order to quantify FAME. Extracted FAME were analysed 126 

as described above. The FA profiles were expressed as total mg/flask. Results for 18:2 127 

n-6 and 18:3 n-3 were used to calculated the extent of in vitro biohydrogenation for 128 

each plant based on the disappearance of 18:2 n-6 and 18:3 n-3. 129 

 130 

Data analysis. Flask contents of selected fatty acids were analysed for effects of plant, 131 

time and their interaction by means of the Mixed model in SAS (v9.4, SAS Institute, 132 

Cary, NC, US), which included within sampling time comparison of plant least squares 133 

means (analysed using the PDIFF function). Results were considered significantly 134 

different when P<0.05. Curves (constructed using the mean of three flasks over the 135 

entire incubation period from 0 to 48 h) describing the rate and extent of in vitro 136 

biohydrogenation (disappearance of 18:2 n-6 and 18:3 n-3) were fitted to the 137 

exponential model of Ørskov and McDonald (1979) using SigmaPlot (Systat Software 138 

Inc., London). Hydrogenation of FA was described by the equation Pt= x + ye-zt, where 139 

Pt is the amount (mg) of FA present at incubation time t, x is the non-hydrogenated FA 140 

fraction (mg), y is the hydrogenated fraction (mg) and z is the fractional rate of 141 

disappearance of y (/h).  Curve parameters were compared as in Boufaïed et al. 142 

(2003); effective disappearance (ED) and rumen bypass (BP) of 18:2 n-6 and 18:3 n-143 

3 were calculated using a rumen fractional passage rate (k) of 0.03/h (Alcaide et al., 144 

2000). This rate describes the passage of small particulate matter in sheep. 145 

 146 

Experiment 2: Fatty acid profile of lamb 147 

Plant species and establishment of biodiverse pastures. The same six species 148 

assessed in vitro in experiment 1 were established within a permanent, perennial 149 

ryegrass-based sward at the University of Reading. In the previous five years the sward 150 
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had been used to graze sheep and had received approximately 100 kg fertiliser 151 

nitrogen/ha/year. The site was divided into ten plots (5 x 2 arrangement; each 60 m x 152 

29 m) allocated in a paired block design to either the biodiverse or a control (no 153 

additional species sown) treatment. Blocking was completed to account for potential 154 

variation in background conditions. The biodiverse plots were power harrowed prior to 155 

under-sowing at ~5 kg seed/ha, twice the recommended seed rate (DEFRA, 2004). 156 

The weight of each species within the seed mixture was as follows: birdsfoot trefoil (19 157 

%), knapweed (24 %), ribwort plantain (32 %), red clover (13 %), selfheal (10 %) and 158 

yarrow (2 %; Emorsgate Seeds, Norfolk, UK). These proportions were used so that the 159 

same number of seeds per g was included of each species. Establishment of the six 160 

‘sown’ species was completed using 0.75 and 0.25 of the total seed amount (5 kg) in 161 

spring and autumn, respectively. Owing to poor establishment of the biodiverse 162 

pastures a further ~5 kg seed/ha was applied in late autumn. After sowing the 163 

biodiverse plots were rolled and then left undisturbed for at least six weeks. The control 164 

pastures received 100 kg fertiliser nitrogen/ha in the first year but no additional fertiliser 165 

was applied to the biodiverse pastures. 166 

 167 

Immediately prior to the start of the grazing study in the following spring, both the 168 

biodiverse and control plots were assessed for species richness as determined by the 169 

number and abundance of different sown and unsown plant species, and assessment 170 

of contribution to the overall biomass. This was achieved by estimating the number of 171 

different species and percentage ground cover of vascular plant species in 12 172 

randomly positioned 50 x 50 cm quadrats within each plot (areas within 1 m of the 173 

fences were excluded from the sampling). Simultaneuosly, ten random samples per 174 

plot were obtained by harvesting the above-ground plant matter that were pooled within 175 
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plots, frozen (-20ºC), freeze-dried and milled, and stored at -20ºC and subsequently 176 

analysed for fatty acid analysis, as per the process described for whole plants in 177 

Experiment 1. 178 

 179 

Experimental animals and the grazing study. Fifty greyface mule x Texel castrated 180 

male lambs from an early lambing flock were weaned in April of the grazing year and 181 

given a forage-based diet until the start of the grazing study in mid-May. The lambs 182 

were weighed prior to the study (mean weight ±SEM 26.8 kg ± 0.39), and five lambs 183 

were randomly allocated to each plot to ensure a similar mean live-weight within each 184 

plot and across the two treatments (26.8 and 26.7 kg for biodiverse and control 185 

pastures, respectively). Lambs had access to water ad libitum, and were weighed 186 

weekly, with  live-weights recorded. The grazing period continued for a minimum of 50 187 

d (mean ± s.e.m. control 64.7 ± 0.93 days, biodiverse 64.3 ± 0.93 days) after which 188 

time animals reaching the target weight of 45 kg or attaining optimum body condition 189 

score by palpation of the loin area were selected for slaughter. A total of three lambs 190 

from each plot were slaughtered. Animals were transported to the University of Bristol 191 

for slaughter, which occurred according to European Union Welfare guidelines. On 192 

arrival animals were stunned by captive bolt followed by abrupt exsanguination. 193 

Carcases were prepared and graded, and  and tissue  samples were taken for study 194 

from musculus longissimus thoracis and musculus semimembranosus, and 195 

subcutaneous fat from above m. l. thoracis. Samples were stored frozen at -20ºC until 196 

required for FA analysis.  197 

 198 

Fatty acid analysis. Prior to analysis tissue samples were partially defrosted at room 199 

temperature for approximately 30 minutes and prepared by cutting into ~ 1 cm3 pieces, 200 
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and blended to a homogeneous paste in a food processor within 2 minutes. 201 

Subsequently, FA in samples were extracted using the Folch et al. (1957) method 202 

followed by a base-catalysed methylation as described for in vitro samples in 203 

Experiment 1. For FA extraction, 2.0 g of each tissue (in duplicate) were homogenised 204 

in chloroform/methanol (2:1, v/v) using an IKA® Ultra-Turrax dispersal tool (IKA®-205 

Werke GmbH & Co.. Staufen, Germany). After washing the extract with saline solution, 206 

the solvent was removed under vacuum at 40oC using a rotary evaporator and the 207 

remaining lipid extract was re-suspended in hexane. FAME were analysed as outlined 208 

previously, FA contents and profiles were obtained for each sample, and were 209 

expressed as mg/100 g fresh tissue.  210 

 211 

Data analysis. Live-weight was analysed using the Mixed procedure of SAS (SAS 212 

version 9.4; SAS Institute), with a model that included fixed effects of time, treatment 213 

and time by treatment interaction (including time as a repeated measurement), and 214 

random effects of plot and lamb within plot. Pasture total lipid, FA content and species 215 

richness were analysed using a two-way ANOVA, with fixed effects of treatment and 216 

block. Tissue FA were analysed using the Mixed procedure of SAS with a model 217 

including fixed effects of treatment, block, and treatment by block interaction. Results 218 

were considered significantly different where P<0.05, and tendencies were reported 219 

where P was between 0.05 and 0.1. 220 

 221 

Results  222 

Experiment 1 223 

Of the six plant species, selfheal contained the highest amount of total FA, and ribwort 224 

plantain the least (Table 1). Yarrow was particularly high in 18:2 n-6, and Selfheal 225 
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contained the greatest quantity of 18:3 n-3 (Table 1). The effect of the six selected 226 

plant species on in vitro flask contents of selected FA are reported in Table 2. There 227 

were effects (P<0.001) of plant, time and plant by time interaction for all FA presented 228 

in Table 2. At 0 h incubation, all flasks contained similar amounts of 18:0 (P=0.124), 229 

but over time flask contents increased (P<0.001). The interaction between plant and 230 

time for 18:0 reflected a lag in 18:0 accumulation for knapweed, and the greatest 231 

(P<0.05) 18:0 accumulation at 48 hours for selfheal and birdsfoot trefoil. For cis-9 18:1, 232 

at 0 h incubation there was a difference (P<0.001) between plants, most probably due 233 

to the high content in selfheal (Table 2). Over time this decreased (P<0.001) for all 234 

flasks, but again the rate of disappearance varied between plants, with this being 235 

lowest for red clover after 3 hours of incubation. Flask contents of trans-11 18:1 were 236 

similar across all plants at time 0 (P=0.542), but over time contents increased 237 

(P<0.001) to a peak between 6 and 12 hours before decreasing again. The greatest 238 

amount of trans-11 18:1 was measured in flasks containing birdsfoot trefoil.  239 

 240 

There were differences (P<0.001) between plants for both 18:2 n-6 and 18:3 n-3, at 0 241 

h incubation.Over time both decreased (P<0.001) but at different rates. According to 242 

the disappearance curves, knapweed contained the highest amount of non-243 

hydrogenatable 18:2 n-6, and selfheal the lowest (Table 3). The effective 244 

disappearance of the hydrogenatable fraction was highest for yarrow, with yarrow and 245 

knapweed containing the highest amount of rumen bypass 18:2 n-6. Selfheal 246 

contained the highest amount of hydrogenatable 18:3 n-3, but had the lowest rate of 247 

18:3 n-3 disappearance of all plants. Due to this the ruminal bypass 18:3 n-3 was 248 

highest for selfheal. 249 

 250 
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Experiment 2  251 

Pasture botanical composition and lamb performance. The number of different species 252 

(both sown and unsown) was higher in the biodiverse than the control pastures when 253 

expressed per quadrat (P<0.016) and per plot (P<0.019). However, birdsfoot trefoil 254 

was not recorded in any of the biodiverse pastures. The mean contribution of the sown 255 

and un-sown (non-grass species) plant species to the overall biomass was 25.4% in 256 

the biodiverse pastures. This contribution was largely comprised of ribwort 257 

plantain.The total lipid and FA composition of the conventional and biodiverse pastures 258 

immediately prior to start of the lamb grazing study is presented in Table 4. There were 259 

no statistically significant (P>0.05) differences in the individual FA contents of the two 260 

pasture types. The predominant FA was 18:3 n-3 and accounted for approximately 261 

50% of the total FA.  262 

 263 

Live-weight change of the lambs grazing the conventional and biodiverse pastures is 264 

summarised in Figure 1 and demonstrates an effect of time (P<0.001) but no effect 265 

(P=0.717) of treatment, with no interaction (P=0.773). Overall mean live-weight gains 266 

were 10.2 and 10.0 kg (±1.91 SEM) over the grazing period for conventional and 267 

biodiverse groups, respectively. 268 

 269 

Fatty acid composition of tissues.The summary of the amounts of key FA groups in all 270 

three tissues analysed are reported in Table 5 (for full details of FA content, see 271 

Supplementary tables S1, S2 and S3). The total FA content of m. l. thoracis was similar 272 

for the lambs grazing the biodiverse and control pastures: mean 1573 and 1648 273 

mg/100 g tissue respectively. The amount of 18:2 n-6 tended to be higher (P=0.060) 274 

in m. l. thoracis from the lambs grazing the biodiverse pasture, however, other 275 
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differences in FA content and profile were small. A significant block and block x 276 

treatment effect (P < 0.05) was recorded for 22:2 cis-13, cis-16, due to the higher level 277 

of this FA in one of the blocks.  278 

 279 

The total FA content was numerically higher in the m. semimembranosus than in the 280 

m. l. thoracis tissue (Table 5). A lower (P<0.04) content of trans-11 18:1 was found in 281 

m. semimembranosus from lambs grazing the biodiverse pasture (Table 5). At the 282 

same time 18:2 n-6 and 18:3 n-3 concentrations were higher (both P<0.02), resulting 283 

in a higher total n-3 and n-6 PUFA content in tissue from lambs grazing biodiverse 284 

pasture. Block x treatment effects were recorded for a number of FA, mainly due to 285 

some blocks having different mean values from the remaining blocks, which magnified 286 

any subtle treatment differences. 287 

 288 

Subcutaneous fat contained 47,261 and 46,723 mg total FA/100 g tissue from lambs 289 

grazed control and biodiverse pastures respectively (Table 5). The content of trans-10 290 

18:1, trans-12 18:1, 19:0, 18:2 cis-9, cis-12, 18:3  n-3, 20:3 n-6, 24:0/20:5 n-3, 22:5 n-291 

3 and total n-3, n-6, and very long chain n-3 PUFA were all higher (P<0.05) in 292 

subcutaneous fat from lambs grazed on biodiverse pasture compared with control 293 

pasture (Supplementary table S3).  294 

 295 

Discussion  296 

In vitro biohydrogenation 297 

It has been suggested (Dewhurst et al., 2001) that the proportion of leaf in the whole 298 

plant DM is an important determinant of FA concentration due to forage lipids being 299 

predominantly of leaf origin (Harfoot, 1981). Differences in leaf:stem ratios between 300 
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plant species may explain some of the differences in plant FA contents observed.  The 301 

in vitro biohydrogenation characteristics were similar for the six plant species studied. 302 

Selfheal and birdsfoot trefoil displayed the greatest accumulation of 18:0 but these 303 

plants contained the greatest initial amounts of total PUFA. Rate of disappearance of 304 

18:2 n-6 was similar for all plants apart from knapweed (mean of plants excluding 305 

knapweed, 0.12 mg/h, knapweed 0.09 mg/h). This may indicate that knapweed exerts 306 

some other effect on rumen microbes and/or their enzymes, either by inhibiting the 307 

initial lipolysis or biohydrogenation itself. Indeed, knapweed resulted in a lower 308 

accumulation of both trans-11 18:1 and 18:0 which suggests less biohydrogenation. 309 

Kumarasamy et al. (2003) found that serotonin conjugates extracted from the seeds of 310 

knapweed had antimicrobial activity. These conjugates may also be present in other 311 

fractions of knapweed and therefore conferring potential antimicrobial effects. 312 

 313 

For 18:3 n-3, both selfheal and birdsfoot trefoil displayed similar high values for ED 314 

compared with the other plants, and yet the accumulation of 18:0 for birdsfoot trefoil 315 

did not increase at the same rate as that of selfheal. This may be due to birdsfoot trefoil 316 

inhibiting the intermediary pathways of biohydrogenation, through, for example, the 317 

presence of condensed tannins. After ingestion some condensed tannins from 318 

birdsfoot trefoil remain free and unbound that may inhibit the extracellular enzyme 319 

action of certain bacteria (Barry and Manley, 1986). Min et al. (2002) found that 320 

including birdsfoot trefoil in the diet of sheep decreased the population of the rumen 321 

bacteria Butyrivibrio proteoclasticus, which is one of the few bacterial species that 322 

conducts the final step of rumen biohydrogenation of 18:3 n-3 (converting trans-11 323 

18:1 to 18:0). However, if condensed tannins affect bacterial biohydrogenation in this 324 

way, no reduction in the initial rate of disappearance of both 18:2 n-6 and 18:3 n-3 was 325 
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observed in the present study. No estimate of the tannin content or that of other 326 

polyphenols was completed in the present study but it is highlighted as an area of 327 

future study. When a rumen passage rate of 0.03/h (rate at which small particles leave 328 

the rumen of sheep) was applied, the amount of 18:3 n-3 by-passing hydrogenation 329 

was numerically higher for selfheal and birdsfoot trefoil. However, this observation is 330 

likely to reflect the higher initial concentration of 18:3 n-3 in these plants. 331 

 332 

Compared with previous in vitro research, red clover did not appear to perform better 333 

than other species in terms of effective disappearance and by-pass of 18:2 n-6 and 334 

18:3 n-3. Van Ranst et al. (2013) reported lower lipolysis and biohydrogenation of 18:3 335 

n-3 and 18:2 n-6 with silages containing increasing amounts of red clover, which may 336 

have been due to the presence of polyphenol oxidase (PPO) within the red clover. In 337 

the present study however, red clover was being compared not with ryegrass but with 338 

other species which may have exerted similar biohydrogenation-inhibiting effects. An 339 

in vivo study reported higher concentrations of 18:3 n-3 in rumen fluid following the 340 

feeding of a 50:50 grass:red clover silage to lambs, compared with a 100% grass 341 

silage, suggesting PPO as a possible reason (Campidonico et al., 2016). However 342 

there was no difference between the grass:red clover silage and grass:sainfoin silage 343 

treatments, with sainfoin suggested as having a different mechanism of action for 344 

inhibiting biohydrogenation. 345 

 346 

Using biodiverse pasture to alter the fatty acid profile of tissues 347 

To accelerate the assembly of a species-rich community within grassland, deliberate 348 

under-sowing permanent pasture with selected plant species is required. 349 

Establishment of the biodiverse pastures over approximately 12 months significantly 350 
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increased the number of different ‘sown’ and unsown species present in the 351 

experimental plots as compared with the control pastures. On average the biodiverse 352 

pastures were shown to contain an average of 16 different plant species per plot, 353 

compared with 9 for control pastures. However, despite the higher species richness, 354 

the most abundant species, and concomitant contributor to the overall plant biomass, 355 

was ribwort plantain. The abundance of the remaining species was low and therefore 356 

made a substantially smaller contribution to the available biomass available for 357 

grazing. Other studies carried out with the aim of introducing different species to create 358 

biodiverse pastures have been, for example, four years in duration (e.g. Hopkins et al., 359 

1999; Pywell et al., 2002). Therefore a longer period of establishment is required to 360 

enable some slower growing species to proliferate following initial sowing in order to 361 

create a truly biodiverse pasture. 362 

 363 

The m. semimembranosus total FA concentrations were lower than those measured 364 

by Whittington et al. (2006) comparing different biodiverse systems with a control 365 

pasture. The m. l. thoracis total FA concentration was similar to that observed by 366 

Lourenço et al. (2007) comparing an intensive ryegrass pasture with an established 367 

biodiverse pasture. There were few differences in the FA profile between the pasture 368 

treatments for m. l. thoracis. Lourenço et al. (2007) observed a number of differences 369 

in this tissue between animals grazing biodiverse or intensive lolium perenne-based 370 

pastures, including a higher 18:2 n-6 resulting in an increased n-6:n-3 ratio for the 371 

biodiverse treatment. In the study of Lourenço et al. (2007) the lambs grazed the 372 

biodiverse pastures for a period of 12 weeks (84 days) compared to 50 days in the 373 

present study. This shorter grazing period may reflect some of the differences in the 374 

results recorded although a minimum of 50 days grazing is generally recommended in 375 
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order to detect differences in muscle phospholipids (Wood, personal communication). 376 

Another reason for the lack of effect in the present study is low establishment of 377 

biodiverse species. 378 

 379 

M. semimembranosus contains a higher amount of phospholipids, which have a higher 380 

PUFA content (De Smet et al., 2004). The differences in n-6 PUFA content observed 381 

in the present study for the lambs grazing biodiverse pastures are similar to those 382 

observed by Whittington et al. (2006), however these authors did not observe 383 

increases in n-3 FA that were recorded in the present study with the biodiverse 384 

treatment. These differences in intramuscular FA concentrations suggest an increased 385 

availability of both 18:2 n-6 and 18:3 n-3 for tissue incorporation. This may reflect a 386 

reduction in rumen biohydrogenation of these dietary FA for the lambs grazing 387 

biodiverse pastures. The lower trans-11 18:1 concentration further illustrates this point, 388 

as this is a key intermediate of the biohydrogenation of both PUFA. There are several 389 

possible explanations for this. Inhibition of initial lipolysis of plant lipids prior to rumen 390 

biohydrogenation (this may have been the mechanism of action observed during in 391 

vitro biohydrogenation of knapweed and selfheal) may have contributed to this effect. 392 

In addition, inhibition of biohydrogenation prior to the hydrogenation step that 393 

synthesises trans-11 18:1 and/or increased rate of passage for animals consuming 394 

biodiverse pasture may have resulted in greater amounts of PUFA escaping rumen 395 

biohydrogenation. However, the mechanism(s) underlying the finding of the present 396 

study are unclear and should be an area of further investigation.  397 

 398 

Total FA concentration was greatest in the subcutaneous fat. Subcutaneous fat total 399 

FA content was lower than that observed by Enser et al. (1996; 70,572 mg/100 g 400 
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tissue) and Lourenço et al. (2007; 60,900 – 66,900 mg/100 g tissue). This might reflect 401 

the lighter carcass weight and therefore level of finish, but may also reflect slight 402 

difficulty in separating the subcutaneous fat from muscle. Subcutaneous fat was more 403 

susceptible to dietary change, due to the higher total FA concentration when compared 404 

with muscle. Trans-10 18:1 and trans-12 18:1 tend to arise following biohydrogenation 405 

of 18:2 n-6 (Jouany et al., 2007). The reason for greater amounts of these FA in 406 

subcutaneous fat of lambs grazing the biodiverse pasture is unclear, especially as we 407 

hypothesise that biohydrogenation of dietary PUFA may have been lower with 408 

biodiverse pastures. It may reflect FA differences for deposition into subcutaneous 409 

tissue. Subcutaneous fat from biodiverse treatment lambs contained higher amounts 410 

of both 18:2 n-6 and 18:3 n-3 than control lambs, as well as a higher very long chain 411 

n-3 FA.  There is evidence to suggest that in ruminant animals, 18:2 n-6 is preferentially 412 

deposited in phospholipids compared to 18:3 n-3 (De Smet et al., 2004), which would 413 

suggest a lower n-6:n-3 ratio in subcutaneous fat than the lean muscle tissues. 414 

However in the present study the ratio of n-6:n-3 were similar for all the tissues studied. 415 

 416 

Increasing human consumption of 18:3 n-3 has been suggested as a means of 417 

increasing synthesis of very long chain (VLC) n-3 FA through tissue elongation and 418 

desaturation. Burdge and Calder (2005) concluded that due to poor efficiency of 419 

conversion, 18:3 n-3 appears to be a limited source of VLC n-3 FA in humans, and 420 

consumption of preformed VLC n-3 FA is a more efficient means of attaining 421 

recommended intake levels. The efficiency of conversion of 18:3 n-3 to VLC n-3 FA in 422 

ruminant meat has not been measured, but increasing 18:3 n-3 consumption by 423 

ruminants has lead to increased amounts of VLC n-3 FA in lean tissues (Scollan et al., 424 

2001; Wachira et al., 2002). In the present study, the only tissue to display an increase 425 
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in VLC n-3 FA when lambs grazed biodiverse pasture was subcutaneous fat, which is 426 

likely to be consumed in variable amounts, according to consumer preference, 427 

alongside muscle tissue.  428 

 429 

In conclusion, the results of the present study suggest that it is possible to manipulate 430 

the FA concentration and profile of muscle and subcutaneous fat in lamb by grazing 431 

biodiverse pastures. Grazing lambs on the biodiverse pastures established within our 432 

project increased overall PUFA content (~30 mg/100 g tissue) of lamb muscle. The 433 

three tissues analysed had varying responses to diet reflecting the presence of 434 

different lipid classes in each of the tissues. Differences reported from the in vivo study 435 

may have been more pronounced if the biodiverse species had established at the 436 

expected density, especially as the more promising species from the in vitro study were 437 

not present within the in vivo study pastures. 438 

 439 
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Table 1 Selected fatty acid content of six plants selected for in vitro biohydrogenation 553 

incubations (mixture of four different sampling times; mg/g dry matter) 554 

 Plant1 

Fatty acid BT K RP RC S Y 

16:0 5.27 4.83 4.20 4.13 5.16 4.25 

18:0 0.62 0.59 0.58 0.77 1.01 0.45 

18:1 cis-9 1.34 1.75 2.28 1.47 5.69 2.44 

18:2 cis-9, cis-12 4.85 6.84 5.25 4.78 5.64 8.95 

18:3 n-3 8.94 6.28 5.70 4.59 11.9 4.94 

Total 18:2 cis-9, cis-12 + 

18:3 n-3 

13.8 13.1 11.0 9.4 17.5 11.4 

Total fatty acids 26.6 24.8 21.7 19.8 32.9 24.7 

1 Where BT – Birdsfoot trefoil; K – Knapweed; RP – Ribwort plantain; RC – Red clover; S – 555 

Selfheal; Y – Yarrow. 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 
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Table 2 Flask content (mg) of selected fatty acids over a 48 h in vitro incubation. 569 

Fatty acid Time 
(h) 

Plant1 s.e.m. P2 
(plant) 

  BT K RP RC S Y  

18:0 0 22.4 21.4 21.9 21.3 22.4 20.6 0.52 0.124 
 3 23.0b 22.7b 23.4b 23.9ab 25.3a 24.0ab 0.013 
 6 26.9bc 24.6d 25.4cd 25.5cd 29.0a 27.1b <0.001 
 9 29.6b 26.2d 27.4cd 27.6cd 32.1a 28.0c <0.001 
 12 29.8b 26.3d 28.3c 28.0c 33.4a 29.3bc <0.001 
 24 32.2b 30.3cd 29.5cd 29.3d 36.3a 30.5c <0.001 
 48 35.3b 30.7d 31.8cd 31.5cd 37.4a 32.3c <0.001 
18:1 cis-9 0 3.04c 3.05c 3.70b 2.91c 6.96a 3.73b 0.068 <0.001 
 3 2.46c 2.59c 3.08b 2.61c 5.63a 3.19b <0.001 
 6 2.39c 2.39c 2.89b 2.31c 4.67a 2.82b <0.001 
 9 2.20d 2.23d 2.80b 2.24d 4.14a 2.53c <0.001 
 12 1.88d 1.87d 2.56b 1.98cd 3.31a 2.14c <0.001 
 24 1.33d 1.32d 1.81b 1.39cd 2.26a 1.55c <0.001 
 48 0.91d 1.03cd 1.23bc 1.05cd 1.73a 1.16bc <0.001 
18:1 trans-11 0 1.62 1.70 1.67 1.72 1.79 1.79 0.074 0.542 
 3 2.47b 3.03a 2.47b 2.51b 2.52b 3.02a <0.001 
 6 3.69a 3.06c 2.63d 3.05c 2.95c 3.29b <0.001 
 9 3.91a 3.28bc 2.61d 3.15c 3.44b 3.33bc <0.001 
 12 3.78a 3.04c 2.53d 2.95c 3.40b 3.14c <0.001 
 24 3.00b 2.62d 2.47d 2.59d 3.41a 2.89c <0.001 
 48 2.91ab 2.45cd 2.36d 2.57c 3.11a 2.87b <0.001 
18:2 cis-9, cis-12 0 5.57c 6.03b 4.16d 4.99d 5.75c 7.94a 0.078 <0.001 
 3 3.86d 4.47b 3.54e 3.57e 4.24c 5.57a <0.001 
 6 3.13bc 3.89b 2.94cd 2.82d 3.22b 4.47a <0.001 
 9 2.51b 3.53a 2.63b 2.47b 2.60b 3.51a <0.001 
 12 1.86c 2.90a 2.17b 2.01bc 1.89c 2.81a <0.001 
 24 1.26bc 2.05a 1.34bc 1.39b 1.13c 1.87a 0.002 
 48 0.87BC 1.54A 0.96BC 1.08B 0.85C 1.34A 0.055 
18:3 n-3 0 7.60b 3.36d 3.18d 3.75c 9.28a 3.33d 0.075 <0.001 
 3 4.18b 1.73d 1.43e 1.98c 6.27a 1.45e <0.001 
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 6 2.67b 1.39cd 1.19de 1.41c 4.18a 1.12e <0.001 
 9 1.97b 1.24c 1.05cd 1.12c 3.00a 0.89d <0.001 
 12 1.32b 1.00c 0.89cd 0.87cd 1.83a 0.73d <0.001 
 24 0.84a 0.79ab 0.60bc 0.61bc 0.95a 0.56c <0.001 
 48 0.60ab 0.63ab 0.47b 0.52b 0.76a 0.48b <0.001 

 570 

1 Where BT – Birdsfoot trefoil; K – Knapweed; RP – Ribwort plantain; RC – Red clover; S – Selfheal; Y – Yarrow. 571 

2 Significance of the effect of plant within sampling time. There were effects (P<0.001) of plant, time and plant by time interaction for all fatty 572 

acids presented. 573 

Values within rows with different superscripts are significantly different (P<0.050) 574 

 575 

 576 

 577 

 578 

 579 

 580 
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Table 3. Curve fit parameters for the disappearance of 18:2 n-6 and 18:3 n-3 over time. 581 

 Plant1 

 BT K RP RC S Y 

18:2 cis-9, cis-12      
   x2 0.94 1.58 1.04 1.16 0.84 1.45 
   y2 4.55 4.29 3.95 3.75 4.91 6.39 
   z2 0.13 0.09 0.11 0.13 0.12 0.13 
   Curve fit3 0.992 0.982 0.976 0.991 0.998 0.995 
   ED4 3.67 3.22 3.12 3.03 3.93 5.18 
   BP5 1.81 2.64 1.86 1.87 1.81 2.66 
18:3 n-3       
   x 0.75 0.81 0.68 0.62 0.70 0.61 
   y 6.78 2.49 2.45 3.08 8.64 2.68 
   z 0.21 0.26 0.30 0.23 0.15 0.33 
   Curve fit 0.996 0.961 0.944 0.987 0.998 0.975 
   ED 5.94 2.23 2.22 2.73 7.22 2.46 
   BP 1.60 1.06 0.90 0.97 2.12 0.84 

1 Where BT – Birdsfoot trefoil; K – Knapweed; RP – Ribwort plantain; RC – Red clover; S – 582 

Selfheal; Y – Yarrow. 583 

2 using the equation Pt = x + ye-zt, where Pt is the amount (mg) of 18:2 n-6 or 18:3 n-3 present 584 

in the flasks at time t, x is the non-hydrogenatable fraction (mg), y is the hydrogenatable 585 

fraction (mg), z is the rate of disappearance of fraction y (/h), and t is incubation time (h; 586 

Ørskov & McDonald, 1979) 587 

3 R-squared value for the curve fit 588 

4 ED - Effective disappearance (mg/g DM) of 18:2 n-6 or 18:3 n-3 using a ruminal rate of 589 

passage (k) of 0.03 (Alcaide et al., 2000) 590 

5 BP – Potential ruminal bypass (mg/g DM) of 18:2 n-6 or 18:3 n-3. 591 

  592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 
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Table 4 Mean fatty acid contents (mg/g dry matter) of the control and biodiverse  pastures prior 600 

to the commencement of the lamb grazing study. 601 

Fatty acid Pasture type s.e.m. P1 

Control Biodiverse 

16:0 4.68 4.11 0.295 0.216 
18:0 0.33 0.29 0.022 0.260 
18:1 total 0.80 0.63 0.065 0.099 
18:2 cis-9, cis-12 4.02 3.95 0.198 0.793 
18:3 n-3 17.8 15.3 0.90 0.094 
Total lipid 30.1 26.4 1.67 0.156 

 602 

1 Significance of the effect of pasture type 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 
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Table 5. Fatty acid composition (mg/100g tissue) of tissues from lambs grazing control and biodiverse pasture. 621 

 

Forage type 

SEM 

P1 

Conventional Biodiverse Treatment Block Treatment x 
block 

M. Longissimus Thoracis      
18:1 trans-11 45.7 39.6 5.23 0.421 0.306 0.457 
18:2 cis-9, cis-12 58.0 72.7 5.18 0.060 0.358 0.426 
18:3 n-3 21.8 27.3 2.35 0.112 0.470 0.334 
Total fatty acids 1573 1648 168.1 0.758 0.600 0.189 
Total SFA2 748 776 81.9 0.808 0.650 0.197 
Total cis-MUFA3 569 592 65.5 0.799 0.585 0.166 
Total trans-MUFA4 76.2 73.6 8.40 0.835 0.386 0.361 
n-3 PUFA5 37.7 44.5 3.24 0.155 0.495 0.389 
n-6 PUFA6 92.5 111 7.10 0.078 0.349 0.399 
Total PUFA7 130 156 10.2 0.094 0.398 0.389 
Total CLA8 23.0 21.5 2.86 0.716 0.502 0.502 
n-6:n-3 2.5 2.5 0.07 0.511 0.278 0.651 
VLC n-39 21.1 22.8 1.37 0.389 0.504 0.682 

M. Semimembranosus      
18:1 trans-11 75.4 61.5 4.40 0.037 0.187 0.018 
18:2 cis-9, cis-12 70.1 84.9 2.90 0.002 0.201 0.099 
18:3 n-3 28.4 35.6 2.01 0.020 0.286 0.250 
Total fatty acids 2416 2315 147.5 0.634 0.695 0.058 
Total SFA 1171 1119 76.4 0.636 0.798 0.079 
Total cis-MUFA 865 819 55.3 0.557 0.648 0.048 
Total trans-MUFA 134 115 9.4 0.170 0.311 0.100 
n-3 PUFA 47.2 55.2 2.42 0.032 0.252 0.206 
n-6 PUFA 111 128 4.2 0.010 0.220 0.104 
Total PUFA 158 183 6.2 0.012 0.302 0.110 
Total CLA 39.0 32.9 2.88 0.150 0.375 0.111 
n-6:n-3 2.4 2.3 0.08 0.748 0.078 0.954 
VLC n-3 24.4 25.6 0.68 0.254 0.204 0.204 

Sub-cutaneous fat       
18:1 trans-11 1638 1494 81.7 0.228 0.077 0.615 
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18:2 cis-9, cis-12 707 865 37.1 0.007 0.059 0.532 
18:3 n-3 344 510 30.6 0.002 0.169 0.777 
Total fatty acids 47261 46723 1368.6 0.784 0.165 0.036 
Total SFA 23260 23378 808.0 0.919 0.894 0.138 
Total cis-MUFA 17681 16744 866.5 0.454 0.177 0.065 
Total trans-MUFA 2950 2923 87.7 0.826 0.006 0.367 
n-3 PUFA 445 631 32.8 0.001 0.207 0.834 
n-6 PUFA 939 1126 51.6 0.018 0.071 0.598 
Total PUFA 1384 1757 72.9 0.002 0.096 0.762 
Total CLA 969 840 64.0 0.170 0.073 0.103 
n-6:n-3 2.1 1.9 0.11 0.086 0.186 0.672 
VLC n-3 111 135 6.1 0.011 0.985 0.913 

1 Significance of the effect of; T - treatment; B - block; T*B, treatment*block interaction  622 

2 SFA - saturated fatty acids. Sum of 12:0, 13:0, 14:0, 15:0, 16:0, 17:0, 18:0, 18:0, 19:0, 20:0, 22:0, 24:0. 623 

3 MUFA - mono-unsaturated fatty acids. Sum of cis-9 12:1, cis-9 14:1, cis-9 15:1, cis-9 16:1, cis-10 17:1, cis-9 18:1, cis-11 20:1, cis-13 22:1, cis-624 

15 24:1  625 

4 Sum of trans-9 16:1, trans-6-8 18:1, trans-9 18:1, trans-10 18:1, trans-11 18:1, trans-12 18:1, trans-13-14 18:1 626 

5 PUFA – polyunsaturated fatty acids. Sum of 18:3 n-3, 20:5 n-3, 22:3 n-3, 22:5 n-3, 22:6 n-3 627 

6 Sum of trans-9, trans-12 18:2, cis-9, cis-12 18:2, 20:2 n-6, 20:3 n-6, 22:2 n-6, 22:4 n-6.  628 

7
 Sum of n-3 and n-6 PUFA. 629 

8 CLA – conjugated linoleic acid 630 

9 VLC – very long chain 631 

 632 
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Figure captions  633 

 634 

Figure 1. The mean liveweight of lambs grazing either a control or biodiverse pasture over a 635 

60 d study period. Mixed model analysis concluded an effect (P<0.001) of time but no effect of 636 

treatment (P=0.717) or time by treatment interaction (P=0.773).  637 
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