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Scheme S1. Synthetic route to bisfunctionalised PEG 1. 

 

 
Scheme S2. Synthetic route to trisfunctionalised PEGS with the terminal nitro moieties in the 

meta (2) or para (3) position. 
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Figure S1. 1H and 13C NMR spectra of 1 in DMSO-d6 
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Figure S2. 1H and 13C NMR spectra of 2 in DMSO-d6 
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Figure S3. 1H and 13C NMR spectra in 3 DMSO-d6
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Figure S4. 1H and 13C NMR spectra of tris(4-nitrophenyl carbamato)glycerol ethoxylate 

(precursor to 2/3) in DMSO-d6 
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Figure S5. 1H and 13C NMR spectra of tris[(4-aminophenyl)-3-(3-nitrophenyl)urea]glycerol 

ethoxylate (precursor to 2/3) in DMSO-d6 
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Figure S6. 1H and 13C NMR spectra of 4 in DMSO-d6 
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Figure S7. 1H and 13C NMR spectra of 5 in DMSO-d6 
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Figure S8. 1H and 13C NMR spectra of 6 in DMSO-d6 
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Figure S9. IR spectrum of 1 

 

 

 

Figure S10. IR spectrum of 2 
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Figure S11. IR spectrum of 3

 

Figure S12. IR spectrum of tris(4-nitro phenyl carbamato)glycerol ethoxylate (precursor to 2/3) 
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Figure S13. IR spectrum of tris[(4-aminophenyl)-3-(3-nitrophenyl)urea]glycerol ethoxylate 

(precursor to 2/3) 

 

Figure S14. IR spectrum of 4 
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Figure S15. IR spectrum of 5 

 

 

Figure S16. IR spectrum of 6 
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A)  

 

 

 

 

 

 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

Figure S17. Computational simulation (molecular mechanics) of the interactions between A) 

bisaromatic nitro gelator, showing the one dimensional growth caused by hydrogen bond 

formation between the urea groups and the meta-nitro groups desirable for gelation, and B) para-

nitro analogue of the gelator shown in A. 
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Figure S18.  Crystal structure of 1-(4-aminophenyl)-3-(3-nitrophenyl)urea (7): a model 

compound for the end group A) molecular formular of (1-(4-aminophenyl)-3-(3-

nitrophenyl)urea); B) asymmetric unit and numbering scheme; C) view showing hydrogen bonds 

between the meta-nitro groups and the aniline units of 7; D) extended crystal structure of end 

groups viewed along the b axis 

A) B) 

C) 

D) 
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Table S1. Crystallographic data for 1-(4-aminophenyl)-3-(3-nitrophenyl)urea (7) 

 

Formula C13 H12 N4 O3 

Mr 272.27 

Crystal system orthorhombic 

Space group P c a 21 

Z 4 

a /Å 26.0654(8) 

b/Å 4.86749(15)  

c /Å 9.5612(2)  

V / Å3 1213.06(6) 

Dcalc / g cm-3 1.491  

Crystal habit colourless plate 

Crystal dimensions /mm 0.01 × 0.04 × 0.07  

Radiation Mo Kα (0.71073 Å) 

T /K 150 

μ /mm-1 0.917  

R(F), Rw(F) 2.680, 3.096  

CCDC cif deposition 

number 

  1456760 
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Figure S19. Plot of 1H NMR chemical shift of amide NH protons vs. concentration of 1 in CDCl3. 

 

Figure S20. 1H NMR dilution studies of 1 in CDCl3 where the concentration ranges from 14.0 

mM (top spectrum) to 2.6 mM (bottom spectrum). 
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Figure S21. Vertically placed films where; A) 1 at time zero, B) unfunctionalised PEG 600 at 

time zero, C) 1 at 10 minutes, D) unfunctionalised PEG 600 at 10 minutes, E) 1 at 4 months at 

25 °C, F) 1 at 72 hours at 35 °C, on 1 × 1 mm grid backing paper (average film dimensions 5 × 

9 × 1 mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S22. Vertically placed blended film of 1 and 2 (at 1:1 % wt) after 72 hours at 25 °C, 72 

hours at35 °C and 72 hours at 65 °C. The backing paper grid in the two left images is 1 × 1 mm 

whereas for the right hand image it is 0.5 × 0.5 mm (average film dimensions 5 × 1 mm). 
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Figure S23. Films of 1/3 (1:1 % wt) after 72 hours at 25 °C, 72 hours at 35 °C and 72 hours at 

65 °C. The backing paper grid for these images is 1 × 1 mm.  

 

 

Figure S24. Vertically placed film casts of A) 4, B) 5, C) 6 after 6 days at 20 °C after casting 

as a circle. The backing paper grid is 0.5 × 0.5 mm (average film dimensions 5 × 1 mm). 
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Figure S25.  DSC heating curves (second scan) for samples of 1 (top) and blends of 1/2 where 

the percentage weight of 3 is; 25, 50, 60, 80, 100 (bottom) and heating rate is 10 °C/min. Tgs are 

shown as midpoints.  
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Figure S26.  DSC heating curves (second scan) for samples of 1 (top) and blends of 1/3 where 

the percentage weight of 4 is; 15, 40, 50, 65, 85, 100 (bottom) and heating rate is 10 °C/min. Tgs 

are shown as midpoints.  
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Figure S27. Optical micrographs of film of 1 after defect formation where; A) 0 minutes, B) 10 

minutes, C), 20 minutes D) 60 minutes (20 °C) (film thickness = 1 mm). 

 

 

 

Figure S28. Optical micrographs of film of 2 after defect formation where; A) 0 minutes (20 

°C), B) 60 minutes (20 °C), C) heated to 100 °C, D) heated to 200 °C after defect formation, 

(heating rate 2 °C /min) (film thickness = 1 mm). 
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Figure S29. Optical micrographs of film of 3 after defect formation where; A) 0 minutes (20 

°C), B) 60 minutes (20 °C), C) heated to 45 °C, D) heated to 50 °C after defect formation (heating 

rate 2 °C /min) (film thickness = 1 mm). 

 

 

 

 

Figure S30. Optical micrographs of film of 1/2 (1:1 % wt) after defect formation where; A) 0 

minutes (20 °C), B) 60 minutes (20 °C), C) heated to 100 °C, D) heated to 200 °C after defect 

formation (heating rate 2 °C /min) (film thickness = 1 mm). 
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Figure S31. Film of 1/3 (1:1 by wt.) where; A) pristine cast film, B) damage (scratches) initiated 

with scalpel, C) slide after 20 minutes, D) healed sample after 40 minutes (average film 

dimensions 5 × 9 × 1 mm). 

 

 

 

Figure S32. Percentage weight loss (at varying temperatures) from a film of 1 as a function of 

the time the film had been allowed to equilibrate with atmospheric moisture at ambient 

temperature, monitored by TGA (heating rate 5 °C/ min). 
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Figure S33. Percentage weight loss (at varying temperatures) from a film of 1/3 (1:1 by wt.) as 

a function of the time the film had been allowed to equilibrate with atmospheric moisture at 

ambient temperature, monitored by TGA (heating rate 5 °C/ min). 

 

 

Figure S34. Plot of percentage weight loss (at varying temperatures) from a film of 3 as a 

function of the time the film had been allowed to equilibrate with atmospheric moisture at 

ambient temperature, monitored by TGA (heating rate 5 °C/ min). 
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Figure S35. A) Casts of 2/4 (1:1 by wt) between porous paper B) defect formation C) stirred cell 

system set up for the study of puncture closure via swelling in water. 

 

Figure S36. Flow rate of water (under gravity) through a disk of 1 placed between two sheets of 

porous paper after defects formed via puncture (equivalent to 0.3 % area removal). 

 

Figure S37. Flow rate of water (under gravity) through a disk 3 placed between two sheets of 

no-woven PET after defects formed via puncture (equivalent to 0.3 % area removal). 
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Figure S38. Flow rate of water (under gravity) through a disk of 1/3 (1:1 by wt.) placed between 

two sheets of non-woven PET after defects formed via puncture (equivalent to 0.3 % area 

removal). 
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