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Abstract 

New liquid atmospheric pressure (AP) matrix-assisted laser desorption/ionization (MALDI) 

matrices that produce predominantly multiply charged ions have been developed and evaluated 

with respect to their performance for peptide and protein analysis by mass spectrometry (MS). 

Both the chromophore and the viscous support liquid in these matrices were optimized for highest 

MS signal intensity, S/N values and maximum charge state. The best performance in both protein 

and peptide analysis was achieved employing light diols as matrix support liquids (e.g. ethylene 

glycol and propylene glycol). Investigating the influence of the chromophore, it was found that 

2,5-dihydroxybenzoic acid resulted in a higher analyte ion signal intensity for the analysis of small 

peptides; however larger molecules (>17kDa) were undetectable. For larger molecules, a sample 

preparation based on α-cyano-4-hydroxycinnammic acid as the chromophore was developed and 

multiply protonated analytes with charge states of more than 50 were detected. Thus, for the first 

time it was possible to detect with MALDI MS proteins as large as ~80kDa with a high number of 

charge states, i.e. m/z values below 2000. Systematic investigations of various matrix support 

liquids have revealed a linear dependency between laser threshold energy and surface tension of 

the liquid MALDI sample. 
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1 Introduction 

Matrix-assisted laser desorption/ionization (MALDI)[1, 2] is one of the two main ionization 

techniques in modern biological mass spectrometry (MS). Similar to the other main ionization 

technique, electrospray ionization (ESI)[3, 4], MALDI MS has been successfully and sometimes 

complementary applied to a vast array of analytes, from labile glyco-/phosphopeptides/-proteins[5, 

6] and DNA/RNA[7-9] to metabolites[10-13] and synthetic (macro)molecules such as synthetic 

polymers[14, 15]. 

Traditionally, MALDI is directly coupled to time-of-flight (TOF) MS, which due to its pulsed 

nature and virtually unlimited mass range is ideal for the detection of ions with high m/z values as 

it is the case for large biomolecular ions generated from conventional MALDI samples. High-

vacuum requirements as well as overall analytical sensitivity in such setups have defined state-of-

the-art sample preparation favouring solid crystalline samples with low vapour pressure. 

However, decoupling of ion generation from mass analysis and performing MALDI at elevated or 

atmospheric pressure (AP) offer significant advantages of improved mass accuracy[16-18] and 

generally softer ionization[16-20]. Another advantage is the ability to easily swap ion sources and 

utilize ESI mass spectrometers, providing a wider choice of fragmentation techniques than what is 

available with the commonly employed axial MALDI-TOF instruments. Although a few axial 

MALDI-TOF mass spectrometers also offer (high-energy) collision-induced dissociation (CID) 

MS/MS analysis[21], the vast majority of axial MALDI-TOF instruments rely on metastable post-

source decay (PSD), which in such instruments typically leads to poorly resolved fragment 

ions[22, 23]. The introduction of AP-MALDI has also enabled its coupling to low-cost mass 

spectrometers[18]. 
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In the last decade it was discovered that under certain conditions ESI-like multiply charged ions 

can be produced in AP-MALDI. Following earlier work where it was shown that IR-MALDI with 

its ‘cooler’ matrices can be advantageous in increasing the yield of multiply charged ions[24], 

Koenig et. al. reported the generation of predominantly multiply charged IR-MALDI ions from 

glycerol-based liquid samples for both peptides and proteins[25]. However, the MS sensitivity was 

in the high-picomole range with the typical drawbacks of IR-MALDI such as greater sample 

ablation and a more expensive and challenging optical setup compared to UV-MALDI. Later, 

Trimpin et. al. introduced laserspray ionization (LSI) for the generation of predominantly multiply 

charged ions from solid MALDI samples using an ultraviolet (UV) laser at high fluences[26]. 

Cramer et. al. introduced AP-UV-MALDI using liquid matrices[27], which also provide the 

advantage of low sample and analyte consumption at high ion yield and signal stability as 

previously reported for singly charged MALDI ions[23, 28-30]. These liquid matrices typically 

use solid MALDI matrices (chromophores) that absorb the laser energy and are dissolved in 

viscous support liquids with low volatility for extended analysis time. For both LSI and liquid AP-

UV-MALDI the sensitivity was shown to be in the low-femtomole range[31, 32]. In the latter 

method this sensitivity was achieved with extremely low sample consumption allowing hours of 

signal acquisition and enabling novel strategies such as sample storage for prolonged periods of 

time and subsequent reanalysis[33]. 

It should be noted that at the same time ionic liquids were successfully introduced as MALDI 

matrices[34, 35]. However, none were reported to produce multiply charged ions and most of the 

reported ionic liquids applied to MALDI MS were not liquid under the given analytical conditions. 

Also, a new liquid (MA)LDI set-up was recently introduced that does not require the above 

mentioned matrix chromophores[36]. However, with this specific set-up the limit of detection 
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(LOD) for the peptide melittin was reported to be ~100fmol, i.e. more than 2 orders of magnitude 

higher than the limits obtained in other studies with the addition of matrix chromophores[37]. The 

largest protein being detected with these liquid samples was myoglobin (~17kDa) and it was noted 

that it was not possible to detect bovine serum album under the given conditions[36]. 

Here, new combinations of liquid UV-MALDI matrices are described that further advance the 

analytical capabilities of liquid UV-MALDI as introduced by Cramer et al.[27] and its ability to 

generate multiply charged peptide and protein ions. A typical liquid MALDI matrix satisfies four 

requirements: a chromophore to absorb the laser energy, an acid as a proton donor, a non-volatile 

(often highly viscous) support liquid to keep the sample liquid during analysis, and a volatile 

solvent to dissolve the chromophore/acid and facilitate the mixing of all components with the 

analyte. In previous AP-MALDI MS studies, employing glycerol-based MALDI sample 

preparations, and using UV or IR lasers, a limit of 17kDa was reported for the largest successfully 

analyzed biomolecule[25, 27, 36]. This limitation was linked to potential glycerol adduct 

formation[25]. Thus, particular attention was paid to finding new liquid matrix combinations that 

overcome these limitations. 
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2 Materials and Methods 

2.1 Chemicals 

All chemicals were purchased from Sigma-Aldrich (Gillingham, UK) unless mentioned otherwise. 

Formic acid (FA) was obtained from Greyhound (Birkenhead, UK). HPLC-grade water (H2O) was 

purchased from Fisher Scientific (Loughborough, UK). 

2.2 MALDI sample preparation 

Various diols and triols were tested as the non-chromophore part (support liquid) of the liquid 

MALDI matrices for AP-MALDI MS analysis. Table 1 lists the 15 compounds that were 

investigated. Two liquid matrix solutions were prepared by dissolving 5mg of α-cyano-4-

hydroxycinnamic acid (CHCA) in 1mL of 50% acetonitrile (ACN) and 20mg of 2,5-

dihydroxybenzoic acid (DHB; 98% purity) in 1mL of 50% ACN, respectively, and subsequent 

sonication for 15min at 30oC. Aliquots of these solutions were then subsequently mixed with each 

of the support liquids listed in Table 1 in a ratio of 5:3 by volume to prepare 30 liquid MALDI 

matrices. In these preparations, any interfaces between liquid phases were broken by using a 

pipette tip and the solutions were thoroughly mixed. 
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Table 1.  Chemicals tested for their performance as viscous support liquids for AP-MALDI MS 

Chemical Chemical formula 
Molecular 

weight (Da) 

Predicted 

surface 

tensiona 

(mN·m−1) 

Boiling 

pointb 

(oC) 

Laser 

threshold 

energyc 

(μJ/shot) 

ethylene glycol 
 

62.07 43.4±3.0 196.9 2.6 

propylene 

glycol 

 

76.09 38.0±3.0 187.2 1.8 

1,3-propanediol 
 

76.09 41.1±3.0 214.0 2.5 

cis-2-Butene-

1,4-diol 
 

88.11 42.1±3.0 234.9 2.6 

1,2-butanediol 

 

90.121 37.2±3.0 190.3±8.0* 1.6 

1,3-butanediol 

 

90.121 37.2±3.0 206.1  

2,3-butanediol 

 

90.121 34.9±3.0 180.3  

1,4-butanediol 
 

90.121 39.6±3.0 227.6 2.5 

1,5-pentanediol 
 

104.15 38.7±3.0 238.9  

solketal 

 

132.16 36.2±3.0 188.5±0.0*  

glycerol 

 

92.09 62.0±3.0 287 6.0 

(±)-1,2,4-

butanetriol 

 

106.12 55.6±3.0 303.9±0.0*  
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(S)-(-)-1,2,4-

butanetriol 

 

106.12 55.6±3.0 303.9±0.0* 5.0 

hexylene glycol 

 

118.18 33.9±3.0 197.5 1.3 

(2E)-2-butene-

1,4-diol  
88.11 42.1±3.0 235.0±0.0*  

a Surface tension at 20oC. Values were obtained from ACD/Labs prediction on www.chemspider.com. b All 

values marked with * were obtained from ACD/Labs prediction on www.chemspider.com. Other values are 

from the CRC Handbook of Chemistry and Physics by Haynes et al.[38]. c Laser threshold energy values 

were measured for MALDI samples containing the support liquid as described in 2.3 and 3.3. 

 

2-Nitrophloroglucinol (NPG), CHCA, DHB, ferulic acid, sinapinic acid, and 2-

acetylphloroglucinol were used for investigating the chromophore part of the liquid MALDI 

matrices. A support liquid solution was prepared by adding 5mL of 50% ACN to 3mL of ethylene 

glycol. A total of 6 liquid MALDI matrices were prepared by dissolving 10mg of each 

chromophore in the support liquid solution. 

All analytes were dissolved in 0.1% FA. An aliquot of 0.5µL of the liquid MALDI matrix was 

mixed with 0.5µL of the analyte solution on the target plate and left drying at room temperature 

for 30 min. 

2.3 Sample preparation for surface tension and MALDI laser energy threshold studies 

A volume of 30mL of each DHB-glycerol and DHB-ethylene glycol solution was prepared by 

individually mixing DHB with each support liquid in a ratio of 10mg to 1mL and heating the 

mixture to 60oC in a temperature-controlled water bath. After this, the two liquid matrix solutions 

were vortexed until the DHB was completely dissolved, and a volume of 400µL of a 0.1% FA 

solution of 500ng/µL LeuEnk was mixed with each of the two liquid matrix solutions. These two 

http://www.chemspider.com/
http://www.chemspider.com/
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liquid matrix/analyte solutions were then used to prepare a range of liquid MALDI samples with 

different surface tensions. For this, the ethylene glycol-based solution was mixed with the glycerol-

based solution in ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5. Aliquots of 50µL of each mixture were taken 

for the laser energy threshold measurements with 1µL being spotted on the MALDI target plate. 

The remainders of the mixtures were used for the surface tension measurements as described 

below. 

2.4 MALDI MS instrumentation 

A Synapt G2-Si mass spectrometer (Waters Corporation, Wilmslow, UK) was modified with an 

in-house developed AP-MALDI ion source, described in detail elsewhere[32], and used to acquire 

all MS data. The ion source is equipped with an extended heated ion transfer tube, which has been 

designed to provide an additional control over the MALDI plume desolvation conditions. In this 

setup, a counter nitrogen gas flow can be introduced at the interface of the heated ion transfer tube, 

where it joins the MS inlet, allowing an adjustment of the infused gas flow velocity. A heating 

power of 25W was applied to a resistance wire, heating the ion transfer tube. To control the 

capillary temperature and MALDI plume residence time the counter gas flow was adjusted in the 

range of 0-180L/h, providing capillary temperatures of 250-350oC[32]. The instrument’s ion block 

temperature was set to 80°C, and the cone voltage was set to 40V. A nitrogen laser (λ = 337nm; 

MNL 103 LD; LTB Lasertechnik GmbH, Berlin, Germany) was used with a neutral density filter 

driven by a stepper motor, which was installed on the beam path to attenuate the laser energy. The 

laser pulse energy was varied in the range of 1-30μJ per shot, and the laser beam was focused to a 

diameter of approximately 100–150μm. The laser pulse repetition rate was 30Hz. The distance 

between the ion transfer tube and MALDI target plate was 3mm and the target plate potential was 

set to 4kV. Spectra were acquired with the drift time recording in the ion mobility separation (IMS) 
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cell enabled and the IMS Wave Velocity was set to 650m/s while the IMS Wave Height was set 

to 40V. 

2.5 Data processing 

The acquired MS data was converted to the mzML format using the ProteoWizard software 

package (version 3.0.10730)[39]. In-house developed software based on the pyteomics software 

library (version 3.4.1)[40, 41] was used to extract and integrate signal intensities of analyte ion 

peaks. For plotting spectra, a matplotlib library (version 1.5)[42] was used and the acquired signal 

at each m/z value was combined from multiple scans by binning the whole m/z range and summing 

the ion signal corresponding to these bins. The bin size was set to 1Da. 

2.6 Laser energy threshold measurements 

To control the laser energy, a driver for the stepper motor of the laser energy attenuator was 

developed and bridged with the MS acquisition software using a top-level layer in the Waters 

Research Enabled Software (WREnS; Waters Corporation). The WREnS script written for 

adjusting the attenuator’s position allowed for the automated adjustment of the laser energy 

attenuation during MS acquisition in small steps with a specified acquisition time during which 

the laser energy is set to a certain value and a time delay between the acquisitions, allowing the 

system to change the laser energy value and avoid any carry-overs. As a result, this setup provided 

fully automated recording of an ion chromatogram, correlating the laser pulse energy values (for 

all time windows) to the MS ion signal intensities obtained. MS data acquisitions with durations 

of 5s and 10s for each attenuation step were used with a delay of 3s between them. Each attenuation 

step (100 stepper motor steps) corresponded to a laser pulse energy step of ~1.0-1.5μJ. The exact 

laser energy per shot was measured by an energy meter (Molectron J9LP; Coherent Inc., Santa 
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Clara, USA) after each acquisition. A total of 5 data sets were acquired for each sample and the 

integrated ion intensity was calculated for each laser energy step. These values were used to 

determine the laser energy threshold for analyte ion production using the criterion that all data 

points acquired with a laser energy above or equal to the threshold value have an integrated ion 

signal intensity of more than 500 arbitrary units, which correspond to ~15 ion counts per second. 

This absolute ion count threshold level was applied since the noise level was always between 0-

100 arbitrary units (≤3 ion counts per second) in the immediate analyte m/z range, thus 

guaranteeing a minimum signal-to-noise ratio of 5 as well as avoiding any strong influence of a 

changing noise level due to changes of the atmosphere in the ion source.  

2.7 Surface tension measurement 

The surface tension values of the samples were measured by a tensiometer (K100; Krüss, 

Hamburg, Germany) at 20oC using the Wilhelmy plate method. The plate was initially submerged 

in the sample and 10 consecutive measurements were then acquired over 2.5 minutes. 
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3 Results and discussion 

3.1 Effect of the matrix composition and instrument parameters on protein analysis 

Some of the challenges with the analysis of large macromolecules are unwanted fragmentation 

during the ionization process and adduct formation. Both processes can lead to a depletion of the 

parent ion signal, invariably decreasing the signal-to-noise (S/N) level, and also resulting in 

unresolved spectra. 

Figure 1a shows a liquid AP-UV-MALDI mass spectrum of BSA, illustrating the ion signal quality 

for larger biomolecules achievable with previously devised liquid AP-UV-MALDI MS sample 

preparation methods. In the presented study, one of the objectives was to find a liquid MALDI 

sample preparation suitable for the analysis of large macromolecules. A particular focus was on 

the optimization of the viscous support liquid and the chromophore, as these agents unlike the 

volatile solvents are present in the sample during MS analysis. 

Here, it should be noted that a recent study by Koch et al. has shown that a matrix chromophore is 

not needed for detecting multiply charged peptide and protein ions, although arguably at the 

expense of sensitivity[36]. In the present study, initial tests revealed that a lower LOD and sample 

consumption were obtainable with the addition of matrix chromophores, which is also in 

agreement with the results presented later with regard to changing the added matrix chromophore. 

For sample droplets without matrix chromophores, it was found that substantial peptide ion signals 

were only obtainable at the edge of the sample droplet and with much greater sample consumption, 

which is also in agreement with other studies on lipids[43]. Unfortunately, Koch et al. did not 

provide any information on the sample consumption. However, their highly unusual ion source 

geometry with the sample being presented at an equally unusual angle to the MS analyzer ion beam 
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trajectory and the relatively large focal spot size, which was 10-100 times larger than in this study, 

make a comparison difficult. 

 

Figure 1. a) Liquid AP-UV-MALDI MS spectrum of BSA acquired using a liquid matrix with 

DHB as the chromophore and glycerol as the viscous support liquid. b) Liquid AP-UV-MALDI 

MS spectrum of BSA acquired using a liquid matrix based on CHCA as the chromophore and 

ethylene glycol as the viscous support liquid. In each case a total of 12.5pmol of protein was 

spotted using a 1-µL MALDI sample droplet. The most intense analyte ion peak is marked with 

an asterisk and labeled with its charge state. 

 

In our initial experiments two chemicals were used as the laser energy-absorbing UV 

chromophores: DHB and CHCA. The results obtained with CHCA were more reproducible, 

showing well-resolved MS spectra of small proteins even under conditions that were not fully 

optimized. Another important tuning parameter was the counter gas flow in the heated ion transfer 

tube. In our setup, the counter gas flow when optimized for peptide analysis increases the 
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temperature as well as the MALDI plume residence time in the heated ion transfer tube, hence 

promoting more efficient plume desolvation[32]. In contrast to peptide analysis any counter gas 

flow was found to be detrimental for the analysis of larger molecules. Finally, in the attempt to 

improve protein analysis performance, glycerol as the liquid support in previously reported sample 

preparations was replaced by ethylene glycol, resulting in well-resolved BSA mass spectra as 

demonstrated in Figure 1b. 

These findings led to the investigation of 14 other chemicals listed in Table 1 as (viscous) support 

liquids for liquid AP-UV-MALDI sample preparations, as well as an investigation of other known 

MALDI matrix chromophores and a search for optimum desolvation conditions. 

In a first experiment, a set of matrices using different viscous support liquids from Table 1 was 

prepared as described in 2.2 with CHCA used as the chromophore. The heating power applied to 

the ion transfer tube was 25W, and no counter gas flow (ion transfer tube temperature of 250oC) 

was used for these measurements. The laser pulse energy was set to 30μJ per shot. Three MALDI 

samples were spotted for each tested support liquid. Each spotted sample was irradiated for 15s 

and the data from the three samples were combined into one mass spectrum. Figure S1 

(Supplementary Material) shows the results of this experiment for human carbonic anhydrase I 

prepared at a concentration of 10mM for the spotted MALDI sample droplets of 1µL. Likewise, 

Figure S2 (Supplementary Material) shows the results of a similar experiment for a BSA-

containing sample droplet prepared at a concentration of 12.5mM. These results show that for a 

smaller protein, such as carbonic anhydrase I, it is possible to acquire a charge state-resolved 

protein mass spectrum with all tested diols. However, the use of smaller molecules such as ethylene 

glycol and propylene glycol for the viscous support liquid generally results in greater analyte ion 

signal intensity and/or S/N. For BSA analysis, only the sample preparation based on diols resulted 
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in a well-resolved spectrum, and larger chemicals, e.g. triols, were found unsuitable as liquid 

support for such analysis. 

A similar study as described above was also carried for chromophores. Six chromophores (NPG, 

CHCA, DHB, 2-acetophloroglucinol, ferulic acid, and sinapinic acid) were investigated for the 

analysis of human carbonic anhydrase I, with all acquisition parameters set the same as for the 

experiment with the viscous support liquids apart from the sample preparation. For the sample 

preparation, the second protocol described in 2.2 was used. The results of this experiment are 

shown in Figure 2. This set of measurements shows that both chromophores CHCA and NPG give 

comparable performance for the analysis of large molecules. The spectra acquired with the 

matrices using these chromophores display substantially higher S/N and higher charge state ions 

compared to the spectra acquired with the matrices based on other chromophores. As the CHCA 

sample preparation provides double the analyte ion signal intensity than NPG, it became the 

sample preparation of choice of all tested preparations for the analysis of large molecules. The 

chromophores 2-acetylphlouroglucinol, ferulic acid and sinapinic acid also allowed analyte 

detection, albeit with a considerably lower charge state and signal intensity. The use of DHB as a 

chromophore, however, led to a completely unresolved charge state distribution (see Figure 2). 
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Figure 2. Liquid AP-MALDI mass spectra of human carbonic anhydrase I using different 

chromophores. In each case a total of 10pmol of protein was spotted in a 1-µL MALDI sample 

droplet, the counter flow was set to 0L/h and ethylene glycol was used as the viscous support 

liquid. The most intense analyte ion peak is marked with an asterisk and labeled with its charge 

state. 

 

In a third experiment, mass spectra of human carbonic anhydrase I were acquired at different 

counter gas flow settings. For this experiment the sample preparation was the same as for the 

investigation of viscous support liquids with ethylene glycol as the viscous support liquid. The 

counter gas flow was adjusted in 30L/h steps in the range of 0-180L/h while all other instrument 

parameters were kept the same as before. The results can be found in Figure 3, showing that with 

the increase of the counter gas flow the spectral quality monotonically degrades, i.e. S/N, absolute 

signal intensity, and charge states gradually decrease. 
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Figure 3. Liquid AP-MALDI MS ion signals of human carbonic anhydrase I in response to 

different counter gas flow values. For each spectrum, a total of 10pmol of protein was spotted in a 

1-µL MALDI sample droplet. For these experiments 5mg CHCA was dissolved in 50% ACN and 

mixed with ethylene glycol in a 5:3 (v:v) ratio. The most intense analyte ion peak is marked with 

an asterisk and labeled with its charge state. 

 

3.2 Analysis of human apo-transferrin 

All of the described enhancements were then applied to the measurement of human transferrin 

(~80kDa). The liquid AP-MALDI MS results for 50 pmol of human transferrin spotted on the 

MALDI target are shown in Figure 4. For this acquisition, the liquid matrix was prepared with 

5mg/mL of CHCA and the addition of 60% ethylene glycol (by volume; see first paragraph of 

section 2.2). Three samples were spotted, each sample was irradiated for ~4mins and the collected 
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data was combined. To the authors’ knowledge, this is the first published MS data of a 

predominantly ESI-like multiply charged protein over 75kDa obtained by a laser-based desorption 

technique. It should also be noted that in contrast to common guidelines for solid MALDI MS, 

CHCA-based liquid MALDI samples were superior for the analysis of larger proteins compared 

to DHB-based liquid MALDI samples. 

 

Figure 4. Liquid AP-MALDI mass spectrum of human apo-transferrin. The spectrum was acquired 

using CHCA and ethylene glycol for the liquid matrix and a counter gas flow value set to 0L/h. A 

total of 50pmol of protein was spotted using a 1-µL MALDI sample droplet. The most intense 

analyte ion peak is marked with an asterisk and labeled with its charge state. 

 

Overall, these data suggest that the analysis of large molecules (>50kDa) is possible in AP-MALDI 

MS using liquid matrices, but the performance greatly depends on both the MALDI sample 

composition and MS acquisition parameters. In this investigation, the hypothesis that the viscous 

support liquid easily forms adducts with large analytes could not be confirmed. In fact, with the 

optimization of other parameters, it was possible to extend the mass range of analysis to the mass 
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of human carbonic anhydrase I without the need to change the composition of the liquid MALDI 

sample, i.e. still allowing the use of glycerol. Importantly, in the experiments with smaller proteins, 

where the adduct peaks were well resolved, only salt cation adducts, and no support liquid 

compound adducts were detected (data not shown). For larger proteins with increased probability 

of multiple salt cation adduct formation, this can potentially lead to strong analyte ion signal 

suppression and wide peak tailing, which was observed in this study, and can effectively limit the 

detection of larger proteins. The MALDI sample composition, including the type of chromophore 

and viscous support liquid and their concentrations, can arguably have a substantial effect on the 

extent of adduct peak formation through their influence on the absorption of the laser energy and 

the ablated plume composition. As a consequence, the ablated/desorbed droplet sizes in the plume 

and their composition during the initial stages of the MALDI process can vary substantially. 

Similar to the ESI process[44], it can be argued that the extent of cation adduct formation is 

dependent on the initial size of the droplet and its morphology. In the present study it was also 

observed that excessive heating in the ion transfer tube can lead to extensive salt cation adduct 

formation for peptides, which can be explained by thermal desorption of salt cations from the walls 

of the ion transfer tube and their gas phase reactions with the analyte ions. Thus, both optimum 

desolvation conditions and optimum composition and size of the generated droplets appear to be 

needed for obtaining quality spectra with low adduct formation. However, further experiments are 

needed to test this hypothesis. 

3.3 Effect of the matrix composition and instrument parameters on peptide analysis 

To test the performance of the newly developed matrices for peptide analysis, experiments were 

also carried out using angiotensin 1 and bradykinin. An extensive investigation of the optimal 

desolvation conditions for the liquid AP-MALDI MS analysis of these two peptides was previously 
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undertaken[32], where it was found that for the given experimental setup a counter gas flow in the 

range of 100-210L/h is beneficial for the detection of multiply charged ions, providing improved 

detection limits, signal intensities and S/N values. Similar experiments were also performed with 

the newly developed matrices employing ethylene glycol and propylene glycol as viscous support 

liquids. The results of these experiments (data not shown) agreed with the previous data, and 

therefore no additional investigation on the optimization of the desolvation conditions was 

performed. Thus, a counter flow value of 180 L/h was used for all reported experiments with the 

other instrument parameters kept the same as in 3.1. 

First, liquid matrices employing the viscous support liquids of Table 1 were tested. The matrices 

were prepared using DHB as chromophore according to the protocol described in 2.2. All tested 

matrices were found suitable for the detection of multiply charged angiotensin 1 and bradykinin 

ions. Figure 5 shows the total ion intensities and average charge states of the angiotensin I ion 

signals obtained in this experiment. The acquired data clearly show that both ethylene glycol and 

propylene glycol offer superior performance to all other tested support liquids yielding more than 

3 times the signal intensity of using the next best support liquid and more than 4 times that of using 

glycerol. The average charge state was also found to be slightly higher for these support liquids. 

In general, it was found that the MALDI matrices employing smaller diols as viscous support 

liquids provide higher signal intensity than the reference matrix employing glycerol. 
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Figure 5. Angiotensin I ion signal intensities (left panel) and average charge states (right panel) in 

response to different support liquids. An equimolar two-peptide mixture of angiotensin I and 

bradykinin (10 pmol total peptide amount loaded) was analyzed by liquid AP-MALDI MS. Error 

bars represent the standard deviation (n=3). 

 

With respect to the LOD, ethylene glycol and propylene glycol performed similarly well as 

glycerol. One femtomole or less of peptide spotted in a 1-μL MALDI sample droplet using DHB 

as the chromophore was sufficient to be detected. 
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In another experiment the effect of the chromophore compound in MALDI sample preparation 

was studied for peptide analysis. The same chromophores as in 3.1 were also tested in this 

experiment. The sample preparation was identical to the protein analysis experiment with ethylene 

glycol as the viscous support liquid. The acquisition conditions were kept the same as in the 

experiment described above in this section. Figure 6 shows the results of this experiment, where 

the intensities of the triply (grey), doubly (dark yellow) and singly (brown) charged angiotensin I 

ions are displayed for all tested matrices. These data show that the widely used MALDI 

chromophores DHB and CHCA offer superior performance compared to all other tested 

chromophores. The matrices employing DHB also led to a notably higher doubly charged ion 

signal in our experiments, but the triply charged ion signal was the same compared to the one 

achieved with CHCA. The other tested chromophores provided detectable ion signal, but signal 

intensities were considerably smaller compared to DHB and CHCA. In the measurements with 2-

acetylphloroglucinol no singly charged ion signal was detected. 
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Figure 6. MS signal intensities of triply (grey), doubly (dark yellow), and singly (brown) charged 

angiotensin I ions in response to the use of different chromophores. An equimolar two-peptide 

mixture of angiotensin I and bradykinin (10 pmol total peptide amount loaded) was analyzed by 

liquid AP-MALDI MS. Error bars represent the standard deviation (n=3). 

 

3.4 MALDI sample surface tension dependency 

During the study of different viscous support liquids, it was discovered that the MALDI samples 

prepared with support liquids of high surface tension required higher threshold laser energies for 
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generating analyte ions than MALDI samples prepared with support liquids of low surface tension. 

To further investigate this behaviour, the laser energies at the ion detection threshold, i.e. the laser 

energies at which a chosen reporter ion signal disappeared based on a signal-to-noise ratio of below 

5, were recorded for each sample. These measurements were undertaken by desorbing from an 

area around the center of the sample droplet using the same geometrical alignment of the incoming 

laser beam on the liquid MALDI sample droplet in order to avoid differences due to the irradiated 

droplet surface area. The recorded laser energies were found to be in good direct correlation with 

the viscous support liquid’s surface tension values taken from the literature (see Table 1). To 

further verify the hypothesis that the threshold laser energy for ion detection is dependent on the 

MALDI sample surface tension, the surface tension values of liquid MALDI samples prepared 

with the same chromophore (DHB) and analyte (bradykinin) but various viscous support liquids 

were directly measured. The results of these measurements are shown in Figure 7a and show a 

clear linear correlation between the threshold laser energy and the measured MALDI sample 

surface tension. 

The assignment of the threshold laser energies in these experiments can be prone to potential 

inaccuracies due to the simultaneous recording of laser energies and analyte signals by the operator 

at a level of low ion signal/statistics. Also, a potential carry-over from a previous measurement 

may be registered as part of the ion signal, if the measurements are taken too fast during a 

downward (or upward) laser energy scan, thus distorting the recording of accurate values. To 

alleviate these shortcomings, a setup for the automated acquisition of each threshold laser energy 

measurement with a sufficient time interval between measurements was developed in addition to 

the above-mentioned criterion for the threshold determination. 
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Another potential error source in investigating the dependency of the threshold laser energy on the 

surface tension is the MALDI sample drying on the target plate, which is difficult to control as the 

MALDI samples described in this study contain >80% volatile solvents. Depending on the pressure 

and the viscous support liquids and volatile solvents used, a generally unknown fraction of each 

of the volatiles is still retained in the droplet at the time of the measurement. To some extent these 

differences between the viscous support liquids also explain the different deviations of the 

measured surface tension values for a liquid MALDI sample preparation in Figure 7a from the 

predicted surface tension values of the pure viscous support liquid in Table 1. While a relatively 

short drying time of a few minutes is usually sufficient for reproducible conventional liquid 

MALDI MS analysis, substantial amounts of volatile solvents can still be present and slowly 

evaporate over time. This situation is obviously not ideal for longer measurements in which the 

threshold laser energy of several (replicate) samples has to be determined.. As the composition of 

the droplet significantly affects its physical properties, measures need to be taken to ensure the 

same composition during both the surface tension and the MS threshold measurements. One way 

of achieving this is to minimize the amount of volatile solvents in the initial sample composition, 

e.g. through the use of the viscous support liquid as the main solvent for the UV chromophore and 

analyte. Such approach was employed with glycerol and ethylene glycol as both solvent and 

support liquid, and two DHB-based liquid matrices as well as four binary mixtures in different 

ratios were prepared as described in 2.3. In all these sample preparations, the volatile solvent 

content can be calculated to be ≤1% of the total MALDI sample volume. The results of these 

measurements are shown in Figure 7b, displaying a linear dependency of the threshold laser energy 

on the sample surface tension. 
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Figure 7. Threshold laser energy for MALDI MS ion detection as a function of sample surface 

tension using a) a 1:1 mixture of an analyte solution and a liquid MALDI matrix mixed on a target 

plate (labels correspond to the viscous support liquid used in the matrix preparation as described 

in 2.2) and b) a sample consisting of a binary mixture of ethylene glycol and glycerol doped with 

an analyte and DHB as UV chromophore. Error bars represent the standard deviations (n=5 for 

threshold laser energy measurements, and n=10 for surface tension measurements). 

 

Data supporting the results reported in this paper are openly available from the University of 

Reading Research Data Archive at http://dx.doi.org/10.17864/1947.102. 

 

4. Conclusions 

This study highlights the importance of sample preparation in liquid AP-MALDI MS. Newly 

developed liquid matrices capable of generating multiply charged ions were significantly enhanced 

by employing alternative viscous support liquids, such as ethylene glycol and propylene glycol, 

and chromophores tailored to the needs of the analyte, e.g. CHCA-based matrices for the analysis 

of large macromolecules. Together with optimized instrumental parameters this allowed the 

successful detection of predominantly multiply charged human apo-transferrin ions, the largest 

predominantly multiply charged protein so far reported to be analyzed by a laser-based desorption 

technique. 

The newly discovered linear dependency of the threshold laser energy for ion production on the 

surface tension of the liquid MALDI sample offers new insights in the mechanisms of the 

http://dx.doi.org/10.17864/1947.102
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underlying desorption/ionization processes, and can be used to develop new practical guidelines 

for further sample optimization and theoretical models of the early processes in liquid MALDI. 

In this context, spallation has been discussed as a potential MALDI desorption process for more 

than two decades[45] and recently by Koch et al.[36]. This discussion was initially focused on 

solid MALDI MS, in particular solid IR-MALDI MS due to its lower energy deposition per 

irradiated sample volume compared to solid UV-MALDI MS. A similarly lower laser energy 

deposition per irradiated sample volume (i.e. greater penetration depth) is presumably present in 

liquid UV-MALDI when compared again to solid UV-MALDI. Thus, spallation could be a major 

factor in explaining the desorption process for liquid UV-MALDI. However, the exact 

determination of the laser light penetration in complex liquid MALDI samples appears to be 

extremely difficult since the nature of a liquid droplet allows for significant surface (or near-

surface) effects due to solute-solute and solute-surface interactions which can be exacerbated by 

any solute accumulation at or near the surface with unknown gradients, in particular if various 

different solutes and solute concentrations are present. Consequently, it is equally difficult to 

estimate whether the thermal and acoustic (stress) confinement requirements for spallation to occur 

are fulfilled. Nonetheless, spallation as a model for the desorption step followed by any subsequent 

ionization step such as an ESI-like process as observed in liquid AP-UV-MALDI using a heated 

transfer tube is certainly a model that has some appeal. 
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Highlights 

 New liquid AP-MALDI matrices for protein and peptide analysis were developed. 

 Electrospray-like MS spectra of proteins as high as ~80kDa were detected by liquid AP-

UV-MALDI MS. 

 Chromophores and support liquids as well as plume desolvation conditions were found to 

play a crucial role in the detection of high mass proteins by liquid MALDI MS. 

 A linear dependency between laser threshold energy for analyte ionization and surface 

tension of the liquid MALDI sample was established. 
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