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Abstract

A well-known optimal velocity (OV) model describes vehicle motion along a single lane road,

which reduces to a perturbed modified Korteweg-de Vries (mKdV) equation within the unstable

regime. Steady travelling wave solutions to this equation are then derived with a multi-scale per-

turbation technique, where the travelling wave propagation coordinate depends upon slow and fast

variables. The leading order solution in the hierarchy is then written in terms of these multi-scaled

variables. At the following order, a system of differential equations is highlighted that govern the

slowly evolving properties of the leading solution. Next, it is shown that the critical points of this

system signify travelling waves without slow variation. As a result, a family of steady waves with

constant amplitude and period are identified. When periodic boundary conditions are satisfied, these

solutions’ parameters, including the wave speed, are associated with the driver’s sensitivity, â, which

appears in the OV model. For some given â, solutions of both an upward and downward form ex-

ist, with the downward type corresponding to traffic congestion. Numerical simulations are used to

validate the asymptotic analysis and also to examine the long-time behaviour of our solutions.

1 Introduction

To minimise congestion it is necessary to understand traffic behaviour, which has led to many traffic

related studies with varied perspectives. Nagatani (2002) has given an overview of the different methods

that analyse vehicle motion. In general, these techniques can be classified as either a macroscopic or a

microscopic approach.

From a macroscopic viewpoint, Lighthill and Whitham (1955) and Richards (1956) derived a first

order nonlinear partial differential equation to characterise traffic density. These workings are now

known as LWR theory, however the limitations of this analysis were highlighted by Daganzo (1995).

Also, Daganzo (1995) discussed certain higher order models that were extensions of this LWR theory.

Again, some model failings were identified, including the appearance of ‘wrong-way travel’. Zhang

(1998) later proposed an alternative higher order model without this defect.

Another option is the application of a microscopic model that describes driven-diffusive-systems, such

as the KLS model (see Katz et al. (1983) and Katz et al. (1984)). For instance, Wang et al. (2014) used
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this method to study a vehicle system with multiple lanes. Monte-Carlo simulations and mean field

theory were then utilised to establish the traffic dynamics.

The following optimal velocity (OV) model is also an example of a microscopic approach,

d2xj
dt2

= â

(
V (∆xj(t))−

dxj
dt

)
, (1)

where xj(t) is the position of car j at time t, ∆xj = xj+1− xj is car j’s headway (the distance between

car j and car j + 1), V is the car’s optimal velocity, j = 0, 1, 2, . . . , N for N cars on the road and

â is the driver’s sensitivity, which is equal to the inverse of the delay time of the driver and vehicle.

This equation was derived by Newell (1961) and Bando et al. (1995) to describe vehicle behaviour on

a single lane road. In particular, it ensures that car j accelerates or decelerates in order to achieve a

safe distance between itself and the preceding vehicle. The traffic model (1) can be rewritten in terms

of the headway such that

d2∆xj
dt2

= â

(
V (∆xj+1(t))− V (∆xj(t))−

d∆xj
dt

)
. (2)

As well, Bando et al. (1995) proposed an optimal velocity function, which is of the form

V (∆xj(t)) = tanh(∆xj − hc) + tanh(hc), (3)

where hc is the perceived safe headway distance. This function satisfies the necessary conditions of

V (∆xj(t) = 0) = 0, V being bounded and V (h
′
) < V (hc) (V (h

′′
) > V (hc)) for h

′
< hc (h

′′
> hc). By

applying linear stability analysis to (2), a neutral stability line with a critical point is obtained. This

line signifies the boundary between two stability regions referred to as metastable and unstable. See Ge

et al. (2005) for further detail.

Muramatsu and Nagatani (1999) reduced (2) to a perturbed Korteweg-de Vries (KdV) equation

within the metastable zone using nonlinear theory. This was the KdV equation with higher order

correction terms. They then numerically identified traffic solitons propagating over open boundaries,

which eventually dissolved. This behaviour is expected within this stability regime since all solutions

should tend to the uniform headway. Hattam (2017) studied this problem with periodic boundaries,

where cnoidal waves were shown to exist that represented traffic congestion. These solutions were

derived using modulation theory and then validated with numerical simulations. Again, these density

waves disappeared after some time.

In contrast, solutions corresponding to the unstable region were identified by Komatsu and Sasa

(1995). Beginning with (2) close to the critical point on the neutral stability line, they derived a

perturbed modified KdV (mKdV) equation. The leading order solution to this equation was written

in terms of Jacobi elliptic functions that were dependent upon the elliptic modulation term m ∈ [0, 1].

When m = 1, this solution became the kink soliton, which exhibits the start/stop motion representative

of a traffic jam. Komatsu and Sasa (1995) then applied perturbation analysis to seek steady travelling

wave solutions of the mKdV traffic model. They established that this solution type only existed when

the wave modulus m remained constant and consequently, the wave amplitude and period were fixed. A

condition for m as some constant was next found in terms of integral constraints, which then determined
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the relationship between m and the wave speed. They referred to the travelling wave solutions with

m = 1 as deformed kink solitons. Otherwise, for constant m 6= 1, they were labelled deformed periodic

solitons.

Here, a multi-scale perturbation technique is applied to the perturbed mKdV equation to also identify

steady travelling wave solutions. This approach is an adaptation of the method outlined by Hattam and

Clarke (2015) for the steady forced KdV-Burgers equation. Solutions of a similar form to the deformed

periodic solitons found by Komatsu and Sasa (1995) are highlighted, which satisfy periodic boundaries.

Komatsu and Sasa (1995) proposed that this solution type was always unstable and only deformed kink

solitons were observed numerically. The stability of our periodic waves is investigated here.

Such studies as Zhu and Dai (2008) and Zheng et al. (2012) have numerically examined OV traffic

models within the unstable zone, where periodic boundary conditions were imposed. The long-time

behaviour was analysed, which revealed solutions that were indicative of mKdV dynamics as kink-like

waves appeared. Moreover, Li et al. (2015) performed numerical simulations over large time intervals of

an OV model that described a two-lane system with periodic boundaries. As well, this model was trans-

formed into a perturbed mKdV equation near to the critical point. The numerical results corresponding

to this region uncovered steady periodic travelling wave solutions with constant amplitude, mean height

and period. Hence, these numerical findings suggest stable periodic solutions to the OV traffic system

do propagate within this unstable regime. Therefore, additional work is needed to determine the link

between the numerical results and the nonlinear theory.

The focus of this paper is the derivation of steady travelling wave solutions to (2) and then the

analysis of their long-time dynamics. In Section 2, (2) is reduced to a perturbed mKdV equation and

then steady travelling wave solutions are determined using a multi-scale perturbation method in Section

3. The leading order solution is obtained in terms of Jacobi elliptic functions that depend upon slow

and fast variables. At the next order, a dynamical system governing the slow variation of the leading

order solution is identified. Then, in Section 4, the fixed points of this system are shown to represent

a family of steady travelling waves that do not slowly vary. This set of solutions have fixed amplitude,

mean height and period. Also, the relations between the solution parameters, the wave speed and the

driver’s sensitivity are established due to implementing periodic boundary conditions. Lastly, in Section

5, the highlighted periodic asymptotic solutions are compared with numerical results and their long-time

behaviour is studied.

2 Traffic Flow Model

We now outline how the OV model (2) is transformed into a perturbed mKdV equation. This then

becomes the steady perturbed Gardner equation when we seek steady travelling wave solutions.

Firstly, Bando et al. (1995) deduced for the system (2), the linear stability criterion

â ≥ âs = 2V
′
(h), (4)

where h is the uniform headway (∆xj(t) = h is the steady solution of (2) for h is some constant). When

(4) is met, the steady state of ∆xj(t) = h is stable. The curve defined by â = âs is the ‘neutral stability
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line’, which indicates the onset of instability. The maximum point of this curve occurs when h = hc and

â = âc = 2V
′
(hc), which means V

′′
(hc) = 0. The region neighbouring this point is where (2) reduces to

the perturbed mKdV equation.

Now, we set

x̄ = ε(j + V
′
(hc)t), t̄ = ε3

V
′
(hc)

6
t, ε2 = (âc/â)− 1, 0 < ε� 1, (5)

and let

∆xj(t) = hc + ε

√
V ′(hc)

| V ′′′(hc) |
R. (6)

This change of variables is consistent with Ge et al. (2005).

As a result, (2) becomes

Rt̄ −Rx̄x̄x̄ + 3R2Rx̄ + ε

(
3Rx̄x̄ +

3

4
Rx̄x̄x̄x̄ −

1

2
∂x̄x̄(R3)− ξ(R4)x̄

)
= 0, (7)

where

ξ =
1

4

√
V ′(hc)

| V ′′′(hc) |3
V
′′′′

(hc),

and O(ε2) terms are ignored. This is a perturbed mKdV equation as ε is small. Note that ξ = 0 when

V is defined using (3), however we assume that ξ is some constant in the following section so that the

analysis is more general.

Since ε > 0 and therefore â < âc, the stability criterion (4) does not hold and the steady state of

∆xj(t) = hc is unstable. Thus, this is the unstable regime. As well, since ε� 1, (7) is only valid within

the vicinity of the point (h = hc, â = âc).

Here, steady travelling wave solutions of (7) are sought. To identify this solution type, we set x̃ =

x̄− ωt̄, where ω is the constant wave speed. As well, if

√
ωu = R+

√
ω

3
, (8)

then (7) becomes

λux̃x̃x̃ − γu2ux̃ + νuux̃ + εG(u, x̃) = 0, (9)

where

λ = 1, γ = 3ω, ν = 2
√

3ω, (10)

and

G(u, x̃) = −

(
3ux̃x̃ +

3

4
ux̃x̃x̃x̃ −

ω

2
∂x̃x̃

((
u− 1√

3

)3
)
− ξω

√
ω

((
u− 1√

3

)4
)
x̃

)
. (11)

The system (9) is the steady perturbed Gardner equation. The parameters λ, γ, ν have been introduced

so that initially the analysis is generalised. Consequently, a general scheme is outlined to obtain solutions

of any steady perturbed Gardner equation. Note that due to using (8), the coefficients of the first two

nonlinear terms are now proportional to ω (ν/γ = 2/
√

3). This becomes a necessary condition in Section

4 when highlighting certain solutions.
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3 Perturbation Analysis

The modulation theory detailed by Hattam and Clarke (2015) for the steady perturbed KdV equation

is now applied to (9). However, since an additional cubic nonlinear term must be considered, the

modulation theory for the Gardner equation is also used, which was outlined by Kamchatnov et al.

(2012). As a result of this perturbation analysis, a leading order solution to (9) is highlighted that

varies with slow and fast variables. Then at the next order, equations are found that describe the slow

evolution of this solution.

Myint and Grimshaw (1995) applied multi-scale analysis to the perturbed KdV equation, which was

essentially the WKB approximation (see Wentzel (1926), Kramers (1926) and Brillouin (1926)). A

steady form of this theory is used here. To begin, let

X = εx̃, θX =
1

ε
k(X), (12)

and

u(x̃) = u0(θ,X) + εu1(θ,X) + ε2u2(θ,X) +O(ε3), (13)

where X and θ are ‘slow’ and ‘fast’ variables respectively, and k is some function of X.

Subsequent to the change of variables (12) and using the approximation (13), (9) takes the form at

first and second order

O(1) : λk2u0,θθθ − γu2
0u0,θ + νu0u0,θ = 0, (14a)

O(ε) : λk3u1,θθθ − γk
(
u2

0u1

)
θ

+ νk(u0u1)θ + g = 0, (14b)

where

g(θ,X) = G(θ,X) + 3λk2u0,θθX − γu2
0u0,X + νu0u0,X + 3λkkXu0,θθ. (15)

The integration of (14a) gives

3λk2

γ
u0,θθ = u3

0 −
3ν

2γ
u2

0 +
3

γ
Ĉ, (16)

then multiplying (16) by u0,θ and integrating, we arrive at

6λk2

γ
u2

0,θ = u4
0 −

2ν

γ
u3

0 +
12

γ
Ĉu0 +

12

γ
D̂, (17)

where Ĉ and D̂ are integration constants. Next, let

Q(u0) = u4
0 −

2ν

γ
u3

0 +
12

γ
Ĉu0 +

12

γ
D̂, (18)

where Q is a polynomial of order 4. Suppose that a ≤ b ≤ c ≤ d are the roots of this polynomial, then

u4
0 −

2ν

γ
u3

0 +
12

γ
Ĉu0 +

12

γ
D̂ = Q(u0) = (u0 − a)(u0 − b)(u0 − c)(u0 − d). (19)
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By expanding the righthand side of (19) and equating like terms, we find

2ν

γ
= a+ b+ c+ d, (20a)

12Ĉ

γ
= −(acd+ abd+ abc+ bcd), (20b)

12D̂

γ
= abcd, (20c)

0 = bc+ ac+ cd+ ab+ bd+ ad. (20d)

So the equation parameters are dependent upon the roots a, b, c, d. As well, since Q(u0 = a, b, c, d) = 0,

then

aĈ + D̂ =
νa3

6
− γa4

12
, (21a)

bĈ + D̂ =
νb3

6
− γb4

12
, (21b)

cĈ + D̂ =
νc3

6
− γc4

12
, (21c)

dĈ + D̂ =
νd3

6
− γd4

12
. (21d)

Now, written in terms of these roots, (14a) has the well-known solution (see Kamchatnov et al. (2012))

u0(θ,X) =
ce+ d sn2 (β(θ − θ0);m)

e+ sn2 (β(θ − θ0);m)
, (22)

where the function sn is the Jacobi elliptic function, m ∈ (0, 1) is its elliptic modulus and

24λβ2k2

γ
= (a− c)(b− d), (23a)

e = −
(
b− d
b− c

)
, (23b)

m2 =
(a− d)(b− c)
(a− c)(b− d)

. (23c)

The parameters a, b, c, d,m, θ0, k, β are all dependent on the slow variable X. We denote the period of

(22) in the θ direction by 2P , where P is some constant, which means

P = K(m)/β. (24)

The function K(m) is the complete elliptic integral of the first kind. Note that if k is some constant

function, then the period of (22) in terms of x̃ will be 2P/k = (2K(m))/βk, where βk is given by (23a).

To ensure the next order solution, u1, has the period 2P , the periodicity conditions

1

2P

∫ θ2

θ1

g(θ,X)dθ = 0, (25a)

1

2P

∫ θ2

θ1

g(θ,X)u0dθ = 0, (25b)
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are imposed, where θ1 = −P+θ0 and θ2 = P+θ0. These integral constraints are the result of integrating

(14b) and u0×(14b) over the domain θ ∈ [θ1, θ2]. Note that u0 and its derivatives with respect to θ are

assumed to be periodic over θ ∈ [θ1, θ2]. The integral (25b) written in full, given (15), is

1

2P

∫ θ2

θ1

Gu0dθ +
1

2P
Ib = 0, (26)

where

Ib =

∫ θ2

θ1

(
3λ(k2u0,θθX + kkXu0,θθ)− γu2

0u0,X + νu0u0,X

)
u0dθ

= ∂X

∫ θ2

θ1

(
−3λk2

2
u2

0,θ −
γ

4
u4

0 +
ν

3
u3

0

)
dθ.

(27)

Next, by manipulating u0×(16) and (17), it can be shown

3γ

2P

∫ θ2

θ1

u4
0dθ =

5ν

2P

∫ θ2

θ1

u3
0dθ −

18Ĉ

2P

∫ θ2

θ1

u0dθ − 12D̂, (28a)

18λk2

2P

∫ θ2

θ1

u2
0,θdθ = − ν

2P

∫ θ2

θ1

u3
0dθ +

18

2P
Ĉ

∫ θ2

θ1

u0dθ + 24D̂. (28b)

Combining these, gives

−18λk2

2P

∫ θ2

θ1

u2
0,θdθ +

1

2P

∫ θ2

θ1

(−3γu4
0 + 4νu3

0)dθ = −12D̂,

and therefore, (27) takes the form

1

2P
Ib = −D̂X .

As well, the integral (25a) can be written, given (15),

1

2P

∫ θ2

θ1

Gdθ +
1

2P
Ia = 0, (29)

where

Ia =

∫ θ2

θ1

(
3λ(k2u0,θθX + kkXu0,θθ)−

γ

3
(u3

0)X +
ν

2
(u2

0)X

)
dθ

= ∂X

∫ θ2

θ1

(
−γ

3
u3

0 +
ν

2
u2

0

)
dθ,

= 2PĈX ,

using (17).

Thus, the integral conditions (25) reduce to

ĈX = − 1

2P

∫ θ2

θ1

G(θ,X)dθ, (30a)

D̂X =
1

2P

∫ θ2

θ1

G(θ,X)u0dθ. (30b)

This system determines the slow variation of the leading order solution (22) for some given function

G(θ,X). Therefore, (22) and (30) define solutions to any steady perturbed Gardner equation. Next, by

applying the relevant equation parameters λ, γ, ν and the function G, unique solutions can be derived.
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3.1 Application to the traffic flow model

So to locate steady travelling wave solutions of the traffic model (2), G is now defined by (11). Firstly,∫ θ2

θ1

G(θ,X)dθ =
ωk2

2

[
3

(
u0 −

1√
3

)2

u0,θ

]θ2
θ1

+ ξω
√
ωk

[(
u0 −

1√
3

)4
]θ2
θ1

= 0,

where O(ε) terms are ignored. Therefore, from (30a), Ĉ is some constant.

Next let us set D̂X = Ĩ , so that

Ĩ =
1

2P

∫ θ2

θ1

G(θ,X)u0dθ.

Using (11) to define G, this integral becomes

Ĩ = − 1

2P

∫ θ2

θ1

u0

(
3k2u0,θθ +

3

4
k4u0,θθθθ −

ω

2
k2∂θθ

((
u0 −

1√
3

)3
)
− ξω

√
ωk∂θ

((
u0 −

1√
3

)4
))

dθ

= − 1

2P

∫ θ2

θ1

(
3k2u0u0,θθ +

3

4
k4u0u0,θθθθ +

ω

2
k2u0,θ∂θ

((
u0 −

1√
3

)3
)

+
ξω
√
ω

5
k∂θ

((
u0 −

1√
3

)5
))

dθ

= − 1

2P

∫ θ2

θ1

(
−3k2u2

0,θ +
3

4
k4u0u0,θθθθ +

3ω

2
k2u2

0,θ

(
u2

0 −
2√
3
u0 +

1

3

))
dθ.

(31)

Hence, to write Ĩ in closed form we must solve the integrals

Ĩ1 =
1

2P

∫ θ2

θ1

u2
0,θdθ, Ĩ2 =

1

2P

∫ θ2

θ1

u0u
2
0,θdθ, Ĩ3 =

1

2P

∫ θ2

θ1

u2
0u

2
0,θdθ, Ĩ4 =

1

2P

∫ θ2

θ1

u0u0,θθθθdθ.

(32)

The computation of these integrals is outlined in the Appendix. Omitting these details here, (31)

reduces to

Ĩ = k2

(
Ĩ1

(
3− ω

2

)
+ Ĩ2

(
−3ν

4λ
+
√

3ω

)
+ 3Ĩ3

( γ
4λ
− ω

2

))
, (33)

where

Ĩ1 =
1

λk2

(
− ν2

12γ
α2 +

(
α1 +

ν

6γ

)
Ĉ +

4

3
D̂

)
, (34a)

Ĩ2 =
γ

6λk2

(
α2

(
9Ĉ

2γ
− 5ν3

8γ3

)
+ α1

(
6D̂

γ
+

3νĈ

2γ2

)
+

5ν2Ĉ

4γ3
+
νD̂

γ2

)
, (34b)

Ĩ3 =
γ

6λk2

(
α2

(
69Ĉν

10γ2
− 7ν4

8γ4
+

24D̂

5γ

)
+ α1

(
6νD̂

5γ2
+

21ν2Ĉ

10γ3

)
+

35ν3Ĉ

20γ4
+

7ν2D̂

5γ3
− 54Ĉ2

5γ2

)
. (34c)

The integrals α1 and α2 are defined and written in full in the Appendix.

4 Fixed Points

In Section 3, the leading order solution (22) of the traffic model (2) was obtained. Moreover, its slow

variation was found to be governed by the system

ĈX = 0, (35a)

D̂X = Ĩ , (35b)
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where Ĩ is given by (33)-(34). The critical points of this system occur when ĈX = D̂X = 0, which

suggests that Ĩ = 0 and Ĉ, D̂ are some constants at the fixed points (Ĉ is always constant). We now

want to highlight these fixed point solutions. Firstly, it is shown that if D̂X = 0, the corresponding

solutions will have constant wave amplitude, mean height and period. Then, by setting Ĩ = 0, a

definition for the wave speed of the fixed point solutions is obtained.

Now, taking the derivative of (21a) with respect to X gives

D̂X =
1

6

(
3a2ν − 2a3γ − 6Ĉ

)
aX ,

using Ĉ is some constant (ĈX = 0). Similarly, (21b)-(21d) take the form

D̂X =
1

6

(
3b2ν − 2b3γ − 6Ĉ

)
bX =

1

6

(
3c2ν − 2c3γ − 6Ĉ

)
cX =

1

6

(
3d2ν − 2d3γ − 6Ĉ

)
dX .

So, if D̂X = 0, then

aX = bX = cX = dX = 0. (36)

As well, from (23c) it can be shown

2

m
mX =aX

(
1

a− d
− 1

a− c

)
+ bX

(
1

b− c
− 1

b− d

)
+ cX

(
1

a− c
− 1

b− c

)
+ dX

(
1

b− d
− 1

a− d

)
.

Therefore, when D̂X = 0, (36) is satisfied, and therefore

mX = 0. (37)

Hence, the fixed point solutions of the system (35) (when D̂X = 0) correspond to the leading order

solution (22) with constant wave modulus m and constant solution parameters a, b, c, d, β (since mX =

aX = bX = cX = dX = 0). So then, these particular steady travelling waves do not have slowly varying

properties, which means their amplitude, mean height and period remain fixed. Therefore, they are of

a similar form to the deformed periodic solitons detailed by Komatsu and Sasa (1995).

Next, it is necessary to outline the parameter space that corresponds to these fixed point solutions.

Firstly, we set

κ1 =
Ĉ

γ
=

Ĉ

3ω
, κ2 =

D̂

γ
=

D̂

3ω
, (38)

where κ1 and κ2 are some constants since we know that ω is the constant wave speed and Ĉ, D̂ are

constants (they are independent of X at the critical point). Also, the equation parameters λ and ν/γ

are defined using (10). As a result, (18) is written

Q(z) = z4 − 4√
3
z3 + 12κ1z + 12κ2. (39)

Note that since a, b, c, d are determined by the four roots of (39) (which as a result defines e and m using

(23b) and (23c)), then the quantities α1(m, c, d, e) and α2(m, c, d, e) are only dependent upon κ1,2.

Now, rewriting (33) in terms of κ1 and κ2 gives

Ĩ = 3k2Ĩ1 + k2ω

(
−1

2
Ĩ1 +

1

4
(3Ĩ3 − 2

√
3Ĩ2)

)
, (40)
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where

Ĩ1 =
γ

k2

(
α1κ1 −

α2

9
+

κ1

3
√

3
+

4κ2

3

)
,

Ĩ2 =
γ

6k2

(
α1

(
3κ1√

3
+ 6κ2

)
+ α2

(
9κ1

2
− 5

3
√

3

)
+

5κ1

3
+

2κ2√
3

)
,

Ĩ3 =
γ

6k2

(
α1

(
14κ1

5
+

12κ2

5
√

3

)
+ α2

(
69κ1

5
√

3
+

24κ2

5
− 14

9

)
+

14κ1

3
√

3
+

28κ2

15
− 54

5
κ1

2

)
.

By setting Ĩ = 0 (refer to (40)) and rearranging, a definition for the constant wave speed is found as a

function of κ1, κ2, α1(m, c, d, e) and α2(m, c, d, e), such that

ω = − 3Ĩ1

1
4(3Ĩ3 − 2

√
3Ĩ2)− 1

2 Ĩ1

= −
√

3(κ1 + 4
√

3κ2) + 9κ1α1 − α2

3
5(κ1 +

√
3κ2)

(
−2α1 +

√
3α2

)
− 81

20κ
2
1 − 9

5κ2

. (41)

Hence, κ1 and κ2 are the free parameters here, where defining κ1,2 gives us a, b, c, d from (39) and then

ω using (41).

As an aside, if the minimum and maximum headway are set to hmin and hmax respectively, we want

solutions with hmin ≤ hc ≤ hmax (∆xj = hc + O(ε)), which suggests Rmin ≤ 0 ≤ Rmax (refer to (6)).

This is due to seeking travelling wave solutions that represent disturbances to the steady state of hc.

Consequently, given u0 ∈ [b, c] and R =
√
ω(u0 − 1/

√
3) + O(ε), any solution must have b ≤ 1/

√
3 and

c ≥ 1/
√

3. One way to satisfy both these criteria, from (21b) and (21c), is to set

κ2 =
1

36
− κ1√

3
. (42)

This gives a definition for κ2 as a function of κ1. Using (42) ensures either b = 1/
√

3, c > 1/
√

3 or

b < 1/
√

3, c = 1/
√

3. As a result, R ∈ [0, Rmax] or R ∈ [Rmin, 0] respectively. By now restricting

our parameter space with (42), the solutions obtained will represent two different scenarios. These

correspond to either clusters of cars that move slower or faster than the steady state vehicles travelling

with velocity V (hc), when R ∈ [Rmin, 0] or R ∈ [0, Rmax] respectively. In particular, we can then

highlight solutions that depict traffic congestion by focussing upon the first scenario.

So, finding the four roots of (39) determines the solution parameters a, b, c, d, and then m using (23c),

for some given κ1 and where κ2 is defined by (42). Hence, a, b, c, d, as well as the wave modulus m

are identified as a function of κ1, which are shown along the top panel of Figure 1. Given this relation

between m, a, b, c, d and the parameter κ1 (also the properties α1 and α2 depend upon m, c, d and

e = −(b− d)/(b− c)), we can then obtain the wave speed (41) as a function of κ1. This is displayed on

the bottom left of Figure 1. It should be noted that the shift θ0 is arbitrary since it has no influence on

the other solution parameters. Therefore, we set θ0 = 0 for the remainder of the paper.

From the top panel of Figure 1 it is apparent that as κ1 → 0.128, then m → 0 (b → c). Here,

there is only one possible solution of u0 → 1/
√

3, where the headway tends to the constant state hc.

Furthermore, at the limits of κ1 → 0.037, 0.220 and where m → 1 (b → a or c → d), the leading order

solution u0 becomes a soliton. More specifically, there are two types of soliton solutions that can be

derived from (22). Firstly, (22) must be rewritten in the form

u0 = b+
(c− b) cn2(βθ;m)

1 + 1
e sn2(βθ;m)

,

10



where cn is a Jacobi elliptic function. Next, by letting b→ a (m→ 1, κ1 → 0.037), we find

u0 → a+
c− a

cosh2 βθ − a−c
a−d sinh2 βθ

,

where P → ∞ (this solution is not periodic), which is referred to as a bright soliton. Conversely, if

c→ d (m→ 1, κ1 → 0.220), then u0 reduces to

u0 → d− d− b
cosh2 βθ − d−b

d−a sinh2 βθ
,

where P → ∞, which corresponds to a dark soliton. For further details on this analysis, refer to

Kamchatnov et al. (2012). Note that since we are concerned with periodic boundaries, we restrict our

attention to m < 1.

4.1 Periodic boundaries

The parameters of the leading order solution (22) have been defined in terms of the constant κ1 (see

Figure 1). By now using the variables j and t that appear in the traffic model (2) and applying

periodic boundary conditions, the connection between this constant and the driver’s sensitivity, â, is

also established.

To begin, u0 is written in terms of j and t by substituting (5) into (22). This gives

u0(j, t) = c+ (d− c)
sn2

(
βk

(
ε(j + V

′
(hc)t)− ω V

′
(hc)
6 ε3t

)
;m

)
e+ sn2

(
βk
(
ε(j + V ′(hc)t)− ω V

′ (hc)
6 ε3t

)
;m
) , (43)

where

βk =

√
ω(a− c)(b− d)

8
. (44)

To ensure this solution satisfies periodic boundary conditions, it is necessary for

2P

kε
n = N, (45)

where 2P/kε is the period in the j direction and n is some positive integer representing the number of

oscillations over the domain j ∈ [0, N ]. However, from (23a), it is known(
P

k

)2

=
8K(m)2

ω(a− c)(b− d)
. (46)

Therefore, combining (45) and (46), as well as using ε2 = (âc/â)− 1, we arrive at

âc
â

=
32K(m)2n2

ω(a− c)(b− d)N2
+ 1.

Rearranging this, a definition for the driver’s sensitivity is found, such that

â

âc
=

âcω(a− c)(b− d)N2

32K(m)2n2 + ω(a− c)(b− d)N2
. (47)

This relation is dependent upon the parameters n/N, ω,m, a, b, c, d.

11
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Figure 1: The parameter space for the periodic asymptotic solutions. Top left: The plot of m, (23c), as a function

of κ1. Top right: The plot of a (blue), b (red), c (green), d (black) as a function of κ1, which are the roots of

(39). Bottom left: The plot of ω, (41), as a function of κ1. Bottom right: The plot of the driver’s sensitivity

â/âc, (47), as a function of κ1, where N = 100 and blue: n = 1, red: n = 2, green: n = 3, black: n = 4. Defining

â/âc with (47) ensures periodic boundary conditions are satisfied.

For our fixed point solutions, the relationships between m, a, b, c, d, ω and κ1 have been obtained (see

Figure 1). Using these and (47), â/âc as a function of κ1 is found for some fixed n/N . This relation is

plotted on the bottom right of Figure 1 for various n/N values. Note that when (47) holds, the solution

will satisfy periodic boundary constraints. By relating â to the asymptotic analysis then enables us to

compare numerical solutions of the OV system (2) to our solutions.

If â/âc and n/N are specified, from the curves shown in Figure 1, the wave modulus m (as well

as a, b, c, d) and wave speed ω are identified. Hence, the solution parameters of (43) are defined by

choosing â/âc and n/N . Moreover, Figure 1 reveals that for some fixed â/âc and n/N , there are

two possible values for κ1, and therefore, two valid fixed point solutions. For the remainder of this

paper, solutions with κ1 . 0.128 (κ1 & 0.128) are referred to as the first (second) solution. The first

solution represents traffic congestion since it is of a downward form with u0 ≤ 1/
√

3, which means the

headway is less than or equal to the critical headway. Whereas, the second solution is of an upward

form with u0 ≥ 1/
√

3, which is the inverted counterpart of the downward solution i.e. Rup = −Rdown
or u0,up = −u0,down + 2/

√
3.

In Figure 2, left, the maximum and minimum headway exhibited by the upward and downward

12



 𝑎  𝑎

Figure 2: The amplitude and wave speed of our periodic solutions (43), where hc = 4, N = 100 and blue: n = 1,

red: n = 2, green: n = 3, black: n = 4. Left: The maximum (minimum) headway of the upward (downward)

solutions. Right: The magnitude of the wave speed in (j, t) space.

solutions respectively are conveyed, when hc = 4 and n = 1, 2, 3, 4, as a function of â. This figure

demonstrates that as the driver’s sensitivity decreases, the wave amplitude grows, which becomes larger

as n is increased. Hence, the size of the disruption to the steady state is greater when â is reduced. Also,

Figure 2, right reveals the size of the wave speed as a function of â in (j, t) space for hc = 4, defined as

V
′
(hc)− ω V

′
(hc)
6 ε2. This shows us that the magnitude of the wave speed grows with â, which becomes

larger when n is reduced. Therefore, the disturbance to the steady state propagates faster when the

driver has increased sensitivity.

Thus, a large family of spatially periodic steady travelling waves have been highlighted that do not

slowly evolve, where their amplitude, mean height and period remain fixed. This solution type was

discussed by Komatsu and Sasa (1995), where it was conjectured that they were always unstable.

Note however that a different subspace of the parameter space was considered by Komatsu and Sasa

(1995) such that a different restriction was imposed upon κ1. Furthermore, they did not establish

the connection between the driver’s sensitivity and the modulation term. Since we have obtained this

relationship for our periodic solutions, their numerical stability can now be examined.

5 Stability of Periodic Solutions

The asymptotic spatially periodic headway solutions are now fully defined, such that

∆xj(t) = hc + ε

√
ωV ′(hc)

| V ′′′(hc) |

(
u0(j, t)− 1√

3

)
, (48)

where u0(j, t) is given by (43). The solution parameters m, a, b, c, d, ω and ε =
√

(âc/â)− 1 are estab-

lished using the steps outlined in Section 4 (also refer to Figure 1). More specifically, from the bottom

right plot of Figure 1, choosing â/âc and n/N then determines κ1, which then gives a, b, c, d with (39).

Next, m is defined using (23c) and lastly, ω is identified with (41).

The traffic model (2) governing headway is next solved with MATLAB’s ode45, where the initial

condition for the numerical simulations is defined by (48) when t = 0. As well, periodic boundary
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conditions are implemented. Then, over different time intervals, the asymptotic and numerical results

are compared in Figures 3-6. Here, the number of cars on the road is set to 100. In particular, we

analyse the numerical results at t very large to determine if our solutions are numerically stable.

For Figures 3-5, the top panel conveys the asymptotic solution (43) over the domain j ∈ [0, 100]

and t ∈ [0, 100]. The middle panel then compares the asymptotic solution in black to the red-dotted

numerical result for j = 0, 100, t ∈ [0, 100] (left) and j ∈ [0, 100], t = 10, 000 (right). Lastly, the bottom

plot depicts the numerical solution for j ∈ [0, 100] and t ∈ [9600, 10000].

The first, downward solution for hc = 4, â = 1.99 (ε = 0.0709), n = 1 and N = 100 is shown in Figure

3, where κ1 = 0.037582. The top panel reveals two distinct zones. These are, a cluster of vehicles with

approximate headway hmin < hc represented by the wave trough and a much smaller vehicle cluster with

headway hc corresponding to the wave peak. So, a vehicle travelling at the safety distance hc decelerates

due to a slower preceding vehicle and then endures a prolonged slow period, with approximate headway

hmin. They then return to the safety distance momentarily to repeat this process. The middle panel

of Figure 3 reveals excellent agreement between the two solutions. The numerical result at t very large

is examined in the middle and lower panels, where the numerical wave appears to propagate without

divergence, a change in amplitude or the development of a phase shift, when compared to the asymptotic

solution. This suggests that this spatially periodic solution is stable.

Figure 4 portrays the alternate second solution for hc = 4, â = 1.99 (ε = 0.0709), n = 1 and N = 100,

where κ1 = 0.219018. The top panel shows it is of an upward form since now the headway varies

between hc and hmax > hc. Therefore, a vehicle travelling at the safety distance hc will now accelerate

as the preceding car is faster. This vehicle then experiences an extended faster state, travelling with the

approximate headway hmax. Next, they decelerate and revert to the safety distance hc. The car remains

briefly at hc and then repeats this motion. The middle panel shows again little discrepancy between

the asymptotic and numerical solutions. As well, the middle right and bottom figures investigate the

long-time behaviour of the numerical result. Once again, no evidence of a phase shift or amplitude

variation is exhibited and thus, this solution appears stable.

Next, the driver’s sensitivity is reduced to â = 1.98 and as a result, the perturbation parameter

increases to ε = 0.1005. The first solution is displayed in Figure 5 where hc = 4, n = 1, N = 100

and κ1 = 0.037578. The vehicle behaviour is consistent with Figure 3, except now the wave trough is

flatter and hmin has decreased. Hence, the duration of a car travelling with approximate headway hmin

is longer and the reduction in speed is greater. The middle panel depicts some very small differences

between the asymptotic and numerical solutions due to increasing ε, although the match is still very

good. Analysing the solution at t very large in the middle right and bottom figures, it is apparent that

the numerical result is again stable since the phase and amplitude appear constant with increasing t.

There is also a second, upward stable solution that corresponds to the parameters â = 1.98, hc = 4,

n = 1 and N = 100, although it is not depicted here. This solution will have the same behaviour as

that conveyed by Figure 4, such that ∆xj ∈ [hc, hmax].

So far, the solutions considered all have one peak/trough over the domain j ∈ [0, 100], since n = 1.

Instead, choosing n > 1, multiple oscillations over the domain will occur. As an example, the downward

solution corresponding to â = 1.99, hc = 4, n = 2, N = 100, κ1 = 0.051638 is shown in Figure

14
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Figure 3: Headway solutions to the model (2) that satisfy periodic boundaries, where m = 0.99659, ε = 0.0709,

ω = 4.79, â = 1.99, n = 1, N = 100, κ1 = 0.037582. Top: The asymptotic solution for j ∈ [0, 100] and t ∈ [0, 100].

Middle left: The asymptotic solution (black) compared to the numerical solution (red dotted) when j = 0, 100 and

t ∈ [0, 100]. Middle right: The asymptotic solution (black) compared to the numerical solution (red dotted) when

t = 10000 and j ∈ [0, 100]. Bottom: The numerical solution for j ∈ [0, 100] and t ∈ [9600, 10000].
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Figure 4: Headway solutions to the model (2) that satisfy periodic boundaries, where m = 0.99659, ε = 0.0709,

ω = 4.79, â = 1.99, n = 1, N = 100, κ1 = 0.219018. Top: The asymptotic solution for j ∈ [0, 100] and t ∈ [0, 100].

Middle left: The asymptotic solution (black) compared to the numerical solution (red dotted) when j = 0, 100 and

t ∈ [0, 100]. Middle right: The asymptotic solution (black) compared to the numerical solution (red dotted) when

t = 10000 and j ∈ [0, 100]. Bottom: The numerical solution for j ∈ [0, 100] and t ∈ [9600, 10000].
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Figure 5: Headway solutions to the model (2) that satisfy periodic boundaries, where m = 0.99987, ε = 0.1005,

ω = 4.80, â = 1.98, n = 1, N = 100, κ1 = 0.037578. Top: The asymptotic solution for j ∈ [0, 100] and t ∈ [0, 100].

Middle left: The asymptotic solution (black) compared to the numerical solution (red dotted) when j = 0, 100 and

t ∈ [0, 100]. Middle right: The asymptotic solution (black) compared to the numerical solution (red dotted) when

t = 10000 and j ∈ [0, 100]. Bottom: The numerical solution for j ∈ [0, 100] and t ∈ [9600, 10000].
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Figure 6: Headway solutions to the model (2) that satisfy periodic boundaries, where m = 0.792877, ε = 0.0709,

ω = 4.38, â = 1.99, n = 2, N = 100, κ1 = 0.051638. Left: The asymptotic solution for j ∈ [0, 100] and t ∈ [0, 100].

Right: The asymptotic solution (black) compared to the numerical solution (red dotted) when t = 10000 and

j ∈ [0, 100].

6. The behaviour observed on the left is consistent with n = 1 (Figure 3), except waves with two

headway troughs/peaks over j ∈ [0, 100] now propagate. The long-time dynamics are examined on

the right, where the black and red-dotted curves correspond to the asymptotic and numerical solutions

respectively when t = 10000. The solution appears stable since no phase or amplitude changes are

exhibited.

Thus, the long-time dynamics revealed by the numerical results suggest that our set of periodic

solutions is stable, although further work is needed to prove this conclusively. Note however that their

numerical stability applies only within a certain neighbourhood of the neutral stability line’s critical

point (see Section 2).

In contrast, Komatsu and Sasa (1995) found solutions of a similar form that they supposed were

always unstable, and therefore not observed numerically. More specifically, Komatsu and Sasa (1995)

studied solutions of the traffic model (2), which they also reduced to, at leading order,

Rt̄ −Rx̄x̄x̄ +
(
R3
)
x̄

+O(ε) = 0, (49)

using perturbation analysis. Next letting x̃ = x̄− ωt̄ and integrating, (49) becomes

− ωR−Rx̃x̃ +R3 +O(ε) = C, (50)

where C is an integration constant. The equivalent analysis detailed by Komatsu and Sasa (1995)

set C = 0, which subsequently, in relation to this work, places a different restriction upon κ1, where

κ1 = (2
√

3)/27, and κ2 becomes the free parameter. As a result of these parameter choices, their

solutions have a mean height of headway hc. This means that these solutions characterise two states,

which are clusters of vehicles moving at a speed slower and faster than the uniform speed of V (hc). In

contrast, the solutions obtained using (42) describe the two states; vehicle clusters moving with speed

V (hc) and vehicle clusters moving at a speed slower (downward solution)/faster (upward solution) than
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V (hc). Consequently, our waves represent, from the perspective of the driver, a transient but reoccurring

disturbance to the steady state of headway hc.

6 Conclusion

The OV model (2) was used to predict traffic behaviour. In particular, this model’s linearly unstable

region was studied, where (2) transformed into the mKdV equation with higher order correction terms

(see (7)). A multi-scale perturbation method was applied to this equation to locate steady travelling

wave solutions, where the travelling wave propagation coordinate was assumed to evolve on a slow and

fast scale. Consequently, a leading order solution dependent upon slow and fast variables was defined.

A system of differential equations at the next order was also found, which described this solution’s slow

evolution. The critical points of this system were shown to represent a family of steady travelling waves

that had constant amplitude, mean height and period, which represented disturbances to the steady

state of headway hc. Imposing periodic boundary constraints then determined the connection between

the solution parameters and the driver’s sensitivity, â, where for some fixed value of â, two solutions

existed of upward and downward form. In particular, the amplitude and speed of the disturbance

was obtained as a function of â. As a result of establishing the relationship between the multi-scale

analysis and â, numerical simulations of the OV model (2) were performed. This validated our analysis

by demonstrating excellent agreement between the asymptotic and numerical solutions. Furthermore,

we examined the behaviour of these periodic solutions when t was very large. This showed that the

numerical waves did not diverge, exhibit any phase shift or variation in amplitude, suggesting that

our set of solutions was stable. Hence, steady periodic travelling wave solutions of (7) are observed

numerically. Therefore, identifying these solutions will have important implications for future studies

of the traffic model (2), particularly when numerically evaluating (2) within the unstable region and

interpreting the results.

Appendix

To calculate the integrals Ĩi (see (32)), first let us define

α1 =
1

2P

∫ θ2

θ1

u0dθ, α2 =
1

2P

∫ θ2

θ1

u2
0dθ. (51)

These integrals written in full are

α1 = c+
(d− c)

2P

∫ θ2

θ1

sn2(β(θ − θ0))

e+ sn2(β(θ − θ0))
dθ,

α2 = c2 +
2c(d− c)

2P

∫ θ2

θ1

sn2(β(θ − θ0))

e+ sn2(β(θ − θ0))
dθ +

(d− c)2

2P

∫ θ2

θ1

sn4(β(θ − θ0))

(e+ sn2(β(θ − θ0)))2dθ,
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given (22). Next, using Byrd and Friedman (1954) to solve these integrals, gives us

1

2P

∫ θ2

θ1

sn2(β(θ − θ0))

e+ sn2(β(θ − θ0))
dθ = 1− Π(−1/e,m)

K(m)
,

1

2P

∫ θ2

θ1

sn4(β(θ − θ0))

(e+ sn2(β(θ − θ0)))2dθ

=
1

K(m)
(K(m)− 2Π(−1/e,m))− 1

2(1/e+ 1)

+
1

2K(m)(−1/e− 1)(m2 + 1/e)

(
−E(m)

e
+ Π(−1/e,m)(−2m2/e− 2/e− 1/e2 − 3m2)

)
,

where K, E and Π are the complete elliptic integrals of the first, second and third kind respectively.

Therefore, α1 and α2 are functions of the solution parameters m, c, d and e (see (22)).

There are a number of steps undertaken to compute the integrals Ĩi as a function of α1 and α2. The

following provides a summary of this analysis:

1. Integrate (16) over the domain θ ∈ (θ1, θ2) to obtain the integral
∫ θ2
θ1
u3

0dθ in terms of α1 and α2.

2. Integrate u0×(16) and (17) over the domain θ ∈ (θ1, θ2), and then combine, to obtain the integrals∫ θ2
θ1
u4

0dθ and
∫ θ2
θ1
u2

0,θdθ in terms of α1 and α2.

3. Integrate u2
0×(16) and u0×(17) over the domain θ ∈ (θ1, θ2), and then combine, to obtain the

integrals
∫ θ2
θ1
u5

0dθ and
∫ θ2
θ1
u2

0,θu0dθ in terms of α1 and α2.

4. Integrate u3
0×(16) and u2

0×(17) over the domain θ ∈ (θ1, θ2), and then combine, to obtain the

integrals
∫ θ2
θ1
u6

0dθ and
∫ θ2
θ1
u2

0,θu
2
0dθ in terms of α1 and α2.

As a result, we arrive at

Ĩ1 =
1

λk2

(
− ν2

12γ
α2 +

(
α1 +

ν

6γ

)
Ĉ +

4

3
D̂

)
,

Ĩ2 =
γ

6λk2

(
α2

(
9Ĉ

2γ
− 5ν3

8γ3

)
+ α1

(
6D̂

γ
+

3νĈ

2γ2

)
+

5ν2Ĉ

4γ3
+
νD̂

γ2

)
,

Ĩ3 =
γ

6λk2

(
α2

(
69Ĉν

10γ2
− 7ν4

8γ4
+

24D̂

5γ

)
+ α1

(
6νD̂

5γ2
+

21ν2Ĉ

10γ3

)
+

35ν3Ĉ

20γ4
+

7ν2D̂

5γ3
− 54Ĉ2

5γ2

)
.

Next, the integral Ĩ4 can be written, from (14a),

Ĩ4 =
1

2P

∫ θ2

θ1

u0u0,θθθθdθ = − 1

2P

∫ θ2

θ1

u0,θu0,θθθdθ

= − 1

2P

∫ θ2

θ1

u0,θ

( γ

λk2
u2

0u0,θ −
ν

λk2
u0u0,θ

)
dθ

= − γ

λk2
Ĩ3 +

ν

λk2
Ĩ2.

Thus, the integral Ĩ reduces to (refer to (31))

20



Ĩ = 3k2Ĩ1 −
3

4
k4Ĩ4 −

3ω

2
k2

(
Ĩ3 −

2√
3
Ĩ2 +

1

3
Ĩ1

)
= 3k2Ĩ1 −

3

4
k4
(
− γ

λk2
Ĩ3 +

ν

λk2
Ĩ2

)
− 3ω

2
k2

(
Ĩ3 −

2√
3
Ĩ2 +

1

3
Ĩ1

)
= k2Ĩ1

(
3− ω

2

)
+ k2Ĩ2

(
−3ν

4λ
+
√

3ω

)
+ 3k2Ĩ3

( γ
4λ
− ω

2

)
.
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