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Abstract. In developing methods for convective-scale data
assimilation (DA), it is necessary to consider the full range
of motions governed by the compressible Navier–Stokes
equations (including non-hydrostatic and ageostrophic flow).
These equations describe motion on a wide range of
timescales with non-linear coupling. For the purpose of de-
veloping new DA techniques that suit the convective-scale
problem, it is helpful to use so-called “toy models” that are
easy to run and contain the same types of motion as the full
equation set. Such a model needs to permit hydrostatic and
geostrophic balance at large scales but allow imbalance at
small scales, and in particular, it needs to exhibit intermittent
convection-like behaviour. Existing “toy models” are not al-
ways sufficient for investigating these issues.

A simplified system of intermediate complexity derived
from the Euler equations is presented, which supports dis-
persive gravity and acoustic modes. In this system, the sepa-
ration of timescales can be greatly reduced by changing the
physical parameters. Unlike in existing toy models, this al-
lows the acoustic modes to be treated explicitly and hence in-
expensively. In addition, the non-linear coupling induced by
the equation of state is simplified. This means that the grav-
ity and acoustic modes are less coupled than in conventional
models. A vertical slice formulation is used which contains
only dry dynamics. The model is shown to give physically
reasonable results, and convective behaviour is generated by
localised compressible effects. This model provides an af-
fordable and flexible framework within which some of the
complex issues of convective-scale DA can later be investi-
gated. The model is called the “ABC model” after the three

tunable parameters introduced: A (the pure gravity wave fre-
quency), B (the modulation of the divergent term in the con-
tinuity equation), and C (defining the compressibility).

1 Introduction

Advances in computer power have enabled numerical
weather prediction (NWP) models to operate at higher res-
olutions than has previously been possible. In 2009, the Me-
teorological Office (Met Office) upgraded the resolution of
its Unified Model (UM; Davies et al., 2005) for the UK do-
main from 12 to 1.5 km (Dixon et al., 2009). Resolutions of
this degree are expected to resolve the large- and synoptic-
scale features well. Bryan et al. (2003) found that models
with resolutions of 100 m are necessary to provide meaning-
ful simulations of convection. Resolutions of O (100 m) are
not yet affordable over the UK domain with current computer
resources, although research experiments with the UM over
smaller domains with 200 m resolution have shown marked
benefit (Lean et al., 2008). Models of O (.1 km) resolu-
tion are known as convective-scale models because they are
capable of resolving some convection explicitly; thus, they
do not require a full convection scheme. For instance, it
is possible to explicitly represent features such as thunder-
stormsO (10 km) and mesoscale convective systems (MCSs)
O (10–100 km), though not necessarily resolve their inter-
nal structure (e.g. Bryan et al., 2003; Clark et al., 2005;
Lean et al., 2008). Convective-scale forecasting can facili-
tate more accurate and earlier indications of extreme or haz-
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ardous weather, e.g. severe convection (Lean et al., 2008),
which is of clear benefit.

As NWP moves towards the convective scale, it is ap-
propriate to examine the data assimilation (DA) scheme un-
derpinning the forecast. The DA process combines meteo-
rological data from a variety of sources including satellites,
radar, weather stations, and radiosondes with a previous fore-
cast (a background state) to produce an analysis. The NWP
model is then integrated forward from the analysed state. The
DA scheme that combines the observed and background data
should provide an analysis that is consistent with the obser-
vations and the model broadly within the specified “bounds”
of the observation errors, the background (prior) state errors,
and the model errors (if a model error scheme is incorporated
into the DA system). The development of our toy model is
a step towards a detailed and technical investigation of the
convective-scale DA problem though its utility is not limited
to this application.

Convective-scale DA introduces new issues. The errors in
the larger-scale flow are still present, but in addition there
will be errors on the small scales resolved by the convective-
scale model which will have a different correlation structure.
A pragmatic solution is to rely on a larger-scale DA system to
correct the large-scale errors and thus allow convective-scale
DA to focus on small scales. The model introduced in this
paper is intended to allow development of methods of assim-
ilating information over all scales. Detailed reviews of the
issues are given by Park and Županski (2003), Dance (2004),
Sun (2005), and Lorenc and Payne (2007).

The current Met Office operational large-scale DA scheme
enforces hydrostatic balance as a strong constraint and ex-
ploits geostrophy as a weak constraint in the background er-
ror covariance model (Lorenc et al., 2000; Bannister, 2008).
The use of the hydrostatic balance relationship is valid for
flows where the aspect ratio is much less than 1, e.g. Holton
(2004) and Vallis (2006). In regions of convection, the as-
pect ratio increases, and thus hydrostatic balance may no
longer be a good approximation. Vetra-Carvalho et al. (2012)
demonstrated that hydrostatic balance breaks down in the
UM when it is run at 1.5 km horizontal resolution in re-
gions of convection. At midlatitudes and high latitudes,
the geostrophic assumption is accurate for large-scale flows
where the Rossby number is small (e.g. Holton, 2004). At the
convective scale, the Rossby number is not small, and there-
fore the use of geostrophic balance is no longer appropriate.
It is therefore important that these balances are relaxed in
convective-scale DA. Some variational DA methods, such as
those termed “EnsVar” (Lorenc, 2013; Liu and Xue, 2016;
Bannister, 2017), use information from an ensemble to rep-
resent background error covariance information without, in
principle, the need to impose balances via a prescribed back-
ground error covariance matrix. These methods though suffer
from noise in the sampled error covariance matrix and thus
rely on methods to mitigate its effect (namely by localisation,
which is known to destroy balances when they are relevant;

Kepert, 2009; Bannister, 2015). The sampled (and localised)
error covariance matrix in these methods is often hybridised
with a prescribed background error covariance matrix (Clay-
ton et al., 2013), which does impose balances. This brings
attention back to the validity of such balances when such
methods are applied at convective scales and hence to sim-
plified systems where this issue can be studied closely.

Operational systems have to resolve features at both the
synoptic and the convective scales, requiring a large number
of grid points. Such systems are very expensive to run and
are not ideal tools for research purposes. The wide range of
timescales means that semi-implicit integration schemes are
required for efficiency, e.g. Davies et al. (2005), and the non-
linear coupling between acoustic and gravity waves through
the equation of state makes analysing the small-scale be-
haviour difficult (Thuburn et al., 2002). Thus, it would be
useful to have a simplified model which describes a variety
of regimes but without the extreme separation of timescales
and the full non-linear coupling between acoustic and grav-
ity waves present in the real system. A simplified system that
has these properties allows problems such as the convective-
scale DA problem to be explored in a practical but physically
realistic way.

Perhaps the simplest non-linear model of convection is
the well-known Lorenz 63 system (Lorenz, 1963), which de-
scribes convection with only three variables. These are (re-
spectively) proportional to the strength of the convective mo-
tion, the size of the temperature differences between the up-
and downwelling air, and the degree of deviation from lin-
earity of the temperature profile. The resulting three ordinary
differential equations are easily integrated numerically, but
they miss the representation of the complex spatial aspects
of the problem required to mirror real forecasting problems.
Würsch and Craig (2014) discuss the lack of availability of
suitable simplified models of convection for DA research,
and they note that people have tended to run full NWP mod-
els for this purpose but in idealised settings (see references in
Würsch and Craig, 2014, for examples). These models, how-
ever, remain complicated and expensive to run. Würsch and
Craig (2014) developed a simplified model for purposes of
convective-scale DA research. Their model is based on the
one-dimensional shallow water model, modified to account
for the phase transitions of cloud formation and precipita-
tion – essential processes in the formation of cumulus con-
vection. Although their model has shown to be very useful
for this purpose, its one-dimensionality makes it impossible
to tackle questions relating to the breakdown of hydrostatic
balance and to simulate our inability in practical situations to
resolve vertical structures from observations.

The simplified system derived in this paper is intended to
be run in vertical slice geometry (longitude/height), so that
many fewer degrees of freedom are needed than in an op-
erational three-dimensional system. The equations are mod-
ified so that the speed of the acoustic and gravity waves
can be controlled, and thus the normally large separations
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in timescales can be reduced. The equation of state is also
modified so that the degree of coupling between the acoustic
and gravity waves is reduced. The modifications are designed
so that energy is conserved in the equations, which is neces-
sary for realistic behaviour. In order to study the dynami-
cally related breakdown of balance, no moisture is included,
but intermittent convection-like behaviour is still seen (e.g.
via gravity wave breaking). These simplifications permit
large-scale balanced flows and sporadic small-scale non-
hydrostatic flows (including convection) to coexist within the
framework of a simplified and practical model.

The structure of this paper is as follows: Sect. 2 provides
a derivation of the toy model equations which are analysed
in terms of a scale analysis and energy conservation prop-
erties. Section 3 describes the numerical implementation of
the model. Section 4 provides a linear analysis of the equa-
tions. Section 5 shows the results of an idealised integration
which illustrates how the model can be used to simulate dif-
ferent flow regimes. Section 6 provides a summary and some
concluding remarks. Future work will exploit this model in
testing different approaches to convective-scale DA, as pi-
loted in Petrie (2012). For reference, Table 1 summarises the
symbols used throughout this paper.

2 Derivation of the model equations

The model is derived from the compressible 3-D Euler equa-
tion (Eq. 1); see, e.g. Holton (2004), Pielke (2001), and Vallis
(2006):

∂u

∂t
+u · ∇u+

1
ρ
∇p+ gk+ f k×u= 0, (1a)

∂ρ

∂t
+∇ · (ρu)= 0, (1b)

∂θ

∂t
+u · ∇θ = 0, (1c)

p = ρR

(
p

p00

)κ
θ. (1d)

Equation (1a) is the momentum equations, where t is time;
u= (u,v,w) comprises zonal (u), meridional (v), and ver-
tical (w) components; p is pressure; g is the acceleration
due to gravity; and ρ is density. The f -plane assumption
is made, and k is the vertical unit vector. Equation (1b) is
the compressible mass continuity equation. Equation (1c) is
the adiabatic thermodynamic equation, where θ is potential
temperature. Equation (1d) is the equation of state, where
p00 = 1000 hPa, κ = R/cp is a constant, with cp the specific
heat capacity at constant pressure, and R the gas constant for
dry air.

From this set of equations, we wish to construct a toy
model that has large-scale geostrophically and hydrostati-
cally balanced flow, permits intermittent convective-like be-
haviour, and is of practical use for investigating issues that

arise in the convective-scale DA problem (e.g. it is cheap to
integrate).

2.1 Modifications to the 3-D Euler equations

In order to derive a model with the properties outlined above,
Eq. (1) is modified in two stages. Firstly, a set of physically
based approximations is made, and secondly a set of “toy
model” simplifications is made. The latter set does not at-
tempt to replicate the real system; rather, it is intended to
retain desired physical characteristics of the real system but
simplify the computational implementation. In order to sim-
plify the system, it will be assumed that the model is periodic
in the zonal direction and homogeneous in the meridional di-
rection (i.e. the variables are functions of longitude, height,
and time only).

2.1.1 Physically based modifications

The variables are decomposed such that they have a basic
state and perturbation component, e.g. Pielke (2001):

8(x,z, t)=80(z)+8
′(x,z, t). (2)

Here, 8 applies to any model variable except θ (for θ , see
below). The basic state (subscript 0) is a function of height
only, and the perturbation (primed) is a function of longitude
(x), height (z), and time (t). Potential temperature contains
also a constant reference value (subscript R):

θ(x,z, t)= θR+ θ0(z)+ θ
′(x,z, t). (3)

The wind components u, v, and w have zero reference state
values; therefore, the prime notation is dropped for the winds.
For convenience, explicit reference to the arguments x and z
will be dropped in much of the following derivation.

The basic state is assumed to satisfy hydrostatic balance:

∂p0

∂z
=−ρ0g, (4)

and the equation of state is

p0 = ρ0R

(
p0

p00

)κ
(θR+ θ0). (5)

The Brunt–Väisälä frequency, N , is defined as

N2
=
g

θR

dθ0

dz
. (6)

The pressure gradient terms in Eq. (1a) are represented with
Eq. (2), products of perturbations are neglected, and it is as-
sumed that ρ0� ρ′ in the momentum equations. A buoyancy
variable, b = b0(z)+ b

′(x,z), is introduced for convenience;
it is related to θ by

b = b0(z)+ b
′
=
g

θR

(
θR+ θ0(z)+ θ

′
)
. (7)
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Table 1. Description of the main symbols used in this work.

Symbol Description Symbol Description

x Longitudinal position z Height
t Time

u Zonal wind v Meridional wind
w Vertical wind u 3-D wind vector
ρ Density p Pressure
θ Potential temperature θR z-independent part of ref. θ (Eq. 3)
ρ̃ Scaled density (Eq. 14) b Buoyancy (Eq. 7)
q Passive tracer concentration
ρ0, p0, θ0, ρ̃0, b0 Reference state variables (Eq. 2) ρ′, p′, θ ′, ρ̃′, b′ Perturbation quantities (Eq. 2)

U , V , W , P ′, B′ Characteristic values u, v, w, ρ̃′, b′ u∗, v∗, w∗, ρ̃′∗, b′∗ Variables scaled by charac. values
LH
u , LH

v , LH
w , LH

ρ̃′
, LH

b′
Characteristic horiz. length scales x∗u , x∗v , x∗w , x∗

ρ̃′
, x∗
b′

Long. pos. variables scaled by
horiz. length scales

LV
u , LV

v , LV
w , LV

ρ̃′
, LV

b′
Characteristic vert. length scales z∗u, z∗v , z∗w , z∗

ρ̃′
, z∗
b′

Height variables scaled by vert.
length scales

t∗ Time variable scaled by timescale

g Acceleration due to gravity f Coriolis parameter
R Gas constant for dry air κ Ratio of specific heats
cp Specific heat capacity (constant p) p00 1000 hPa
k Vertical unit vector N Brunt–Väisälä frequency
Ro Rossby number

A Pure gravity wave frequency B Modulation of the divergent term in
the continuity equation

C Proportionality constant for toy
model equation of state (Eq. 13)

Ek Kinetic energy (Eq. 22) Eb Buoyant energy (Eq. 25)
Ee Elastic energy (Eq. 27) E Total energy

χ , ψ Velocity potential and stream func-
tion (Eq. 39)

1t , δt Time step and sub-time step of inte-
gration scheme

k, m Horiz., vert. wavenumbers nx , nz Horiz., vert. wavenumber indices
σ , σR, σg, σg′ , σa, σa′ Wave frequency, specifically

Rossby, gravity, acoustic
Lx , Lz Horiz., vert. domain sizes

cg, ca Gravity and acoustic group speeds bueff Effective buoyancy

Combining these physically based approximations gives the
following equations:

∂u

∂t
+u · ∇u+

1
ρ0

∂p′

∂x
− f v = 0, (8a)

∂v

∂t
+u · ∇v+ f u= 0, (8b)

∂w

∂t
+u · ∇w+

1
ρ0

∂p′

∂z
+
g

ρ0
ρ′ = 0, (8c)

∂ρ′

∂t
+∇ · (ρu)= 0, (8d)

∂b′

∂t
+u · ∇b′+N2w = 0, (8e)

p = ρR

(
p

p00

)κ
θ, (8f)

b′ =
g

θR
θ ′. (8g)

2.1.2 The “ABC model” modifications

It is desirable to reduce the stiffness of the system of Eq.
(8) so that it can be integrated explicitly with a time step
that is not too small. The following toy model modifications
are made so that the toy equations retain the basic properties
desired; i.e. they are geostrophically and hydrostatically bal-
anced on the large scale but permit intermittent convection-
like behaviour on the small scale that is unbalanced. The
modifications are as follows.

1. We control the gravity waves by replacingN by the tun-
able parameter, A (which has units of s−1). This is the
pure gravity wave frequency (Sect. 4.4).
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2. We control the acoustic waves by multiplying the diver-
gent term of the compressible continuity equation by the
dimensionless parameter B (where 0< B ≤ 1). To en-
sure energy conservation (Sect. 2.3), it is required thatB
also multiplies the advective components of the momen-
tum and thermodynamic equations. Acoustic waves can
have frequencies that are normally much higher than
gravity waves, but choosing a small B can help to re-
duce the acoustic wave frequencies.

The effect of these parameters on the wave speeds will be
demonstrated by numerical linear analysis in Sect. 4.6. The
acoustic and gravity waves in the real atmosphere are cou-
pled through the equation of state (Thuburn et al., 2002). This
coupling can be reduced by using a linearised and simplified
equation of state. Linearising Eq. (8f) about the basic state
gives

(1− κ)p−κ0 p′ =
ρ′RθR

pκ00
+
ρ0Rθ

′

pκ00
, (9)

where we have used θR+ θ0 ≈ θR (see Appendix A). This is
used in two ways to give modifications 3 and 4 below.

3. Firstly, for the purpose of relating density and buoyancy
perturbations in Eq. (8c), we neglect pressure perturba-
tions in Eq. (9):

ρ′

ρ0
=−

θ ′

θR
, (10)

which by Eq. (8g) equals −b′/g.

4. Secondly and separately, for the purposes of simplifying
the equation of state, neglecting buoyancy perturbations
in the linearised equation of state (Eq. 9) gives

(1− κ)p−κ0 p′ =
ρ′RθR

pκ00
. (11)

This is a means of decoupling gravity and acoustic
waves. Further, setting

C =
RθRp

κ
0

pκ00(1− κ)
, (12)

gives the simplified equation of state:

p′ = Cρ′, (13)

where C is taken to be a global constant and has units
of Nmkg−1

=m2 s−2. The quantity
√
BC is the pure

sound wave speed in this system (Sect. 4.5).

5. Reference density ρ0 is taken to be a constant and not a
function of height.

6. The scaled density perturbation, ρ̃′, is defined as

ρ̃′ =
ρ′

ρ0
, (14)

and with this definition, ρ̃0 = 1.

Combining modifications 1 to 6 gives the final form of the
toy model equations:

∂u

∂t
+Bu · ∇u+C

∂ρ̃′

∂x
− f v = 0, (15a)

∂v

∂t
+Bu · ∇v+ f u= 0, (15b)

∂w

∂t
+Bu · ∇w+C

∂ρ̃′

∂z
− b′ = 0, (15c)

∂ρ̃′

∂t
+B∇ · (ρ̃u)= 0, (15d)

∂b′

∂t
+Bu · ∇b′+A2w = 0. (15e)

Note that Eq. (15d) conserves mass following the flow mod-
ulated by B, i.e. Bu, but total mass remains conserved
(Sect. 2.3.1). We also include the following tracer transport
equation for diagnostic purposes:

∂q

∂t
+u · ∇q = 0, (16)

where q is the tracer concentration. Note that the advection
term is not multiplied by B in Eq. (16) (as B will be gen-
erally chosen as B ≤ 1, we allow advection of the tracer to
have its full effect so that tracer transport can be seen over
an integration of a few hours). We refer to these simplified
equations as the “ABC model”, reflecting the three tunable
parameters.

2.2 Scale analysis of the ABC model

A scale analysis of Eq. (15) is performed by non-
dimensionalising the equations using characteristic values.
Our scale analysis deviates from standard analyses in two
ways: (i) we allow different characteristic length scales for
each variable (in the horizontal and vertical), and (ii) we
do not assume incompressibility (see below for further ex-
planation). For the characteristic values, we set u= Uu∗,
v = Vv∗, w =Ww∗, ρ̃′ = P ′ρ̃′∗, ρ̃ ∼ 1, and b′ = B′b′∗. For
the characteristic horizontal length scales, we set (respec-
tively, for each variable) x = LH

u x
∗
u , x = LH

v x
∗
v , x = LH

wx
∗
w,

x = LH
ρ̃′
x∗
ρ̃′

, and x = LH
b′
x∗
b′

, and for the vertical length scales
z= LV

u z
∗
u, z= LV

v z
∗
v , z= LV

wz
∗
w, z= LV

ρ̃′
z∗
ρ̃′

, and z= LV
b′
z∗
b′

.
The timescale is set as t =

[
LH
u /(BU)

]
t∗. Uppercase calli-

graphic variables (except L) are characteristic values, starred
variables are non-dimensional and O(1), and LH/V

p repre-
sents the horizontal/vertical length scale of variable p.

Often in scale analyses the characteristic vertical speed,
W , is written in terms of other characteristic variables
by using the incompressible continuity equation in a 2-D
(longitude–height) system ∂u/∂x+ ∂w/∂z= 0. Scaling this
givesW ∼ ULV

w/LH
u . We do not use this relation, as some of

the flows considered are highly compressible.
Using these definitions in the system of Eq. (15) and intro-

ducing the Rossby number, Ro= U/fLH
u , the aspect ratio,

www.geosci-model-dev.net/10/4419/2017/ Geosci. Model Dev., 10, 4419–4441, 2017
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A= LV
u /LH

u , the vertical-to-zonal wind ratio, WU =W/U ,
and the meridional-to-zonal wind ratio, VU = V/U , gives the
following non-dimensionalised equations:

BRo

[
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗u
+A−1WUw

∗
∂u∗

∂z∗u

]
+

CP ′

UfLH
ρ̃′

∂ρ̃′∗

∂x∗
ρ̃′
−VUv∗ = 0, (17a)

BRo

[
∂v∗

∂t∗
+
LH
u

LH
v

u∗
∂v∗

∂x∗v
+
LH
u

LV
v

WUw
∗
∂v∗

∂z∗v

]
+V−1

U u∗ = 0, (17b)

BRo

[
∂w∗

∂t∗
+
LH
u

LH
w

∂w∗

∂x∗w
+
LH
u

LV
w

WUw
∗
∂w∗

∂z∗w

]
+

CP ′

WfLV
ρ̃′

∂ρ̃′∗

∂z∗
ρ̃′
−

B′

Wf
b′∗ = 0, (17c)

∂ρ̃′∗

∂t∗
+
∂ρ̃∗u∗

∂x∗u
+
LH
u

LV
w

WU
∂ρ̃∗w∗

∂z∗w
= 0, (17d)

BRo

[
∂b′∗

∂t∗
+
LH
u

LH
b′

u∗
∂b′∗

∂x∗
b′
+
LH
u

LV
b′

WUw
∗
∂b′∗

∂z∗
b′

]

+
A2W
B′f

w∗ = 0. (17e)

When the first three terms of Eq. (17a) and (17b) are small
(often achieved with small Ro), the geostrophic relationships
emerge. Expressed back in terms of the dimensional vari-
ables, they are

− f v+C
∂ρ̃′

∂x
= 0, (18a)

u= 0. (18b)

Under similar circumstances, Eq. (17c) defines the hydro-
static relationship. Expressed back in terms of the dimen-
sional variables, it is

−b′+C
∂ρ̃′

∂z
= 0. (19)

2.3 Conservation of mass and energy

As the toy model of Eq. (15) is no longer based on stan-
dard thermodynamics, we must demonstrate that it forms a
physically reasonable set. To this end, we now show that it
conserves mass and energy.

2.3.1 Conservation of mass

Noting the definition in Eq. (14), multiplying the continuity
equation, Eq. (15d), by the constant ρ0 gives the equation
for the evolution of density perturbations. Adding the zero-
valued term ∂ρ0/∂t then produces the equation for the evolu-
tion of density: ∂ρ/∂t+B∇ ·(ρu)= 0. Since the model uses
periodic boundary conditions zonally and zero vertical wind

conditions at the top and bottom boundaries (Sect. 3.2), the
divergence theorem shows that the equations conserve mass:
(∂/∂t)

(∫ ∫
dxdzρ

)
= 0 (see Appendix B).

2.3.2 A useful “identity” used to demonstrate
conservation of energy

Dividing the continuity equation shown in Sect. 2.3.1 by ρ0
gives the equation for ρ̃ evolution: ∂ρ̃/∂t +B∇ · (ρ̃u)= 0.
Using this equation and expanding ∂(ρ̃γ )/∂t +B∇ · (ρ̃γu),
for an arbitrary time- and space-varying scalar field γ , we
find
∂(ρ̃γ )

∂t
+B∇ · (ρ̃γu)= ρ̃

(
∂γ

∂t
+Bu · ∇γ

)
. (20)

Equation (20) is treated as an identity in the forthcoming en-
ergy analysis.

2.3.3 Kinetic energy

Multiplying, respectively, the momentum equations,
Eq. (15a) to (15c), by ρ̃u, ρ̃v, and ρ̃w and using Eq. (20)
with γ = u2/2, γ = v2/2, and γ = w2/2, we find:

∂

∂t

(
1
2
ρ̃u2

)
+B∇ ·

(
1
2
ρ̃u2u

)
+Cρ̃u

∂ρ̃′

∂x
− ρ̃uf v = 0, (21a)

∂

∂t

(
1
2
ρ̃v2

)
+B∇ ·

(
1
2
ρ̃v2u

)
+ ρ̃vf u= 0, (21b)

∂

∂t

(
1
2
ρ̃w2

)
+B∇ ·

(
1
2
ρ̃w2u

)
+Cρ̃w

∂ρ̃′

∂z
− ρ̃wb′ = 0. (21c)

We can write the perturbation kinetic energy, Ek, as

Ek =
ρ̃

2

(
u2
+ v2
+w2

)
, (22)

which allows the sum of Eq. (21a) to (21c) to be written

∂

∂t
Ek+B∇ · (Eku)− ρ̃b

′w+Cρ̃u · ∇ρ̃′ = 0. (23)

2.3.4 Buoyant energy

Multiplying the thermodynamic Eq. (15e) by ρ̃b′/A2 and us-
ing Eq. (20) with γ = b′2/(2A2), we find

∂

∂t
Eb+B∇ · (Ebu)+ ρ̃b

′w = 0, (24)

where the perturbation buoyant energy, Eb, is

Eb =
ρ̃b′2

2A2 . (25)

2.3.5 Elastic energy

Multiplying the continuity Eq. (15d) by Cρ̃′/B, we find

∂

∂t
Ee+Cρ̃

′
∇ · (ρ̃u)= 0, (26)

where the perturbation elastic energy, Ee, is

Ee =
Cρ̃′2

2B
. (27)
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L

V

Figure 1. The arrangement of variables on the toy model’s grid: an
Arakawa C grid in the horizontal and a Charney–Phillips grid in
the vertical. Note the abbreviations: FL indicates full level, and HL
indicates half level.

2.3.6 Total combined energy and its conservation

Adding Eqs. (23), (24), and (26) shows that the combined
energy, E = Ek+Eb+Ee, satisfies

∂E

∂t
+B∇ · ((Ek+Eb)u)+C∇ ·

(
ρ̃′ρ̃u

)
= 0. (28)

Integrating Eq. (28) over the whole domain for the total com-
bined energy gives∫
∂E

∂t
dV +

∫
B∇ · ((Ek+Eb)u)dV (29)

+C

∫
∇ ·
(
ρ̃′ρ̃u

)
dV = 0.

This toy model is set up to have periodic boundary condi-
tions in the x direction, no variation in the y direction, and
zero vertical wind at the top and bottom boundaries (see
Sect. 3.2). The divergence theorem then leads to conserva-
tion of total combined energy (see Appendix B):

∂

∂t

(∫
EdV

)
= 0. (30)

3 Numerical implementation of the ABC model

Now that a physically reasonable set of toy model equations
has been formed, we provide the details of how they are
treated numerically.

3.1 Model discretisation

The toy model uses a similar grid to that of the southern UK
(SUK) version of the UK Met Office’s Unified Model (UM)
but with some differences given below. In the horizontal, the

Table 2. Upper and lower boundary conditions of each prognostic
model variable; z= 0 is the lower boundary position and z= Lz is
the upper boundary position.

Lower Upper

u u(0)= 0 ∂u(Lz)
∂z
= 0

v v(0)= 0 ∂v(Lz)
∂z
= 0

w w(0)= 0 w(Lz)= 0

ρ̃′
∂ρ̃′(0)
∂z
= 0 ∂ρ̃′(Lz)

∂z
= 0

b′ b′(0)= 0 b′(Lz)= 0

SUK model covers a domain of 540 km in longitude and
432 km in latitude with a resolution of 1.5 km on an Arakawa
C grid. In the vertical, it has 70 vertical levels up to approxi-
mately 40 km on an irregularly spaced Charney–Phillips grid
(Lean et al., 2008).

The toy model grid is shown in Fig. 1. The differences
from the SUK are that the toy model is periodic in the zonal
direction, is homogeneous in the meridional direction, and
uses regularly spaced vertical levels up to a lid of about
15 km. The toy model uses only 60 levels (level spacing
δz≈ 250 m) and has flat orography.

This grid is a natural discretisation of the equations which
does not require a significant number of interpolations. There
are approximately 105 variables in the state space of the toy
system.

3.2 Boundary conditions

The vertical boundary conditions that we use are summarised
in Table 2. At the lower boundary, the horizontal winds are
zero (no-slip conditions) and the vertical wind is zero to con-
serve total mass and energy. At the upper and lower bound-
aries, the vertical derivative of density is zero. For the equa-
tions to have the capability to support hydrostatic balance,
Eq. (19) implies that b′ should be zero at the vertical bound-
aries. At the upper boundary, the horizontal winds are chosen
to maintain consistency with the boundary conditions of p̃′

and b′ through thermal wind balance, and the vertical wind
is again zero to conserve total mass and energy.

3.3 Numerical differentiation and integration

3.3.1 Time integration scheme

The time integration is evaluated using a split-explicit,
forward–backward scheme (Cullen and Davies, 1991), and
here we give a description of this scheme applied to the
system of Eq. (15). The forward–backward scheme operates
over a time step 1t and comprises two stages: an adjustment
stage and an advection stage.
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Adjustment stage

The adjustment stage operates over a sub-time step δt , where
δt =1t/n and n is typically a small positive integer (in this
implementation, n= 2). The adjustment stage contains two
parts: the forward part and the backward part. Let t be the
time at the start of the 1t time step and let ti be shorthand
for t + iδt . The following is a description of the ith sub-time
step.

In the forward part of the forward–backward scheme,
the momentum and thermodynamic equations are evaluated
omitting the advective terms. The u and v equations are con-
sidered simultaneously to find the adjustment due to the Cori-
olis and pressure gradient terms. Then, thew momentum and
b′ equations are dealt with simultaneously to find the adjust-
ment due to buoyancy, pressure gradient, and vertical wind.
The forward part of the adjustment stage gives an implicit
approximation to u, v, w, and b′ at the next sub-time step.

The equations for u (Eq. 15a) and v (Eq. 15b), omitting
the advective terms, are discretised as

u(ti+1)= u(ti)− δtC
∂ρ̃′(ti)

∂x
+
δtf

2
(v(ti)+ v(ti+1)) , (31a)

v(ti+1)= v(ti)−
δtf

2
(u(ti)+ u(ti+1)) . (31b)

Solving the system of Eq. (31) for u(ti+1) and v(ti+1) gives

u(ti+1) =
βf

αf
u(ti)−

δtC

αf

∂ρ̃′(ti)

∂x
+
δtf

αf
v(ti), (32a)

v(ti+1) =
βf

αf
v(ti)−

δtf

αf
u(ti)+

δt2Cf

2αf

∂ρ̃′(ti)

∂x
, (32b)

where αf and βf are defined by

αf = 1+
δt2f 2

4
, and βf = 1−

δt2f 2

4
. (33)

The equations for w Eq. (15c) and b′ Eq. (15e) omitting ad-
vective terms are discretised as

w(ti+1)= w(ti)− δtC
∂ρ̃′(ti)

∂z
+
δt

2

(
b′(ti)+ b

′(ti+1)
)
, (34a)

b′(ti+1)= b
′(ti)−

δtA2

2
(w(ti)+w(ti+1)) . (34b)

Solving Eq. (34) for w(ti+1) and b′(ti+1) gives

w(ti+1)=
βA

αA
w(ti)−

δtC

αA

∂ρ̃′(ti)

∂z
+
δt

αA
b′(ti), (35a)

b′(ti+1)=
βA

αA
b′(ti)−

δtA2

αA
w(ti)+

δt2CA2

2αA

∂ρ̃′(ti)

∂z
, (35b)

where αA and βA are defined by

αA = 1+
δt2A2

4
, and βA = 1−

δt2A2

4
. (36)

Equations (32a), (32b), (35a), and (35b) are the discretised
forms of the split-explicit equations that are evaluated in the
forward part of the forward–backward scheme in the adjust-
ment stage. The spatial derivatives are left in continuous form
but are discretised in the numerics using standard centred fi-
nite differences.

In the backward part of the forward–backward scheme, the
continuity Eq. (15d) is evaluated using the wind and buoy-
ancy data calculated in the forward part, i.e.

ρ̃′(ti+1)= ρ̃
′(ti)− δtB (ρ̃(ti)∇ ·u(ti+1)+ u(ti+1) · ∇ρ̃(ti)) . (37)

The term in brackets on the right-hand side is equal to
∇ · (ρ̃(ti)u(ti+1)) but has been expanded in Eq. (37) to al-
low the second term to use the upstream gradient of ρ̃(ti).
After integration of n steps over the full 1t , the value of p̃′

is known and the values of the variables u, v, w, and b′ are
known but without the effect of advection.

Advection stage

The advection stage advects the fields u, v, w, and b′ cal-
culated in the adjustment stage using the sub-time-step-
averaged winds ū and w̄, which are taken to be valid over
the full1t . Let φ be any of u, v, w, or b′; then, the advection
step is given by

φ(t +1t)= φ(t)−1tBū · ∇φ(t), (38)

where ū= (ū, w̄)T. As with Eq. (37), the upwind gradient of
φ is computed in Eq. (38). Note that for the tracer advection,
φ = q, Eq. (38) is used with B = 1.

Overall properties

The spatial derivatives evaluated by the forward–upstream
scheme are first-order accurate (Press et al., 2007) and the
time integration which utilises a split-explicit and forward–
backward scheme is also first-order accurate (Ames, 1958;
Gadd, 1978). The stability of the forward–backward scheme
increases the time steps which are permitted by the Courant–
Friedrichs–Lewy (CFL) criterion (Ames, 1958). The split-
explicit scheme has been used in early implementations of
the UK Met Office’s NWP model due to its ability to con-
serve mass (Gadd, 1978; Cullen and Davies, 1991).

4 Linear/normal mode analysis of the ABC model

In this section, a normal mode analysis of the toy model
equations is performed. This follows a similar procedure
used for the shallow water equations in Sect. 6.4 of Da-
ley (1991) and in Sect. 2.4 of Cullen (2006). In this pro-
cedure, the model equations are first linearised to permit
a mathematical analysis of small amplitude perturbations.
The normal modes are the characteristic solutions of the
linear equations. Each mode has a characteristic frequency
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and wavelength (hence, the analysis is done in terms of
spectral modes) and is a specific combination of different
variables. There are three different types of normal mode
solution, namely Rossby-like modes (whose normal mode
patterns obey geostrophic and hydrostatic balances), grav-
ity modes (buoyancy-driven modes which have character-
istic horizontal divergence), and acoustic modes (the most
rapidly oscillating modes which are made up of compression
waves). The linear/normal mode analysis allows us to probe
the dispersion relations (mode frequencies as a function of
wavenumber) and the balanced/unbalanced character of the
linear modes. For simplicity, this analysis is performed on a
continuous periodic domain of sizes Lx and Lz.

4.1 Linearisation

The non-linear model of Eq. (15) is linearised about a state
of rest (see Appendix A). It is convenient to write the model
equations in terms of velocity potential, χ (describing the
divergent part of the horizontal flow), and stream function, ψ
(describing the rotational or solenoidal part). The Helmholtz
theorem (see, e.g. Salby, 1996, which is generically given by
“horizontal wind=∇hχ +k×∇hψ”, where k is the vertical
unit vector and ∇h = (∂/∂x,∂/∂y,0)) allows the horizontal
wind to be written as u

v

0

=
 ∂χ/∂x

∂χ/∂y

0

+
 0

0
1

×
 ∂ψ/∂x

∂ψ/∂y

0


=

 ∂χ/∂x

∂χ/∂y

0

+
 −∂ψ/∂y∂ψ/∂x

0

 . (39)

Noting the lack of y dependence in the ABC model, this
gives u= ∂χ/∂x and v = ∂ψ/∂x. The linearised model
equations are then

∂

∂t

∂2χ

∂x2 +C
∂2ρ̃′

∂x2 − f
∂2ψ

∂x2 = 0, (40a)

∂

∂t

∂2ψ

∂x2 + f
∂2χ

∂x2 = 0, (40b)

∂w

∂t
+C

∂ρ̃′

∂z
− b′ = 0, (40c)

∂ρ̃′

∂t
+B

∂2χ

∂x2 +B
∂w

∂z
= 0, (40d)

∂b′

∂t
+A2w = 0. (40e)

4.2 Normal mode analysis

Now take the following functional dependence for a par-
ticular frequency σ , horizontal wavenumber k, and vertical
wavenumber m:

∣∣∣∣∣∣∣∣∣∣
χ(x,z, t)

ψ(x,z, t)

w(x,z, t)

ρ̃′(x,z, t)

b′(x,z, t)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

i χ̂

1 ψ̂

k/Lx ŵ

k/Lx
√
B/C ˆ̃ρ′

−iAk/Lx b̂′

∣∣∣∣∣∣∣∣∣∣
exp

[
i

{(
kx

Lx

)
+

(
mz

Lz

)
− σ t

}]
. (41)

Substituting Eq. (41) into Eq. (40) and expressing the result-
ing set of equations in matrix form gives

(L− σ I)

∣∣∣∣∣∣∣∣∣∣

χ̂

ψ̂

ŵ
ˆ̃ρ′

b̂′

∣∣∣∣∣∣∣∣∣∣
= 0, (42)

where

L=



0 f 0 −
k
√
BC

Lx
0

f 0 0 0 0

0 0 0
m
√
BC

Lz
A

−
k
√
BC

Lx
0

m
√
BC

Lz
0 0

0 0 A 0 0


. (43)

This is an eigenvalue equation where L is a real and sym-
metric matrix (due to the choice of factors in Eq. 41) and
thus will have real eigenvalues. For each distinct choice of
horizontal and vertical wavenumber (k,m), L has five eigen-
values, denoted σR, σg, σg′ , σa, and σa′ , where

σR = 0, σg =−σg′ , and σa =−σa′ . (44)

The three distinct modes are the Rossby-like mode (subscript
R), two inertia gravity modes (g and g′), and two acoustic
modes (a and a′). The algebraic form of the R mode is sim-
ple and is discussed in Sect. 4.3 below, but the forms of the
remaining modes are very complicated and thus are consid-
ered only firstly in “pure” forms (Sect. 4.4 and 4.5) and then
numerically in the wave speed analysis (Sect. 4.6).

4.3 The Rossby-like mode

The normalised R mode has σR = 0 and is


χ̂

ψ̂

ŵ
ˆ̃ρ′

b̂′

= 1
√
K



0

−
A

f

k

m

Lz

Lx
0

−
ALz

m
√
BC

1


, (45)
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where K = (ALz[kBC+Lxf
2
] +L2

xf
2m2C)/(L2

xf
2m2

BC). This mode, as we shall show, supports geostrophic
balance defined by Eq. (18a) and (18b). Firstly, relation
(Eq. 18a) in terms of the variables defined in Eq. (41) and
for wavenumber k is

k

Lx

√
BC ˆ̃ρ′ = f ψ̂, (46)

which is consistent with Eq. (45). Secondly, and trivially, re-
lation (Eq. 18b) is equivalent to ∂χ/∂x = 0, which is also
consistent with Eq. (45). There is no vertical wind associated
with the R mode. There remains a buoyancy component for
this mode to support hydrostatic balance defined by Eq. (19).
Relation (Eq. 19) in terms of the variables defined in Eq. (41)
and for wavenumbers k,m is

m
√
BC

Lz
ˆ̃ρ′ =−Ab̂′, (47)

which is consistent with Eq. (45).

4.4 The pure gravity waves

Following Kalnay (2002), pure gravity waves can be investi-
gated by neglecting rotation and pressure perturbations (by
Eq. 13 density perturbations are therefore neglected too).
We anticipate that the gravity waves will be sensitive to A
given that A is related to the static stability parameter N (the
Brunt–Väisälä frequency). Under these conditions, Eq. (43)
has two eigenvalues, σg = A and σg′ =−A, representing the
pure gravity wave frequencies. In the limit ofA= 0, no grav-
ity waves are supported.

4.5 The pure acoustic waves

Following Kalnay (2002), pure acoustic waves can be in-
vestigated by neglecting rotation, gravitation, and stratifica-
tion (i.e. set f = 0, g = 0, A2

= 0, and b′ = 0). Under these
conditions, Eq. (43) has three eigenvalues, σ = 0 (which
is an incompressible mode that does not interest us here),
σa =
√
BC

√
(k/Lx)2+ (m/Lz)2, and σa′ =−σa, the latter

two representing the pure acoustic wave frequencies. The
pure acoustic wave speed in the horizontal (for example) is
∂σa/∂k, which becomes

√
BC in the small-scale limit. In the

limit that B = 0 or C = 0, the system becomes incompress-
ible and no acoustic waves are supported.

4.6 Wave speed analysis experiments

In Sect. 4.4 and 4.5, we demonstrated how the pure gravity
and acoustic waves depend upon the parameters A, B, and
C. The analysis there was simplified (by explicitly neglect-
ing processes that are not directly associated with gravity and
acoustic waves, respectively) in order to derive analytical ex-
pressions. Here, we look at the gravity and acoustic wave
speeds in a more detailed way without making the approxi-
mations made before. These reveal the normal modes of the

linearised system of Eq. (40) (see, e.g. Thuburn et al., 2002),
which now includes rotation, gravitation, and stratification.
We show how the wave speeds behave in the linearised sys-
tem, and as a function of wavenumber, and of parameter val-
ues. To reduce the stiffness of the system, we would like the
speeds of the gravity and acoustic modes to have value ∼ U
or∼ V , the characteristic speeds of the horizontal wind com-
ponents, and thus the results of this subsection are important
for choosing parameter values for suitable model runs.

The standard values of the parameters that we use for this
section are A= 0.02s−1 (estimated from a typical value of
the Brunt–Väisälä frequency), B = 1.0, C = 105 m2 s−2 (es-
timated from initialising data), and f = 10−4 s−1, and for
simplicity, periodicity is assumed in the x and z directions.

Figure 2 shows the horizontal group speeds for the gravity
(cg = ∂σg/∂k; Fig. 2a) and acoustic (ca = ∂σa/∂k; Fig. 2b)
waves as a function of the integer index, nx (characterising
the horizontal wavenumber k = 2nxπ/Lx) for a range of pa-
rameter values (the integer index, nz, characterising the verti-
cal wavenumber m= 2nzπ/Lz, is fixed at nz = 3). Note that
these k andm values are slightly different from those used in
Sect. 4.1 to 4.5.

Gravity waves in the approximated system are found to be
stationary (Sect. 4.4), but gravity waves in the full system are
not; see Fig. 2a. There is a strong sensitivity of cg toA (larger
A, faster gravity waves), and the fastest gravity waves have
large horizontal and large vertical scales (small nx and nz).
There is also a sensitivity of cg toBC, which is especially ev-
ident at large vertical scales and over large and intermediate
horizontal scales (not shown, but see Sect. 5.3.3).

Acoustic waves in this system have different characteris-
tics to the gravity waves in many respects. Acoustic waves
can be much faster, but their speed may be controlled via the
strong sensitivity of ca to BC, and the fastest acoustic waves
have small horizontal and small vertical scales (large nx and
nz); see Fig 2b. It is at these small scales that the acous-
tic waves saturate to the value

√
BC as found in Sect. 4.5.

The sensitivity of ca to A is weak for the smaller values of
A tested but moderate for the largest value of A tested (not
shown).

The ability of the parameters A, B, and C to change the
speed of both the horizontal gravity and acoustic waves has
been demonstrated in Fig. 2. The buoyancy frequency param-
eter A primarily controls the gravity waves, and the product
BC primarily controls the acoustic waves. The vertical grav-
ity and acoustic wave speeds respond in a similar way to the
parameters as the horizontal waves (not shown). In addition
to modifying the acoustic wave speeds, B and C have other,
separate effects: B slows advection round the domain, and C
influences the hydrostatic and geostrophic balance relation-
ships (see Sect. 2.2). It is permissible to alter the value of
only one or any combination of these parameters depending
on the required result. These results are used in the next sec-
tion to help choose suitable parameter values.
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Figure 2. (a) Sensitivity of the horizontal gravity wave group speed to the tunable parameter A (in s−1), where BC = 105 m2 s−2. (b) Sen-
sitivity of the horizontal acoustic wave group speed to BC (in m2 s−2), where A= 0.02s−1. In panels (a, b), f = 10−4 s−1 and the vertical
wavenumber index is nz = 3.

4.7 Reference parameters

In this section, some desired dynamical characteristics that
are seen in the real atmosphere are demonstrated in this sim-
plified setup. It is required that the model mimics the multi-
scale behaviour of the real atmosphere, i.e. displays hydro-
static and geostrophic balance on the large scale while per-
mitting imbalance and intermittent convective-like behaviour
on the small scale, while allowing an explicit solver. The
results from the linear analysis of Sect. 4.6 give a taste of
how the wave speeds depend on A, B, and C, but the values
that we settle on as reference values are A= 2× 10−2 s−1,
B = 10−2, and C = 104 m2 s−2.

Figure 3a shows the frequencies and the magnitudes of the
horizontal and vertical wave speeds for the gravity and acous-
tic waves for these reference parameters. The acoustic wave
frequencies in Fig. 3a are always higher than those of the
gravity waves (the latter, with an upper bound of A). The fre-
quencies of the gravity and acoustic waves for nz = 3 (left)
are of the same order, but the acoustic wave frequencies for
the extreme case of nz = 59 (right) have much higher values
by more than an order of magnitude. These are classic disper-
sion curves for these modes in the atmosphere (e.g. Fig. 14.9
of Salby, 1996), and they allow us to estimate that the highest
frequency that the model will encounter with these parame-
ters is∼ 0.25s−1 (4 s period, from the right panel of Fig. 3a).
The parameter values though will (in Sect. 5.3) be changed
by an order of magnitude each. Over these extended param-
eter values, the maximum wave frequency is found to be
∼ 1.6s−1 (0.625 s period). This allows us to set the time steps
of our model (Sect. 3.3.1), which we choose as 1t = 0.1 s
and δt = 0.05 s. We use these values for all experiments.

The ability to control speeds in order to make the gravity
and acoustic wave speeds comparable is more effective than
the ability to control frequencies. Comparing, for instance,
Figs. 3b and 2 shows how the gravity and acoustic wave
speeds have been reduced to comparable values (a maximum

of 10 ms−1 with the reference parameters, compared with a
maximum of 1000 ms−1 for the parameters tested for Fig. 2).
The speed of 10 ms−1 applies in the horizontal (Fig. 3b) and
in the vertical (Fig. 3c). As well as using a 1t that is smaller
than the shortest wave period (see above), we can use the
maximum wave speed to also check that1t is consistent with
the grid spacings (1x and 1z) via the CFL condition (Dur-
ran, 1999). Typically, this states that the Courant number,
Co, satisfies 0≤ Co ≤ 1 for stability of the numerical solu-
tion. Given that 1x = 1500 m, 1z= 250 m, and 1t = 0.1 s,
the Courant number is Co=1t × (umax/1x+ umax/1z)=

0.1× (10/1500+ 10/250)≈ 0.005, which satisfies the CFL
condition for the reference parameters. The maximum wave
speed for the other parameter sets studied in Sect. 5.3 is
∼ 30 ms−1, which still results in a small Courant number.

5 ABC model integration results

5.1 Idealised initial conditions

The model was first initialised with idealised initial condi-
tions to ensure that the model behaves reasonably with the
reference parameter values. In this run, the initial conditions
are zero for all variables apart from ρ̃′, which takes the form
of the Gaussian described in the caption (Fig. 4a). The ρ̃′

and (u,v) fields for up to 6 h are shown in Fig. 4. In the real
atmosphere, such a positive density perturbation induces an-
ticyclonic motion as geostrophic adjustment develops, and a
similar response is seen in the toy model (the “vertical” com-
ponents of the arrows represent meridional wind, which is
out of the page on the right and into the page on the left).
After 3 h (Fig. 4b), the horizontal wind is significantly diver-
gent, indicating that the ρ̃′ perturbation is being dissipated
by gravity waves which smooth out the initial perturbation,
whose maximum value has reduced to about a third of its
original value. After 6 h (Fig. 4c), the flow is mainly rota-
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Figure 3. Gravity and acoustic wave properties for the reference parameters A= 2×10−2 s−1, B = 10−2, and C = 104 m2 s−2. The panels
are frequencies (a) and the magnitudes of the horizontal (b) and vertical (c) wave speeds. In panels (a) and (b), values are a function of
horizontal wavenumber, nx ; the left column is for nz = 3, and the right column is for nz = 59. In panel (c), values are a function of vertical
wavenumber, nz; the left column is for nx = 10, and the right column is for nx = 350.

tional (there is a weak convergent flow near the centre of the
domain) and the ρ̃′ perturbation has moved to the boundaries.

Figure 4 can be used to verify the wave speeds determined
by linear analysis. Consider Fig. 4b, where the edge of the
feature has propagated approximately 80 km over the 3 h.
This gives an approximate horizontal gravity wave speed of
∼ 7 ms−1, which is around the maximum horizontal gravity
wave speed found from the linear analysis in Fig. 3b.

5.2 Intermittent convection-like behaviour

Convective motion in the atmosphere is difficult to model and
to assimilate, as it is often intermittent and associated with
small-scale divergence. In the real atmosphere, it is usually
driven by latent heating, but our simple model is dry, and
thus we rely on other processes such as wave breaking to
drive such motion. Intermittent convection-like motion is a
desirable property of our model in order for it to have a sig-
nificant unbalanced component on the small scale and hence
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(a) t= 0s (b) t=10800 s (3 h) (c) t=21600 s (6 h)

Figure 4. Model integration of the density perturbation ρ̃′ (colours) and horizontal wind vectors. The initial conditions are zero for all
variables apart from ρ̃′, which takes the form of a Gaussian with an amplitude 0.01, a horizontal length scale of 90 km, and a vertical length
scale of 700 m. The Gaussian is positioned in the middle of the domain. Parameters have the reference values A= 2×10−2 s−1, B = 10−2,
and C = 104 m2 s−2. Note that the y component of each wind arrow is the meridional, not the vertical, component of the wind. At 6 h, the
maximum magnitude of the u wind is ∼ 1.4 ms−1 and the maximum value of the v wind is ∼ 3.6 ms−1.

be a useful system to study convective-scale data assimila-
tion.

An indication of the presence of convection is vertical mo-
tion, and vertical motion necessarily indicates an imbalance;
see Eq. (45). We look at thew field from an integration of the
model firstly with the reference parameters. The initial con-
ditions of the model were created from the following proce-
dure.

– Take values of u, v from a latitude/height slice of an out-
put the Met Office’s convective-scale (1.5 km grid) UM
(this is the same model used by the Met Office during
the 2012 Olympics, as indicated by Golding et al., 2014,
and has the same horizontal resolution and grid stagger-
ing as our model). These fields are adjusted to elimi-
nate the discontinuity imposed by the periodic boundary
conditions1.

– Calculate ρ̃′ by integrating the geostrophic balance
equation (Eq. 18a) on each level.

– Calculate b′ from the hydrostatic balance equation
(Eq. 19) for each horizontal location.

1This is done by incrementing the left half of the domain
by the amount −((1− δ)/2)exp

[
−(x/`)2

]
and the right half by

+((1− δ)/2)exp
[
−((x−Lx)/`)

2
]
, where x is the horizontal dis-

tance from the western boundary, `= 150 km is the relaxation dis-
tance,1 is the size of the discontinuity in u or v (i.e. the magnitude
of the difference in u or v between the western and eastern bound-
aries in the raw UM data), and δ is the magnitude of a typical incre-
ment of u or v between neighbouring grid boxes. This procedure is
performed separately for each vertical level.

– Calculatew from the continuity equation for zero three-
dimensional divergence.

Each variable is then incremented (independently for each
level) so that its horizontal mean is zero, and finally ρ̃ is set as
ρ̃ = 1+ρ̃′. The model’s initial conditions are then nearly bal-
anced (the incrementing will disrupt the hydrostatic balance
slightly), and unbalanced motion (including convection-like
behaviour) then develops.

Figure 5 shows w over a 6 h integration of the model us-
ing the reference parameters. The initial conditions in Fig. 5a
show vertical winds that are of relatively small scale in the
horizontal, with elongated structures over the lowest 5 km or
so in the middle of the domain. These are of course not gen-
erated by this model but are derived from the UM data. An
indication of the kind of behaviour that this model is capable
of generating is shown in Fig. 5b and c, for 3 and 6 h into
the forecast, respectively. The most striking aspect of the w
field at 3 and 6 h is that the scales of the features are even
smaller than those at t = 0. Additionally, the magnitudes of
w are smaller with very small regions of moderate values es-
pecially in the eastern part of the domain. The similarity in
these qualitative aspects of Fig. 5b and c shows that this kind
of behaviour is not merely transient. We regard these plots as
indicators of intermittent convection-like behaviour, which is
studied further below.

5.3 Systematic exploration of model behaviour over
parameter space

In order to test novel approaches to data assimilation, it is
desirable to run the model in different flow regimes, which
we investigate by varying the parameters A, B, and C sys-
tematically, each over a 3 h model run. We are particularly
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(a)  t=0s (b) t =10800 s (3 h) (c)  t=21600 s (6 h)

Figure 5. Model integration of the vertical wind w up to 6 h. The initial conditions in (a) are derived from an output of the UM as described
in the text (Sect. 5.2). Parameters have the reference values A= 2× 10−2 s−1, B = 10−2, and C = 104 m2 s−2. At the initial time, the
maximum magnitude of w is ∼ 0.6 ms−1, and at 6 h it is ∼ 0.16 ms−1. Red (blue) indicates positive (negative) values of w.

interested in understanding how the parameter values affect
the degree of convection and of imbalance, and we start this
investigation by introducing the diagnostics for the reference
parameters.

5.3.1 Reference parameters

We settle on four kinds of diagnostic for each parameter set,
which are shown in Fig. 6 for the reference parameters. Fig-
ure 6a is the vertical wind speed, and Fig. 6b is the effective
buoyancy, bueff. The latter is defined as the (non-constant)
stability bueff = ∂

(
b0(z)+ b

′(x,z)
)
/∂z, where ∂b0(z)/∂z=

A2. A positive (negative) effective buoyancy indicates stat-
ically (un)stable air, so negative and small positive values
suggest convective activity (contours for negative values of
w and bueff are dashed). Figure 6c is the distribution of trac-
ers after 3 h. The tracers were initialised at t = 0 on a grid of
20 points distributed throughout the domain (small rectangu-
lar regions in Fig. 6c) and the distribution after 3 h provides
an indication of the history of the wind behaviour. These
fields are labelled with the minimum, maximum, and root
mean squared values. Figure 6d indicates the degree of rela-
tive geostrophic imbalance (blue lines and left scale) and hy-
drostatic imbalance (red lines and right scale) averaged over
the domain, at half-hour intervals over the integration. These
quantities are found, respectively, using Eqs. (18a) and (19)
to give

geo. imbal= rms
[(
C
∂ρ̃′

∂x
− f v

)
/
(
rms(C∂ρ̃′/∂x)+ rms(f v)

)]
, (48a)

hydro. imbal= rms
[(
C
∂ρ̃′

∂z
− b′

)
/
(
rms(C∂ρ̃′/∂z)+ rms(b′)

)]
, (48b)

where rms indicates the root mean squared value of the quan-
tity in brackets over the domain. The fields ρ̃′, v, and b′

are filtered before computing these diagnostics by removing
scales (i) below 100 km (to give the solid lines in Fig. 6d),
(ii) below 10 km (to give the dashed lines), and (iii) below
1 km (i.e. unfiltered, to give the dotted lines). This gives us

an indication of how the degree of imbalance is affected by
scale.

There are variations of upward and downward vertical mo-
tion over the domain (Fig. 6a), but there are no regions that
are specifically more convectively active than others. The
bueff diagnostic is fairly uniformly small over most of the
domain (Fig. 6b) but does have more variability in the up-
permost 5 km of the domain where it is weakly negative in
a thin layer at 14 km (sandwiched between two strongly sta-
ble layers) during this snapshot. There is a small amount of
disturbance of the tracer field after 3 h (Fig. 6c).

The Rossby number is estimated to be small (Ro∼ 0.06),
and the geostrophic imbalance is found to be moderate for the
reference run (Fig. 6d), which stabilises to around 0.45 when
only large scales are present, but higher, to around 0.7 to 0.8,
when smaller scales are included (see the blue lines and the
left-hand scale in Fig. 6d). The hydrostatic imbalance also
increases as the scales shorten (see the red lines and the right-
hand scale in Fig. 6d) but is much lower than the geostrophic
imbalance (0.025 for the smallest scales). By estimating the
magnitudes and length scales of the fields in this run, the
scale analysis in Sect. 2.2 does show that the last two terms
in Eq. (17a) and (17c) to be much larger than the other terms
by about 3 and 6 orders of magnitude, respectively.

In order to check that the linear analysis of Sect. 4 is
relevant to the non-linear model integration, Table 3 com-
pares the horizontal gravity wave speeds found from the lin-
ear analysis applied to the reference values, to the propa-
gation speed of anomalies in the horizontal divergence field
found from time sequences of model output (not shown; we
refer to this as “feature tracking”). Horizontal divergence,
∇h(u,v)= ∂u/∂x+∂v/∂y = ∂u/∂x =∇

2
hχ (where χ is the

velocity potential used in Sect. 4.1), is often associated with
gravity wave activity. As is shown in Sect. 4, the wave speeds
are dispersive in this system as so are a function of the hor-
izontal and vertical wavenumbers. The relevant wavenum-
bers are found by looking at the characteristic length scales
of the fields (second and third columns in Table 3), which
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(d) Geo. and hydro. imbalance

(c) Tracer, t = 3 h

(a) Vert. motion (m s-1), t = 3 h

(b) Eff. buoyancy (s), t = 3 h

T

T

Figure 6. Selection of diagnostic fields for the reference parame-
ters A= 0.02s−1, B = 0.01, and C = 10000m2 s−2. Panels (a)–
(c) are after a 3 h forecast, except for the small rectangular shapes
in panel (c), which represent the tracer at t = 0. In panel (d), the
imbalances are shown as a function of forecast lead time and hori-
zontal scale. The blue lines (and the left scale) are for geostrophic
imbalance, and the red lines (and the right scale) are for hydrostatic
imbalance. The Rossby number is Ro∼ 0.06.

for all experiments conducted in this paper correspond, re-
spectively, to horizontal wavenumber index nx = 3 and ver-
tical wavenumber index nz = 2. The corresponding horizon-
tal gravity wave speeds from the linear analysis are given in
the fourth column, and the measured speed from the feature
tracking is given in the fifth column. The values are compa-
rable (in this and the other experiments), suggesting that the
linear analysis is indeed a useful guide to the behaviour of
the non-linear model.

Energy in the continuous system of equations was proven
to be exactly conserved in Sect. 2.3, but the discretisation and
numerical integration scheme introduce errors which will
lead to non-conservation. Figure 7a (black solid line) shows
that these errors do lead to a small loss of energy over the 3 h
(less than half of a percent of the initial energy), which we
assume is acceptable.

5.3.2 Changes to the parameter A

Recall that the parameter A controls the gravity wave fre-
quency and speed. In this section, two 3 h integrations are
done: one with A decreased by an order of magnitude (A−;
Fig. 8, left panels) and one with A increased by an order of
magnitude (A+; Fig. 8, right panels).
A− appears to result in more active w values than in the

reference run, and A+ appears to result in slightly less active
w values (Fig. 8a). The effective buoyancy (Fig. 8b) has more
structure than in the reference run, with bands of lowered
bueff appearing inA− (with patches of slightly negative bueff
in the lower part of the domain which are too small to show as
contours in the left plot of Fig. 8b), whileA+ has no negative
values at all. The increased vertical motion in A− is seen in
the tracer fields (Fig. 8c), which have been transported more
vertically in A− and slightly less vertically in A+ than the
reference run. These results make physical sense given that
A controls the static stability of the fluid.

There are differences and similarities in the geostrophic
and hydrostatic imbalances between A−, A+, and the refer-
ence run (Fig. 8d). In terms of geostrophic balance, A− is
seen to be more balanced, and A+ is slightly less balanced
than the reference run, and they all have similar Rossby num-
bers ∼ 0.06. This observation seems counter-intuitive since
we would expect the higher gravity wave speed ofA+ to lead
to a state of more, not less, balance (although the adjustment
timescale – indicated by the continuous blue curves in Figs.
6d and 8d – is shorter for A+). The effect of A on the gravity
wave speeds is discussed in Sect. 4 and is confirmed further
in Table 3, which compares the linear analysis and feature
tracking analysis approaches. A− does indeed show a signif-
icant decrease in the gravity wave speed, and A+ shows an
increase, and the degree of change is roughly consistent be-
tween the two approaches. In terms of hydrostatic balance,
A− is slightly less balanced and A+ is much less balanced
than the reference run.A− is consistent with our expectation,
but A+ is not.
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Table 3. Summary of the characteristic horizontal and vertical length scales found for each of the experiments (estimated after 3 h model
integrations), the horizontal gravity wave speeds corresponding to these scales as found from the linear analysis, and an estimate of the
gravity wave speed found by tracking features in the horizontal divergence field (∂u/∂x).

Experiment LH
v (km) LV

v (km) Horiz. grav. wave speed, cg (ms−1)

Linear analysis Feature tracking

Ref 97 4.6 8.6 9.6
A− 99 4.5 1.3 2.7
A+ 99 4.7 9.4 10.1
B− 100 4.6 2.1 2.9
B+ 98 4.7 18.6 22.1

Figure 7. Relative total energy, E(t)/E(0), from 3 h runs of the model with the reference parameters (“Ref”) and the six subsequent ways
that the parameters were changed. The labels describe which parameter is modified in a model run and the+(−) indicates that it has been
increased (decreased) by an order of magnitude from its reference value (with the remaining parameters unchanged). Panel (a) is for the
model with the standard model grid length as documented in this paper (e.g. 1x = 1.5 km) and (b) is for the same parameter sets and
(downscaled) initial conditions but with a model version with half grid lengths in the horizontal and vertical directions simultaneously.

Even though we have ensured that the Courant number is
small for all experiments (Sect. 4.7), we ask the question: is it
possible that these unexpected balance results are artefacts of
numerical imprecision? Is it possible that, asA is changed by
an order of magnitude for A− and A+, the changes in speed
of the waves (especially gravity) or changes in the vertical
transport may result in a loss of precision and hence lead to
unreliable balance diagnostics?

The first issue (imprecision due to the change in the wave
speeds and thus the Courant number) is first studied by inves-
tigating the dependence of the balance diagnostics to changes
of the integration time step 1t . It is found that 1t can be in-
creased up to ∼ 50 times (i.e. to ∼ 5 s, thus increasing the
Courant number) before there are any noticeable changes to
any of the balance diagnostics (not shown). This suggests
that any loss of precision due to a too-long 1t used in the
main experiments can be ruled out. The Courant number can
also be increased by reducing the grid size. It was found that
the grid size can be halved (in the horizontal and vertical di-
rections simultaneously) without qualitatively changing the
balance results. In these higher-resolution experiments, it is

found (not shown) that the measured degree of imbalance re-
duces in all runs, but the degree of imbalance relative to each
experiment is unchanged (i.e. A− still has more geostrophic
balance than the reference run, and A+ has slightly less, and
this qualitative agreement is true also for the experiments to
be discussed in later sections when run at higher resolution).
This suggests that, although the higher-resolution runs have
a different precision to the standard resolution runs, the fact
that the results are qualitatively the same indicates that our
results are probably robust.

The second issue (imprecision due to change in the ver-
tical motion) is studied by noticing that there is an asso-
ciation between greater vertical motion, and increased en-
ergy loss (we assume that energy loss is in turn associated
with imprecision). The less statically stable A− run results
in more vertical motion and more energy loss than the refer-
ence run (4 % loss over the 3 h, solid red line in Fig. 7a) and
the more stable A+ run results in less vertical motion and
less energy loss (0.2 % loss, dotted red line). Can this mean
that variations in imprecision lead to unreliable diagnostics
and hence are responsible for the counter-intuitive balance
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(b) Eff. buoyancy (s), t = 3 h

(c) Tracer, t = 3 h

(d) Geo. and hydro. imbalance

(a) Vert. motion (m s-1), t = 3 h
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Figure 8. The same as Fig. 6 but for the modified A parameter: A= 0.002 s−1 (A−, left panels, Ro∼ 0.06) and A= 0.2 s−1 (A+, right
panels, Ro∼ 0.07). The remaining parameters are as for the reference run (B = 0.01, C =10 000 m2 s−2).
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results summarised above? The higher-resolution runs men-
tioned above are more successful at conserving energy (the
higher-resolution counterparts of Fig. 7a are shown on the
same scale in Fig. 7b). A−, e.g. loses ∼ 2.5 times less en-
ergy at the higher-resolution than A− at standard resolution
(solid red lines). This suggests that the numerical integrations
(and hence the balance diagnostics) for the higher-resolution
runs are more reliable. Since the high-resolution balance di-
agnostics are qualitatively the same as those of the standard
resolution results shown, this suggests that our results are not
anomalous. This is not a definitive conclusion, but it does
demonstrate some robustness of our results. The counter-
intuitive balance results though remain unexplained at this
stage, although it should be noted that the balance diagnos-
tics themselves may only be meaningful to compare within
the same system of parameter values rather than between dif-
ferent systems.

5.3.3 Changes to the parameter B

Recall that the parameter B (with C) controls mainly the
acoustic wave speed. Two further 3 h integrations are done:
one with B decreased by an order of magnitude (B−; Fig. 9,
left panels), and one with B increased by an order of magni-
tude (B+; Fig. 9, right panels).
B− results in similar magnitude w values as the reference

run, and B+ results in a slight increase, but there is little
change to the structures of the w field (Fig. 9a). The effective
buoyancy is largely unaffected by the changes in B (Fig. 9b).
A similar story applies to the tracers for B−, but the tracers
for B+ do show increased vertical transport (Fig. 9c), which
is consistent with the larger root mean squared w for B+.
B− (B+) has slightly more (less) geostrophic and hydro-
static balance, and the Rossby number remains small,∼ 0.07
(∼ 0.11). As discussed in Sect. 5.3.2, one would normally
assume that a faster wave speed, as in the B+ run, would
result in more balanced fields, but this is not the case here.
The scale analysis in Sect. 2.2 reveals though that it is the
product BRo, rather than just Ro, that is the quantity that
scales terms that knock the system out of balance, and BRo
is smaller (larger) in B− (B+) than in the reference run.

Changing B affects mainly the acoustic wave speed, but it
can effect the gravity wave speed too. This is shown by the
linear analysis and feature tracking analysis in Table 3, which
shows a consistent decrease in the horizontal gravity wave
speed for B− and an increase for B+. Although this effect
of B on the gravity wave speeds is large at these scales, its
effect on the acoustic waves is much greater (for the scales in
Table 3, the acoustic waves vary between 0.1 ms−1 for B−
and 30 ms−1 for B+). Note that for smaller vertical scales
the influence of B on the gravity wave speed is much smaller.

Changing the B parameter has a dramatic effect on the en-
ergy conservation (Fig. 7a), whereB− yields the least energy
loss of all experiments (on the scale used, the numerical loss
of energy is indistinguishable from a perfectly conservative

scheme – solid blue line in Fig. 7a), but B+ results in one
of the most erroneous runs (an 8 % loss in energy over 3 h,
dotted blue line). Reducing the time step of the integration to
1/10 of the value used in the main runs improves the energy
conservation only marginally (not shown), but halving grid
lengths (in the horizontal and vertical) improves the conser-
vation (e.g. just over 2 % loss over 3 h for B+, dotted blue
line in Fig. 7b).

5.3.4 Changes to the parameter C

Recall that the parameter C (with B) controls mainly the
acoustic wave speed. Two further 3 h integrations are done:
one with C decreased by an order of magnitude (C−) and
one with C increased by an order of magnitude (C−). The
initial conditions for C− and C+ each differ from those
used before, as the procedure used to generate balanced ini-
tial conditions described in Sect. 5.2 from UM data depends
on parameter C.

The C− and C+ results are not shown because they are
virtually indistinguishable from the B− and B+ runs, re-
spectively (including the relative balance results). There are
two differences though. The first is that ρ̃′ is scaled by C−1

(when C is decreased (increased) by an order of magnitude,
ρ̃′ (not shown) is increased (decreased) by an order of mag-
nitude compared to the B− (B+) runs, with the field struc-
tures remaining the same). This is seen in the scale analysis
Eq. (17), where C and P ′ (the characteristic value of ρ̃′) al-
ways appear together as a product. This is how the C− and
C+ runs maintain the same level of geostrophic and hydro-
static balances as theB− andB+ runs, respectively. The sec-
ond difference is seen in the numerical scheme’s energy loss.
The B+ run (at the original model resolution) loses energy
significantly (8 %), but the C+ run loses less (1 %, dotted
green line of Fig. 7a), and the C− run loses even less (around
0.1 % , solid green line). This is another beneficial effect of
introducing the B parameter (i.e. the same value of a partic-
ular desired acoustic wave speed

√
BC can be achieved by

decreasing B and increasing C).

6 Conclusions

A set of simplified mass- and energy-conserving equations
has been derived which allows the gravity and acoustic wave
characteristics to be controlled with three parameters: A (the
pure gravity wave frequency), B (the modulation of the di-
vergent term in the continuity equation, and of the advection
terms in other equations), and C (the proportionality con-
stant for the toy model’s equation of state). The term

√
BC

is the pure small-scale acoustic wave speed. The introduction
of B allows the acoustic wave speed to be reduced so that it
is comparable to the gravity wave speed, hence allowing ex-
plicit integration schemes to be used to approximate the so-
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(b) Eff. buoyancy (s), t = 3 h

(c) Tracer, t = 3 h

(d) Geo. and hydro. imbalance

(a) Vert. motion (m s-1), t = 3 h
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Figure 9. The same as Fig. 6 but for the modified B parameter: B = 0.001 (B−, left panels, Ro∼ 0.07) and B = 0.1 (B+, right panels,
Ro∼ 0.11). The remaining parameters are as for the reference run (A= 0.02 s−1, C =10 000 m2 s−2).
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lution of the equation set (such as the split-explicit, forward–
backward scheme used here).

The linearised equations support a zero-frequency Rossby-
like mode and dispersive gravity and acoustic modes. The
system is shown to behave in a way that reflects aspects
of the atmosphere, namely geostrophic adjustment, convec-
tive behaviour influenced by buoyancy, and scale-dependent
geostrophic and hydrostatic imbalances. Some of the results
concerning the effect of changing A on the degree of balance
are counter-intuitive. Although we believe that the numerical
results are robust, further work could be done to understand
these results. It may be simply that the diagnostics (Eq. 48)
cannot be compared between sets of parameters. The model
has no water vapour, which simplifies the scheme consider-
ably (although water vapour and moist processes could be
added if required). The energy is not perfectly conserved in
practice, which is due to the finite discretisation of the model
(and to the choice of integration scheme), although numerical
energy loss is assumed to be acceptable in most runs.

The purpose of developing this model is to facilitate re-
search into ways of modelling the background error co-
variance matrix (B) used in convective-scale data assimi-
lation. The B matrix is normally modelled with guidance
from large-scale dynamics, namely that geostrophic balance
is dominant, and hydrostatic balance is exact. These assump-
tions are probably not applicable at convective scales (as
shown by Berre, 2000, Bannister et al., 2011, Vetra-Carvalho
et al., 2012, Bannister, 2015, and as we have seen here, where
more imbalance is present at the smaller scales). A key idea
which will be explored in a forthcoming paper is to use the
normal mode structure of the linearised equations to define
the B matrix rather than relying on imposed balances. It is
hoped that this will have physically appropriate structures
and the correct degree of balance at different scales (prelim-
inary work has been done by Petrie, 2012).

Code and data availability. The model is written in Fortran 90, and
the plotting code is written in Python. This software is open source
and freely available on a GitHub repository (Petrie et al., 2017). The
initial conditions used to start the model runs studied in this paper
are available from the same repository.
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Appendix A: Linearisation

Many of the model’s equations are non-linear and are there-
fore difficult to analyse. Linearisation of each of these equa-
tions simplifies them to a form that neglects terms that are of
second order or above. Each resulting linear equation is an
approximate form of the non-linear equation and is assumed
to be a reasonable approximation for sufficiently small per-
turbations from a linearisation state. By way of example,
Eq. (8f) is linearised here.

In Eq. (8f), there are three model variables: p, ρ, and θ .
These may be written as a (constant) linearisation state plus a
perturbation, i.e. p(x,z, t)= p0(z)+p

′(x,z, t), ρ(x,z, t)=
ρ0(z)+ρ

′(x,z, t), and θ(x,z, t)= θR+θ0(z)+θ
′(x,z, t), as

in Eqs. (2) and (3). The subscript 0 indicates the linearisation
state, except here for θ , where the linearisation state is θR+

θ0(z). The linearisation state is assumed to obey Eq. (8f),
namely p0 = ρ0R(p0/p00)

κ(θR+ θ0(z)).
Substituting these forms into Eq. (8f), and dropping the

space and time co-ordinates for simplicity, gives

p0+p
′
= (ρ0+ ρ

′)R

(
p0+p

′

p00

)κ
(θR+ θ0+ θ

′).

Expanding this, applying the binomial theorem to the bracket
raised to the power of κ , and ignoring products of perturba-
tions gives

p0+p
′
≈ R

(
p0

p00

)κρ0(θR+ θ0)+ ρ0θ
′

+
ρ0(θR+ θ0)κ

p0
p′+ (θR+ θ0)ρ

′

 .
Eliminating the reference state from each side (since it sat-
isfies Eq. 8f), assuming that θR+ θ0 ≈ θR, and rearranging
results in the linearised Eq. (9).

In this paper, all equations of the ABC model Eq. (15) are
linearised in a similar way to give the linearised model equa-
tions in Eq. (40), which are used to understand the structure
of low amplitude perturbations (waves) that the system can
permit. In this work, the equations are linearised about a state
of rest, i.e. u0 = 0, v0 = 0, and w0 = 0.

Appendix B: Conservation of mass and energy

Gauss’ divergence theorem expressed generically is∫
V

∇ ·AdV =
∮
S

A · ds, (B1)

(e.g. Boas, 2006) where A is an arbitrary vector field, V is a
volume existing in the vector field (dV is a volume element
of V ), and S is the surface of the volume (ds is an area el-
ement of S multiplied by a unit vector pointing normal and
outward to the surface at the position of ds). The divergence
theorem may be used in the ABC model to prove conserva-
tion. The “volume” V represents the entire model domain,

and the “surface” S therefore represents the boundary of the
model (in a plane, the divergence theorem reduces to an area
integral on the left-hand side and a closed line integral on the
right-hand side, and is equivalent to Green’s theorem). The
meaning of A depends upon the application.

To prove conservation of mass, let A= ρu, in which case
Eq. (B1) gives

Lx∫
x=0

Lz∫
z=0

∇ · (ρu)dxdz=

Lz∫
z=0

ρ(0,z)(−u(0,z))dz

+

Lx∫
x=0

ρ(x,Lz)w(x,Lz)dx+

0∫
z=Lz

ρ(Lx,z)u(Lx,z)(−dz)

+

0∫
x=Lx

ρ(x,0)(−w(x,0))(−dx), (B2)

where Lx and Lz are the length and height of the model,
respectively, and the four terms on the right-hand side rep-
resent contributions from the four sides of the model’s do-
main (starting from the lowermost/west-most point and inte-
grating clockwise around the domain). The model has zero
vertical wind values at the top and bottom boundaries (Ta-
ble 2), which removes the second and fourth terms on the
right-hand side. Furthermore, swapping the integration lim-
its on the third integral (which introduces a minus sign to that
term) and noting that the fields are periodic in the horizon-
tal (ρ(Lx,z)u(Lx,z)= ρ(0,z)u(0,z)) leads to the first and
third terms cancelling. The right-hand side is therefore zero.
The equation describing the evolution of the total mass is

∂total mass
∂t

=
∂

∂t

 Lx∫
x=0

Lz∫
z=0

ρdxdz

= Lx∫
x=0

Lz∫
z=0

∂ρ

∂t
dxdz

=−B

Lx∫
x=0

Lz∫
z=0

∇ · (ρu)dxdz= 0,

where the last line follows from the second line using the
mass continuity equation given in Sect. 2.3.1, and the final
zero results from Eq. (B2) being zero as shown above. This
proves conservation of total mass in the ABC model.

To prove conservation of energy, the second and third
terms in Eq. (29) must be shown to be zero. For the second
term, use Gauss’ divergence theorem with A= B(Ek+Eb)u,
and for the third term use A= C

(
ρ̃′ρ̃u

)
. Since each of these

is proportional to u, the same arguments used for mass con-
servation can be used to show that the second and third terms
of Eq. (29) do not contribute. This proves that the rate of
change of total energy integrated throughout the domain, as
in Eq. (29), is zero, and therefore energy is conserved.
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