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Abstract 

The overarching objective of this research is to provide insight into how Thailand can 

sustainably intensify its rice production. To achieve this aim, this research develops an 

innovative approach for measuring agricultural environmental efficiency, which is called 

“the directional nutrient surplus efficiency measure”, which takes place within the 

theoretical context of directional distance function. Thus, the study determines optimal rice 

output and the combinations of inputs used for rice production that will minimise the nutrient 

surplus. This is done using cross-sectional secondary data from 1,112 rice farms which were 

divided into 9 categories for observation for the crop year 2008/09. 

In order to estimate the technical efficiency of the 9 observed groups of Thai rice farmers, 

the directional distance function was used, with different directions of improvement towards 

the production possibility frontier. The results indicate that measuring technical efficiency 

is robust in the context of the model choice for the technically efficient farms, implying that 

different TE measurements (i.e. different directional vectors) do not change the status of the 

technically efficient farms in the observation. 70%, 26%, 55%, 55%, 64%, 40%, 46%, 78%, 

and 34% of the total observations of jasmine rice North, jasmine rice Northeast, jasmine rice 

Central, non-jasmine rice North, non-jasmine rice Northeast, non-jasmine rice Central, non-

jasmine rice South, glutinous rice North, and glutinous rice Northeast, respectively, produce 

on the PPF. The results also indicate that Thai rice farmers have average TE scores ranging 

from 84.1% to 99%, depending on which directional vector is chosen.  

Directional nutrient surplus efficiency measures with the directional vectors towards the 

nitrogen and phosphorus surplus minimum points were applied to measure the nitrogen and 

phosphorus surplus efficiency of Thai rice farming systems. The results indicate that the 

amount of NS discharged into the environment by the observed Thai rice farmers averages 

from 20.1 to 50.7 kg/ha, and the PS discharged into the environment averages from 11.0 to 

28.7 kg/ha. The best practice farms of the 9 observed groups, according to this study, can 

earn higher profits by using fewer inputs, especially inputs detrimental to the environment 

like nitrogen and phosphorus fertilisers, than the average farms in their respective groups; 

this also results in lower amounts of NS and PS being discharged into the environment, 

compared to the average farms in their respective groups. Thus, the environmental problems 

caused by Thai rice farming systems can be solved by adopting the methods of the best 

practice farms, and imposing policies for environmental taxation and site-specific soil 

nutrients testing. 
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 Chapter 1  

Introduction 

1.1 Implications of agricultural intensification 

Agricultural ecosystems are important for both humans and animals as they provide food, 

forage, bioenergy, and medicines (Power, 2010). The majority of global land and fresh water 

is used for agriculture (Power, 2010). Nearly 40% of the world’s surface is used for 

agriculture (FAO 1 , 2009, cited in Power, 2010 p. 2959). Two major constraints on 

agricultural production are the scarcity of farmland and water resources. Inorganic fertiliser 

and pesticides have become important factors in increasing agricultural productivity. 

However, the intensive use of chemical fertiliser and pesticides not only increases 

agricultural production, but also increases the cost of production and generates severe 

environmental problems, especially pollution, biodiversity loss, and changes to the 

ecosystem (Luh and Liao, 2001; Tilman et al., 2011). Inorganic fertiliser can harm 

environmental services such as biological pest control, crop pollination and protection of 

soil fertility (Geiger et al., 2010; Power, 2010). Geiger et al. (2010) also indicate that 

populations of some wild plant and animal species have declined, with some becoming 

extinct, and the functioning of ecosystems have been changed regionally and nationally due 

to agricultural intensification. The global population is projected to be 9.1 billion by 2050 

(34% higher than today), which will result in increased demand for food (FAO, 2009), and 

Tilman et al. (2011) project that global crop demand will increase 100% - 110% from 2005 

to 2050. Thus, the challenge for the future growth of agricultural systems is to 

simultaneously produce enough food to accommodate the demand of future growth and 

reduce the negative impacts on the environment. This implies that crop production systems 

need to achieve higher yields with lower impacts on the environment.  

Sustainable intensification of agriculture has been proposed as a solution to meet the 

challenge of the increasing food demand of a growing global population in an environment 

constrained by factors such as the scarcity of agricultural land and water resources, and 

dangers posed by climate change, agricultural pollution, and biodiversity loss (Godfray and 

Garnett, 2014; Buckwell et al., 2014; Gadanakis et al., 2015; Barnes et al., 2016). The 

concept of sustainable intensification is known as the need to simultaneously increase yields 

on existing agricultural land (without the cultivation of more land), increase input use 

                                                           
1 FAO stands for the Food and Agriculture Organization of the United Nations. 
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efficiency, and reduce the negative externalities of farming systems on the environment in 

order to sustainably use the limited resources for agriculture and ensure food production in 

the future (Pretty et al., 2011; Garnett and Godfray, 2012; Godfray and Garnett, 2014; 

Buckwell et al., 2014; Gadanakis et al., 2015; Barnes et al., 2016). Thus, sustainable 

intensification of agriculture requires the improvement of agricultural ecosystems that rely 

on ecosystem services, including biological pest control, crop pollination, maintenance of 

soil structure and fertility, nutrient cycling, and hydrological services (Power, 2010). Power 

(2010) states that agricultural ecosystems are essential to human wellbeing, because they 

provide food, bioenergy, and medicines for humans. 

The three leading global food crops are rice, wheat, and maize (Loftas et al., 1995; GRiSP2, 

2013), which supply more than 42% of all calories consumed by the global population 

(GRiSP, 2013). Of these three food crops, rice is the main staple food for people in Asia and 

Africa (GRiSP, 2013), areas where the FAO (2009) predicts the highest growth in the world 

population will occur. Global rice consumption is projected to increase from 450 million 

tonnes in 2011 to about 650 million tonnes by 2050 (Rejesus et al., 2012). Thailand is the 

world’s leading rice exporter and the sixth largest rice producing country in the world after 

China, India, Indonesia, Bangladesh, and Vietnam (FAO, 2016), and rice is an important 

crop for Thailand across both social and economic dimensions. The majority of Thai people 

consume rice three times a day with an average consumption of 133 kilograms of milled rice 

per person per year in 2009 (GRiSP, 2013). Rice is also a major crop for Thai farmers. In 

2015, the population in Thailand was approximately 65.7 million people, while the 

agricultural population was approximately 25.1 million people, around 38% of the whole 

population. Approximately 60% of the agricultural population are rice farmers (OAE3). 

Hence, the majority of Thai people are involved in rice production, either as producers or 

consumers. The total land area of Thailand is 51.3 million hectares, which are divided into 

16.3 million hectares of forest, 23.9 million hectares of agricultural land, and 11.1 million 

hectares of non-agricultural land (OAE). 11.2 million hectares, which accounts for 46.9% of 

total agricultural land, are used to cultivate rice. Each year Thailand produces approximately 

22 million tonnes of milled rice, of which 10 million tonnes is exported and this brings high 

revenue to the country (OAE, 2015). The top ten importers of rice from Thailand are China, 

                                                           
2 GRiSP stands for Global Rice Science Partnership 
3 OAE stands for the Office of Agricultural Economics, Thailand 
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the U.S.A., the Philippines, Benin, Nigeria, South Africa, Malaysia, Hong Kong, Cote 

d’Ivoire, and Japan (OAE, 2015). 

1.2 Problem statement 

Environmental challenges for Thailand are dominated by the negative effects of rice farming 

practices on water and land resources. Tirado et al. (2008) indicate that the problem of water 

pollution caused by nitrogen and phosphorus surplus from rice fields is becoming more 

serious in Thailand. Nitrogen surplus causes nitrate contamination of the surface and 

groundwater, while phosphorus surplus causes eutrophication of surface water. Evidence of 

the negative effects of nitrogen and phosphorus surplus from rice cultivation in Thailand is 

reviewed in detail in Chapter 2.  

A key solution to reducing water pollution is to decrease the nitrogen and phosphorus surplus 

from rice cultivation by achieving greater efficiency in the use of nitrogen and phosphorus 

(Nguyen et al., 2012). Thus, Thai rice farming systems need to achieve greater efficiency in 

the use of nitrogen and phosphorus in order to reduce their excess and maintain the 

sustainability of rice-producing environments. Coelli et al. (2007) state that nitrogen and 

phosphorus efficiency can be monitored and evaluated by adjusting traditional methods of 

efficiency analysis by integrating environmental concerns into the standard technical and 

economic efficiency analysis. If Thai farmers apply nitrogen and phosphorus nutrients more 

efficiently, they can simultaneously reduce the negative effects on the environment and 

reduce their cost of production, because nitrogen and phosphorus are costly inputs, and 

reduce adverse health effects on themselves and their consumers. This means that rice 

farming systems would be more ecologically, economically, and socially sustainable. 

Moreover, Thailand would be able to produce more rice: an important consideration, since 

future demand which will increase more than 40% by 2050 (Rejesus et al., 2012).  

1.3 Research gap 

Some researchers have measured the technical efficiency of rice farmers at farm level using 

cross-sectional primary data in specific areas in Thailand (Krasachat, 2004; Songsrirote and 

Singhapreecha, 2007; Kiatpathomchai, 2008; Rahman et al., 2009; Taraka et al., 2010; 

Ogundari and Awokuse, 2016). These researchers used either the input-oriented Data 

Envelopment Analysis (DEA) approach (Taraka et al., 2010; Kiatpathomchai, 2008; 

Krasachat, 2004) or the Stochastic Frontier Analysis (SFA) approach (Ogundari and 

Awokuse, 2016; Rahman et al., 2009; Songsrirote and Singhapreecha, 2007) for their 
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efficiency analysis. The efficiency analyses in these six studies are reviewed in Chapter 3. 

None of the empirical studies of efficiency measurement of rice production in Thailand has 

addressed efficiency analysis for Thai rice farming at farm level for the whole country, or 

investigated the technical efficiency of Thai rice farming using output-oriented DEA and 

directional distance function (DDF). Moreover, only one of these studies (Kiatpathomchai, 

2008) has investigated the environmental efficiencies of Thai rice farmers by incorporating 

nitrogen-leaching and nitrogen-emission in the input-oriented DEA model as input variables. 

Further, none of empirical studies of the efficiency measurement of rice production in 

Thailand refers to the “material balance condition” (Coelli et al., 2007) in its environmental 

efficiency analysis. The material balance condition is defined by Reinhard and Thijssen 

(2000, p. 169) as “the nutrients in desirable output and the discharge of those nutrients equal 

the nutrients in inputs”. This implies that the amount of nutrients (N-Nitrogen, P-

Phosphorus, and K-Potassium) that farmers apply to their crops during cultivation periods 

should equal the amount of nutrients absorbed by plants and discharged into the 

environment.  

1.4 Objectives and research questions 

The overarching objective of this research is to provide insights into how Thailand can 

sustainably intensify its rice production. To this end, this research develops an innovative 

approach to measuring agricultural environmental efficiency by incorporating the material 

balance condition into production efficiency analysis:  as mentioned above, this has not been 

part of previous analyses of Thai rice production efficiency. Thus, the study determines 

optimal rice output and the combinations of inputs used for rice production that will 

minimise the nutrient surplus. This is done using cross-sectional secondary data from 1,112 

rice farms which were divided into 9 categories for observation for the crop year 2008/09. If 

Thai rice farmers use inputs more efficiently, an identical amount of rice output can be 

produced by using a lower amount of inputs, implying that nitrogen and phosphate emissions 

will be reduced. As a result, environmental degradation will be reduced and consequently, 

the health of farmers and consumers should improve. In addition, farmers’ production costs 

will also be reduced.  

Hence, the main focus of this research is the evaluation of the technical and environmental 

efficiency of rice farming systems at a farm level in Thailand. The environmental efficiency 

analysis emphasises minimising the nitrogen and phosphorus surplus arising from the rice 

farming systems by improving efficiency in the use of nitrogen and phosphorus nutrients. If 
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farmers improve the efficiency of their use of these nutrients, they can simultaneously 

achieve their economic and environmental objectives (De Koeijer et al., 1999 cited in De 

Koeijer et al., 2002, pp. 9-10).  

More specifically, this thesis will address the following research questions and their main 

objectives. 

Research question 1: To what extent do Thai rice farmers use an efficient combination of 

inputs for producing rice? Sub-question: What are the existing technical efficiency levels of 

rice production in Thailand?   

This research question is addressed through a comparison of the technical efficiency of Thai 

rice farmers using the input-oriented DEA, output-oriented DEA, and DDF approaches. For 

each group of Thai rice farmers, a contemporaneous production possibility frontier is 

constructed to estimate and compare the performance of Thai rice farmers across the group. 

The estimation of efficiency scores reveals how many farms in the group produce on the 

production frontier and how far the inefficient farms fall short of this frontier. The input-

oriented DEA model reveals to what extent inputs can be reduced whilst still producing the 

same level of rice output. This implies that an inefficient farm can reduce the quantity of 

each input to produce the same level of rice output and thus achieve higher efficiency. The 

output-oriented DEA allows the determination of the extent to which rice output can be 

expanded by using the same level of inputs. This implies that an inefficient farm can manage 

to achieve a higher output by using the same level of inputs and thus be more efficient. The 

DDF model explores to what extent production can be increased and inputs reduced 

simultaneously, implying that an inefficient farm can adopt more efficient strategies that will 

produce more rice while reducing the quantity of all inputs. More generally, the inputs used 

by the efficient farms or the technical best practice farms (TBPFs) can be used as 

benchmarks to improve the technical efficiency of Thai rice farming. 

Research question 2: How can an efficiency analysis of rice farming systems in Thailand 

be developed to accommodate and explore the problem of excess nutrient application on rice 

fields? Sub-question: How can the environmental impact of rice cultivation be assessed? 

The main activity undertaken is the development of an approach for measuring agricultural 

environmental efficiency by adjusting traditional methods of technical efficiency analysis 

through incorporation into the model of environmental concerns (nutrient surplus). The 

nutrient surpluses from rice cultivation that cause environmental problems are nitrogen and 
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phosphorus surplus. Hence, this study focuses on the evaluation of the nitrogen and 

phosphorus surplus efficiency of Thai rice farmers during the environmental efficiency 

analysis. Using the concept of the material balance condition, the nitrogen surplus 

(phosphorus surplus) discharged to the environment is equal to the total amount of nitrogen 

nutrient (phosphorus nutrient) that farmers apply to rice fields minus the total amount of 

nitrogen nutrient (phosphorus nutrient) that is absorbed by the rice plants. There are three 

possible strategies to reduce the nitrogen surplus (phosphorus surplus) arising from rice 

cultivation. Firstly, the nitrogen surplus (phosphorus surplus) can be minimised by 

minimising the total amount of nitrogen nutrient (phosphorus nutrient) in inputs while fixing 

the same level of rice outputs. This implies that the estimation of environmental efficiency 

analysis can be done by adjusting the input-oriented DEA analysis through the incorporation 

of the material balance condition into the model. This environmental efficiency measure 

approach has been proposed by Coelli et at. (2007) and is reviewed in Chapter 3. It has been 

used by Hoang and Coelli (2011), Hoang and Alauddin (2012), and Nguyen et al. (2012) in 

different country settings. Secondly, nitrogen surplus (phosphorus surplus) can be minimised 

by using the same amount of nitrogen nutrient (phosphorus nutrient) in inputs but producing 

more rice output. This implies that the estimation of environmental efficiency analysis can 

be done by adjusting the output-oriented DEA analysis, again by incorporating the material 

balance condition into the model. A review of the literature shows that adjusting the nutrient 

surplus into the output-oriented DEA has not to date been undertaken. Finally, nitrogen 

surplus (phosphorus surplus) can be minimised by simultaneously reducing the amount of 

nitrogen nutrients (phosphorus nutrients) in inputs and expanding rice output. In this case, 

the estimation of environmental efficiency analysis can be done by adjusting the DDF 

analysis by incorporating the material balance condition (i.e. nitrogen and phosphorus 

surplus) into the model. Again, a review of the literature suggests that this has not been 

undertaken to date.  

Thus, this research will propose the measurement for nutrient surplus minimisation within 

the theoretical context of the DDF, using the nutrient surplus minimum point direction, 

known as the “directional nutrient surplus efficiency measure”, to evaluate the 

environmental efficiency of Thai rice farmers.  The concept underlying this measure, and its 

application, will be introduced in detail in Chapter 4, Section 4.9.  

Research question 3:  What scope is there for Thai farmers to produce the same or higher 

rice output using fewer inputs, particularly environmentally damaging inputs? Sub-question: 

What is the current nitrogen and phosphorus use efficiency of Thai rice farmers?   
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The main activities for research question 3 are as follows: a) measurement of the efficiency 

of farms relative to a benchmark in which the lowest possible amount of nitrogen surplus is 

produced using the directional nutrient surplus efficiency measure; b) measurement of the 

efficiency of farms relative to a benchmark in which the lowest possible amount of 

phosphorus surplus is produced using the directional nutrient surplus efficiency measure; c) 

comparison of the results of technical and environmental inefficiencies of Thai rice farming; 

and d) exploration of the implications for policies designed to improve the technical and 

environmental efficiencies of Thai rice farming. 

For each group of Thai rice farmers, a contemporaneous nitrogen surplus minimising frontier 

is constructed to estimate and compare the nitrogen surplus efficiency or environmental 

efficiency of Thai rice farmers across the group. Farms that discharge the minimum nitrogen 

surplus into the environment compared to the other farms in the group will create the 

nitrogen surplus minimising frontier. Then the nitrogen surplus inefficiency level of each 

farm in the group is estimated relative to this frontier. Likewise, a contemporaneous 

phosphorus surplus minimising frontier is constructed to estimate and compare the 

phosphorus surplus efficiency or environmental efficiency of Thai rice farmers across the 

group. Farms that discharge the minimum phosphorus surplus into the environment 

compared to the other farms in the group will create the phosphorus surplus minimising 

frontier. Then the phosphorus surplus inefficiency level of each farm in the group is 

estimated relative to this frontier. The nitrogen surplus and phosphorus surplus inefficiencies 

of each farm in the group are estimated using the directional nutrient surplus efficiency 

measure. This measure ascertains the current level of nitrogen and phosphorus surpluses, 

arising from the Thai rice farming system, which cause negative impacts on the environment. 

Simultaneously reducing the excessive use of nitrogen and phosphorus nutrients in rice 

cultivation and increasing yield, or reducing the excessive use of nitrogen and phosphorus 

nutrients in rice cultivation and maintaining an acceptable yield by improving nitrogen and 

phosphorus nutrients use efficiency, is critical for the success of the sustainable 

intensification of Thai rice farming in the 21st century. Furthermore, the inputs used and rice 

output produced by the nitrogen surplus best practice farms can be used as a benchmark to 

improve the nitrogen surplus efficiency of Thai rice farming. At the same time, the inputs 

used and rice output produced by the phosphorus surplus best practice farms can be used as 

a benchmark to improve the phosphorus surplus efficiency of Thai rice farming. 

Consequently, the results of this study will enable policy makers to create a sustainable rice 

policy in order to improve the standard of living of Thai people, especially rice farmers, who 
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are the majority of the agricultural population. This will allow Thailand to retain its position 

of the world largest rice exporter. More importantly, the negative impacts of rice farming 

systems on the environment will be automatically reduced.  

1.5 Outcomes 

The analysis and findings generated by this thesis contribute to three key areas of agricultural 

policy-making in Thailand. First, the input used by the technical best practice farms 

(TBPFs), which are estimated on the basis of efficiency scores, can be used as a benchmark 

to improve the technical efficiency of Thai rice farming. Secondly, the input used by the 

nitrogen surplus best practice farms (BPFs) and phosphorus surplus BPFs, which are 

estimated on the basis of their efficiency score, can be used as a benchmark to improve the 

nitrogen and phosphorus use efficiency of Thai rice farming. Finally, policy implications for 

technical and environmental efficiency improvement of Thai rice farming are suggested. 

1.6 Structure of research 

This research is organised into seven chapters. Chapter 1 presents the background and the 

objectives of the study. Chapter 2 presents a review of the history of Thai rice cultivation, 

taking into account the evolution of Thai agricultural development policies, and the negative 

environmental effects of overuse of chemical fertiliser in rice farming.  

Chapter 3 presents a comprehensive review of previous empirical studies on technical and 

environmental efficiency measurements of rice farming system, the environmental 

efficiency of other crops, and the application of the directional distance function. 

Chapter 4 has two main objectives: 1) to introduce the relevant efficiency theory, focusing 

on technical efficiency and its estimation using the DEA and DDF, and 2) to introduce the 

directional nutrient surplus efficiency measure, which incorporates nutrient surplus into the 

conventional DDF in a similar manner to that in which price information is normally 

incorporated in the directional profit efficiency measure (Zofio et al., 2013). The directional 

nutrient surplus efficiency measure is used to assess the environmental performance of Thai 

rice production. Furthermore, the basic concepts of the directional profit efficiency measure, 

the material balance condition, the data cloud method, and the non-parametric tests of returns 

to scale are also explained.  

Chapter 5 describes sources of data, how to build the data analysed in this analysis, data 

cleaning, and the descriptive statistics used for this research. Moreover, the source of 
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nitrogen and phosphorus content in inputs and outputs of the observed sample data, and the 

calculation of nitrogen and phosphorus surplus from the observed sample data based on the 

concept of the material balance condition followed by Coelli et al., (2007) are determined 

and presented.  

Chapter 6 consists of four main objectives: 1) to evaluate the technical inefficiency of Thai 

rice farming, 2) to evaluate the nitrogen surplus inefficiency of Thai rice farming, 3) to 

evaluate the phosphorus surplus inefficiency of Thai rice farming, and 4) to compare the 

technical and environmental inefficiencies of Thai rice farming. This chapter starts by 

presenting and discussing the empirical results of the efficiency analysis of the performance 

of 9 observed groups of Thai rice farmers using the DDF models with four different 

directional vectors. The input-oriented DEA and output-oriented DEA models, with the 

assumption of constant returns to scale (CRS) and variable returns to scale (VRS), are 

employed to estimate scale efficiency (SE). Furthermore, the input-oriented DEA and 

output-oriented DEA models, with the assumption of non-increasing returns to scale (NIRS), 

are used to investigate the scale of operation, i.e. whether farms operate at optimal size 

(CRS), larger than the optimal farm size (DRS), or below the optimal scale (IRS). Then the 

application of the empirical results of the nitrogen surplus minimisation and phosphorus 

surplus minimisation models to the measurement of the environmental efficiency of 9 

observed groups of Thai rice farmers is presented and discussed. Furthermore, the groups of 

Thai rice farmers are compared in terms of, the improvement of rice output produced and 

the combination of inputs used per hectare of the average farm, if it produces on the 

production, profit efficiency, nitrogen surplus efficiency, and phosphorus surplus efficiency 

frontiers. Lastly, after a comparison of rice output produced and the inputs used by Best 

Practice Farms, Technical Best Practice Farms, and the most profitable farms, the farm with 

the best practice in each group of Thai rice farmers will be revealed. 

Finally, Chapter 7 addresses the implications of the findings. It discusses the possible 

direction of future research and the potential implications of a policy to improve the technical 

and environmental efficiency of Thai rice farming. 
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Chapter 2 

Recent History of Rice Cultivation in Thailand   

2.1 Introduction  

The main objective of this chapter is to present a comprehensive review of the history of 

Thai rice cultivation, taking into account the evolution of Thai agricultural development 

policies, and the negative environmental externalities of overuse of chemical fertiliser in rice 

farming.  

The chapter is organised as follows. Section 2 reviews the evolution of agricultural 

development policies, especially rice policies, in Thailand, and documents the changes in 

Thai rice production over the past five decades. Section 3 presents the negative effects on 

the environment of overuse of fertiliser in Thai rice cultivation, followed by Section 4, which 

provides explanations from the literature as to why this overuse has taken place. In 

conclusion, Section 5 addresses the importance of environmental aspects for Thai rice 

farming.  

Rice is a staple food for many countries including Thailand, and the majority of Thai people 

consume rice three times a day. Rice is also a major crop for Thai farmers, and a major 

agricultural export which brings high revenue to the country; consequently, Thailand is one 

of the world’s largest rice producers and exporters (FAOSTAT, 2016; USDA4, 2016a). This 

is not only because Thailand has an abundance of land resources and a suitable climate for 

rice cultivation, but also because, thanks to its domestic rice policy, it has retained its position 

as the world’s leading rice exporter (Forssell, 2009). The largest rice producer in the world 

is China, followed by India and Indonesia, while Thailand is the 6th largest rice producing 

country in the world (FAOSTAT, 2016). In 2014, Thailand produced 32.6 million tonnes of 

paddy (21 million tonnes of milled rice) or approximately 4.4% of world production, which 

amounted to 478 million tonnes of milled rice (USDA, 2016b). Of this, it exported 11 million 

tonnes of milled rice (USDA, 2016a) or approximately 25% of the world exports (USDA, 

2016b).  

 

                                                           
4 USDA stands for the United States Department of Agriculture. 
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2.2 History of Thai rice policy from the 1960s to the present 

For developing countries, including Thailand, agriculture and agricultural policy play an 

important role in the economy (Kasem and Thapa, 2012). The agricultural sector can provide 

food at low and stable prices for its population and raw material for the industrial sector. In 

addition, agriculture can help in financing the development of industry, create markets, 

stimulate demand for the products of the manufacturing sector, and earn foreign exchange if 

crops are exported (Rock, 2002, cited in Forssell, 2009, p. 485). Since rice is important crop 

for Thai society and its economy, the creation of an effective rice policy has been important 

for the Thai government. It is necessary in order to improve the standard of living of Thai 

people, especially rice farmers who are the majority of agricultural population, and for 

Thailand to retain its position as the world largest rice exporter. The evolution of rice policies 

in Thailand is discussed in the next section.  

2.2.1 Conventional agricultural development policies since 1960 to 1991 

The main goal of agricultural policies since the first National Economic and Social 

Development Plan (NESDP) of Thailand, implemented in 1961 and lasting until the sixth 

NESDP period (1987 – 1991), was increased rice production for domestic consumption and 

export (NESDB5, 1961). During the 1960s and 1970s, the Thai government focused only on 

improving agricultural production, especially production of rice, through the promotion of 

Green Revolution technology, both in terms of quantity and quality. This was in order to 

accommodate the rising demands of domestic and international consumption: from the 1960s 

onwards, the growth of the world population led to an increasing demand for food. The 

government focused on extending rice cultivation areas, the development of physical 

infrastructures (e.g. expanded irrigation areas, power, and transportation), the use of 

chemical fertilisers and pesticides, the use of modern farm machineries, and improved high 

yielding varieties (HYVs) seed and livestock breeds (NESDB, 1961; NESDB, 1967). The 

government also provided credit to farmers through the Bank for Agriculture and 

Agricultural Cooperatives (BAAC) to enable them to buy modern technologies and build 

facilities for their agricultural activities (NESDB, 1972; NESDB, 1977).  

As a result, agricultural production, specifically that of rice, significantly increased (Figure 

2.1) and Thai agriculture gradually changed from subsistence to semi-subsistence and 

commercial agriculture, and domestic market-oriented agriculture to export-oriented 

                                                           
5 NESDB stands for the Office of the National Economic and Social Development Board, Thailand. 
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(Kasem and Thapa, 2012). As a result of these policies, Thailand has been the largest rice 

exporter in the world market since 1981 (Figure 2.2). Moreover, Thailand has become the 

only country in Asia that has been in the position of a “net food exporter” since the beginning 

of the 1960s (NESDB, 1982, p. 43). The annual growth rate of the national economy during 

the 1960s and early 1970 was 5.7%; thus agriculture became the main engine of Thai 

economy (Poapongsakorn et al., 2006 cited in Kasem and Thapa, 2012, p. 102). 

 

Figure 2.1 Production, harvested area, and yield of rice in Thailand, 1961 – 2014 (Data 

source: the Office of Agricultural Economics (OAE), 2016). 

 

Figure 2.2 Top 5 rice exporters in the World, 1961 - 2015 (Data source: FAOSTAT (2016), 

1961 – 2000, USDA (2016a), 2001 – 2015). 

However, this success was associated with extensive exploitation and destruction of natural 

resources, especially land, forest, water, fish, and minerals. Inefficient natural resources 

management has contributed to relatively rapid deterioration and depletion of natural 

resources (NESDB, 1982, p. 7; Kasem and Thapa, 2012; Chansarn, 2013). The Office of the 

National Economic and Social Development Board (1982, p. 44) indicates that the 
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productivity of major crops, especially rice, has increased slowly at 0.5% per year, while 

most increase in production has been due to area increases. The “expansion of cultivated 

areas” has increased by approximately 4% per year since the 1960s and reached 23.5 million 

hectares in 1982. This consists of 13.4 million hectares (57% of the total cultivation area) of 

paddy fields, and 10.1 million hectares (43% of the total cultivation area) of cash crops and 

perennial crops. The low productivity of rice from the 1960s to the 1980s was due to the fact 

that the use of high yield seeds, fertilisers, and pesticides was still very low. The Office of 

the National Economic and Social Development Board (1982) indicates that the use of high 

yielding rice seeds was only 12% of the total rice cultivation area, and the fertiliser 

application rate was 11.9 kilograms/hectare (kg/ha), while other Asian countries used over 

31.3 kg/ha.  

Thai agriculture had to face the problems of the limitations of land, as suitable land for 

agriculture began to run out and water and forest resources were used inefficiently from the 

1960s to the 1980s without any conservation efforts (NESDB, 1982). Agricultural 

development policies during the 1980s and 1990s (NESDB, 1982; NESDB, 1987) changed 

from “extensive agriculture” to “intensive agriculture”, with the target to “raise agricultural 

productivity”. The Thai government encouraged farmers to improve their productivity rather 

than expand cultivation areas. To achieve this strategy, the government provided improved 

HYVs seed by exchanging seeds, provided increased access to chemical fertilisers by 

subsidising transportation costs for rice farmers in rain-fed areas, and encouraged farmers to 

produce organic fertilisers (NESDB, 1982). Furthermore, the government also encouraged 

farmers to use new technologies, such as chemical fertilisers and improved HYVs seed, by 

providing credit extension to farmers through the BAAC (NESDB, 1982). 

By the end of the sixth NESDP (1987-1991), the share of the agricultural sector in GDP 

gradually declined to 11.5% in 1991, while the industrial and service sectors continued to 

grow at a very high rate (NESDB, 1992). The agricultural sector was still important to the 

Thai economy, since the agricultural employment share remained as high as 64% of total 

national employment (NESDB, 1992). Unfortunately, despite the success of increasing 

agricultural productivity through the policies mentioned above, soil fertility and water 

resources gradually deteriorated due to the intensive use of chemical fertilisers and pesticides 

(Kasem and Thapa, 2012). Besides, farmers were also faced with the problems of adverse 

health effects from agrochemicals, and heavy indebtedness since they relied on credit for 

purchase of inputs (Kasem and Thapa, 2012). Consequently, the Thai government has 
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changed its policies towards sustainable agricultural development policies since the seventh 

NESDP (1992 – 1996) (NESDB, 1992; Kasem and Thapa, 2012).   

2.2.2 Sustainable agricultural development policies from 1992 to the present  

Conventional agricultural development policies since 1960 to 1991 have focused on 

expansion of agricultural land areas, especially areas for rice cultivation, expansion of 

irrigation areas for agriculture, and use of agrochemicals to increase productivity. This has 

created severe environmental problems such as deforestation, natural resource exploitation, 

environmental degradation, and pollution (Kasem and Thapa, 2012; Chansarn, 2013). In 

order to solve these environmental problems, the Thai government has implemented policies 

which concentrate on sustainable agricultural development by restructuring the agricultural 

production system in order to reduce deforestation; increasing sustainable farming practices 

by promoting crop diversification and mixture crops; reducing the use of agrochemicals by 

promoting organic agriculture and farming that utilises both organic and inorganic inputs; 

and focusing on food safety through the adoption of Good Agricultural Practice (GAP) by 

encouraging farmers to use organic fertilisers and bio-pesticides. The rationale for these 

strategies is that they can reduce the environmental and human health problems resulting 

from agricultural practices that employed a greater quantity of agrochemicals. They can also 

increase agricultural productivity and product quality, as well as increasing farmers’ income 

by reducing production costs, since the price of agrochemicals is high (Kasem and Thapa, 

2012).  

Nevertheless, many Thai rice farmers still prefer to monocrop and rely on chemical fertilisers 

and pesticides to maintain productivity and product appearance, and are less concerned about 

environmental degradation. Farmers have increased the use of chemical fertilisers, as can be 

seen in Figure 2.3, because of lack of soil fertility resulting in a decline in agricultural output 

(Tirado et al., 2008). The increase in chemical pesticide use is a result of many factors 

including insect resistance, the resurgence of pests, the industrialisation of crop production, 

switching from low value added to high value added agricultural production, and changing 

to off-season crop production to satisfy market demand and earn higher prices (Tirado et al., 

2008; Panuwet et al. 2012). The reasons why farmers overuse chemical fertiliser will be 

discussed in Section 2.4. 
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Figure 2.3 Quantity used per hectares of organic fertilisers, chemical fertilisers and 

pesticides (Data source: OAE, 2014). 

The use of chemical fertiliser and pesticide6 by farmers in Thailand continued to increase in 

both quantity and intensity (the amount of fertiliser and pesticide used per hectare) between 

1998 and 2013, while the use of organic fertiliser per hectare was low and remained  so 

between 1998 and 2009 (Figure 2.3). The use of organic fertiliser per hectare also increased 

dramatically between 2009 and 2012, with a slight decrease in 2013. However, its use 

remains low compared to chemical fertiliser (Figure 2.3). In 2010, N and P used for rice 

cultivation accounted for 45% and 28% of total nutrients imported7, respectively (Heffer, 

2013). 

The average inorganic fertiliser application rates per hectare of the top 10 largest rice 

producing countries in the world between 1961 and 2013 are shown in Figure 2.4. Of these 

ten countries, the rank of application rate of inorganic fertiliser of Thai rice farmers is 

seventh, but Thailand has the lowest yields (Figure 2.5). The average yield in China is more 

than double of the average yield of Thailand. This is driven in part by China’s average 

fertiliser application rate, which is more than double of that of Thailand (Ricepedia, 2013). 

Moreover, nearly all China’s rice cultivation areas are irrigated, and their adoption of hybrid 

seed is widespread (GRiSP, 2013). Rice yields in China, at greater than 6.5 tonnes per 

hectare, were the highest in Asia since 2009. In contrast, in Thailand, only 25% of the rice 

cultivation area is irrigated (OAE). In addition, Thai farmers prefer to plant high quality 

jasmine rice8 (i.e. Khao Dawk Mali 105 variety) to obtain a premium price in both domestic 

                                                           
6 Most of the chemical fertilisers and pesticides used in Thailand are imported (OAE). 
7 Total N and P imports are 1.3 and 0.3 million tonnes of nutrients, respectively (Heffer, 2013). 
8 Jasmine rice is called “Khao Hom Mali” in Thai.  
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and world markets (GRiSP, 2013). Although this is one of Thailand’s improved seed 

varieties, it has a low yield of approximately 2.3 tonnes per hectare (Rice department, 2010). 

Further major constraints on rice production for major season crops are rainfall variability, 

flood, drought, and poor soil fertility (GRiSP, 2013).   

 

Figure 2.4 Fertiliser application rate (NPK) of top 10 largest rice producing countries in the 

World, 1961 –2013 (Data source: Ricepedia, 2013).  

 

Figure 2.5 Rice yield of top 10 largest rice producing countries in the World, 1961 – 2014 

(Data source: FAOSTAT, 2016). 
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Figure 2.6 Total cost, total revenue, profit, farm-gate price, and yield of Thai rice 1991 - 

2013 (Data source: OAE). 

Greater use of chemical fertilisers and pesticides leads to higher production costs. Some 

farmers have been faced with increased debt due to the purchase of these inputs, as well as 

health damage from their intensive use (Suksri et al. 2008). Figures for the average cost, 

revenue, profit, farm gate price and yield of major rice production in Thailand are presented 

in Figure 2.6. This price data has been adjusted for inflation by use of the consumer price 

index (CPI, 2011 is the base year), retrieved from the Bank of Thailand (BOT, 2017). The 

total cost of rice production increased from 1991 to 2013 due to the increasing cost of all 

inputs, especially labour and fertiliser (OAE). While the farm gate price increased slightly, 

the total cost of production rose sharply. Consequently, Thai farmers have been facing high 

production costs and earning low profits because their output per hectare is low and selling 

prices are not sufficiently high to outweigh the high costs and low yields.  

2.3 Evidence of negative effects of the overuse of fertiliser on the environment  

After the promotion of Green Revolution technologies in many countries, including 

Thailand, agricultural practices created undesirable outputs such as increased water 

pollution, air pollution, and greenhouse gas emissions during the production process. 

Agricultural intensification using agrochemicals can harm environmental services (Geiger 

et al., 2010; Pretty, 2008). Chansarn (2013) stated that Thailand is very successful in creating 

economic growth following the National Economic and Social Development Plan from 1961 

to 2011, but this success comes together with various environmental problems such as 

deforestation, natural resource exploitation, environmental decadence, and pollution. These 
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environmental problems caused by economic activities have been an important topic for 

political and public debate in recent years (Nguyen et al., 2012).  

Nitrogen surplus (NS) and phosphorus surplus (PS) from rice fields caused by overuse of 

chemical fertiliser and manure are key environmental issues for rice production (Linquist et 

al, 2014; Tirado et al., 2008; Schaffner et al., 2011). Some of the nutrients applied are 

absorbed by rice, but the excess discharges into groundwater, rivers, and finally coastal 

areas. This problem of water pollution caused by NS and PS from rice fields is becoming 

more serious in Thailand (Tirado et al., 2008). NS brings about nitrate contamination of the 

surface and groundwater, which are the most important sources of drinking water, while the 

NS that evaporates as ammonia to the atmosphere causes acid rain (Reinhard et al., 2000). 

PS leads to the problem of eutrophication of surface water which harms fish and plant life 

(Reinhard et al., 2000). Pathak et al. (2004) found that the percentages of total N fertiliser 

outflow from Thai rice fields to the atmosphere, and surface and groundwater were 13.6% 

and 19.02%, respectively. This is equivalent to N loss from rice fields to the atmosphere of 

80,240 tonnes per year and N leaching to groundwater and surface of 112,218 tonnes per 

year9.  

Tirado et al. (2008) suggest that water pollution with nitrates from rice fields caused by 

fertiliser runoff is more widespread in Thailand than previously thought. More than 40% of 

surface water and about 33% of coastal water in Thailand have been found to be “poor” and 

“very poor” in quality (The Pollution Control Department cited in Tirado et al., 2008, p. 3). 

Furthermore, Tirado (2007) found that the drinking water from deep wells in Kanchanaburi 

province and Suphanburi province in Thailand, where farmers’ intensive rice farming makes 

higher than average use of chemical fertilisers, have levels of nitrates above the WHO 

drinking water safety limit of 50 mg/l NO3 
-. They also stated that water polluted with nitrates 

poses risks for human health, particularly for children. People who eat products with high 

levels of nitrate or drink water from contaminated wells could be vulnerable to the long-term 

effects of nitrates such as various types of cancers (Greer et al., 2005 cited in Tirado et al., 

2008, p. 15). “The greatest risk of nitrate poisoning is considered to be the blue baby 

syndrome or methemoglobinemia10, which occurs in infants given nitrate-laden water, and 

                                                           
9 The estimated quantity of N-fertiliser use by Thai rice farming in 2010-2010/11 is 590,000 tonnes of nutrients 

(Heffer, 2013). 
10 “The blue baby syndrome occurs when the hemoglobin in the blood losses its capacity to carry oxygen and 

this can ultimately cause asphyxia and death” (Tirado et al., 2008, p.15). 
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affects particularly babies under 4 months of age,” (Greer et al., 2005 cited in Tirado et al., 

2008, p. 15).   

Eutrophication of river, lakes, coastal and marine ecosystems can also have a negative 

impact on both human health and the natural populations of fish and other aquatic fauna 

through ecological changes, such as massive growth of harmful algal blooms that produce 

toxins (Robertson and Swinton 2005 cited in Tirado et al., 2008, p. 15). Human consumption 

of shellfish that ingest these algae may cause conditions such as neurological disorders, 

amnesia, paralysis, and diarrhoea, and may result in death. Tirado et al. (2008) refer to case 

studies related to the problem of eutrophication from Thai rice cultivation which are as 

follows. 

Firstly, algal blooms producing the potent liver toxin microcystin were found in “the Mae 

Kuang Udomtara Dam reservoir in Chiang Mai province” (Peerapornpisal et al., 1999 and 

Chanttara et al. 2002, cited in Tirado et al., 2008, pp. 12-13). Further, these algal blooms 

were also found in “the Bang Phra reservoir in Nakhon Pathom Province” (Wang et al., 2002 

cited in Tirado et al., 2008, p.13). Secondly, the increasing occurrence of algal blooms in the 

Gulf of Thailand over the last decades resulted in the death of fish, and paralysis and death 

of humans who consumed contaminated seafood, especially shellfish (Singhasaneh, 1995, 

Menasveta, 2001, and Cheevaporn and Menasveta, 2003, cited in Tirado et al., 2008, p.13). 

Finally, the density of benthic faunas and fish in 2005 in Pranburi Irrigation Project area in 

Prachuab Khiri Khan province was less than half of the section downstream of the paddy 

fields compared to that in the upstream section, which was far from the impact of rice 

cultivation (Tirado et al., 2008, p.11). 

2.4 Reasons that Thai farmers overuse chemical fertiliser 

Understanding why farmers overuse chemical fertiliser and manure is necessary to enable 

policy makers to design effective agro-environmental policies in which farmers use fertiliser 

efficiently (Sheriff, 2005). Policies need to help farmers to grow rice by using less fertiliser, 

but still maintain their yields and profits, while also reducing environmental degradation. 

Key reasons why Thai farmers over-apply chemical fertiliser and manure are discussed in 

the next sections. 
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2.4.1 Lack of information on soil quality 

Farmers lack information on soil quality or are uncertain about the quality of soil in their 

fields (Sheriff, 2005). Nutrients that allow plants to grow, such as N, P, and K, originate 

from soil (DeJoia, 2015), but soil in some areas is naturally low in these nutrients, while in 

other areas, soil has become depleted due to continuous monocropping (Homenauth, 2013). 

Romig et al. (1995) state that farmers learn how to identify soil quality from experience by 

looking at soil appearance (e.g. dark coloured and crumbly); plants’ appearance (e.g. dark 

green leaves, tall stems, and a large spreading root system); animals’ health (e.g. higher 

production, and less disease); and water quality (ground and surface water). The authors also 

suggest that soil quality can be identified by tillage. Healthy soil is easy to till as the soil 

breaks down faster with less traction, while unhealthy soil is harder to till, requiring more 

time and horsepower to make a suitable cultivation area. However, though farmers may 

know which soil is healthy or unhealthy and what nutrients plants lack, they do not know 

exactly how much of each nutrient needs to be added to the soil.  

Rice plants will suffer from nutrient deficiency and stop growing if nutrients in the soil are 

lacking. Therefore, farmers have to apply nutrients to their fields using manure or chemical 

fertiliser to maintain soil fertility or improve soil quality. “Fertilisers are simply plant 

nutrients applied to agricultural fields to supplement required elements found naturally in 

the soil” (DeJoia, 2015, p. 1). However, because farmers typically do not know which 

nutrients in the soil are lacking and how much of each nutrient needs to be added to the soil, 

they may apply too little fertiliser to the soil, so that crops will not grow as well as they 

should, resulting in low yields (DeJoia, 2015). On the other hand, if they apply too much 

fertiliser to the soil, or apply it at the wrong time, the excess will run off from their fields 

and cause the pollution of streams and groundwater (DeJoia, 2015). Farmers bear the costs 

of low yields through reduced profits if they apply too little fertiliser, whilst they are not 

penalised for the environmental costs of applying too much, suggesting an incentive to over 

apply. If farmers were able to send a soil sample to a laboratory to test its nutrients, they 

would know which were lacking and how much should be applied to the soil. However, this 

procedure is complicated and costly and so rarely happens (LDD 11 , 2012). Moreover, 

farmers would have to wait for the soil sample results, which could come too late for 

planting. As a result, farmers are likely to reach their decisions about fertiliser rates by 

calculating how much they can afford, or by drawing on previous experience, which leads 

                                                           
11 LDD stands for the Land Development Department, Thailand.  
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them to use similar amounts to those they used before. They may also try to reduce their risk 

of a poor harvest and low profits by using the same amount as neighbouring farmers (Sheriff, 

2005; Babcock, 1992).  

2.4.2 Uncertainty of the weather 

Farmers face uncertain weather during the rice farming season. Unexpected bad weather can 

reduce the capacity of plants to absorb nutrients (Sheriff, 2005). This is a problem as the 

optimal application rates for fertiliser under mean growing conditions may differ from those 

under uncertain growing conditions (Sheriff, 2005). Specifically, crop nutrient uptake is 

higher in years with good growing conditions and lower in years with bad growing 

conditions (Babcock, 1992). Thus, if a farmer applies the optimal amount of fertiliser for 

mean growing conditions, and the conditions prove to be better than expected, there will be 

too little fertiliser because crop nutrients uptake is higher than mean growing conditions. If 

growing conditions are worse than expected, there will be too much fertiliser because crop 

nutrients uptake is lower than mean growing conditions. This is illustrated by Sheriff (2005, 

p. 545 – 546), who states that a “risk-neutral farmer applies fertiliser at a higher rate as long 

as the expected gain in profit from the increased yield in a good growing condition is higher 

than the expected loss in profit from wasted fertiliser in the bad growing condition.” On the 

other hand, the application rate of fertiliser for a risk-averse farmer will depend on whether 

the farmer considers fertiliser as a risk-enhancing or risk-reducing input (Sheriff, 2005). If a 

risk-averse farmer considers fertiliser as a risk-enhancing input, the fertiliser application rate 

will be lower than that of risk-neutral farmers (Just and Pope, 1979 cited in Sheriff, 2005, p. 

547). If a risk-averse farmer considers fertiliser as a risk-reducing input, the fertiliser 

application rate will be higher than the application rate in the mean growing conditions 

(Sheriff, 2005).  

2.4.3 Farmers’ belief in agronomic advice from government extension officers 

A central responsibility of government agricultural extension officers is “providing 

knowledge for farmers to use agrochemicals safely, in the right amounts, with the best 

timing” (Nelles and Visetnoi, 2016, p. 229). Farmers’ fertiliser application rates may 

therefore be influenced by their belief in agronomic advice from government agricultural 

extension officers (Sheriff, 2005; Rajsic and Weersink, 2008; Nelles and Visetnoi, 2016). If 

farmers believe that the fertiliser application rate recommended by extension advisors is 

correct, they will apply fertiliser as advised (Sheriff, 2005). If, however, if farmers believe 
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that the extension advisors’ recommendations are incorrect, these beliefs could lead to over-

application (Sheriff, 2005). This notion is supported by Rajsic and Weersink (2008), who 

report that farmers tend to apply higher rates of fertiliser than the rate recommended by 

extension advisors. The main reason for this is the perception that the extension officers 

recommend general application rates for the whole region which are not suitable for their 

soils (Sheriff, 2005; Rajsic and Weersink, 2008). This has led to the suggestion that 

extension officers should recommend area specific rates for nutrient application rather than 

a general application rate for the whole region (Yadav et al., 1997). Furthermore, farmers 

may be unable to compare the difference in profits between using the right amount and a 

higher fertiliser rate, and may not recognise the negative effects of excessive use of fertiliser 

on their health and the environment. Even if farmers know there is a cost to the environment, 

this is an externality that farmers may not take into account when deciding how much 

fertiliser to apply. High application reduces the risk of a low harvest; it may be cheaper and 

more timely than getting soil tested; farmers do not have to pay the externality cost imposed 

on the environment. Together, these realities are likely to encourage farmers to apply 

fertiliser at a higher than economically and environmentally optimal rate. 

2.5 The environmental aspect 

The limited amount of farmland, referred to as scarce land resources, is a major constraint 

for agricultural production. Chemical fertiliser and pesticide have become important factors 

of agricultural production because farmers have to increase their productivity and protect 

their crops if there is no option of expanding the area cropped to rice. However, the intensive 

use of chemical fertiliser and pesticide not only increases agricultural production, but also 

increases the cost of production and generates severe environmental problems, especially 

pollution, biodiversity loss, and changes to ecosystems (Luh and Liao, 2001).  

The global population is projected to reach 9.1 billion by 2050, which will result in a rising 

demand for food (FAO, 2009). A major concern of rice intensification is maintaining the 

sustainability of rice-producing environments by efficient use of agrochemicals that have 

negative effects on soil fertility, the environment, and human health. If the use of 

agrochemicals, that are costly inputs, can be minimised efficiently, the negative effect on the 

environment, production cost, and adverse health effects on farmers and consumers will be 

reduced. This means that agricultural systems will be developed economically and socially, 

and will be ecologically sustainable.  
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2.6 Summary 

Rice is crucial to Thai people for many reasons. It plays an important role in the Thai 

economy and society and is the cheapest main staple food for a society where levels of 

income vary greatly. Rice can help in financing the development of industry, create markets, 

stimulate demand for the products of the manufacturing sector, and even earn foreign 

exchange. Since the major constraint on rice production and other agricultural production is 

the limitation of land resources, agrochemicals have become an important input for 

agricultural practices because farmers aim to boost their productivity and protect their crops. 

However, the intensive use of chemical fertiliser and pesticide not only increases 

productivity, but also increases the cost of production, creates severe environmental 

problems, and has adverse effects on human health. Therefore, the major concern with regard 

to rice intensification is maintaining the sustainability of rice-producing environments by 

efficient use of agrochemicals. This is vital in order to produce enough rice to feed the future 

population when the demand for rice is predicted to increase by more than 40%. 

Most of the environmental problems associated with rice cultivation arise from the overuse 

of agrochemicals. They are costly inputs, and if their use can be minimised efficiently, the 

negative effect on the environment, the cost of production, and adverse health effects on 

farmers and consumers will be reduced. This means that agricultural systems will be 

economically, socially, and ecologically sustainable. Hence, this study focuses on the 

efficient use of N and P fertilisers because NS and PS from rice fields, caused by overuse of 

chemical fertiliser and manure, are key environmental issues for rice farming. The key to 

sustainable intensification development of Thai rice farming in the 21st century is 

simultaneously reducing excessive N and P fertilisers from rice cultivation and 

maintaining/increasing an acceptable yield and sufficient profit margin for farmers. This can 

be achieved by improving the efficiency of the use of N and P fertilisers. Consequently, 

policy makers can use the results of this study to create a sustainable rice policy in order to 

improve the standard of living of Thai people, especially rice farmers who are the majority 

of agricultural population, and enable Thailand to retain its position as the world’s largest 

rice exporter, as well as to help meet the future demand for rice.  

Furthermore, the application of chemical fertiliser and manure during rice cultivation periods 

causes negative effects on the environment. In order to reduce these effects, policy makers 

should understand why farmers overuse fertiliser. This should help them design effective 

agro-environmental policies and implement appropriate programmes for the monitoring, 
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assessment and improvement of soil quality. The government could provide fertiliser 

application rates by area specific rather than a general application rate for the whole region, 

and encourage farmers to use the right amount of fertiliser at the right time in order to avoid 

potential harm to the environment. As fertiliser use is very expensive, Thai farmers who 

learn not to over-apply it will earn more profit since the cost of production will be reduced. 

When farmers apply fertiliser at the right time, plants can absorb all, or almost all, the 

nutrients. Consequently, the environmental problems caused by NS and PS from rice fields 

will be reduced. A review of previous empirical studies on technical and environmental 

efficiency measurements of the rice farming system, the environmental efficiency of other 

crops, and the application of the directional distance function are presented in the next 

chapter. 
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Chapter 3 

Technical and Environmental Efficiency Analysis in the Literature 

3.1 Introduction 

Data envelopment analysis (DEA) and stochastic frontier analysis (SFA) are popular 

approaches to measuring the performance of the agricultural sector. DEA is a non-parametric 

approach which was first introduced by Charnes, Cooper, and Rhodes (CCR) in 1978 and it 

has subsequently been developed by various researchers (e.g. Banker, Charnes, and Cooper, 

1984; Färe et al., 1989). The DEA method has been applied to evaluating the performance 

of various phenomena, such as hospitals, banks, schools, and agriculture. A number of DEA 

studies have focused on technical efficiency measurements in the agricultural production of 

either crops or livestock (Gadanakis, 2014). 

The main purpose of this chapter is to present a comprehensive review of previous empirical 

studies of technical and environmental efficiency measurements of rice farming systems, 

environmental efficiency in other productions, and the application of the directional distance 

function. 

The remainder of the chapter is organised as follows. Section 2 presents background 

information, and the advantages and disadvantages of the DEA and stochastic frontier 

analysis approaches. Section 3 reviews previous studies of efficiency measurement of rice 

production in Thailand and other countries, followed by a discussion of empirical evidence 

of environmental efficiency measurement in Section 4. Section 5 presents empirical studies 

of efficiency measurement using the directional distance function. 

3.2 DEA and SFA of production efficiency measurement  

The study by Farrell (1957) has been used as a basis for theoretical methods of efficiency 

measurement (e.g. Coelli et al, 2002; Ogundari and Awokuse, 2016; Zahidul Islam et al., 

2011; Watkins et al., 2014). The relative efficiency of a farm is compared with the other 

farms within a sample group (Farrell, 1957). Farrell (1957) identified three categories for 

measuring the efficiency of a farm: technical efficiency (TE), price efficiency or allocative 

efficiency (AE), and overall efficiency or economic efficiency (EE) or cost efficiency (CE). 

TE measures the potentiality of a farm to produce a fixed amount of output using the 

minimum possible amounts of inputs (input-oriented TE) or produce the maximum feasible 
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output using a fixed amounts of inputs (output-oriented TE) (Watkins et al., 2014). AE 

measures the potentiality of a technically efficient farm to proportionately reduce the amount 

of inputs, thus minimising production costs, given input prices (Watkins et al., 2014). It can 

be calculated by “the ratio of the minimum costs required by the farm to produce a given 

level of outputs and the actual costs of the farm adjusted for TE” (Watkins et al., 2014, p. 

90). The EE of a farm is equal to “the product of the TE and AE” (Farrell, 1957, p. 255) or 

“the ratio of the minimum feasible costs and the actual observed costs for a farm” (Watkins 

et al., 2014, p. 90). 

Two approaches that have been applied to evaluate farms’ performances are stochastic 

frontier analysis and DEA. The former method is a parametric approach which contains a 

random error term in the model (Reinhard et al., 2000; Watkins et al., 2014). It employs a 

standard production function (i.e. translog function, Cobb-Douglas production function, 

quadratic function, or normalised quadratic function) to find the relationship between inputs 

and outputs, and then estimates the parameters of this production function by using statistical 

techniques such as ordinary least square (OLS), corrected ordinary least square (COLS), and 

likelihood function estimations (Watkins et al., 2014). The stochastic frontier analysis 

approach incorporates two components in the error term which are a symmetric component 

error and a non-negative component error (Reinhard et al., 2000; Watkins et al., 2014). The 

symmetric component error accounts for statistical noise related to data measurement errors, 

while the non-negative component error estimates the inefficiency of the production process 

(Reinhard et al., 2000; Watkins et al., 2014). Stochastic frontier analysis facilitates 

hypothesis testing and creates the need to determine the distribution of inefficiency terms 

such as half-normal, truncated-normal, exponential, or gamma-distribution (Umanath and 

Rajasekar, 2013; Watkins et al., 2014). The technical efficiency of each farm, as estimated 

by the stochastic frontier analysis approach, will vary over all inputs taken together 

(Kalirajan, and Shand, 1999). 

The DEA is a non-parametric (deterministic) method that does not contain a random error 

term. This method applies linear programming to construct a piecewise production frontier 

to envelop the data; it takes the observed input and output data and forms a production 

possibility set in order to measure the relative technical efficiency of the farms in the sample 

(Watkins et al., 2014). The technical efficiency of each farm, as estimated by the DEA 

approach, will vary by inputs (Kalirajan, and Shand, 1999, p. 167). More details of the DEA 

approach are discussed in Chapter 4. 
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The advantages of the stochastic frontier analysis approach are that it allows for white noise 

error or random error which represents influences outside the farmers’ control (Omer et al., 

2007), and attempts to separate statistical noise effects from technical inefficiency (Reinhard 

et al., 2000). Stochastic frontier analysis also permits statistical hypothesis testing and 

confidence interval construction (Reinhard et al., 2000; Wadud and White, 2000; Watkins 

et al., 2014). However, the major disadvantage is misspecification of the functional forms of 

both the production function and the distribution of inefficiency term (Reinhard et al., 2000; 

Wadud and White, 2000; Omer et al., 2007; Watkins et al., 2014).  The functional form is 

sensitive to multicollinearity ( 𝐶𝑜𝑣 (𝑥𝑖, 𝑥𝑗) ≠ 0 ; 𝑖 ≠ 𝑗) , and theoretical restrictions 

(monotonically and curvature) may be violated (Reinhard et al., 2000). 

The major advantage of DEA is that it does not require an assumed production function, 

such as Cobb-Douglas or translog functions, nor does it require the formation of assumptions 

about the distribution of the inefficiency term, such as half-normal. Furthermore, it does not 

require assumptions about behaviour decision making units (DMUs) such as cost 

minimisation or nutrient minimisation (Nguyen et al., 2012). Therefore, it is less sensitive 

than stochastic frontier analysis to misspecification (Wadud and White, 2000; Coelli et al., 

2002; Umanath and Rajasekar, 2013; Watkins et al., 2014).  Moreover, DEA can be used to 

estimate the efficiency of the production frontier for many inputs and outputs (Reinhard et 

al., 2000; Ahmed et al., 2011; Wadud and White, 2000). It does not have a testing procedure 

because it satisfies monotonicity and curvature restrictions by construction (Reinhard et al., 

2000). In later research by Simar and Wilson (2007), the double bootstrap procedure was 

proposed:  this enables statistical inference within the DEA approach. However, the major 

disadvantage of DEA compared to the stochastic frontier analysis is that it does not account 

for random variation in the production function (Tingley and Pascoe, 2005; Ahmed et al., 

2011; Watkins et al., 2014); thus, it is unable to distinguish data noise from the inefficiency 

scores (Nguyen et al., 2012). 

3.3 Empirical studies of efficiency measurement of rice production 

Efficiency of rice production has been evaluated in several studies which are summarised in 

Table 3.1. The studies presented measure the efficiency of rice production during the period 

2000 to 2016. Fourteen studies employed the DEA approach, six employed the stochastic 

frontier analysis approach, three employed both DEA and stochastic frontier analysis 

methods, and only one study employed the directional distance function (DDF) approach. 

Although most of the studies employing the DEA approach assume the input-oriented TE 
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measurement, Tun and Kang (2015), Balcombe et al. (2008), and Wadud and White (2000) 

assume the output-oriented TE measurement. These assumptions, regardless of the 

orientation, depend on the purpose of the research, i.e. whether the researcher would like to 

maximise output (output-oriented DEA) or minimise input usage (input-oriented DEA). 

Coelli et al. (2005) state that both DEA and stochastic frontier analysis models can be 

analysed in terms of TE, AE, EE, scale efficiency (SE), and environmental efficiency (NE). 

The efficiency of each farm can be estimated according to the availability of data. TE 

requires only data on the quantities of inputs and outputs, while EE requires data on the 

quantities of inputs and outputs and their corresponding prices, as well as assumptions about 

producers’ priorities (i.e. cost minimisation, profit maximisation, or revenue maximisation).  

All the rice production efficiency studies presented below have undertaken their research in 

developing countries, except Watkins et al. (2014), who performed their research in the 

United States (Table 3.1). Nine studies were conducted in Southeast Asian countries, eleven 

in South Asian countries, one in East Asian countries, and two in African countries. In other 

words, the majority of rice production efficiency studies have analysed Asian countries 

because these countries are the main rice-planted areas of the world. Five studies measured 

TE and SE (Tun and Kang, 2015; Tung, 2013; Taraka et al., 2010; Chauhan et al., 2006; 

Krasachat, 2004), four measured TE, AE, and EE (Nguyen et al., 2012; Ahmed et al., 2011; 

Kiatpathomchai, 2008; Wadud, 2003), and six measured TE, SE, AE, and EE (Watkins et 

al., 2014; Umanath and Rajasekar, 2013; Nkang et al., 2011; Zahidul Islam et al., 2011; 

Dhungana et al., 2004; Coelli et al., 2002).  

The average TE scores reported in these studies range from 0.45 to 0.98. This implies that 

the mean technical inefficiency for rice production in these studies is between 2% and 55% 

(Table 3.1). In other words, these empirical studies indicate that rice farmers would be able 

to reduce their current amount of inputs on average from 2% to 55% to obtain their current 

levels of rice output. The average AE scores reported in eleven studies range from 0.46 to 

0.99 (Table 3.1). This implies that the rice farmers in these studies applied the wrong inputs 

mix at the given price of inputs, with average cost higher than the cost minimising level by 

1% to 54%. The average EE scores reported in ten studies range from 0.38 to 0.91 (Table 

3.1). This implies that the rice farmers in these studies can reduce the costs of rice production 

by 9% to 62% on average, without changing the quantity of rice outputs produced. 
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Table 3.1 Empirical research on rice production efficiency 

Author(s) Efficiency 

method 

Data Country Average efficiency 

scores 

Ogundari and 

Awokuse (2016) 

SFA Cross sectional data of 

252  farmers in 2014 

Thailand TE = 0.93 

Tun and Kang 

(2015) 

DEA and 

SFA 

Cross sectional data of 

195 farms in 2012 

Myanmar TECRS-DEA = 0.63 

TEVRS-DEA = 0.69 

SEDEA = 0.92 

TESFA = 0.78 

Watkins et al. 

(2014) 

DEA Panel data of 158 farms, 

2005-2012 

U.S.A. TECRS = 0.80 

TEVRS = 0.88 

SE = 0.92 

AE = 0.71 

EE = 0.62 

Tung (2013) DEA Panel data of 1,000 

households, 1998, 2002, 

2004, 2006, 2008, 2010 

Vietnam TEVRS range from 

0.53 to 0.70 

SE range from 0.90 

to 0.94 

Umanath and 

Rajasekar (2013) 

DEA Cross-sectional data of 90 

farmers, crop year 2010-

2011 

India TECRS = 0.80 

TEVRS = 0.85 

SE = 0.95 

AEVRS = 0.46 

EEVRS = 0.38 

Nguyen et al. 

(2012) 

DEA Panel data , 2003-2007, 

480 observations 

South 

Korea 

TE = 0.77 

AE = 0.72 

EE = 0.56 

NAE = 0.40 

NE = 0.31 

Rahman et al. 

(2012) 

SFA Cross sectional data of 

1,360 farms, crop year 

2008-2009 

Bangladesh TE = 0.88 

Ahmed et al. 

(2011) 

DEA Cross sectional data of 

172 rice farmers, crop 

year 2007-2008 

Bangladesh TEVRS = 0.98 

AE = 0.93 

EE = 0.91 

Nkang et al. 

(2011) 

DEA Cross sectional data of 95 

farms in 2005 

Nigeria TECRS = 0.85 

TEVRS = 0.92 

SE = 0.91 

AECRS = 0.65 

AEVRS = 0.81 

EECRS = 0.56 

EEVRS = 0.75 
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Table 3.1 Empirical research on rice production efficiency (Continued) 

Author(s) Efficiency 

method 

Data Country Average efficiency 

scores 

Khai and Yabe 

(2011) 

SFA Cross-sectional data of 

3,733 households in 

2006 

Vietnam TE = 0.82 

Bäckman et al. 

(2011) 

SFA Cross-sectional data of 

360 farms in 2009 

Bangladesh TE = 0.83 

Zahidul Islam et 

al. (2011) 

DEA Cross-sectional data of 

355 farms in crop year 

2008-2009 

Bangladesh TECRS = 0.63 

TEVRS = 0.72 

SE = 0.88 

AECRS = 0.62 

AEVRS = 0.66 

EECRS = 0.39 

EEVRS = 0.47 

Taraka et al. 

(2010) 

DEA Cross-sectional data of 

400 farms, crop year 

2009-2010 

Thailand TECRS = 0.517 

TEVRS = 0.519 

SE = 0.998 

Singbo and 

Lansink (2010) 

DDF Cross-sectional data of 

28 farms, crop year 

2004-2005 

Benin 

Republic 

(West 

Africa) 

TIECRS = 0.09 

TIEVRS = 0.35 

AIE = 0.01 

Rahman et al. 

(2009) 

SFA Cross-sectional data of 

348 farms, crop year 

1999-2000 

Thailand TE = 0.63 

Kiatpathomchai 

(2008)  

DEA Cross-sectional data of 

247 rice farmers , crop 

year 2004-2005 

Thailand TEVRS = 0.87 

AEVRS = 0.78 

EEVRS = 0.68 

NE = 0.54 

Balcombe et al. 

(2008) 

DEA Cross-sectional data of 

295 observations 

Bangladesh TECRS = 0.64 

TEVRS = 0.59 

Songsrirote and 

Singhapreecha 

(2007)  

SFA  Cross-section in crop 

year 2005-2006, 330 

farms (165 

conventional jasmine 

rice farms, 165 organic 

jasmine rice farms) 

Thailand Conventional farm 

TEInput-oriented = 0.45 

TEOutput-oriented = 0.71 

Organic farm 

TEInput-oriented = 0.72 

TEOutput-oriented = 0.87 

Chauhan et al. 

(2006)  

 DEA Cross-sectional data of 

97 farmers, crop year 

2000-2001 

 India TECRS = 0.77 

TEVRS = 0.92 

SE = 0.83 
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Table 3.1 Empirical research on rice production efficiency (Continued) 

Author(s) Efficiency 

method 

Data Country Average efficiency 

scores 

Krasachat (2004) DEA Cross-sectional data of 

74 farmers in 1999 

Thailand TECRS = 0.71 

TEVRS = 0.74 

SE = 0.96 

Dhungana et al. 

(2004) 

DEA Cross-section survey 

data of 76 farms in 1999 

Nepal TECRS = 0.76 

TEVRS = 0.82 

SE = 0.93 

AEVRS = 0.87 

EEVRS = 0.66 

Wadud (2003) DEA and 

SFA 

Cross-sectional data of 

150 farms in 1997 

Bangladesh TESFA = 0.80 

AESFA = 0.77 

EESFA = 0.61 

TECRS-DEA = 0.86 

AECRS-DEA = 0.91 

EECRS-DEA = 0.78 

TEVRS-DEA = 0.91 

AEVRS-DEA = 0.87 

EEVRS-DEA = 0.79 

Coelli et al. 

(2002) 

DEA Cross-sectional data of 

406 farms in 1997 (351 

plots surveyed in the 

Aman season, 422 plots 

surveyed in the Boro 

season) 

Bangladesh Aman season 

TEVRS = 0.66 

SE = 0.93 

AEVRS = 0.78 

EEVRS = 0.52 

Boro season 

TEVRS = 0.69 

SE = 0.95 

AEVRS = 0.81 

EEVRS = 0.56 

Wadud and 

White (2000) 

DEA and 

SFA 

Cross-sectional data of 

150 rice farms in 1997  

Bangladesh TECRS-DEA = 0.79 

TEVRS-DEA = 0.86 

TESFA = 0.79 

Note: DEA denotes data envelopment analysis, SFA denotes stochastic frontier analysis, 

DDF denotes directional distance function, TE denotes technical efficiency, SE denotes scale 

efficiency, AE denotes allocative efficiency, EE denotes economic efficiency, NAE denotes 

environmental allocative efficiency, NE denotes environmental efficiency, VRS denotes 

variable returns to scale, and CRS denotes constant returns to scale. 

Ten of the 24 studies reported returns to scale; the scale efficiencies of their sample data are 

displayed in Table 3.2. Information on returns to scale can be used to identify whether a 
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farmer produces at optimal scale (constant returns to scale (CRS)), below the optimal scale 

(increasing returns to scale (IRS)), or above the optimal scale (decreasing returns to scale 

(DRS)). “A farmer is said to operate under CRS, IRS, or DRS if a proportionate increase in 

all inputs leads to exactly the same, more than, or less than the proportionate increase in 

outputs, respectively” (Chauhan et al., 2006, p. 1074). This information is useful for 

indicating the potential redistribution of farming resources, thereby enabling a farmer to 

attain a higher yield (Chauhan et al., 2006).  

The TE score obtained from the DEA model under the assumption of CRS can be 

decomposed into two components, one due to pure technical inefficiency (obtained from the 

DEA model under the assumption of  variable returns to scale: VRS) and one due to scale 

inefficiency (Umanath and Rajasekar, 2013). The SE score for a farm can be evaluated by 

the ratio of its TE score obtained from the CRS assumption and its TE score obtained from 

the VRS assumption (Umanath and Rajasekar, 2013; Watkins et al., 2014). Since the 

production possibility frontier (PPF) constructed under the assumption of VRS envelops the 

data more tightly than the PPF constructed under the assumption of CRS, the TE score 

obtained from the VRS assumption is greater than or equal to the TE score obtained from 

the CRS assumption (Dhungana et al., 2004; Krasachart, 2004). Thus, the value of SE will 

be less than or equal to one (𝑆𝐸 ≤ 1), with SE equal to one (SE=1) when a farmer operates 

at an optimal scale, and SE less than one (𝑆𝐸 < 1)  when the farm is scale inefficient (a farm 

operates either above or below the optimal scale) with the scale inefficiency score equal to 

1 − 𝑆𝐸 (Watkins et al., 2014).  

Although the SE score can indicate whether a farmer is scale efficient or scale inefficient, it 

cannot identify whether this scale inefficiency occurs from IRS or DRS (Watkins et al., 

2014). The IRS or DRS of each farm can be investigated by running the DEA model under 

the assumption of non-increasing returns to scale (NIRS) or DRS (Coelli et al., 2002; 

Watkins et al., 2014). A farmer operates under DRS if the TE score obtained from the DEA 

model under the NIRS assumption is equal to the TE score obtained from the DEA model 

under the VRS assumption. On the other hand, a farmer operates under IRS if the TE score 

obtained from the DEA model under the NIRS assumption is unequal to the TE score 

obtained from the DEA model under the VRS assumption (Coelli et al., 2002).  

Table 3.2 shows that the average SEs reported in the ten studies are greater than or equal to 

0.90, except one study which reports an average SE of 0.88 (Zahidul Islam et al., 2011). This 

indicates that the average scale inefficiencies is less than or equal to 10%, which is quite 
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small. The main reasons for the scale inefficiencies of these studies vary. Three studies of 

rice production in Bangladesh report that the majority of scale inefficiencies result from DRS 

or farmers operating above the optimal scale (Wadud, 2003; Coelli et al., 2002, for the Boro 

rice season; Wadud and White, 2000). Two studies report scale inefficiencies resulting 

almost equally from both IRS and DRS (Umanath and Rajasekar, 2013 for rice production 

in India; Dhungana et al., 2004 for rice production in Nepal). The remaining studies report 

that the majority of scale inefficiencies result from IRS or farmers operating below the 

optimal scale. 

Table 3.2 Comparison of average SE and percentage of returns to scale from previous 

empirical research on rice production efficiency measurement  

Author(s) Observations Country Average SE CRS IRS DRS 

Watkins et al. 

(2014) 

158 U.S.A. 0.92 26% 49% 25% 

Tung (2013) 1,000 (year 2010) Vietnam 0.90 1% 69% 30% 

Umanath and 

Rajasekar (2013) 

90   India 0.95 37% 29% 34% 

Nkang et al. (2011) 95 Nigeria 0.91 8% 81% 11% 

Zahidul Islam et al. 

(2011) 

355 Bangladesh 0.88 11% 73% 16% 

Krasachat (2004) 74  Thailand 0.96 32% 49% 19% 

Dhungana et al. 

(2004) 

76  Nepal 0.93 

 

11% 47% 42% 

Wadud (2003) 150 Bangladesh 0.95 17% 20% 63% 

Coelli et al. (2002) Aman season 351 

plots  

Boro season 422 

plots 

Bangladesh 0.93 

 

0.95 

8% 

 

11% 

54% 

 

31% 

38% 

 

58% 

Wadud and White 

(2000) 

150  Bangladesh 0.92 15% 14% 71% 

Note: SE, CRS, IRS, and DRS denote scale efficiency, constant returns to scale, increasing 

returns to scale, and decreasing returns to scale, respectively. 

3.3.1 Empirical evidence of Thai rice production efficiency 

Six of the nine studies in Southeast Asian countries have measured the TE of Thai rice at 

farm level using cross-sectional primary data in specific areas in various provinces in 

Thailand (Ogundari and Awokuse (2016) for rice production in the  Bangplama district in 

Suphan Buri Province; Taraka et al. (2010) for rice production in Bangkok, Nonthaburi, 
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Pathumthani, Phra Nakorn Si Ayutthaya, Chainat, Lopburi, Saraburi, Singburi, and 

Angthong provinces; Rahman et al. (2009) for rice production in Chiang Mai, Phitsanulok 

and Tung Gula Rong Hai provinces; Kiatpathomchai (2008) for rice production in 

Phatthalung and Songkhla provinces; Songsrirote and Singhapreecha (2007) for rice 

production in Yasothon province; Krasachat (2004) for rice production in Si Sa Ket, Surin, 

and Buri Ram provinces). Three studies used the input-oriented DEA model for their 

analysis (Taraka et al., 2010; Kiatpathomchai, 2008; Krasachat, 2004), while three studies 

used the SFA model (Ogundari and Awokuse, 2016; Rahman et al., 2009; Songsrirote and 

Singhapreecha, 2007). None of the researchers investigated the TE of Thai rice using output-

oriented DEA and DDF. These analyses measured TE scores of farmers based on either per 

farm data of rice production (Ogundari and Awokuse, 2016; Krasachat, 2004) or rice output 

per hectare (Taraka et al., 2010; Rahman et al., 2009; Kiatpathomchai, 2008; Songsrirote 

and Singhapreecha, 2007). The input variables that have been used for the efficiency 

measurement of Thai rice production are seed, land cultivated, chemical fertiliser, organic 

fertiliser, pesticides, human labour, machinery labour, fuel, and other input costs.  

The average TE scores obtained from input-oriented DEA models of Thai rice range from 

0.52 to 0.87, while the average TE scores obtained from SFA models range from 0.45 to 

0.93 (Table 3.1). The highest average TE score across the six studies is 0.93, reported in the 

study of Ogundari and Awokuse (2016). This is due to the fact that the Bangplama district 

has the highest rice cultivation area in Suphan Buri province and this province has the highest 

rice production in Thailand (OAE, 2013 cited in Ogundari and Awokuse, 2016, p. 9). The 

lowest average TE score across the six studies is 0.45 for conventional jasmine rice farms 

(input-oriented SFA model) in Yasothon province (Songsrirote and Singhapreecha, 2007). 

This average TE score is also the lowest average TE score compared to rice production 

efficiency studies in other countries (Table 3.1). A possible reason is that Thai farmers 

increased their rice production by the expansion of the area planted rather than by an 

increased rice output per hectare or yield (Taraka et al., 2010). The average SEs of Thai rice 

farming reported by Taraka et al. (2010) and Krasachat (2004) are 0.998 and 0.96, 

respectively (Table 3.1). Krasachat (2004) reports that the main source of the scale 

inefficiency of Thai rice farmers results from IRS, or farmers operating below the optimal 

scale (Table 3.2). He suggests that the production efficiency of Thai rice farmers can be 

improved by adopting the best practices of efficient rice farmers.  

Moreover, the factors affecting the technical inefficiency of Thai rice production have been 

investigated using a two-limit Tobit regression model (Taraka et al., 2010; Kiatpathomchai, 



35 
  

2008; Krasachat, 2004). This model was employed in the second stage of the efficiency 

analysis because efficiency scores that are dependent variables in the regression model are 

bound between zero and one (Watkins et al., 2014). Thus, the dependent variable is not a 

normal distribution, hence ordinary least squares regression is not appropriate (Krasachat, 

2004). Taraka et al. (2010) hypothesised that factors affecting technical inefficiency were 

demographic, socio-economic variables and farm characteristics, agricultural extension, and 

environmental variables. They found that the key factors affecting technical inefficiency 

were family labour, certified seed used, extension officer’s services, and pest control used 

to deal with weeds and insects. Kiatpathomchai (2008) hypothesised that factors affecting 

technical inefficiency were rice variety, farm practices and management, farmer 

characteristics, and agro-ecosystems. She found that the factors affecting technical 

inefficiency were soil type and rice variety. Krasachat (2004) found that farm-specific 

factors, i.e. farm sizes, whether they were irrigated or not (as a dummy variable), and 

province (as a dummy variable), have no statistical significance effect on TE. However, scale 

inefficiency of rice farmers in the sample was affected by the provincial differences.  

Only Kiatpathomchai (2008) has measured the economic and environmental efficiency of 

Thai rice farmers. The mean value of EEs or CEs in her study was 0.68, while 2% of sample 

farms, or 4 out of 247, were economically the best performing farms. This indicates that the 

farmers in the sample would be able to reduce the current cost of rice production by 32% 

and still obtain the same rice output. The measurement of NE scores was achieved by 

incorporating environmental pollution (i.e. nitrogen leaching and nitrogen emission) as input 

variables into the input-oriented DEA model in order to minimise environmental pollution 

while fixing the amount of rice output produced. The rationale behind this concept is that 

environmental pollution will be minimised when environmentally detrimental input (i.e. N 

fertiliser) is minimised. N-leaching into surface and ground water is calculated as 19% of 

the total amount of nitrogen applied to the rice field, while N-emission into the atmosphere 

as a greenhouse gas is calculated as 13.6% of the total amount of nitrogen applied to the rice 

field (Pathak et al., 2004 cited in Kiatpathomchai, 2008, p. 71). Kiatpathomchai (2008) found 

that the average values of NE for the sample farms is 0.54, while 2% of sample farms or 5 

farms out of 247 farms were environmentally the best practice farms. This implies that 

average farms could reduce environmental pollution (i.e. N-leaching and N-emission) by 

reducing N fertiliser application by 46% of its current level and still obtain the current level 

of output. 

 



36 
  

3.3.2 Empirical evidence of rice production efficiency in other countries 

A two-stage approach has become the standard when DEA is employed to evaluate the 

performance of farmers, and when factors that influence their efficiency are not under the 

farmers’ control (Singbo and Lansink, 2010). The two-stage DEA approach consists of two 

steps. First, the efficiency score of a farm is calculated using the DEA model. Then the 

efficiency score obtained from the first step is used as the dependent variable in a two-limit 

Tobit regression model, or truncated regression model, to determine factors affecting 

efficiency levels of farms. Eight previous studies have employed a two-limit Tobit regression 

in their second step (Wadud and White, 2000; Coelli et al., 2002; Wadud, 2003; Dhungana 

et al., 2004; Zahidul Islam et al., 2011; Ahmed et al., 2011; Watkins et al., 2014; Tun and 

Kang, 2015), and two previous studies have employed a truncated regression model in their 

second step (Balcombe, 2008; Tung, 2013). However, there are three studies that have not 

examined the factors affecting efficiency levels of farms (Chauhan et al., 2006; Nkang et al, 

2011; Umanath and Rajasekar, 2013).  

While a number of studies have investigated rice production efficiency in countries other 

than Thailand using Stochastic Frontier Analysis, DEA, and DDF approaches (Table 3.1), 

only one study has employed the DDF approach (Singbo and Lansink, 2010), and only one 

study has measured the environmental efficiency of rice farming systems (Nguyen et al., 

2012).  

Nguyen et al. (2012) examined the cost and efficiency of nutrient use by 96 rice farmers in 

South Korea’s Gangwon province over the period 2003 to 2007. They also determined the 

cost of introducing nutrient efficiency operations to farms by employing the theoretical 

framework proposed by Coelli et al. (2007) which is presented in the next section. In their 

environmental efficiency analysis, two nutrients applied to rice fields, N and P, were used to 

calculate the “eutrofying power: EP” by using the constant weight of 1 for N and 10 for P. 

Thus “ 𝐸𝑃 =  𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁 +  10 × 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃 ”. This constant weight has been 

applied in other environmental efficiency studies such as Coelli et al. (2007), Houng and 

Coelli (2011), and Hoang and Alauddin (2012). Nguyen et al. (2012) used input-orientated 

DEA and the Cobb-Douglas production function to confirm that the production technology 

exhibited CRS. They found that improvements in technical performance would lead to better 

NE and lower costs of production. However, it is costly for rice farmers to change their 

current operation to become environmentally efficient: farmers production costs would be 

increased by 119%, while the eutrofying effect on water would be reduced by 69%. Thus, 
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Nguyen et al. (2012, p. 367) suggest that “agri-environmental policies should be (re)designed 

to improve both cost and environmental performance of rice farms”. The empirical evidence 

of Singbo and Lansink (2010) will be discussed in Section 3.5. 

3.4 Empirical evidence of environmental efficiency measurement  

As a result of increasing concern about environmental problems caused by negative impacts 

of production activities, many researchers have attempted to incorporate the negative impact 

of a production process on the environment into the traditional productivity and efficiency 

analysis methods in order to monitor the environmental performance of DMUs (Coelli et al., 

2007). The negative impact was incorporated both in terms of detrimental inputs (e.g. Chung 

et al., 1997; Reinhard et al., 2000; Shaik et al., 2002; De Koeijer et al, 2002; Areal et al, 2012) 

and undesirable (bad) outputs (e.g. Färe et al., 1989; Shaik et al., 2002; Färe et al., 2005, 

Picazo-Tadeo et al., 2005; Macpherson et al., 2010; Färe et al., 2012; Toma et al., 2013) into 

Stochastic Frontier Analysis, DEA, and DDF approaches.  

Reinhard et al. (2000) estimated the NE of an unbalanced panel dataset involving 613 Dutch 

dairy farms over the period 1991 to 1994 (a total of 1,535 observations) using both Stochastic 

Frontier Analysis (translog functional form) and DEA (under the assumption of VRS for 

both input-orientation and output-orientation) methods. They used three environmentally 

detrimental inputs, nitrogen surplus, phosphorus surplus, and total energy use, to estimate 

the NE scores. Note that nitrogen (phosphate) surplus is the difference between nitrogen 

(phosphate) in inputs and nitrogen (phosphate) contained in outputs (i.e. material balance 

condition). NE is defined as “the ratio of minimum feasible to observed use of multiple 

environmentally detrimental inputs, conditional on observed levels of output and the 

conventional inputs”  (Reinhard et al., 2000, p.287). Reinhard et al. (2000) treated these three 

environmentally detrimental variables as additional factors of production (i.e. inputs). This 

means that a production function was specified by including a vector of the quantity of 

conventional inputs and these three environmentally detrimental inputs. The minimum 

feasible multiple environmentally detrimental inputs can be calculated using the DEA model 

which estimates the performance of a farm in terms of the ability to reduce its 

environmentally detrimental inputs by fixing the same amount of outputs produced and 

conventional inputs used (Reinhard et al., 2000). Thus, the NE for each farm can be 

measured by dividing the minimum feasible multiple environmentally detrimental inputs by 

its observed amount of multiple environmentally detrimental inputs. Reinhard et al. (2000) 

found that the average NE score of Dutch dairy farms ranged between 52%-80% depending 
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on the empirical technique used. They claimed that NE scores of their observation could be 

estimated using both the stochastic production frontier and DEA; however, the estimation of 

these scores using the stochastic production frontier could be done only in two bad input 

cases because the three environmentally detrimental input cases (including phosphate 

surplus) violated monotonicity restrictions. Furthermore, DEA can be used to measure NE 

for many environmentally detrimental inputs, since it fulfils monotonicity and curvature 

restrictions. 

Areal et al. (2012) analysed the TE of a balanced panel dataset comprising 215 dairy farms 

in England and Wales over the years 2000 to 2005 using the Farm Business Survey (FBS). 

They used the ratio of permanent and rough pasture land to total agricultural area as the 

proxy for environmental goods because information on environmental goods (e.g. manures 

and organic matter, decomposition of plant residues etc.) was unavailable in the FBS. Areal 

et al. (2012) conducted a DDF by assuming a translog function for the parametric distance 

function and using a Bayesian procedure to investigate TE in two models that included and 

excluded the provision of environmental outputs. They found that the rank of farm efficiency 

changed when the provision of environmental output was included in the efficiency analysis. 

With the incorporation of environmental output, 40% of the top ranked 25 farms using the 

model that excluded the provision of environmental output were not in the top ranked 25 

using the model that included the provision of environmental output. In addition, 70% of 

these were not in the top ranked 50. Furthermore, 48% of the bottom ranked 25 farms using 

the model that excluded the provision of environmental output were not in the bottom ranked 

25 using the model that included the provision of environmental output. In addition, 50% of 

these were not in the bottom ranked 50. Areal et al. (2012) concluded that these results would 

affect the implementation of policy targeting aimed at improving farm environmental 

efficiency. If the farms that have a low efficiency level using a ranking derived from a model 

excluding environmental output are chosen, the policy may be targeting the wrong farms 

because these farms have high NE levels (i.e. they are technically and environmentally 

efficient), and overlooking farms that have the potential to improve their efficiency. 

Picazo-Tadeo et al. (2005) measured the NE scores of a cross-sectional sample of 35 Spanish 

ceramic tile producers in 1995 using DDF approach following Färe et al., (1989). The residues 

from ceramic tile producing were used as undesirable outputs (watery mud and used oil). In 

their investigation of the impact of environmental regulations on the performance of firms, 

they assumed that ceramic firms aimed to maximise their ceramic pavement production 

(desirable output) while simultaneously reducing inputs without a change in the undesirable 
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outputs. This implies that inefficient firms would be able to improve their production process 

to become environmentally friendly producers and enable them to produce more ceramic 

pavements (desirable outputs) using less inputs while fixing the same amount of watery muds 

and used oil (bad outputs). The environmental measurement applied in Picazo-Tadeo et al. 

(2005) is different from that of Reinhard et al. (2000). Reinhard et al. (2000) measured the 

environmental performance of a producer in terms of its ability to reduce its environmentally 

detrimental inputs without changing any of its desirable outputs and conventional inputs. On 

the other hand, Picazo-Tadeo et al. (2005) measured the environmental performance of a 

producer in terms of its ability to simultaneously expand its desirable output and contract its 

conventional inputs without changing any of its undesirable outputs. Picazo-Tadeo et al. 

(2005) stated that a key issue in the DDF approach is the choice of directional vector, because 

it leads to specific directions of increase or decrease for all elements of the input, desirable 

output, and undesirable output vectors. For their directional vector, they chose the unity that 

decreases one unit of inputs and increases one unit of desirable outputs with no change in the 

undesirable outputs. They found that the aggregate goods output produced by their 

observations could be increased by 7% under the assumption of strong or free disposability 

(that allows any output to be disposed of without cost). Conversely, the potential expansion of 

goods output increased by 2.2% under the weak disposability of outputs assumption (the 

undesirable output may not be disposed of without cost because of regulatory restrictions). 

Picazo-Tadeo et al. (2005, p. 140) suggest that “environmental regulations have an opportunity 

cost that can be measured as a smaller feasible increase of good outputs”. They conclude that 

the DDF provides a flexible and useful method to measure the cost of environmental 

regulations of undesirable outputs. Moreover, the methodological approach used in this 

research allows for maximising desirable outputs and minimising undesirable outputs, as well 

as inputs.  

Coelli et al. (2007) demonstrated that efficiency models which incorporate environmental 

detrimental inputs as an undesirable output variable (e.g. Färe et al., 1989; Färe et al., 1996) 

or an input variable (e.g. Reinhard et al., 2000) into standard production technology models 

may be inconsistent with the “materials balance condition: MBC” when the MBC is 

applicable. The MBC implies that the nutrients balance equals the quantity of nutrients that 

farmers apply to their fields minus the quantity of nutrients absorbed by plants (Coelli et al, 

2007; Reinhard and Thijssen, 2000). When environmental detrimental input is incorporated 

in the standard production efficiency model as an undesirable output variable, only efficient 

farms that produce on the production frontier are consistent with the MBC while inefficient 
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farms that produce below the production frontier are inconsistent. Likewise, when 

environmentally detrimental input is incorporated in the standard production efficiency 

model as an input variable, only efficient farms that produce on the production frontier are 

consistent with the MBC, while inefficient farms that produce below production frontier are 

inconsistent. Coelli et al. (2007) proposed a new NE measurement based on the concept of 

the MBC by attempting to minimise the nutrient content in inputs. The minimum nutrient 

content in each farm’s inputs is measured by employing the input-oriented DEA method 

which is similar to the cost-minimising DEA method. Then the NE scores of each farm are 

calculated by “the ratio of minimum nutrients over observed nutrients” (Coelli et al., 2007, 

p. 7). The NE score has a value between zero and one. An NE score of one indicates that a 

farm is fully NE. Moreover, the NE measure proposed by Coelli et al. (2007) can be 

decomposed into TE and environmental allocative efficiency in a similar manner to the cost-

minimising DEA efficiency decomposition. This measure has been applied for other NE 

measurements (e.g. Hoang and Alauddin, 2012; Hoang and Coelli, 2011; Nguyen et al., 

2012). Coelli et al. (2007) illustrated this measure using the case study of the phosphorus 

emission of a cross-section of 183 pig farms in Belgium in the accounting year 1996 to 1997. 

The TE and CE scores were computed by the standard DEA approaches. They concluded 

that the nutrient pollution of Belgian pig-finishing farms can be proportionally decreased in 

a cost-reducing manner. 

3.5 Empirical studies of efficiency measurement using directional distance function  

The DDF based on Luenberger’s benefit function was introduced by Chambers et al. (1996; 

1998). It has been used to measure the TE of farms for reducing inputs while simultaneously 

increasing outputs (Chambers et al., 1998; Ray, 2008; Färe and Grosskopt, 2005; Zofio, et 

al., 2013; Ang and Kerstens, 2016). This approach can help researchers to avoid making an 

arbitrary choice between input and output orientated DEA measures. However, the researcher 

has to specify directions for each farm when using the DDF approach (Coelli et al, 2005). The 

interpretation of inefficiency scores obtained by the DDF approach depends on the choice 

of directional vector, which is arbitrary, depending on the researchers’ choice. The different 

choices of directional vectors that have been applied in previous studies are as follows. 

Singbo and Lansink (2010, p. 369) proposed a theoretical model of inefficiency analysis called 

the “Two-stage semi-parametric and bootstrap model”. They illustrated this measure using the 

case study of lowland farming systems in the Benin Republic (West Africa). This includes rice 

farming systems (28 farms), vegetable farming systems (35 farms), and rice-vegetable farming 



41 
  

systems (30 farms). First, they employed the DDF method to measure the inefficiency of these 

systems. They chose the directional vector towards observed farms’ own inputs and outputs 

following Chambers et al. (1998 cited in Singbo and Lansink, 2010, p. 373). Secondly, they 

examined factors affecting the inefficiency levels of these systems employing a single 

truncated bootstrap procedure proposed by Simar and Wilson (2007 cited in Singbo and 

Lansink, 2010, p. 372). They found that the main sources of inefficiency in the short run were 

scale, allocative and output inefficiency. They concluded that the inefficiency of lowland 

farming systems was different. They suggested promoting integrated rice-vegetable farming 

systems in West Africa using lowland development strategies in order to increase food 

security. 

Färe et al. (2007) investigated the environmental performance of 92 coal-fired power plants 

using the DDF approach in 1995. The data set consists of one good output (net electrical 

generation), two bad outputs (sulphur dioxide and nitrogen oxides), and 5 inputs (capital stock, 

the number of employees, the heat content of coal, the heat content of oil, and  the heat content 

of natural gas). They incorporated two bad outputs into the DDF model as input variables. This 

model is called the environmental directional distance function. Its concept is to 

simultaneously expand good output production and contract bad output production. This 

concept is different from that of Reinhard et al. (2000), who attempted to minimise multiple 

environmentally detrimental inputs by fixing the same level of desirable output and 

conventional inputs. Färe et al. (2007), on the other hand, attempted to simultaneously 

minimise multiple environmentally detrimental inputs and maximise desirable output by 

fixing the same level of conventional inputs. Moreover, the concept of Färe et al. (2007) is 

also different from that of Picazo-Tadeo et al. (2005), since the latter attempted to 

simultaneously minimise conventional inputs and maximise desirable output by fixing the 

same level of undesirable output. Färe et al. (2007) chose the directional vectors to be 

decreases one unit of input (i.e. two bad outputs) and increases one unit of output, fixing the 

same level of conventional inputs. This direction has also been chosen in other studies (e.g. 

Färe et al., 2005; Färe et al., 2012; Picazo-Tadeo et al., 2005; Machperson et al., 2010).  

Ang and Kerstens (2016) employed the DDF approach to measure the inefficiency level of 

mixed farms in England and Wales over the period 2007 to 2013. The data set consists of two 

outputs (i.e. crop production and livestock production), 12 variable inputs, and six fixed 

factors. They used directional vector towards the observed farms’ inputs used and output 

produced. This means that all inputs and outputs were adjusted in proportion for each 

individual farm. The reason for choosing this direction is to ensure that the DDF function is 
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feasible and can be interpreted as simultaneously maximising proportional expansion of 

outputs and contraction of inputs. This directional vector has been applied in the DDF 

literature, including studies by Chung et al. (1997), Ray (2008), Singbo and Lansink (2010), 

and Riccardi et al. (2012).  

Zofio et al. (2013) suggest choosing the directional vector that projects inefficient firms 

towards a profit maximising benchmark. The projecting point on the efficiency frontier is 

the point where the iso-profit line is tangent to the production possibility frontier. However, 

this directional vector is possible only when market prices of inputs and outputs are observed 

and firms have profit maximising behaviour. The DDF model that uses the directional vector 

towards the profit maximisation point is called the directional profit efficiency measure. This 

model is different from that used in other studies because the directional vector is not 

preassigned and its elements could take positive or negative values. Zofio et al. (2013) 

illustrate this model by measuring the inefficiency scores of eight firms that produce two 

outputs using two inputs. The inefficiency scores obtained from this model can be 

decomposed into technical inefficiency, which measures the distance to the frontier, and 

allocative inefficiency, which measures the deviation from the optimal mix of outputs and 

inputs (overall profit efficiency (OPE) = TE +AE). The firm is said to be profit efficient if 

the firm’s profit is maximal. Then the technical and allocative inefficiency scores are equal 

to zero, or the firm is both technically and allocative efficient. When a firm is profit 

inefficient and its observed profit is not maximal, there are two possible reasons. First, the 

profit inefficiency is due to the technical inefficiency if the difference between observed 

profit and maximum profit is equal to the technical inefficiency score obtained from the 

standard DDF model. Second, the profit inefficiency is due to the allocative inefficiency if 

technical inefficiency score obtained from the standard DDF model is equal to zero (this 

firm is technically efficient, but allocatively inefficient).      

3.6 Summary 

This chapter has reviewed research investigating several areas relevant to the current study. 

Firstly, it discussed rice production efficiency measurement in Thailand and other countries, 

and then reviewed NE measurements in rice and other productions. Finally, it examined the 

application of DDF in previous literature. None of the empirical studies on efficiency 

measurement of rice production in Thailand has addressed efficiency analysis at farm level 

for the whole country, nor has it investigated the TE of Thai rice using output-oriented DEA 

and DDF approaches. Moreover, only one of the studies reviewed (Kiatpathomchai, 2008) 
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has investigated the environmental efficiency of Thai rice farmers by incorporating N-

leaching and N-emission in the input-oriented DEA model as input variables. None of 

empirical studies on the efficiency measurement of rice production in Thailand takes “the 

material balance condition” (Coelli et al., 2007) into NE consideration during its analysis.  

Therefore, this study examines the technical and environmental efficiencies of Thai rice 

farmers for the whole country, using cross-sectional data from the crop year 2008/09 of 

1,112 rice farms. These sample farms were categorised into 9 groups of observations, which 

will be explained in detail in Chapter 5. 

Input-oriented DEA, output-oriented DEA, and DDF models will be used to measure the TE 

of a homogenous set of Thai rice farmers, since these farmers produced rice output using the 

same kind of inputs (i.e. seed, land cultivated, chemical fertiliser, organic fertiliser, pesticide, 

human labour, machinery labour, fuel, and other input costs). Since the choice of directional 

vector for the DDF approach is arbitrary, this study investigates the technical inefficiency of 

Thai rice farming using the directional vectors used by Ang and Kerstens (2016), and Zofio, 

et al. (2013).  

Furthermore, this study integrates the concept of MBC, as proposed by Coelli et al. (2007), 

and the directional profit efficiency measure proposed by Zofio et al. (2013) to measure the 

NE of the Thai rice farming systems. The DDF model is measured using the directional 

vector that projects inefficient farms towards a nutrient surplus minimising frontier. The 

projecting point on the efficiency frontier is the point where the iso-nutrient line is tangent 

to the production possibility frontier. Nitrogen and phosphorus surplus from rice farming 

practice are key input variables for the NE measurement in this study. The environmental 

problems caused by rice cultivation have been reviewed in Chapter 2. Reducing the nitrogen 

and phosphorus surpluses arising from rice production can lead to the reduction of 

environmental problems, especially nitrate contamination of the surface and groundwater, 

and the eutrophication of surface water.  

The major problems of Thai rice farmers are high production cost and low income. 

Improvement of TE by reducing input usage to produce the same quantity of rice output 

(input-oriented DEA model) can reduce the cost of production, as well as nutrient surplus 

from fertiliser application. Improvement of TE by using the same level of inputs to produce 

higher rice output (output-oriented DEA model) can increase farmers’ income and reduce 

nutrient surplus from fertiliser application because farmers could use the same level of inputs 
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but obtain a higher output level. In addition to the DDF approach, improvement of farm 

efficiency, by simultaneously increasing the amount of output together with reducing the 

amount of inputs, can increase farmers’ income and reduce production costs as well as 

reducing nutrient surplus from fertiliser application. 
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Chapter 4 

Methodology 

4.1. Introduction 

The main objective of this research is to measure the technical and environmental efficiency 

of Thai rice farming systems. Therefore, the purposes of this chapter are to introduce the 

methodology used in this research, and to introduce the directional nutrient surplus 

efficiency measure. The directional nutrient surplus efficiency measure incorporates nutrient 

surplus into the conventional Directional Distance Function (DDF) in a similar manner to 

that in which price information is normally incorporated in the directional profit efficiency 

measure (Zofio et al., 2013). This measure is used to assess the environmental performance 

of Thai rice production. The technical efficiency (TE) measurements using Data 

Envelopment Analysis (DEA) and the DDF are introduced. The basic concepts of directional 

profit efficiency measures (Zofio, et al., 2013), the material balance condition (MBC) (Coelli 

et al., 2007), the data cloud method (Wilson, 1993), and the non-parametric tests of returns 

to scale (Simar and Wilson, 2002) are also explained.  

After the introduction in Section 1, the definition of production possibility set and its 

underlying basic assumptions are provided in Section 2 and Section 3. The concept of 

evaluation of farms’ performance is illustrated in Section 4. Section 5 and Section 7 explain 

the concept of evaluation of farms’ performance by using DEA and DDF approaches, 

respectively. The basic concepts of the MBC and the directional profit efficiency measure 

are explained in Section 6 and Section 8, respectively. Section 9 introduces the directional 

nutrient surplus efficiency measure. The data cloud method that is used to identify outliers 

in the non-parametric frontier model is presented in Section 10. The important of non-

parametric tests of returns to scale is explained in Section 11.  

4.2 Production technology 

A decision making unit (DMU) in a farming system is a farm that decides its production plan 

by choosing a combination of inputs to produce outputs. Assume that a set of n farms is 

observed, with each farm 𝑖 =  {1, … , 𝑛} using a set of k inputs to produce a set of m outputs. 

For the ith farm,  𝑥𝑖 = (𝑥1
𝑖 ,  𝑥2

𝑖  … , 𝑥𝑘
𝑖   ) ∈ ℝ+

𝑘  and 𝑦𝑖 = (𝑦1
𝑖 ,  𝑦2

𝑖 , … , 𝑦𝑚
𝑖   ) ∈ ℝ+

𝑚 are defined 
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as the k-vector of inputs and m-vector of outputs, respectively12. The production plan for the 

ith farm is defined as:  

    (𝑥𝑖 , 𝑦𝑖)  ∈ ℝ+
𝑘 × ℝ+

𝑚           (4.1) 

Note that ℝ+ = {𝑎 ∈ ℝ|𝑎 ≥ 0}. This implies that both inputs and outputs for the ith farm are 

greater than or equal to zero (i.e. a non-negative number). 

Therefore, the input data matrix X and the output data matrix Y for a set of n farms can be 

written as follows: 

𝑋 =

[
 
 
 
𝑥1

1 𝑥2
1 … 𝑥𝑘

1

𝑥1
2 𝑥2

2 … 𝑥𝑘
2

⋮
𝑥1

𝑛
⋮

𝑥2
𝑛

 ⋮    ⋮
… 𝑥𝑘

𝑛]
 
 
 

𝑛×𝑘

 

𝑌 =

[
 
 
 
𝑦1

1 𝑦2
1 … 𝑦𝑚

1

𝑦1
2 𝑦2

2 … 𝑦𝑚
2

⋮
𝑦1

𝑛
⋮

𝑦2
𝑛

 ⋮    ⋮
… 𝑦𝑚

𝑛 ]
 
 
 

𝑛×𝑚

 

The production possibility set (PPS) or the technology set, T, is defined as (Bogetoft and 

Otto, 2011; Thanassoulis et al., 2008): 

𝑇 = {(𝑥, 𝑦) ∈ ℝ+
𝑘 × ℝ+

𝑚 | 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦}        (4.2) 

This technology set or PPS is unknown in many applications, because the whole population 

of production systems is not observed. The estimate is based on the observed input and 

output data of sample farms, and then the observed inputs and outputs of a farm are evaluated 

relative to this estimated PPS (Bogetoft and Otto, 2011). In the DEA, the estimated 

technology set or PPS is constructed based on the minimal extrapolation principle. This 

implies that the estimated technology set is the smallest subset of ℝ+
𝑘 × ℝ+

𝑚 that contains the 

data (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,… , 𝑛  and satisfies the assumptions of production technology (i.e. 

monotonicity, convexity, and various notions of returns to scale) without specifying any 

functional form (Banker et al., 1984; Bogetoft and Otto, 2011). The production technology 

assumptions of DEA are as follows (Thanassoulis et al., 2008; Bogetoft and Otto, 2011): 

Assumption 1 (A1): Feasibility of input-output combinations. An input-output combination 

(𝑥, 𝑦) is feasible when the output vector y can be produced by the input vector x. Assume 

                                                           
12 Subscripts are used to indicate the different kinds of inputs and outputs, while superscripts are used to 

indicate the different farms. All the inputs or outputs are considered as a vector format when the subscripts are 

absent. 
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there exists a set of n farms using k inputs to produce m outputs. Let 𝑥𝑖 =  (𝑥1
𝑖 ,  𝑥2

𝑖  … , 𝑥𝑘
𝑖   ) 

be the observed vector of inputs and 𝑦𝑖 = (𝑦1
𝑖 ,  𝑦2

𝑖 , … , 𝑦𝑚
𝑖   )  be the observed vector of 

outputs of the ith farm. Then for each farm 𝑖 =  {1, … , 𝑛}, (𝑥𝑖, 𝑦𝑖) is a feasible input-output 

combination (production plan). Thus, (𝑥𝑖 , 𝑦𝑖) ∈ 𝑇. 

Assumption 2 (A2):  Monotonicity or free disposability of inputs and output. 

Free disposability of inputs: If (𝑥, 𝑦) ∈ 𝑇 and 𝑥′ ≥ 𝑥 then (𝑥′, 𝑦) ∈ 𝑇. This implies that the 

same amount of outputs can be produced using a given amount of inputs, or using a greater 

amount of inputs, so long as the surplus inputs can be freely disposed of. 

Free disposability of outputs: If (𝑥, 𝑦) ∈ 𝑇 and 𝑦′ ≤ 𝑦 then (𝑥, 𝑦′) ∈ 𝑇. This means that a 

fixed amount of inputs can produce a fixed amount of outputs, or can produce fewer outputs, 

so long as surplus outputs can be freely disposed of. 

Free disposability of inputs and outputs: If (𝑥, 𝑦) ∈ 𝑇 , 𝑥′ ≥ 𝑥  and 𝑦′ ≤ 𝑦 , then 

(𝑥′, 𝑦′) ∈ 𝑇 . This means that the unnecessary inputs (i.e. excess inputs) and unwanted 

outputs can be freely disposed of.  

Assumption 3 (A3): Convexity. The PPS or the technology set T is convex. This implies 

that any weight of feasible production plans (two input-output combinations) in the sample 

is also feasible: if (𝑥, 𝑦) ∈ 𝑇, (𝑥′, 𝑦′) ∈ 𝑇, and any weight 0 ≤ 𝜆 ≤ 1, then the weighted sum 

(𝑥𝜆, 𝑦𝜆) = [(1 − 𝜆)(𝑥, 𝑦) + 𝜆(𝑥′, 𝑦′)] ∈ 𝑇. i.e. 

 (𝑥, 𝑦) ∈ 𝑇, (𝑥′, 𝑦′) ∈ 𝑇, 0 ≤ 𝜆 ≤ 1 ⇒ [(1 − 𝜆)(𝑥, 𝑦) + 𝜆(𝑥′, 𝑦′)] ∈  𝑇   

The weighted sum (𝑥𝜆, 𝑦𝜆)  is called a convex combination of (𝑥, 𝑦)  and (𝑥′, 𝑦′)  with 

weight 𝜆. This implies that any points (production plans) on the line between any two points 

(production plans) in the technology set T are also in T.  

Assumption 4 (A4):  Returns to scale (𝛾). The returns to scale (RTS) assumption suggests 

that rescaling of production plan is possible (Bogetoft and Otto, 2011). The production plan 

can be rescaled with any of a given set of factors:  

   (𝑥, 𝑦) ∈ 𝑇, 𝛽 ∈ Γ(𝛾)  ⟹ 𝛽(𝑥, 𝑦) ∈ 𝑇, 𝛽 ≥ 0     

where 𝛾  = constant returns to scale (CRS), decreasing returns to scale (DRS) or non-

increasing returns to scale (NIRS), increasing returns to scale (IRS) or non-decreasing 
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returns to scale (NDRS), and variable returns to scale (VRS)13 . The possible rescaling 

factors sets for the different RTS assumptions are given by Γ(𝐶𝑅𝑆) = ℝ0  (𝛽 ≥ 0) , 

Γ(𝐷𝑅𝑆) = [0,1] (0 ≤ 𝛽 ≤ 1) ,  Γ(𝐼𝑅𝑆) = [1,∞] (𝛽 ≥ 1) , and Γ(𝑉𝑅𝑆) = {1}(𝛽 = 1) 

(Bogetoft and Otto, 2011). 

In the DEA, the estimated production technologies are different depending on which 

assumption of RTS is chosen. Of these four RTS assumptions, the VRS assumption, which 

indicates that no rescaling is possible, is the weakest assumption, while the CRS assumption, 

that any combination of production plans can be arbitrarily scaled down or up, is the 

strongest assumption. Between the assumptions of CRS and VRS, the assumption of NIRS 

indicates that any degree of downscaling is possible but not any degree of upscaling. This 

implies that it cannot be disadvantageous to be small but that it may be disadvantageous to 

be large. Finally, the assumption of NDRS, which is less commonly used, states that it cannot 

be a disadvantage to be large but that it may be possibly be a disadvantage to be small 

(Bogetoft and Otto, 2011).  

Assumption 5 (A5):  No free lunch. This assumption states that no output can be produced 

without some input. If 𝑦 ≥ 0 and 𝑦 ≠ 0 then (0, 𝑦) ∉ 𝑇.  

4.3 The PPS under the assumption of constant returns to scale 

Assumptions A1 – A4 are used to empirically construct a technology set or PPS from the 

observed inputs-outputs of farms in the sample without specifying any functional form of a 

production function. Consider the construction of a technology set or PPS of the observed 

input-output set (�̂�, �̂�) ∈ 𝑇  where �̂� = ∑ 𝜇𝑖𝑥𝑖𝑛
𝑖=1  is a linear combination of inputs set,  

�̂� = ∑ 𝜇𝑖𝑦𝑖𝑛
𝑖=1  is a linear combination of outputs set, ∑ 𝜇𝑖𝑛

𝑖=1 = 1, and 𝜇𝑖 ≥ 0. 

By (A1) (�̂�, �̂�) is feasible i.e. (�̂�, �̂�) ∈ 𝑇 . 

If 𝑥 ≥ �̂� and 𝑦 ≤ �̂� , by assumption (A2) we  conclude that the input output set (𝑥, 𝑦) is also 

feasible i.e. (𝑥, 𝑦) ∈ 𝑇. 

For (A4), if we assume that the technology set or PPS exhibits CRS, then (𝛽�̂�, 𝛽�̂�)is also 

feasible set for any  𝛽 ≥ 0  , (𝛽�̂�, 𝛽�̂�) ∈ 𝑇 

                                                           
13 CRS means that output will change by the same proportion as inputs are changed (e.g. a doubling of all 

inputs will double output). VRS reflects the fact that production technology may IRS (when we double all 

inputs, output is more than doubled), CRS, and DRS (when we double all inputs, output is less than doubled) 

(Coelli et al., 2002). 
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Since 𝑥 ≥ �̂� and 𝑦 ≤ �̂� then 𝑥 ≥ 𝛽�̂� and 𝑦 ≤ 𝛽�̂� 

Then, we get  𝑥 ≥ 𝛽 ∑ 𝜇𝑖𝑥𝑖𝑛
𝑖=1  , 𝑦 ≤ 𝛽 ∑ 𝜇𝑖𝑦𝑖𝑛

𝑖=1 , ∑ 𝜇𝑖𝑛
𝑖=1 = 1, 𝜇𝑖 ≥ 0, 𝛽 ≥ 0.  

    𝑥 ≥ ∑ 𝛽𝜇𝑖𝑥𝑖𝑛
𝑖=1  , 𝑦 ≤ ∑ 𝛽𝜇𝑖𝑦𝑖𝑛

𝑖=1 , ∑ 𝜇𝑖𝑛
𝑖=1 = 1, 𝜇𝑖 ≥ 0, 𝛽 ≥ 0. 

Next if    𝜆𝑖 = 𝛽𝜇𝑖, then the above relationship translates into 

𝑥 ≥ ∑ 𝜆𝑖𝑥𝑖𝑛
𝑖=1  , 𝑦 ≤ ∑ 𝜆𝑖𝑦𝑖𝑛

𝑖=1 , ∑ 𝜆𝑖𝑛
𝑖=1 = 𝛽, 𝜆𝑖 ≥ 0, 𝛽 ≥ 0 

Note that  ∑ 𝜆𝑖𝑛
𝑖=1 = ∑ 𝛽𝜇𝑖𝑛

𝑖=1 = 𝛽 ∑ 𝜇𝑖𝑛
𝑖=1   since ∑ 𝜇𝑖𝑛

𝑖=1 = 1    

 then ∑ 𝜆𝑖𝑛
𝑖=1 = 𝛽, 𝜆𝑖 ≥ 0, 𝛽 ≥ 0  

The only restriction on the construction of this technology set or PPS is that  𝛽 is a non-

negative value (𝛽 ≥ 0). As a result, 𝜆𝑖  has to be non-negative values, which is the only 

restriction on the 𝜆𝑖. Since ∑ 𝜆𝑖𝑛
𝑖=1 = 𝛽 . Therefore, the construction of the technology set or 

PPS is different depending on the 𝛽 or the RTS assumption that assumes for the technology 

set or PPS 

Based on the assumptions A1-A3, A4 under the assumption of CRS, and the observed input 

and output set, the technology set or PPS can be defined as follows: 

  T𝐶 = {(𝑥, 𝑦): 𝑦 ≤ ∑ 𝜆𝑖𝑦𝑖𝑛

𝑖=1
, 𝑥 ≥ ∑ 𝜆𝑖𝑥𝑖𝑛

𝑖=1
, 𝜆𝑖 ≥ 0, 𝑖 = 1,… , 𝑛}       (4.3) 

where the superscript C indicates that the technology set or PPS is characterised by the 

assumption of CRS.  

4.4 Evaluation of farms’ performances 

The performance of a farm can be evaluated using a ratio of its inputs used to its outputs 

produced (i.e. the productivity ratio), and the relative performance evaluation or 

benchmarking (Bogetoft and Otto, 2011). Benchmarking is the systematic comparison of the 

performance of farms using the same type of inputs to produce the same type of output. It 

compares the performance of one farm against other farms in the sample (Bogetoft and Otto, 

2011; Gadanakis, 2014). The performance of each farm is estimated by the distance from its 

position relative to a specific efficient production frontier (i.e. the production possibility 

frontier (PPF)) which represents the minimum of inputs used to produce a fixed amount of 

outputs or the maximum outputs produced by using a fixed amount of inputs.  

The performance of farms can be compared by their TE scores, which are measured by either 

the input or the output approach. The input approach attempts to evaluate the ability to 
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minimise the amount of inputs to produce a fixed amount of output, while the output 

approach attempts to evaluate the ability to maximise the amount of output by using a fixed 

amount of inputs. Therefore, a farm can be defined as technically efficient when it manages 

to minimise the amount of inputs to produce a fixed amount of output, or maximise the 

amount of output by using the same level of inputs (i.e. the farm  operates on the production 

frontier) (Bogetoft and Otto, 2011). 

The input-based Farrell efficiency (input efficiency or input distance function) and the 

output-based Farrell efficiency (output efficiency or output distance function) of a 

production plan (𝑥, 𝑦) relative to PPS or technology T are defined as Eq. (4.4) and Eq. (4.5), 

respectively (Bogetoft and Otto, 2011).  

𝐸 = 𝐸(𝑥, 𝑦) = 𝑚𝑖𝑛{𝐸 > 0|(𝐸𝑥, 𝑦) ∈ 𝑇}         (4.4) 

𝐹 = 𝐹(𝑥, 𝑦) = 𝑚𝑎𝑥{𝐹 > 0|(𝑥, 𝐹𝑦) ∈ 𝑇}         (4.5) 

where E and F represent the maximal proportional reduction of the amount of all inputs x 

that allows production of the same amount of outputs y, and the maximal proportional 

expansion of the quantity of all outputs y that can be produced with a fixed amount of inputs 

x, respectively. For example, if the input efficiency score of a farm equals 0.75 (E = 0.75), 

this implies that this farm could reduce all inputs by 25% and still obtain the same amount 

of all outputs. If the output efficiency score of a farm equals 1.2 (F = 1.2), it implies that this 

farm could expand all outputs by 20% by using the same amount of all inputs.  

 
Figure 4.1 Input and output Farrell efficiency measures (Adapted from Bogetoft and Otto, 

2011) 

The concept of input and output based Farrell efficiency measures is illustrated in Figure 4.1 

when there are two inputs and two outputs (Bogetoft and Otto, 2011). The left hand figure 

presents the input isoquant corresponding to the amount of outputs produced (𝑦), while the 

right hand figure presents the output isoquant corresponding to the amount of inputs used 

(𝑥). Inputs and outputs can be proportionally contracted and expanded along the dotted lines 
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in the two graphs. The input-based Farrell efficiency of a farm is measured as the smallest 

number of 𝐸 that is used to multiply the amount of 𝑥 and then 𝐸𝑥 remains above or on the 

input isoquant. Thus, the value of 𝐸 is less than or equal to one (𝐸 ≤ 1). Likewise, the 

output-based Farrell efficiency of a farm is measured as the largest number of 𝐹 that is used 

to multiply the amount of 𝑦 and then 𝐹𝑦 remains below or on the isoquant. Thus, the value 

of 𝐹 is greater than or equal to one (𝐹 ≥ 1). The farm is less efficient when it has the smaller 

𝐸 or the larger 𝐹 (Bogetoft and Otto, 2011). 

The input distance function Eq. (4.4) and output distance function Eq. (4.5) give an 

alternative description of the PPS or technology T. Particularly, if 𝐸(𝑥, 𝑦) or 𝐹(𝑥, 𝑦) for all 

(𝑥, 𝑦) ∈ ℝ+
𝑘 × ℝ+

𝑚 are known, the technology T is also known. Therefore, the input distance 

function and output distance function provide a complete characterisation of the technology 

T as 

𝑇 = {(𝑥, 𝑦) ∈ ℝ+
𝑘 × ℝ+

𝑚|𝐸(𝑥, 𝑦) ≤ 1}         (4.6) 

𝑇 = {(𝑥, 𝑦) ∈ ℝ+
𝑘 × ℝ+

𝑚|𝐹(𝑥, 𝑦) ≥ 1}                   (4.7) 

The inverse of the Farrell efficiency measures, which are commonly applied to measure TE 

in the literature, are called Shephard distance functions. Thus, the Shephard input distance 

function (Di) and the Shephard output distance function (Do) are defined as Eq. (4.8) and Eq. 

(4.9), respectively (Bogetoft and Otto, 2011; Chambers et al., 1998). 

𝐷𝑖 = 𝑚𝑎𝑥 {𝐷 > 0 |(
𝑥

𝐷
, 𝑦) ∈ 𝑇} = 1/𝐸(𝑥, 𝑦)                   (4.8) 

𝐷𝑜 = 𝑚𝑖𝑛 {𝐷 > 0 |(𝑥,
𝑦

𝐷
) ∈ 𝑇} = 1/𝐹(𝑥, 𝑦)                    (4.9) 

Similar to Farrell efficiency measures, 

𝑇 = {(𝑥, 𝑦) ∈ ℝ+
𝑘 × ℝ+

𝑚|𝐷𝑖(𝑥, 𝑦) ≥ 1}                  (4.10) 

𝑇 = {(𝑥, 𝑦) ∈ ℝ+
𝑘 × ℝ+

𝑚|𝐷𝑜(𝑥, 𝑦) ≤ 1}                  (4.11) 

The concepts of the PPS or technology T, input-based and output-based Farrell efficiencies, 

and TE are illustrated in Figure 4.2 using one input (x) and one output (y) production plan 

of farms {A, B, C, D, E, F}. The PPF under the CRS assumption is represented by the dotted 

line OP, while the PPF under the VRS assumption is represented by the concave envelope 

EACD. The PPF is forced through the origin when CRS is assumed; this does not happen 

when VRS is assumed.  
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The technically efficient farms lie on the PPF, while the technically inefficient farms lie 

below the PPF (Coelli et al, 2002; Ahmed et al., 2011). Farm B in figure 4.2 is technically 

inefficient as it operates below the PPF under both CRS and VRS assumptions. The TE score 

of farm B using the input-oriented Farrell measure under the assumption of CRS (OP 

frontier) is the ratio QR/QB, while the TE score of farm B using the output-oriented Farrell 

measure under the assumption of CRS is the ratio VB/VU. Note that the TE scores obtained 

from input-oriented and output-oriented Farrell measures are equivalent only under the 

assumption of CRS i.e. QR/QB = VB/VU (Coelli et al, 2002; Bogetoft and Otto, 2011; 

Gadanakis, 2014).  

 

Figure 4.2 The production possibility set 

The TE score of farm B, using the input-oriented Farrell measure under the assumption of 

VRS (EACD frontier), is the ratio QS/QB, while the TE score of farm B, using the output-

oriented Farrell measure under the assumption of VRS, is the ratio VB/VT. Unlike the 

assumption of CRS, the assumption of VRS does not give equivalent measures of TE scores. 

Moreover, the TE scores obtained under the assumption of CRS are always less than or equal 

to the TE scores obtained under the assumption of VRS. This is because the PPF under VRS 

assumption envelops the data more tightly than the PPF under CRS assumption (Coelli et 

al., 2005).  

The projecting point of farm B on the PPF under the VRS assumption (point S for input 

efficiency, or point T for output efficiency) lies between farms A and C. Thus, farms A and 

C are referred to as the “peers or reference set” of farm B. That is, points S and T are linear 

combinations of points A and C. 

It is clear that there are two components that affect the measurement of TE scores. The first 

is the assumption about orientation (e.g. input-oriented, output-oriented). The second is that 
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the assumption of RTS will affect the TE scores of the sample farms, because the TE score 

obtained from the CRS assumption is lower than the TE obtained from the VRS assumption. 

In this research, the underlying technology of the PPF will be determined by non-parametric 

tests of returns to scale, as proposed by Simar and Wilson (2002).  In addition, the orientation 

will be determined by both input- and output-oriented models as well as a DDF (see the basic 

concept of this method in Section 4.7). This is because the major problems of Thai rice 

farming systems arise from situations where farmers are faced with high costs of rice 

production and low income (i.e. low profit), and from environmental problems caused by 

the overuse of chemical fertiliser and manure (i.e. water pollution). The input-oriented DEA 

model reveals to what extent inputs can be reduced without changing the amount of rice 

output produced. It can be used to identify which farmers are efficient or inefficient. The 

efficient farmers use less input than the inefficient farmers to produce the same level of rice 

output. It is interesting to know what strategies efficient farmers employ in their practice. 

Hence, the improvement of farm efficiency, according to this orientation, can automatically 

reduce production costs (i.e. farmers will make higher profits), as well as reducing nutrient 

surplus from fertiliser and manure application. The output-oriented DEA allows the research 

to determine the extent to which rice output can be expanded by using the same amount of 

inputs. This implies that the efficient farmers can get higher output than the inefficient 

farmers by using the same level of inputs. The improvement of farm efficiency by this 

orientation results in higher incomes for farmers, and lower nutrient surplus from fertiliser 

and manure application. The DDF model explores the extent to which production can be 

increased and inputs reduced simultaneously. The improvement of farm efficiency by this 

orientation can increase farmers’ income and reduce production costs, as well as reducing 

nutrient surplus from fertiliser application. Thus, the results from this research can be used 

to combine with the previous literature to provide insights into how Thailand can sustainably 

intensify its rice production by minimising undesirable outputs (nutrient surplus).  

4.5 Evaluating the performance of farms using data envelopment analysis  

DEA is used to measure the relative efficiency of a homogenous set of DMUs, namely the 

rice farming households in this study, using linear programming problem solving in order to 

construct the piecewise frontier over the data (Coelli et al, 2005; Ahmed et al., 2011). It can 

be used to estimate the PPF for many outputs and inputs and evaluate where farmers perform 

in relation to this frontier. DEA determines which farmers are the “best” in the group. This 

implies that the best farmers can produce either the same amount of output with fewer inputs 

used or a greater amount of output with the same level of inputs used, compared to inefficient 
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farmers in the group (Ahmed et al., 2011). On the other hand, the inefficient farmers can 

improve their performance to reach an efficient frontier by either increasing their current 

amount of outputs produced or decreasing their current amount of inputs used. The DEA 

approach has been applied to measure the TE of DMUs as it requires only data on physical 

amounts of inputs used and outputs produced (Coelli et al., 2005).  

The linear programming of the input-oriented DEA approach under the assumption of VRS 

for a specific farm o is defined as follows. 

𝑚𝑖𝑛 𝐸𝑜 

Subject to    𝐸𝑜𝑥𝑘
𝑜 ≥ ∑ 𝜆𝑖𝑛

𝑖=1 𝑥𝑘
𝑖   , k = 1,…,k 

        𝑦𝑚
𝑜 ≤ ∑ 𝜆𝑖𝑛

𝑖=1 𝑦𝑚
𝑖   , m = 1,…,m                  (4.12) 

          ∑ 𝜆𝑖𝑛
𝑖=1 = 1         

                  𝜆𝑖 ≥ 0        , i = 1,…,n 

where 𝐸𝑜 is the TE score for the oth farm being evaluated, 𝑥𝑘
𝑜 = 𝑥1

𝑜 ,  𝑥2
𝑜  … , 𝑥𝑘

𝑜 are the inputs 

used for the oth farm being evaluated,  𝑦𝑚
𝑜 = 𝑦1

𝑜 ,  𝑦2
𝑜  … , 𝑦𝑚

𝑜  are the outputs produced for the 

oth farm being evaluated, 𝜆𝑖 = 𝜆1, … , 𝜆𝑛 is a vector of weights and has dimension 𝑛 × 1.  

k and m are the k-vector of inputs and m-vector of outputs defined as  

𝑥𝑖 = (𝑥1
𝑖 ,  𝑥2

𝑖  … , 𝑥𝑘
𝑖   ) ∈ ℝ+

𝑘  and 𝑦𝑖 = (𝑦1
𝑖 ,  𝑦2

𝑖 , … , 𝑦𝑚
𝑖   ) ∈ ℝ+

𝑚, respectively. 

This Model is known as the BCC model, as proposed by Banker, Charnes, and Cooper in 

1984. When the convexity constraint ∑ 𝜆𝑖𝑛
𝑖=1 = 1 is omitted, the CRS is assumed, and the 

Model (4.12) becomes the CCR model, as proposed by Charnes, Cooper, and Rhodes in 

1978.  

The value of 𝐸 obtained from the Model (4.12) is the efficiency score of the oth farm which 

ranges between 0 and 1. A value of 1 indicates that a farm is on the efficiency frontier (T) 

and hence that farm is technically efficient, while a value less than 1 indicates that a farm is 

below the efficiency frontier and hence that farm is technically inefficient (Coelli et al., 

2005). The values of 𝜆𝑖 = 𝜆1, … , 𝜆𝑛 are applied as weights in the linear combination of other 

efficient farms (i.e. reference set or peer group) for an inefficient farm, which influences the 

projection of inefficient farms on the estimated efficiency frontier (Umanath and Rajasekar, 

2013). The linear programming problem must be solved n times, once for each farm in the 

sample (Coelli et al., 2005). The input-oriented production frontier aims to find the largest 
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proportional reduction in input quantities without changing the quantity of output produced, 

while remaining within the feasible input set (Coelli et al., 2002; Coelli et al., 2005).  

The linear programming of the output-oriented DEA approach under the assumption of VRS 

for a specific farm o is very similar to their input-oriented counterparts which can be written 

as follows. 

𝑚𝑎𝑥 𝐹𝑜 

Subject to           𝑥𝑘
𝑜 ≥ ∑ 𝜆𝑖𝑛

𝑖=1 𝑥𝑘
𝑖   ,   k = 1,…,k 

    𝐹𝑦𝑚
𝑜 ≤ ∑ 𝜆𝑖𝑛

𝑖=1 𝑦𝑚
𝑖   ,  m = 1,…,m                  (4.13) 

        ∑ 𝜆𝑖𝑛
𝑖=1 = 1,          

           𝜆𝑖 ≥ 0        ,   i = 1,…,n 

where 𝐹𝑜 is the efficiency score for the oth farm being evaluated and its value is greater than 

or equal to one (1 ≤  𝐹𝑜 < ∞). The TE score for the oth farm is calculated by 1/𝐹𝑜. A value 

of 1 indicates that a farm is on the efficiency frontier and hence that farm is technically 

efficient, while a value less than 1 indicates that a farm is below the efficiency frontier and 

hence that farm is technically inefficient.  

The output-oriented DEA model under the assumption of CRS can be measured by omitting 

the convexity constraint ∑ 𝜆𝑖𝑛
𝑖=1 = 1  in the Model (4.13).  

 
Figure 4.3 Returns to scale (CRS, IRS, and DRS) (Adapted from Coelli et al., 2005). 

The results of TE scores obtained from the DEA model under the assumption of CRS 

(𝑇𝐸𝐶𝑅𝑆) are known as a measure of overall TE (OTE), and the results of TE scores obtained 

from the DEA model under the assumption of VRS (𝑇𝐸𝑉𝑅𝑆) are known as a measure of pure 

PCRS

y

Q

PVRS

R

P

CRS frontier

x

NIRS frontier

0

VRS frontier

P'



56 
  

technical efficiency (PTE), allowing the calculation of the SE measure (Coelli et al., 2002; 

Bogetoft and Otto, 2011). The concept and calculation of SE is illustrated in Figure 4.3 using 

one input (x) and one output (y). The PPFs constructed by the DEA model under the 

assumptions of CRS, VRS, and NIRS are shown in the figure. The input-oriented technical 

inefficiency of point P under CRS assumption is the distance PPCRS, while that of point P 

under VRS assumption is the distance PPVRS. The difference between the input-oriented 

technical inefficiency measures under the CRS and VRS assumptions, which is the distance 

between points PCRS and PVRS (PCRSPVRS), is due to scale inefficiency. The ratio efficiency 

measures of these concepts can be written as: 

𝑇𝐸𝐶𝑅𝑆 = 𝑃′𝑃𝐶𝑅𝑆/𝑃′𝑃                     (4.14) 

𝑇𝐸𝑉𝑅𝑆 = 𝑃′𝑃𝑉𝑅𝑆/𝑃′𝑃                     (4.15) 

𝑆𝐸 = 𝑃′𝑃𝐶𝑅𝑆/𝑃
′𝑃𝑉𝑅𝑆                     (4.16) 

The value of SE in Eq. (4.16) is equal to the ratio of Eq. (4.14) over Eq. (4.15). Thus, the SE 

scores can be calculated as 

              𝑆𝐸 = 𝑇𝐸𝐶𝑅𝑆/𝑇𝐸𝑉𝑅𝑆                             (4.17) 

The value of the SE score, which is bounded by zero and one because 𝑇𝐸𝐶𝑅𝑆 ≤ 𝑇𝐸𝑉𝑅𝑆 ,  

reveals whether a farm operates close to the optimal scale size (CRS). The SE = 1 indicates 

that a farm operates at the optimal scale size. A larger SE indicates that a farm operates 

closer to the optimal scale size (Bogetoft and Otto, 2011). The SE score can be applied to 

indicate potential benefits from farm size adjustment (Gadanakis, 2014). In addition, from 

Eq. (4.17) TECRS is decomposed to PTE and SE.  

𝑇𝐸𝐶𝑅𝑆 = 𝑇𝐸𝑉𝑅𝑆 × 𝑆𝐸                     (4.18) 

The SE score can be used to indicate whether a farm operates under CRS or VRS. A farm 

operates under CRS when its SE score is equal to one (i.e. TECRS=TEVRS), while a farm 

operates under VRS (i.e. IRS or DRS) when its SE score is less than one (i.e. 

𝑇𝐸𝐶𝑅𝑆 ≤ 𝑇𝐸𝑉𝑅𝑆). In the case of VRS, the SE score cannot be used to indicate whether the 

farm operates under IRS or DRS (Coelli et al., 1998 cited in Umanath and Rajasekar, 2013). 

The IRS or DRS can be investigated by running an additional DEA problem with NIRS 

(Coelli et al., 2005; Coelli et al., 2002). This can be done by substituting the convexity 

constraint ∑ 𝜆𝑖𝑛
𝑖=1 = 1  in the DEA model (4.12) with the convexity constraint ∑ 𝜆𝑖𝑛

𝑖=1 ≤ 1 

and then computing the relevant TE (TENIRS) for each farm in the sample (Coelli et al., 2002). 

If the 𝑇𝐸𝐶𝑅𝑆 = 𝑇𝐸𝑁𝐼𝑅𝑆  <  𝑇𝐸𝑉𝑅𝑆, then that farm operates below the optimal scale size or 
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under the IRS (farm P). If the 𝑇𝐸𝑁𝐼𝑅𝑆 = 𝑇𝐸𝑉𝑅𝑆 > 𝑇𝐸𝐶𝑅𝑆, then that farm operates above the 

optimal scale size or under the DRS (farm Q). If the 𝑇𝐸𝑁𝐼𝑅𝑆 = 𝑇𝐸𝑉𝑅𝑆 =  𝑇𝐸𝐶𝑅𝑆, then that 

farm operates at optimal scale size or under the CRS (farm R) (Figure 4.3).  

4.6 Material balance condition (Coelli et al., 2007) 

Production activity not only produces good outputs but also produces undesirable outputs 

(emissions) that cause environmental problems. Some of the nutrients applied are absorbed by 

plants, however the rest are discharged into the environment. Coelli et al. (2007, p. 4) state that 

“the nutrient balance of a farm is calculated as the amount of nutrient that enters the farm in 

inputs minus the amount that leaves the farm bound up in useful output”. 

Coelli et al (2007) define a surplus measure as 𝑧 ∈ ℝ+which is evaluated based on the 

material balance equation. That is, the nutrient surplus equals the total amount of nutrient in 

inputs minus the total amount of nutrient in outputs which can be written in mathematical 

form as  

     𝑧 = 𝑎′𝑋 − 𝑏′𝑌                    (4.19) 

where a is (𝑘 × 1) vector of nutrient content of inputs, b is (𝑚 × 1) vector of nutrient content 

of outputs14, X is an input matrix with (𝑘 × 𝑛) dimension, and Y is an output matrix with 

(𝑚 × 𝑛) dimension.  

 
Figure 4.4 Nutrient surplus minimisation 

The basic concept of MBC is illustrated in Figure 4.4. Assume that a farm uses one input to 

produce one output. The curve represents the PPF and the line represents the iso-nutrient 

surplus line 𝑧 = 𝑎𝑥 − 𝑏𝑦. Assume that N is the minimum nutrient surplus point where the 

iso-nutrient surplus line is tangent to the PPF. Farm A is technically inefficient because it 

                                                           
14 Note that it is possible that some inputs or outputs to have zero quantities of the interested nutrient content. 

For example, labour and machinery inputs do not have nitrogen content.  
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operates under the PPF. There are three possible ways for farm A to move from its position to 

the PPF. Firstly, farm A could proportionally increase the output quantities produced without 

changing the input quantities used, which is output-oriented DEA. With this direction of 

improvement, the nutrient surplus of farm A is also reduced, but it is not at the minimum 

surplus point. Secondly, farm A could proportionally reduce the input quantities used without 

altering the output quantities produced, which is input-oriented DEA. With this direction of 

improvement, the nutrient surplus is also reduced, but it is not at the minimum surplus point. 

Coelli et al. (2007) measure environmental performance of farming systems along this 

direction. They minimise nutrients for each farm using the input-oriented DEA, which is 

similar to the cost-minimising DEA model. Then the environmental efficiency for each farm 

is calculated by “the ratio of minimum nutrients over observed nutrients” (Coelli et al., 2007, 

p. 7). Finally, farm A could simultaneously increase the amount of output produced and reduce 

the amount of input used which is the DDF approach. With this direction of improvement, the 

nutrient surplus can be reduced to the minimum point. Consequently, only the improvement 

of farm efficiency using the DDF measure can achieve nutrient surplus minimisation 

efficiency.  

4.7 Evaluating the performance of farms using the directional distance function  

The DDF, based on Luenberger’s benefit function, was introduced by Chambers et al. (1998). 

It is used to evaluate the TE of farms for reducing inputs used while increasing outputs 

simultaneously (Chambers et al., 1998; Färe and Grosskopt, 2005; Zofio, et al., 2013; Ang 

and Kerstens, 2016). The DDF is defined as (Chambers et al., 1998; Färe and Grosskopt, 

2005; Zofio, et al., 2013): 

𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦) = max
𝛽

{𝛽: (𝑥 − 𝛽𝑔𝑥, 𝑦 + 𝛽𝑔𝑦) ∈ 𝑇} , 𝑥 ∈ ℝ+
𝑘 , 𝑦 ∈ ℝ+

𝑚             (4.20) 

where (𝑔𝑥, 𝑔𝑦) is a preassigned non-zero vector and (𝑔𝑥, 𝑔𝑦) ∈ ℝ+
𝑘 × ℝ+

𝑚 

The DDF reveals that the amount of outputs produced could be expanded in the direction 𝑔𝑦 

by adding the amount of 𝛽 times the elements of 𝑔𝑦 , and the amount of inputs used could 

be contracted in the direction 𝑔𝑥 by subtracting the amount of 𝛽 times the elements of 𝑔𝑥 

(Färe and Grosskopt, 2005; Zofio, et al., 2013). If value of 𝛽𝑔𝑥 (𝛽𝑔𝑦) is a small number, the 

percentage of input reduction (output expansion) needed for a technically inefficient farm to 

improve its efficiency level is small. On the other hand, if the value of 𝛽𝑔𝑥 (𝛽𝑔𝑦) is a large 

number, the percentage of the improvement of inputs (outputs) needed to reach the efficiency 

benchmark is large. The DDF can be interpreted as a technical inefficiency measurement for 
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any production plan (𝑥, 𝑦) ∈ 𝑇 by measuring the distance from its current position to the 

efficiency frontier, which is constructed by the technically best practice farms in the 

direction (𝑔𝑥, 𝑔𝑦) or the actual direction (−𝑔𝑥, 𝑔𝑦) since 𝛽𝑔𝑥 is subtracted from x (Zofio, et 

al., 2013). A farm is technically efficient in the (𝑔𝑥, 𝑔𝑦) direction if the distance from its 

current position to the efficiency frontier is equal to zero:  𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦) = 0. Thus, this 

farm produces on the efficiency frontier. A farm is technically inefficient in the (𝑔𝑥, 𝑔𝑦) 

direction if the distance from its current position to the PPF is greater than zero: 

𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦) > 0. Hence, this farm produces below the efficiency frontier. 

Figure 4.5 illustrates the concept of the DDF approach. The area between the ray emanating 

from the origin and x-axis (including the x-axis) represents the technology set, T. The 

directional vector (𝑔𝑥, 𝑔𝑦)  is located in the 4th quadrant which indicates that input is 

contracted and output is expanded (Färe and Grosskopt, 2005). The DDF translates the vector 

(x, y) along the directional vector (𝑔𝑥, 𝑔𝑦) onto the boundary of T, (i.e. point (𝑥∗, 𝑦∗) on the 

efficiency frontier), where (𝑥∗, 𝑦∗) = (𝑥 − 𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦 )𝑔𝑥, 𝑦 + 𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦 )𝑔𝑦) ). 

Since the vector (𝑥, 𝑦) is below the efficiency frontier (i.e. interior to T), the value of the 

distance function is greater than zero and equal to 0𝑎/0𝑔. That is  𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦 ) = 0𝑎/0𝑔, 

where 0a is equal to the distance from (𝑥, 𝑦) to (𝑥∗, 𝑦∗), and 0g is the ray from the origin 

to(𝑔𝑥, 𝑔𝑦) (Färe and Grosskopt, 2005). Note that if the (𝑥, 𝑦) vector is translated onto the 

boundary of T in the direction (𝑔𝑥, 0), then it is the input-oriented DEA. If the (𝑥, 𝑦) vector is 

translated onto the boundary of T in the direction (0, 𝑔𝑦), then it is the output-oriented DEA. 

 
Figure 4.5 Directional technology distance function (adapted from Färe and Grosskopf, 2005) 
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The corresponding optimisation problem of the DDF measure used to evaluate the 

performance of the oth farm in the potential improvement direction (𝑔𝑥, 𝑔𝑦) with the VRS 

technology can be written as 

𝐷𝑇(𝑥𝑜 , 𝑦𝑜; 𝑔𝑥, 𝑔𝑦) = max
𝛽𝑜,𝜆𝑖

𝛽𝑜 

Subject to    𝑥𝑘
𝑜 − 𝛽𝑜𝑔𝑥 ≥ ∑ 𝜆𝑖𝑛

𝑖=1 𝑥𝑘
𝑖   , k = 1,…,k 

    𝑦𝑚
𝑜 + 𝛽𝑜𝑔𝑦 ≤ ∑ 𝜆𝑖𝑛

𝑖=1 𝑦𝑚
𝑖   , m = 1,…,m                 (4.21) 

               ∑ 𝜆𝑖𝑛
𝑖=1 = 1   

𝜆 ≥ 0 

where 𝛽𝑜 is the technical inefficiency score of farm o. 

4.8 Directional Profit Efficiency Measure (Zofio et al., 2013)  

The concept of directional profit efficiency measure, proposed by Zofio et al., (2013), is 

illustrated in Figure 4.6. The directional profit maximising point (𝑥∗, 𝑦∗) is the point where 

iso-profit line (i.e. profit maximising benchmark) is tangent to the PPF. The farm (𝑥, 𝑦) is 

profit inefficient as its produces below the profit efficiency frontier. It can improve its profit 

efficiency by moving from its current position to the maximum profit point (𝑥∗, 𝑦∗) in the 

direction (𝑔𝑥
∗ , 𝑔𝑦

∗) that projects this farm onto the profit maximising frontier at point (𝑥∗, 𝑦∗). 

As a result, the farm (𝑥, 𝑦) could expand the output quantities produced in the direction 𝑔𝑦
∗  

by 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) × 𝑔𝑦

∗  unit and reduce the input quantities used in the direction 𝑔𝑥  by 

𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) × 𝑔𝑥

∗  unit.   

 
Figure 4.6 Profit maximising benchmark 
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Zofio et al., (2013) define the directional profit efficiency measure 𝐷𝑇
∗(𝑥, 𝑦; 𝑝, 𝑤) as  

𝐷𝑇
∗(𝑥, 𝑦; 𝑝, 𝑤):= 𝐷𝑇

∗(𝑥, 𝑦; 𝑔𝑥
∗ , 𝑔𝑦

∗) 

= max
𝛽

{𝛽: (𝑥 − 𝛽𝑔𝑥
∗ , 𝑦 + 𝛽𝑔𝑦

∗) ∈ 𝑇} , 𝑥 ∈ ℝ+
𝑘 , 𝑦 ∈ ℝ+

𝑚                 (4.22) 

where (𝑝, 𝑤)  is the vector of output and input prices, and the directional vector 

(𝑔𝑥
∗ , 𝑔𝑦

∗) = [𝜋(𝑝, 𝑤) − (𝑝𝑦 − 𝑤𝑥)]−1 (𝑥 − 𝑥∗, 𝑦∗ − 𝑦) . The elements of the directional 

vector (𝑔𝑥
∗ , 𝑔𝑦

∗) may have negative values. This implies that it is possible to increase the 

quantities of inputs used and decrease the quantities of outputs to reach the profit efficiency 

frontier. When  𝐷𝑇
∗(𝑥, 𝑦; 𝑝, 𝑤) = 0  a farm is profit efficient, otherwise a farm is profit 

inefficient. 

The corresponding optimisation problem of the directional profit efficiency measure used to 

evaluate the profit efficiency of the oth farm in the potential improvement direction (𝑔𝑥
∗ , 𝑔𝑦

∗) 

(i.e. towards the profit maximising benchmark) under the VRS assumption can be written as 

follows (Zofio et al., 2013). 

𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑝, 𝑤) = max

𝛽𝑜,𝜆𝑖,𝑔𝑥
∗ ,𝑔𝑦

∗
𝛽𝑜 

Subject to    𝑥𝑘
𝑜 − 𝛽𝑜𝑔𝑥𝑘

∗ ≥ ∑ 𝜆𝑖𝑛
𝑖=1 𝑥𝑘

𝑖   , k = 1,…,k 

    𝑦𝑚
𝑜 + 𝛽𝑜𝑔𝑦𝑚

∗ ≤ ∑ 𝜆𝑖𝑛
𝑖=1 𝑦𝑚

𝑖   , m = 1,…,m                 (4.23) 

    ∑ 𝑝𝑚𝑔𝑦𝑚
∗𝑚

𝑚=1 + ∑ 𝑤𝑘𝑔𝑥𝑘
∗𝑘

𝑘=1 = 1 

          ∑ 𝜆𝑖 = 1,𝑛
𝑖=1       𝜆 ∈ ℝ+

𝑖    

where 𝛽𝑜 is the profit inefficiency score of farm o. 

The directional vector (𝑔𝑥
∗ , 𝑔𝑦

∗)  in the Model (4.23) is not preassigned, it needs to be 

calculated and satisfy the price normalization constraint, 𝑝𝑔𝑦
∗ + 𝑤𝑔𝑥

∗ = 1. The elements of 

(𝑔𝑥
∗ , 𝑔𝑦

∗) could be positive and negative values as long as (𝑔𝑥
∗ , 𝑔𝑦

∗) ≠ (0𝑘, 0𝑚)and hence the 

constraint ∑ 𝑝𝑚𝑔𝑦
∗𝑚

𝑚=1 + ∑ 𝑤𝑘𝑔𝑥
∗𝑘

𝑘=1 = 1 prevents that from happening.  

From the Model (4.23), the farm is profit inefficient when 𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑝, 𝑤) > 0 and the farm 

is profit efficient when 𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑝, 𝑤) = 0  Finally, the Model (4.23) is clearly nonlinear 

because of variables 𝛽𝑜𝑔𝑥𝑘
∗  and 𝛽𝑜𝑔𝑦𝑚

∗ . However, it can be transformed into linear model 

by changing these variables to 𝛾𝑥𝑘
𝑜 = 𝛽𝑜𝑔𝑥𝑘

∗ , 𝑘 = 1,… , 𝑘, and 𝛾𝑦𝑚
𝑜 = 𝛽𝑜𝑔𝑦𝑚

∗ , 𝑚 = 1,… ,𝑚.  
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By substituting 𝑔𝑦𝑚
∗ = 𝛾𝑦𝑚

𝑜 /𝛽𝑜  and 𝑔𝑥𝑘
∗ = 𝛾𝑥𝑘

𝑜 /𝛽𝑜  in the constraint ∑ 𝑝𝑚𝑔𝑦
∗𝑚

𝑚=1 +

∑ 𝑤𝑘𝑔𝑥
∗𝑘

𝑘=1  =  1, 

we get     ∑ 𝑝𝑚 (
𝛾𝑦𝑚

𝑜

𝛽𝑜 )𝑚
𝑚=1 + ∑ 𝑤𝑘 (

𝛾𝑥𝑘
𝑜

𝛽𝑜 )𝑘
𝑘=1 = 1 

by rearranging, this constraint is translated as 

 ∑ 𝑝𝑚𝛾𝑦𝑚
𝑜𝑚

𝑚=1 + ∑ 𝑤𝑘𝛾𝑥𝑘
𝑜𝑘

𝑘=1 = 𝛽𝑜      , 𝛽𝑜 > 0 

Consequently, the Model (4.23) is translated as  

𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑝, 𝑤) = max

𝛽𝑜,𝜆𝑖,𝑔𝑥
∗ ,𝑔𝑦

∗
𝛽𝑜    

Subject to    𝑥𝑘
𝑜 − 𝛾𝑥𝑘

𝑜 ≥ ∑ 𝜆𝑖𝑛
𝑖=1 𝑥𝑘

𝑖   , k = 1,…,k 

    𝑦𝑚
𝑜 + 𝛾𝑦𝑚

𝑜 ≤ ∑ 𝜆𝑖𝑛
𝑖=1 𝑦𝑚

𝑖   , m = 1,…,m                  (4.24) 

    ∑ 𝑝𝑚𝛾𝑦𝑚
𝑜𝑚

𝑚=1 + ∑ 𝑤𝑘𝛾𝑥𝑘
𝑜𝑘

𝑘=1 = 𝛽𝑜      , 𝛽𝑜 > 0 

          ∑ 𝜆𝑖 = 1,𝑛
𝑖=1       𝜆 ∈ ℝ+

𝑖    

where 𝛽𝑜 is the profit inefficiency score of farm o. Note that the objective function is not 

modified  the Models (4.23) and (4.24) are equivalent if and only if 𝛽𝑜 > 0 (Zofio et al., 

2013). 

4.9 The Directional Nutrient Surplus Efficiency Measure 

By integrating the concept of MBC (Coelli et al., 2007) and directional profit efficiency 

measures (Zofio et al., 2013), this research will propose the measurement for nutrient surplus 

minimisation within the theoretical context of the DDF with  the nutrient surplus minimum 

point direction to evaluate the environmental efficiency of Thai rice farmers. This 

measurement is called “the directional nutrient surplus efficiency measure”.  

The concept of the directional nutrient surplus efficiency measure within the theoretical 

context of DDF can be explained using Figure 4.7. Assume the minimum nutrient surplus farm 

is 𝐵(𝑥∗, 𝑦∗), where the iso-nutrient surplus line 𝑁(𝑎𝑁 , 𝑏𝑁) = 𝑎𝑁𝑥 − 𝑏𝑁𝑦  tangent to the 

production possibility frontier (PPF), T. (𝑎𝑁, 𝑏𝑁) denotes the vectors of input (𝑎𝑁 ∈ ℝ+
𝑘 ) and 

output (𝑏𝑁 ∈ ℝ+
𝑚)  nutrients, respectively. The concept of nutrient surplus (i.e. material 

balance condition) is demonstrated in Section 4.6. The PPF is constructed by farms A, B, C, 

and D using the conventional DDF model, where (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇), which is represented by a dashed 
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line vector, is a nonzero vector in ℝ+
𝑘 × ℝ+

𝑚  (preassigned directional vector). Recall from 

Section 4.7 that the DDF towards (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) direction is defined as  

 𝐷𝑇(𝑥, 𝑦; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) = max
𝛽

{𝛽: (𝑥 − 𝛽𝑔𝑥
𝑇 , 𝑦 + 𝛽𝑔𝑦

𝑇) ∈ 𝑇} , 𝑥 ∈ ℝ+
𝑘 , 𝑦 ∈ ℝ+

𝑚          (4.25) 

where 𝐷𝑇(𝑥, 𝑦; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) represents the technical inefficiency of each farm which is measured 

by the distance from its position to the PPF.  Farms A, B, C, and D are technically efficient 

farms as they produce on the PPF and their distances along the directional vector (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) 

from their positions to the PPF are equal to zero,𝐷𝑇(𝑥1, 𝑦1; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) = 𝐷𝑇(𝑥∗, 𝑦∗; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) =

𝐷𝑇(𝑥3, 𝑦3; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) = 𝐷𝑇(𝑥4, 𝑦4; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) = 0. Farms E and F are technically inefficient as 

they produce below the PPF and their distances along the directional vector (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) from 

their positions to the PPF are greater than zero, 𝐷𝑇(𝑥, 𝑦; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) > 0, 𝐷𝑇(𝑥6, 𝑦6; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) >

0.  

 
Figure 4.7 Nutrient surplus efficiency measure 

The nutrient surplus efficiency, or environmental efficiency, of each farm is measured by the 

distance from its position to the minimum nutrient surplus benchmark 𝐵(𝑥∗, 𝑦∗) (i.e. the 

nutrient surplus minimising frontier). The DDF with the direction towards the nutrient surplus 

minimising frontier can be written as  

𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) = max

𝛽
{𝛽: (𝑥 − 𝛽𝑔𝑥

∗ , 𝑦 + 𝛽𝑔𝑦
∗) ∈ 𝑇} , 𝑥 ∈ ℝ+

𝑘 , 𝑦 ∈ ℝ+
𝑚             (4.26) 

where (𝑔𝑥
∗ , 𝑔𝑦

∗) is a directional vector that projects sample farms onto the nutrient surplus 

minimising point  (𝑥∗, 𝑦∗) . The directional vector (𝑔𝑥
∗ , 𝑔𝑦

∗)   is a nonzero vector in 
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ℝ+
𝑘 × ℝ+

𝑚 and is not preassigned. The estimation of the directional vector (𝑔𝑥
∗ , 𝑔𝑦

∗) will be 

explained below in this section. Thus, only farm B is nutrient surplus efficient as it produces 

on the nutrient surplus minimising frontier, 𝐷𝑇(𝑥∗, 𝑦∗; 𝑔𝑥
∗ , 𝑔𝑦

∗) = 0. Farms A, C, D, E, and F 

are nutrient surplus inefficient farms as they are not located on the nutrient surplus minimising 

frontier, 𝐷𝑇(𝑥1, 𝑦1; 𝑔𝑥
∗ , 𝑔𝑦

∗) > 0,  𝐷𝑇(𝑥3, 𝑦3; 𝑔𝑥
∗ , 𝑔𝑦

∗) > 0,  𝐷𝑇(𝑥4, 𝑦4; 𝑔𝑥
∗ , 𝑔𝑦

∗) > 0,

𝐷𝑇(𝑥, 𝑦; 𝑔𝑥
∗ , 𝑔𝑦

∗) > 0, 𝐷𝑇(𝑥6, 𝑦6; 𝑔𝑥
∗ , 𝑔𝑦

∗) > 0.  

Farms A, C, and D are technically efficient farms when measuring their efficiency using DDF 

with (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇)  orientation, but they are nutrient surplus inefficient when measuring their 

efficiency using the DDF with the direction targeting on the nutrient surplus minimising point, 

(𝑔𝑥
∗ , 𝑔𝑦

∗) orientation. These nutrient surplus inefficiencies of farms A, C, and D are due to the 

allocative inefficiency of mixed nutrients. This implies that these farms failed to choose the 

correct mix of nutrient minimising input-output quantities at the percentage of nutrient 

content when they were on the PPF in the (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) orientation. The allocative inefficiency 

levels of farms A, C, and D are the distance between nutrient surplus at their technically 

efficient projections (points A, C, and D) and the minimum nutrient surplus point B along 

the direction(𝑔𝑥
∗ , 𝑔𝑦

∗)  that are 𝐷𝑇(𝑥1, 𝑦1; 𝑔𝑥
∗ , 𝑔𝑦

∗),  𝐷𝑇(𝑥3, 𝑦3; 𝑔𝑥
∗ , 𝑔𝑦

∗),  𝐷𝑇(𝑥4, 𝑦4; 𝑔𝑥
∗ , 𝑔𝑦

∗) , 

respectively.  Thus, farms A, C, and D need to gain allocative efficiency in order to reach the 

nutrient surplus minimising benchmark.  

On the other hand, farms E and F are technically inefficient farms when measuring their 

efficiency using DDF with (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) orientation, and they are also nutrient surplus inefficient 

when measuring their efficiency using the DDF with the direction targeting on the nutrient 

surplus minimising point (𝑔𝑥
∗ , 𝑔𝑦

∗) orientation. The nutrient surplus inefficiency of farm E is 

due to technical inefficiency, while the nutrient surplus inefficiency of farm F is due to both 

technical and allocative inefficiencies. If the directional vector (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇)  were chosen, the 

reduction of the technical inefficiency level of farm E would result in both technical and 

nutrient surplus efficiencies, since the direction (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) would be the same as the direction 

of (𝑔𝑥
∗ , 𝑔𝑦

∗). In the case of farm F, however, if the directional vector (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇)  were chosen, 

the reduction of the technical inefficiency level of farm F would result in technical efficiency, 

but it would still be in the position of nutrient surplus inefficiency. Then farm F would have 

to take a further step to reduce its nutrient surplus inefficiency, which would be costly. 

However, if the directional vector  (𝑔𝑥
∗ , 𝑔𝑦

∗) were chosen, the reduction of the technical 

inefficiency level of farm F would result in both technical and nutrient surplus efficiencies that 
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would be less costly than choosing the (𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) orientation. Consequently, the improvement 

of nutrient surplus inefficiency in the direction towards the nutrient surplus minimum point 

(𝑔𝑥
∗ , 𝑔𝑦

∗) would result in both technical and nutrient surplus efficiency and would be less costly 

than the other direction.  

Moreover, the improvement of a farm’s nutrient surplus efficiency does not consist only of 

contracting input and expanding output.  According to Figure 4.7, farm A has to increase both 

input and output, farms C, D, and F have to reduce both input and output, and farm E has to 

reduce input and expand output to reach the nutrient surplus minimising frontier. Thus, the 

directional vector (𝑔𝑥
∗ , 𝑔𝑦

∗) for each farm is different and its elements could be positive or 

negative. The estimation of nutrient surplus efficiency and the directional vector targeting the 

nutrient surplus minimising benchmark are as follows.  

Consider farms 𝐵 (𝑥∗, 𝑦∗)  and 𝐸 (𝑥, 𝑦) in Figure 4.7, and assume the directional vector of 

farm E targeting the nutrient surplus minimising benchmark (farm B) is (𝑔𝑥
∗ , 𝑔𝑦

∗) which is a 

nonzero vector in ℝ+
𝑘 × ℝ+

𝑚. Farm E could reduce its input (𝑥 – 𝑥∗) unit and expand its output 

(𝑦∗ − 𝑦) unit when it produces on the nutrient surplus minimising benchmark. Thus, the 

directional vector can be written as 

(𝑔𝑥
∗ , 𝑔𝑦

∗) = 𝜏(𝑥 − 𝑥∗, 𝑦∗ − 𝑦)                     (4.27) 

where 𝜏 is scalar. If the scalar 𝜏 in Eq. (4.27) is known, then the directional vector (𝑔𝑥
∗ , 𝑔𝑦

∗) 

can be calculated. After the directional vector (𝑔𝑥
∗ , 𝑔𝑦

∗) is calculated, then the nutrient surplus 

inefficiency or environmental inefficiency of farm E (i.e. the distance from farm E to the 

minimum nutrient surplus benchmark, farm B) can be estimated using Eq. (4.26).  

Assume 𝛽∗  is the solution of Eq. (4.26), i.e. 𝛽∗ = 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) . When farm 𝐸 (𝑥, 𝑦) 

moves from its position along the (𝑔𝑥
∗ , 𝑔𝑦

∗)  direction to the projected minimum nutrient 

surplus point 𝐵(𝑥∗, 𝑦∗) (i.e. to produce on the nutrient surplus minimising benchmark or to 

become a nutrient surplus efficient farm), we get  

(𝑥∗, 𝑦∗) = (𝑥 − 𝛽∗𝑔𝑥
∗ , 𝑦 + 𝛽∗𝑔𝑦

∗)                    (4.28) 

Thus, the nutrient surplus at the projected point on the nutrient surplus minimisation frontier 

is 

𝑎𝑁𝑥∗ − 𝑏𝑁𝑦∗ = 𝑎𝑁(𝑥 − 𝛽∗𝑔𝑥
∗) − 𝑏𝑁(𝑦 + 𝛽∗𝑔𝑦

∗)                    (4.29) 

Substituting  (𝑔𝑥
∗ , 𝑔𝑦

∗) = 𝜏(𝑥 − 𝑥∗, 𝑦∗ − 𝑦) from Eq. (4.27) into Eq. (4.29), we obtain 
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       𝛽∗ = 1/𝜏                      (4.30) 

Therefore, 

𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) = 1/𝜏                   (4.31) 

In other words, the distance between farm 𝐸 (𝑥, 𝑦) and its projected vector at the minimum 

nutrient surplus frontier at point 𝐵(𝑥∗, 𝑦∗) (i.e. the nutrient surplus inefficiency score of farm 

E) is equal to 1/𝜏. The estimation of scalar 𝜏 can be demonstrated as follows.  

From the concept of the MBC as presented in Section 4.6, the nutrient surplus of any farm in 

the sample can be calculated by 𝑎𝑁𝑥 − 𝑏𝑁𝑦 where (𝑎𝑁, 𝑏𝑁) denotes the vectors of input 

(𝑎𝑁 ∈ ℝ+
𝑘 ) and output (𝑏𝑁 ∈ ℝ+

𝑚) nutrients, respectively. At the minimum nutrient surplus 

point 𝐵(𝑥∗, 𝑦∗) , the nutrient surplus is minimal,  so the nutrient surplus minimisation 

equation can be defined as  

𝑁(𝑎𝑁, 𝑏𝑁) = min
𝑥,𝑦

{𝑎𝑁𝑥 − 𝑏𝑁𝑦: (𝑥, 𝑦) ∈ 𝑇}                   (4.32)       

From Eq. (4.32),  𝑁(𝑎𝑁, 𝑏𝑁) is less than or equal to the observed nutrient surplus of any 

farms in the sample (i.e. any input–output vector belonging to the technology), thus 

𝑁(𝑎𝑁, 𝑏𝑁) ≤ 𝑎𝑁𝑥 − 𝑏𝑁𝑦;       ∀(𝑥, 𝑦) ∈ 𝑇                   (4.33) 

From Eq. (4.26), for any farms in the sample, the projected vector at the minimum nutrient 

surplus point 𝐵(𝑥∗, 𝑦∗) can be written as  

(𝑥 − 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗)𝑔𝑥

∗ , 𝑦 + 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗)𝑔𝑦

∗) ∈ 𝑇                  (4.34) 

Substituting the projected vector Eq. (4.34) into minimum nutrient surplus inequality  

Eq. (4.33), we observe that  

𝑁(𝑎𝑁, 𝑏𝑁) ≤ 𝑎𝑁[𝑥 − 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗)𝑔𝑥

∗] − 𝑏𝑁[ 𝑦 + 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗)𝑔𝑦

∗ ]        (4.35) 

Rearranging inequality Eq. (4.35), we get 

𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) ≤ −[𝑁(𝑎𝑁, 𝑏𝑁) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦)]/(𝑎𝑁𝑔𝑥

∗ + 𝑏𝑁𝑔𝑦
∗)                 (4.36) 

Inequality Eq. (4.36) implies that the distance from any farm in the sample towards the 

minimum nutrient surplus point 𝐵(𝑥∗, 𝑦∗) along the direction (𝑔𝑥
∗ , 𝑔𝑦

∗) is equal to a negative 

of the difference between the minimum nutrient surplus and the observed nutrient surplus of 

any farms in the sample divided by (𝑎𝑁𝑔𝑥
∗ + 𝑏𝑁𝑔𝑦

∗). This distance is always greater than or 

equal to zero (i.e. 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) ≥ 0 ) because 𝑁(𝑎𝑁, 𝑏𝑁) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦) ≤ 0  as 
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𝑁(𝑎𝑁, 𝑏𝑁) is the minimum nutrient surplus in the sample. This indicates that the distance 

𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) depends on the choice of (𝑔𝑥

∗ , 𝑔𝑦
∗). If we choose an orientation that satisfies 

      𝑎𝑁𝑔𝑥
∗ + 𝑏𝑁𝑔𝑦

∗ = 1                    (4.37)  

then  

𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) ≤ −[𝑁(𝑎𝑁, 𝑏𝑁) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦)]                   (4.38) 

Thus, the minimal distance from any observed data point (𝑥, 𝑦) ∈ 𝑇 to the minimal nutrient 

surplus frontier at point 𝐵(𝑥∗, 𝑦∗) by given output and input nutrient contents can be written 

as   

    𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) ≤ min

𝑎𝑁,𝑏𝑁

{−[𝑁(𝑎𝑁 , 𝑏𝑁) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦)]: 𝑎𝑁𝑔𝑥
∗ + 𝑏𝑁𝑔𝑦

∗ = 1}          (4.39) 

The value of 𝜏  can be calculated by substituting (𝑔𝑥
∗ , 𝑔𝑦

∗) = 𝜏(𝑥 − 𝑥∗, 𝑦∗ − 𝑦)  from  

Eq. (4.27) into Eq. (4.37). We obtain 

     𝑎𝑁𝜏(𝑥 − 𝑥∗) + 𝑏𝑁𝜏(𝑦∗ − 𝑦) = 1                   (4.40)      

Rearranging Eq. (4.40), we get  

          𝜏 = −1/[(𝑎𝑁𝑥∗ − 𝑏𝑁𝑦∗) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦)]                   (4.41) 

Since 𝐵(𝑥∗, 𝑦∗) is the minimum nutrient surplus point, then  𝑎𝑁𝑥∗ − 𝑏𝑁𝑦∗ = 𝑁(𝑎𝑁, 𝑏𝑁). 

Hence, Eq. (4.41) can be rewritten as 

          𝜏 = −1/[𝑁(𝑎𝑁 , 𝑏𝑁) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦)]                   (4.42) 

Thus the minimum distance from farm 𝐸 (𝑥, 𝑦)  to the minimum nutrient surplus point 

𝐵(𝑥∗, 𝑦∗)  (i.e. nutrient surplus minimising frontier) along the (𝑔𝑥
∗ , 𝑔𝑦

∗)  direction can be 

estimated by substituting Eq. (4.42) into Eq. (4.31). Thus we obtain  

𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) = −[𝑁(𝑎𝑁, 𝑏𝑁) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦)]                  (4.43) 

Therefore from Eq. (4.43) and inequality Eq. (4.39), the directional nutrient surplus efficiency 

measure for any input–output vector belonging to the technology towards the minimum 

nutrient surplus point can be defined as  

     𝐷𝑇
∗(𝑥, 𝑦; 𝑎𝑁 , 𝑏𝑁) ≔ 𝐷𝑇

∗(𝑥, 𝑦; 𝑔𝑥
∗ , 𝑔𝑦

∗) = min
𝛽

{−𝛽: (𝑥 − 𝛽𝑔𝑥
∗ , 𝑦 + 𝛽𝑔𝑦

∗) ∈ 𝑇}               (4.44) 

where (𝑔𝑥
∗ , 𝑔𝑦

∗) = 𝜏(𝑥 − 𝑥∗, 𝑦∗ − 𝑦) and 𝜏 = −1/[𝑁(𝑎𝑁, 𝑏𝑁) − (𝑎𝑁𝑥 − 𝑏𝑁𝑦)] with satisfy 

𝑎𝑁𝑔𝑥
∗ + 𝑏𝑁𝑔𝑦

∗ = 1 constraint. Note that –𝛽 ensures that 𝐷𝑇
∗(𝑥, 𝑦; 𝑔𝑥

∗ , 𝑔𝑦
∗) ≥ 0. 
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This directional nutrient surplus efficiency measure in Eq. (4.44) is duality to the directional 

profit efficiency measure proposed by Zofio et al. (2013). Therefore, the corresponding 

optimisation problem used to calculate the directional nutrient surplus efficiency measure 

under the assumption of variable returns to scale for the oth farm to the nutrient surplus 

minimising benchmark is   

𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑎𝑁 , 𝑏𝑁) = min

𝛽𝑜,𝜆𝑖,𝑔𝑥
∗ ,𝑔𝑦

∗
−𝛽𝑜 

Subject to    𝑥𝑘
𝑜 − 𝛾𝑥𝑘

𝑜 ≥ ∑ 𝜆𝑖𝑛
𝑖=1 𝑥𝑘

𝑖   , k = 1,…,k 

    𝑦𝑚
𝑜 + 𝛾𝑦𝑚

𝑜 ≤ ∑ 𝜆𝑖𝑛
𝑖=1 𝑦𝑚

𝑖   , m = 1,…,m                  (4.45)

    ∑ 𝑎𝑁𝑘
𝛾𝑥𝑘

𝑜𝑚
𝑚=1 + ∑ 𝑏𝑁𝑚

𝛾𝑦𝑚
𝑜𝑘

𝑘=1 = 𝛽𝑜      , 𝛽𝑜 > 0 

          ∑ 𝜆𝑖 = 1,𝑛
𝑖=1       𝜆 ∈ ℝ+

𝑖   

where 𝛽𝑜  is the nutrient surplus (or environmental) efficiency score of farm o, 

 𝛾𝑥𝑘
𝑜 = 𝛽𝑜𝑔𝑥𝑘

∗ , 𝑘 = 1,… , 𝑘 , 𝛾𝑦𝑚
𝑜 = 𝛽𝑜𝑔𝑦𝑚

∗ , 𝑚 = 1,… ,𝑚 , 𝑥𝑘
𝑜 = 𝑥1

𝑜 ,  𝑥2
𝑜  … , 𝑥𝑘

𝑜  are the input 

usage for the oth farm being evaluated,  𝑦𝑚
𝑜 = 𝑦1

𝑜 ,  𝑦2
𝑜  … , 𝑦𝑚

𝑜  are the output for the oth farm 

being evaluated, 𝜆𝑖 = 𝜆1, … , 𝜆𝑛is a vector of weights and has dimension 𝑛 × 1. k and m are 

the k-vector of inputs and m-vector of outputs defined as  

𝑥𝑖 = (𝑥1
𝑖 ,  𝑥2

𝑖  … , 𝑥𝑘
𝑖   ) ∈ ℝ+

𝑘  and 𝑦𝑖 = (𝑦1
𝑖 ,  𝑦2

𝑖 , … , 𝑦𝑚
𝑖   ) ∈ ℝ+

𝑚  , 𝑎𝑁𝑘
 and  𝑏𝑁𝑚

  are the 

nutrient content in inputs and outputs, respectively. 

The directional nutrient surplus efficiency measure Model (4.45) is different from the 

conventional DDF model as the directional vector (𝑔𝑥
∗ , 𝑔𝑦

∗) for each farm is not preassigned. 

In addition, it involves the incorporation of the MBC into the model in a similar manner to 

that in which price information is normally incorporated in the directional profit efficiency 

measure, proposed by Zofio et al., (2013). 

Likewise, in the directional profit efficiency measure proposed by Zofio et al. (2013), the 

nutrient surplus efficiency which is measured by the Model (4.45) can be decomposed into TE 

and AE. That is nutrient surplus efficiency = TE + AE. When 𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑎𝑁, 𝑏𝑁) = 0, a farm 

is nutrient surplus, technically and allocatively efficient. When 𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑎𝑁 , 𝑏𝑁) > 0, a 

farm is nutrient surplus inefficient. For the nutrient surplus inefficient farm, the source of 

inefficiency can be determined in conjunction with the conventional DDF model. That is the 

source of nutrient surplus inefficiency is technical if 𝐷𝑇(𝑥, 𝑦; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) > 0 or allocative if  

𝐷𝑇(𝑥, 𝑦; 𝑔𝑥
𝑇 , 𝑔𝑦

𝑇) = 0. 
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4.10 Identifying outliers in a nonparametric frontier model: The data cloud method 

Data quality is an important issue in efficiency and productivity measurement, especially in 

the context of DEA. The estimation of the PPF in the DEA model may be sensitive to 

measurement errors in sample data because it is determined by these extreme observations. 

Therefore, outliers could seriously influence the construction of the efficiency frontier by 

extending it out. This would then affect the efficiency scores of other observations in the 

sample and their interpretation (Wilson, 1993; Bogetoft and Otto, 2011; Banker and Chang, 

2006). Theoretically, efficient observations provide guidelines to management on how to 

improve the performance of the inefficient observations. If one or more of the efficient 

observations is an outlier, these guidelines would be meaningless and even misleading 

(Banker and Chang, 2006). The DEA approach is used to measure efficiency scores of Thai 

rice farming and the dataset contains a large number of observations which cannot be 

visually checked for the presence of errors and outliers. Hence, it is desirable to consider 

suitable approaches that can be applied to identify and exclude outliers before doing an 

efficiency analysis using the DEA approach (Baker and Chang, 2006).  

Several methods have been used for detecting influential observations (i.e. outliers) in the 

deterministic non-parametric frontier models (Jahanshahloo et al., 2004). The most widely 

cited are the data cloud method proposed by Wilson (1993) (e.g. Gadanakis, 2014; Blancard 

and Martin, 2014; LaPlante, 2015), and the super-efficiency DEA or leave-one-out method 

proposed by Winson (1995) (e.g. Banker and Chang, 2006; Johnson and McGinnis, 2008: 

Chen and Johnson, 2010; Serra et al. 2014). These methods are very useful when data 

checking is costly and resources are limited (Wilson, 1995). However, the super-efficiency 

method can identify only a single farm outlier. If the data set contains multiple outliers this 

method may fail because the omission of only one outlier may have little impact if one or 

more other outliers are masking it (Bogetoft and Otto, 2011). Therefore, the presence of 

outliers in the dataset used in this research is identified by using the data cloud method. The 

concept of the data cloud method can be explained as follows.  

The combined matrix [XY] which contains the input data matrix X and the output data matrix 

Y for a set of n farms (as presented in Section 4.2) can be written as follows (Bogetoft and 

Otto, 2011). 
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[𝑋𝑌] =

[
 
 
 
𝑥1

1 𝑥2
1 … 𝑥𝑘

1

𝑥1
2 𝑥2

2 … 𝑥𝑘
2

⋮
𝑥1

𝑛
⋮

𝑥2
𝑛

 ⋮    ⋮
… 𝑥𝑘

𝑛

    𝑦1
1 𝑦2

1 … 𝑦𝑚
1

    𝑦1
2 𝑦2

2 … 𝑦𝑚
2

    ⋮
     𝑦1

𝑛
⋮

𝑦2
𝑛

 ⋮    ⋮
… 𝑦𝑚

𝑛 ]
 
 
 

𝑛×(𝑘+𝑚)

                 (4.46) 

The different rows in the combined matrix [XY] represent a farm which can be seen as a data 

cloud in the ℝ+
𝑘 × ℝ+

𝑚  space. The volume of the data cloud (|𝑍|) can be calculated from the 

determinant of the inner product 𝑍 =  [𝑋𝑌]′[𝑋𝑌]. That is  

      |𝑍|= | [𝑋𝑌]′[𝑋𝑌]|                   (4.47) 

The concept of the data cloud method for identifying outliers in the dataset is that the volume 

of the data cloud in Eq. (4.47) will be changed when one or more outliers have been removed 

from the dataset. If a farm is removed from the combined matrix [XY] (i.e. any one row of 

the combined matrix is deleted), then the volume of the data cloud of the remaining farms 

may decrease. If this farm is removed from the middle of the cloud, the volume of the data 

cloud of the remaining farms will be unchanged. This indicates that this farm is not an outlier. 

On the other hand, if this farm is removed from outside the remaining cloud, the volume of 

the data cloud of the remaining farms will be much smaller. This indicates that this farm is 

an outlier. Hence, in order to investigate whether the dataset has one or more outliers, we 

can investigate how the volume of the cloud changes when one or more farms are removed 

from the dataset for the indication of outliers (Bogetoft and Otto, 2011).  

If we would like to remove only one farm which is an outlier from the dataset, it is calculated 

as follows. Let us assume |𝑍(𝑖)| is the new volume of the data cloud which is equal to the 

determinant of inner product after eliminating farm i, and 𝑅(𝑖) is the ratio of the new volume 

of the data cloud, |𝑍(𝑖)|, to the old volume of the data cloud, |𝑍|, i.e.  

     𝑅(𝑖) = |𝑍(𝑖)|/|𝑍|                   (4.48) 

Note that 𝑅(𝑖) is dimensionless (i.e. it does not depend on the units in either the input matrix 

X or the output matrix Y). If 𝑅(𝑖) is close to 1, farm i is not an outlier because |𝑍(𝑖)| does not 

change much. On the other hand, if 𝑅(𝑖) is much smaller than 1, farm i is a potential outlier. 

The farm that has the smallest value of 𝑅(𝑖) is the outlier. Therefore, outliers are identified 

by the smallest value of 𝑅(𝑖) which are denoted as 𝑅𝑚𝑖𝑛
(𝑖)

. 
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The procedure for calculating 𝑅(𝑖) when we would like to remove only one farm which is an 

outlier from the data set is as follows: 

1) Calculate the determinant of the inner product : |𝑍| = |[𝑋𝑌]′[𝑋𝑌]|   

2) Calculate the determinant of the inner product after removing farm i |𝑍(𝑖)|. This step 

consists of two stages. First, the ith row of combined matrix [𝑋𝑌] is eliminated. Then 

the determinant of the remaining inner product 𝑍(𝑖) is calculated. For example, if 

farm number 1 is removed,  

|𝑍(1)|  =  |[𝑋𝑌(1)]
′
[𝑋𝑌(1)]| 

where  𝑋𝑌(1) =

[
 
 
 
𝑥1

2 𝑥2
2 … 𝑥𝑘

2

𝑥1
3 𝑥2

3 … 𝑥𝑘
3

⋮
𝑥1

𝑛
⋮

𝑥2
𝑛

 ⋮    ⋮
… 𝑥𝑘

𝑛

    𝑦1
2 𝑦2

2 … 𝑦𝑚
2

    𝑦1
3 𝑦2

3 … 𝑦𝑚
3

    ⋮
     𝑦1

𝑛
⋮

𝑦2
𝑛

 ⋮    ⋮
… 𝑦𝑚

𝑛 ]
 
 
 

(𝑛−1)×(𝑘+𝑚)

 

In this step, |𝑍(1)|, |𝑍(2)|, … , |𝑍(𝑛)| which are the determinants of the remaining inner 

product after removing farm number 1, 2,…, n, respectively, are calculated. 

3) Calculate 𝑅(𝑖) = |𝑍(𝑖)|/|𝑍|. In this step 𝑅(1),  𝑅(2), … , 𝑅(𝑛) which are the ratios of 

the new volume of the data cloud after removing farm 1, 2,…, n, respectively, to the 

old volume of the data cloud, are calculated. 

4) Looking for the minimum value of 𝑅(𝑖) or 𝑅𝑚𝑖𝑛
(𝑖)

 from the 3rd step. The farm that has 

the smallest value of 𝑅(𝑖) will be identified as an outlier. 

Moreover, this method can be used to identify groups of outliers by removing two or more 

farms from the data cloud. If we would like to remove a group of r farms which are outliers 

from the data set, it is calculated as follows. Let |𝑍(𝑟)| be the determinant of inner product 

after removing a group of r farms, and 𝑅(𝑟) is the ratio of the new volume of the data cloud, 

|𝑍(𝑟)|, to the old volume of the data cloud, |𝑍|,  which can be written as  

     𝑅(𝑟) = |𝑍(𝑟)|/|𝑍|                   (4.49) 

A group of outliers can be identified by looking for the smallest values of 𝑅(𝑟)  which are 

denoted as 𝑅𝑚𝑖𝑛
(𝑟)

. A group of farms that has the smallest values of 𝑅(𝑟) will be identified as 

outliers.  

The interesting question is how many farms will be outliers in the dataset. If the potential 

outliers in the dataset are equal to s farms, they are identified by eliminating groups of 1, 2, 

…, r farms. If s > r, the remaining dataset still has more potential outliers, and we should 

not expect to find a very small value of 𝑅(𝑟). If s < r, all potential outliers are eliminated and 
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the value of 𝑅(𝑟)  is assumed to be very small. Consequently, the maximum number of 

removed observations should be large enough. In order to choose which group of 1, 2, …, r 

farms are outliers in the dataset, a graphical method can be used to plot the ordered pairs 

between (𝑟, 𝑙𝑜𝑔(𝑅(𝑟)/𝑅𝑚𝑖𝑛
(𝑟)

)), where r is the number of eliminated farms. 

The outliers in the graph can be investigated by looking for the first single isolated small 

value when examining the values of 𝑅(𝑟). An isolated small value is an isolated minimum 

value 𝑙𝑜𝑔(𝑅(𝑟)/𝑅𝑚𝑖𝑛
(𝑟)

) = 𝑙𝑜𝑔(1) = 0,   or, in words, the point at 0 should be isolated from 

other values of 𝑙𝑜𝑔(𝑅(𝑟)/𝑅𝑚𝑖𝑛
(𝑟)

) or the points above 0. Hence, in the graph, we look for 

isolated low points where there is a gap between the point at 0 and the points above 0; the r 

with isolated low points gives an indication of r outliers. 

The data cloud method can be applied in the case of many inputs and outputs and allows for 

outlier identification in the dataset by using a graphical analysis (Gadanakis, 2014). It can 

be used to identify one or more outliers that influence the efficiency frontier by focusing on 

the changes of the volume of the data cloud when one or more farms are eliminated from the 

sample (Bogetoft and Otto, 2011). However, the choice of the maximum number of removed 

observations is arbitrary. Therefore, we must choose a large enough number of observations 

for outliers to be removed in order to allow for masking produced by one or more outliers in 

the dataset (Gadanakis, 2014; Wilson 1995; Bogetoft and Otto, 2011). Another limitation of 

the data cloud method is that the computational process takes a considerable amount of time 

and may become unfeasible when the dimensions of input and output space and number of 

observations increase (Wilson, 1995; 2010). 

4.11 Non-parametric tests of returns to scale 

Simar and Wilson (2002) state that before estimating the efficiency scores of the 

observations we need to know whether the underlying technology of the sample farms 

exhibits CRS, IRS, or DRS. They suggest that the question of whether a technology exhibits 

CRS throughout the frontier has important economic implications because some farms may 

be found to be either too small (i.e. farms operate under IRS) or too large (i.e. farms operate 

under DRS) when the technology does not exhibit CRS. If researchers estimate efficiency 

using DEA methods and assume the technology exhibits CRS, but it really exhibits VRS, 

this may seriously distort the efficiency scores of the sample (i.e. the efficiency scores of the 

sample will be lower than they should be). On the other hand, if researchers assume the 
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technology is VRS but it is really CRS, then the efficiency scores of the sample will be 

higher than they should be. Therefore, it necessary to test the underlying technology of the 

PPF in order to assume the appropriate returns to scale before estimating TE using the DEA 

and DDF methods. This can be done by using a bootstrap procedure for testing hypotheses 

regarding returns to scale in the context of non-parametric approaches of TE, as proposed 

by Simar and Wilson (2002). Simar and Wilson (2002) suggest that researchers can first test 

whether returns to scale are constant by using the bootstrap procedures proposed by them, 

and then choosing appropriate methods to measure efficiency. 

In this study, the underlying technology of the 9 observation groups of Thai rice farmers are 

investigated to ascertain whether they exhibit CRS or VRS by using the non-parametric test 

of returns to scale procedure proposed by Simar and Wilson (2002). The computational code 

in R programme of this procedure was written by Simm and Besstremyannaya (2016). This 

code is called “rst.test” in the package Robust Data Envelopment Analysis (rDEA) in the R 

programme. Thus, the p-values used to indicate whether the null hypothesis of CRS can be 

rejected are estimated using the function “rst.test” in the package rDEA.  If the p-value 

obtained from the function “rst.test” is less than 0.05 with B = 2000 bootstrap replications, 

the null hypothesis can be rejected at the confidence level alpha = 0.05. This indicates that 

the technology exhibits VRS. If the p-value obtained from the function “rst.test” is greater 

than 0.05 with B = 2000 bootstrap replications, the null hypothesis cannot be rejected at the 

confidence level alpha = 0.05. This indicates that the technology exhibits CRS.  

4.12 Summary 

In this chapter, the concept of the directional nutrient surplus efficiency measure within the 

theoretical context of the directional distance function, something that has not been undertaken 

before, was introduced. This measure provides a greater choice of directional vectors, and 

assumes a nutrient surplus minimising behaviour in order to determine the difference between 

observed and minimal nutrient surplus along an optimal direction that projects any farm 

towards the nutrient surplus minimising benchmark. This measure is able to classify the 

nutrient surplus inefficiency of a farm as either technical (if the farm is located below the 

technical efficiency frontier, a technically inefficient farm) or allocative (if the farm is located 

on the technical efficiency frontier, a technically efficient farm). Even through the Thai rice 

dataset has not really been designed  to enable  this research to answer the environmental 

efficiency question with sufficient accuracy, this research has developed this new approach 
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and highlights the kind of data that needs to be collected in order to perform  the environmental 

efficiency measurement with greater accuracy. 

In addition, the methodology used in this research was presented. To summarise, DEA is a 

non-parametric benchmarking approach that can readily be applied to evaluate the 

performance of farming systems in agricultural studies since it requires only data on the 

amount of inputs used and outputs produced. The performance of farms can be compared by 

the efficiency scores. Inefficient farms produce below the PPF, while efficient farms produce 

on the PPF. Inefficient farms could improve their performance sufficiently to achieve the 

PPF (i.e. become efficient farms) either by increasing their current quantity of output 

produced without changing the quantities of inputs used, or decreasing their current input 

quantities without changing the quantity of output produced. The DDF approach can be used 

to measure the TE of farms in reducing the amount of inputs used while increasing the amount 

of outputs produced simultaneously, depending on the directional vector. This implies that 

inefficient farms could improve their performance to achieve the PPF (i.e. become efficient 

farms) by simultaneously increasing the current quantity of output produced and reducing 

the quantities of inputs used.  

DEA models differ according to the assumptions made about the underlying technologies and 

orientation of improvement. In this research, the technology is determined by the non-

parametric tests of returns to scale. The orientation includes both input-oriented DEA and 

output-oriented DEA models, as well as the DDF. This is because of the major problems faced 

by farmers in Thai rice farming systems, namely high costs of rice production and low income 

(i.e. low profit), and environmental problems caused by the overuse of chemical fertiliser and 

manure (i.e. water pollution). The improvement of the performance of farmers using input-

oriented DEA, output-oriented DEA, and DDF approaches results in higher profits for farmers 

and lower nitrogen and phosphorus surplus from rice cultivation. However, only the 

improvement of the performance of farmers using the DDF approach can lead to the reduction 

of nitrogen and phosphorus surplus from rice cultivation at the minimum surplus points. The 

dataset used in this research is explained in detail in Chapter 5. The empirical results of 

technical and environmental efficiency analysis of Thai rice farming are presented and 

discussed in Chapter 6. 
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Chapter 5 

Data 

5.1 Introduction 

The main objective of this research is to measure the technical efficiency (TE) and 

environmental efficiency (NE) of Thai rice farming systems using the directional distance 

function (DDF) and directional nutrient surplus efficiency measure, respectively. Thus, the 

main purpose of this chapter is to describe sources of data, how to build the data analysed in 

this analysis, data cleaning, and the descriptive statistics used for this research. The dataset 

used in this research is derived from the national Thai input survey of rice farming systems 

cultivated during the wet season for the crop year 2008/09 at farm level for the whole 

country. Thailand is divided into four geographical regions (North, Northeast, Central, and 

South). Consequently, climate and soil fertility may differ across the sample, which may 

bias the results of the efficiency analysis. However, data on climate and soil fertility for the 

sample are unavailable. The exogenous variable that this research uses to capture the 

differences in soil fertility across the sample is the provincial average calculated yield of rice 

in the wet season for the crop year 2007/08. This variable is used to adjust the input data of 

this research, helping to remove some of the expected input heterogeneity and subsequent 

bias in efficiency measurement. After adjustment of input data, the rice farmers are put into 

4 different categories, according to their regions, in order to capture the differences in climate 

and soil across the sample, and further split by rice type (jasmine rice, non-jasmine rice, and 

glutinous rice), helping to remove some of the expected input and output heterogeneity and 

the subsequent bias in efficiency measurement.  

This chapter is organised as follows. Section 2 describes the sources of data used in this 

research, and the initial data cleaning. Section 3 explains how to adjust input data by using 

the provincial average calculated yield of rice in the wet season for the crop year 2007/08. 

Section 4 explains how to reduce input and output heterogeneity for efficiency analysis. 

Section 5 illustrates the results and discusses the use of the data cloud method to identify 

outliers in the sample. Section 6 discusses the results of the non-parametric test of returns to 

scale for TE analysis. The descriptive statistics of the samples for TE analysis are provided 

in Section 7. Section 8 explores conceptually the inflows and outflows of nitrogen and 

phosphorus in rice systems. Section 9 presents a descriptive statistical summary of inputs and 
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outputs, nitrogen surplus (NS) and phosphorus surplus (PS) for the observed sample data for 

NE analysis. 

5.2 Data 

Data is derived from the national Thai input survey of rice farming systems cultivated during 

the wet season (major rice) for the crop year 2008/09 at farm level. In this survey, rice farmers 

who had rice-planted areas greater than 0.16 hectare were interviewed (a total 1,287 

households were observed)15. All paddy fields in this survey are irrigated. The dataset was 

obtained from the Office of Agricultural Economics of Thailand (OAE)16. This dataset 

consists of farmers’ names, farmers’ addresses, types of rice (glutinous rice, jasmine rice, 

and non-jasmine rice), rice varieties’ names (e.g. RD Kao-Kho, Khao Dawk Mali 105, and 

Suphanburi), farm-gate prices of paddy rice, per farm data of rice output produced and the 

combination of inputs used. The inputs, obtained in terms of both quantity and their 

corresponding prices, are planted area, seed, manure, bio-fertiliser, pesticide, fuel, and 

chemical fertilisers with their specific proportions of N, P, and K. The inputs obtained in 

terms of monetary value are the cost of machinery for land preparation, human labour cost 

including both hired and family labour, and other input costs (e.g. plastic rope, plastic bags). 

In addition, other secondary data related to efficiency analysis, for example the percentage 

of N and P contents in rice output and inputs used to calculate nitrogen and phosphorus 

surplus, agricultural policy, and rice production’s relationship with the environment, are 

gathered from various sources (e.g. journals, books, statistic reports, and research reports). 

All prices are in Thai Baht and planted areas of rice have been converted from rai (Thai 

measurement unit of land area) into hectares (6.25 rai = 1 hectare). 

The amount of chemical fertilisers and manure that farmers applied to their farms is known 

precisely, and specific formulae for chemical fertilisers (such as 46-0-0, 16-20-0, 15-15-15) 

and types of manure (i.e. beef, swine, and poultry) are also known. The percentages of N, P, 

and K in each type of manure are shown in Table 4.1. Therefore, N-fertiliser, P-fertiliser, 

                                                           
15 Four provinces, Samut Songkhram, Ranong, Phangnga, and Phuket were excluded from this survey because 

the total planted area of rice in these provinces was less than 1,600 hectares. Furthermore, two southern border 

provinces, Yala and Narathiwat, were not surveyed because there was insurgency in these provinces.  
16 The OAE is the major organisation responsible for the proposal of agricultural policies; it prepares strategic 

plans for agricultural development and measurement, as well as managing public relations and organising 

discussions of agricultural trade and economic cooperation in international agriculture. This organisation also 

collects and disseminates agricultural information for other government organisations, private sectors, and 

farmers. 
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and K-fertiliser are calculated from the summation of each nutrient in manure and chemical 

fertilisers.  

Table 5.1 Nutrient contents in manure 

Nutrients N (%) P2O5 (%) K2O (%) 

Manure1/ 

 Beef 

 Swine 

 Poultry 

 

1.91 

3.11 

3.77 

 

0.56 

12.20 

1.89 

 

1.40 

1.84 

1.76 

Note: 1/ Ratneetoo (2012). 

The average price of pesticide is used as a representative for the price of pesticide for the 

farms that did not use pesticide. With regard to the price of bio-fertiliser and fuel, the prices 

paid for these inputs by neighbouring farms are used as representatives for those farms that 

did not use them. In this analysis, the price of chemical fertiliser formula 46-0-0, 0-46-0, and 

0-0-60 are used to represent the price of N-fertiliser, P-fertiliser, and K-fertiliser, 

respectively. Prices of chemical fertiliser formula 46-0-0 are available for each farm that 

applied this fertiliser in rice fields. The prices paid by neighbouring farms are used as 

representatives for farms that did not apply N-fertiliser. The price of chemical fertiliser 

formula 0-46-0 is not available for each farm, since this is not specifically a fertiliser that 

farmers apply in rice fields. However, the average price of chemical fertiliser formula 0-46-

0 is available at country level. Therefore, the average price for the whole country is used as 

representative for the price of P-fertiliser for every farm in the sample. The price of chemical 

fertiliser formula 0-0-60 is not available for each farm since this is not specifically a fertiliser 

that farmers apply in rice fields. However, the average price of chemical fertiliser formula 

0-0-60 is available at provincial level, so the average price in each province is used as 

representative for the price of K-fertiliser for every farm in that province. All chemical 

fertiliser prices were obtained from the OAE.    

The initial dataset of the total number of observations of 1,287 households obtained from 

the OAE was checked for the presence of outliers using the sample means, standard 

deviations, minimum and maximum values, zero values in important inputs (i.e. land, seed, 

human labour, and machinery), and rice output per hectare (i.e. yield)17. According to the 

previous statistics from the OAE, the possible yield of Thai rice ranges between 625 to 9,375 

kg/ha. A farm with a yield out of this range is an unusual observation, which may be caused 

                                                           
17 Yield is calculated from the ratio of total amount of rice output per farm to the total planted area per farm.  
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by typographical errors when keying in the data. As a result, 1 farm that had a yield over 

9,375 kg/ha and 6 farms that had a yield below 625 kg/ha were eliminated from the dataset. 

Furthermore, 66 farms that had some damaged areas resulting in a comparatively low yield 

were eliminated from the dataset because we cannot compare the TE results with the other 

farms without damaged areas. There is no information about the kind of damage (flood, pest, 

or drought). Therefore, 1,214 farms remained in the dataset after the initial data cleaning.  

5.3 The adjustment of input data  

Input data for the remaining 1,214 farms was adjusted by the relative index number of the 

provincial average calculated yield of rice in the wet season for the crop year 2007/08 and 

the yield of the sample farms in order to capture the differences in soil fertility across the 

sample; that would help to remove some of the expected input heterogeneity and subsequent 

bias in efficiency measurement. The relative index number of farm i is calculated as follows. 

Relative index number of farm i (𝐼𝑖) = (yield of farm i in 2008/09) / (the average yield of the 

same rice type of farm i in the province where farm i is located in 2007/08) 

This relative index number of farm i is used to multiply input data of farm i. Thus, the input 

data matrix X (as presented in Section 4.2) after adjustment with the relative index number 

of each farm can be written as follows. 

𝑋𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 =

[
 
 
 
𝐼1𝑥1

1 𝐼1𝑥2
1 ⋯

𝐼2𝑥1
2 𝐼2𝑥2

2 ⋯
⋮

𝐼𝑛𝑥1
𝑛

⋮
𝐼𝑛𝑥2

𝑛
⋮
⋯

     

𝐼1𝑥11
1

𝐼2𝑥11
2

⋮
𝐼𝑛𝑥11

𝑛 ]
 
 
 

𝑛×𝑘

 

5.4 Reduction of input and output heterogeneity for efficiency analysis 

After adjustment of input data, the national sample of 1,214 farms were put into 4 different 

categories, according to their regions (North, Northeast, Central, and South), in order to 

capture the differences in climate and soil across the sample,  helping to remove some of the 

expected input heterogeneity and subsequent bias in efficiency measurement. Further, in 

order to remove the effect of heterogeneity in the output variable, the farms are then split by 

rice type (jasmine rice, non-jasmine rice, and glutinous rice). The total number of 

observations of each rice type in each region is presented in Table 5.2. This table shows that 

jasmine rice is mainly cultivated in the Northern, North-eastern, and Central regions; non-

jasmine rice is cultivated in all regions; glutinous rice is cultivated only in the Northern and 
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North-eastern regions. Thus, there are 9 groups of observations of Thai rice farmers in this 

research. These 9 groups of observations of Thai rice farmers are named jasmine rice North, 

jasmine rice Northeast, jasmine rice Central, non-jasmine rice North, non-jasmine rice 

Northeast, non-jasmine rice Central, non-jasmine rice South, glutinous rice North, and 

glutinous rice Northeast: they represent jasmine rice farms in the Northern region, jasmine 

rice farms in the North-eastern region, jasmine rice farms in the Central region, non-jasmine 

rice farms in the Northern region, non-jasmine rice farms in the North-eastern region, non-

jasmine rice farms in the Central region, non-jasmine rice farms in the Southern region, 

glutinous rice farms in the Northern region, and glutinous rice farms in the North-eastern 

region, respectively. The total number of observations for these 9 groups is presented in the 

following Table. 

Table 5.2 Number of observations categorised by region and type of rice     

Region Type of rice 

Jasmine rice Non-jasmine rice Glutinous rice 

North 76 162 100 

Northeast 199 76 194 

Central 67 226 0 

South 0 114 0 

Total observations 342 578 294 

Source: Author’s analysis of sample data (a total of 1,214 farms were observed). 

5.5 Identifying outliers using the data cloud method 

The presence of outliers in the dataset may bias efficiency estimates: this could make the 

resulting guidelines, intended to improve the performance of those perceived as inefficient, 

meaningless and misleading. The data cloud method is useful in identifying and removing 

outliers in the data, thus leading to more accurate efficiency estimates. Therefore, the data 

sets for 9 groups of Thai rice farmers were tested for outliers, employing the data cloud 

method proposed by Wilson (1993). The benefit of this method is that it enables 

identification of observations as outliers even if they lie below the PPF, i.e. inefficient farms 

(Wilson, 1993). For each group observed, a combined matrix [XY] was created and the 

number of eliminated farms (r) was determined to be 15 (i.e. r = 15). The graph plotting 

ordered pairs for the number of eliminated farms and the log ratio (𝑟, 𝑙𝑜𝑔(𝑅(𝑟)/𝑅𝑚𝑖𝑛
(𝑟)

)), and 

the table of the values of  𝑅𝑚𝑖𝑛
(𝑟)

 and the farm number to be deleted in each group of outliers 
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for each group of observations are presented in Appendix A18. The example of how to 

identify outliers in each group of observations is demonstrated by the outliers’ identification 

of jasmine rice farms in the Northern region. 

 

Figure 5.1 Log-ratio plot for outlier identification of jasmine rice farms in the Northern 

region  

Table 5.3 The values of  𝑅𝑚𝑖𝑛
(𝑟)

 and the farm number to be deleted in each group of outliers 

for jasmine rice farms in the Northern region dataset 

r Deleted observations 𝑹𝒎𝒊𝒏
(𝒓)

 

1 34               0.1304 

2 35 34              0.0283 

3 35 70 34             0.0063 

4 16 35 70 34            0.0021 

5 16 69 35 70 34           0.0008 

6 16 75 60 35 70 34          0.0003 

7 16 75 60 69 35 70 34         0.0001 

8 33 16 75 60 69 35 70 34        0.0001 

9 33 7 16 75 60 69 35 70 34       0.0000 

10 33 15 7 16 75 60 69 35 70 34      0.0000 

11 55 33 15 7 16 75 60 69 35 70 34     0.0000 

12 55 33 15 12 7 16 75 60 69 35 70 34    0.0000 

13 55 33 53 15 12 7 16 75 60 69 35 70 34   0.0000 

14 38 57 33 15 41 12 7 16 75 60 69 35 70 34  0.0000 

15 46 38 57 33 15 41 12 7 16 75 60 69 35 70 34 0.0000 

 

Figure 5.1 illustrates the ordered pairs plot of the number of eliminated farms and the log 

ratio (𝑟, 𝑙𝑜𝑔(𝑅(𝑟)/𝑅𝑚𝑖𝑛
(𝑟)

)). The lines peak at r = 3, r = 8, r = 10, and r = 12 indicating that 

the potential outliers in the dataset are 3, 8, 10 or 12 farms. The values of 𝑅𝑚𝑖𝑛
(𝑟)

for 𝑟 =

                                                           
18 Function “ap” from the package FEAR: A Software Package for Frontier Efficiency Analysis with R was 

used to calculate log-ratio and 𝑅𝑚𝑖𝑛
(𝑟)

for the data cloud method (Wilson, 2008). 

 

Number of deleted farms (r) 
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1, … , 15 and the farm number to be deleted in each group of outliers are shown in Table 5.3. 

Table, r = 12 gives the smallest values of 𝑅𝑚𝑖𝑛
(𝑟)

 compared to r = 3, r = 8, r = 10, thus, the 

farms in group r = 12 are identified as outliers by use of the data cloud method. 

Farms that were identified as outliers in each group of observations were deleted from the 

sample. As a result, there remained 64 farms for jasmine rice North, 189 farms for jasmine 

rice Northeast, 58 farms for jasmine rice Central, 152 farms for non-jasmine rice North, 63 

farms for non-jasmine rice Northeast, 214 farms for non-jasmine rice Central, 100 farms for 

non-jasmine rice South, 92 farms for glutinous rice North, and 180 farms for glutinous rice 

Northeast which were used to estimate the TE of Thai rice farming systems.  

5.6 Testing for Returns to scale 

The underlying technologies of 9 groups of Thai rice farmers were tested to ascertain 

whether they exhibited CRS or VRS by using the non-parametric test of returns to scale as 

explained in Section 4.11. The results show that the p-values of these 9 groups of 

observations are greater than 0.05 indicating that the null hypothesis of CRS cannot be 

rejected at the confidence level alpha = 0.05, except that the p-values of non-jasmine rice 

Northeast and glutinous rice North are less than 0.03, indicating that the null hypothesis of 

CRS is rejected at the confidence level alpha = 0.05. Thus, the CRS is assumed to the 

technology when estimating the technical efficiency of jasmine rice North, jasmine rice 

Northeast, jasmine rice Central, non-jasmine rice North, non-jasmine rice Central, non-

jasmine rice South, and glutinous rice Northeast using the DEA and DDF models. However, 

the VRS is assumed to the technology when estimating the technical efficiency of non-

jasmine rice Northeast and glutinous rice North using the DEA and DDF models.  

5.7 Descriptive statistics of sample farms for technical efficiency analysis 

The efficiency analysis of this research is based on per farm data of rice production of 9 groups 

of Thai rice farmers. In each group of observations, there is 1 output variable and 11 input 

variables for TE analysis. The output variable is rice production (y) and the corresponding 

price of rice (p). The 11 input variables, after adjustment with the relative index number, 

consist of the planted area (𝑥1), seed (𝑥2), bio-fertiliser (𝑥3), N-fertiliser (𝑥4), P-fertiliser (𝑥5), 

K-fertiliser (𝑥6), pesticide (𝑥7), human labour cost (𝑥8), machinery cost (𝑥9), fuel (𝑥10), other 

costs (𝑥11) and the corresponding prices of these inputs, which are the price of the planted area 

(𝑤1), seed (𝑤2), bio-fertiliser (𝑤3), N-fertiliser (𝑤4), P-fertiliser (𝑤5), K-fertiliser (𝑤6), 

pesticide (𝑤7), human labour (𝑤8), machinery (𝑤9), fuel (𝑤10), and other inputs (𝑤11).  
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The descriptive statistics of jasmine rice produced and the combination of inputs used per 

hectare of the sample jasmine rice North farms, jasmine rice Northeast farms, and jasmine rice 

Central farms for TE analysis are presented in the third to sixth columns of Table 5.5, the 

seventh to tenth columns of Table 5.5, and the eleventh to fourteenth columns of Table 5.5, 

respectively. The average yield of jasmine rice produced and the combination of inputs used 

per hectare and their corresponding prices for the sample jasmine rice farms in the Northern, 

North-eastern, and Central regions are presented in the third, seventh, and eleventh columns 

of the Table, respectively. The average yield of jasmine rice produced in the Northern region 

is higher than that in the North-eastern and Central regions by 34% and 23%, respectively. 

The average farm-gate price of jasmine rice in the North-eastern region is higher than that in 

the other two regions. The average planted area of jasmine rice farms in all regions is less than 

3.2 hectares, indicating that the majority of jasmine rice farmers in Thailand are small-scale 

farmers19. The average planted area of jasmine rice farms in the Central region is 3.08 hectares, 

which is higher than that of jasmine rice farms in the Northern and North-eastern regions, 

indicating that the majority of jasmine rice farms in the Central region are commercial farms. 

The average seed used per hectare by jasmine rice farmers in the Northern region is less than 

that of jasmine rice farmers in the other two regions by 21%. However, the average N-fertiliser 

used per hectare by jasmine rice farmers in the Northern region is higher than that of jasmine 

rice farmers in the North-eastern and Central regions by 1% and 17%, respectively. The 

average amount of P-fertiliser used per hectare by jasmine rice farmers in the Northern region 

is higher than that of jasmine rice farmers in the Central region by 6%, but lower than that of 

jasmine rice farmers in the North-eastern region by 16%.  

Table 5.5 presents the descriptive statistics of non-jasmine rice produced and the combination 

of inputs used per hectare of the sample non-jasmine rice North farms, non-jasmine rice 

Northeast farms, non-jasmine rice Central farms and non-jasmine rice South farms for TE 

analysis. The average yield of non-jasmine rice produced and the combination of inputs used 

per hectare and their corresponding prices on the sample non-jasmine rice North farms, non-

jasmine rice Northeast farms, non-jasmine rice Central farms and non-jasmine rice South 

farms are presented in the third, seventh, eleventh and fifteenth columns of the Table, 

respectively. The average yield of non-jasmine rice produced in the Central region is higher 

than that in the Northern, Central, and Southern regions by 6%, 42% and 28%, respectively. 

However, the average farm-gate price of non-jasmine rice in the Southern region is the highest 

                                                           
19 Small-scale farmers have planted areas greater than or equal to 0.16 and less than or equal to 3.2 hectares 

(0.16 ≤ area ≤ 3.2). Medium-scale farmers have planted areas greater than 3.2 and less than or equal to 6.4 

hectares (3.2 < area ≤6.4). Large-scale farmers have planted areas more than 6.4 hectares (area > 6.4). 
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of the four regions. The average amounts of N-fertiliser and P-fertiliser used per hectare by 

non-jasmine rice farmers in the Central region are the highest of the four regions. Moreover, 

the average planted areas of non-jasmine rice farms in the Northern and Central regions are 

greater than 3.2 hectares, indicating that the majority of non-jasmine rice farmers in these two 

regions are medium-scale farmers (running commercial farms). However, the majority of non-

jasmine rice farmers in the North-eastern and Southern regions are small-scale farmers.  

The descriptive statistics of glutinous rice produced and the combination of inputs used per 

hectare of the sample f glutinous rice North farms and glutinous rice Northeast farms for TE 

analysis are presented in the third to sixth columns of Table 5.6, and the seventh to tenth 

columns of Table 5.6, respectively. The average yield of glutinous rice produced and the 

combination of inputs used per hectare and their corresponding prices on the sample glutinous 

rice North farms and glutinous rice Northeast farms are presented in the third and the seventh 

columns of the Table, respectively. The average yield of glutinous rice produced in Northern 

region is higher than that in North-eastern region by 37%. However, the average use of seed, 

N-fertiliser, and P-fertiliser per hectare on glutinous rice farms in the Northern region was 

lower than that on farms in the North-eastern region by 58%, 42%, and 39%, respectively. The 

average farm-gate prices of glutinous rice in both regions are similar, but they are 

comparatively low compared to the average farm-gate prices of jasmine and non-jasmine rice. 

Furthermore, the average planted areas on glutinous rice farms in the Northern and North-

eastern regions are 0.91 and 1.26 hectares per farm, respectively, indicating that the majority 

of glutinous rice farmers in these two regions are small-scale farmers.  

Considered within each region, the average yield of jasmine rice is lowest compared to non-

jasmine and glutinous rice, while the average yield of non-jasmine rice is highest (Table 5.4 – 

Table 5.6). In the Northern region, the average amount of N-fertiliser and planted area of non-

jasmine rice farmers are higher than those of jasmine rice and glutinous rice farmers. In the 

North-eastern region, the average amount of N-fertiliser applied to glutinous rice is higher than 

that applied to jasmine and non-jasmine rice. However, the average planted area of jasmine 

rice is higher than that of non-jasmine rice and glutinous rice. In the Central region, the average 

planted area, use of N-fertiliser and use of P-fertiliser on non-jasmine rice farms are higher 

than those on jasmine rice farms. 
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Table 5.4 Descriptive statistics of jasmine rice produced and inputs used with sample data categorised by region for efficiency analysis 

Regions North Northeast Central 

Description Unit Mean Std. dev. Min. Max. Mean Std. dev. Min. Max. Mean Std. dev. Min. Max. 

Quantity                           

Yield Kg/Ha 3,107 447 2,446 4,091 2,062 215 1,647 2,523 2,389 341 1,905 3,051 

Planted area Ha/Farm 1.65 1.11 0.18 4.78 1.60 1.38 0.16 8.94 3.08 2.52 0.53 12.62 

Seed Kg/Ha 121 72 13 315 147 51 25 312 147 78 16 685 

Bio-fertiliser Kg/Ha 2,316 4,600 0 15,730 3,428 5,757 0 31,153 463 2,196 0 15,611 

N-fertiliser Kg/Ha 45 35 0 144 44 37 0 205 37 25 0 108 

P-fertiliser Kg/Ha 18 19 0 99 21 24 0 198 17 15 0 52 

K-fertiliser Kg/Ha 6 16 0 101 16 20 0 105 4 8 0 35 

Pesticide Kg/Ha 16 41 0 313 3 9 0 62 2 3 0 18 

Human labour Baht/Ha 7,647 2,824 3,681 15,854 8,036 2,801 2,762 15,864 4,361 1,045 2,801 7,268 

Machinery Baht/Ha 3,747 1,018 1,250 5,931 3,575 1,078 1,248 6,878 3,637 1,076 1,688 5,622 

Fuel Litre/Ha 4 12 0 78 5 14 0 120 1 4 0 21 

Other costs Baht/Ha 797 907 0 3,712 820 1,207 0 9,756 150 241 0 938 

Price                           

Rice output Baht/Kg 11.44 1.47 6.85 15.00 12.55 1.59 8.22 18.09 10.65 1.11 7.65 14.00 

Planted area Baht/Ha 5,873 2,869 1,563 15,275 4,277 2,003 938 12,363 3,853 2,109 1,250 8,750 

Seed Baht/Kg 18 6 9 35 18 4 8 28 16 5 8 30 

Bio-fertiliser Baht/Kg 7 34 0 230 2 28 0 380 12 31 0 130 

N-fertiliser Baht/Kg 24 4 14 32 26 2 15 30 26 2 17 29 

P-fertiliser Baht/Kg 26 0 26 26 26 0 26 26 26 0 26 26 

K-fertiliser Baht/Kg 30 1 29 32 32 0 32 32 29 0 29 32 

Pesticide Baht/Kg 160 134 3 500 215 101 12 600 223 119 40 728 

Human labour Baht/Unit 1 0 1 1 1 0 1 1 1 0 1 1 

Machinery Baht/Unit 1 0 1 1 1 0 1 1 1 0 1 1 

Fuel Baht/Litre 39 3 33 46 39 4 20 50 41 5 20 60 

Other costs Baht/Unit 1 0 1 1 1 0 1 1 1 0 1 1 
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Table 5.5 Descriptive statistics of non-jasmine rice produced and inputs used with sample data categorised by region for efficiency analysis  

Regions North Northeast Central South 

Description Unit Mean Std. dev. Min. Max. Mean Std. dev. Min. Max. Mean Std. dev. Min. Max. Mean Std. dev. Min. Max. 

Quantity                                   

Yield Kg/Ha 3,644 258 3,182 4,153 2,230 300 1,829 2,759 3,863 757 1,948 4,800 2,787 493 2,188 3,667 

Planted area Ha/Farm 3.28 2.57 0.19 12.92 1.01 0.71 0.15 3.44 4.28 3.10 0.44 20.66 1.81 2.09 0.18 13.66 

Seed Kg/Ha 173 74 21 327 149 47 31 250 174 39 17 313 178 187 30 1,143 

Bio-fertiliser Kg/Ha 1,728 4,093 0 25,011 5,759 11,865 0 73,217 1,879 5,437 0 37,457 952 2,895 0 13,385 

N-fertiliser Kg/Ha 73 47 0 215 48 44 0 236 82 45 0 288 48 37 0 144 

P-fertiliser Kg/Ha 18 18 0 75 20 25 0 118 31 23 0 102 27 21 0 75 

K-fertiliser Kg/Ha 3 8 0 43 15 21 0 110 2 6 0 37 1 5 0 33 

Pesticide Kg/Ha 14 25 0 234 3 8 0 38 9 18 0 219 7 10 0 50 

Human labour Baht/Ha 7,030 3,195 3,660 22,536 7,438 2,646 3,026 14,633 6,010 1,682 1,355 14,093 8,940 4,462 3,454 17,905 

Machinery Baht/Ha 3,369 1,019 1,562 6,264 3,669 1,333 1,391 7,192 3,274 892 1,562 9,371 4,405 848 2,812 6,310 

Fuel Litre/Ha 10 22 0 159 4 10 0 47 26 39 0 306 6 10 0 48 

Other costs Baht/Ha 494 736 0 5,129 545 765 0 3,459 175 258 0 1,791 346 436 0 2,145 

Price                                   

Rice output Baht/Kg 9.89 1.68 6.57 15.00 10.29 1.82 6.80 15.43 9.85 1.29 5.90 14.00 11.77 2.15 8.18 16.00 

Planted area Baht/Ha 4,535 2,103 1,250 11,250 4,016 1,884 1,563 9,375 5,158 2,590 1,250 13,750 2,405 747 938 3,750 

Seed Baht/Kg 17 6 8 28 14 5 4 25 17 5 8 26 13 5 5 22 

Bio-fertiliser Baht/Kg 8 32 0 250 3 16 0 123 19 62 0 422 3 20 0 200 

N-fertiliser Baht/Kg 25 3 13 29 26 2 15 29 26 3 16 38 25 4 13 31 

P-fertiliser Baht/Kg 26 0 26 26 26 0 26 26 26 0 26 26 26 0 26 26 

K-fertiliser Baht/Kg 30 0 29 32 32 0 32 32 29 1 29 32 27 1 26 28 

Pesticide Baht/Kg 213 149 1 800 176 78 4 500 325 175 16 1,100 145 131 10 850 

Human labour Baht/Unit 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 

Machinery Baht/Unit 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 

Fuel Baht/Litre 39 4 25 50 39 4 25 47 41 4 20 50 37 6 20 49 

Other costs Baht/Unit 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 
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Table 5.6 Descriptive statistics of glutinous rice produced and inputs used with sample data 

categorised by region for efficiency analysis 

Regions North Northeast 

Description Unit Mean Std. dev. Min. Max. Mean Std. dev. Min. Max. 

Quantity                   

Yield Kg/Ha 3,355 341 2,692 3,853 2,109 160 1,905 2,500 

Planted area Ha/Farm 0.91 0.55 0.17 2.40 1.26 0.82 0.10 4.10 

Seed Kg/Ha 100 62 32 314 158 56 21 338 

Bio-fertiliser Kg/Ha 1,185 3,791 0 23,429 4,004 6,831 0 39,345 

N-fertiliser Kg/Ha 37 38 0 179 52 54 0 310 

P-fertiliser Kg/Ha 14 17 0 75 19 21 0 97 

K-fertiliser Kg/Ha 3 6 0 24 20 30 0 217 

Pesticide Kg/Ha 12 15 0 56 3 9 0 64 

Human labour Baht/Ha 10,055 3,989 4,222 22,912 8,442 3,069 2,726 17,756 

Machinery Baht/Ha 4,628 1,215 636 7,505 3,552 1,092 1,235 5,975 

Fuel Litre/Ha 10 18 0 83 3 9 0 47 

Other costs Baht/Ha 893 951 0 4,703 873 1,060 0 8,727 

Price                   

Rice output Baht/Kg 7.46 0.84 6.20 10.00 7.04 0.68 6.25 11.18 

Planted area Baht/Ha 4,682 2,384 813 12,000 3,395 1,397 938 9,375 

Seed Baht/Kg 17 5 10 35 16 5 4 27 

Bio-fertiliser Baht/Kg 6 32 0 225 1 7 0 90 

N-fertiliser Baht/Kg 24 4 15 30 26 2 15 32 

P-fertiliser Baht/Kg 26 0 26 26 26 0 26 26 

K-fertiliser Baht/Kg 30 0 29 30 32 0 32 32 

Pesticide Baht/Kg 156 142 0 650 213 147 18 1,667 

Human labour Baht/Unit 1 0 1 1 1 0 1 1 

Machinery Baht/Unit 1 0 1 1 1 0 1 1 

Fuel Baht/Litre 39 4 28 50 40 3 33 49 

Other costs Baht/Unit 1 0 1 1 1 0 1 1 

 

5.8 Nitrogen Surplus and Phosphorus Surplus in Sample data 

The application of the material balance condition (MBC) to a farm requires the inflows and 

outflows of N and P (Nguyen et al., 2012). Figure 5.2 presents inflows and outflows of N and 

P in rice farming systems. The inflows consist of N and P contained in manure (i.e. manure 

from beef, poultry, and swine), chemical fertiliser, bio-fertiliser, seed and land area (soil), as 

well as N and P from other natural processes, for example biological fixation, atmospheric 

deposition, precipitation, and in irrigation water (Nguyen et al., 2012). In Thailand, farmers 
typically produce their own bio-fertiliser by using different combinations of raw materials, 

including residues from plants or fruits or animal (for example fish and snails), molasses or 

other sugars, water, and effective microorganisms (Maneewon, 2015). The outflows of N and 

P in paddy rice are found also in rice straw, soil, the atmosphere, underground water, and 

surface water. However, the data on N and P inflows and outflows related to soil (land area), 
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bio-fertiliser, biological fixation, atmospheric deposition, precipitation, in irrigation water and 

straw for each farm in the sample are unavailable. Therefore, only the inputs and outputs that 

have N and P contents are considered for this study. These are seed (𝑥2), N-fertiliser (𝑥4, 

summation of N content in manure and chemical fertiliser), P-fertiliser (𝑥5, summation of P 

content in manure and chemical fertiliser), and the rice itself (y). The other input variables, 

namely planted areas, bio-fertiliser (no information on specific combination of bio-fertiliser 

and the percentage of N and P contents in bio-fertiliser), K-fertiliser, pesticide, human labour, 

machinery, fuel, and other inputs, are assumed to have zero N and P contents. 

 

Figure 5.2 Inflows and outflows of N and P in rice fields 

From the review of previous studies related to the inflows of N and P nutrients from natural 

processes and outflows of N and P nutrients in rice straw, this study found that there is no good 

proxy that can be used as representative of these variables for the NE analysis of Thai rice 

farming. Promnart (2001) reported that the N and P contents in rice straw are 0.65%, and 

0.10%, respectively. However, the amount of rice straw produced by each farm in this study’s 

sample is unavailable. Promnart (2001) also reported that N inflows from natural processes in 

Thai rice fields are approximately 40 – 80 kg/ha, while Dobermann et al. (2002) reported that 

the initial N and P nutrients in soil in rice fields in Suphanburi province, in the Central region 

of Thailand, are 73 and 16 kg/ha, respectively. Limtong (2012) indicated that the soil in the 

Central and Northern regions has high fertility and is suitable for rice cultivation, while soil 

in the North-eastern region of Thailand has low fertility compared to other three regions. 

Nevertheless, he does not report the quantity of N and P nutrients in the soil in each region. 

Since N and P inflows from natural processes are different across regions, it is not logical to 

use only one value as a proxy for N and P nutrients from natural processes for all farms in 
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the sample. Thus, the omission of N and P inflow variables from bio-fertiliser and natural 

processes (i.e. soil, biological fixation, atmospheric deposition, precipitation, and in irrigation 

water) and outflow variables (rice straw, and soil) from this study will lead to underestimation 

of the NS and PS of each farm, because the N and P inflow variables are greater than the N 

and P outflow variables. However, the rank of NS and PS efficiency in the sample will not 

change if a proxy of inflows and outflows variables is the same across all farms in the sample. 

Nitrogen and phosphorus contents in paddy seed (both 𝑦  and 𝑥2 ) are 1.1% and 0.2%, 

respectively (Promnart, 2001). The observed NS for the ith farm is calculated by the total 

amount of N content in inputs minus the total amount of N content in outputs, that is 𝑁𝑆𝑖 =

(0.011𝑥2
𝑖 + 𝑥4

𝑖 ) − 0.011𝑦𝑖 where 𝑥2
𝑖  is the quantity of paddy seed used on farm i, 𝑥4

𝑖  is the 

summation of N contents in manure and chemical fertiliser that farm i applied to its field, and 

𝑦𝑖 is the quantity of paddy output of farm i. The observed PS for the ith farm is calculated by 

the total amount of P content in inputs minus the total amount of P content in outputs, that is 

𝑃𝑆𝑖 = (0.002𝑥2
𝑖 + 𝑥5

𝑖 ) − 0.002𝑦𝑖 where 𝑥2
𝑖  is the quantity of paddy seed used on farm i, 𝑥5

𝑖  

is the summation of P contents in manure and chemical fertiliser that farm i applied to its field, 

and 𝑦𝑖 is the quantity of paddy output of farm i.  

5.9 The data set for environmental efficiency analysis 

The surplus of two nutrients, N and P, is an important indicator for the environmental 

efficiency of rice cultivation. Thus, two models, namely the nitrogen surplus minimisation 

model (NSMM) and the phosphorus surplus minimisation model (PSMM), are applied to 

measure the environmental efficiency of 9 groups of Thai rice farmers. The NSMM is used to 

measure NS efficiency of the farmers in each group, using the directional nutrient surplus 

efficiency measure with the directional vector towards the nitrogen surplus minimising 

frontier. The PSMM is used to measure PS efficiency of farmers in each group, using the 

directional nutrient surplus efficiency measure with the directional vector towards the 

phosphorus surplus minimising frontier.  The data set used for the NSMM and PSMM for each 

group of observations is discussed in the following sections.  

5.9.1 The data set for NSMM 

The NS of each farm in the 9 observed groups of Thai rice farms that were used to estimate 

TE scores is calculated. Note that the total numbers of observations for TE analysis of 9 groups 

of Thai rice farms are presented in the third column of Table 5.7. The distributions of NS for 
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these 9 groups of Thai rice farms are shown in Figure 5.3. Farms with negative or zero NS 

were removed from each group of observations. The remaining positive NS farms in each 

group of observations (as showed in the fourth column of Table 5.7) were tested for outliers 

employing the data cloud method (Appendix B). The total numbers of observations, after 

removing outliers from the 9 observed groups of Thai rice farms used to estimate NS 

efficiency of Thai rice farming systems using NSMM, are shown in the sixth column of 

Table 5.7. 

            
NS of Jasmine rice farms in the Northern region               NS of jasmine rice farms in the North-Eastern region  

 
NS of jasmine rice farms in the Central region   

              
NS of non-jasmine rice farms in the Northern region             NS of non-jasmine rice farms in the North-eastern region  

             
NS of non-jasmine rice farms in the Central region                      NS of non-jasmine rice farms in the Southern region 

              
NS of glutinous rice farms in the Northern region                  NS of glutinous rice farms in the North-Eastern region 

Figure 5.3 Histogram of nitrogen surplus for each group of observations 
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Table 5.7 The total number of observations for TE analysis, positive NS, positive PS, and 

NE analysis for each type of rice in each region 

Type of rice Region 

No. of 

observations 

for TE 

analysis 

No. of observations 

No. of 

observations for 

NE analysis 

Positive NS Positive PS NSMM PSMM 

Jasmine rice 

North 64 36 40 21 26 

Northeast 189 139 140 126 126 

Central 58 37 41 23 27 

Non-jasmine 

rice 

North 152 111 87 100 73 

Northeast 63 47 42 34 30 

Central 214 178 167 164 154 

South 100 64 76 50 61 

Glutinous rice 
North 92 33 49 19 34 

Northeast 180 122 133 109 118 

Total no. of observations 1,112 767 775 646 649 

5.9.2 Descriptive statistics of sample farms for NSMM 

The descriptive statistics of rice produced and the combination of inputs used per hectare on 

9 groups of Thai rice farms for NSMM is presented in Table 5.8. The average N-fertiliser 

used and the average yield obtained by jasmine rice farmers in the Northern region are the 

highest of the three regions. The average yield of non-jasmine rice farmers in the Central 

region is highest compared to the other three regions. The average amounts of N-fertiliser 

used by non-jasmine rice farmers in the Central and Northern regions are higher than those 

used by non-jasmine rice farmers in the North-eastern and Southern regions. The average 

amount of N-fertiliser used and the average yield obtained by glutinous rice farmers in the 

Northern region are higher than the results for glutinous rice farmers in the North-eastern 

region. Considered within each region, the average yield of jasmine rice is lowest compared 

to non-jasmine and glutinous rice, while the average yield of non-jasmine rice is highest. In 

the Northern region, the average amount of N-fertiliser applied to non-jasmine rice is higher 

than that applied to jasmine and glutinous rice. In the North-eastern region, the average 

amount of N-fertiliser applied to glutinous rice is higher than that applied to jasmine and 

non-jasmine rice. In the Central region, the average amount of N-fertiliser applied to non-

jasmine rice is higher than that applied to jasmine rice. 
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Table 5.8 Descriptive statistics of rice output produced and inputs used based on sample 

data for NSMM 

Unit: Kg/Ha 

Type of rice Region Description Mean Std. dev. Min Max 

Jasmine rice 

North 

Output 3,237.47 582.46 2,551.02 4,090.91 

Seed 134.89 74.00 62.22 314.68 

N-fertiliser 61.30 25.89 29.77 144.43 

Northeast 

Output 2,065.45 206.47 1,647.06 2,522.52 

Seed 146.10 51.23 31.28 311.52 

N-fertiliser 56.15 31.08 20.74 187.89 

Central 

Output 2,286.93 328.86 1,904.76 3,050.85 

Seed 139.86 21.65 100.19 188.08 

N-fertiliser 49.10 22.49 20.84 107.72 

Non-jasmine rice 

North 

Output 3,649.74 261.26 3,181.82 4,151.84 

Seed 195.98 61.18 31.33 327.35 

N-fertiliser 92.09 34.36 35.65 215.45 

Northeast 

Output 2,180.76 286.03 1,829.27 2,758.62 

Seed 153.78 49.91 31.31 249.59 

N-fertiliser 66.76 45.40 24.15 235.76 

Central 

Output 3,898.79 762.33 1,948.45 4,800.00 

Seed 175.81 37.43 16.64 312.91 

N-fertiliser 91.85 36.64 23.48 269.23 

South 

Output 2,843.97 488.60 2,196.08 3,666.67 

Seed 143.96 74.36 30.18 522.37 

N-fertiliser 61.54 26.14 24.88 120.06 

Glutinous rice 

North 

Output 3,361.47 312.24 2,906.98 3,853.21 

Seed 102.07 45.24 50.20 187.63 

N-fertiliser 74.43 38.44 38.91 178.96 

Northeast 

Output 2,111.82 160.56 1,904.76 2,500.00 

Seed 148.24 55.45 20.80 338.49 

N-fertiliser 68.26 48.77 21.51 310.15 

 

5.9.3 The data set for PSMM 

The PS of each farm in 9 groups of Thai rice farms that were used to estimate TE scores is 

calculated. The distributions of PS for these 9 groups of Thai rice farms are shown in Figure 

5.4. Farms with negative or zero PS were removed from each group of observations. The 

remaining positive PS farms in each group of observations (as showed in the fifth column of 

Table 5.7) were tested for outliers employing the data cloud method (Appendix C). The total 

number of observations, after removing outliers from 9 groups of Thai rice farms, that were 

used to estimate the PS efficiency of Thai rice farming systems using PSMM are shown in 

the seventh column of Table 5.7.  
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PS of Jasmine rice farms in the Northern region                            PS of jasmine rice farms in the North-Eastern region  

 
PS of jasmine rice farms in the Central region    

             
PS of non-jasmine rice farms in the Northern region                   PS of non-jasmine rice farms in the North-eastern region  

            
PS of non-jasmine rice farms in the Central region                   PS of non-jasmine rice farms in the Southern region 

                  
PS of glutinous rice farms in the Northern region                   PS of glutinous rice farms in the North-Eastern region  

Figure 5.4 Histogram of phosphorus surplus for each group of observations 

5.9.4 Descriptive statistics of sample farms for PSMM 

The descriptive statistics of rice produced and the combination of inputs used per hectare of 

9 groups of Thai rice farms for PSMM is presented in Table 5.9. The average P-fertiliser 

used and the average yield obtained by jasmine rice farmers in the Northern region are higher 

than in the other two regions. The average amount of P-fertiliser used and the average yield 

obtained by non-jasmine rice farmers in the Central region are higher than in the other three 

regions. The average amounts of P-fertiliser used by glutinous rice farmers in the Northern 

and North-eastern regions are nearly the same, but farmers in the Northern region obtained 
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a 38% better yield than farmers in the North-eastern region. Considered within each region, 

the average yield of jasmine rice is lowest compared to non-jasmine and glutinous rice, while 

the average yield of non-jasmine rice is highest. In the Northern region, the average amount 

of P-fertiliser applied to jasmine rice is higher than that applied to non-jasmine and glutinous 

rice. In the North-eastern region, the average amount of P-fertiliser applied to non-jasmine 

rice is higher than applied to jasmine rice and glutinous rice. In the Central region, the 

average amount of P-fertiliser applied to non-jasmine rice is higher than that applied to 

jasmine rice. 

Table 5.9 Descriptive statistics of rice output produced and inputs used based on sample 

data for PSMM 

Unit: Kg/Ha 

Type of rice Region Description Mean Std. dev. Min Max 

Jasmine rice 

North 

Output 3,123.29 332.35 2,551.02 3,640.00 

Seed 93.10 38.11 43.32 166.33 

P-fertiliser 31.24 17.13 14.20 98.61 

Northeast 

Output 2,060.52 209.77 1,647.06 2,514.97 

Seed 146.27 52.20 31.28 311.52 

P-fertiliser 26.73 23.60 4.17 197.67 

Central 

Output 2,341.44 365.21 1,904.76 3,050.85 

Seed 132.30 34.78 15.98 188.08 

P-fertiliser 22.43 12.46 5.01 51.88 

Non-jasmine rice 

North 

Output 3,618.45 278.94 3,181.82 4,148.47 

Seed 186.68 69.88 46.91 327.35 

P-fertiliser 27.48 11.54 8.72 62.43 

Northeast 

Output 2,127.00 225.23 1,902.78 2,727.27 

Seed 149.85 49.31 62.02 249.59 

P-fertiliser 31.31 25.61 6.97 118.20 

Central 

Output 3,888.56 755.64 1,948.87 4,797.98 

Seed 172.22 38.97 16.64 312.91 

P-fertiliser 37.62 18.21 7.49 101.69 

South 

Output 2,792.95 485.46 2,187.50 3,666.67 

Seed 135.47 94.55 30.18 632.23 

P-fertiliser 34.43 15.51 11.35 74.80 

Glutinous rice 

North 

Output 3,405.14 316.54 2,790.70 3,853.21 

Seed 77.63 30.62 32.06 189.24 

P-fertiliser 25.05 16.18 6.21 75.14 

Northeast 

Output 2,107.35 164.92 1,904.76 2,500.00 

Seed 159.54 52.30 49.98 338.49 

P-fertiliser 25.98 19.51 4.20 95.29 

 

5.9.5 The descriptive statistics of observed NS and PS 

The descriptive statistics of observed NS and PS in 9 groups of Thai rice farms are presented 

in Table 5.10. The average NS of the sample farms in each group is higher than the average 
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PS. The average NS of non-jasmine rice farms is higher than the average NS of jasmine and 

glutinous rice farms across the regions. In the Northern region, jasmine rice farmers discharged 

more PS into the environment than non-jasmine and glutinous rice farmers. In the North-

eastern region, non-jasmine rice farmers discharged more PS into the environment than 

jasmine and glutinous rice farmers. In the Central region, non-jasmine rice farmers discharged 

more PS into the environment than jasmine rice farmers. 

Table 5.10 Descriptive statistics of nitrogen and phosphorus content in rice output and its 

inputs: nitrogen surplus and phosphorus surplus of sample data 

Unit: Kg/Ha 

Type of rice Region Description Mean Std. dev. Min. Max. 

Jasmine rice 

North 
observed NS 27.17 22.37 1.58 101.60 

observed PS 25.18 16.88 7.08 91.65 

Northeast 
observed NS 35.04 30.53 0.15 164.46 

observed PS 22.90 23.49 0.71 193.41 

Central 
observed NS 25.48 22.28 0.57 84.23 

observed PS 18.01 12.80 0.04 48.32 

Non-jasmine rice 

North 
observed NS 54.10 34.50 0.38 174.29 

observed PS 20.62 11.64 1.42 55.48 

Northeast 
observed NS 44.46 45.58 2.98 216.36 

observed PS 27.36 25.63 3.12 114.67 

Central 
observed NS 50.90 34.23 0.06 218.55 

observed PS 30.19 17.91 0.24 95.33 

South 
observed NS 31.84 23.89 0.42 84.64 

observed PS 29.11 15.70 5.92 70.37 

Glutinous rice 

North 
observed NS 38.58 38.81 0.48 143.73 

observed PS 18.39 15.88 0.75 67.84 

Northeast 
observed NS 46.66 48.18 0.46 287.96 

observed PS 22.09 19.41 0.34 91.65 

 

5.10 Summary 

The main purpose of this chapter was to provide detail on sources of data, how to build the 

data analysed in this analysis, data cleansing, and relevant descriptive statistics used for this 

research. The dataset used in this research is derived from the national Thai input survey of 

rice farming systems cultivated during the wet season (major rice) for the crop year 2008/09 

at farm level for the whole country, based on observations of a total of 1,287 farms. The 

initial data cleansing was performed by checking the sample means, standard deviations, 

minimum and maximum values, zero values for important inputs and rice output per hectare. 

As a result, 73 farms were removed from the dataset. After that the input data of the 

remaining 1,214 farms was adjusted by the relative index number of the provincial average 

calculated yield of rice in the wet season for the crop year 2007/08 and the yield of the 
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sample farms, in order to capture the differences in soil fertility across the sample: that would 

help to remove some of the expected input heterogeneity and subsequent bias in efficiency 

measurement. Then this sample of 1,214 Thai rice farmers was put into 4 categories, 

according to their regions (North, Northeast, Central, and South) in order to capture the 

differences in climate and soil across the sample, and then split by rice type (jasmine rice, 

non-jasmine rice, and glutinous rice): that would help to remove some of the expected input 

and output heterogeneity and subsequent bias in efficiency measurement. Consequently, 9 

groups of Thai rice farmers are observed in this research (as discussed in Section 5.4). 

The data sets of the 9 observed groups of Thai rice farmers were tested for outliers, 

employing the data cloud method proposed by Wilson (1993). The total number of 

observations, after the removal of the outliers, of these 9 groups of Thai rice farmers that 

were used to estimate TE of Thai rice farming systems using the DEA and DDF models are 

presented in the third column of Table 5.7. Moreover, the results of non-parametric test of 

returns to scale indicate that the underlying technologies of jasmine rice North, jasmine rice 

Northeast, jasmine rice Central, non-jasmine rice North, non-jasmine rice Central, non-

jasmine rice South, and glutinous rice Northeast exhibit CRS, while the underlying 

technologies of non-jasmine rice Northeast and glutinous rice North exhibit VRS. 

For the dataset of NS and PS efficiency analysis using the NSMM and PSMM, farms that 

have negative or zero NS and PS were removed from each group of Thai rice farmers. The 

remaining positive NS and PS farms in each group of observations were tested for outliers 

employing the data cloud method. The total number of observations, after the removal of the 

outliers, of the 9 groups of Thai rice farms that were used to estimate the NS and PS 

efficiency of Thai rice farming systems are shown in the sixth and seventh columns of Table 

5.7, respectively.  
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Chapter 6 

The Technical and Environmental Efficiency of Thai Rice Farming 

6.1 Introduction 

The purposes of this chapter are to evaluate and compare the empirical results obtained by 

evaluating the technical efficiency (TE) and environmental efficiency (NE) of the Thai rice 

farmers who were divided into 9 categories for observation for the crop year 2008/09. The 

objective of undertaking a TE analysis of Thai rice farming is to demonstrate variously the 

extent to which the farmers in each category can reduce their inputs whilst producing the 

same level of rice output; maximise rice output whilst using the same level of inputs; or 

reduce all inputs and increase rice output simultaneously. The data envelopment analysis 

(DEA) and directional distance function (DDF) models were applied to estimate the 

production frontiers based on the observed data. The DEA efficiency analysis was carried 

out on both input-oriented and output-oriented frontiers. The input-oriented DEA model can 

be used to demonstrate how Thai rice efficiency can be improved by reducing inputs to 

produce the same level of rice output, thus resulting in a reduction of the total cost of rice 

production. The output-oriented DEA model demonstrates how Thai rice efficiency can be 

improved through increasing rice output whilst using the same level of input, thus resulting 

in the increase of farmers’ incomes. Using the DDF model shows how Thai rice efficiency 

can be improved by simultaneously increasing the amount of output together with reducing 

the amount of inputs, resulting in a simultaneous increase in farmers’ incomes and reduction 

of production costs. The scale efficiency (SE) based on the DEA models is also applied to 

examine Thai rice farmers’ returns to scale. The TE results were estimated using the R 

programme. Both DEA and DDF models were estimated using the package “Benchmarking” 

(Bogetoft and Otto, 2014), a software package for frontier efficiency analysis in the R 

programme. 

Analysis of the environmental efficiency of Thai rice farming investigates two important 

nutrient contents in rice output and inputs that can harm the environment: nitrogen and 

phosphorus. Some of the nitrogen and phosphorus applied is absorbed by rice plants, but the 

excess is discharged into groundwater, rivers, and finally coastal areas, leading to the 

problem of water pollution. The evidence of negative effects of nitrogen and phosphorus 

surplus on the environment has been reviewed in Chapter 2. Reducing the nitrogen and 

phosphorus surplus resulting from rice cultivation increases the efficiency of their use and 
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helps to reduce the environmental problem. The calculation of nitrogen and phosphorus 

surpluses in this analysis is based on the material balance condition followed Coelli et al. 

(2007) as presented in Section 5.8. These surpluses are incorporated into the conventional 

directional distance function (DDF): that has not been undertaken before. This is similar to 

the manner in which price information is normally incorporated in the directional profit 

efficiency measure (Zofio et al., 2013). This measure is called the directional nutrient surplus 

efficiency measure (as demonstrated in Section 4.9) which is used to evaluate the efficiency 

of nitrogen and phosphorus  use by Thai rice farmers. The NE results were estimated using 

the programme R. 

This chapter is organised as follows. Section 2 presents the empirical results and discussion 

of the efficiency analysis of Thai rice farming using the DEA and DDF models. The 

environmental efficiency, or the nutrient surplus efficiency, results are presented in Section 

3. Section 4 compares the improvement of rice output produced and the combination of 

inputs used per hectare of the average farm by different directional vectors. Section 5 

presents the rice output produced and the combination of inputs used by the environmental 

best practice farms compared to the technical and profit best practice farms. The discussion 

of technical and environmental efficiency results is presented in Section 6. Finally, Section 

7 concludes the chapter.  

6.2 Technical efficiency results 

The TE scores using the DDF model will differ, according to which direction of 

improvement is chosen. In order to examine which direction is appropriate for the 

improvement of Thai rice farming, four different strategies are proposed for the 9 observed 

groups (with 11 inputs and one rice output in each group of observations), with four different 

directional vectors for efficiency measurement using the DDF.  These four measures are 

named DDF1 to DDF4, as shown in Table 6.1. The DDF provides the maximum unit 

contraction in the inputs and the unit expansion of output and serves as a measure of 

inefficiency (Färe et al, 2005). A farm is technically efficient in the (𝑔𝑥, 𝑔𝑦) direction if 

𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦) = 0. However, a farm is technically inefficient in the (𝑔𝑥, 𝑔𝑦) direction if 

𝐷𝑇(𝑥, 𝑦; 𝑔𝑥, 𝑔𝑦) > 0. Note that the directional vectors of the DDF1 – DDF3 measures are 

preassigned, while the directional vector for the DDF4 measure is not preassigned. The DDF4 

measure provides insight into which technically efficient farm achieves profit efficiency. 
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Table 6.1 The proposed directional vectors for this study 

Name Proposed Directional Vector (𝑔𝑥, 𝑔𝑦) Price 

data 

Remark 

DDF1 𝐷𝑇(𝑥𝑜 , 𝑦𝑜; 𝑥𝑜 , 0) No Direction towards 

observed farm’s 

individual inputs used 

holding output fixed 

(Input-oriented DEA) 

DDF2 𝐷𝑇(𝑥𝑜 , 𝑦𝑜; 0, 𝑦𝑜) 
 

No Direction towards 

observed farm’s 

individual output 

produced holding all 

inputs fixed (Output-

oriented DEA) 

DDF3 𝐷𝑇(𝑥𝑜 , 𝑦𝑜; 𝑥𝑜 , 𝑦𝑜) No Direction towards 

observed farm’s 

individual inputs used and 

output produced (Ang and 

Kerstens, 2016) 

DDF4 
𝐷𝑇

∗ (𝑥, 𝑦;
(𝑥 − 𝑥∗, 𝑦∗ − 𝑦)

(𝑝𝑦∗ − 𝑤𝑥∗) − (𝑝𝑦 − 𝑤𝑥)
) 

Yes Direction towards profit 

maximisation benchmark 

(Zofio et al., 2013) 

Note that (𝑥∗, 𝑦∗) is the directional profit maximising point (the point where the iso-profit 

line is tangential to the production possibility frontier). 

DDF1 is used to measure the technical inefficiency (TIE) of the 9 observed groups of Thai 

rice farmers in reducing inputs to produce the same level of output in the direction of the 

observed farms’ individual inputs usage. Thus, the TIE scores obtained from DDF1 

measures are as same as the TIE scores obtained from the input-oriented DEA or the 

traditional input-based Farrell efficiency measure. That is 𝐷𝑇(𝑥𝑜 , 𝑦𝑜; 𝑥𝑜 , 0) = 1 − 𝐸(𝑥, 𝑦) 

(Bogetoft and Otto, 2011). Note that the TE score of each farm obtained from the DDF1 

model and input-oriented DEA model is identical. Thus, the improvement of the farm’s TE 

with DDF1 or input-oriented DEA would both result in lower production costs, and reduce 

the amount of nitrogen and phosphorus surplus discharged into the environment because the 

farmer would need to apply less N and P fertiliser. 

DDF2 is used to measure the TIE of the 9 observed groups of Thai rice farmers in increasing 

output using the same level of inputs in the direction of the observed farms’ individual rice 

output produced. Hence, the TIE scores obtained from DDF2 measures are the same as the 

TIE scores obtained from the output-oriented DEA or the traditional output-based Farrell 

efficiency measure. That is 𝐷𝑇(𝑥𝑜 , 𝑦𝑜; 0, 𝑦𝑜) = 𝐹(𝑥, 𝑦) − 1. Thus, the improvement of the 

farm’s TE with DDF2 or output-oriented DEA would result in higher profits. The amount of 
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nitrogen and phosphorus surplus discharged into the environment would be reduced in 

respect of the material balance condition concept because rice plants would absorb more N 

and P nutrients (i.e. higher production). 

DDF3 is used to measure the TIE of the 9 observed groups of Thai rice farmers in reducing 

inputs while increasing outputs simultaneously in the direction of the observed farms’ 

individual use of inputs and production of outputs. This direction has been used in previous 

studies’ efficiency analyses (e.g. Ang and Kerstens, 2016; Singbo and Lansink, 2010; 

Riccadi et al. 2012). Thus, the improvement of a farm’s TE with DDF3 would result in lower 

costs of production, higher profit, and lower nitrogen and phosphorus surplus discharged 

into the environment.  

DDF4 is used to measure the profit inefficiency of the 9 observed groups of Thai rice farmers 

in the direction of the profit maximisation benchmark. The measurement of DDF4, known 

as the directional profit efficiency measure (Zofio et al., 2013), is presented in Section 4.8. 

This measure needs data relating to both the quantity of inputs and outputs and their 

corresponding prices. The DDF4 model measures the distance between the highest profit 

farm (i.e. the farm that produces on the profit maximising frontier) and the other farms in 

the sample (i.e. farms producing below the profit maximising frontier). Thus, the 

inefficiency level of each farm represents the minimal distance from its observed data point 

to the profit maximising frontier in terms of given output and input prices. 

From the results of non-parametric tests of returns to scale, as discussed in Chapter 5 Section 

5.5, the DDF1 – DDF3 models of jasmine rice North, jasmine rice Northeast, jasmine rice 

Central, non-jasmine rice North, non-jasmine rice Central, non-jasmine rice South, and 

glutinous rice Northeast were estimated under the assumption of CRS, while the DDF1 – 

DDF3 models of non-jasmine rice Northeast and glutinous rice North were estimated under 

the assumption of VRS. However, the estimation of the profit efficiency of all 9 groups of 

Thai rice farmers using the DDF4 model was performed under the assumption of VRS. This 

is because the results obtained from the DDF4 model may be either unbounded profit or zero 

maximum profit if the CRS hypothesis is assumed (Färe et al., 2007 cited in Zofio et al., 

2013, p. 263). 

The estimates of the TIE results of jasmine rice farms, non-jasmine rice farms, and glutinous 

rice farms in each region using the DDF1 – DDF4 efficiency measures are summarised in 
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Table 6.2, Table 6.3, and Table 6.4, respectively20. The percentage of farms that define the 

efficiency frontier of each directional vector for each group is given in the third column of 

these three Tables. The average level of inefficiency scores for each directional vector for 

each group is presented in the fourth column of these three Tables. The results from the 

DDF1 – DDF3 measures for each group indicate that the technically efficient farms in each 

observed group remain the same, implying that different TE measurements (i.e. different 

directional vectors) do not change the status of the technically efficient farms in the 

observation. The DDF4 measure is different from the DDF1 – DDF3 measures, as it is not 

only a target to improve the TE of farmers, but also a target to improve their profit efficiency. 

The farm that earns the highest profit in the sample will construct the profit efficiency 

frontier. This profit efficiency frontier (i.e. iso-profit line) is tangential to the production 

possibility frontier at the profit maximising point. Hence, only the farm that earns the highest 

profit in each group in the sample will determine the profit efficiency frontier, using the 

DDF4 measure (Table 6.2 – Table 6.4). 

The average TIE scores obtained from the DDF1 measure (or input-oriented DEA) of 9 

groups of Thai rice farmers range from 1.7% to 12.5% (the fourth column of Table 6.2 – 

Table 6.4). This indicates that the average farms of these 9 groups would be able to reduce 

their current amount of inputs on average from 1.7% to 12.5% to obtain their current levels 

of rice output if they were to operate efficiently. The average TIE scores obtained from the 

DDF2 measure (or output-oriented DEA) of 9 groups of Thai rice farmers range from 2.1% 

to 15.9% (the fourth column of Table 6.2 – Table 6.4). This indicates that the average farms 

of these 9 groups could expand rice output on average from 2.1% to 15.9% by using the 

same level of inputs if they were to operate efficiently. The average TIE scores obtained 

from the DDF3 measure of 9 groups of Thai rice farmers range from 1% to 7% (the fourth 

column of Table 6.2 – Table 6.4). This indicates that, on average, the farms in these 9 groups 

could expand rice output on average from 1% to 7%, and simultaneously contract their 

current amount of inputs on average from 1% to 7% if they were to operate efficiently. 

The research now turns to considering the efficiency level of Thai farmers for each rice type. 

For jasmine rice production, the results indicate that more than half of the jasmine rice 

farmers observed in the Northern and Central regions are technically efficient, while only 

26% of the jasmine rice farmers observed in the North-eastern region are technically efficient 

(the third column of Table 6.2). Moreover, the results show that the average TIE scores 

                                                           
20 All efficiency measurements are computed for each farm in the sample; the results of the measurements, 

taking account of all observations, are presented in Appendix D.  



 

101 

obtained from the DDF1 – DDF3 measures of jasmine rice farms in the Northern are lowest, 

while the average inefficiency scores obtained from the DDF1 – DDF3 measures of jasmine 

rice farms in the North-eastern are highest (the fourth column of Table 6.2). This implies 

that jasmine rice farmers in the Northern region are more efficient than jasmine rice farmers 

in the Central and North-eastern regions.  

Table 6.2 Estimates of inefficiency results of jasmine rice farms using DDF 

Region 
Directional 

vector 

% of frontier 

farms 
Mean Std. dev. Min. Max. 

North  

DDF1 70.3 0.0274 0.07 0.00 0.3498 

DDF2 70.3 0.0343 0.09 0.00 0.5380 

DDF3 70.3 0.0152 0.04 0.00 0.2120 

DDF4 1.6 93,086.62 21,108.26 0.00 119,769.57 

Northeast  

DDF1 25.9 0.1247 0.10 0.00 0.3409 

DDF2 25.9 0.1594 0.14 0.00 0.5173 

DDF3 25.9 0.0698 0.06 0.00 0.2055 

DDF4 0.53 94,446.54 14,667.39 0.00 130,244.62 

Central  

DDF1 55.2 0.0773 0.11 0.00 0.3181 

DDF2 55.2 0.0997 0.14 0.00 0.4665 

DDF3 55.2 0.0435 0.06 0.00 0.1891 

DDF4 1.7 69,151.08 21,528.71 0.00 97,675.26 

Source: Author’s analysis of sample data (the total numbers of observations in the Northern, 

North-eastern, and Central regions are 64, 189, and 58 farms, respectively).  

The average level of profit inefficiency of jasmine rice farms in the Northern region is 

93,086.62 Baht/farm, while the profit efficient farm earned a profit of 113,082.42 Baht/farm. 

This indicates that jasmine rice farmers in the Northern region earned an average profit of 

19,995.38 Baht/farm or 12,118.4 Baht/ha. The average level of profit inefficiency of jasmine 

rice farms in the North-eastern region is 94,446.54 Baht/farm, while the profit efficient farm 

earned a profit of 100,178.83 Baht/farm. This indicates that jasmine rice farmers in the 

North-eastern region earned an average profit of 5,732.29 Baht/farm or 3,582.68 Baht/ha. 

The average level of profit inefficiency of jasmine rice farms in the Central region is 

69,151.08 Baht/farm, while the profit efficient farm earned a profit of 94,072.06 Baht/farm. 

This indicates that jasmine rice farmers in the Central region earned an average profit of 

24,920.98 Baht/farm or 8,091.23 Baht/ha. Thus, on average, jasmine rice farmers in the 

Northern region earn more profit than jasmine rice farmers in the Central and North-eastern 

regions. 

With regard to non-jasmine rice production, the results show that more than half of the total 

of non-jasmine rice farmers observed in the Northern and North-eastern regions are 
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technically efficient (the third column of Table 6.3). Furthermore, the results also indicate 

that the average inefficiency scores obtained from the DDF1 – DDF3 measures of non-

jasmine rice farms in the Northern and North-eastern regions are nearly the same as and 

lower than the average inefficiency scores obtained from the DDF1 – DDF3 measures of 

non-jasmine rice farms in the Central and Southern regions (the fourth column of Table 6.3). 

This implies that farmers in the Northern and North-eastern regions are more efficient in 

growing non-jasmine rice than farmers in the Central and Southern regions.  

Table 6.3 Estimates of inefficiency results of non-jasmine rice farms using DDF 

Region 
Directional 

vector 

% of frontier 

farms 
Mean Std. dev. Min. Max. 

North  

DDF1 54.6 0.0423 0.06 0.00 0.2008 

DDF2 54.6 0.0489 0.07 0.00 0.2513 

DDF3 54.6 0.0227 0.03 0.00 0.1116 

DDF4 0.66 194,757.76 46,695.13 0.00 251,777.01 

Northeast  

DDF1 63.5 0.0459 0.08 0.00 0.2645 

DDF2 63.5 0.0569 0.10 0.00 0.4461 

DDF3 63.5 0.0247 0.04 0.00 0.1661 

DDF4 1.6 42,360.06 8,311.88 0.00 60,671.81 

Central  

DDF1 39.7 0.1008 0.14 0.00 0.5218 

DDF2 39.7 0.1488 0.24 0.00 1.0911 

DDF3 39.7 0.0594 0.09 0.00 0.3530 

DDF4 0.47 309,427.99 61,590.31 0.00 438,730.03 

South  

DDF1 46.0 0.1060 0.13 0.00 0.3967 

DDF2 46.0 0.1483 0.20 0.00 0.6574 

DDF3 46.0 0.0616 0.08 0.00 0.2474 

DDF4 1.0 136,482.90 30,259.86 0.00 182,985.98 

Source: Author’s analysis of sample data (the total numbers of observations in the Northern, 

North-eastern, Central, and Southern regions are 152, 63, 214, and 100 farms, respectively).  

The average level of profit inefficiency of non-jasmine rice farms in the Northern region is 

194,757.76 Baht/farm, while the profit efficient farm earned a profit of 238,475.43 

Baht/farm. This indicates that non-jasmine rice farmers in the Northern region earned an 

average profit of 43,717.67 Baht/farm or 13,328.56 Baht/ha. The average level of profit 

inefficiency of non-jasmine rice farms in the North-eastern region is 42,360.06 Baht/farm, 

while the profit efficient farm earned a profit of 43,912.34 Baht/farm. This indicates that 

non-jasmine rice farmers in the North-eastern region earned an average profit of 1,552.28 

Baht/farm or 1,536.91 Baht/ha. The average level of profit inefficiency of non-jasmine rice 

farms in the Central region is 309,427.99 Baht/farm, while the profit efficient farm earned a 

profit of 368,406.28 Baht/farm. This indicates that non-jasmine rice farmers in the Central 

region earned an average profit of 58,978.29 Baht/farm or 13,779.97 Baht/ha. The average 
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level of profit inefficiency of non-jasmine rice farms in the Southern region is 136,482.90 

Baht/farm, while the profit efficient farm earned a profit of 157,663.52 Baht/farm. This 

indicates that non-jasmine rice farmers in the Southern region earned an average profit of 

21,180.62 Baht/farm or 11,702 Baht/ha. Hence, on average, non-jasmine rice farmers in the 

Central region earn more profit than non-jasmine rice farmers in the other three regions. 

Furthermore, non-jasmine rice farmers in the North-eastern region earn comparatively low 

profits compared to non-jasmine rice farmers in the other three regions.  

Table 6.4 Estimates of inefficiency results of glutinous rice farms using DDF 

Region 
Directional 

vector 

% of frontier 

farms 
Mean Std. dev. Min. Max. 

North  

DDF1 78.3 0.0173 0.05 0.00 0.2939 

DDF2 78.3 0.0207 0.07 0.00 0.4261 

DDF3 78.3 0.0094 0.03 0.00 0.1756 

DDF4 1.1 20,813.56 6,398.78 0.00 50,389.13 

Northeast  

DDF1 33.9 0.0749 0.07 0.00 0.2093 

DDF2 33.9 0.0872 0.08 0.00 0.2647 

DDF3 33.9 0.0403 0.04 0.00 0.1169 

DDF4 0.6 19,853.60 8,184.01 0.00 55,238.49 

Source: Author’s analysis of sample data (the total numbers of observations in the Northern 

and North-eastern regions are 92 and 180 farms, respectively).  

With regard to glutinous rice production, approximately 78% of the glutinous rice farmers 

observed in the Northern region are technically efficient, while approximately 34% of the 

glutinous rice farmers observed in the North-eastern region are technically efficient (the third 

column of Table 6.4). Moreover, the results show that the average inefficiency scores 

obtained from the DDF1 – DDF3 measurements of glutinous rice farms in the Northern 

region are lower than those of glutinous rice farms in the North-eastern regions (the fourth 

column of Table 6.4). This implies that glutinous rice farmers in the Northern region are 

more efficient than glutinous rice farmers in the North-eastern region.  

The average level of profit inefficiency of glutinous rice farms in the Northern region is 

20,813.56 Baht/farm, while the profit efficient farm earned a profit of 21,433.84 Baht/farm. 

This indicates that glutinous rice farmers in the Northern region earned an average profit of 

620.28 Baht/farm or 681.63 Baht/ha. The average level of profit inefficiency of glutinous 

rice farms in the North-eastern region is 19,853.60 Baht/farm, while the profit efficient farm 

earned a profit of 11,121.36 Baht/farm. This indicates that glutinous rice farmers in the 

North-eastern region suffered a loss of 8,732.24 Baht/farm or 6,930.35 Baht/ha. Thus, 
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glutinous rice farmers in the Northern region are more profit efficient than glutinous rice 

farmers in the North-eastern region. 

Comparing the efficiency level of Thai rice farmers within each region, in the Northern region, 

glutinous rice farmers are more technically efficient than jasmine rice and non-jasmine rice 

farmers. However, they earned comparatively low profits compared to jasmine rice and non-

jasmine rice farmers. In the North-eastern region, non-jasmine rice farmers are more efficient 

than glutinous rice and jasmine rice farmers. However, jasmine rice farmers are more profit 

efficient than non-jasmine rice and glutinous rice farmers. In addition, jasmine rice farmers in 

the Central region are more efficient than non-jasmine rice farmers, but they earned lower 

profits than non-jasmine rice farmers.  

Considering the efficiency level of Thai rice farmers for the whole country, glutinous rice 

farmers in the Northern region are more TE than those in other observed groups, but they 

earned  very low profit of 681.63 Baht/ha. Jasmine rice farmers in the North-eastern region are 

less TE than the other observed groups and earned a low profit of 1,536.91 Baht/ha. Non-

jasmine rice farmers in the Central and Northern regions earned the highest profit of 13,779.97 

and 13,328.56 Baht/ha, respectively. At the same time, glutinous rice farmers in the North-

eastern region had the lowest profit efficiency and suffered a loss of 6,930.35 Baht/ha. In 

addition, glutinous rice farmers are less profit efficient compared with jasmine rice and non-

jasmine rice farmers.  

Table 6.5 Comparison of average SE and percentage of returns to scale for each type of rice 

in each region 

Type of rice Region Observations Average SE CRS DRS IRS 

Jasmine rice 

North 64 0.9890 71.9% 15.6% 12.5% 

Northeast 189 0.9599 29.6% 36.0% 34.4% 

Central 58 0.9606 55.2% 36.2% 8.6% 

Non-Jasmine 

rice 

North 152 0.9875 57.2% 26.3% 16.4% 

Northeast 63 0.9657 52.4% 28.6% 19.0% 

Central 214 0.9810 42.5% 36.0% 21.5% 

South 100 0.9523 46.0% 35.0% 19.0% 

Glutinous rice 
North 92 0.9797 53.3% 28.3% 18.5% 

Northeast 180 0.9787 36.1% 47.8% 16.1% 

 

Table 6.5 is shown that the average SEs for each type of rice in each region are greater than 

0.95. This indicates that the average scale inefficiencies are less than 5%, which is quite 

small. The majority of rice farmers across all types of rice and all regions operated close to 

the optimal scale size (CRS), except jasmine rice and glutinous rice farmers in the North-
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eastern region. The main reasons for the scale inefficiencies of jasmine rice farmers in the 

North-eastern region are DRS or farmers operating above the optimal scale and IRS or 

farmers operating below the optimal scale. However, the main reason for the scale 

inefficiencies of glutinous rice farmers in the North-eastern region is DRS or farmers 

operating above the optimal scale.  

6.3 Environmental efficiency using the directional nutrient surplus efficiency measure 

Two models, namely the nitrogen surplus minimisation model (NSMM) and the phosphorus 

surplus minimisation model (PSMM), are applied to measure the environmental efficiency 

of the 9 observed groups of Thai rice farmers. The NSMM is used to measure NS efficiency 

of the farmers in each group, using the directional nutrient surplus efficiency measure with 

the directional vector towards the nitrogen surplus minimising frontier. The PSMM is used 

to measure PS efficiency of farmers in each group, using the directional nutrient surplus 

efficiency measure with the directional vector towards the phosphorus surplus minimising 

frontier. The estimations of NS and PS efficiency of 9 groups of Thai rice farmers using the 

NSMM and PSMM were performed under the assumption of VRS. This is because the results 

obtained from the NSMM (PSMM) may be either unbounded NS (PS) or zero minimum NS 

(PS) if the CRS hypothesis is assumed (Färe et al., 2007 cited in Zofio et al., 2013, p. 263). 

The results of the application of the NSMM and PSMM to the Thai rice farmers are presented 

in the following sections. 

6.3.1 Nitrogen surplus efficiency results 

The descriptive statistics of variables used for the NSMM measures of the 9 observed groups 

of Thai rice farmers are presented in Section 5.9. The descriptive statistics of the inefficiency 

levels of the NSMM for each group are presented in Table 6.621. The inefficiency level of 

each farm in each group of observations represents the minimal distance from its observed 

data point to the minimum NS frontier of that group by given output and input nitrogen 

contents. The average NS inefficiency, TIE, and allocative inefficiency (AIE) of each group 

of observations are given in the fifth column of Table 6.6. The number of efficient farms that 

lie on the NS efficiency, TE, and allocative efficiency (AE) frontiers for each group of 

observations is shown in the fourth column of Table 6.6. The results show that only one farm 

in each observed group is nitrogen surplus, technically, and allocatively efficient since 

𝐷𝑇
∗(𝑥𝑜 , 𝑦𝑜; 𝑎𝑁 , 𝑏𝑁) = 0. The NSMM results of jasmine rice farms in the Northern region are 

                                                           
21 The NS efficiency measure is computed for each farm in the sample; the results of this measurement are 

presented in Appendix D. 
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used as an example, demonstrating how to interpret the results of TIE and AIE for each 

group of observations using the NSMM. The number of TE jasmine rice farms in the 

Northern region is 7, indicating that 1 farm is NS efficient and 6 farms are technically 

efficient but NS inefficient. The NS inefficiency of these 6 farms is due to allocative 

inefficiency of mixed nitrogen contents (these 6 farms are technically efficient farms when 

their TE scores are estimated using the conventional DDF model). Moreover, the number of 

AE jasmine rice farms in the Northern region is 15, indicating that 1 farm is NS efficient and 

14 farms are allocatively efficient but NS inefficient. The NS inefficiency of these 14 farms 

is due to technical reasons, i.e. wrong management practices (these 14 farms are technically 

inefficient when their TE scores are estimated using the conventional DDF model). 

The average level of NS inefficiency of jasmine rice farms in the Northern region is 25.13 

kg/farm, while the NS efficient farm discharged NS 2.18 kg/farm. This indicates that jasmine 

rice farmers in the Northern region discharged an average NS of 27.31 kg/farm or 20.08 

kg/ha. The average level of NS inefficiency of jasmine rice farms in the North-eastern region 

is 48.88 kg/farm, while the NS efficient farm discharged NS 0.07 kg/farm. This indicates 

that jasmine rice farmers in the North-eastern region discharged an average NS of 48.95 

kg/farm or 35.47 kg/ha. The average level of NS inefficiency of jasmine rice farms in the 

Central region is 42.92 kg/farm, while the NS efficient farm discharged NS 0.95 kg/farm. 

This indicates that jasmine rice farmers in the Central region discharged an average NS of 

43.87 kg/farm or 26.59 kg/ha. Thus, on average, jasmine rice farmers in the North-eastern 

region discharged a higher amount of NS into the environment than jasmine rice farmers in 

the Northern and Central regions. 

The average level of NS inefficiency of non-jasmine rice farms in the Northern region is 

165.1 kg/farm, while the NS efficient farm discharged NS 0.56 kg/farm. This indicates that 

non-jasmine rice farmers in the Northern region discharged an average NS of 165.66 kg/farm 

or 50.66 kg/ha. The average level of NS inefficiency of non-jasmine rice farms in the North-

eastern region is 23.99 kg/farm, while the NS efficient farm discharged NS 1.28 kg/farm. 

This indicates that non-jasmine rice farmers in the North-eastern region discharged an 

average NS of 25.27 kg/farm or 34.62 kg/ha. The average level of NS inefficiency of non-

jasmine rice farms in the Central region is 193.78 kg/farm, while the NS efficient farm 

discharged NS 0.06 kg/farm. This indicates that non-jasmine rice farmers in the Central 

region discharged an average NS of 193.84 kg/farm or 49.83 kg/ha. The average level of NS 

inefficiency of non-jasmine rice farms in the Southern region is 47.39 kg/farm, while the NS 

efficient farm discharged NS 0.39 kg/farm. This indicates that non-jasmine rice farmers in 
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the Southern region discharged an average NS of 47.78 kg/farm or 33.18 kg/ha. Therefore, 

on average, non-jasmine rice farmers in the Northern and Central regions discharged more 

NS into the environment than non-jasmine rice farmers in the North-eastern and Southern 

regions. 

Table 6.6 Summary statistics of nitrogen surplus inefficiency of each type of rice farms in 

each region 

Type of rice Regions Inefficiency 

Number 

of frontier 

farms 

Mean Std. dev. Min. Max. 

Jasmine 

North 

NS inefficiency 1 25.13 18.26 0 68.57 

TIE 7 21.33 20.09 0 68.57 

AIE 15 3.80 9.99 0 42.32 

Northeast 

NS inefficiency 1 48.88 55.68 0 240.29 

TIE 12 46.40 55.33 0 240.29 

AIE 115 2.48 16.47 0 173.66 

Central 

NS inefficiency 1 42.92 45.34 0 160.07 

TIE 8 32.93 44.44 0 160.07 

AIE 16 9.99 27.73 0 104.98 

Non-jasmine 

North 

NS inefficiency 1 165.10 130.40 0 558.57 

TIE 13 155.05 131.62 0 558.57 

AIE 88 10.04 53.17 0 454.65 

Northeast 

NS inefficiency 1 23.99 18.30 0 64.49 

TIE 8 19.23 18.71 0 64.49 

AIE 27 4.76 13.16 0 60.47 

Central 

NS inefficiency 1 193.78 163.55 0 684.41 

TIE 12 184.34 166.67 0 684.41 

AIE 153 9.44 49.71 0 416.67 

South 

NS inefficiency 1 47.39 49.73 0 214.47 

TIE 9 42.94 49.83 0 214.47 

AIE 42 4.45 19.49 0 105.19 

Glutinous 

North 

NS inefficiency 1 20.23 16.26 0 43.40 

TIE 7 17.57 17.93 0 43.40 

AIE 13 2.67 6.46 0 27.01 

Northeast 

NS inefficiency 1 37.64 37.38 0 168.34 

TIE 11 35.18 37.38 0 168.34 

AIE 99 2.46 13.21 0 104.91 

Source: Author’s analysis of sample data (the total number of observations of jasmine rice 

North, jasmine rice Northeast, jasmine rice Central, non-jasmine rice North, non-jasmine 

rice Northeast, non-jasmine rice Central, non-jasmine rice South, glutinous rice North, and 

glutinous rice Northeast  is  21, 126, 23, 100, 34, 164, 50, 19, and 109, respectively).  

The average level of NS inefficiency of glutinous rice farms in the Northern region is 20.23 

kg/farm, while the NS efficient farm discharged NS 0.58 kg/farm. This indicates that 

glutinous rice farmers in the Northern region discharged an average NS of 20.81 kg/farm or 

28.12 kg/ha. The average level of NS inefficiency of glutinous rice farms in the North-

eastern region is 37.64 kg/farm, while the NS efficient farm discharged NS 0.6 kg/farm. This 
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indicates that glutinous rice farmers in the North-eastern region discharged an average NS 

of 38.24 kg/farm or 36.08 kg/ha. Thus, glutinous rice farmers in the Northern region are 

more NS efficient than glutinous rice farmers in the North-eastern region. 

Considering the NS efficiency of Thai rice within each region, in the Northern region, jasmine 

rice farmers are more NS efficient than non-jasmine rice and glutinous rice farmers. The 

average amount of NS per hectare that non-jasmine rice farmers discharged into the 

environment is more than double that discharged by jasmine rice farms. In the North-eastern 

region, the average amount of NS discharged by jasmine rice, non-jasmine rice, and glutinous 

rice are nearly the same. Non-jasmine rice farmers are more NS efficient than glutinous rice 

and jasmine rice farmers. Jasmine rice farmers in the Central region are more NS efficient than 

non-jasmine rice farmers in the Central region. Furthermore, jasmine rice farmers in the 

Northern region are the most NS efficient in the Thai rice farming system as they discharged 

the lowest amount of NS into the environment compared to the other 8 groups observed. On 

the other hand, non-jasmine rice farmers in the Northern and Central regions discharged the 

largest amount of NS into the environment compared to the other 7 observed groups. .  

6.3.2 Phosphorus surplus efficiency results 

The descriptive statistic of variables used for PSMM measures of the 9 groups of observations 

of Thai rice farmers are presented in Section 5.9. The descriptive statistics of the inefficiency 

levels of the PSMM, with the directional vector towards the PS minimum point, for each 

group of observations, are presented in Table 6.722. The inefficiency level of each farm in 

each group of observations represents the minimal distance from its observed data point to the 

minimum PS frontier of that group by given output and input phosphorus contents. The 

average PS inefficiency, TIE, and AIE of each group of observations are given in the fifth 

column of Table 6.7. The number of efficient farms that lie on the PS efficiency, TE, and AE 

frontiers for each group of observations is shown in the fourth column of Table 6.7. The results 

show that only one farm in each group of observations is PS, technically, and allocatively 

efficient. The PSMM results of jasmine rice farms in the Northern region are used as an 

example, demonstrating how to interpret the results of TIE and AIE for each group of 

observations using the PSMM. The number of TE farms of jasmine rice in the Northern 

region is 8, indicating that 1 farm is PS efficient and 7 farms are technically efficient but PS 

inefficient. The PS inefficiency of these 7 farms is due to allocative inefficiency of mixed 

                                                           
22  The environmental efficiency measure is computed for each farm in the sample; the results of this 

measurement are presented in Appendix D. 
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phosphorus contents (these 7 farms are technically efficient farms when TE scores are 

estimated, using the conventional DDF model). Moreover, the number of AE farms of 

jasmine rice in the Northern region is 19, indicating that 1 farm is PS efficient and 18 farms 

are allocatively efficient but PS inefficient. The PS inefficiency of these 18 farms is due to 

technical reasons, i.e. wrong management practices (these 18 farms are technically 

inefficient farms when TE scores are estimated using the conventional DDF model). 

Table 6.7 Summary statistics of phosphorus surplus inefficiency of each type of rice farms in 

each region 

Type of rice Regions Inefficiency No. of frontier 

farms 

Mean Std. dev. Min. Max. 

Jasmine 

North 

PS inefficiency 1 27.73 17.27 0 56.80 

TIE 8 17.52 17.53 0 56.80 

AIE 19 10.22 19.07 0 53.38 

Northeast 

PS inefficiency 1 26.29 28.72 0 131.21 

TIE 11 24.86 28.88 0 131.21 

AIE 116 1.43 7.91 0 66.19 

Central 

PS inefficiency 1 32.01 28.24 0 99.54 

TIE 6 29.06 29.09 0 99.54 

AIE 22 2.95 11.35 0 58.54 

Non-jasmine 

North PS inefficiency 1 60.72 44.46 0 169.84 

TIE 12 54.01 47.07 0 169.84 

AIE 62 6.71 22.26 0 114.01 

Northeast 

PS inefficiency 1 16.07 16.33 0 58.83 

TIE 7 12.71 14.60 0 58.83 

AIE 24 3.36 11.92 0 52.39 

Central 

PS inefficiency 1 108.65 80.59 0 396.30 

TIE 11 101.75 80.87 0 396.30 

AIE 144 6.90 37.00 0 325.30 

South 

PS inefficiency 1 27.96 27.37 0 112.64 

TIE 11 22.50 23.93 0 103.00 

AIE 51 5.46 20.65 0 112.64 

Glutinous 

North 

PS inefficiency 1 11.22 8.49 0 34.65 

TIE 10 8.20 7.81 0 25.44 

AIE 25 3.02 7.88 0 34.65 

Northeast 

PS inefficiency 1 19.68 17.33 0 71.49 

TIE 13 18.35 17.61 0 71.49 

AIE 106 1.33 6.28 0 43.10 

Source: Author’s analysis of sample data (the total number of observations of jasmine rice 

North, jasmine rice Northeast, jasmine rice Central, non-jasmine rice North, non-jasmine 

rice Northeast, non-jasmine rice Central, non-jasmine rice South, glutinous rice North, and 

glutinous rice Northeast is 26, 126, 27, 73, 30, 154, 61, 34, and 118, respectively).  

The average level of PS inefficiency of jasmine rice farms in the Northern region is 27.73 

kg/farm, while the PS efficient farm discharged PS 1.77 kg/farm. This indicates that jasmine 

rice farmers in the Northern region discharged an average PS of 29.5 kg/farm or 23.05 kg/ha. 
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The average level of PS inefficiency of jasmine rice farms in the North-eastern region is 

26.29 kg/farm, while the PS efficient farm discharged PS 0.82 kg/farm. This indicates that 

jasmine rice farmers in the North-eastern region discharged an average PS of 27.11 kg/farm 

or 19.34 kg/ha. The average level of PS inefficiency of jasmine rice farms in the Central 

region is 32.01 kg/farm, while the PS efficient farm discharged PS 0.04 kg/farm. This 

indicates that jasmine rice farmers in the Central region discharged an average PS of 32.05 

kg/farm or 19.19 kg/ha. Thus, on average, jasmine rice farmers in the Northern region 

discharged more PS into the environment than the jasmine rice farmers in the North-eastern 

and Central and regions. 

The average level of PS inefficiency of non-jasmine rice farms in the Northern region is 

60.72 kg/farm, while the PS efficient farm discharged PS 1.02 kg/farm. This indicates that 

non-jasmine rice farmers in the Northern region discharged an average PS of 61.74 kg/farm 

or 19.48 kg/ha. The average level of PS inefficiency of non-jasmine rice farms in the North-

eastern region is 16.07 kg/farm, while the PS efficient farm discharged PS 0.93 kg/farm. 

This indicates that non-jasmine rice farmers in the North-eastern region discharged an 

average PS of 17 kg/farm or 26.56 kg/ha. The average level of PS inefficiency of non-

jasmine rice farms in the Central region is 108.65 kg/farm, while the PS efficient farm 

discharged PS 0.34 kg/farm. This indicates that non-jasmine rice farmers in the Central 

region discharged an average PS of 109 kg/farm or 28.68 kg/ha. The average level of PS 

inefficiency of non-jasmine rice farms in the Southern region is 27.96 kg/farm, while the PS 

efficient farm discharged PS 3.2 kg/farm. This indicates that non-jasmine rice farmers in the 

Southern region discharged an average PS of 31.16 kg/farm or 28.07 kg/ha. Therefore, on 

average, non-jasmine rice farmers in the Northern region discharged less PS per hectare into 

the environment than non-jasmine rice farmers in the Northern, North-eastern and Southern 

regions. 

The average level of PS inefficiency of glutinous rice farms in the Northern region is 11.22 

kg/farm, while the PS efficient farm discharged PS 0.32 kg/farm. This indicates that 

glutinous rice farmers in the Northern region discharged an average PS of 11.54 kg/farm or 

16.25 kg/ha. The average level of PS inefficiency of glutinous rice farms in North-eastern 

region is 11.69 kg/farm, while the PS efficient farm discharged PS 0.27 kg/farm. This 

indicates that glutinous rice farmers in the North-eastern region discharged an average PS of 

11.96 kg/farm or 10.97 kg/ha. Thus, the glutinous rice farmers in Northern region are less 

PS efficient than glutinous rice farmers in the North-eastern region. 
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Considering the PS efficiency of Thai rice farmers within each region, in the Northern region, 

jasmine rice farmers discharged more PS per hectare into the environment than non-jasmine 

rice and glutinous rice farmers. In the North-eastern region, the average amount of PS per 

hectare discharged by glutinous rice farms is less than that discharged by jasmine rice and non-

jasmine rice farms. In the Central region, jasmine rice farms discharged a smaller average 

amount of PS per hectare into the environment than non-jasmine rice farms.  

Furthermore, glutinous rice farmers in the North-eastern region are the most PS efficient of 

the Thai rice farming system as they discharged the lowest amount of PS into the environment 

compared to the other 8 observed groups. On the other hand, non-jasmine rice farmers in the 

North-eastern, Central, and Southern regions are the most PS inefficient of the Thai rice 

farming system as they discharged the largest amount of PS into the environment compared to 

the other 6 observed groups. 

6.4 The improvement of output produced and inputs used by different efficiency 

measures 

Tables 6.8 - 6.16 compare the improvement of rice output and the combination of inputs 

used per hectare that would enable the average farm in each observed group to produce on 

the frontiers according to the various efficiency measures, including DDF1 – DDF4, NSMM, 

and PSMM. The NS and PS produced per hectare of the average farms and the percentage 

change of NS and PS with different directions of improvement compared to the average farm 

in each group of observations are also presented in the last four rows of each Table.  

Table 6.8 shows that the improvement of jasmine rice output and the combination of inputs 

used per hectare of the average farm in the Northern region for all directional vectors towards 

the TE frontiers (DDF1-DDF3 directions) can lead to the reduction of NS and PS discharged 

into the environment. However, the approach of the farm’s efficiency towards the profit 

maximisation frontier (DDF4) increases the amounts of NS and PS discharged into the 

environment by 487% and 131%, respectively. The approach of the farm’s efficiency 

towards the NS minimisation frontier (NSMM) results in a reduction of NS by 57% and no 

PS being discharged into the environment, but its output is 6.4% lower than that of the 

average farm. Furthermore, the farm’s approach towards the PS minimisation frontier 

(PSMM) results in a reduction of PS by 40% and no NS being discharged into the 

environment. 
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Table 6.8 Average improvement of inputs used and jasmine rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the Northern region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 3,107.3 3,107.3 3,213.9 3,154.5 3,347.5 2,907.0 3,640.0 

Planted area Ha/Farm 1.7 1.6 1.7 1.6 4.7 0.4 0.3 

Seed Kg 121.5 118.1 121.5 119.6 135.0 78.7 78.8 

Bio-fertiliser Kg 2,316.2 2,252.7 2,316.2 2,281.0 0.0 15,730.4 0.0 

N-fertiliser Kg 44.6 43.4 44.6 44.0 104.7 36.2 18.6 

P-fertiliser Kg 17.8 17.3 17.8 17.5 33.8 0.0 14.2 

K-fertiliser Kg 5.6 5.5 5.6 5.5 0.0 0.0 14.2 

Pesticide Kg 16.0 15.5 16.0 15.7 2.7 3.1 6.3 

Human labour Baht 7,647.3 7,437.8 7,647.3 7,531.0 4,165.7 7,166.8 7,257.9 

Machinery Baht 3,746.5 3,643.9 3,746.5 3,689.6 2,185.9 3,775.3 5,046.8 

Fuel Litre 4.2 4.1 4.2 4.1 0.0 0.0 6.3 

Other cost Baht 796.6 774.8 796.6 784.5 176.4 1,573.0 3,280.4 

NS Kg 11.80 10.54 10.63 10.58 69.31 5.07 -20.61 

PS Kg 11.83 11.34 11.62 11.46 27.33 -5.66 7.08 

% change of NS    -10.68 -9.93 -10.33 487.37 -57.00 -274.67 

% change of PS   -4.18 -1.80 -3.12 131.01 -147.81 -40.18 

Note: 1/ denotes the average value of rice output and inputs used for the jasmine rice North 

sample.  

Table 6.9 Average improvement of inputs used and jasmine rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the North-eastern region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,062.5 2,062.5 2,391.3 2,206.5 2,013.4 2,400.0 2,019.2 

Planted area Ha/Farm 1.6 1.4 1.6 1.5 8.9 0.5 1.0 

Seed Kg 146.7 128.4 146.7 136.5 93.8 140.6 62.7 

Bio-fertiliser Kg 3,427.7 3,000.3 3,427.7 3,188.5 0.0 0.0 3,919.3 

N-fertiliser Kg 44.1 38.6 44.1 41.0 48.0 25.0 14.8 

P-fertiliser Kg 20.6 18.0 20.6 19.2 16.4 12.5 4.7 

K-fertiliser Kg 16.0 14.0 16.0 14.9 26.9 12.5 4.7 

Pesticide Kg 2.7 2.3 2.7 2.5 0.0 0.0 0.0 

Human labour Baht 8,036.5 7,034.3 8,036.5 7,475.5 5,817.8 5,490.6 7,497.4 

Machinery Baht 3,574.7 3,128.9 3,574.7 3,325.2 3,439.1 3,125.0 2,821.9 

Fuel Litre 5.0 4.4 5.0 4.7 0.0 0.0 0.0 

Other cost Baht 820.1 717.8 820.1 762.9 105.7 0.0 219.5 

NS Kg 23.03 17.33 19.41 18.25 26.92 0.15 -6.70 

PS Kg 16.76 14.15 16.10 15.01 12.54 7.98 0.79 

% change of NS    -24.76 -15.70 -20.73 16.91 -99.36 -129.11 

% change of PS   -15.54 -3.92 -10.42 -25.15 -52.37 -95.29 

Note: 1/ denotes the average value of rice output and inputs used for the jasmine rice 

Northeast sample.  

Table 6.9 shows that the improvement of jasmine rice output and the combination of inputs 

used per hectare of the average farm in the North-eastern region for all directions to the 

efficiency frontiers can lead to the reduction of NS and PS discharged into the environment, 
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except the farm’s approach towards the profit maximisation frontier, which would lead to a 

20% increase in NS discharged into the environment. 

Table 6.10 Average improvement of inputs used and jasmine rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the Central region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,388.8 2,388.8 2,627.0 2,492.8 2,580.6 2,095.8 2,586.2 

Planted area Ha/Farm 3.1 2.8 3.1 2.9 10.9 1.7 1.2 

Seed Kg 146.8 135.5 146.8 140.4 98.7 125.1 100.2 

Bio-fertiliser Kg 463.1 427.3 463.1 442.9 0.0 0.0 0.0 

N-fertiliser Kg 37.2 34.3 37.2 35.5 19.7 22.2 33.1 

P-fertiliser Kg 16.8 15.5 16.8 16.1 24.7 27.8 5.0 

K-fertiliser Kg 3.8 3.5 3.8 3.7 0.0 0.0 5.0 

Pesticide Kg 2.1 1.9 2.1 2.0 1.8 0.0 5.0 

Human labour Baht 4,360.9 4,023.8 4,360.9 4,171.2 6,123.6 4,344.5 4,320.8 

Machinery Baht 3,637.2 3,356.0 3,637.2 3,478.9 3,124.3 2,815.3 3,945.1 

Fuel Litre 0.9 0.8 0.9 0.9 0.0 0.0 0.0 

Other cost Baht 149.8 138.2 149.8 143.3 0.0 0.0 0.0 

NS Kg 12.50 9.50 9.88 9.67 -7.57 0.57 5.71 

PS Kg 12.30 10.98 11.82 11.35 19.70 23.86 0.04 

% change of NS    -23.98 -20.96 -22.64 -160.56 -95.46 -54.29 

% change of PS   -10.73 -3.87 -7.73 60.19 94.01 -99.70 

Note: 1/ denotes the average value of rice output and inputs used for the jasmine rice Central 

sample.  

Table 6.10 shows that the improvement of jasmine rice output and the combination of inputs 

used per hectare of the average farm in the Central region for all directions to the efficiency 

frontiers can lead to the reduction of NS and PS discharged into the environment, except that 

the farm’s efficiency approach towards the profit maximisation and NS minimisation 

frontiers leads to the increase of PS discharged into the environment.   

Table 6.11 shows that the improvement of non-jasmine rice output and the combination of 

inputs used per hectare of the average farm in the Northern region for all directions to the 

efficiency frontiers can lead to the reduction of NS and PS discharged into the environment.  

Table 6.12 indicates that the improvement of non-jasmine rice output and the combination 

of inputs used per hectare of the average farm in the North-eastern region for all directions 

to the efficiency frontiers can lead to the reduction of NS and PS discharged into the 

environment, except that when the farm approaches the profit maximisation frontier, there 

is an increase in PS discharged into the environment, and its approach to the PS minimisation 

frontier leads to a large amount of NS being discharged into the environment. 
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Table 6.11 Average improvement of inputs used and non-jasmine rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the Northern region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 3,643.7 3,643.7 3,821.9 3,726.4 3,723.8 3,355.7 3,947.4 

Planted area Ha/Farm 3.3 3.1 3.3 3.2 12.9 1.5 0.4 

Seed Kg 172.7 165.4 172.7 168.8 156.2 117.4 92.8 

Bio-fertiliser Kg 1,727.7 1,654.6 1,727.7 1,688.5 0.0 117.4 0.0 

N-fertiliser Kg 72.8 69.7 72.8 71.2 71.9 36.0 35.4 

P-fertiliser Kg 17.5 16.8 17.5 17.1 0.0 0.0 10.4 

K-fertiliser Kg 2.5 2.4 2.5 2.5 0.0 0.0 26.0 

Pesticide Kg 14.0 13.4 14.0 13.7 2.4 2.6 0.0 

Human labour Baht 7,029.8 6,732.5 7,029.8 6,870.3 5,435.8 4,059.8 13,747.2 

Machinery Baht 3,368.8 3,226.3 3,368.8 3,292.3 3,748.8 2,817.3 4,331.0 

Fuel Litre 10.4 9.9 10.4 10.1 3.6 0.0 0.0 

Other cost Baht 493.9 473.0 493.9 482.7 0.0 160.4 77.3 

NS Kg 34.65 31.48 32.69 32.04 32.61 0.38 -6.95 

PS Kg 10.60 9.84 10.24 10.03 -7.14 -6.48 2.69 

% change of NS    -9.12 -5.66 -7.52 -5.88 -98.91 -120.07 

% change of PS   -7.14 -3.36 -5.39 -167.31 -161.10 -74.66 

Note: 1/ denotes the average value of rice output and inputs used for the non-jasmine rice 

North sample.  

Table 6.12 Average improvement of inputs used and non-jasmine rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the North-eastern region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,230.2 2,230.2 2,357.1 2,285.3 2,737.6 2,046.5 2,222.2 

Planted area Ha/Farm 1.01 0.97 1.01 0.99 2.63 0.43 0.27 

Seed Kg 148.7 141.9 148.7 145.0 156.3 62.0 95.2 

Bio-fertiliser Kg 5,758.8 5,494.5 5,758.8 5,616.6 0.0 0.0 0.0 

N-fertiliser Kg 48.2 46.0 48.2 47.0 17.5 24.8 166.6 

P-fertiliser Kg 20.1 19.2 20.1 19.6 21.9 12.4 7.7 

K-fertiliser Kg 15.5 14.8 15.5 15.1 0.0 12.4 15.7 

Pesticide Kg 3.0 2.9 3.0 3.0 0.0 0.0 0.0 

Human labour Baht 7,438.2 7,096.8 7,438.2 7,254.5 4,448.4 4,364.0 7,505.9 

Machinery Baht 3,669.0 3,500.6 3,669.0 3,578.3 3,750.2 2,356.6 2,095.2 

Fuel Litre 4.0 3.8 4.0 3.9 2.2 0.0 0.0 

Other cost Baht 545.4 520.4 545.4 531.9 306.3 62.0 39.7 

NS Kg 25.32 23.03 23.92 23.48 -10.89 2.98 143.20 

PS Kg 15.93 14.99 15.67 15.31 16.71 8.43 3.45 

% change of NS    -9.04 -5.51 -7.26 -143.02 -88.21 465.57 

% change of PS   -5.88 -1.59 -3.85 4.94 -47.09 -78.34 

Note: 1/ denotes the average value of rice output and inputs used for the non-jasmine rice 

Northeast sample.  

Table 6.13 indicates that the improvement of non-jasmine rice output and the combination 

of inputs used per hectare of the average farm in the Central region for all directions to the 

efficiency frontiers can lead to the reduction of NS and PS discharged into the environment, 

except that the farm’s approach towards the profit maximisation frontier leads to the increase 
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of NS and PS discharged into the environment, and the farm’s approach towards the NS 

minimisation frontier leads to an increase in the  PS discharged into the environment. 

Table 6.13 Average improvement of inputs used and non-jasmine rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the Central region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 3,863.3 3,863.3 4,438.1 4,092.7 4,186.8 3,763.4 4,788.7 

Planted area Ha/Farm 4.28 3.85 4.28 4.03 20.66 0.93 1.42 

Seed Kg 174.5 156.9 174.5 164.1 144.0 137.3 233.8 

Bio-fertiliser Kg 1,879.0 1,689.6 1,879.0 1,767.4 0.0 2.5 7,794.2 

N-fertiliser Kg 81.7 73.5 81.7 76.8 121.2 39.9 36.6 

P-fertiliser Kg 30.6 27.5 30.6 28.7 44.2 49.9 9.4 

K-fertiliser Kg 2.1 1.9 2.1 2.0 0.0 0.0 9.4 

Pesticide Kg 9.3 8.4 9.3 8.8 3.1 2.5 5.8 

Human labour Baht 6,010.2 5,404.4 6,010.2 5,653.2 5,766.9 5,492.2 6,436.7 

Machinery Baht 3,274.1 2,944.1 3,274.1 3,079.7 3,312.0 4,680.9 4,053.0 

Fuel Litre 25.7 23.1 25.7 24.2 0.3 0.0 39.0 

Other cost Baht 175.0 157.4 175.0 164.6 0.0 0.0 0.0 

NS Kg 41.12 32.69 34.80 33.63 76.77 0.06 -13.47 

PS Kg 23.18 20.06 22.03 20.88 36.06 42.67 0.24 

% change of NS    -20.50 -15.38 -18.22 86.69 -99.86 -132.76 

% change of PS   -13.44 -4.96 -9.90 55.61 84.12 -98.95 

Note: 1/ denotes the average value of rice output and inputs used for the non-jasmine rice 

Central sample.  

Table 6.14 Average improvement of inputs used and non-jasmine rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the Southern region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,787.5 2,787.5 3,200.9 2,959.2 3,462.4 3,043.5 3,481.5 

Planted area Ha/Farm 1.81 1.62 1.81 1.70 9.30 0.92 0.54 

Seed Kg 177.5 158.7 177.5 166.6 156.2 234.8 157.1 

Bio-fertiliser Kg 952.1 851.2 952.1 893.4 0.0 0.0 0.0 

N-fertiliser Kg 48.0 42.9 48.0 45.0 125.8 31.3 10.1 

P-fertiliser Kg 27.0 24.2 27.0 25.4 0.0 39.1 12.6 

K-fertiliser Kg 1.2 1.1 1.2 1.1 0.0 0.0 0.0 

Pesticide Kg 6.8 6.1 6.8 6.4 6.2 1.2 0.0 

Human labour Baht 8,939.5 7,991.9 8,939.5 8,388.9 4,699.8 3,882.6 5,081.7 

Machinery Baht 4,404.6 3,937.7 4,404.6 4,133.3 3,124.9 3,131.2 3,456.4 

Fuel Litre 5.6 5.0 5.6 5.2 3.9 0.0 0.0 

Other cost Baht 345.8 309.1 345.8 324.5 54.7 313.1 0.0 

NS Kg 19.26 13.97 14.71 14.30 89.41 0.42 -26.51 

PS Kg 21.81 18.91 20.98 19.78 -6.61 33.52 5.93 

% change of NS    -27.47 -23.61 -25.77 364.19 -97.82 -237.65 

% change of PS   -13.31 -3.79 -9.31 -130.32 53.71 -72.83 

Note: 1/ denotes the average value of rice output and inputs used for the non-jasmine rice 

South sample.  
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Table 6.15 Average improvement of inputs used and glutinous rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the Northern region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 3,354.7 3,354.7 3,424.1 3,386.2 3,750.0 3,750.0 2,790.7 

Planted area Ha/Farm 0.91 0.89 0.91 0.90 1.40 1.20 0.43 

Seed Kg 100.2 98.5 100.2 99.3 44.7 53.7 62.0 

Bio-fertiliser Kg 1,185.1 1,164.6 1,185.1 1,174.0 4,471.7 0.0 0.0 

N-fertiliser Kg 36.7 36.1 36.7 36.4 34.5 41.1 5.0 

P-fertiliser Kg 13.8 13.6 13.8 13.7 17.0 0.0 6.2 

K-fertiliser Kg 2.9 2.9 2.9 2.9 20.0 0.0 0.0 

Pesticide Kg 12.3 12.1 12.3 12.2 15.2 20.1 0.0 

Human labour Baht 10,055.2 9,881.3 10,055.2 9,960.7 7,700.3 12,713.1 16,163.3 

Machinery Baht 4,627.6 4,547.5 4,627.6 4,584.1 4,382.3 5,634.4 4,961.2 

Fuel Litre 9.8 9.7 9.8 9.7 0.0 0.0 0.0 

Other cost Baht 893.2 877.8 893.2 884.8 17.9 1,091.1 1,550.4 

NS Kg 0.94 0.29 0.18 0.24 -6.27 0.48 -25.06 

PS Kg 7.30 7.05 7.16 7.10 9.55 -7.39 0.75 

% change of NS    -69.59 -81.20 -74.69 -766.78 -48.77 -2,764.15 

% change of PS   -3.32 -1.90 -2.67 30.86 -201.34 -89.69 

Note: 1/ denotes the average value of rice output and inputs used for the glutinous rice North 

sample.   

Table 6.16 Average improvement of inputs used and glutinous rice produced per hectare 

required to be technically, profit, NS, and PS efficient for farms in the North-eastern region 

Description Unit Mean1/ DDF1 DDF2 DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,108.7 2,108.7 2,292.6 2,193.7 2,019.5 2,381.7 2,187.5 

Planted area Ha/Farm 1.26 1.16 1.26 1.20 1.64 1.31 0.80 

Seed Kg 157.9 146.1 157.9 151.6 99.2 155.9 157.2 

Bio-fertiliser Kg 4,004.4 3,704.5 4,004.4 3,843.0 5,666.4 0.0 0.0 

N-fertiliser Kg 52.2 48.3 52.2 50.1 61.2 24.9 268.0 

P-fertiliser Kg 19.1 17.7 19.1 18.4 11.3 21.8 4.4 

K-fertiliser Kg 20.3 18.8 20.3 19.5 0.0 6.2 11.0 

Pesticide Kg 3.0 2.8 3.0 2.9 4.5 7.8 1.6 

Human labour Baht 8,442.3 7,809.9 8,442.3 8,102.0 5,711.3 13,300.0 7,354.5 

Machinery Baht 3,551.6 3,285.6 3,551.6 3,408.5 1,869.9 4,987.8 3,143.0 

Fuel Litre 3.2 3.0 3.2 3.1 0.0 15.6 0.0 

Other cost Baht 873.0 807.6 873.0 837.8 1,180.9 576.7 157.2 

NS Kg 30.75 26.71 28.72 27.64 40.07 0.46 245.68 

PS Kg 15.24 13.78 14.87 14.28 7.49 17.37 0.34 

% change of NS    -13.14 -6.58 -10.11 30.33 -98.52 699.05 

% change of PS   -9.56 -2.41 -6.26 -50.82 14.01 -97.77 

Note: 1/ denotes the average value of rice output and inputs used for the glutinous rice 

Northeast sample.  

Table 6.14 indicates that the improvement of non-jasmine rice output and the combination 

of inputs used per hectare of the average farm in the Southern region for all directions to the 

efficiency frontiers can lead to the reduction of NS and PS discharged into the environment, 



 

117 

except that the farm’s approach towards the profit maximisation frontier leads to an increase  

in NS discharged into the environment, and the farm’s approach towards the NS 

minimisation frontier leads to an increase in PS discharged into the environment.   

Table 6.15 indicates that the improvement of glutinous rice output and the combination of 

inputs used per hectare of the average farm in the Northern region for all directions to the 

efficiency frontiers can lead to the reduction of NS and PS discharged into the environment, 

except that the farm’s approach towards the profit maximisation frontier leads to an increase 

in PS discharged into the environment. 

Table 6.16 indicates that the improvement of glutinous rice produced and the combination 

of inputs used per hectare of the average farm in the North-eastern region with all directions 

to the efficiency frontiers can lead to the reduction of NS and PS discharged into the 

environment, except that the farm’s  approach towards the profit maximisation and PS 

minimisation frontiers leads to an increase in NS discharged into the environment and the 

farm’s approach towards the NS minimisation frontier leads to an increase in PS discharged 

into the environment. 

6.5 Technical, profit and environmental best practice farms 

Table 6.17 – Table 6.25 present the average rice output per hectare and the average input 

used to produce a tonne of rice output on the technical best practice farms (TBPFs), which 

construct the PPF for directions DDF1 – DDF3 (the fourth column), the average rice output 

per hectare and the average input used to produce a tonne of rice on the profit efficiency 

BPF, which construct the profit maximisation frontier (the fifth column), the average rice 

output per hectare and the average input used to produce a tonne of rice on the NS efficiency 

BPF, which construct the NS minimisation frontier (the sixth column), and the average rice 

output per hectare and the average input used to produce a tonne of rice on the PS efficiency 

BPF, which construct the PS minimisation frontier (the seventh column), compared to the 

average farms (the third column) in the 9 observed groups. The NS and PS discharged into 

the environment when the average farms and the BPFs produce a tonne of rice are presented 

in the third and fourth rows from the end of each Table. The percentage change of NS and 

PS of the BPFs compared to the average farms when they produce a tonne of rice are also 

presented in the last two rows of each Table. Since the TBPFs which create the PPF of each 

sample using the DDF1 to DDF3 measures are the same farms, the average inputs and output 

are the same across these three measures.  
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Table 6.17 Comparison of jasmine rice produced per hectare and inputs used per tonne of 

jasmine rice on the average sample farms, technical, profit maximisation, NS minimisation, 

and PS minimisation BPFs in the Northern region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg/ha 3,107.29 3,186.95 3,347.55 2,906.98 3,640.00 

Planted area Ha 0.32 0.31 0.30 0.34 0.27 

Seed Kg 39.09 38.22 40.34 27.06 21.66 

Bio-fertiliser Kg 745.40 716.99 0.00 5,411.26 0.00 

N-fertiliser Kg 14.37 13.57 31.26 12.45 5.10 

P-fertiliser Kg 5.73 4.49 10.08 0.00 3.90 

K-fertiliser Kg 1.81 0.88 0.00 0.00 3.90 

Pesticide Kg 5.14 4.62 0.81 1.08 1.74 

Human labour Baht 2,461.08 2,376.76 1,244.40 2,465.37 1,993.93 

Machinery Baht 1,205.73 1,145.03 652.99 1,298.70 1,386.48 

Fuel Litre 1.35 1.38 0.00 0.00 1.74 

Other cost Baht 256.37 205.22 52.69 541.13 901.21 

NS per ton of rice Kg 3.80 2.99 20.71 1.75 -5.66 

PS per ton of rice Kg 3.81 2.56 8.17 -1.95 1.94 

% change of NS     -21.17 445.21 -54.04 -249.11 

% change of PS     -32.68 114.43 -151.10 -48.94 

Note: 1/ denotes the average value of rice output and inputs used on the jasmine rice North 

sample farms. 

Table 6.18 Comparison of jasmine rice produced per hectare and inputs used per tonne of 

jasmine rice on average sample farms, technical, profit maximisation, NS minimisation, and 

PS minimisation BPFs in the North-eastern region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,062.50 2,189.56 2,013.42 2,400.00 2,019.23 

Planted area Ha 0.48 0.46 0.50 0.42 0.50 

Seed Kg 71.14 51.63 46.58 58.59 31.06 

Bio-fertiliser Kg 1,661.93 1,106.68 0.00 0.00 1,941.00 

N-fertiliser Kg 21.38 19.52 23.86 10.42 7.34 

P-fertiliser Kg 9.98 9.44 8.14 5.21 2.33 

K-fertiliser Kg 7.78 6.06 13.35 5.21 2.33 

Pesticide Kg 1.29 1.56 0.00 0.00 0.00 

Human labour Baht 3,896.47 2,974.03 2,889.50 2,287.76 3,712.98 

Machinery Baht 1,733.20 1,415.53 1,708.07 1,302.08 1,397.51 

Fuel Litre 2.44 0.77 0.00 0.00 0.00 

Other cost Baht 397.63 184.48 52.48 0.00 108.70 

NS  Kg 11.17 9.09 13.37 0.06 -3.32 

 PS Kg 8.13 7.54 6.23 3.33 0.39 

% change of NS     -18.62 19.76 -99.45 -129.74 

% change of PS     -7.16 -23.33 -59.07 -95.19 

Note: 1/ denotes the average value of rice output and inputs used on the jasmine rice 

Northeast sample farms 

Table 6.17 shows that the TBPFs, the profit efficiency BPF, and the PS efficiency BPF of 

the jasmine rice North sample produced more jasmine rice per hectare than the average farm, 
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while the NS efficiency BPF produced less jasmine rice per hectare than the average farm. 

Moreover, all the BPFs of the jasmine rice North sample used less seed, N fertiliser, and P 

fertiliser than the average farm to produce a tonne of jasmine rice, except the profit efficiency 

BPF. As a result, the BPFs, except the profit efficiency BPF, discharged less NS and PS into 

the environment than the average farm when producing a tonne of jasmine rice. 

Table 6.18 shows that the TBPFs and the NS efficiency BPF of the jasmine rice Northeast 

sample produced more jasmine rice per hectare than the average farm, while the profit 

efficiency BPF and the PS efficiency BPF produced less jasmine rice per hectare than the 

average farm. Moreover, the BPFs of the jasmine rice Northeast sample used less seed, N 

fertiliser, and P fertiliser than the average farm to produce a tonne of jasmine rice, except 

the profit efficiency BPF, which used higher N fertiliser than the average farm. As a result, 

the BPFs discharged less NS and PS into the environment than the average farm when 

producing a tonne of jasmine rice, except the profit efficiency BPF, which discharged more 

NS into the environment than the average farm when producing a tonne of jasmine rice. 

Table 6.19 Comparison of jasmine rice produced per hectare and inputs used per tonne of 

jasmine rice on average sample farms, technical, profit maximisation, NS minimisation, and 

PS minimisation BPFs in the Central region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,388.85 2,457.95 2,580.65 2,095.81 2,586.21 

Planted area Ha/Farm 0.42 0.41 0.39 0.48 0.39 

Seed Kg 61.46 50.87 38.23 59.70 38.74 

Bio-fertiliser Kg 193.84 105.26 0.00 0.00 0.00 

N-fertiliser Kg 15.56 11.25 7.65 10.61 12.78 

P-fertiliser Kg 7.03 5.58 9.56 13.27 1.94 

K-fertiliser Kg 1.60 1.02 0.00 0.00 1.94 

Pesticide Kg 0.87 0.56 0.70 0.00 1.94 

Human labour Baht 1,825.51 1,744.25 2,372.88 2,072.95 1,670.70 

Machinery Baht 1,522.56 1,391.31 1,210.65 1,343.28 1,525.42 

Fuel Litre 0.37 0.61 0.00 0.00 0.00 

Other cost Baht 62.71 27.61 0.00 0.00 0.00 

NS  Kg 5.23 0.81 -2.93 0.27 2.21 

PS Kg 5.15 3.69 7.63 11.39 0.01 

% change of NS     -84.53 -156.06 -94.82 -57.77 

% change of PS     -28.42 48.29 121.14 -99.73 

Note: 1/ denotes the average value of rice output and inputs used on the jasmine rice Central 

sample farms. 

Table 6.19 shows that the TBPFs, the profit efficiency BPF, and the PS efficiency BPF of 

the jasmine rice Central sample produced more jasmine rice per hectare than the average 

farm, while the NS efficiency BPF produced less jasmine rice per hectare than the average 
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farm. Furthermore, the BPFs of the jasmine rice Central sample used less seed, N fertiliser, 

and P fertiliser than the average farm to produce a tone of jasmine rice, except the profit 

efficiency BPF and the NS efficiency BPF, which used more P fertiliser than the average 

farm. As a result, the BPFs discharged less NS and PS into the environment than the average 

farm when producing a tonne of jasmine rice, except the profit efficiency BPF and the NS 

efficiency BPF, which discharged more PS into the environment than the average farm when 

producing a tonne of jasmine rice.  

Table 6.20 shows that the TBPFs, the profit efficiency BPF, and the PS efficiency BPF of 

the non-jasmine rice North sample produced more non-jasmine rice per hectare than the 

average farm, while the NS efficiency BPF produced less non-jasmine rice per hectare than 

the average farm. The results also indicate that the BPFs of the non-jasmine rice North 

sample used less seed, nitrogen fertiliser, and phosphorus fertiliser than the average farm to 

produce a tonne of non-jasmine rice. As a result, the BPFs discharged less NS and PS into 

the environment than the average farm when producing a tonne of non-jasmine rice.  

Table 6.20 Comparison of non-jasmine rice produced per hectare and inputs used per tonne 

of non-jasmine rice on average sample farms, technical, profit maximisation, NS 

minimisation, and PS minimisation BPFs in the Northern region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 3,643.73 3,735.81 3,723.82 3,355.70 3,947.37 

Planted area Ha/Farm 0.27 0.27 0.27 0.30 0.25 

Seed Kg 47.41 41.84 41.95 34.98 23.51 

Bio-fertiliser Kg 474.15 544.23 0.00 34.98 0.00 

N-fertiliser Kg 19.99 15.85 19.30 10.73 8.98 

P-fertiliser Kg 4.81 2.95 0.00 0.00 2.63 

K-fertiliser Kg 0.69 0.33 0.00 0.00 6.58 

Pesticide Kg 3.85 2.56 0.65 0.77 0.00 

Human labour Baht 1,929.29 1,984.05 1,459.73 1,209.83 3,482.63 

Machinery Baht 924.53 896.76 1,006.71 839.55 1,097.18 

Fuel Litre 2.85 1.72 0.98 0.00 0.00 

Other cost Baht 135.56 121.05 0.00 47.81 19.59 

NS  Kg 9.51 5.31 8.76 0.11 -1.76 

 PS Kg 2.91 1.03 -1.92 -1.93 0.68 

% change of NS     -44.11 -7.91 -98.81 -118.52 

% change of PS     -64.49 -165.87 -166.35 -76.61 

Note: 1/ denotes the average value of rice output and inputs used on the non-jasmine rice 

North sample farms. 

Table 6.21 shows that the TBPFs and the profit efficiency BPF of the non-jasmine rice 

Northeast sample produced more non-jasmine rice per hectare than the average farm, while 

the NS efficiency BPF and the PS efficiency BPF produced less non-jasmine rice per hectare 
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than the average farm. The results also indicate that the BPFs of the non-jasmine rice 

Northeast sample used less seed, N fertiliser, and P fertiliser than the average farm to produce 

a tonne of non-jasmine rice, except the PS efficiency BPF, which used more N fertiliser than 

the average farm. As a result, the BPFs discharged less NS and PS into the environment than 

the average farm when producing a tonne of non-jasmine rice, except the PS efficiency BPF, 

which discharged 467.6% more NS into the environment than the average farm when 

producing a tonne of non-jasmine rice.  

Table 6.21 Comparison of non-jasmine rice produced per hectare and inputs used per tonne 

of non-jasmine rice on average sample farms, technical, profit maximisation, NS 

minimisation, and PS minimisation BPFs in the North-eastern region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,230.17 2,308.38 2,737.64 2,046.51 2,222.22 

Planted area Ha/Farm 0.45 0.43 0.37 0.49 0.45 

Seed Kg 66.67 61.13 57.08 30.31 42.85 

Bio-fertiliser Kg 2,582.23 2,264.67 0.00 0.00 0.00 

N-fertiliser Kg 21.62 16.25 6.39 12.13 74.97 

P-fertiliser Kg 9.01 5.70 7.99 6.06 3.47 

K-fertiliser Kg 6.93 4.28 0.00 6.06 7.07 

Pesticide Kg 1.36 1.20 0.00 0.00 0.00 

Human labour Baht 3,335.26 2,965.10 1,624.89 2,132.42 3,377.65 

Machinery Baht 1,645.15 1,450.07 1,369.86 1,151.51 942.85 

Fuel Litre 1.78 1.70 0.80 0.00 0.00 

Other cost Baht 244.56 140.68 111.87 30.31 17.85 

NS  Kg 11.35 5.92 -3.98 1.46 64.44 

PS Kg 7.14 3.83 6.10 4.12 1.55 

% change of NS     -47.87 -135.05 -87.15 467.59 

% change of PS     -46.41 -14.52 -42.34 -78.26 

Note: 1/ denotes the average value of rice output and inputs used on the non-jasmine rice 

Northeast sample farms. 

Table 6.22 shows that the TBPFs, the profit efficiency BPF and the PS efficiency BPF of the 

non-jasmine rice Central sample produced more non-jasmine rice per hectare than the 

average farm, while the NS efficiency BPF produced less non-jasmine rice per hectare than 

the average farm. The TBPFs and PS efficiency BPF used less N fertiliser and P fertiliser 

than the average farm to produce a tonne of non-jasmine rice, resulting in a reduction of NS 

and PS discharged into the environment. The profit BPF applied more N fertiliser and P 

fertiliser than the average farm, resulting in greater discharges of NS and PS. Moreover, the 

NS efficiency BPF applied a very small amount of N fertiliser, but applied more P fertiliser 

than the average farm, resulting in a higher discharge of PS than that of the average farm. 
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Table 6.22 Comparison of non-jasmine rice produced per hectare and inputs used per tonne 

of non-jasmine rice on average sample farms, technical, profit maximisation, NS 

minimisation, and PS minimisation BPFs in the Central region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 3,863.27 4,249.71 4,186.83 3,763.44 4,788.73 

Planted area Ha/Farm 0.26 0.24 0.24 0.27 0.21 

Seed Kg 45.16 39.58 34.39 36.48 48.83 

Bio-fertiliser Kg 486.37 703.97 0.00 0.66 1,627.60 

N-fertiliser Kg 21.15 17.63 28.96 10.61 7.65 

P-fertiliser Kg 7.91 5.91 10.55 13.27 1.95 

K-fertiliser Kg 0.56 0.31 0.00 0.00 1.95 

Pesticide Kg 2.41 2.23 0.75 0.66 1.22 

Human labour Baht 1,555.73 1,439.63 1,377.39 1,459.37 1,344.14 

Machinery Baht 847.50 690.69 791.04 1,243.78 846.35 

Fuel Litre 6.66 7.26 0.08 0.00 8.14 

Other cost Baht 45.30 30.13 0.00 0.00 0.00 

NS  Kg 10.64 7.06 18.34 0.02 -2.81 

PS Kg 6.00 3.99 8.61 11.34 0.05 

% change of NS     -33.66 72.26 -99.85 -126.43 

% change of PS     -33.57 43.58 89.00 -99.16 

Note: 1/ denotes the average value of rice output and inputs used on the non-jasmine rice 

Central sample farms. 

Table 6.23 Comparison of non-jasmine rice produced per hectare and inputs used per tonne 

of non-jasmine rice on average sample farms, technical, profit maximisation, NS 

minimisation, and PS minimisation BPFs in the Southern region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,787.50 2,952.93 3,462.37 3,043.48 3,481.48 

Planted area Ha/Farm 0.36 0.34 0.29 0.33 0.29 

Seed Kg 63.69 60.96 45.13 77.16 45.13 

Bio-fertiliser Kg 341.55 531.56 0.00 0.00 0.00 

N-fertiliser Kg 17.21 15.32 36.33 10.29 2.89 

P-fertiliser Kg 9.70 6.04 0.00 12.86 3.61 

K-fertiliser Kg 0.43 0.10 0.00 0.00 0.00 

Pesticide Kg 2.45 1.97 1.80 0.39 0.00 

Human labour Baht 3,207.02 2,771.92 1,357.40 1,275.72 1,459.64 

Machinery Baht 1,580.13 1,449.64 902.53 1,028.81 992.78 

Fuel Litre 2.00 1.33 1.13 0.00 0.00 

Other cost Baht 124.04 80.36 15.79 102.88 0.00 

NS  Kg 6.91 4.99 25.82 0.14 -7.62 

 PS Kg 7.82 4.16 -1.91 11.02 1.70 

% change of NS     -27.75 273.71 -98.00 -210.21 

% change of PS     -46.78 -124.41 40.78 -78.25 

Note: 1/ denotes the average value of rice output and inputs used on the non-jasmine rice 

South sample farms. 

Table 6.23 shows that the TBPFs, the profit efficiency BPF, the NS efficiency BPF, and the 

PS efficiency BPF of the non-jasmine rice South sample produced more non-jasmine rice 
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per hectare than the average farm. The results also indicate that the TBPFs and the PS 

efficiency BPF of the non-jasmine rice South sample used less seed, N fertiliser, and P 

fertiliser than the average farm to produce a tonne of non-jasmine rice, resulting in a 

reduction of NS and PS discharged into the environment. The profit efficiency BPF applied 

more N fertiliser than the average farm by 111.1%, resulting in a discharge of NS that was 

higher than that of the average farm by 273.7%. Furthermore, the NS efficiency BPF 

discharged NS 0.14 kg/ha, but it discharged PS 11 kg/ha which is higher than the average 

farm by 40.8%. 

Table 6.24 Comparison of glutinous rice produced per hectare and inputs used per tonne of 

glutinous rice on average sample farms, technical, profit maximisation, NS minimisation, 

and PS minimisation BPFs in the Northern region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 3,354.70 3,376.12 3,750.00 3,750.00 2,790.70 

Planted area Ha/Farm 0.30 0.30 0.27 0.27 0.36 

Seed Kg 29.87 27.34 11.92 14.31 22.23 

Bio-fertiliser Kg 353.26 373.65 1,192.46 0.00 0.00 

N-fertiliser Kg 10.95 10.15 9.20 10.97 1.78 

P-fertiliser Kg 4.11 3.87 4.52 0.00 2.23 

K-fertiliser Kg 0.87 0.72 5.34 0.00 0.00 

Pesticide Kg 3.66 3.04 4.06 5.37 0.00 

Human labour Baht 2,997.35 2,842.84 2,053.42 3,390.15 5,791.84 

Machinery Baht 1,379.44 1,344.84 1,168.62 1,502.50 1,777.78 

Fuel Litre 2.93 2.66 0.00 0.00 0.00 

Other cost Baht 266.25 255.88 4.77 290.96 555.56 

NS  Kg 0.28 -0.55 -1.67 0.13 -8.98 

PS Kg 2.17 1.93 2.55 -1.97 0.27 

% change of NS     -296.43 -696.49 -54.17 -3,302.58 

% change of PS     -11.28 17.07 -190.65 -87.61 

Note: 1/ denotes the average value of rice output and inputs used on the glutinous rice North 

sample farms. 

Table 6.24 shows that the TBPFs, the profit efficiency BPF, and the NS efficiency BPF of 

the glutinous rice North sample produced more glutinous rice per hectare than the average 

farm, while the PS efficiency BPF produced less glutinous rice per hectare than the average 

farm. The results also indicate that the BPFs of the glutinous rice North sample used less 

seed, N fertiliser, and P fertiliser than the average farm to produce a tonne of glutinous rice, 

except the profit efficiency BPF, which used slightly more P fertiliser than the average farm. 

As a result, the BPFs discharged less NS and PS into the environment than the average farm 

when producing a tonne of glutinous rice, except the profit efficiency BPF, which, for every 

tonne of glutinous rice, discharged more PS into the environment than the average farm by 

17.1%. 
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Table 6.25 shows that the TBPFs, the NS efficiency BPF, and the PS efficiency BPF of the 

glutinous rice Northeast sample produced more glutinous rice per hectare than the average 

farm, while the profit efficiency BPF produced less glutinous rice per hectare than the 

average farm. The results also indicate that the TBPFs of the glutinous rice Northeast sample 

used less seed, nitrogen fertiliser, and phosphorus fertiliser than the average farm to produce 

a tonne of glutinous rice, resulting in smaller discharges of NS and PS into the environment 

than those produced by the average farm. The profit efficiency and PS efficiency BPFs used 

more N fertiliser than the average farm to produce a tonne of glutinous rice resulting in 

higher discharges of NS into the environment than those produced by the average farm. The 

NS efficiency BPF used slightly more P fertiliser than the average farm to produce a tonne 

of glutinous rice, resulting in higher discharges of PS into the environment than those 

produced by the average farm.  

Table 6.25 Comparison of glutinous rice produced per hectare and inputs used per tonne of 

glutinous rice on average sample farms, technical, profit maximisation, NS minimisation, 

and PS minimisation BPFs in the North-eastern region 

Description Unit Mean1/ DDF1-DDF3 DDF4 NSMM PSMM 

Rice output Kg 2,108.70 2,206.00 2,019.51 2,381.68 2,187.50 

Planted area Ha/Farm 0.47 0.45 0.50 0.42 0.46 

Seed Kg 74.89 65.53 49.10 65.45 71.84 

Bio-fertiliser Kg 1,898.99 1,777.49 2,805.84 0.00 0.00 

N-fertiliser Kg 24.76 16.33 30.30 10.47 122.52 

P-fertiliser Kg 9.08 6.48 5.61 9.16 2.01 

K-fertiliser Kg 9.62 4.68 0.00 2.62 5.03 

Pesticide Kg 1.41 2.13 2.24 3.27 0.72 

Human labour Baht 4,003.55 3,608.88 2,828.06 5,584.29 3,362.07 

Machinery Baht 1,684.28 1,425.63 925.93 2,094.24 1,436.78 

Fuel Litre 1.53 0.73 0.00 6.54 0.00 

Other cost Baht 413.99 271.50 584.74 242.15 71.84 

NS  Kg 14.58 6.06 19.84 0.19 112.31 

PS Kg 7.23 4.61 3.71 7.29 0.16 

% change of NS     -58.47 36.08 -98.69 670.27 

% change of PS     -36.15 -48.64 0.94 -97.85 

Note: 1/ denotes the average value of rice output and inputs used on the glutinous rice 

Northeast sample farms. 

6.6 Discussion 

The average TE scores obtained from the DDF1 measurement (or input-oriented DEA) of 

the 9 observed groups of Thai rice farmers range from 87.5% to 98.3%. The average TE 

scores obtained from the DDF2 measurement (or output-oriented DEA) of the 9 observed 

groups of Thai rice farmers range from 84.1% to 97.9%. The average TE scores obtained 
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from the DDF3 measurement of the 9 observed groups of Thai rice farmers range from 93% 

to 99%. The Thai rice farms’ TE scores, when adjusted according to input data based on the 

provincial average calculated yield of rice in the wet season for the crop year 2007/08 and 

categorised into their regions (North, Northeast, Central, and South) and rice type (jasmine 

rice, non-jasmine rice, and glutinous rice), are higher than the TE scores obtained from the 

evaluation of TE scores of the sample for the whole country (without categorising the sample 

into regions and rice type). This implies that some of the expected input and output 

heterogeneity, and the subsequent bias in efficiency measurement, have been removed.  

The results of the NSMM of 9 groups of Thai rice farmers indicate that the observed  farms’ 

average discharge of NS into the environment ranged from 20.1 kg/ha to 50.7 kg/ha. The 

results of the PSMM indicate that their discharge of PS into the environment averaged from 

11.0 kg/ha to 28.7 kg/ha. Although this study underestimates NS and PS because of lack of 

information regarding the inflows of N and P nutrients (i.e. soil, bio-fertiliser, biological 

fixation, atmospheric deposition, precipitation, and irrigation water) and the outflows of N 

and P (rice straw, and soil), the amounts of NS and PS discharged into the environment from 

the Thai rice farming system are comparatively high. These results indicate that Thai rice 

farmers applied more N and P fertiliser than the crops needed. In addition, there are 

unobserved residual nutrients (N and P) in the soil from earlier in the sample year (in the 

unsurveyed dry season), so the amount of NS and PS discharged into the environment are 

probably higher than the NS and PS calculated in this study. 

The NS and PS from rice fields are the main sources of eutrophication of surface water 

(Tirado et al., 2008). Gold and Sims (2005 cited in Nguyen et al., 2012, p. 371) indicate that 

phosphorus has more eutrophying power in the context of fresh water than nitrogen. The 

previous empirical studies on environmental efficiency measurement (e.g. Coelli et al., 2007; 

Hoang and Coelli, 2011; Nguyen et al., 2012) have assumed the weights of the eutrophying 

power of N and P as 1 for N and 10 for P. That is, the eutrophying power is equal to the 

summation of the amount of N and ten times the amount of P. If these weights are applied 

in this study, the eutrophying power on fresh water of the average farm averages from 129.78 

kg/ha to 337.46 kg/ha. This high level is consistent with Tirado et al. (2008), who indicated 

that Thai rice cultivation caused problems arising from eutrophication in river, lake, coastal 

and marine ecosystems (as discussed in Section 2.3). 

If Thai rice farmers continue to use the current level of N and P fertiliser during their 

cultivation period without paying attention to the impact of these inputs on the environment, 
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the environmental problems caused by NS and PS will be more severe because 

approximately 20.1 - 50.7 kg of NS and 11.0 - 28.7 kg of PS per hectare of rice cultivation 

area will be discharged into the environment every crop year (i.e. the NS and PS from N and 

P fertilisers application will accumulate in the environment every year). If these 

environmental problems are not solved, rice will not be able to grow in Thailand in the future. 

Therefore, maintaining the sustainability of rice-producing environments by the efficient use 

of N and P fertilisers is necessary for the sustainable development of Thai rice farming.  

Before the creation of effective agro-environmental policies, the technical and 

environmental efficiency level of Thai rice farmers must be examined across rice type and 

regions. Considering the efficiency level of Thai rice farmers within each rice type, with 

regard to jasmine rice production, the results indicate that jasmine rice farmers in the 

Northern region are more technically efficient, earned higher profit, and discharged a lower 

amount of NS (20.1 kg/ha) into the environment than jasmine rice farmers in the Central and 

North-eastern regions. However, they discharged a higher amount of PS (23.1 kg/ha) into 

the environment than jasmine rice farmers in the other two regions. The results also indicate 

that jasmine rice farmers in the North-eastern region are less technically efficient, obtained 

less profit, and discharged a higher amount of NS (35.5 kg/ha) into the environment than 

jasmine rice farmers in the Northern and Central regions.  

For non-jasmine rice production, the results indicate that non-jasmine rice farmers in the 

Northern regions are more technically efficient and discharged lower amounts of PS into the 

environment than non-jasmine rice farmers in the other three regions. They also earned 

higher profits than non-jasmine rice farmers in the North-eastern and Southern regions, but 

earned lower profits than non-jasmine rice farmers in the Central region. However, they 

discharged the highest amount of NS (50.66 kg/ha) into the environment compared to non-

jasmine rice farmers in the other three regions; this is also the highest amount of NS 

discharged by any of the 9 observed groups. While non-jasmine rice farmers in the Southern 

region are less technically efficient than non-jasmine rice farmers in the other three regions, 

they obtained higher profits (11,702 Baht/ha) than non-jasmine rice farmers in the North-

eastern region (1,536.9 Baht/ha). Furthermore, non-jasmine rice farmers in the Central 

region earned the highest profit compared to non-jasmine rice farmers in the other three 

regions and this is also the highest profit obtained by any of the 9 observed groups. On the 

other hand, non-jasmine rice farmers in the North-eastern region earned lower profits than 

the non-jasmine rice farmers in the other three regions, even though their average TE score 

is high. 
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With regard to glutinous rice production, the TE results indicate that glutinous rice farmers 

in the Northern region are more technically efficient and NS efficient than glutinous rice 

farmers in the North-eastern region. Glutinous rice farmers in the Northern region earned an 

average profit of 681.63 Baht/ha, while glutinous rice farmers in the North-eastern region 

suffered a loss of 6,930.35 Baht/ha. Furthermore, the glutinous rice farmers in the Northern 

region obtained the highest average TE scores compared to the other 8 groups of Thai rice 

farmers. However, they earned the lowest average profit compared to jasmine rice and non-

jasmine rice farmers. 

Considering the efficiency level of Thai rice farmers within each region, in the Northern 

region, glutinous rice farmers are more technically and PS efficient than jasmine rice and non-

jasmine rice farmers. However, they earned lower profits than jasmine rice and non-jasmine 

rice farmers. Jasmine rice farmers are more NS efficient but less PS efficient than non-jasmine 

rice and glutinous rice farmers. On the other hand, non-jasmine rice farmers are more profit 

efficient than jasmine rice and glutinous rice farmers. In the North-eastern region, non-jasmine 

rice farmers are more technically efficient than glutinous rice and jasmine rice farmers. 

However, jasmine rice farmers are more profit efficient than non-jasmine rice and glutinous 

rice farmers. The average amounts of NS discharged by jasmine rice, non-jasmine rice, and 

glutinous rice farmers are nearly the same. Glutinous rice farmers are more PS efficient than 

jasmine rice and non-jasmine rice farmers, but they suffered a loss of 6,930.35 Baht/ha. In 

addition, jasmine rice farmers in the Central region are more technically, NS, and PS efficient 

than non-jasmine rice farmers in Central region, but they earned lower profits than non-

jasmine rice farmers.  

Considering the efficiency level of Thai rice farmers for the whole country, glutinous rice 

farmers in the Northern region are more TE than the other groups of Thai rice farmers, but 

they earned a very low profit of 681.63 Baht/ha. On the other hand, jasmine rice farmers in the 

North-eastern region are less TE than the other groups and earned a low profit of 1,536.91 

Baht/ha. Non-jasmine rice farmers in the Central and Northern regions earned the highest 

profit of 13,779.97 and 13,328.56 Baht/ha, respectively. However, they are the most NS 

inefficient as they discharged the largest amount of NS into the environment compared to the 

other 7 groups of Thai rice farmers. Glutinous rice farmers in the North-eastern region are the 

most PS efficient for Thai rice farming system as they discharged the lowest amount of PS 

into the environment compared to the other 8 observed groups. However, they had the lowest 

profit efficiency and suffered a loss of 6,930.35 Baht/ha. The glutinous rice farmers are also 

less profit efficient compared with jasmine rice and non-jasmine rice farmers. Furthermore, 
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jasmine rice farmers in the Northern region are the most NS efficient in the Thai rice farming 

system as they discharged the lowest amount of NS into the environment compared to the 

other 8 observed groups. In addition, non-jasmine rice farmers in the North-eastern, Central, 

and Southern regions are the most PS inefficient in the Thai rice farming system as they 

discharged the largest amount of PS into the environment compared to the other 6 observed 

groups. 

The improvement of rice output and the combination of inputs used per hectare required to 

enable the average farms to produce on the frontiers constructed by the BPFs according to 

the NSMM, the PSMM, and the DDF1 – DDF4 measures have been compared. The 

improvements in the TE of the 9 groups of Thai rice farmers according to DDF1 – DDF3 

results in this study would result in both higher profits (as farmers either pay lower 

production costs or earn more income) and lower amounts of NS and PS discharged into the 

environment: these measures could be used for sustainable intensification strategies.  

The improvements in the profit efficiency of the 9 groups of Thai rice farmers, according to 

DDF4 measurements in this study would result in higher profit. However, improvements in 

the profit efficiency of non-jasmine rice farmers in the Northern region would also result in 

lower amounts of both NS and PS being discharged into the environment: this could be used 

for sustainable intensification strategies. On the other hand, improvements in the profit 

efficiency of jasmine rice farmers in the Northern region and non-jasmine rice farmers in the 

Central region would result in greater amounts of NS and PS being discharged into the 

environment. Furthermore, improvements of the profit efficiency of the other 6 groups of 

Thai rice farmers would result in either lower or higher amounts of NS and PS being 

discharged into the environment.  

Improvements in the NS efficiency of the 9 observed groups of Thai rice farmers, according 

to NSMM results in this study, would result in both higher profits (as farmers applied less 

chemical fertiliser to their crop, thus reducing production costs) and lower amounts of NS 

and PS discharged into the environment, apart from the jasmine rice Central, non-jasmine 

rice Central, non-jasmine rice South, and glutinous rice Northeast farms, whose discharges 

of PS into the environment are higher than the average farms in their groups. However, the 

improvement of NS efficiency is all that the jasmine rice Northeast and glutinous rice North 

groups need to produce higher rice output per hectare and reduce the amounts of NS and PS 

discharged into the environment: these examples could be used for sustainable 

intensification strategies.  



 

129 

The improvements in the PS efficiency of the 9 observed groups of Thai rice farming 

systems, according to PSMM figures in this study, would result in both higher profits (as 

farmers applied less chemical fertiliser to their crop, thus reducing production costs) and 

lower amounts of NS and PS discharged into the environment, apart from non-jasmine rice 

and glutinous rice farms in the Northeast region, whose discharges of NS into the 

environment are higher than the average farms in their groups. 

The average inputs used to produce a tonne of paddy rice on the average farm, the TBPFs, 

the profit efficiency BPF, the NS efficiency BPF, and the PS efficiency BPF of each group 

of observations have been compared. The results indicate that the TBPFs of the 9 observed 

groups; the profit efficiency BPFs of non-jasmine North and non-jasmine Northeast; the NS 

efficiency BPFs of jasmine rice North, jasmine rice Northeast, non-jasmine rice North, non-

jasmine rice Northeast, and glutinous rice North; and the PS efficiency BPFs of jasmine rice 

North, jasmine rice Northeast, jasmine rice Central, non-jasmine rice North, non-jasmine 

rice Central, non-jasmine rice South, and glutinous rice North can earn higher profits by 

using fewer inputs, especially inputs detrimental to the environment like nitrogen and 

phosphorus fertilisers, than the average farms in their respective groups, which also results 

in lower amounts of NS and PS being discharged into the environment, compared to the 

average farms in their respective groups. Thus, these BPFs can be used as benchmark farms 

to reduce environmental problems caused by the overuse of fertiliser when planning 

sustainable intensification agricultural development policy. 

6.7 Conclusions 

The technical efficiency of the 9 observed groups of Thai rice farmers was investigated using 

the DDF1-DDF3 measures. The results indicate that Thai rice farmers have average TE 

scores ranged from 84.1% to 99%, depending on which directional vector is chosen. The 

results of TE analysis also indicate that the adjustment of input data by the provincial average 

calculated yield of rice in the wet season for the crop year 2007/08 and the categorisation of 

sample data into regions (North, Northeast, Central, and South) and rice type (jasmine rice, 

non-jasmine rice, and glutinous rice) can help to remove some of the expected input and 

output heterogeneity and subsequent bias in efficiency measurement. Furthermore, the profit 

efficiency of the 9 observed groups of Thai rice farmers was investigated using the DDF4 

measure. The results indicate that the average profit of Thai rice farmers ranged from 681.63 

to 13,779.97 Baht/ha, but glutinous rice farmers in the North-eastern region suffered a loss of 

6,930.35 Baht/ha. 
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Two models, namely the NSMM with the directional vector towards the nitrogen surplus 

minimum point and the PSMM with the directional vector towards the phosphorus surplus 

minimum point, were applied to measure the environmental efficiency of Thai rice farming 

using the directional nutrient surplus efficiency measure. The results indicate that the amount 

of NS discharged into the environment by the observed Thai rice farmers averages from 20.1 

kg/ha to 50.7 kg/ha, and the PS discharged into the environment averages from 11.0 kg/ha 

to 28.7 kg/ha. These results also indicate that the average eutrophying effect of Thai rice 

farming on fresh water ranges from 129.78 kg/ha to 337.46 kg/ha. 

The technical, profit, NS, and PS efficiency scores of the 9 observed groups of Thai rice 

farmers have been compared across rice type, regions, and country. The improvement of rice 

output and the combination of inputs used per hectare required to enable the average farms 

of 9 groups of Thai rice farmers  to produce on the frontiers constructed by the BPFs 

according to the NSMM, the PSMM, and the DDF1 – DDF4 measurements have been 

compared with their actual performance. Furthermore, the average inputs used to produce a 

tonne of paddy rice on the average farm, the TBPFs, the profit efficiency BPF, the NS 

efficiency BPF, and the PS efficiency BPF in each observed group have been compared. The 

results indicate that the TBPFs of the 9 observed groups; the profit efficiency BPFs of the 

non-jasmine North and non-jasmine Northeast; the NS efficiency BPFs of the jasmine rice 

North, jasmine rice Northeast, non-jasmine rice North, non-jasmine rice Northeast, and 

glutinous rice North; and the PS efficiency BPFs of the jasmine rice North, jasmine rice 

Northeast, jasmine rice Central, non-jasmine rice North, non-jasmine rice Central, non-

jasmine rice South, and glutinous rice North can be used as benchmark farms to reduce 

environmental problems caused by the overuse of fertiliser when planning sustainable 

intensification agricultural development policy. Thus, the environmental problems caused 

by Thai rice farming systems can be solved by adopting the methods of these best practice 

farms. 
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Chapter 7 

Summary, Discussion and Conclusion 

Rice is the staple food for people in Asia and Africa (GRiSP, 2013), areas where the FAO 

(2009) predicted most growth of the world population would occur. Thailand is the world’s 

leading rice exporter and the sixth largest rice producing country in the world after China, 

India, Indonesia, Bangladesh, and Vietnam (FAO, 2016). Each year Thailand exports 

approximately 10 million tonnes of milled rice to other countries, which accounts for 

approximately 25% of the world’s rice exports. The top ten importers of rice from Thailand 

are China, the U.S.A., the Philippines, Benin, Nigeria, South Africa, Malaysia, Hong Kong, 

Cote d’Ivoire, and Japan (OAE, 2015). The majority of these countries are located in the 

regions where high population growth is predicted. The intensive use of agrochemicals aims 

to boost rice productivity, yet it creates severe environmental problems: water pollution with 

nitrates and eutrophication of river, lake, coastal and marine ecosystems (as discussed in 

Section 2.3). If these environmental problems caused by rice cultivation are not solved, 

Thailand may not be able to produce enough rice to meet future global rice demand, and this 

will affect world food security. Further, the intensive use of chemical fertilisers increases the 

costs of agricultural production, sometimes with few commensurate benefits for farmers. 

This is a particular problem for farmers in Thailand, where chemical fertilisers are expensive, 

in part because the country has to import them from other countries.  

Understanding the extent to which rice production in Thailand is technically and 

environmentally efficient is an important step towards enabling Thailand to design and 

implement policies that improve the efficiency of input use, especially nitrogen and 

phosphorus nutrients from chemical fertiliser and manure. This can reduce rice cultivation’s 

negative impacts on the environment, reduce production costs, and reduce adverse health 

effects on farmers and their customers. 

7.1 Contribution of this thesis 

This thesis makes several contributions to the literature that have important policy 

implications. Firstly, previous studies have measured the technical efficiency level of rice 

production in Thailand using the input-oriented DEA approach (Taraka et al., 2010; 

Kiatpathomchai, 2008; Krasachat, 2004). This study adds to the existing literature of the TE 

of rice production in Thailand by estimating, for the first time, the TE of rice production at 

farm level using an output-oriented DEA and DDF with different directions of improvement 



 

132 

towards the PPF. The results from the DDF1 – DDF3 measures for each group of 

observations indicate that the technically efficient farms in each observed group are the same 

farms across the DDF1 – DDF3 measures, implying that different TE measurements (i.e. 

different directional vectors) do not change the ranking of technically efficient farms in the 

observation. The results indicate that 70% of the jasmine rice North sample, 26% of the 

jasmine rice Northeast sample, 55% of the jasmine rice Central sample, 55% of the non-

jasmine rice North sample, 64% of the non-jasmine rice Northeast sample, 40% of the non-

jasmine rice Central sample, 46% of the non-jasmine rice South sample, 78% of the 

glutinous rice North sample, and 34% of the glutinous rice Northeast sample are technically 

efficient. However, the technical inefficiency scores of technically inefficient farms appear 

to depend on the particular model used. This implies that the rank of technically inefficient 

farms varies depends on the specific model, in particular assumptions about the direction of 

improvement towards the PPF. 

This finding raises the issue of how policy makers can best identify and target those farms 

that have the greatest potential to improve the efficiency of their use of purchased inputs. 

Moreover, calculating the improvement of inputs used and output produced per hectare 

required to make the average farm in each observed group technically efficient using the 

DDF model with the direction towards observed farms’ output produced holding all inputs 

fixed (or output-oriented DEA model), and the DDF model with the direction towards 

observed farms’ inputs used and output produced to the PPF (DDF3 model), suggests higher 

potential profit for farmers than that using the input-oriented DEA model. Thus, the selection 

of the directional improvement of TE (i.e. model specification) of the DDF approach is has 

important implications for the direction of policy. 

Secondly, this research contributes to the DDF and environmental efficiency literature by 

estimating the environmental efficiency of the sustainable intensification of Thai rice 

farming systems by proposing a new efficiency measurement, within the theoretical context 

of DDF, that has not been undertaken before. A great deal of research has investigated the 

environmental performance of the production processes by incorporating the negative 

impact of the production process on the environment, either as detrimental inputs (e.g. 

Chung et al., 1997; Reinhard et al., 2000; Shaik et al., 2002; De Koeijer et al, 2002; Areal et 

al, 2012) or as undesirable outputs (e.g. Färe et al., 1989; Shaik et al., 2002; Färe et al., 2005, 

Picazo-Tadeo et al., 2005; Macpherson et al., 2010; Färe et al., 2012; Toma et al., 2013), 

into traditional methods of productivity and efficiency analysis (i.e. Stochastic Production 

Frontier, DEA, and DDF approaches). Unlike these earlier studies, this research does not 
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incorporate the MBC as either new input or new output variables into the traditional 

efficiency methods. Instead, it focuses on minimising the nutrient balance, a novel 

contribution to this literature. 

Specifically, in this thesis, “the directional nutrient surplus efficiency measure” is 

determined, which shows how to minimise surplus nutrients in the production process: in 

the case of Thai rice farming, this means minimising the nitrogen and phosphorus surplus. 

The environmental efficiency measurement proposed by Coelli et al. (2007) can be used to 

minimise the nutrient content of inputs. The minimum nutrient content in each farm’s inputs 

is measured by employing the input-oriented DEA method, which is similar to the cost-

minimising DEA method. Then the environmental efficiency scores of each farm are 

calculated as “the ratio of minimum nutrients over observed nutrients” (Coelli et al., 2007, 

p. 7). In contrast, the environmental efficiency measurement approach used in this research 

demonstrates how to minimise the surplus of the specific nutrients (nitrogen and phosphorus) 

by incorporating the MBC into the DDF in a similar manner to that in which price data is 

normally incorporated. Using the directional nutrient surplus efficiency measure 

demonstrates how nitrogen and phosphorus surpluses can be minimised simultaneously, 

reducing nitrogen and phosphorus contents in inputs and expanding rice output. This new 

approach can be applied to the evaluation of the environmental performance of other 

production processes. 

Thirdly, this study adds to the existing literature on the environmental efficiency of rice 

production in Thailand by estimating, for the first time, the nitrogen surplus efficiency and 

phosphorus surplus efficiency (i.e. environmental efficiency) of rice production in Thailand 

by incorporating the MBC into the DDF with the direction towards the nitrogen surplus 

minimising frontier and phosphorus surplus minimising frontier, respectively. This study 

shows that a farm’s efficiency ranking changes when nitrogen and phosphorus surpluses are 

included in the efficiency analysis. The improvement of the environmental performance of 

Thai rice farming system towards either nitrogen or phosphorus minimising frontiers through 

a reduction of nitrogen and phosphorus surplus from rice cultivation can increase farmers’ 

profit in addition to having environmental benefits.    

Finally, this research contributes to the improvement of surveys for the national Thai input 

survey of rice and other agricultural production. The questionnaire would provide much 

greater scope for analysis if questions were added concerning demographic variables and 

farm characteristics. These might variously include socio-economic factors such as farmers’ 
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age, farmers’ experience, educational level of farmers, number of family members, farm 

size, rice monoculture, source of funds; agricultural extension variables such as whether a 

farmer is a member of agricultural cooperative, whether the farmer has received a 

government extension visit; and environmental variables such as soil type, soil nutrients 

testing, and farmers’ views on inorganic fertilisers. These data would allow researchers to 

investigate factors affecting the technical and environmental inefficiency of rice and other 

agricultural production systems in Thailand. This information could be used to provide 

insights into farmers’ management practices, which are important for designing effective 

agro-environmental policies. In order to understand why farmers overuse chemical fertiliser 

and manure, the questionnaire could include questions on such topics as the strategies used 

by farmers to decide whether to apply chemical fertilisers, and their reasons for using large 

amounts of fertiliser. 

7.2 Understanding the findings of this thesis 

The analysis in this thesis suggests that a large number of farms apply excessive quantities 

of fertiliser, resulting in reduced profits and environmental damage caused by  

run-off, as well as compromising farmers’ health. 767 farmers (69.0% of the total 

observation) applied nutrients containing excessive quantities of nitrogen, while 775 farmers 

(69.7% of the total observation) applied nutrients containing excessive quantities of 

phosphorus (Table 5.7 Chapter 5). This raises the question of why farmers are behaving as 

they do, and whether any negative consequences would arise from policy makers 

encouraging farmers to reduce their use of inputs as part of a sustainable intensification 

strategy, whether with respect to reducing input usage or expanding output through more 

efficient input use. 

This research provides information on the efficiency level of farmers in Thailand, indicating 

the percentage by which farmers can reduce their inputs usage, and the percentage by which 

farmers can expand their output if they perform efficiently. However, the use of secondary 

data precludes an exploration of the reasons why Thai farmers overuse chemical fertiliser 

and manure. This thesis provides a comprehensive review of the literature in order to build 

an understanding of the general rationale for farmers’ overuse of fertiliser (as discussed in 

Section 2.4), but solid evidence for this is not available. The literature suggests that Thai 

farmers overuse chemical fertiliser and manure due to uncertainty about soil quality, 

uncertain weather, and their belief in the agronomic advice given by government extension 

officers.  



 

135 

Farmers lack information on the soil quality of their fields. They learn how to identify soil 

quality and health, and what nutrients are lacking, from their experience. This includes 

examining the appearance of the soil and plants, the health of the animals, and the quality of 

the water. However, they do not know exactly how much nutrients need to be applied. Thus, 

farmers reduce their risk of low productivity and low profit by applying an equal or greater 

amount of fertiliser, in relation to previous practice, or applying the same amount as 

neighbouring farmers. This finding from the literature supports the need for a site-specific 

soil nutrient testing policy to help farmers apply nutrients containing nitrogen and 

phosphorus efficiently. Furthermore, farmers face uncertain weather, which affects a crop’s 

capacity to absorb nutrients during the rice cultivation period. A risk-averse farmer may 

apply more fertiliser than necessary for normal growing conditions in order to reduce risk 

caused by uncertain weather if he considers fertiliser as a risk-reducing input. However, if a 

risk-averse farmer considers fertiliser as a risk-enhancing input, his fertiliser application rate 

will lower than that of risk-neutral farmers.   

Thus, this research provides a further step towards the design of an effective sustainable 

development policy for Thai rice farming systems. If the reasons behind the behaviour of 

farmers can be identified, an effective policy to reduce the negative effect of the overuse of 

inorganic fertiliser on the environment can be designed.   

7.3 Summary of the objectives of this study 

The overall objective of this research was to provide insight into the extent to which 

agricultural inputs are over-applied, to the detriment of health, the environment, and the 

economy. The objective was achieved through the implementation of novel approaches to 

measuring the technical and environmental efficiencies of rice farming systems at farm level 

in Thailand. Technical efficiency is estimated using DEA and DDF models. Environmental 

efficiency, which focuses on minimising nitrogen and phosphorus surpluses in rice farming 

systems by improving efficiency in the use of nutrients containing nitrogen and phosphorus, 

is estimated using the directional nutrient surplus efficiency measure. Data for this study 

come from the national Thai input survey of rice farming systems cultivated during the wet 

season crop for the crop year 2008/09. The input data of the observed Thai rice farmers was 

adjusted by the relative index number of the provincial average calculated yield of rice in 

the wet season for the crop year 2007/08 and the yield of the sample farms, in order to capture 

the differences in soil fertility across the sample: that would help to remove some of the 

expected input heterogeneity and the subsequent bias in the efficiency measurement. Then 
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the observed Thai rice farmers were put into 4 categories, according to their regions (North, 

Northeast, Central, and South) in order to capture the differences in climate and soil across 

the sample, and then split by rice type (jasmine rice, non-jasmine rice, and glutinous rice): 

that would help to remove some of the expected input and output heterogeneity and the 

subsequent bias in the efficiency measurement. Consequently, 9 groups of Thai rice farmers 

are observed in this research: jasmine rice North, jasmine rice Northeast, jasmine rice 

Central, non-jasmine rice North, non-jasmine rice Northeast, non-jasmine rice Central, non-

jasmine rice South, glutinous rice North, and glutinous rice Northeast. The total number of 

observations for the technical and environmental efficiency analysis of each group is 

presented in Table 5.7.  The total number of observations for TE analysis is 1,112 farms, the 

total number of observations for NS efficiency analysis is 646 farms, and the total number 

of observations for PS efficiency analysis is 649 farms. All details regarding the sources of 

data, the methods of building the data analysed in this analysis, data cleaning, and the 

descriptive statistics used for this research were presented in Chapter 5.   

This study provides answers to three main questions (as outlined in Section 1.4) which 

correspond to the objectives of this study. 

7.4 Technical efficiency of Thai rice production 

Research question 1: To what extent do Thai rice farmers use an efficient combination of 

inputs for producing rice? Sub-question: What are the existing technical efficiency levels of 

rice production in Thailand? 

This research question is assessed through a comparison of the technical efficiency of Thai 

rice farmers using the input-oriented DEA, output-oriented DEA, and DDF approaches. The 

main objectives associated with this research question are to minimise all inputs to produce 

the same level of rice output, to maximise rice output by using the same level of inputs, and 

to reduce all inputs and increase rice output simultaneously. The estimation of efficiency 

scores reveals the number of farms in the sample that produce on the PPF and the distance 

of the inefficient farms’ production from this frontier. 

In Chapter 6 Section 6.2, three DDF models (DDF1 – DDF3) were used to estimate the TE 

level of the 9 observed groups of Thai rice farmers, and one DDF model (DDF4) was used 

to estimate the profit efficiency level of these 9 groups of observations. The results of the 

technical efficiency analysis suggest that 70%, 26%, 55%, 55%, 64%, 40%, 46%, 78%, and 

34% of the total observations of jasmine rice North, jasmine rice Northeast, jasmine rice 
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Central, non-jasmine rice North, non-jasmine rice Northeast, non-jasmine rice Central, non-

jasmine rice South, glutinous rice North, and glutinous rice Northeast, respectively, produce 

on the PPF. However, only one farm in each observed group produces on the profit 

maximising frontier.  

The average TIE scores obtained from the DDF1 measurement (or input-oriented DEA) of 

9 groups of Thai rice farmers range from 1.7% to 12.5%. This indicates that rice farmers 

would be able to reduce their current amount of inputs on average from 1.7% to 12.5% to 

obtain their current levels of rice output if they were to operate efficiently. The average TIE 

scores obtained from the DDF2 measurement (or output-oriented DEA range from 2.1% to 

15.9%. This indicates that rice farmers could expand rice output on average from 2.1% to 

15.9% by using the same level of inputs if they were to operate efficiently. The average TIE 

scores obtained from the DDF3 range from 1% to 7%. This indicates that rice farmers could 

expand rice output on average from 1% to 7%, while they could contract their current amount 

of inputs on average from 1% to 7% if they were to operate efficiently. Moreover, the 

average SEs of these 9 groups are greater than 0.95. This indicates that the average scale 

inefficiencies are less than 5%, which is quite small. The majority of Thai rice farmers across 

all types of rice and regions operated close to the optimal scale size (CRS), except the 

majority of jasmine rice and glutinous rice farmers in the North-eastern region, who operated 

above the optimal scale (DRS).  

The average level of profit inefficiency obtained from the DDF4 measurement of 9 groups 

of Thai rice farmers ranges from 19,854 to 309,428. This indicates that the average farms in 

these 9 groups could increase their profit by 19,854 to 309,428 Baht/farm if they were to 

operate profit efficiently. These average levels of profit inefficiency also indicate that Thai 

rice farmers earned profits averaging from 681.63 to 13,779.97 Baht/ha, except glutinous 

rice farmers in the North-eastern region, who suffered an average loss of 6,930.35 Baht/ha. 

The results from the DDF1 – DDF3 measurements of each group indicate that the technically 

efficient farms in each observed group remain the same, implying that different TE 

measurements (i.e. different directional vectors) do not change the status of the technically 

efficient farms in the observation. However, the technical inefficiency scores of technically 

inefficient farms vary depending on which directional vector is chosen. Thus, the rank of 

technically inefficient farms varies when changing the direction of improvement towards the 

production possibility frontier. Moreover, the results of the DDF4 measures indicate that the 
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majority of Thai rice farmers in these 9 observed groups operated far from the efficiency 

benchmarks constructed by their profit efficiency best practice farms. 

Research question 2: How can an efficiency analysis of rice farming systems in Thailand 

be developed to accommodate and explore the problem of excess nutrient application on rice 

fields? Sub-question: How can the environmental impact of rice cultivation be assessed? 

The main objective is to develop an approach to measuring agricultural environmental 

efficiency by adjusting traditional methods of technical efficiency analysis through the 

incorporation of environmental concerns (nutrient surplus) into the model. The nutrient 

surpluses from rice cultivation that cause environmental problems are nitrogen and 

phosphorus surplus. Hence, this study focused on the evaluation of nitrogen and phosphorus 

surplus efficiency of Thai rice farmers for the environmental efficiency analysis. 

7.5 The directional nutrient surplus efficiency measure 

This study proposes the directional nutrient surplus efficiency measure within the theoretical 

context of the DDF to evaluate the environmental performance of Thai rice farming systems 

(as discussed in Chapter 4 Section 4.9). This measure is applied to evaluate the nitrogen and 

phosphorus surplus efficiency in this study in order to investigate the environmental 

performance of Thai rice farming systems in Chapter 6. The directional nutrient surplus 

efficiency measure provides more choice of directional vector, and assumes a nutrient 

surplus minimising behaviour in order to determine the difference between observed and 

minimal nutrient surplus along an optimal direction that projects any farm towards the 

nutrient surplus minimising benchmark. Hence, the nutrient surplus inefficiency level of a 

farm represents the minimal distance from its observed data point to the minimum nutrient 

surplus frontier by given output and input nutrient contents. Moreover, the directional 

nutrient surplus efficiency measure is able to classify the nutrient surplus inefficiency of a 

farm as either technical (if the farm is located below the technical efficiency frontier, i.e. a 

technically inefficient farm) or allocative (if the farm is located on the technical efficiency 

frontier, i.e. a technically efficient farm). 

Research question 3:  What scope is there for Thai farmers to produce the same or higher 

rice output using fewer inputs, particularly environmentally damaging inputs?  

Sub-question: What is the current nitrogen and phosphorus use efficiency of Thai rice 

farmers?   
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The main purposes of this research question are to evaluate the environmental efficiency of 

rice farming practice in Thailand using the directional nutrient surplus efficiency measure, 

and to compare the technical and environmental inefficiencies of Thai rice farming. A 

nitrogen surplus minimising frontier and a phosphorus surplus minimising frontier are 

constructed to estimate and compare the effects of Thai farmers’ use of nitrogen and 

phosphorus across the country. This measure enables the current level of nitrogen and 

phosphorus surpluses, which cause the Thai rice farming system’s negative impacts on the 

environment, to be ascertained. 

7.6 Environmental efficiency of Thai rice farming 

The nutrient surpluses from rice cultivation that cause environmental problems are nitrogen 

and phosphorus. Two models, namely the nitrogen surplus minimisation model (NSMM) 

with the directional vector towards the nitrogen surplus minimum point, and the phosphorus 

surplus minimisation model (PSMM) with the directional vector towards the phosphorus 

surplus minimum point, are applied to measure the environmental efficiencies of 9 groups 

of Thai rice farmers using the directional nutrient surplus efficiency measure. The results, 

showing the environmental efficiencies of these 9 groups, are presented in Chapter 6 Section 

6.3. 

The average level of NS inefficiency obtained from the NSMM measures of 9 groups of 

Thai rice farmers range from 20.2 to 193.8. This indicates that the average farms in these 

groups could reduce the amount of NS discharged into the environment by 20.2 to 193.8 

kg/farm if the farmers were to operate NS efficiently. These average levels of NS 

inefficiency also indicate that the amount of NS discharged into the environment by Thai 

rice farmers averaged from 20.1 to 50.7 kg/ha. The average level of PS inefficiency obtained 

from the PSMM measures of these 9 groups ranged from 11.2 to 108.7. This indicates that 

the average farms of these 9 groups of Thai rice farmers could reduce the amount of PS 

discharged into the environment by 11.2 to 108.7 kg/farm if the farmers were to operate PS 

efficiently. These average level of PS inefficiency also indicate that the amount of PS 

discharged into the environment by Thai rice farmers averaged from 11.0 to 28.7 kg/ha. 

7.7 The improvement of output produced and inputs used by different efficiency 

measures 

The comparisons of the improvement of rice output and the combination of inputs used per 

hectare required to enable the average farms to produce on the frontiers constructed by the 
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BPFs according to the NSMM, the PSMM, and the DDF1 – DDF4 measures are provided in 

Chapter 6 Section 6.4. The improvements in the TE of the 9 groups of Thai rice farmers 

according to DDF1 – DDF3 results in this study would result in both higher profits (as 

farmers either pay lower production costs or earn more income) and lower amounts of NS 

and PS discharged into the environment: these measures could be used for sustainable 

intensification strategies.  

The improvements in the profit efficiency of the 9 groups of Thai rice farmers, according to 

DDF4 measurements in this study, would result in higher profit. However, improvements in 

the profit efficiency of non-jasmine rice farmers in the Northern region would also result in 

lower amounts of both NS and PS being discharged into the environment: this could be used 

for sustainable intensification strategies. On the other hand, improvements in the profit 

efficiency of jasmine rice farmers in the Northern region and non-jasmine rice farmers in the 

Central region would result in greater amounts of NS and PS being discharged into the 

environment. Furthermore, improvements of the profit efficiency of the other 6 groups of 

Thai rice farmers would result in either lower or higher amounts of NS and PS being 

discharged into the environment.  

Improvements in the NS efficiency of the 9 observed groups of Thai rice farmers, according 

to NSMM results in this study, would result in both higher profits (as farmers applied less 

chemical fertiliser to their crop, thus reducing production costs) and lower amounts of NS 

and PS discharged into the environment, apart from the jasmine rice Central, non-jasmine 

rice Central, non-jasmine rice South, and glutinous rice Northeast farms, whose discharges 

of PS into the environment are higher than the average farms in their groups. However, the 

improvement of NS efficiency is all that the jasmine rice Northeast and glutinous rice North 

groups need to produce higher rice output per hectare and reduce the amounts of NS and PS 

discharged into the environment: these examples could be used for sustainable 

intensification strategies.  

The improvements in the PS efficiency of the 9 observed groups of Thai rice farming 

systems, according to PSMM figures in this study, would result in both higher profits (as 

farmers applied less chemical fertiliser to their crop, thus reducing production costs) and 

lower amounts of NS and PS discharged into the environment, apart from non-jasmine rice 

and glutinous rice farms in the Northeast region, whose discharges of NS into the 

environment are higher than the average farms in their groups. 

 



 

141 

7.8 Technical, profit, nitrogen surplus, and phosphorus surplus best practice farms 

The average inputs used to produce a tonne of paddy rice on the average farm, the TBPFs, 

the profit efficiency BPF, the NS efficiency BPF, and the PS efficiency BPF of each group 

of observations have been compared in Chapter 6 Section 6.5. The results indicate that the 

TBPFs of the 9 observed groups; the profit efficiency BPFs of the non-jasmine North and 

non-jasmine Northeast regions; the NS efficiency BPFs of the jasmine rice North, jasmine 

rice Northeast, non-jasmine rice North, non-jasmine rice Northeast, and glutinous rice North 

regions; and the PS efficiency BPFs of the jasmine rice North, jasmine rice Northeast, 

jasmine rice Central, non-jasmine rice North, non-jasmine rice Central, non-jasmine rice 

South, and glutinous rice North regions can earn higher profits by using fewer inputs, 

especially inputs detrimental to the environment like nitrogen and phosphorus fertilisers, 

than the average farms in their respective groups, which also results in lower amounts of NS 

and PS being discharged into the environment, compared to the average farms in their 

respective groups. Thus, these BPFs can be used as benchmarks for the reduction of 

environmental problems caused by the overuse of fertiliser when planning sustainable 

agricultural intensification development policy. 

7.9 Discussion and conclusions 

The technical efficiency of the 9 observed groups of Thai rice farmers was investigated using 

the DDF1-DDF3 measures. The average TE scores obtained from the DDF1 measurement 

(or input-oriented DEA) of the 9 observed groups of Thai rice farmers range from 87.5% to 

98.3%. These average TE scores, using the input-oriented DEA models in this study, give 

average values of TE scores, based on Thai rice production analysis, which are similar to 

those in some  previous studies (e.g. Kiatpathomchai, 2008), but higher than in those of 

Krasachart, (2004) and Taraka et al. (2010). The average TE scores obtained from the DDF2 

measurement (or output-oriented DEA) of the 9 observed groups of Thai rice farmers range 

from 84.1% to 97.9%. The average TE scores obtained from the DDF3 measurement of the 

9 observed groups of Thai rice farmers range from 93% to 99%. The Thai rice farms’ TE 

scores, when adjusted according to input data based on the provincial average calculated 

yield of rice in the wet season for the crop year 2007/08 and categorised into their regions 

(North, Northeast, Central, and South) and rice type (jasmine rice, non-jasmine rice, and 

glutinous rice), are higher than the TE scores obtained from the evaluation of TE scores of 

the sample for the whole country (without categorising the sample into regions and rice 

type). This implies that some of the expected input and output heterogeneity, and the 
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subsequent bias in efficiency measurement, have been removed. Furthermore, the profit 

efficiency of the 9 observed groups of Thai rice farmers was investigated using the DDF4 

measure. The results indicate that the average profit of Thai rice farmers ranged from 681.63 

to 13,779.97 Baht/ha, but glutinous rice farmers in the North-eastern region suffered a loss of 

6,930.35 Baht/ha. 

The environmental efficiency of Thai rice farming systems has been investigated using the 

directional nutrient surplus efficiency measure. The results of this study suggest how NS and 

PS discharged from the Thai rice farming system can be reduced without compromising 

yields or profit. The results of the NSMM and PSMM of 9 groups of Thai rice farmers 

indicate that the amount of NS discharged into the environment by the observed Thai rice 

farmers averages from 20.1 kg/ha to 50.7 kg/ha, and the PS discharged into the environment 

averages from 11.0 kg/ha to 28.7 kg/ha. The NS and PS from rice fields are the main sources 

of eutrophication of surface water (Tirado et al., 2008). Gold and Sims (2005 cited in Nguyen 

et al., 2012, p. 371) indicate that phosphorus has more eutrophying power in the context of 

fresh water than nitrogen. The previous empirical studies on environmental efficiency 

measurement (e.g. Coelli et al., 2007; Hoang and Coelli, 2011; Nguyen et al., 2012; Hoang 

and Alauddin, 2012) have calculated the eutrophying power of N and P by the summation 

of the amount of N and ten times the amount of P. Thus, the eutrophying power on fresh 

water of the average farm in this study averages from 129.78 kg/ha to 337.46 kg/ha. This 

high level is consistent with Tirado et al. (2008), who indicated that Thai rice cultivation 

caused problems arising from eutrophication in river, lake, coastal and marine ecosystems 

(as discussed in Section 2.3).  

Although this study underestimates NS and PS because of lack of information regarding the 

inflows of N and P nutrients (i.e. soil, bio-fertiliser, biological fixation, atmospheric 

deposition, precipitation, and irrigation water) and the outflows of N and P (rice straw, and 

soil), the amounts of NS and PS discharged into the environment from the Thai rice farming 

system are comparatively high. These results suggest that Thai rice farmers applied more N 

and P fertiliser than the crops needed. In addition, there are unobserved residual nutrients (N 

and P) in the soil from earlier in the sample year (in the unsurveyed dry season), so the 

amount of NS and PS discharged into the environment are probably higher than the NS and 

PS calculated in this study. The overuse of these fertilisers not only creates severe 

environmental problems, but also increases production costs.  
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If Thai rice farmers continue to use their current level of N and P fertiliser, the environmental 

problems caused by NS and PS will be more severe. Simultaneously increasing production 

efficiency and improving the environmental performance of Thai rice farming systems are the 

common goals of sustainable intensification. Thus, the estimation undertaken in this thesis of 

specific inputs, namely nitrogen and phosphorus, which used in excess can harm the 

environment, can provide insights into the development of targets and strategies designed to 

improve sustainable agricultural intensification. 

The technical and environmental efficiency levels of Thai rice farmers were examined across 

rice type, regions, and country. Considering the efficiency level of Thai rice farmers within 

each rice type, with regard to jasmine rice production, the results indicate that jasmine rice 

farmers in the Northern region are more technically efficient, earned higher profits, and 

discharged a lower amount of NS into the environment than jasmine rice farmers in the 

Central and North-eastern regions. However, they discharged a higher amount of PS into the 

environment than jasmine rice farmers in the other two regions. The results also indicate that 

jasmine rice farmers in the North-eastern region are less technically efficient, obtained less 

profit, and discharged a higher amount of NS into the environment than jasmine rice farmers 

in the Northern and Central regions. This is due to the fact that the average yield of jasmine 

rice produced in the North-eastern region is lower than that in the Northern and Central 

regions by 34% and 14%, but the N fertiliser application rate of jasmine rice farmers in the 

North-eastern region is nearly the same as that of jasmine rice farmers in the Northern region 

and higher than that of jasmine rice farmers in the Central region by 16% (Table 5.4 Chapter 

5). Moreover, Limtong (2012) indicates that soil in the North-eastern region has low fertility 

compared to the Northern, Central, and Southern regions. 

For non-jasmine rice production, the results indicate that non-jasmine rice farmers in the 

Northern region are more technically efficient and discharged lower amounts of PS into the 

environment than non-jasmine rice farmers in the other three regions. They also earned 

higher profits than non-jasmine rice farmers in the North-eastern and Southern regions, but 

earned lower profits than non-jasmine rice farmers in the Central region. However, they 

discharged the highest amount of NS into the environment compared to non-jasmine rice 

farmers in the other three regions; this is also the highest amount of NS discharged by any 

of the 9 observed groups. While non-jasmine rice farmers in the Southern region are less 

technically efficient than non-jasmine rice farmers in the other three regions, they obtained 

higher profits than non-jasmine rice farmers in the North-eastern region. Furthermore, non-

jasmine rice farmers in the Central region earned the highest profit compared to non-jasmine 
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rice farmers in the other three regions and this is also the highest profit obtained by any of 

the 9 observed groups. On the other hand, non-jasmine rice farmers in the North-eastern 

region earned lower profits than the non-jasmine rice farmers in the other three regions, even 

though their average TE score is high. 

With regard to glutinous rice production, the TE results indicate that glutinous rice farmers 

in the Northern region are more technically efficient and NS efficient than glutinous rice 

farmers in the North-eastern region. Glutinous rice farmers in the Northern region earned an 

average profit of 681.63 Baht/ha, while glutinous rice farmers in the North-eastern region 

suffered a loss of 6,930.35 Baht/ha. Furthermore, the glutinous rice farmers in the Northern 

region obtained the highest average TE scores compared to the other 8 groups of Thai rice 

farmers. However, they earned the lowest average profit compared to jasmine rice and non-

jasmine rice farmers. 

Considering the efficiency level of Thai rice farmers within each region, in the Northern 

region, glutinous rice farmers are more technically and PS efficient than jasmine rice and non-

jasmine rice farmers. However, they earned lower profits than jasmine rice and non-jasmine 

rice farmers. Jasmine rice farmers are more NS efficient but less PS efficient than non-jasmine 

rice and glutinous rice farmers. On the other hand, non-jasmine rice farmers are more profit 

efficient than jasmine rice and glutinous rice farmers. In the North-eastern region, non-jasmine 

rice farmers are more technically efficient than glutinous rice and jasmine rice farmers. 

However, jasmine rice farmers are more profit efficient than non-jasmine rice and glutinous 

rice farmers. The average amounts of NS discharged by jasmine rice, non-jasmine rice, and 

glutinous rice farmers are nearly the same. Glutinous rice farmers are more PS efficient than 

jasmine rice and non-jasmine rice farmers, but they suffered a loss of 6,930.35 Baht/ha. In 

addition, jasmine rice farmers in the Central region are more technically, NS, and PS efficient 

than non-jasmine rice farmers in Central region, but they earned lower profits than non-

jasmine rice farmers.  

Considering the efficiency level of Thai rice farmers for the whole country, glutinous rice 

farmers in the Northern region are more TE than the other groups of Thai rice farmers, but 

they earned a very low profit of 681.63 Baht/ha. On the other hand, jasmine rice farmers in the 

North-eastern region are less TE than the other groups and earned a low profit of 1,536.91 

Baht/ha. Non-jasmine rice farmers in the Central and Northern regions earned the highest 

profit of 13,779.97 and 13,328.56 Baht/ha, respectively. However, they are the most NS 

inefficient as they discharged the largest amount of NS into the environment compared to the 

other 7 groups of Thai rice farmers. Glutinous rice farmers in the North-eastern region are the 
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most PS efficient of the Thai rice farming system as they discharged the lowest amount of PS 

into the environment compared to the other 8 observed groups. However, they had the lowest 

profit efficiency and suffered a loss of 6,930.35 Baht/ha. The glutinous rice farmers are also 

less profit efficient compared with jasmine rice and non-jasmine rice farmers. Furthermore, 

jasmine rice farmers in the Northern region are the most NS efficient in the Thai rice farming 

system as they discharged the lowest amount of NS into the environment compared to the 

other 8 observed groups. In addition, non-jasmine rice farmers in the North-eastern, Central, 

and Southern regions are the most PS inefficient in the Thai rice farming system as they 

discharged the largest amount of PS into the environment compared to the other 6 observed 

groups. 

7.10 Implications for Thai rice policy  

7.10.1 Adopting the methods of the best practice farms 

The average inputs used to produce a tonne of paddy rice on the average farm, the TBPFs, 

the profit efficiency BPF, the NS efficiency BPF, and the PS efficiency BPF in each observed 

group indicate that the TBPFs of the 9 observed groups of Thai rice farmers; the profit 

efficiency BPFs of the non-jasmine North and non-jasmine Northeast; the NS efficiency 

BPFs of the jasmine rice North, jasmine rice Northeast, non-jasmine rice North, non-jasmine 

rice Northeast, and glutinous rice North regions; and the PS efficiency BPFs of the jasmine 

rice North, jasmine rice Northeast, jasmine rice Central, non-jasmine rice North, non-

jasmine rice Central, non-jasmine rice South, and glutinous rice North regions can earn 

higher profits by using fewer inputs, especially inputs detrimental to the environment like 

nitrogen and phosphorus fertilisers, than the average farms in their respective groups, which 

also results in lower amounts of NS and PS being discharged into the environment, compared 

to the average farms in their respective groups. This implies that the input used by these 

BPFs can lead to their use as benchmark farms to reduce environmental problems caused by 

the overuse of fertiliser when planning sustainable intensification agricultural development 

policy. An environmental efficiency development policy can use theses BPFs as model farms 

for Thai rice farmers to learn how to improve management practices for nitrogen and 

phosphorus use in order to achieve higher environmental efficiency, or even to become 

environmentally efficient. Thus, the environmental problems caused by Thai rice farming 

systems can be solved by adopting the methods of these best practice farms. 
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7.10.2 Environmental tax policy 

The material balance condition (MBC) work offered a particularly useful dual interpretation 

of the results: that the zero balance condition mirrors, and is applied in the same way as, the 

ratio of prices in the profit maximisation case.  

The profit function is defined by  𝜋(𝑝, 𝑤) = 𝑝𝑦 − 𝑤𝑥 

where  𝑝 = output price, 𝑤 = input price,  𝑦 = output quantity, and  𝑥 = input quantity. 

When we set zero profit   0 = 𝑝𝑦 − 𝑤𝑥,     we will get    𝑦 = (𝑤 𝑝⁄ )𝑥 

Thus, the slope of profit maximisation is the ratio of input and output prices. 

The nutrient surplus is defined by 𝑁(𝑎𝑁 , 𝑏𝑁) = 𝑎𝑁𝑥 − 𝑏𝑁𝑦   

where  𝑏𝑁  = output nutrients, 𝑎𝑁  = input nutrients,  𝑦  = output quantity, and 𝑥  = input 

quantity. 

When we set zero balance condition     0 = 𝑎𝑁𝑥 − 𝑏𝑁𝑦,    we will get    𝑦 = (𝑎𝑁 𝑏𝑁⁄ )𝑥 

Thus, the slope of the MBC minimisation case is the ratio of input and output nutrients.  

This means that the slope of the zero balance condition can be interpreted as the price ratio 

that sets the MB to zero. Thus, the Pigouvian Tax equivalent could be imposed in order to 

reduce the negative externalities (i.e. nitrogen and phosphorus surpluses) caused by rice 

cultivation. The Pigouvian tax is defined as “a tax levied on each unit of an externality-

generator’s output in an amount equal to the marginal damage at the efficient level of output” 

(Rosench5, 2017, p. 2).  

A calculation of the Pigouvian Tax equivalent on Thai rice production can be explained 

using Figure 7.1 in the case of NS. The figure presents the graphical representation of a NS 

(negative externality problem) caused by a Thai rice farmer. The horizontal axis measures 

the amount of rice output produced by the farmer (kg/farm) and the vertical axis measures 

monetary units (Baht/kg). The marginal private benefit curve, which is assumed to be equal 

to the marginal social benefit, represents the marginal benefit to the farmer from each level 

of rice produced; it declines as the amount of rice output increases. The marginal cost to the 

farm as rice output increases is represented by the marginal private cost curve. As more 

output is produced, more NS is discharged into the environment, leading to the higher 

negative effects which are represented by the marginal damage cost curve, i.e. the 
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externality. Furthermore, the marginal social cost curve, which is constructed by the 

summation of the marginal private cost and the marginal damage cost to the environment, 

represents the total marginal cost for society as a whole. 

 

Figure 7.1 The Pigouvian Tax equivalent for Thai rice production (Adapted from 

Policonomics, 2017). 

A farm maximises profit where private marginal cost equals marginal private benefit, i.e., 

the farm’s rice output is Qe kg/farm at a price Pe. At Qe the marginal social cost is greater 

than the marginal social benefit, i.e., this is inefficient. Thus, the social welfare loss is equal 

to the area abd. In order to reduce the NS discharged into the environment, the Pigouvian 

tax could be imposed. This tax would decrease the rice output to QNS kg/farm (the rice output 

produced by the NS efficient farm for each group of observations), where the marginal social 

cost equals the marginal social benefit, and increase the price to PNS, thus achieving a socially 

efficient equilibrium. The tax would be 𝑃𝑁𝑆 − 𝑃𝑁𝑆
,

 per unit, with total tax revenues of 

(𝑃𝑁𝑆 − 𝑃𝑁𝑆
, ) × 𝑄𝑁𝑆 or the area afPNS P'NS. This increases the farmer’s cost to the marginal 

social cost at QNS. The farmer pays a tax equal to (𝑃𝑒 − 𝑃𝑁𝑆
, ) × 𝑄𝑁𝑆 or the area efPe P'NS , 

while the consumers pay a tax equal to (𝑃𝑁𝑆 − 𝑃𝑒) × 𝑄𝑁𝑆 or the area aePNS Pe . Therefore, 

the negative effects of the NS (externality) are eliminated using a Pigouvian tax.  

For the reduction of the negative effects of the NS from rice cultivation, the Pigouvian tax 

needed to produce a zero balance of NS for the 9 observed groups of Thai rice farmers is 

presented in Table 7.1. Qe represents the rice output per hectare of the average farm (kg/ha) 

for each group, QNS  represents the rice output per hectare of the NS efficient farm (kg/ha) 

for each group, Pe is the production cost of the average farm (Baht/kg) for each group, PNS 

is the production cost of the average farm for each group if it were to operate NS efficiently 

(Baht/kg), and P'NS is the production cost of the average farm for each group when producing 

Quantity of rice (Kg)

Price

Marginal private benefit = Marginal  social benefit

Marginal private cost

Marginal social cost

Marginal private cost + tax

Marginal damage cost
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a rice output of QNS kg/ha. The average farmer of each group pays a tax equal to 𝑃𝑒 − 𝑃𝑁𝑆
,

 

Baht/kg or  (𝑃𝑒 − 𝑃𝑁𝑆
, ) × 𝑄𝑁𝑆  Baht/ha, while the consumers pay a tax equal to 𝑃𝑁𝑆 − 𝑃𝑒 

Baht/kg or (𝑃𝑁𝑆 − 𝑃𝑒) × 𝑄𝑁𝑆  Baht/ha. The Pigouvian tax that the average farmers and 

consumers for each group have to pay is presented in the last two columns of Table 7.1. The 

positive values of the Pigouvian tax imply that farmers and consumers have to pay this tax 

to the government in order to incentivise farmers to become NS efficient farmers (get lower 

production with lower NS discharged into the environment). On the other hand, the negative 

values of the Pigouvian tax imply that the government has to subsidise production costs in 

order to incentivise farmers to become NS efficient farmers (get higher production with 

lower NS discharged into the environment).   

Table 7.1 The Pigouvian tax needed to produce a zero balance of NS in Thai rice production 

Rice type Region 
Qe QNS Pe P'NS PNS 

Tax 

Farmer Consumer 

kg/ha kg/ha Baht/kg Baht/kg Baht/kg Baht/ha Baht/ha 

Jasmine rice 

North 3,107 2,907 12.88 12.05 13.44 2,414 1,610 

Northeast 2,062 2,400 14.87 17.30 12.52 -5,839 -5,630 

Central 2,389 2,096 9.09 7.97 10.01 2,337 1,931 

Non-jasmine 

rice 

North 3,644 3,356 10.40 9.58 10.74 2,758 1,151 

Northeast 2,230 2,047 16.67 15.30 17.26 2,809 1,221 

Central 3,863 3,763 15.75 15.34 15.70 1,531 -155 

South 2,787 3,043 8.71 9.51 8.09 -2,435 -1,878 

Glutinous rice 
North 3,355 3,750 9.90 11.07 8.68 -4,374 -4,583 

Northeast 2,109 2,382 12.16 13.74 10.45 -3,750 -4,073 

 

For the reduction of the negative effects of the PS from rice cultivation, the Pigouvian tax 

needed to produce a zero balance of PS for the 9 observed groups of Thai rice farmers are 

presented in Table 7.2. Qe represents the rice output per hectare of the average farm (kg/ha) 

for each group, QPS  represents the rice output per hectare of the PS efficient farm (kg/ha) for 

each group, Pe is the production cost of the average farm (Baht/kg) for each group, PPS is the 

production cost of the average farm for each group if it were to operate PS efficiently 

(Baht/kg), and P'PS is production cost of the average farm for each group when producing a 

rice output of QPS kg/ha. The average farmer of each group pays a tax equal to 𝑃𝑒 − 𝑃𝑃𝑆
,

 

Baht/kg or  (𝑃𝑒 − 𝑃𝑃𝑆
, ) × 𝑄𝑃𝑆  Baht/ha, while the consumers pay a tax equal to 𝑃𝑃𝑆 − 𝑃𝑒 

Baht/kg or (𝑃𝑃𝑆 − 𝑃𝑒) × 𝑄𝑃𝑆  Baht/ha. The Pigouvian tax that the average farmers and 

consumers for each group have to pay is presented in the last two columns of Table 7.2. The 

positive values of the Pigouvian tax imply that farmers and consumers have to pay this tax 

to the government (get lower production with lower PS discharged into the environment). 

On the other hand, the negative values of the Pigouvian tax imply that the government has 
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to subsidise production costs in order to incentivise farmers to become PS efficient farmers 

(get higher production with lower PS discharged into the environment). 

Table 7.2 The Pigouvian tax needed to produce a zero balance of PS in Thai rice production 

Rice type Region 
Qe QPS Pe P'PS PPS 

Tax 

Farmer Consumer 

kg/ha kg/ha Baht/kg Baht/kg Baht/kg Baht/ha Baht/ha 

Jasmine 

rice 

North 3,107 3,640 12.88 15.09 10.76 -8,040 -7,717 

Northeast 2,062 2,019 14.87 14.56 14.23 630 -1,292 

Central 2,389 2,586 9.09 9.84 7.98 -1,942 -2,855 

Non-

jasmine 

rice 

North 3,644 3,947 10.40 11.26 9.22 -3,420 -4,665 

Northeast 2,230 2,222 16.67 16.61 16.24 132 -950 

Central 3,863 4,789 15.75 19.52 12.80 -18,062 -14,087 

South 2,787 3,481 8.71 10.88 6.79 -7,550 -6,693 

Glutinous 

rice 

North 3,355 2,791 9.90 8.24 11.60 4,645 4,749 

Northeast 2,109 2,188 12.16 12.62 11.54 -994 -1,354 

 

7.10.3 Soil fertility improvement 

The results of the efficiency analysis in this study show that the average TE scores of the 9 

observed groups of Thai rice farmers are high compared to those in the previous studies. 

However, rice farmers in the North-eastern region obtained the lowest profit compared to 

rice farmers in the other three regions. This is due to the fact that the soil in the North-eastern 

region is low in fertility compared to the other three regions, while the soil in the Northern 

and Central regions is more fertile than in the Southern and North-eastern regions (Limtong, 

2012). Thus, soil fertility measuring and improvement form the most important strategy for 

achieving sustainable intensification, especially in the North-eastern region of Thailand. If 

the land has good soil fertility and good ecosystem services, less inorganic fertiliser is 

required when cultivating rice. Rice plants can use inflows of N and P nutrients from natural 

processes for their growth. Therefore, high soil fertility is crucial for sustainable 

intensification development. It is the most important element for the cultivation of rice, as 

well as other agricultural crops.  

A site-specific soil nutrients testing policy is necessary for efficient use of nitrogen and 

phosphorus nutrients (i.e. nutrient management). This is because the general fertiliser 

application rate recommended by the government is not suitable for the whole country. Some 

areas need less N and P nutrients than the recommended rate, which leads to the problem of 

NS and PS being discharged into the environment and unnecessarily high production costs 

on some farms. On the other hand, some areas need more N and P nutrients than the current 

recommended application rate, which leads to the problem of low productivity. Note that the 



 

150 

recommended rates of N, P and K fertiliser for Thai rice farmers are 75, 18.75, 0 kg/ha, 

respectively (this application rate is recommend by the site- specific nutrient management 

of the Rice Department, Ministry of Agriculture and Cooperative, Thailand, cited in Cheun-

im et al., 2010, p. 1).   

Furthermore, farmers could improve soil fertility without using inorganic fertilisers by using 

organic fertiliser, and introducing legume-based crop rotation or mixed crops. Farmers 

should not burn rice straw in their fields after harvesting because rice straw burning results 

in the loss of plant nutrients (such as N, K, and sulphur) and negatively affects the organic 

carbon and microbial population in the soil, as well as creating air pollution (Tipayarom and 

Oanh, 2007; Ahmed et al., 2015). Tipayarom and Oanh (2007) state that open rice straw 

burning after harvesting is a common practice for Thai rice farmers and other Asian 

countries. More importantly, the government could train farmers to produce organic fertiliser 

themselves, to introduce legume-based crop rotation and mixed crops into their farm 

management, and to understand the negative effect of rice straw burning and the positive 

effect of abandoning their custom of burning rice straw in favour of incorporating it into the 

soil to improve its fertility.  

7.11 Implication for future research 

As discussed in Chapter 3, the evaluation of the environmental performance of the 

production processes has been investigated by incorporating the negative impact of 

production processes on the environment both in terms of detrimental inputs (e.g. Chung et 

al., 1997; Reinhard et al., 2000; Shaik et al., 2002; De Koeijer et al, 2002; Areal et al, 2012) 

and undesirable outputs (e.g. Färe et al., 1989; Shaik et al., 2002; Färe et al., 2005, Picazo-

Tadeo et al., 2005; Macpherson et al., 2010; Färe et al., 2012; Toma et al., 2013) into 

traditional methods of productivity and efficiency analysis (i.e. Stochastic Production 

Frontier, DEA, and DDF approaches). Coelli et al. (2007) proposed a new environmental 

efficiency measure that incorporates the MBC into the input-oriented DEA model in a 

similar manner to that by which price data is normally incorporated (i.e. the cost-minimising 

DEA approach). The environmental efficiency score of each farm is calculated by “the ratio 

of minimum nutrients over observed nutrients”. Thus, the environmental efficiency 

measurement proposed by Coelli et al. (2007) can be used to minimise the total amount of 

nutrients in inputs while fixing the same level of outputs. Unlike the environmental 

measurement proposed by Coelli et al. (2007), this study attempts to minimise the surplus 

of nitrogen and phosphorus nutrients within the theoretical context of the DDF, in which 

nitrogen and phosphorus surpluses can be minimised by simultaneously reducing nitrogen 
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and phosphorus inputs and expanding rice output (as discussed in Chapter 4 Section 4.9). 

This measure is named “the directional nutrient surplus efficiency measure”. Thus, the new 

approach for nutrient surplus efficiency measures proposed in this study can be applied to 

the evaluation of the environmental performance of the production processes. 

7.12 Limitations of the study 

The limitations of this study are as follows: 

1) This study used secondary data, resulting in a lack of important information related to 

farm size, farmers’ age, farmers’ experience, and the educational level of farmers, all of 

which are useful to determine factors affecting the efficiency of Thai rice farming systems. 

This is because this information was not included in the national Thai input survey for the 

crop year 2008/09. Therefore, this research was unable to investigate factors affecting the 

technical and environmental inefficiencies of Thai rice farmers. 

2) None of the proxies from statistical reports and previous research could be used as the 

representative for all N and P inflows from natural processes (i.e. N and P contents in soil, 

biological fixation, atmospheric deposition, precipitation, and irrigation water) and outflows 

(quantity of rice straw produced by each farm, and soil) in Thailand for each farm in the 

sample. Consequently, nitrogen and phosphorus surpluses in this study were calculated from 

nitrogen and phosphorus contents in manure, chemical fertilisers, and paddy rice. The 

omission of nitrogen and phosphorus inflow variables (soil, bio-fertiliser, biological fixation, 

atmospheric deposition, precipitation, in irrigation water) and outflow variables (rice straw, 

and soil) leads to the underestimation of nitrogen and phosphorus surpluses on each farm. 

However, the rank of NS and PS efficiency in the sample does not change if a proxy of 

inflow variables and a proxy of outflow variables are the same across all farms in the sample. 

If information on all N and P inflows from natural processes and outflows for each farm 

were available, the estimation of nitrogen and phosphorus surpluses from the Thai rice 

farming system would be more precise. 

3) The efficiency analysis in this study was based on cross-sectional data. If the panel data 

of Thai rice farmers were available, the analysis of the improvement of Thai rice farmers’ 

efficiency would be more precise. 

 



 

152 

References 

Ahmed, N., Zander, K. K., and Garnett, S. T. (2011). Socioeconomic Aspects of Rice-fish 

Farming in Bangladesh: Opportunities, Challenges and Production Efficiency. The 

Australian Journal of Agricultural and Resource Economics, 55, pp. 199 – 219. 

Ahmed, T., Ahmad, B., and Ahmad, W. (2015). Why do farmers burn rice residue? 

Examining farmers’ choices in Punjab, Pakistan. Land Use Policy, 47, pp. 448 – 458. 

Ang, F., and Kerstens, P.  J. (2016). To Mix or Specialise? A Coordination Productivity 

Indicator for English and Welsh Farms. Journal of Agricultural Economics, 67(3),  

pp. 779 – 798. doi:10.1111/1477-9552.12177 

Areal, F. J., Tiffin, R., and Balcombe, K. G. (2012). Provision of Environmental Output 

within a Multi-output Distance Function Approach. Ecological Economics, 78,  

pp. 47 – 54. 

Babcock, B. A. (1992). Effects of Uncertainty on Optimal Nitrogen Applications.  Review 

of Agricultural Economics. 14 (2), pp. 271 – 280. 

Bäckman, S., Zahidul Islam, K. M., and Sumelius, J. (2011). Determinants of Technical 

Efficiency of Rice Farms in North–Central and North–Western Regions of Bangladesh. 

Journal of Developing Areas, 45, pp. 73 – 94. 

Bank of Thailand: BOT (2017). EC_EI_027 Thailand’s Macro Economic Indicators.  

Available from: 

http://www2.bot.or.th/statistics/ReportPage.aspx?reportID=409&language=eng. [Accessed 

15th February, 2017]. 

Banker, R. D., and Chang, H. (2006). The Super-efficiency Procedure for Outlier 

Identification, not for Ranking Efficient Units. European Journal of Operational Research, 

175, pp. 1311 – 1320. 

Banker, R. D., Charnes, A., and Cooper, W. W. (1984). Some Models for Estimating 

Technical and Scale Inefficiencies in the Data Envelopment Analysis. Management Science, 

30, pp. 1078 – 1092. 

Balcombe, K., Fraser, I., Latruffe, L., Rahman, M., and Smith, L. (2008). An Application of 

the DEA Double Bootstrap to Examine Sources of Efficiency in Bangladesh Rice Farming. 

Applied Economics, 40, pp. 1919 – 1925.  

Barnes, A. P., Amanda Lucas, A., and Maio, G. (2016). Quantifying Ambivalence Towards 

Sustainable Intensification: An Exploration of the UK Public’s Value. Food Security, 8, pp. 

609 – 619. doi:10.1007/s12571-016-0565-y. 

Blancard, S. and Martin, E. (2014). Energy Efficiency Measurement in Agriculture with 

Imprecise Energy Content Information. Energy Policy, 66, pp. 198 – 208. 

Bogetoft, P., Otto, L. (2011). Benchmarking with DEA, SFA, and R. Volume 157. New York: 

Springer.  

Bogetoft, P., and Otto, L. (2014). Benchmarking with DEA and SFA, R package version 

0.24. 

http://www2.bot.or.th/statistics/ReportPage.aspx?reportID=409&language=eng


 

153 

Buckwell, A., Heissenhuber, A., and Blum, W. (2014). The Sustainable Intensification of 

European Agriculture: A Review Sponsored by the Rural Investment Support for Europe 

(RISE) Foundation.  

Chambers, R. G., Chung, Y., and Färe, R. (1996). Benefit and Distance Functions. Journal 

of Economic Theory, 70, pp. 407 – 419.  

Chambers, R. G., Chung, Y., and Färe, R. (1998). Profit, Directional Distance Functions and 

Nerlovian Efficiency. Journal of Optimization Theory and Applications, 95(2),  

pp. 351 – 364. 

Chansarn, S. (2013). Assessing the Sustainable Development of Thailand: the 3rd 

International Conference on Sustainable Future for Human Security SUSTAIN 2012. 

Procedia Environmental Sciences, 17, pp. 611 – 619.  

Charnes, A., Cooper, W. W., and Rhodes, E. (1978). Measuring the Efficiency of Decision 

Making Units. European Journal of Operational Research, 2, pp. 429 – 444. 

Chauhan, N. S., Mohapatra, P. K. J., and Pandey, K. P. (2006). Improving Energy 

Productivity in Paddy Production through Benchmarking – An Application of Data 

Envelopment Analysis. Energy Conservation and Management, 47, pp. 1063 – 1085. 

Chen, W. and Johnson, A. L. (2010). A Unified Model for Detecting Efficient and Inefficient 

outliers in the Data Envelopment Analysis. Computer & Operations Research, 37, pp. 417 

– 425.  

Cheun-im, N., Ingkapradit, W., Keethapirom, S., and Sinbuathong, N. (2010). The 

Application of Chemical Fertilizers on Paddy Field According to the Soil Analysis Data. 

Available from: http://www.lib.ku.ac.th/KUCONF/data53/KC4801041.pdf [Accessed 18th 

March 2017]. 

Chung, Y. H., Färe, R., and Grosskopf, S. (1997). Productivity and Undesirable Outputs: A 

Directional Distance Function Approach. Journal of Environmental Management, 51, pp. 229 

– 240. 

Coelli, T., Rahman, S., and Thirtle, C. (2002). Factors Technical, Allocative, Cost and Scale 

Efficiencies in Bangladesh Rice Cultivation: A Non-parametric Approach. Journal of 

Agricultural Economics, 53 (3), pp. 607 – 626. 

Coelli, T. J., Rao, D. S. P., O' Donnell, C. J., Battese, G. E. (2005). An Introduction to 

efficiency and productivity analysis. 2nd Edition. The United State of America: Springer.  

Coelli, T., Ludwig, L., and Huylenbroeck, G. V. (2007). Environmental Efficiency 

Measurement and the Materials Balance Condition. Journal of Productivity Analysis, 28, pp. 

3 – 12. 

DeJoia, A. (2015). Why do Farmers use Fertilizers?. Soil Science Society of America: 

Soilsmatter Available from: https://soilsmatter.wordpress.com/2015/03/18/why-do-farmers-

use-fertilizers/ [Accessed 14th May, 2016].  

De Koeijer, T. J., Wossink, G. A. A., Struik, P. C., and Renkema, J. A. (2002). Measuring 

agricultural sustainability in terms of efficiency: the case of Dutch sugar beet growers. 

Journal of Environmental Management, 66, pp. 9 – 17. 

http://www.lib.ku.ac.th/KUCONF/data53/KC4801041.pdf
https://soilsmatter.wordpress.com/2015/03/18/why-do-farmers-use-fertilizers/
https://soilsmatter.wordpress.com/2015/03/18/why-do-farmers-use-fertilizers/


 

154 

Dhungana, B. R., Nuthall P. L, and Nartea G. V. (2004). Measuring the Economic 

Inefficiency of Nepalese Rice Farms using Data Envelopment Analysis. The Australian 

Journal of Agricultural and Resource Economics, 48 (2), pp. 347 – 369. 

Dobermann, A., Witt, C., Dawe, D., Abdulrachman, S., Gines, H. C., Nagarajan, R., 

Satawathananont, S., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., 

Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Chatuporn, S., Sookthongsa, 

J., Sun, Q., Fu, R., Simbahan, G. C., and Adviento, M. A. A. (2002). Site-specific nutrient 

management for intensive rice cropping system in Asia. Field Crops Research, 74, pp. 37 – 

66.  

FAO’s Director-General on How to Feed the World in 2050 (2009). Population and 

Development Review, 35 (4), pp. 837 – 839. Retrieved from http://www-jstor-

org.idpproxy.reading.ac.uk/stable/25593700.  

FAO (2016). FAOSTAT database collections. Food and Agriculture Organization of the 

United Nations. Rome. Available from: http://faostat.fao.org [Accessed 15th November, 

2016]. 

Färe, R., Grosskopf, S., Lovell, C. A. K., and Pasurka, C. (1989). Multilateral Productivity 

Comparisons When Some Outputs are Undesirable: A Nonparametric Approach, The Review 

of Economics and Statistics, 71, pp. 90 – 98. 

Färe, R., Grosskopf, S., Tyteca, D. (1996). An Activity Analysis Model of the Environmental 

Performance of Firms - Application to Fossil – Fuel – Fired Electric Utilities. Ecological 

Economics, 18(2), pp. 161 – 175. 

Färe, R., and Grosskopf, S. (2005). New Directions: Efficiency and Productivity. First 

softcover printing. The United States of America: Springer. 

Färe, R., Grosskopf, S., Noh, D., and Weber, W. (2005). Characteristics of a Pollution 

Technology: Theory and Practice. Journal of Econometrics, 126, pp. 469 – 492. 

Färe, R., Grosskopf, S., and Pasuraka Jr, C. A. (2007). Environmental Production Functions 

and Environmental Directional Distance Functions. Energy, 32, pp. 1005 – 1066. 

Färe, R., Grosskopf, S., Pasuraka Jr, C. A., and Weber, W. L. (2012). Substitutability among 

Undesirable Outputs. Applied Economics, 44, pp. 39 – 47. 

Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal 

Statistical Society. Series A (General), 120 (3), pp. 253 – 290. doi:10.2307/2343100 

Forssell, S. (2009). Rice Price Policy in Thailand – Policy Making and Recent 

Developments. Minor Field Study Series No. 189. Nationalekonomiska Institutionen Vid 

Lunds Universitet, Department of Economics, University of Lund, Sweden. 

Gadanakis, Y. (2014). The Sustainable Intensification of Farming Systems: Evaluating 

Agricultural Productivity, Technical and Economic Efficiency. PhD thesis. University of 

Reading, United Kingdom. 

Gadanakis, Y., Bennett, R., Park, J., and Areal, F. J. (2015). Evaluating the Sustainable 

Intensification of Arable Farms. Journal of Environmental Management, 150,  

pp. 288 – 298.  

http://www-jstor-org.idpproxy.reading.ac.uk/stable/25593700
http://www-jstor-org.idpproxy.reading.ac.uk/stable/25593700
file:///D:/PhD%20Thesis/Chapters%201-7/:%20http:/faostat.fao.org


 

155 

Garnett, T and Godfray, C (2012). Sustainable intensification in agriculture. Navigating a 

course through competing food system priorities, Food Climate Research Network and the 

Oxford Martin Programme on the Future of Food, University of Oxford, UK. 

Geiger, F. et al. (2010). Persistent Negative Effects of Pesticides on Biodiversity and 

Biological Control Potential on European Farmland. Basic and Applied Ecology, 11,  

pp. 97 – 105.  

Godfray, H. C. J., & Garnett, T. (2014). Food Security and Sustainable Intensification. 

Philosophical Transactions of the Royal Society B, 369, pp. 1 – 10. 

GRiSP (Global Rice Science Partnership) (2013). Rice almanac, 4th edition. Los Baños 

(Philippines): International Rice Research Institute. 283 p. Available from: 

http://books.irri.org/9789712203008_content.pdf [Accessed 27th November, 2016]. 

Heffer, P. (2013). Assessment of Fertilizer Use by Crop at the Global Level 2010-2010/11. 

International Fertilizer Industry Association (IFA). Available from: 

http://www.fertilizer.org//En/Statistics/Agriculture_Committee_Databases.aspx [Accessed 

24 June 2015]. 

Hoang, V. and Coelli, T. (2011). Measurement of Agricultural Total Factor Productivity 

Growth Incorporating Environmental Factors: a Nutrients Balance Approach. Journal of 

Environmental Economics and Management, 62, pp. 462 – 474. 

Hoang, V. and Alauddin, M. (2012). Input-Orientated Data Envelopment Analysis 

Framework for Measuring and Decomposing Economic, Environmental and Ecological 

Efficiency: an Application to OECD Agriculture. Environ Resource Econ, 51,  

pp. 431 – 452. 

Homenauth, O. (2013). Fertilizer Manual (Concepts, Application, Storage and Handling). 

National Agricultural Research & Extension Institute. Available from: 

http://narei.org.gy/Fertilizer%20Manual.pdf [Accessed 14th May, 2016]. 

Jahanshahloo, G. R., Hosseinzadeh, F., Shoja, N., Tohidi, G., and Razavyan, S. (2004). A 

Method for Detecting Influential Observations in Radial DEA Models. Applied Mathematics 

and Computation, 147, pp. 415 – 421.  

Johnson, A. L., and McGinnis, L. F., (2008). Outlier Detection in Two-stage Semiparametric 

DEA Models. European Journal of Operational Research, 187,  

pp. 629 – 635. 

Kalirajan, K. P., and Shand, R. T. (1999). Frontier Production Functions and Technical 

Efficiency Measures. Journal of Economic Surveys, 13(2), pp. 149 – 172. 

Kasem, S. and Thapa, G.B. (2012). Sustainable Development Policies and Achievements in 

the context of the Agriculture Sector in Thailand. Sustainable Development, Vol. 20, pp. 98 

– 114.  

Khai, H. V., and Yabe, M. (2011). Technical Efficiency Analysis of Rice Production in 

Vietnam. J. ISSAAS, 17(1), pp. 135 – 146. 

 

http://books.irri.org/9789712203008_content.pdf
http://www.fertilizer.org/En/Statistics/Agriculture_Committee_Databases.aspx
http://narei.org.gy/Fertilizer%20Manual.pdf


 

156 

Kiatpathomchai, S (2008). Assessing Economic and Environmental Efficiency of Rice 

Production Systems in Southern Thailand: An Application of Data Envelopment Analysis. 

Ph.D thesis, Justus-Liebig University Giessen. Available from: http://geb.uni-

giessen.de/geb/volltexte/2008/6373/pdf/KiatpathomchaiSirirat-2008-09-02.pdf [Accessed 

12th February 2015]. 

Krasachat, W. (2004) Technical Efficiencies of Rice Farms in Thailand: A Non-parametric 

Approach. The Journal of American Academy of Business, Cambridge,  

pp. 64 – 69. 

The Land Development Department: LDD (2012). Available from: 

http://lddmapserver.ldd.go.th/soilanaly2/AnaliseFee.pdf [Accessed 13th May, 2016]. 

LaPlante, A, E., (2015). A Comprehensive Study of Bank Branch Growth Potential and 

Growth Trends through the Development of a Unique DEA Formulation and a New 

Restricted DEA Model. Unpublished PhD thesis. University of Toronto, Canada. 

Limtong, P. (2012). Status and Priorities of Soil Management in Thailand, in Proceedings of 

the Technical Workshop on Managing Living Soils, 5 – 7 December, FAO Headquarters, 

Rome, Italy. Available from:  

http://www.fao.org/fileadmin/user_upload/GSP/docs/WS_managinglivingsoils/Limtong_T

hailand.pdf [Accessed 18th March 2017]. 

Linquist, B. A., Ruark, M. D., Mutters, R., Greer, C., and Hill, J. E. (2014). Nutrients and 

Sediments in Surface Runoff Water from Direct-seeded Rice Fields: Implications for 

Nutrient Budgets and Water Quality. Journal of Environmental Quality, 43(5),  

pp. 1725–1735. doi:10.2134/jeq2014.03.0135 

Loftas, T., Ross, J., and Burles, D. (1995). Dimensions of need: an atlas of food and 

agriculture. Rome, Italy, Food and Agriculture Organization of the United Nations. 

Luh, Y., and Liao, Z. (2001). An Econometric Assessment of the Productivity Consequences 

of Low-input Farming. Applied Econometric Letters, 8, pp. 687 – 692.  

Machperson, A. J., Principe, P. P., and Smith, E. R. (2010). A Directional Distance Function 

Approach to Regional Environmental-Economic Assessments. Ecological Economics, 69, 

pp. 1918 – 1925. 

Maneewon, N. (2015). Sustainable Agriculture with bio-fertilizers and organic fertilizers by 

smallholder farmers in Thailand. Land Development Department, Ministry of Agriculture 

and Cooperatives, Thailand. Available from:  

http://www.globalbioenergy.org/fileadmin/user_upload/gbep/docs/2015_events/3rd_Bioen

ergy_Week_25-29_May_Indonesia/26_5_10_MANEEWON.pdf [Accessed 9th March 

2017]. 

Nelles, W. and Visetnoi, S. (2016). Thailand's Department of Agricultural Extension and 

Agrochemical Dependency: Perspectives on Contributing Factors and Mitigation Strategies. 

The Journal of Agricultural Education and Extension, 22(3), pp. 225 – 240. 

Nguyen, T. T., Hoang, V., and Seo, B. (2012). Cost and Environmental Efficiency of Rice 

Farms in South Korea. Agricultural Economics, 43, pp. 367 – 376. 

 

http://geb.uni-giessen.de/geb/volltexte/2008/6373/pdf/KiatpathomchaiSirirat-2008-09-02.pdf
http://geb.uni-giessen.de/geb/volltexte/2008/6373/pdf/KiatpathomchaiSirirat-2008-09-02.pdf
http://lddmapserver.ldd.go.th/soilanaly2/AnaliseFee.pdf
http://www.fao.org/fileadmin/user_upload/GSP/docs/WS_managinglivingsoils/Limtong_Thailand.pdf
http://www.fao.org/fileadmin/user_upload/GSP/docs/WS_managinglivingsoils/Limtong_Thailand.pdf
http://www.globalbioenergy.org/fileadmin/user_upload/gbep/docs/2015_events/3rd_Bioenergy_Week_25-29_May_Indonesia/26_5_10_MANEEWON.pdf
http://www.globalbioenergy.org/fileadmin/user_upload/gbep/docs/2015_events/3rd_Bioenergy_Week_25-29_May_Indonesia/26_5_10_MANEEWON.pdf


 

157 

Nkang, N. M., Edet, E. O., Oniah, M. O., and Okon, X. A. (2011). Performance Assessment 

in Nigeria's Peasant Agriculture: An Application of Data Envelopment Analysis on Rice 

Producers in Cross River State, Nigeria. Global Journal of Agricultural Sciences, 10 (1), pp. 

39 – 49. 

The Office of Agricultural Economics: OAE (2014). Quantity of imported chemical 

fertilisers. Available from: 

http://www.oae.go.th/download/FactorOfProduct/Fertilizer_value49-54.html [Accessed13th 

May, 2014].  

The Office of Agricultural Economics: OAE (2015). Thailand Foreign Agricultural Trade 

Statistic. Available from: 

http://www.oae.go.th/download/journal/2559/thailandtradestat2558.pdf [Accessed 25th 

February, 2017]. 

The Office of Agricultural Economics (OAE). Available from: http://www.oae.go.th/ 

[Accessed 30th April, 2016]. 

Office of the National Economic and Social Development Board: NESDB (1961). The First 

National Economic and Social Development Plan (1961–1966). Office of the Prime 

Minister: Bangkok. Available from: 

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue [Accessed 20th 

November, 2016]. 

Office of the National Economic and Social Development Board: NESDB (1967). The 

Second National Economic and Social Development Plan (1967–1971). Office of the Prime 

Minister: Bangkok. Available from:  

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue [Accessed 20th 

November, 2016]. 

Office of the National Economic and Social Development Board: NESDB (1972). The Third 

National Economic and Social Development Plan (1972–1976). Office of the Prime 

Minister: Bangkok. Available from: 

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue [Accessed 20th 

November, 2016]. 

Office of the National Economic and Social Development Board: NESDB (1977). The 

Fourth National Economic and Social Development Plan (1977–1981). Office of the Prime 

Minister: Bangkok. Available from: 

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue [Accessed 20th 

November, 2016]. 

Office of the National Economic and Social Development Board: NESDB (1982). The Fifth 

National Economic and Social Development Plan (1982–1986). Office of the Prime 

Minister: Bangkok. Available from: 

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue [Accessed 20th 

November, 2016]. 

Office of the National Economic and Social Development Board: NESDB (1987). The Fifth 

National Economic and Social Development Plan (1987–1991). Office of the Prime 

Minister: Bangkok. Available from: 

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue [Accessed 20th 

November, 2016]. 

http://www.oae.go.th/download/FactorOfProduct/Fertilizer_value49-54.html%5bAccessed
http://www.oae.go.th/download/journal/2559/thailandtradestat2558.pdf
http://www.oae.go.th/
http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue
http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue
http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue
http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue
http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue
http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue


 

158 

Office of the National Economic and Social Development Board: NESDB (1992). The 

Seventh National Economic and Social Development Plan (1992–1996). Office of the Prime 

Minister: Bangkok. Available from: 

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue [Accessed 20th 

November, 2016]. 

Ogundari, K., and Awokuse, T. (2016). Land Tenure and Technical Efficiency of Rice Farms 

in Thailand. Paper prepared for presentation at the “2016 World Bank Conference on Land 

and Poverty” The World Bank - Washington DC, March 14 – 18, 2016.  

Omer, A., Pascual, U. and Russell, N. (2007). Biodiversity Conservation and Productivity 

in Intensive Agricultural Systems. Journal of Agricultural Economics, 58(2),  

pp. 308 – 329. 

Panuwet, P., Siriwong, W., Prapamontol, T., Ryan, P. B., Fiedler, N., Robson, M. G., and 

Barr, D. B. (2012). Agricultural Pesticide Management in Thailand: Status and Population 

Health Risk. Environmental Science & Policy, 17, pp. 72 – 81. 

Pathak, B. K., Kazama, F., and Toshiaki, I. (2004).  Monitoring of Nitrogen Leaching from 

a Tropical Paddy in Thailand. Agricultural Engineering International: the CIGR Journal of 

Scientific Research and Development, Manuscript LW 04 015, 6, pp. 1 – 11. 

Picazo-Tadeo, A. J., Reig-Martίnez, E, and Hernández-Sancho, F. (2005). Directional 

Distance Functions and Environmental Regulation. Resource and Energy Economics, 27, 

pp. 131 – 142. 

Policonomics (2017). Pigouvian tax. Available online at: 

http://policonomics.com/pigouvian-tax/ [Accessed 10th October, 2017] 

Power, A. G. (2010). Ecosystem Services and Agriculture: Tradeoffs and Synergies. 

Philosophical Transactions of the Royal Society Biological Sciences, 365,  

pp. 2959 – 2971. 

Pretty, J. (2008). Agricultural Sustainability: Concepts, Principles and Evidence. 

Philosophical Transactions of the Royal Society Biological Sciences, 363, pp. 447 – 465.  

Pretty, J., Toulmin, C., Williams, S. (2011). Sustainable Intensification in African 

Agriculture. International Journal of Agricultural Sustainability, 9 (1), pp. 5 – 14. 

Promnart, P. (2001). The Different Viewpoint of Fertilizer Usage for Rice Production. 

Prachinburi Rice Research Center. Available from:  

http://www.geocities.ws/pisitrice/a3.htm [Accessed 1st July 2015]. 

Rahman, S., Wiboonpongse, A., Sriboonchitta, S., and Chaovanapoonphol, Y. (2009). 

Production Efficiency of Jasmine Rice Producers in Northern and North-Eastern Thailand. 

Journal of Agricultural Economics, 60, pp. 419 – 35. 

Rahman, K. M. M., Mia, M. I. A., and Bhuiyan, M. K. J. (2012). A Stochastic Frontier 

Approach to Model Technical Efficiency of Rice Farmers in Bangladesh: An Empirical 

Analysis. The Agriculturists, 10 (2), pp. 9 – 19.  

Rajsic, P. and Weersink, A. (2008). Do Farmers Waste Fertilizer? A Comparison of ex post 

Optimal Nitrogen Rates and ex ante Recommendations by Model, Site and Year. 

Agricultural Systems, 97(1), pp. 56 – 67.  

http://www.nesdb.go.th/nesdb_en/main.php?filename=develop_issue
http://www.geocities.ws/pisitrice/a3.htm


 

159 

Ratneetoo, B. (2012). Organic Fertilizer Improves Deteriorated Soil. Princes of Naradhiwas 

University Journal, 2, pp. 115–127. Available from:  

http://journal.pnu.ac.th/ojs/index.php/pnujr/article/view/128/119 [Accessed 1st July 2015]. 

Ray, S. C. (2008). The Directional Distance Function and Measurement of Super-efficiency: 

An Application to Airlines Data. The Journal of the Operational Research Society, 59(6), 

pp. 788 – 797. doi:10.1057/palgrave.jors.2602392 

Reinhard, S. and Thijssen, G. (2000). Nitrogen Efficiency of Dutch Dairy Farms: a Shadow 

Cost System Approach. European Review of Agricultural Economics, 27(2),  

pp. 167 – 186.  

Reinhard, S., Lovell, C.A. K., and Thijssen, G. J. (2000). Environmental Efficiency with 

Multiple Environmentally Detrimental Variables; Estimated with SFA and DEA. European 

Journal of Operational Research, 121, pp. 287 – 303. 

Rejesus, R. M., Mohanty, S., and Balagtas, J. V. (2012). Forecasting Global Rice 

Consumption. Available from: 

http://www.agecon.purdue.edu/staff/balagtas/rice_timeseries_v6.pdf [Accessed 27th 

November, 2016]. 

Riccadi, R., Oggioni, G., and Toninelli, R. (2012). Efficiency Analysis of World Cement 

Industry in Presence of Undesirable Output: Application of Data Envelopment Analysis and 

Directional Distance Function. Energy Policy, 44, pp. 140 – 152. 

Rice Department (2010): Bureau of Rice Research and Development. Khao Dawk Mali 105. 

Available from: 

http://www.brrd.in.th/library/index.php?option=com_content&view=article&id=134:khao-

dawk-mali-105&catid=25:2010-07-13-06-59-12&Itemid=37 [Accessed 12th April, 2017].  

Ricepedia (2013): The Online Authority on Rice. Available from: http://ricepedia.org/rice-

around-the-world [Accessed 11th February, 2017].  

Romig, D. E., Garlynd, M. J., Harris, R. F., and McSweeney, K. (1995). How Farmers 

Assess Soil Health and Quality. Journal of Soil and Water Conservation, 50(3),  

pp. 229 – 236. 

Rosench5 (2007). Externalities. Available at: 

http://people.oregonstate.edu/~grosskos/rosench5.pdf [Accessed 7th November, 2017]. 

Schaffner, M., Bader, H., and Scheidegger, R. (2011). Modeling Non-point Source Pollution 

from Rice Farming in the Thachin River Basin. Environment, Development and 

Sustainability, 13(2), pp. 403 – 422. doi:http://dx.doi.org/10.1007/s10668-010-9268-2 

Serra, T., Chambers, R. G., and Lansink, A. O., (2014). Measuring Technical and 

Environmental Efficiency in a State-contingent Technology. European Journal of 

Operational Research, 236, pp. 706 – 717. 

Shaik, S., Helmers, G. A., and Langemeir, M. R. (2002). Direct and Indirect Shadow Price 

and Cost Estimates of Nitrogen Pollution Abatement. Journal of Agricultural and Resource 

Economics, 27(2), pp. 420 – 432. 

http://journal.pnu.ac.th/ojs/index.php/pnujr/article/view/128/119
http://www.agecon.purdue.edu/staff/balagtas/rice_timeseries_v6.pdf
http://www.brrd.in.th/library/index.php?option=com_content&view=article&id=134:khao-dawk-mali-105&catid=25:2010-07-13-06-59-12&Itemid=37
http://www.brrd.in.th/library/index.php?option=com_content&view=article&id=134:khao-dawk-mali-105&catid=25:2010-07-13-06-59-12&Itemid=37
http://ricepedia.org/rice-around-the-world
http://ricepedia.org/rice-around-the-world


 

160 

Sheriff, G., 2005. Efficient waste? Why Farmers Over-apply Nutrients and the Implications 

for Policy Design. Applied Economic Perspectives and Policy, 27(4),  

pp. 542 – 557. 

Simar, L., and Wilson, P. W. (2002). Non-parametric Tests of Returns to Scale. European 

Journal of Operational Research, 139, pp. 115 – 132. 

Simar, L., and Wilson, P. W. (2007). Estimation and Inference in Two-stage, Semi-

parametric models of Production Process. Journal Econometrics, 136, pp. 31 – 64. 

Simm, J., and Besstremyannaya, G. (2016). Robust Data Envelopment Analysis (DEA) for 

R “rDEA”, R package. 

Singbo, A. G., and Lansink, A. O. (2010). Lowland Farming System Inefficiency in Benin 

(West Africa): Directional Distance Function and Truncated Bootstrap Approach. Food 

Security, 2 (4), pp. 367 – 382.  

Songsrirote, N. and Singhapreecha, C. (2007). Technical Efficiency and Its Determinants on 

Conventional and Certified Organic Jasmine Rice Farms in Yasothon Province. Thammasat 

Economic Journal, 25 (2), pp. 96 – 133.  

Suksri, P., Moriizumi, Y., Hondo, H. and Wake, Y. (2008). Sustainable Agriculture in 

Thailand: An Evaluation on the Sustainability in Ethanol Production. Digital Asia 

Discussion Paper Series, DP 08-004, pp. 1 – 21. 

Taraka, K., Latif, I. A., and Shamsudin, M. N. (2010). A Nonparametric Approach to 

Evaluate Technical Efficiency of Rice Farms in Central Thailand. Chulalongkorn Journal 

of Economics, 22, pp. 1 – 14.  

Thanassoulis, E., Portela, M. C. S., and Despic, O (2008). Data Envelopment Analysis: The 

Mathematic Programming Approach to Efficiency Analysis. In H. O. Fried, C. A. K. Lovell, 

and S. S. Schmidt (Eds.), The Measurement of Productivity Efficiency and Productivity 

Growth (pp. 251 – 420). New York: Oxford University Press. 

Tilman, D., Balzer, C., Hill, J., and Befort, B. D. (2011). Global Food Demand and the 

Sustainable Intensification of Agriculture. Proceeding of the National Academy of Sciences 

of the United States of America (PNAS), 108 (5), pp. 20260 – 20264. Available at:  

www.pnas.org/cgi/content/short/1116437108. [Accessed 5th June, 2015]. 

Tingley, D. and Pascoe, S. (2005). Factors Affecting Capacity Utilisation in English Channel 

Fisheries. Journal of Agricultural Economics, 56(2), pp. 287 – 305. 

Tipayarom, D. and Oanh, N. T. K. (2007). Effects from Open Rice Straw Burning Emission 

on Air Quality in the Bangkok Metropolitan Region. ScienceAsia, 33,  

pp. 339 – 345. 

Tirado, R. (2007). Nitrates in drinking water in the Philippines and Thailand. Greenpeach 

Research Laboratories (Technical Note 10/2007). Devon, UK: University of Exeter. (GRL-

TN-10-2007), pp. 2 – 20. 

 

 

http://www.pnas.org/cgi/content/short/1116437108


 

161 

Tirado, R., Englande, A. J., Promakasikorn, L., and Novotny, V. (2008). Use of 

Agrochemicals in Thailand and its Consequences for the Environment. Greenpeace 

Research Laboratories. Technical Note 03/2008. Available from:  

http://www.greenpeace.to/publications/GPSEA_agrochemical-use-in-thailand.pdf 

[Accessed 5th June, 2015] 

Toma, L., March, M., Stott, A. W., and Roberts, D. J., (2013). Environmental Efficiency of 

Alternative Dairy Systems: a Productive Efficiency Approach. American Dairy Science 

Association, 96, pp. 7014 – 7031. 

Tun, Y., and Kang, H. (2015). An Analysis on the Factors Affecting Rice Production 

Efficiency in Myanmar. Journal of East Asian Economic Integration, 19 (2),  

pp. 167 – 188.  

Tung, D. (2013). Changes in the Technical and Scale Efficiency of Rice Production 

Activities in the Mekong Delta, Vietnam. Agricultural and Food Economics, 1(1),  

pp. 1 – 16. doi: 10.1186/2193-7532-1-16  

Umanath, M. and Rajasekar, D. D. (2013). Estimation of Technical, Scale and Economic 

Efficiency of Paddy Farms: A Data Envelopment Analysis Approach. Journal of 

Agricultural Science, 5(8), pp. 243 – 251. 

USDA (2016a). World Rice trade (milled basis): Exports and imports of selected countries 

or regions, 2001 to present: Table24.xlsx. Available at: 

http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1229 

[Accessed 15th November, 2016].  

USDA (2016b). Rice: World Markets and Trade. Available at: 

https://apps.fas.usda.gov/psdonline/circulars/grain-rice.pdf [Accessed 15th November, 

2016] 

Wadud, A. (2003). Technical, Allocative, and Economic Efficiency of Farms in Bangladesh: 

A Stochastic Frontier and DEA Approach. The Journal of Developing Areas, 37 (1), pp. 109 

– 126.  

Wadud, A. and White, B. (2000). Farm Household Efficiency in Bangladesh: a Comparison 

of Stochastic Frontier and DEA Methods. Applied Economics, 32,  

pp. 1665 – 1673.   

Watkins, K. B., Hristovska, T., Mazzanti, R., Wilson, C. E., Jr., and Schmidt, L. (2014). 

Measurement of Technical, Allocative, Economic and Scale Efficiency of Rice Production 

in Arkansas Using Data Envelopment Analysis. Journal of Agricultural and Applied 

Economics, 46(1), pp. 89 – 106. 

Wilson, P. W. (1993), Detecting Outliers in Deterministic Nonparametric Frontier Models 

with Multiple Outputs. Journal of Business & Economic Statistics, 11 (3),  

pp. 319 – 323. doi: http://dx.doi.org/10.2307/1391956 

Wilson, P. W. (1995), Detecting Influential Observations in Data Envelopment Analysis. 

The Journal of Productivity Analysis, 6, pp. 27 – 45.  

Wilson, P. W. (2008), "FEAR : A Software Package for Frontier Efficiency Analysis with 

R," Socio-Economic Planning Sciences, 42, pp. 247 – 254. 

http://www.greenpeace.to/publications/GPSEA_agrochemical-use-in-thailand.pdf
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1229
https://apps.fas.usda.gov/psdonline/circulars/grain-rice.pdf
http://dx.doi.org/10.2307/1391956


 

162 

Wilson, P. W. (2010), Detecting Outliers in Deterministic Nonparametric Frontier Models 

with Multiple Outputs: Correction. Unpublished working paper. Department of Economics, 

Clemson University, Clemson, South Carolina 29634. Available from: 

http://www.clemson.edu/economics/faculty/wilson/Papers/ap-corrected.pdf. 

Yadav, S. N., Peterson, W., and Easter, K. W.  (1997). Do Farmers Overuse Nitrogen 

Fertilizer to The Detriment of the Environment?. Environmental and Resource Economics, 

9(3), pp. 323 – 340. 

Zahidul Islam, K. M., Bäckman, S., and Sumelius, J. (2011). Technical, Economic and 

Allocative Efficiency of Microfinance Borrowers and Non-Borrowers: Evidence from 

Peasant Farming in Bangladesh. European Journal of Social Sciences, 18 (3),  

pp. 361 – 377.  

Zofio, J. L., Pastor, J. T., and Aparicio, J. (2013). The Directional Profit Efficiency Measure: 

on Why Profit Inefficiency is either Technical or Allocative. Journal of Productivity 

Analysis, 40, pp. 257 – 266. doi: 10.1007/s11123-012-0292-0. 

http://www.clemson.edu/economics/faculty/wilson/Papers/ap-corrected.pdf


 

163 

Appendices 

Appendix A Identifying outliers using the data cloud method for technical efficiency 

analysis 

Jasmine rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 34               0.1304 

2 35 34              0.0283 

3 35 70 34             0.0063 

4 16 35 70 34            0.0021 

5 16 69 35 70 34           0.0008 

6 16 75 60 35 70 34          0.0003 

7 16 75 60 69 35 70 34         0.0001 

8 33 16 75 60 69 35 70 34        0.0001 
9 33 7 16 75 60 69 35 70 34       0.0000 

10 33 15 7 16 75 60 69 35 70 34      0.0000 

11 55 33 15 7 16 75 60 69 35 70 34     0.0000 

12 55 33 15 12 7 16 75 60 69 35 70 34    0.0000 

13 55 33 53 15 12 7 16 75 60 69 35 70 34   0.0000 

14 38 57 33 15 41 12 7 16 75 60 69 35 70 34  0.0000 

15 46 38 57 33 15 41 12 7 16 75 60 69 35 70 34 0.0000 

 

 
 
 

 

r Deleted observations (Northeast) 𝑅𝑚𝑖𝑛
(𝑟)

 

1 173               0.1081 

2 169 173              0.0079 

3 169 94 173             0.0021 

4 169 167 94 173            0.0011 

5 169 189 167 94 173           0.0004 

6 169 93 189 167 94 173          0.0002 

7 169 93 189 167 166 94 173         0.0001 

8 169 93 189 167 178 166 94 173        0.0000 

9 169 119 93 189 167 178 166 94 173       0.0000 

10 169 68 119 93 189 167 178 166 94 173      0.0000 

11 169 68 125 119 93 189 167 178 166 94 173     0.0000 

12 169 68 125 43 119 93 189 167 178 166 94 173    0.0000 

13 169 68 135 125 43 119 93 189 167 178 166 94 173   0.0000 

14 169 68 91 135 125 43 119 93 189 167 178 166 94 173  0.0000 

15 169 68 131 91 135 125 43 119 93 189 167 178 166 94 173 0.0000 

 

 
 
 

 

r Deleted observations (Central) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 6               0.1872 

2 32 6              0.0405 

3 4 32 6             0.0091 

4 23 4 32 6            0.0025 

5 34 3 4 32 6           0.0007 
6 10 33 11 4 32 6          0.0002 

7 10 45 33 40 34 11 6         0.0000 

8 10 45 33 40 34 11 4 6        0.0000 

9 10 45 33 40 34 11 4 32 6       0.0000 

10 10 45 33 40 34 11 3 4 32 6      0.0000 

11 10 45 33 40 34 11 3 23 4 32 6     0.0000 

12 8 10 9 45 33 40 34 11 3 4 32 6    0.0000 

13 8 10 9 45 33 40 34 11 3 23 4 32 6   0.0000 

14 8 10 9 45 52 33 40 34 11 3 23 4 32 6  0.0000 

15 8 10 9 45 22 52 33 40 34 11 3 23 4 32 6 0.0000 

 

Non-jasmine rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 62               0.1711 

2 78 62              0.0407 

3 97 78 62             0.0111 

4 121 97 78 62            0.0033 

5 161 121 97 78 62           0.0020 

6 161 162 121 97 78 62          0.0010 

7 161 162 118 121 97 78 62         0.0006 

8 151 161 162 118 121 97 78 62        0.0003 

9 151 79 161 162 118 121 97 78 62       0.0002 

10 151 123 79 161 162 118 121 97 78 62      0.0001 
11 151 119 123 79 161 162 118 121 97 78 62     0.0001 

12 151 119 123 75 79 161 162 118 121 97 78 62    0.0000 

13 151 119 123 135 75 79 161 162 118 121 97 78 62   0.0000 

14 151 119 55 123 135 75 79 161 162 118 121 97 78 62  0.0000 

15 151 106 119 55 123 135 75 79 161 162 118 121 97 78 62 0.0000 

 

 

 

 

Number of deleted farms (r) 

North 

Northeast 

Number of deleted farms (r) 

Central 

Number of deleted farms (r) 

Number of deleted farms (r) 

North 



 

164 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 
 

 

r Deleted observations (Northeast) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 70               0.1003 

2 62 70              0.0134 

3 62 16 70             0.0017 

4 17 62 16 70            0.0004 

5 17 18 62 16 70           0.0001 

6 32 17 18 62 16 70          0.0000 

7 42 17 45 18 62 16 70         0.0000 

8 42 32 17 45 18 62 16 70        0.0000 

9 21 20 42 17 45 18 62 16 70       0.0000 
10 21 20 42 32 17 45 18 62 16 70      0.0000 

11 21 20 42 32 30 17 45 18 62 16 70     0.0000 

12 21 50 20 42 32 30 17 45 18 62 16 70    0.0000 

13 21 50 20 35 42 32 30 17 45 18 62 16 70   0.0000 

14 21 50 56 20 35 42 32 30 17 45 18 62 16 70  0.0000 

15 21 40 50 56 20 35 42 32 30 17 45 18 62 16 70 0.0000 

 

 
 

 

r Deleted observations (Central) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 92               0.4583 

2 209 208              0.1299 

3 209 208 92             0.0595 

4 218 209 208 92            0.0288 

5 218 209 134 208 92           0.0167 

6 218 209 20 134 208 92          0.0096 

7 218 34 209 20 134 208 92         0.0056 

8 218 34 209 20 133 134 208 92        0.0033 
9 218 34 209 20 190 133 134 208 92       0.0021 

10 218 179 174 34 209 20 133 134 208 92      0.0013 

11 218 179 174 34 209 20 190 133 134 208 92     0.0008 

12 218 179 174 146 34 209 20 190 133 134 208 92    0.0005 

13 137 218 179 174 146 34 209 20 190 133 134 208 92   0.0003 

14 137 218 189 179 174 146 34 209 20 190 133 134 208 92  0.0002 

15 137 218 189 201 179 174 146 34 209 20 190 133 134 208 92 0.0002 

 

 
 
 

 

r Deleted observations (South) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 39               0.1261 

2 38 39              0.0177 

3 38 9 39             0.0025 

4 47 38 9 39            0.0006 

5 35 47 38 9 39           0.0001 

6 78 35 47 38 9 39          0.0000 

7 46 78 35 47 38 9 39         0.0000 

8 46 78 35 47 43 38 9 39        0.0000 

9 46 78 69 35 47 43 38 9 39       0.0000 

10 34 46 78 69 35 47 43 38 9 39      0.0000 

11 76 34 46 37 78 35 47 43 38 9 39     0.0000 

12 76 34 46 37 78 69 35 47 43 38 9 39    0.0000 

13 33 76 34 46 37 78 69 35 47 43 38 9 39   0.0000 

14 32 76 34 46 10 37 78 69 35 47 43 38 9 39  0.0000 

15 2 32 76 34 46 10 37 78 69 35 47 43 38 9 39 0.0000 

 

Glutinous rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 46               0.0565 

2 6 46              0.0135 

3 7 6 46             0.0048 

4 76 7 6 46            0.0022 

5 51 76 7 6 46           0.0010 

6 78 80 76 7 6 46          0.0004 

7 78 80 13 76 7 6 46         0.0002 

8 78 80 13 51 76 7 6 46        0.0001 

9 78 80 94 13 51 76 7 6 46       0.0000 

10 1 78 80 94 13 51 76 7 6 46      0.0000 
11 78 80 52 74 94 13 51 76 7 6 46     0.0000 

12 35 78 80 52 74 94 13 51 76 7 6 46    0.0000 

13 35 1 78 80 52 74 94 13 51 76 7 6 46   0.0000 

14 35 78 98 80 99 52 74 94 13 51 76 7 6 46  0.0000 

15 35 1 78 98 80 99 52 74 94 13 51 76 7 6 46 0.0000 

 

 
 
 

 

r Deleted observations 𝑹𝒎𝒊𝒏
(𝒓)

 

1 90               0.5803 

2 146 49              0.3487 

3 146 49 90             0.2021 

4 180 146 49 90            0.1279 

5 87 180 146 49 90           0.0814 

6 181 87 180 146 49 90          0.0558 

7 181 87 35 180 146 49 90         0.0379 

8 181 87 35 101 180 146 49 90        0.0262 

9 181 87 12 35 101 180 146 49 90       0.0182 

10 181 43 46 87 35 101 180 146 49 90      0.0130 

11 181 43 46 87 12 35 101 180 146 49 90     0.0090 

12 181 43 98 46 87 12 35 101 180 146 49 90    0.0066 

13 181 43 98 46 87 118 12 35 101 180 146 49 90   0.0049 

14 181 43 98 46 87 71 118 12 35 101 180 146 49 90  0.0037 

15 181 43 98 46 74 87 71 118 12 35 101 180 146 49 90 0.0028 

 

 

Northeast 

Number of deleted farms (r) 

Central 

Number of deleted farms (r) 

Number of deleted farms (r) 

North 

Northeast 

Number of deleted farms (r) 

South 

Number of deleted farms (r) 
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Appendix B Identifying outliers using the data cloud method for environmental 

(nitrogen surplus) efficiency analysis 

Jasmine rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 26               0.5848 

2 29 26              0.3050 

3 12 29 26             0.1811 

4 12 13 29 26            0.1154 

5 12 13 31 29 26           0.0736 

6 9 12 13 31 29 26          0.0552 

7 17 19 12 13 31 29 26         0.0390 
8 27 9 2 12 13 31 29 26        0.0266 

9 27 9 10 2 12 13 31 29 26       0.0180 

10 27 9 10 2 17 12 13 31 29 26      0.0129 

11 27 9 14 10 4 2 12 13 31 29 26     0.0082 

12 27 9 16 14 10 4 2 12 13 31 29 26    0.0048 

13 27 9 16 14 10 4 25 2 12 13 31 29 26   0.0031 

14 27 9 16 14 10 4 6 25 2 12 13 31 29 26  0.0019 

15 27 9 16 14 10 4 11 6 25 2 12 13 31 29 26 0.0009 

 

 
 
 

 

r Deleted observations (Northeast) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 73               0.7724 

2 95 66              0.5925 

3 96 95 66             0.4537 
4 91 95 66 73            0.3472 

5 96 91 95 66 73           0.2642 

6 99 96 91 95 66 73          0.2022 

7 97 99 96 91 95 66 73         0.1623 

8 97 36 99 96 91 95 66 73        0.1245 

9 97 36 99 96 139 91 95 66 73       0.1031 

10 97 36 42 99 96 139 91 95 66 73      0.0849 

11 97 36 40 42 99 96 139 91 95 66 73     0.0713 

12 27 97 36 40 42 99 96 139 91 95 66 73    0.0621 

13 85 27 97 36 40 42 99 96 139 91 95 66 73   0.0542 

14 109 85 27 97 36 40 42 99 96 139 91 95 66 73  0.0476 
15 109 94 85 27 97 36 40 42 99 96 139 91 95 66 73 0.0419 

 

 
 

 

r Deleted observations (Central) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 26               0.4116 

2 27 26              0.1850 

3 33 27 26             0.1103 
4 35 33 27 26            0.0680 

5 34 35 33 27 26           0.0434 

6 31 34 35 33 27 26          0.0250 

7 31 34 17 35 33 27 26         0.0144 

8 5 31 34 17 35 33 27 26        0.0086 

9 4 5 31 34 17 35 33 27 26       0.0056 

10 4 5 31 34 17 1 35 33 27 26      0.0038 

11 4 5 31 8 28 34 17 35 33 27 26     0.0025 

12 4 5 6 31 8 28 34 17 35 33 27 26    0.0016 

13 4 5 6 31 8 28 34 17 1 35 33 27 26   0.0009 

14 4 5 30 6 31 8 28 34 17 1 35 33 27 26  0.0005 
15 4 5 30 18 6 31 8 28 34 17 1 35 33 27 26 0.0003 

 

Non-jasmine rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 48               0.7433 

2 51 48              0.5872 

3 92 51 48             0.4579 

4 52 92 51 48            0.3645 

5 82 52 92 51 48           0.2881 

6 82 19 52 92 51 48          0.2405 

7 7 82 19 52 92 51 48         0.2047 

8 4 7 82 19 52 92 51 48        0.1724 

9 107 4 7 82 19 52 92 51 48       0.1474 

10 107 4 23 7 82 19 52 92 51 48      0.1288 

11 107 2 4 23 7 82 19 52 92 51 48     0.1120 

12 85 107 2 4 23 7 82 19 52 92 51 48    0.0979 

13 85 107 2 4 42 23 7 82 19 52 92 51 48   0.0855 
14 85 107 44 2 4 42 23 7 82 19 52 92 51 48  0.0750 

15 49 85 107 44 2 4 42 23 7 82 19 52 92 51 48 0.0658 

 

 
 

 

r Deleted observations (Northeast) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 28               0.5258 

2 16 28              0.3691 

3 29 16 28             0.2477 

4 37 29 16 28            0.1830 
5 37 46 29 16 28           0.1359 

6 37 32 46 29 16 28          0.1025 

7 20 37 32 46 29 16 28         0.0804 

8 25 20 37 32 46 29 16 28        0.0641 

9 25 47 20 37 32 46 29 16 28       0.0518 

10 25 13 2 20 37 32 46 29 16 28      0.0420 

11 6 25 36 47 20 37 32 46 29 16 28     0.0337 

12 30 41 33 40 36 45 47 37 46 29 16 28    0.0257 

13 30 41 33 40 36 45 47 37 32 46 29 16 28   0.0188 

14 30 41 33 40 6 36 45 47 37 32 46 29 16 28  0.0143 

15 30 41 33 40 6 36 3 45 47 37 32 46 29 16 28 0.0108 
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Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 
 

 

r Deleted observations (Central) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 158               0.7445 

2 156 158              0.5986 

3 6 156 158             0.5018 

4 59 6 156 158            0.4311 

5 59 135 6 156 158           0.3649 

6 59 135 162 6 156 158          0.3153 

7 59 135 162 102 6 156 158         0.2743 

8 114 59 135 162 102 6 156 158        0.2373 

9 114 112 59 135 162 102 6 156 158       0.2063 

10 153 114 112 59 135 162 102 6 156 158      0.1823 

11 148 153 114 112 59 135 162 102 6 156 158     0.1606 

12 48 148 153 114 112 59 135 162 102 6 156 158    0.1423 

13 48 80 148 153 114 112 59 135 162 102 6 156 158   0.1261 

14 48 80 110 148 153 114 112 59 135 162 102 6 156 158  0.1124 

15 138 48 80 110 148 153 114 112 59 135 162 102 6 156 158 0.1020 

 

 
 
 

 

r Deleted observations (South) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 20               0.5484 

2 40 20              0.3068 

3 43 40 20             0.2030 

4 47 43 40 20            0.1421 

5 47 4 43 40 20           0.0959 

6 38 47 4 43 40 20          0.0670 

7 38 47 34 4 43 40 20         0.0461 

8 23 38 47 34 4 43 40 20        0.0335 

9 23 38 2 47 34 4 43 40 20       0.0240 

10 48 21 23 38 2 47 4 43 40 20      0.0146 

11 48 21 23 38 2 47 34 4 43 40 20     0.0093 

12 48 21 23 38 2 47 42 34 4 43 40 20    0.0066 

13 48 21 23 38 2 33 47 42 34 4 43 40 20   0.0047 

14 48 21 17 23 38 14 2 47 42 34 4 43 40 20  0.0033 

15 48 21 17 23 38 14 2 33 47 42 34 4 43 40 20 0.0023 

 

Glutinous rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 27               0.5892 

2 31 27              0.2138 

3 15 31 27             0.1191 

4 32 15 31 27            0.0636 

5 32 28 15 31 27           0.0353 

6 26 32 28 15 31 27          0.0223 

7 26 32 23 28 15 31 27         0.0143 

8 30 26 32 23 28 15 31 27        0.0091 

9 30 26 25 32 23 28 15 31 27       0.0055 
10 24 30 26 25 32 23 28 15 31 27      0.0037 

11 30 26 2 25 32 1 23 28 15 31 27     0.0022 

12 30 26 2 25 3 32 1 23 28 15 31 27    0.0014 

13 24 30 26 2 25 3 32 1 23 28 15 31 27   0.0009 

14 21 24 30 26 2 25 3 32 1 23 28 15 31 27  0.0006 

15 21 24 30 26 2 25 5 3 32 1 23 28 15 31 27 0.0004 

 

 
 
 

 

r Deleted observations (Northeast) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 16               0.7892 

2 43 16              0.6187 

3 40 43 16             0.4847 

4 81 40 43 16            0.4222 
5 41 81 40 43 16           0.3644 

6 30 41 81 40 43 16          0.3152 

7 10 30 41 81 40 43 16         0.2664 

8 35 10 30 41 81 40 43 16        0.2299 

9 35 10 30 41 74 81 40 43 16       0.2002 

10 10 89 30 51 118 41 81 40 43 16      0.1735 

11 35 10 89 30 51 118 41 81 40 43 16     0.1494 

12 15 119 10 89 30 51 118 41 81 40 43 16    0.1281 

13 15 119 35 10 89 30 51 118 41 81 40 43 16   0.1095 

14 27 35 122 10 28 30 51 41 12 74 81 40 43 16  0.0943 

15 27 35 122 10 28 30 51 118 41 12 74 81 40 43 16 0.0813 
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Appendix C Identifying outliers using the data cloud method for environmental 

(Phosphorus surplus) efficiency analysis 

Jasmine rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each 

group of observations 

 

 
 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 28               0.6357 

2 32 28              0.3628 

3 21 32 28             0.2144 

4 20 21 32 28            0.1304 

5 20 27 21 32 28           0.0740 

6 20 27 34 21 32 28          0.0489 

7 9 20 27 34 21 32 28         0.0378 

8 24 9 20 27 34 21 32 28        0.0304 

9 33 8 9 20 27 34 21 32 28       0.0243 

10 33 3 8 9 20 27 34 21 32 28      0.0182 

11 33 3 6 8 9 20 27 34 21 32 28     0.0141 
12 10 33 3 6 8 9 20 27 34 21 32 28    0.0108 

13 31 40 33 3 8 24 9 20 27 34 21 32 28   0.0079 

14 31 40 33 3 35 8 24 9 20 27 34 21 32 28  0.0056 

15 31 40 33 3 6 35 8 24 9 20 27 34 21 32 28 0.0042 

 

 
 
 

 

r Deleted observations (Northeast) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 101               0.7203 

2 74 101              0.5615 

3 74 67 101             0.4440 

4 74 97 67 101            0.3460 

5 98 74 97 67 101           0.2732 

6 94 98 74 97 67 101          0.2120 

7 99 94 98 74 97 67 101         0.1714 
8 35 99 94 98 74 97 67 101        0.1376 

9 35 99 92 94 98 74 97 67 101       0.1106 

10 35 99 92 94 98 74 41 97 67 101      0.0896 

11 35 99 92 94 98 140 74 41 97 67 101     0.0722 

12 116 35 99 92 94 98 140 74 41 97 67 101    0.0613 

13 27 116 35 99 92 94 98 140 74 41 97 67 101   0.0510 

14 27 85 116 35 99 92 94 98 140 74 41 97 67 101  0.0427 

15 64 27 85 116 35 99 92 94 98 140 74 41 97 67 101 0.0368 

 

 
 
 

 

r Deleted observations (Central) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 3               0.4764 

2 27 3              0.2327 

3 27 28 3             0.1457 

4 32 27 28 3            0.0826 

5 32 22 27 28 3           0.0470 

6 35 32 22 27 28 3          0.0288 

7 35 32 36 22 38 27 3         0.0159 

8 14 35 32 36 22 38 27 3        0.0074 

9 14 35 32 36 22 38 27 28 3       0.0035 

10 14 35 20 32 36 22 38 27 28 3      0.0021 

11 14 26 35 20 32 36 22 38 27 28 3     0.0015 

12 14 26 35 20 29 32 36 22 38 27 28 3    0.0010 

13 14 26 5 35 20 29 32 36 22 38 27 28 3   0.0007 

14 14 7 26 5 35 20 29 32 36 22 38 27 28 3  0.0004 

15 14 7 26 5 35 1 20 29 32 36 22 38 27 28 3 0.0003 

 

Non-jasmine rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 

 

r Deleted observations 𝑹𝒎𝒊𝒏
(𝒓)

 

1 60               0.7072 

2 40 60              0.5207 

3 84 40 60             0.4099 

4 56 84 40 60            0.3220 

5 56 35 84 40 60           0.2672 

6 23 56 35 84 40 60          0.2141 

7 49 23 56 35 84 40 60         0.1652 

8 51 49 23 56 35 84 40 60        0.1309 

9 51 49 23 4 56 35 84 40 60       0.1063 

10 51 1 49 23 4 56 35 84 40 60      0.0843 

11 51 52 1 49 23 4 56 35 84 40 60     0.0691 

12 51 52 1 49 23 85 4 56 35 84 40 60    0.0591 
13 51 52 36 1 49 23 85 4 56 35 84 40 60   0.0501 

14 51 52 36 1 49 23 85 81 4 56 35 84 40 60  0.0428 

15 51 52 36 22 1 49 23 85 81 4 56 35 84 40 60 0.0369 

 

 
 
 

 

r Deleted observations (Northeast) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 24               0.6160 

2 38 24              0.4157 

3 40 38 24             0.2633 

4 40 41 38 24            0.1772 

5 40 38 25 14 24           0.1195 

6 40 41 38 25 14 24          0.0772 

7 42 40 41 38 25 14 24         0.0496 

8 42 40 41 38 22 25 14 24        0.0321 
9 42 40 41 6 38 22 25 14 24       0.0203 

10 39 42 40 41 6 38 22 25 14 24      0.0132 

11 27 39 42 40 41 6 38 22 25 14 24     0.0091 

12 27 32 39 42 40 41 6 38 22 25 14 24    0.0062 

13 27 32 39 42 4 40 41 6 38 22 25 14 24   0.0044 

14 3 27 21 39 42 4 40 41 6 38 22 25 14 24  0.0028 

15 3 27 21 32 39 42 4 40 41 6 38 22 25 14 24 0.0018 
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Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 

 

r Deleted observations (Central) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 5               0.7588 

2 151 5              0.5862 

3 149 151 5             0.4587 

4 121 149 151 5            0.3741 

5 121 100 149 151 5           0.3144 

6 121 88 100 149 151 5          0.2616 

7 66 121 88 100 149 151 5         0.2257 

8 119 66 121 88 100 149 151 5        0.1950 

9 119 66 97 121 88 100 149 151 5       0.1664 

10 131 119 66 97 121 88 100 149 151 5      0.1456 
11 153 131 119 66 97 121 88 100 149 151 5     0.1272 

12 131 119 66 97 146 141 121 88 100 149 151 5    0.1105 

13 153 131 119 66 97 146 141 121 88 100 149 151 5   0.0960 

14 153 131 62 119 66 97 146 141 121 88 100 149 151 5  0.0848 

15 153 131 62 154 119 66 97 146 141 121 88 100 149 151 5 0.0749 

 

 
 

 

r Deleted observations (South) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 23               0.3151 

2 26 23              0.2048 

3 56 26 23             0.1430 

4 26 43 44 23            0.0907 
5 26 50 43 44 23           0.0630 

6 56 26 50 43 44 23          0.0421 

7 24 56 26 50 43 44 23         0.0275 

8 24 56 26 50 2 43 44 23        0.0185 

9 24 56 26 4 50 2 43 44 23       0.0116 

10 24 59 56 26 4 50 2 43 44 23      0.0084 

11 46 24 59 56 26 4 50 2 43 44 23     0.0060 

12 46 24 59 56 26 14 4 50 2 43 44 23    0.0047 

13 46 24 59 20 56 26 14 4 50 2 43 44 23   0.0035 

14 27 46 24 59 20 56 26 14 4 50 2 43 44 23  0.0027 

15 27 46 19 24 59 20 56 26 14 4 50 2 43 44 23 0.0020 

 

Glutinous rice farms 

Log-ratio plot for outlier identification for each group of observations The values of  𝑹𝒎𝒊𝒏
(𝒓)

 and the farm number to be deleted in each group 

of observations 

 

 
 

 

r Deleted observations (North) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 31               0.5936 

2 49 31              0.4288 

3 49 40 31             0.2953 

4 48 49 40 31            0.1993 

5 47 48 49 40 31           0.1403 

6 47 21 48 49 40 31          0.0958 

7 2 47 21 48 49 40 31         0.0676 

8 39 38 47 21 48 49 40 31        0.0467 

9 2 39 38 47 21 48 49 40 31       0.0271 

10 2 39 38 47 18 21 48 49 40 31      0.0203 

11 2 39 38 47 24 18 21 48 49 40 31     0.0138 

12 2 26 39 38 47 24 18 21 48 49 40 31    0.0099 

13 2 25 39 38 47 9 24 18 21 48 49 40 31   0.0065 

14 10 2 25 39 38 47 9 24 18 21 48 49 40 31  0.0046 

15 4 2 26 25 39 38 47 9 24 18 21 48 49 40 31 0.0031 

 

 
 
 

 

r Deleted observations (Northeast) 𝑹𝒎𝒊𝒏
(𝒓)

 

1 51               0.8091 

2 58 51              0.6558 

3 49 58 51             0.5440 

4 64 49 58 51            0.4764 

5 50 64 49 58 51           0.4210 

6 122 50 64 49 58 51          0.3761 

7 15 50 88 64 49 58 51         0.3336 

8 15 37 50 88 64 49 58 51        0.2934 
9 15 37 122 50 88 64 49 58 51       0.2617 

10 44 15 37 122 50 88 64 49 58 51      0.2326 

11 44 15 37 122 50 30 88 64 49 58 51     0.2087 

12 44 15 37 122 50 17 30 88 64 49 58 51    0.1866 

13 44 15 37 35 122 50 17 30 88 64 49 58 51   0.1656 

14 44 34 15 37 35 122 50 17 30 88 64 49 58 51  0.1468 

15 44 34 133 15 37 35 122 50 17 30 88 64 49 58 51 0.1290 
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Appendix D Efficiency results of each farm in the sample data 

Tables D.1 to Table D.9 present the results of calculating the technical and environmental 

inefficiency of each farm in the Thai rice sample and its ranking using the different efficiency 

measures (DDF1 – DDF4, NSMM, and PSMM), the scale efficiency of each farm and its 

returns to scale estimated by the input-oriented DEA.  

DDF1 denotes the directional distance function measure with the direction towards observed 

farms’ individual inputs used, holding the output fixed (Input-oriented DEA). The technical 

inefficiency score of each farm obtained from the DDF1 model is equal to one minus the TE 

score of each farm obtained from the input-oriented DEA model. DDF2 denotes the 

directional distance function measure with the direction towards observed farms’ individual 

output produced, holding all inputs fixed (Output-oriented DEA). The technical inefficiency 

score of each farm obtained from the DDF2 model is equal to the TE score of each farm 

obtained from the output-oriented DEA mode minus one. DDF3 denotes the directional 

distance function measure with the direction towards observed farms’ individual inputs used 

and output produced. DDF4 denotes the directional distance function measure with the 

direction towards the profit maximisation benchmark. NSMM denotes the Nitrogen Surplus 

Minimisation Model. It is used to measure NS efficiency of the farmers in each group, using 

the directional nutrient surplus efficiency measure with the directional vector towards the 

nitrogen surplus minimising frontier. PSMM denotes the Phosphorus Surplus Minimisation 

Model. It is used to measure PS efficiency of farmers in each group, using the directional 

nutrient surplus efficiency measure with the directional vector towards the phosphorus 

surplus minimising frontier. SE, RTS, CRS, IRS, and DRS denote scale efficiency, returns 

to scale, constant returns to scale, increasing returns to scale and decreasing returns to scale, 

respectively. 
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Table D.1 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of jasmine rice farms in the Northern region  

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Chiangrai 0.014 48 0.014 48 0.007 48 97,680 26 N.A.   56.80 26 0.998 IRS 

2 Chiangrai 0.000 1 0.000 1 0.000 1 94,354 23 11.18 6 18.82 9 1.000 CRS 

3 Chiangrai 0.000 1 0.000 1 0.000 1 117,212 62 N.A.   N.A.   1.000 CRS 

4 Chiangrai 0.000 1 0.000 1 0.000 1 103,971 44 O   O   1.000 CRS 

5 Chiangrai 0.000 1 0.000 1 0.000 1 105,438 49 0.00 1 N.A.   1.000 CRS 

6 Phayao 0.000 1 0.000 1 0.000 1 70,409 7 N.A.   26.11 16 1.000 CRS 

7 Phayao 0.044 54 0.046 54 0.023 54 97,242 25 N.A.   36.50 19 0.975 DRS 

8 Phayao 0.000 1 0.000 1 0.000 1 78,549 12 N.A.   52.16 22 1.000 CRS 

9 Lampang 0.000 1 0.000 1 0.000 1 102,268 36 N.A.   15.65 8 1.000 CRS 

10 Lampang 0.000 1 0.000 1 0.000 1 71,767 8 N.A.   O   1.000 CRS 

11 Lampang 0.000 1 0.000 1 0.000 1 69,237 6 N.A.   O   1.000 CRS 

12 Lampang 0.000 1 0.000 1 0.000 1 106,946 51 N.A.   N.A.   1.000 CRS 

13 Lamphun 0.000 1 0.000 1 0.000 1 94,360 24 N.A.   46.28 20 1.000 CRS 

14 Chiangmai 0.037 51 0.038 51 0.019 51 87,068 18 O   50.12 21 0.994 DRS 

15 Chiangmai 0.043 53 0.045 53 0.022 53 104,747 46 9.73 5 25.14 15 0.957 IRS 

16 Maehongson 0.110 59 0.124 59 0.058 59 107,289 53 N.A.   N.A.   0.948 IRS 

17 Maehongson 0.073 58 0.079 58 0.038 58 99,414 30 N.A.   30.03 18 0.999 DRS 

18 Maehongson 0.000 1 0.000 1 0.000 1 101,893 34 N.A.   9.30 3 1.000 CRS 

19 Maehongson 0.000 1 0.000 1 0.000 1 107,587 55 N.A.   N.A.   1.000 CRS 

20 Maehongson 0.000 1 0.000 1 0.000 1 103,214 40 N.A.   9.30 4 1.000 CRS 

21 Tak 0.000 1 0.000 1 0.000 1 117,704 63 O   N.A.   1.000 CRS 

22 Tak 0.201 62 0.252 62 0.112 62 102,087 35 N.A.   13.32 6 0.981 DRS 

23 Tak 0.000 1 0.000 1 0.000 1 107,536 54 N.A.   N.A.   1.000 CRS 

24 Kamphaengphet 0.172 61 0.208 61 0.094 61 109,059 57 19.99 10 24.12 14 0.828 IRS 

25 Kamphaengphet 0.069 57 0.074 57 0.036 57 102,319 37 34.68 15 10.88 5 0.931 IRS 

26 Kamphaengphet 0.000 1 0.000 1 0.000 1 74,264 10 O   N.A.   1.000 CRS 

27 Kamphaengphet 0.000 1 0.000 1 0.000 1 105,999 50 O   20.18 10 1.000 CRS 

28 Kamphaengphet 0.022 49 0.022 49 0.011 49 83,549 17 O   N.A.   0.982 DRS 

29 Sukhothai 0.012 47 0.012 47 0.006 47 92,329 21 O   O   0.990 DRS 

30 Sukhothai 0.000 1 0.000 1 0.000 1 53,227 5 O   O   1.000 CRS 

31 Phrae 0.000 1 0.000 1 0.000 1 87,597 19 O   56.18 25 1.000 CRS 

32 Phrae 0.000 1 0.000 1 0.000 1 103,584 43 N.A.   N.A.   1.000 CRS 

33 Phrae 0.000 1 0.000 1 0.000 1 111,619 60 5.12 4 14.73 7 1.000 CRS 

34 Phrae 0.047 55 0.049 55 0.024 55 105,347 48 O   O   0.997 IRS 

35 Phrae 0.000 1 0.000 1 0.000 1 108,177 56 N.A.   0.00 1 1.000 CRS 

36 Nan 0.000 1 0.000 1 0.000 1 90,917 20 2.30 3 N.A.   1.000 CRS 

37 Nan 0.000 1 0.000 1 0.000 1 113,288 61 14.82 8 N.A.   1.000 CRS 

38 Nan 0.269 63 0.368 63 0.155 63 110,307 59 N.A.   6.34 2 0.984 IRS 

39 Nan 0.154 60 0.183 60 0.084 60 104,016 45 N.A.   N.A.   0.851 DRS 

40 Nan 0.000 1 0.000 1 0.000 1 83,205 16 19.58 9 N.A.   1.000 CRS 

41 Uttaradit 0.000 1 0.000 1 0.000 1 107,001 52 0.77 2 N.A.   1.000 CRS 

42 Uttaradit 0.000 1 0.000 1 0.000 1 99,226 28 36.59 16 N.A.   1.000 CRS 

43 Uttaradit 0.000 1 0.000 1 0.000 1 100,935 32 24.24 11 N.A.   1.000 CRS 

44 Uttaradit 0.000 1 0.000 1 0.000 1 82,521 15 68.57 21 N.A.   1.000 CRS 

45 Uttaradit 0.000 1 0.000 1 0.000 1 102,793 39 47.60 19 N.A.   1.000 CRS 

46 Phitsanulok 0.350 64 0.538 64 0.212 64 110,100 58 O   O   0.963 DRS 

47 Phichit 0.000 1 0.000 1 0.000 1 0 1 O   O   1.000 CRS 

48 Phichit 0.000 1 0.000 1 0.000 1 46,371 3 O   52.72 23 1.000 CRS 

49 Phichit 0.000 1 0.000 1 0.000 1 53,132 4 N.A.   53.38 24 1.000 CRS 

50 Phichit 0.000 1 0.000 1 0.000 1 81,958 14 33.86 14 O   1.000 CRS 

51 Phichit 0.000 1 0.000 1 0.000 1 103,476 42 N.A.   N.A.   1.000 CRS 

52 Phichit 0.063 56 0.067 56 0.033 56 119,770 64 O   O   0.937 DRS 

53 Uthaithani 0.000 1 0.000 1 0.000 1 72,660 9 49.29 20 N.A.   1.000 CRS 

54 Uthaithani 0.000 1 0.000 1 0.000 1 34,162 2 O   N.A.   1.000 CRS 

55 Uthaithani 0.000 1 0.000 1 0.000 1 78,775 13 N.A.   O   1.000 CRS 

56 Uthaithani 0.040 52 0.042 52 0.020 52 75,115 11 42.32 18 O   0.989 DRS 

57 Uthaithani 0.000 1 0.000 1 0.000 1 99,295 29 N.A.   O   1.000 CRS 

58 Phetchabun 0.000 1 0.000 1 0.000 1 101,062 33 N.A.   N.A.   1.000 CRS 

59 Phetchabun 0.000 1 0.000 1 0.000 1 92,448 22 N.A.   N.A.   1.000 CRS 

60 Phetchabun 0.000 1 0.000 1 0.000 1 103,389 41 27.55 13 21.07 12 1.000 CRS 

61 Phetchabun 0.023 50 0.024 50 0.012 50 104,899 47 24.81 12 22.56 13 1.000 CRS 

62 Phetchabun 0.000 1 0.000 1 0.000 1 98,038 27 14.35 7 29.10 17 1.000 CRS 

63 Phetchabun 0.000 1 0.000 1 0.000 1 100,876 31 40.41 17 20.32 11 1.000 CRS 

64 Phetchabun 0.009 46 0.009 46 0.004 46 102,769 38 N.A.   O   0.994 IRS 

Note that DDF1 – DDF3 models are estimated under the assumption of CRS; DDF4, NSMM and PSMM are estimated under the 

assumption of VRS. N.A. denotes the farm had negative NS or negative PS. O denotes the farm is an outlier for NSMM or PSMM.   
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Table D.2 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of jasmine rice farms in the North-eastern 

region  

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Loei 0.208 147 0.262 147 0.116 147 89,593 41 N.A.   N.A.   0.943 IRS 

2 Loei 0.207 146 0.261 146 0.116 146 89,829 42 N.A.   N.A.   0.956 IRS 

3 Loei 0.203 136 0.255 136 0.113 136 98,194 108 1.32 9 1.59 11 0.858 IRS 

4 Loei 0.204 139 0.256 139 0.113 139 98,580 112 1.29 8 6.35 36 0.899 IRS 

5 Loei 0.203 137 0.255 137 0.113 137 97,966 106 1.37 10 6.94 38 0.797 IRS 

6 Loei 0.205 143 0.258 143 0.114 143 87,756 32 N.A.   N.A.   0.953 IRS 

7 Loei 0.203 138 0.255 138 0.113 138 96,434 92 2.72 17 4.31 27 0.953 IRS 

8 Nongbualamphu 0.000 1 0.000 1 0.000 1 94,190 67 N.A.   N.A.   1.000 CRS 

9 Nongbualamphu 0.275 171 0.380 171 0.160 171 100,375 138 2.80 18 11.37 51 0.927 IRS 

10 Nongbualamphu 0.270 169 0.370 169 0.156 169 101,150 146 50.87 87 49.40 106 0.991 IRS 

11 Nongbualamphu 0.260 167 0.352 167 0.150 167 82,637 19 173.66 120 66.19 113 0.898 DRS 

12 Nongbualamphu 0.114 79 0.128 79 0.060 79 101,769 153 N.A.   N.A.   0.886 IRS 

13 Nongbualamphu 0.239 162 0.314 162 0.136 162 93,047 59 71.04 96 N.A.   0.861 DRS 

14 Nongbualamphu 0.267 168 0.364 168 0.154 168 84,634 26 N.A.   4.11 26 0.954 DRS 

15 Nongbualamphu 0.275 172 0.380 172 0.160 172 100,676 140 10.07 30 16.96 69 0.946 IRS 

16 Nongbualamphu 0.245 165 0.325 165 0.140 165 99,771 127 1.01 5 0.68 4 0.755 IRS 

17 Nongbualamphu 0.274 170 0.377 170 0.159 170 99,281 120 1.50 12 1.53 10 0.808 IRS 

18 Udonthani 0.211 152 0.267 152 0.118 152 101,279 147 2.03 13 4.46 28 0.868 IRS 

19 Udonthani 0.095 76 0.104 76 0.050 76 98,270 109 1.15 7 N.A.   0.953 IRS 

20 Udonthani 0.000 1 0.000 1 0.000 1 96,794 95 5.55 21 N.A.   1.000 CRS 

21 Udonthani 0.000 1 0.000 1 0.000 1 97,614 100 21.86 57 14.13 58 1.000 CRS 

22 Udonthani 0.168 114 0.201 114 0.092 114 98,951 116 23.18 60 22.54 78 0.995 DRS 

23 Udonthani 0.204 142 0.256 142 0.113 142 100,783 143 6.13 24 7.97 45 0.928 IRS 

24 Udonthani 0.207 144 0.260 144 0.115 144 94,494 71 N.A.   3.75 24 0.981 IRS 

25 Udonthani 0.209 150 0.263 150 0.116 150 105,861 172 74.17 98 19.64 72 0.999 DRS 

26 Udonthani 0.208 148 0.262 148 0.116 148 101,756 152 12.94 35 16.18 66 0.993 DRS 

27 Udonthani 0.164 113 0.196 113 0.089 113 95,901 82 N.A.   5.79 35 0.984 IRS 

28 Udonthani 0.156 111 0.184 111 0.084 111 103,532 165 115.50 112 21.25 76 0.973 DRS 

29 Udonthani 0.204 141 0.256 141 0.113 141 102,244 155 2.31 15 3.46 19 0.934 IRS 

30 Udonthani 0.211 153 0.267 153 0.118 153 100,200 133 16.58 45 0.70 5 0.949 IRS 

31 Udonthani 0.203 135 0.254 135 0.113 135 99,420 121 0.92 4 N.A.   0.855 IRS 

32 Nongkhai 0.280 178 0.388 178 0.163 178 106,840 175 31.05 69 2.32 13 1.000 CRS 

33 Nongkhai 0.277 173 0.384 173 0.161 173 115,585 185 152.00 119 28.99 85 1.000 CRS 

34 Nongkhai 0.277 175 0.384 175 0.161 175 103,345 164 15.01 40 41.17 99 0.994 IRS 

35 Nongkhai 0.279 177 0.386 177 0.162 177 113,596 182 O   52.03 109 0.978 DRS 

36 Nongkhai 0.278 176 0.385 176 0.162 176 106,610 174 87.62 102 O   0.945 DRS 

37 Nongkhai 0.280 179 0.390 179 0.163 179 113,107 181 46.65 84 86.55 118 1.000 CRS 

38 Nongkhai 0.277 174 0.384 174 0.161 174 103,269 163 39.52 76 92.45 120 0.922 DRS 

39 Sakonnakhon 0.190 127 0.235 127 0.105 127 75,124 9 9.13 29 60.82 112 0.913 DRS 

40 Sakonnakhon 0.187 121 0.231 121 0.103 121 76,648 11 16.19 43 28.30 84 0.813 DRS 

41 Sakonnakhon 0.190 125 0.234 125 0.105 125 43,991 5 57.97 88 109.97 125 0.810 DRS 

42 Sakonnakhon 0.188 122 0.232 122 0.104 122 116,475 186 45.10 83 86.03 117 1.000 CRS 

43 Sakonnakhon 0.189 124 0.234 124 0.105 124 88,330 36 77.23 99 5.78 34 0.984 DRS 

44 Sakonnakhon 0.142 97 0.165 97 0.076 97 35,706 3 O   O   0.858 DRS 

45 Sakonnakhon 0.190 126 0.235 126 0.105 126 100,215 134 141.36 117 16.31 67 0.999 IRS 

46 Sakonnakhon 0.122 84 0.139 84 0.065 84 91,586 52 41.48 81 22.87 79 0.974 DRS 

47 Nakhonphanom 0.297 181 0.422 181 0.174 181 100,370 137 N.A.   N.A.   0.843 DRS 

48 Nakhonphanom 0.225 160 0.290 160 0.127 160 88,684 37 N.A.   1.41 7 0.875 DRS 

49 Nakhonphanom 0.239 163 0.315 163 0.136 163 95,699 79 23.27 61 8.96 48 0.998 DRS 

50 Nakhonphanom 0.310 183 0.449 183 0.183 183 84,613 25 O   N.A.   0.690 DRS 

51 Nakhonphanom 0.341 189 0.517 189 0.205 189 110,335 178 66.87 93 11.46 52 1.000 CRS 

52 Nakhonphanom 0.340 188 0.516 188 0.205 188 106,157 173 O   O   0.830 DRS 

53 Nakhonphanom 0.340 185 0.514 185 0.205 185 103,044 160 10.27 31 N.A.   0.976 IRS 

54 Nakhonphanom 0.147 105 0.172 105 0.079 105 95,925 83 N.A.   4.92 30 0.991 DRS 

55 Nakhonphanom 0.323 184 0.478 184 0.193 184 102,019 154 109.67 109 7.42 42 0.903 DRS 

56 Nakhonphanom 0.306 182 0.441 182 0.181 182 95,567 78 6.07 23 3.51 21 0.989 DRS 

57 Nakhonphanom 0.288 180 0.405 180 0.168 180 94,833 75 16.10 42 5.50 33 0.999 DRS 

58 Nakhonphanom 0.340 187 0.515 187 0.205 187 94,868 76 N.A.   N.A.   0.997 IRS 

59 Nakhonphanom 0.340 186 0.514 186 0.205 186 94,785 74 N.A.   N.A.   0.999 IRS 

60 Mukdahan 0.168 116 0.202 116 0.092 116 98,780 114 N.A.   N.A.   1.000 CRS 

61 Mukdahan 0.000 1 0.000 1 0.000 1 85,399 28 5.10 20 13.77 57 1.000 CRS 

62 Mukdahan 0.199 132 0.249 132 0.111 132 70,614 8 40.22 78 N.A.   0.801 DRS 

63 Mukdahan 0.208 149 0.262 149 0.116 149 92,971 58 N.A.   14.35 61 0.988 IRS 

64 Mukdahan 0.209 151 0.264 151 0.117 151 95,742 81 N.A.   0.24 3 0.976 IRS 

65 Mukdahan 0.207 145 0.261 145 0.115 145 97,299 98 23.91 63 9.32 49 0.997 DRS 

66 Mukdahan 0.212 154 0.270 154 0.119 154 96,593 94 34.36 70 15.19 64 0.988 IRS 

67 Yasothon 0.240 164 0.316 164 0.136 164 97,757 104 N.A.   3.49 20 0.979 IRS 

68 Yasothon 0.000 1 0.000 1 0.000 1 97,620 101 N.A.   6.79 37 1.000 CRS 

69 Yasothon 0.000 1 0.000 1 0.000 1 90,575 46 N.A.   N.A.   1.000 CRS 
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Table D.2 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

70 Yasothon 0.247 166 0.328 166 0.141 166 102,311 156 N.A.   N.A.   0.976 IRS 

71 Yasothon 0.139 93 0.161 93 0.075 93 101,518 151 19.44 54 23.04 80 0.861 IRS 

72 Yasothon 0.223 159 0.287 159 0.125 159 100,103 130 13.56 36 17.92 71 0.916 IRS 

73 Amnatcharoen 0.144 100 0.168 100 0.078 100 101,030 144 28.02 66 44.22 102 0.951 IRS 

74 Amnatcharoen 0.000 1 0.000 1 0.000 1 39,306 4 N.A.   N.A.   1.000 CRS 

75 Amnatcharoen 0.154 110 0.182 110 0.083 110 114,235 183 73.77 97 56.34 111 0.959 DRS 

76 Amnatcharoen 0.000 1 0.000 1 0.000 1 97,577 99 N.A.   8.82 47 1.000 CRS 

77 Amnatcharoen 0.013 57 0.013 57 0.007 57 103,244 162 29.07 67 39.69 95 0.996 IRS 

78 Amnatcharoen 0.043 65 0.045 65 0.022 65 100,571 139 58.60 89 2.90 16 0.957 DRS 

79 Amnatcharoen 0.201 133 0.252 133 0.112 133 79,835 15 N.A.   32.40 87 0.799 DRS 

80 Amnatcharoen 0.192 128 0.238 128 0.106 128 101,474 150 19.37 53 N.A.   0.861 IRS 

81 Amnatcharoen 0.180 119 0.220 119 0.099 119 98,629 113 35.64 72 51.67 108 0.994 DRS 

82 Ubonratchathani 0.128 87 0.146 87 0.068 87 107,381 176 61.41 90 97.14 121 0.995 DRS 

83 Ubonratchathani 0.193 129 0.239 129 0.107 129 94,328 68 2.56 16 N.A.   0.983 IRS 

84 Ubonratchathani 0.140 95 0.163 95 0.075 95 99,509 123 0.47 2 7.02 39 0.988 IRS 

85 Ubonratchathani 0.051 70 0.054 70 0.026 70 100,751 141 14.33 39 N.A.   0.949 IRS 

86 Ubonratchathani 0.000 1 0.000 1 0.000 1 96,169 88 11.33 34 1.53 9 1.000 CRS 

87 Ubonratchathani 0.181 120 0.221 120 0.100 120 96,167 87 97.74 105 25.24 82 0.998 DRS 

88 Ubonratchathani 0.000 1 0.000 1 0.000 1 90,747 47 N.A.   N.A.   1.000 CRS 

89 Ubonratchathani 0.000 1 0.000 1 0.000 1 97,745 103 89.94 103 12.45 54 1.000 CRS 

90 Ubonratchathani 0.144 99 0.168 99 0.077 99 0 1 O   O   0.856 DRS 

91 Ubonratchathani 0.000 1 0.000 1 0.000 1 95,930 84 17.84 49 N.A.   1.000 CRS 

92 Ubonratchathani 0.117 81 0.133 81 0.062 81 94,701 72 77.73 100 31.91 86 0.924 DRS 

93 Ubonratchathani 0.199 131 0.248 131 0.110 131 90,093 43 16.69 46 12.59 55 1.000 DRS 

94 Ubonratchathani 0.179 117 0.218 117 0.098 117 101,301 148 17.64 48 5.10 31 0.987 IRS 

95 Ubonratchathani 0.000 1 0.000 1 0.000 1 86,033 29 N.A.   0.00 1 1.000 CRS 

96 Ubonratchathani 0.148 106 0.174 106 0.080 106 102,347 157 48.86 85 33.27 89 0.980 DRS 

97 Ubonratchathani 0.150 107 0.176 107 0.081 107 97,669 102 142.57 118 37.79 93 0.972 DRS 

98 Sisaket 0.047 68 0.049 68 0.024 68 101,131 145 O   O   1.000 IRS 

99 Sisaket 0.000 1 0.000 1 0.000 1 88,061 35 193.69 121 N.A.   1.000 CRS 

100 Sisaket 0.045 67 0.047 67 0.023 67 94,332 69 115.42 111 0.22 2 0.983 DRS 

101 Sisaket 0.011 56 0.011 56 0.006 56 93,197 60 23.40 62 40.73 97 0.989 DRS 

102 Sisaket 0.000 1 0.000 1 0.000 1 92,438 56 22.15 58 40.99 98 1.000 CRS 

103 Sisaket 0.000 1 0.000 1 0.000 1 92,122 55 41.20 79 50.42 107 1.000 CRS 

104 Sisaket 0.000 1 0.000 1 0.000 1 79,650 14 69.88 94 68.76 114 1.000 CRS 

105 Sisaket 0.044 66 0.046 66 0.023 66 105,766 171 115.02 110 53.44 110 1.000 IRS 

106 Sisaket 0.000 1 0.000 1 0.000 1 84,411 24 102.10 107 105.94 123 1.000 CRS 

107 Sisaket 0.000 1 0.000 1 0.000 1 89,109 38 N.A.   N.A.   1.000 CRS 

108 Sisaket 0.037 64 0.038 64 0.019 64 96,184 89 42.40 82 44.73 104 0.988 IRS 

109 Sisaket 0.021 61 0.021 61 0.011 61 94,036 65 28.00 65 19.95 73 0.998 IRS 

110 Sisaket 0.000 1 0.000 1 0.000 1 92,804 57 0.00 1 3.17 17 1.000 CRS 

111 Surin 0.000 1 0.000 1 0.000 1 84,067 21 O   O   1.000 CRS 

112 Surin 0.033 63 0.034 63 0.017 63 91,607 53 0.68 3 3.55 22 0.994 IRS 

113 Surin 0.019 59 0.019 59 0.009 59 92,001 54 40.18 77 21.64 77 0.988 DRS 

114 Surin 0.000 1 0.000 1 0.000 1 84,246 22 16.34 44 17.32 70 1.000 CRS 

115 Surin 0.002 51 0.002 51 0.001 51 91,127 48 22.60 59 16.95 68 0.998 DRS 

116 Surin 0.067 74 0.072 74 0.035 74 94,359 70 206.88 122 87.64 119 0.976 DRS 

117 Surin 0.000 1 0.000 1 0.000 1 79,604 13 N.A.   3.17 18 1.000 CRS 

118 Surin 0.000 1 0.000 1 0.000 1 95,990 85 O   O   1.000 CRS 

119 Surin 0.000 1 0.000 1 0.000 1 91,543 51 N.A.   N.A.   1.000 CRS 

120 Surin 0.031 62 0.032 62 0.016 62 89,386 40 65.18 91 40.03 96 0.988 DRS 

121 Buriram 0.000 1 0.000 1 0.000 1 130,245 189 N.A.   O   1.000 CRS 

122 Buriram 0.000 1 0.000 1 0.000 1 90,374 45 N.A.   N.A.   1.000 CRS 

123 Buriram 0.018 58 0.018 58 0.009 58 114,405 184 N.A.   N.A.   0.982 DRS 

124 Buriram 0.000 1 0.000 1 0.000 1 93,670 62 N.A.   N.A.   1.000 CRS 

125 Buriram 0.083 75 0.091 75 0.043 75 81,417 16 232.53 124 2.39 14 0.917 DRS 

126 Buriram 0.101 78 0.112 78 0.053 78 76,138 10 236.66 125 108.43 124 0.946 DRS 

127 Buriram 0.056 71 0.060 71 0.029 71 64,903 7 O   O   0.944 DRS 

128 Buriram 0.000 1 0.000 1 0.000 1 26,274 2 O   O   1.000 CRS 

129 Buriram 0.000 1 0.000 1 0.000 1 89,223 39 O   O   1.000 CRS 

130 Buriram 0.131 91 0.151 91 0.070 91 95,476 77 36.09 73 33.16 88 0.955 DRS 

131 Buriram 0.145 101 0.169 101 0.078 101 120,952 188 O   O   0.897 DRS 

132 Buriram 0.065 72 0.070 72 0.034 72 91,464 50 21.29 56 14.19 59 1.000 DRS 

133 Buriram 0.000 1 0.000 1 0.000 1 86,617 30 8.27 26 80.42 115 1.000 CRS 

134 Buriram 0.115 80 0.130 80 0.061 80 91,175 49 N.A.   1.49 8 0.996 IRS 

135 Buriram 0.143 98 0.167 98 0.077 98 100,278 135 66.08 92 39.27 94 0.999 IRS 

136 Mahasarakham 0.146 102 0.171 102 0.079 102 96,292 91 N.A.   N.A.   0.854 IRS 

137 Mahasarakham 0.152 108 0.179 108 0.082 108 100,062 128 6.70 25 4.05 25 0.916 IRS 

138 Mahasarakham 0.146 104 0.171 104 0.079 104 99,231 119 3.92 19 3.65 23 0.906 IRS 

139 Mahasarakham 0.156 112 0.185 112 0.085 112 100,760 142 N.A.   N.A.   0.997 IRS 
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Table D.2 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

140 Mahasarakham 0.121 83 0.138 83 0.064 83 99,107 118 19.26 51 11.12 50 0.959 IRS 

141 Mahasarakham 0.146 103 0.171 103 0.079 103 100,097 129 N.A.   N.A.   0.854 IRS 

142 Mahasarakham 0.125 85 0.143 85 0.067 85 93,637 61 97.01 104 N.A.   0.875 DRS 

143 Mahasarakham 0.152 109 0.180 109 0.082 109 86,804 31 2.16 14 14.21 60 0.962 DRS 

144 Mahasarakham 0.141 96 0.164 96 0.076 96 99,047 117 N.A.   N.A.   0.898 IRS 

145 Roiet 0.129 89 0.148 89 0.069 89 103,712 166 37.80 75 20.02 74 0.929 IRS 

146 Roiet 0.130 90 0.149 90 0.070 90 93,942 64 N.A.   N.A.   0.986 IRS 

147 Roiet 0.000 1 0.000 1 0.000 1 82,357 17 240.29 126 43.22 101 1.000 CRS 

148 Roiet 0.128 86 0.146 86 0.068 86 104,390 167 8.94 28 14.64 63 0.916 IRS 

149 Roiet 0.128 88 0.147 88 0.068 88 103,207 161 N.A.   N.A.   0.872 DRS 

150 Kalasin 0.000 1 0.000 1 0.000 1 87,766 33 1.40 11 42.80 100 1.000 CRS 

151 Kalasin 0.010 55 0.010 55 0.005 55 96,568 93 10.82 32 24.97 81 0.990 IRS 

152 Kalasin 0.000 1 0.000 1 0.000 1 88,049 34 11.08 33 35.22 92 1.000 CRS 

153 Kalasin 0.000 1 0.000 1 0.000 1 47,393 6 107.29 108 O   1.000 CRS 

154 Kalasin 0.000 1 0.000 1 0.000 1 93,779 63 131.63 116 N.A.   1.000 CRS 

155 Kalasin 0.004 54 0.004 54 0.002 54 102,492 158 35.20 71 33.55 90 0.996 IRS 

156 Kalasin 0.000 1 0.000 1 0.000 1 99,556 125 N.A.   N.A.   1.000 CRS 

157 Kalasin 0.000 1 0.000 1 0.000 1 77,760 12 N.A.   14.41 62 1.000 CRS 

158 Kalasin 0.003 53 0.004 53 0.002 53 99,535 124 N.A.   N.A.   0.997 IRS 

159 Kalasin 0.000 1 0.000 1 0.000 1 83,530 20 N.A.   N.A.   1.000 CRS 

160 Kalasin 0.003 52 0.003 52 0.002 52 101,393 149 N.A.   7.35 40 1.000 IRS 

161 Khonkaen 0.099 77 0.110 77 0.052 77 102,859 159 8.70 27 13.55 56 0.941 IRS 

162 Khonkaen 0.047 69 0.050 69 0.024 69 95,725 80 120.21 113 44.66 103 0.972 DRS 

163 Khonkaen 0.000 1 0.000 1 0.000 1 100,346 136 24.47 64 N.A.   1.000 CRS 

164 Khonkaen 0.000 1 0.000 1 0.000 1 99,425 122 29.53 68 33.99 91 1.000 CRS 

165 Khonkaen 0.065 73 0.070 73 0.034 73 105,426 170 124.81 114 103.87 122 0.975 DRS 

166 Khonkaen 0.000 1 0.000 1 0.000 1 96,269 90 18.70 50 7.95 44 1.000 CRS 

167 Khonkaen 0.001 50 0.001 50 0.000 50 98,549 111 N.A.   1.91 12 0.999 IRS 

168 Khonkaen 0.020 60 0.020 60 0.010 60 94,121 66 1.04 6 20.63 75 0.993 DRS 

169 Khonkaen 0.000 1 0.000 1 0.000 1 98,424 110 N.A.   N.A.   1.000 CRS 

170 Chaiyaphum 0.231 161 0.300 161 0.130 161 109,577 177 70.39 95 25.41 83 0.987 DRS 

171 Chaiyaphum 0.179 118 0.219 118 0.099 118 96,158 86 N.A.   N.A.   0.983 DRS 

172 Chaiyaphum 0.000 1 0.000 1 0.000 1 98,183 107 6.03 22 2.42 15 1.000 CRS 

173 Chaiyaphum 0.204 140 0.256 140 0.113 140 105,225 169 N.A.   N.A.   0.977 DRS 

174 Chaiyaphum 0.121 82 0.137 82 0.064 82 104,841 168 41.31 80 15.68 65 0.990 DRS 

175 Chaiyaphum 0.000 1 0.000 1 0.000 1 100,138 132 19.27 52 N.A.   1.000 CRS 

176 Chaiyaphum 0.000 1 0.000 1 0.000 1 100,112 131 N.A.   4.73 29 1.000 CRS 

177 Chaiyaphum 0.000 1 0.000 1 0.000 1 97,789 105 16.75 47 12.12 53 1.000 CRS 

178 Chaiyaphum 0.201 134 0.252 134 0.112 134 97,271 97 N.A.   N.A.   0.991 DRS 

179 Nakhonratchasima 0.194 130 0.241 130 0.108 130 94,783 73 84.65 101 1.08 6 0.995 DRS 

180 Nakhonratchasima 0.000 1 0.000 1 0.000 1 84,394 23 15.18 41 45.20 105 1.000 CRS 

181 Nakhonratchasima 0.215 156 0.274 156 0.121 156 97,101 96 50.71 86 81.66 116 0.982 DRS 

182 Nakhonratchasima 0.188 123 0.232 123 0.104 123 98,918 115 14.28 38 8.25 46 0.898 IRS 

183 Nakhonratchasima 0.168 115 0.202 115 0.092 115 99,712 126 14.08 37 5.45 32 0.958 IRS 

184 Nakhonratchasima 0.216 158 0.276 158 0.121 158 119,346 187 219.62 123 N.A.   0.954 DRS 

185 Nakhonratchasima 0.214 155 0.273 155 0.120 155 110,743 179 130.34 115 7.37 41 1.000 CRS 

186 Nakhonratchasima 0.139 94 0.161 94 0.075 94 84,774 27 20.34 55 7.55 43 0.861 DRS 

187 Nakhonratchasima 0.137 92 0.159 92 0.074 92 90,234 44 37.63 74 N.A.   0.863 DRS 

188 Nakhonratchasima 0.216 157 0.275 157 0.121 157 112,767 180 98.65 106 131.21 126 0.945 DRS 

189 Nakhonratchasima 0.000 1 0.000 1 0.000 1 82,575 18 O   O   1.000 CRS 

Note that DDF1 – DDF3 models are estimated under the assumption of CRS; DDF4, NSMM and PSMM are estimated under the 
assumption of VRS. N.A. denotes the farm had negative NS or negative PS. O denotes the farm is an outlier for NSMM or PSMM.  
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Table D.3 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of jasmine rice farms in the Central region 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Saraburi 0.000 1 0.000 1 0.000 1 81,064 40 O   7.14 4 1.000 CRS 

2 Saraburi 0.000 1 0.000 1 0.000 1 86,077 49 N.A.   12.51 9 1.000 CRS 

3 Saraburi 0.000 1 0.000 1 0.000 1 0 1 N.A.   O   1.000 CRS 

4 Saraburi 0.000 1 0.000 1 0.000 1 78,889 33 5.68 6 0.00 1 1.000 CRS 

5 Lopburi 0.135 42 0.156 42 0.072 42 70,119 23 17.30 9 N.A.   0.984 DRS 

6 Lopburi 0.000 1 0.000 1 0.000 1 32,363 5 N.A.   N.A.   1.000 CRS 

7 Lopburi 0.074 36 0.080 36 0.038 36 68,832 21 O   N.A.   0.958 DRS 

8 Lopburi 0.000 1 0.000 1 0.000 1 62,300 14 O   N.A.   1.000 CRS 

9 Chainat 0.000 1 0.000 1 0.000 1 76,587 29 N.A.   N.A.   1.000 CRS 

10 Chainat 0.097 40 0.107 40 0.051 40 68,529 20 O   O   0.903 DRS 

11 Chainat 0.089 38 0.098 38 0.047 38 80,012 36 40.71 16 40.49 19 0.996 DRS 

12 Chainat 0.096 39 0.106 39 0.051 39 68,312 19 O   O   0.904 DRS 

13 Suphanburi 0.196 44 0.244 44 0.109 44 92,195 56 94.29 19 68.79 24 0.958 DRS 

14 Suphanburi 0.089 37 0.097 37 0.046 37 82,015 44 4.08 4 7.15 5 0.955 IRS 

15 Suphanburi 0.198 45 0.247 45 0.110 45 84,181 47 79.91 17 N.A.   0.983 DRS 

16 Suphanburi 0.206 46 0.260 46 0.115 46 79,221 34 30.37 14 22.36 14 0.991 DRS 

17 Suphanburi 0.228 48 0.295 48 0.128 48 94,600 57 20.27 10 4.61 3 0.831 IRS 

18 Suphanburi 0.124 41 0.142 41 0.066 41 59,727 12 N.A.   N.A.   0.876 DRS 

19 Suphanburi 0.228 49 0.296 49 0.129 49 88,978 55 22.93 12 19.78 13 0.978 IRS 

20 Nakhonnayok 0.000 1 0.000 1 0.000 1 76,909 30 33.61 15 10.73 8 1.000 CRS 

21 Nakhonnayok 0.000 1 0.000 1 0.000 1 61,490 13 106.53 22 N.A.   1.000 CRS 

22 Nakhonnayok 0.000 1 0.000 1 0.000 1 16,093 3 O   O   1.000 CRS 

23 Prachinburi 0.000 1 0.000 1 0.000 1 81,410 42 160.07 23 99.54 27 1.000 CRS 

24 Prachinburi 0.000 1 0.000 1 0.000 1 81,390 41 27.65 13 79.63 25 1.000 CRS 

25 Prachinburi 0.000 1 0.000 1 0.000 1 81,785 43 1.20 2 41.08 20 1.000 CRS 

26 Prachinburi 0.000 1 0.000 1 0.000 1 86,079 50 5.59 5 31.87 15 1.000 CRS 

27 Prachinburi 0.012 35 0.012 35 0.006 35 86,497 52 22.06 11 50.69 22 0.988 IRS 

28 Chachoengsao 0.000 1 0.000 1 0.000 1 68,926 22 N.A.   O   1.000 CRS 

29 Chachoengsao 0.000 1 0.000 1 0.000 1 79,252 35 0.00 1 39.81 18 1.000 CRS 

30 Sakaeo 0.000 1 0.000 1 0.000 1 22,263 4 N.A.   O   1.000 CRS 

31 Sakaeo 0.000 1 0.000 1 0.000 1 80,325 37 N.A.   N.A.   1.000 CRS 

32 Sakaeo 0.219 47 0.281 47 0.123 47 73,002 28 N.A.   34.44 17 0.834 DRS 

33 Sakaeo 0.307 57 0.442 57 0.181 57 87,714 53 11.82 8 16.19 12 0.998 DRS 

34 Sakaeo 0.000 1 0.000 1 0.000 1 59,603 11 N.A.   58.54 23 1.000 CRS 

35 Sakaeo 0.243 54 0.320 54 0.138 54 88,742 54 N.A.   N.A.   0.810 DRS 

36 Sakaeo 0.318 58 0.466 58 0.189 58 86,451 51 104.98 21 O   0.839 DRS 

37 Sakaeo 0.261 55 0.352 55 0.150 55 67,872 18 N.A.   N.A.   0.739 DRS 

38 Chanthaburi 0.264 56 0.359 56 0.152 56 97,675 58 O   O   0.963 IRS 

39 Chanthaburi 0.233 51 0.304 51 0.132 51 63,992 15 O   O   0.767 DRS 

40 Chanthaburi 0.241 53 0.317 53 0.137 53 72,426 26 O   O   0.850 DRS 

41 Chanthaburi 0.234 52 0.305 52 0.132 52 80,674 38 100.40 20 12.90 10 0.935 DRS 

42 Chanthaburi 0.231 50 0.301 50 0.131 50 78,206 31 O   96.34 26 0.837 DRS 

43 Trat 0.000 1 0.000 1 0.000 1 49,932 10 O   O   1.000 CRS 

44 Chonburi 0.000 1 0.000 1 0.000 1 72,863 27 3.81 3 34.08 16 1.000 CRS 

45 Chonburi 0.000 1 0.000 1 0.000 1 64,107 16 N.A.   9.26 7 1.000 CRS 

46 Chonburi 0.000 1 0.000 1 0.000 1 40,458 7 N.A.   O   1.000 CRS 

47 Chonburi 0.000 1 0.000 1 0.000 1 1,816 2 O   N.A.   1.000 CRS 

48 Chonburi 0.000 1 0.000 1 0.000 1 46,051 8 N.A.   N.A.   1.000 CRS 

49 Kanchanaburi 0.000 1 0.000 1 0.000 1 85,597 48 N.A.   N.A.   1.000 CRS 

50 Kanchanaburi 0.000 1 0.000 1 0.000 1 70,344 24 N.A.   N.A.   1.000 CRS 

51 Kanchanaburi 0.000 1 0.000 1 0.000 1 36,269 6 O   O   1.000 CRS 

52 Kanchanaburi 0.000 1 0.000 1 0.000 1 78,278 32 N.A.   16.11 11 1.000 CRS 

53 Kanchanaburi 0.159 43 0.189 43 0.086 43 46,981 9 O   O   0.841 DRS 

54 Ratchaburi 0.003 34 0.003 34 0.001 34 82,361 45 N.A.   8.61 6 0.999 DRS 

55 Ratchaburi 0.001 33 0.001 33 0.000 33 66,299 17 88.27 18 41.57 21 0.999 DRS 

56 Ratchaburi 0.000 1 0.000 1 0.000 1 80,904 39 N.A.   N.A.   1.000 CRS 

57 Ratchaburi 0.000 1 0.000 1 0.000 1 71,668 25 N.A.   0.08 2 1.000 CRS 

58 Ratchaburi 0.000 1 0.000 1 0.000 1 84,061 46 5.70 7 N.A.   1.000 CRS 

Note that DDF1 – DDF3 models are estimated under the assumption of CRS; DDF4, NSMM and PSMM are estimated under the 

assumption of VRS. N.A. denotes the farm had negative NS or negative PS. O denotes the farm is an outlier for NSMM or PSMM.  
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Table D.4 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of non-jasmine rice farms in the Northern 

region 

Farm no. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Chiangrai 0.000 1 0.000 1 0.000 1 196,448 59 N.A.   N.A.   1.000 CRS 

2 Chiangrai 0.000 1 0.000 1 0.000 1 211,607 80 7.24 7 N.A.   1.000 CRS 

3 Chiangrai 0.000 1 0.000 1 0.000 1 196,007 57 O   N.A.   1.000 CRS 

4 Chiangrai 0.000 1 0.000 1 0.000 1 236,839 143 228.03 73 N.A.   1.000 CRS 

5 Chiangrai 0.000 1 0.000 1 0.000 1 123,320 10 O   O   1.000 CRS 

6 Chiangrai 0.011 89 0.011 89 0.005 89 204,236 69 87.26 38 39.38 31 0.999 DRS 

7 Chiangrai 0.080 115 0.086 115 0.041 115 245,305 149 9.85 8 77.35 51 0.972 DRS 

8 Chiangrai 0.007 87 0.007 87 0.003 87 162,329 29 N.A.   N.A.   0.993 DRS 

9 Chiangrai 0.000 1 0.000 1 0.000 1 194,570 54 O   O   1.000 CRS 

10 Chiangrai 0.000 1 0.000 1 0.000 1 222,822 108 15.53 11 N.A.   1.000 CRS 

11 Phayao 0.000 1 0.000 1 0.000 1 216,268 90 20.45 12 N.A.   1.000 CRS 

12 Phayao 0.000 1 0.000 1 0.000 1 221,463 102 N.A.   N.A.   1.000 CRS 

13 Phayao 0.000 1 0.000 1 0.000 1 178,468 37 N.A.   49.84 37 1.000 CRS 

14 Phayao 0.000 1 0.000 1 0.000 1 142,113 18 N.A.   68.05 45 1.000 CRS 

15 Phayao 0.141 133 0.164 133 0.076 133 206,976 72 N.A.   47.21 36 0.999 DRS 

16 Phayao 0.000 1 0.000 1 0.000 1 178,860 38 N.A.   18.40 14 1.000 CRS 

17 Phayao 0.082 116 0.089 116 0.043 116 231,895 133 0.96 2 41.15 33 0.918 IRS 

18 Lampang 0.000 1 0.000 1 0.000 1 222,291 105 N.A.   N.A.   1.000 CRS 

19 Lampang 0.000 1 0.000 1 0.000 1 231,607 131 N.A.   N.A.   1.000 CRS 

20 Lampang 0.000 1 0.000 1 0.000 1 232,179 135 N.A.   N.A.   1.000 CRS 

21 Lampang 0.000 1 0.000 1 0.000 1 221,608 103 N.A.   N.A.   1.000 CRS 

22 Lampang 0.000 1 0.000 1 0.000 1 225,784 112 N.A.   N.A.   1.000 CRS 

23 Lamphun 0.079 113 0.085 113 0.041 113 227,333 115 N.A.   72.01 48 0.921 DRS 

24 Chiangmai 0.000 1 0.000 1 0.000 1 178,418 36 N.A.   N.A.   1.000 CRS 

25 Chiangmai 0.000 1 0.000 1 0.000 1 233,456 138 N.A.   0.00 1 1.000 CRS 

26 Chiangmai 0.000 1 0.000 1 0.000 1 209,772 77 45.08 18 21.78 17 1.000 CRS 

27 Chiangmai 0.000 1 0.000 1 0.000 1 221,360 100 61.42 27 35.30 27 1.000 CRS 

28 Chiangmai 0.000 1 0.000 1 0.000 1 249,071 150 N.A.   12.82 12 1.000 CRS 

29 Maehongson 0.000 1 0.000 1 0.000 1 235,508 141 N.A.   N.A.   1.000 CRS 

30 Maehongson 0.000 1 0.000 1 0.000 1 232,146 134 N.A.   N.A.   1.000 CRS 

31 Maehongson 0.000 1 0.000 1 0.000 1 229,034 124 N.A.   N.A.   1.000 CRS 

32 Maehongson 0.000 1 0.000 1 0.000 1 232,900 137 N.A.   N.A.   1.000 CRS 

33 Maehongson 0.000 1 0.000 1 0.000 1 239,431 146 N.A.   7.22 5 1.000 CRS 

34 Maehongson 0.000 1 0.000 1 0.000 1 238,776 145 N.A.   7.22 4 1.000 CRS 

35 Tak 0.098 120 0.109 120 0.052 120 228,326 121 87.03 37 N.A.   0.997 IRS 

36 Tak 0.000 1 0.000 1 0.000 1 213,910 85 46.17 19 N.A.   1.000 CRS 

37 Tak 0.034 96 0.035 96 0.017 96 231,442 130 66.80 28 N.A.   0.966 IRS 

38 Tak 0.114 126 0.128 126 0.060 126 234,513 139 80.54 36 28.67 20 0.886 IRS 

39 Tak 0.006 86 0.006 86 0.003 86 231,416 129 5.15 5 N.A.   0.994 DRS 

40 Tak 0.090 117 0.098 117 0.047 117 227,087 114 33.91 15 N.A.   0.910 IRS 

41 Tak 0.000 1 0.000 1 0.000 1 228,368 122 N.A.   N.A.   1.000 CRS 

42 Kamphaengphet 0.140 132 0.163 132 0.075 132 227,488 116 O   159.86 72 0.938 DRS 

43 Kamphaengphet 0.173 144 0.209 144 0.095 144 249,757 151 190.81 64 100.91 55 0.995 DRS 

44 Kamphaengphet 0.201 151 0.251 151 0.112 151 211,661 81 401.78 94 104.04 58 1.000 IRS 

45 Kamphaengphet 0.190 148 0.234 148 0.105 148 188,201 47 352.11 89 127.50 67 0.990 DRS 

46 Kamphaengphet 0.000 1 0.000 1 0.000 1 163,461 30 O   101.10 56 1.000 CRS 

47 Kamphaengphet 0.129 130 0.148 130 0.069 130 221,825 104 317.84 84 N.A.   0.871 DRS 

48 Kamphaengphet 0.099 121 0.110 121 0.052 121 227,946 118 195.53 66 N.A.   0.921 IRS 

49 Kamphaengphet 0.152 138 0.180 138 0.083 138 196,127 58 79.62 35 O   0.942 DRS 

50 Kamphaengphet 0.000 1 0.000 1 0.000 1 224,645 111 N.A.   N.A.   1.000 CRS 

51 Kamphaengphet 0.153 140 0.181 140 0.083 140 231,674 132 54.60 22 N.A.   0.847 IRS 

52 Kamphaengphet 0.127 128 0.145 128 0.068 128 199,056 64 180.29 60 7.47 6 0.895 DRS 

53 Kamphaengphet 0.191 149 0.236 149 0.105 149 213,705 84 358.90 92 68.73 46 0.997 DRS 

54 Kamphaengphet 0.201 152 0.251 152 0.112 152 210,879 78 447.09 97 119.93 65 0.988 DRS 

55 Kamphaengphet 0.155 141 0.184 141 0.084 141 182,172 41 177.73 59 157.47 70 0.869 DRS 

56 Kamphaengphet 0.170 143 0.205 143 0.093 143 191,315 50 377.29 93 104.91 59 1.000 DRS 

57 Sukhothai 0.143 135 0.167 135 0.077 135 126,961 12 298.89 82 169.84 73 0.981 DRS 

58 Sukhothai 0.188 147 0.232 147 0.104 147 228,062 119 306.89 83 56.24 41 1.000 IRS 

59 Sukhothai 0.137 131 0.159 131 0.074 131 208,622 75 181.66 61 N.A.   1.000 CRS 

60 Sukhothai 0.000 1 0.000 1 0.000 1 209,585 76 N.A.   N.A.   1.000 CRS 

61 Sukhothai 0.000 1 0.000 1 0.000 1 208,518 74 0.00 1 N.A.   1.000 CRS 

62 Sukhothai 0.185 146 0.226 146 0.102 146 214,702 86 145.03 52 68.87 47 0.997 DRS 

63 Sukhothai 0.153 139 0.180 139 0.083 139 215,221 88 413.63 95 158.96 71 0.999 DRS 

64 Sukhothai 0.142 134 0.166 134 0.077 134 211,035 79 75.95 33 26.63 19 1.000 CRS 

65 Sukhothai 0.193 150 0.239 150 0.107 150 230,586 126 189.64 63 74.87 49 1.000 IRS 

66 Sukhothai 0.144 136 0.168 136 0.078 136 245,206 148 150.23 54 O   1.000 DRS 

67 Sukhothai 0.108 123 0.121 123 0.057 123 156,160 24 467.91 99 O   0.995 DRS 

68 Sukhothai 0.108 124 0.121 124 0.057 124 239,940 147 128.84 47 N.A.   0.964 DRS 

69 Sukhothai 0.027 94 0.028 94 0.014 94 136,406 13 236.54 74 N.A.   0.983 DRS 

70 Phrae 0.049 104 0.051 104 0.025 104 214,704 87 10.81 10 N.A.   0.984 IRS 

71 Phrae 0.063 112 0.067 112 0.033 112 211,823 82 43.29 17 34.19 24 0.980 IRS 

72 Nan 0.039 102 0.041 102 0.020 102 228,739 123 N.A.   12.57 11 0.961 IRS 

73 Nan 0.000 1 0.000 1 0.000 1 236,971 144 5.04 4 N.A.   1.000 CRS 

74 Uttaradit 0.000 84 0.000 84 0.000 84 49,835 5 O   N.A.   1.000 DRS 

75 Uttaradit 0.016 91 0.016 91 0.008 91 142,260 19 257.51 77 N.A.   0.995 DRS 

76 Uttaradit 0.020 93 0.020 93 0.010 93 221,445 101 61.15 24 108.79 62 1.000 CRS 

77 Uttaradit 0.000 1 0.000 1 0.000 1 180,619 39 N.A.   N.A.   1.000 CRS 
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Table D.4 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

78 Uttaradit 0.000 1 0.000 1 0.000 1 136,668 14 N.A.   N.A.   1.000 CRS 

79 Uttaradit 0.000 1 0.000 1 0.000 1 111,662 8 O   O   1.000 CRS 

80 Uttaradit 0.000 1 0.000 1 0.000 1 94,964 7 O   N.A.   1.000 CRS 

81 Uttaradit 0.000 1 0.000 1 0.000 1 216,324 91 213.06 71 N.A.   1.000 CRS 

82 Phitsanulok 0.000 1 0.000 1 0.000 1 200,726 67 132.30 48 55.59 40 1.000 CRS 

83 Phitsanulok 0.000 1 0.000 1 0.000 1 235,744 142 145.84 53 N.A.   1.000 CRS 

84 Phitsanulok 0.000 1 0.000 1 0.000 1 197,586 63 165.90 58 N.A.   1.000 CRS 

85 Phitsanulok 0.000 1 0.000 1 0.000 1 228,277 120 289.36 81 40.87 32 1.000 CRS 

86 Phitsanulok 0.051 107 0.054 107 0.026 107 220,473 96 70.55 30 29.17 21 0.986 IRS 

87 Phitsanulok 0.016 92 0.017 92 0.008 92 222,341 106 93.00 41 38.43 30 0.995 IRS 

88 Phitsanulok 0.000 1 0.000 1 0.000 1 220,542 98 70.93 31 N.A.   1.000 CRS 

89 Phitsanulok 0.001 85 0.001 85 0.000 85 194,000 53 61.31 25 75.50 50 0.999 DRS 

90 Phitsanulok 0.000 1 0.000 1 0.000 1 206,816 70 245.20 75 N.A.   1.000 CRS 

91 Phitsanulok 0.000 1 0.000 1 0.000 1 157,286 27 188.85 62 N.A.   1.000 CRS 

92 Phitsanulok 0.000 1 0.000 1 0.000 1 156,508 25 263.03 78 120.88 66 1.000 CRS 

93 Phitsanulok 0.000 1 0.000 1 0.000 1 173,214 35 198.71 68 11.40 9 1.000 CRS 

94 Phitsanulok 0.000 1 0.000 1 0.000 1 137,144 15 268.68 79 114.01 63 1.000 CRS 

95 Phitsanulok 0.000 1 0.000 1 0.000 1 171,352 34 357.23 91 N.A.   1.000 CRS 

96 Phichit 0.000 1 0.000 1 0.000 1 223,193 110 119.16 46 N.A.   1.000 CRS 

97 Phichit 0.000 1 0.000 1 0.000 1 190,726 49 89.08 39 N.A.   1.000 CRS 

98 Phichit 0.052 108 0.055 108 0.027 108 200,800 68 420.84 96 O   0.997 IRS 

99 Phichit 0.049 105 0.052 105 0.025 105 182,596 42 111.19 44 45.36 35 1.000 CRS 

100 Phichit 0.000 1 0.000 1 0.000 1 251,777 152 53.49 21 N.A.   1.000 CRS 

101 Phichit 0.000 1 0.000 1 0.000 1 193,970 51 356.98 90 O   1.000 CRS 

102 Phichit 0.063 111 0.067 111 0.032 111 170,672 33 349.00 88 O   0.960 DRS 

103 Phichit 0.031 95 0.032 95 0.016 95 232,883 136 10.55 9 51.68 38 0.969 IRS 

104 Phichit 0.000 1 0.000 1 0.000 1 196,904 61 N.A.   1.98 2 1.000 CRS 

105 Phichit 0.000 1 0.000 1 0.000 1 122,969 9 N.A.   N.A.   1.000 CRS 

106 Phichit 0.000 1 0.000 1 0.000 1 207,858 73 N.A.   N.A.   1.000 CRS 

107 Phichit 0.037 99 0.039 99 0.019 99 144,380 20 207.58 70 95.77 54 0.963 DRS 

108 Phichit 0.038 101 0.040 101 0.019 101 193,988 52 330.83 87 N.A.   0.987 DRS 

109 Phichit 0.007 88 0.007 88 0.004 88 126,154 11 N.A.   O   0.993 DRS 

110 Nakhonsawan 0.055 110 0.058 110 0.028 110 182,160 40 246.93 76 102.55 57 1.000 IRS 

111 Nakhonsawan 0.079 114 0.086 114 0.041 114 222,648 107 110.12 43 35.97 28 0.998 IRS 

112 Nakhonsawan 0.014 90 0.014 90 0.007 90 215,392 89 161.21 57 9.17 8 0.997 IRS 

113 Nakhonsawan 0.000 1 0.000 1 0.000 1 230,634 127 55.35 23 N.A.   1.000 CRS 

114 Nakhonsawan 0.000 1 0.000 1 0.000 1 10,455 3 O   O   1.000 CRS 

115 Nakhonsawan 0.038 100 0.039 100 0.019 100 138,722 16 134.26 49 107.73 61 0.962 DRS 

116 Nakhonsawan 0.045 103 0.047 103 0.023 103 146,197 22 269.50 80 29.95 23 1.000 DRS 

117 Nakhonsawan 0.000 1 0.000 1 0.000 1 41,838 4 558.57 100 N.A.   1.000 CRS 

118 Nakhonsawan 0.000 1 0.000 1 0.000 1 187,457 46 N.A.   N.A.   1.000 CRS 

119 Nakhonsawan 0.000 1 0.000 1 0.000 1 216,603 92 53.13 20 N.A.   1.000 CRS 

120 Nakhonsawan 0.000 1 0.000 1 0.000 1 183,310 43 61.38 26 N.A.   1.000 CRS 

121 Nakhonsawan 0.000 1 0.000 1 0.000 1 151,312 23 N.A.   29.68 22 1.000 CRS 

122 Nakhonsawan 0.000 1 0.000 1 0.000 1 194,799 55 N.A.   37.92 29 1.000 CRS 

123 Nakhonsawan 0.000 1 0.000 1 0.000 1 235,090 140 5.44 6 N.A.   1.000 CRS 

124 Nakhonsawan 0.051 106 0.054 106 0.026 106 158,378 28 198.41 67 21.32 16 0.997 IRS 

125 Nakhonsawan 0.054 109 0.057 109 0.028 109 220,499 97 104.17 42 8.32 7 0.949 IRS 

126 Nakhonsawan 0.036 98 0.037 98 0.018 98 188,467 48 N.A.   34.99 25 0.994 DRS 

127 Nakhonsawan 0.000 1 0.000 1 0.000 1 145,379 21 151.05 55 80.23 52 1.000 CRS 

128 Nakhonsawan 0.000 1 0.000 1 0.000 1 0 1 O   N.A.   1.000 CRS 

129 Nakhonsawan 0.000 1 0.000 1 0.000 1 218,638 93 39.59 16 N.A.   1.000 CRS 

130 Nakhonsawan 0.000 1 0.000 1 0.000 1 141,759 17 22.59 13 133.81 69 1.000 CRS 

131 Nakhonsawan 0.036 97 0.037 97 0.018 97 230,949 128 23.85 14 35.29 26 0.993 DRS 

132 Nakhonsawan 0.093 118 0.102 118 0.049 118 196,610 60 74.73 32 58.32 42 0.981 DRS 

133 Nakhonsawan 0.000 1 0.000 1 0.000 1 229,814 125 N.A.   6.28 3 1.000 CRS 

134 Nakhonsawan 0.000 1 0.000 1 0.000 1 227,870 117 N.A.   12.29 10 1.000 CRS 

135 Nakhonsawan 0.094 119 0.103 119 0.049 119 226,919 113 77.74 34 41.45 34 0.999 IRS 

136 Uthaithani 0.152 137 0.179 137 0.082 137 206,841 71 225.81 72 N.A.   0.964 DRS 

137 Uthaithani 0.121 127 0.138 127 0.064 127 185,885 45 203.36 69 81.29 53 0.999 DRS 

138 Uthaithani 0.167 142 0.200 142 0.091 142 200,193 66 194.90 65 54.06 39 0.991 IRS 

139 Uthaithani 0.113 125 0.127 125 0.060 125 220,319 95 113.44 45 60.08 43 0.998 DRS 

140 Uthaithani 0.000 1 0.000 1 0.000 1 222,853 109 N.A.   N.A.   1.000 CRS 

141 Uthaithani 0.129 129 0.148 129 0.069 129 157,093 26 329.68 86 132.28 68 0.908 DRS 

142 Uthaithani 0.179 145 0.217 145 0.098 145 212,629 83 155.18 56 107.36 60 0.975 IRS 

143 Uthaithani 0.102 122 0.113 122 0.053 122 195,591 56 327.48 85 23.56 18 0.898 DRS 

144 Phetchabun 0.000 1 0.000 1 0.000 1 169,192 31 N.A.   N.A.   1.000 CRS 

145 Phetchabun 0.000 1 0.000 1 0.000 1 88,310 6 69.25 29 O   1.000 CRS 

146 Phetchabun 0.000 1 0.000 1 0.000 1 220,756 99 3.54 3 20.68 15 1.000 CRS 

147 Phetchabun 0.000 1 0.000 1 0.000 1 200,121 65 N.A.   15.65 13 1.000 CRS 

148 Phetchabun 0.000 1 0.000 1 0.000 1 169,750 32 O   O   1.000 CRS 

149 Phetchabun 0.000 1 0.000 1 0.000 1 220,282 94 144.58 51 N.A.   1.000 CRS 

150 Phetchabun 0.000 1 0.000 1 0.000 1 5,234 2 454.65 98 O   1.000 CRS 

151 Phetchabun 0.000 1 0.000 1 0.000 1 185,709 44 90.68 40 115.73 64 1.000 CRS 

152 Phetchabun 0.000 1 0.000 1 0.000 1 197,450 62 134.44 50 66.96 44 1.000 CRS 

Note that DDF1 – DDF3 models are estimated under the assumption of CRS; DDF4, NSMM and PSMM are estimated under the 

assumption of VRS. N.A. denotes the farm had negative NS or negative PS. O denotes the farm is an outlier for NSMM or PSMM.  
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Table D.5 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of non-jasmine rice farms in the North-eastern 

region 

 
Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Nongbualamphu 0.000 1 0.000 1 0.000 1 42,687 30 N.A.   N.A.   0.893 DRS 

2 Nongkhai 0.161 52 0.142 52 0.076 53 42,618 29 2.62 2 18.31 21 0.994 DRS 

3 Nongkhai 0.032 45 0.097 49 0.028 45 48,303 57 52.81 32 27.74 23 0.723 IRS 

4 Nongkhai 0.000 1 0.000 1 0.000 1 43,413 38 7.25 7 41.18 28 0.840 DRS 

5 Nongkhai 0.248 62 0.251 60 0.133 61 47,384 55 32.00 23 58.83 30 1.000 IRS 

6 Nongkhai 0.000 1 0.000 1 0.000 1 48,210 56 N.A.   N.A.   1.000 CRS 

7 Nongkhai 0.030 44 0.265 61 0.030 48 44,356 39 9.12 9 17.34 20 0.769 IRS 

8 Nongkhai 0.000 1 0.000 1 0.000 1 44,742 42 34.08 25 O   0.792 DRS 

9 Sakonnakhon 0.000 1 0.000 1 0.000 1 43,216 36 N.A.   N.A.   0.992 DRS 

10 Sakonnakhon 0.040 46 0.040 43 0.020 44 42,002 23 4.13 4 15.00 18 0.968 DRS 

11 Sakonnakhon 0.094 51 0.119 51 0.052 51 43,008 34 22.51 18 7.50 13 0.974 IRS 

12 Sakonnakhon 0.000 1 0.000 1 0.000 1 45,568 49 33.93 24 29.19 24 0.908 IRS 

13 Sakonnakhon 0.222 60 0.161 53 0.098 57 45,413 48 23.12 19 1.50 5 0.986 DRS 

14 Sakonnakhon 0.069 50 0.055 44 0.030 47 38,725 10 49.69 29 N.A.   0.912 DRS 

15 Sakonnakhon 0.183 57 0.200 55 0.101 58 42,212 25 17.21 17 11.45 15 0.999 IRS 

16 Nakhonphanom 0.265 63 0.446 63 0.166 63 44,688 41 50.77 31 N.A.   0.910 IRS 

17 Mukdahan 0.194 58 0.234 58 0.106 59 43,254 37 9.40 10 3.66 11 0.997 DRS 

18 Mukdahan 0.232 61 0.315 62 0.134 62 39,598 13 11.95 13 4.64 12 0.990 IRS 

19 Mukdahan 0.175 56 0.081 47 0.061 52 31,170 5 O   O   0.875 DRS 

20 Mukdahan 0.200 59 0.244 59 0.110 60 40,305 15 9.60 11 3.60 10 0.998 DRS 

21 Mukdahan 0.000 1 0.000 1 0.000 1 43,196 35 4.76 5 1.15 4 0.745 IRS 

22 Amnatcharoen 0.000 1 0.000 1 0.000 1 44,657 40 N.A.   N.A.   1.000 CRS 

23 Ubonratchathani 0.000 1 0.000 1 0.000 1 42,220 26 37.38 27 0.00 1 1.000 CRS 

24 Ubonratchathani 0.000 1 0.000 1 0.000 1 39,410 11 64.49 34 13.30 17 1.000 CRS 

25 Ubonratchathani 0.020 42 0.108 50 0.020 43 42,353 27 7.70 8 10.37 14 0.874 IRS 

26 Sisaket 0.066 49 0.086 48 0.038 50 44,897 43 6.24 6 12.68 16 0.897 IRS 

27 Sisaket 0.172 55 0.186 54 0.093 55 49,838 59 28.48 22 N.A.   1.000 DRS 

28 Sisaket 0.000 1 0.000 1 0.000 1 46,594 52 49.97 30 N.A.   1.000 CRS 

29 Sisaket 0.168 53 0.201 56 0.092 54 60,672 63 60.47 33 52.39 29 0.999 DRS 

30 Sisaket 0.171 54 0.206 57 0.093 56 46,217 50 40.25 28 O   0.999 DRS 

31 Sisaket 0.000 1 0.000 1 0.000 1 40,895 17 10.81 12 0.18 2 1.000 CRS 

32 Surin 0.000 1 0.000 1 0.000 1 26,270 3 O   O   1.000 CRS 

33 Surin 0.000 1 0.000 1 0.000 1 58,044 61 O   O   1.000 CRS 

34 Surin 0.000 1 0.000 1 0.000 1 41,142 18 N.A.   0.57 3 1.000 CRS 

35 Surin 0.000 1 0.000 1 0.000 1 42,449 28 N.A.   N.A.   1.000 CRS 

36 Buriram 0.000 1 0.000 1 0.000 1 46,517 51 O   O   0.923 DRS 

37 Buriram 0.000 1 0.000 1 0.000 1 42,850 32 N.A.   1.60 7 1.000 CRS 

38 Buriram 0.000 1 0.000 1 0.000 1 42,204 24 N.A.   N.A.   1.000 CRS 

39 Buriram 0.000 1 0.000 1 0.000 1 41,511 21 N.A.   2.86 9 1.000 CRS 

40 Buriram 0.000 1 0.000 1 0.000 1 41,250 20 0.00 1 2.69 8 1.000 CRS 

41 Buriram 0.060 48 0.056 45 0.029 46 49,472 58 O   35.45 26 0.917 DRS 

42 Mahasarakham 0.000 1 0.000 1 0.000 1 25,958 2 O   O   1.000 CRS 

43 Mahasarakham 0.059 47 0.064 46 0.031 49 47,176 54 14.98 14 16.86 19 0.994 IRS 

44 Kalasin 0.000 1 0.000 1 0.000 1 42,792 31 23.69 20 37.48 27 1.000 CRS 

45 Khonkaen 0.000 1 0.000 1 0.000 1 59,201 62 N.A.   N.A.   1.000 CRS 

46 Khonkaen 0.000 1 0.000 1 0.000 1 55,373 60 N.A.   N.A.   1.000 CRS 

47 Chaiyaphum 0.030 43 0.025 42 0.014 42 42,922 33 O   N.A.   0.972 DRS 

48 Chaiyaphum 0.000 1 0.000 1 0.000 1 40,736 16 N.A.   1.57 6 1.000 CRS 

49 Chaiyaphum 0.000 1 0.000 1 0.000 1 45,068 45 N.A.   N.A.   1.000 CRS 

50 Chaiyaphum 0.000 1 0.000 1 0.000 1 34,274 7 O   N.A.   1.000 CRS 

51 Nakhonratchasima 0.000 1 0.000 1 0.000 1 39,963 14 36.83 26 N.A.   1.000 CRS 

52 Nakhonratchasima 0.000 1 0.000 1 0.000 1 41,205 19 15.00 15 N.A.   1.000 CRS 

53 Nakhonratchasima 0.000 1 0.000 1 0.000 1 33,714 6 O   N.A.   1.000 CRS 

54 Nakhonratchasima 0.000 1 0.000 1 0.000 1 41,870 22 O   N.A.   1.000 CRS 

55 Nakhonratchasima 0.000 1 0.000 1 0.000 1 46,760 53 24.03 21 N.A.   1.000 CRS 

56 Nakhonratchasima 0.000 1 0.000 1 0.000 1 45,052 44 3.34 3 31.13 25 1.000 CRS 

57 Nakhonratchasima 0.006 41 0.006 41 0.003 41 45,248 47 17.04 16 22.00 22 1.000 DRS 

58 Nakhonratchasima 0.000 1 0.000 1 0.000 1 0 1 N.A.   O   1.000 CRS 

59 Nakhonratchasima 0.000 1 0.000 1 0.000 1 36,458 8 O   O   1.000 CRS 

60 Nakhonratchasima 0.000 1 0.000 1 0.000 1 39,595 12 N.A.   N.A.   1.000 CRS 

61 Nakhonratchasima 0.000 1 0.000 1 0.000 1 45,095 46 N.A.   O   1.000 CRS 

62 Nakhonratchasima 0.000 1 0.000 1 0.000 1 37,324 9 O   O   1.000 CRS 

63 Nakhonratchasima 0.000 1 0.000 1 0.000 1 29,371 4 O   O   1.000 CRS 

Note that DDF1 – DDF4, NSMM, and PSMM models are estimated under the assumption of VRS. N.A. denotes the farm had negative 
NS or negative PS. O denotes the farm is an outlier for NSMM or PSMM.  
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Table D.6 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of non-jasmine rice farms in the Central region 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Saraburi 0.082 133 0.089 133 0.043 133 339,360 136 559.25 157 72.01 66 0.925 DRS 

2 Saraburi 0.252 189 0.336 189 0.144 189 366,744 199 138.90 77 56.20 52 1.000 IRS 

3 Saraburi 0.000 1 0.000 1 0.000 1 334,208 128 28.41 18 N.A.   1.000 CRS 

4 Saraburi 0.233 186 0.304 186 0.132 186 345,789 152 98.61 63 76.89 71 0.999 IRS 

5 Saraburi 0.233 187 0.304 187 0.132 187 236,305 24 469.83 149 270.82 149 0.947 DRS 

6 Saraburi 0.223 182 0.288 182 0.126 182 373,337 205 O   O   0.978 DRS 

7 Saraburi 0.175 160 0.212 160 0.096 160 366,093 198 23.93 16 20.96 10 0.979 IRS 

8 Saraburi 0.168 158 0.202 158 0.092 158 276,195 45 89.69 56 N.A.   0.832 DRS 

9 Saraburi 0.090 137 0.099 137 0.047 137 344,807 149 63.02 36 23.12 11 1.000 CRS 

10 Saraburi 0.227 185 0.294 185 0.128 185 346,208 153 87.61 53 179.84 119 1.000 IRS 

11 Lopburi 0.168 159 0.203 159 0.092 159 344,477 147 99.53 64 55.80 49 1.000 IRS 

12 Lopburi 0.181 163 0.222 163 0.100 163 321,590 97 177.32 92 74.55 68 1.000 IRS 

13 Lopburi 0.074 128 0.080 128 0.038 128 327,839 113 44.60 30 N.A.   0.931 DRS 

14 Lopburi 0.181 162 0.220 162 0.099 162 338,112 135 211.10 107 62.23 58 1.000 IRS 

15 Lopburi 0.086 136 0.095 136 0.045 136 321,227 95 66.67 39 23.40 12 0.986 IRS 

16 Lopburi 0.000 1 0.000 1 0.000 1 200,905 14 272.28 129 N.A.   1.000 CRS 

17 Lopburi 0.124 143 0.141 143 0.066 143 350,426 168 55.47 32 35.07 30 0.950 IRS 

18 Lopburi 0.049 122 0.052 122 0.025 122 327,529 112 37.61 23 N.A.   1.000 DRS 

19 Lopburi 0.159 155 0.190 155 0.087 155 286,616 50 684.41 164 250.41 147 0.992 DRS 

20 Lopburi 0.000 1 0.000 1 0.000 1 301,760 72 78.41 48 N.A.   1.000 CRS 

21 Lopburi 0.000 1 0.000 1 0.000 1 269,848 39 56.61 34 N.A.   1.000 CRS 

22 Singburi 0.006 90 0.006 90 0.003 90 333,569 124 271.61 128 N.A.   0.997 IRS 

23 Singburi 0.029 113 0.029 113 0.014 113 239,718 25 254.93 117 247.93 146 0.999 DRS 

24 Singburi 0.014 100 0.014 100 0.007 100 332,641 121 55.79 33 35.43 32 0.986 IRS 

25 Singburi 0.040 120 0.042 120 0.021 120 325,521 110 124.74 72 112.53 93 0.995 IRS 

26 Singburi 0.000 1 0.000 1 0.000 1 323,111 102 333.30 137 138.37 107 1.000 CRS 

27 Singburi 0.016 102 0.017 102 0.008 102 288,721 52 268.82 127 108.81 91 0.999 IRS 

28 Singburi 0.040 118 0.042 118 0.020 118 328,348 114 173.83 89 77.16 72 0.998 IRS 

29 Singburi 0.012 97 0.012 97 0.006 97 328,679 116 139.26 79 100.76 88 0.999 IRS 

30 Singburi 0.000 1 0.000 1 0.000 1 302,563 74 8.03 6 201.78 132 1.000 CRS 

31 Singburi 0.011 95 0.011 95 0.005 95 332,855 123 186.99 97 108.65 90 1.000 DRS 

32 Chainat 0.000 1 0.000 1 0.000 1 359,056 182 87.13 51 89.18 80 1.000 CRS 

33 Chainat 0.031 114 0.032 114 0.016 114 340,333 138 125.56 74 202.38 134 0.999 IRS 

34 Chainat 0.000 1 0.000 1 0.000 1 343,197 143 N.A.   N.A.   1.000 CRS 

35 Chainat 0.009 94 0.009 94 0.005 94 265,308 35 161.89 84 191.94 128 0.997 DRS 

36 Chainat 0.006 91 0.006 91 0.003 91 309,483 82 163.67 85 45.49 40 0.999 DRS 

37 Chainat 0.003 89 0.003 89 0.001 89 190,869 12 260.95 123 132.93 105 0.997 DRS 

38 Chainat 0.000 1 0.000 1 0.000 1 209,587 16 416.67 143 64.91 63 1.000 CRS 

39 Chainat 0.000 1 0.000 1 0.000 1 300,631 70 195.98 102 N.A.   1.000 CRS 

40 Chainat 0.000 1 0.000 1 0.000 1 343,249 144 253.29 116 N.A.   1.000 CRS 

41 Chainat 0.000 1 0.000 1 0.000 1 321,965 98 323.72 135 278.05 150 1.000 CRS 

42 Chainat 0.017 103 0.018 103 0.009 103 223,758 20 155.80 83 29.23 22 0.997 DRS 

43 Chainat 0.000 1 0.000 1 0.000 1 301,848 73 N.A.   N.A.   1.000 CRS 

44 Suphanburi 0.000 1 0.000 1 0.000 1 336,100 131 92.52 61 27.80 18 1.000 CRS 

45 Suphanburi 0.000 1 0.000 1 0.000 1 296,830 63 123.11 71 N.A.   1.000 CRS 

46 Suphanburi 0.000 1 0.000 1 0.000 1 324,467 104 6.49 4 167.75 115 1.000 CRS 

47 Suphanburi 0.000 1 0.000 1 0.000 1 267,314 37 195.49 101 N.A.   1.000 CRS 

48 Suphanburi 0.000 1 0.000 1 0.000 1 294,256 58 92.11 60 N.A.   1.000 CRS 

49 Suphanburi 0.000 1 0.000 1 0.000 1 296,754 62 185.53 96 200.93 131 1.000 CRS 

50 Suphanburi 0.000 1 0.000 1 0.000 1 221,524 19 O   220.18 138 1.000 CRS 

51 Suphanburi 0.000 1 0.000 1 0.000 1 368,529 200 228.38 111 63.62 59 1.000 CRS 

52 Suphanburi 0.000 1 0.000 1 0.000 1 349,246 160 173.32 88 99.95 87 1.000 CRS 

53 Suphanburi 0.001 87 0.001 87 0.000 87 336,494 133 117.54 69 153.64 110 1.000 IRS 

54 Suphanburi 0.000 1 0.000 1 0.000 1 336,668 134 87.56 52 32.99 27 1.000 CRS 

55 Suphanburi 0.000 1 0.000 1 0.000 1 324,888 107 82.73 49 31.13 24 1.000 CRS 

56 Suphanburi 0.000 1 0.000 1 0.000 1 293,547 57 N.A.   N.A.   1.000 CRS 

57 Suphanburi 0.000 1 0.000 1 0.000 1 341,616 140 319.02 134 N.A.   1.000 CRS 

58 Suphanburi 0.000 1 0.000 1 0.000 1 330,371 120 N.A.   0.00 1 1.000 CRS 

59 Angthong 0.000 1 0.000 1 0.000 1 250,688 28 N.A.   N.A.   1.000 CRS 

60 Angthong 0.119 142 0.135 142 0.063 142 334,131 127 11.77 10 40.08 36 0.998 IRS 

61 Angthong 0.040 117 0.042 117 0.020 117 318,902 91 146.18 81 74.96 69 1.000 IRS 

62 Angthong 0.000 1 0.000 1 0.000 1 292,726 56 N.A.   3.29 3 1.000 CRS 

63 Angthong 0.000 1 0.000 1 0.000 1 349,970 165 74.14 45 32.53 26 1.000 CRS 

64 Angthong 0.135 146 0.156 146 0.072 146 347,174 156 7.42 5 N.A.   0.960 IRS 

65 Angthong 0.000 1 0.000 1 0.000 1 256,350 33 O   N.A.   1.000 CRS 

66 Angthong 0.081 132 0.088 132 0.042 132 324,609 106 201.23 103 87.04 78 0.995 IRS 

67 Angthong 0.064 125 0.069 125 0.033 125 339,936 137 N.A.   N.A.   0.999 IRS 

68 Angthong 0.000 1 0.000 1 0.000 1 371,043 203 43.73 28 28.77 21 1.000 CRS 

69 Ayutthaya 0.146 148 0.171 148 0.079 148 324,528 105 404.70 141 155.29 111 0.983 DRS 

70 Ayutthaya 0.000 1 0.000 1 0.000 1 273,672 42 113.05 67 64.16 61 1.000 CRS 

71 Ayutthaya 0.000 1 0.000 1 0.000 1 350,334 167 N.A.   N.A.   1.000 CRS 

72 Ayutthaya 0.000 1 0.000 1 0.000 1 346,340 154 N.A.   N.A.   1.000 CRS 

73 Ayutthaya 0.154 149 0.181 149 0.083 149 298,172 65 47.92 31 N.A.   0.865 DRS 

74 Ayutthaya 0.157 152 0.187 152 0.085 152 350,068 166 41.18 27 26.38 17 0.982 IRS 

75 Ayutthaya 0.000 1 0.000 1 0.000 1 361,875 189 N.A.   N.A.   1.000 CRS 
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Table D.6 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

76 Ayutthaya 0.000 1 0.000 1 0.000 1 357,034 177 N.A.   N.A.   1.000 CRS 

77 Ayutthaya 0.158 153 0.187 153 0.086 153 319,823 92 110.39 66 59.24 54 0.999 IRS 

78 Ayutthaya 0.158 154 0.188 154 0.086 154 358,191 179 12.40 11 N.A.   0.842 IRS 

79 Ayutthaya 0.143 147 0.166 147 0.077 147 322,409 100 326.87 136 84.39 75 0.996 IRS 

80 Ayutthaya 0.127 145 0.145 145 0.068 145 358,964 181 293.76 132 240.68 144 0.965 DRS 

81 Nonthaburi 0.028 112 0.029 112 0.014 112 277,413 47 255.14 118 90.32 82 0.998 DRS 

82 Nonthaburi 0.023 107 0.024 107 0.012 107 323,087 101 203.53 104 93.54 84 0.999 DRS 

83 Nonthaburi 0.000 1 0.000 1 0.000 1 314,295 87 91.39 58 N.A.   1.000 CRS 

84 Nonthaburi 0.025 109 0.025 109 0.013 109 267,983 38 226.41 110 112.47 92 0.999 DRS 

85 Nonthaburi 0.026 110 0.027 110 0.013 110 307,871 79 210.57 106 153.06 109 0.999 IRS 

86 Nonthaburi 0.035 116 0.037 116 0.018 116 298,813 68 261.20 124 126.40 101 1.000 IRS 

87 Nonthaburi 0.021 105 0.021 105 0.010 105 202,525 15 248.87 113 186.83 126 0.997 DRS 

88 Bangkok 0.000 1 0.000 1 0.000 1 325,031 108 98.01 62 129.89 103 1.000 CRS 

89 Bangkok 0.000 1 0.000 1 0.000 1 298,744 67 91.88 59 N.A.   1.000 CRS 

90 Bangkok 0.000 1 0.000 1 0.000 1 256,059 32 259.45 121 188.79 127 1.000 CRS 

91 Bangkok 0.024 108 0.024 108 0.012 108 275,918 44 O   325.30 152 0.976 DRS 

92 Bangkok 0.019 104 0.020 104 0.010 104 346,629 155 74.33 46 31.14 25 0.995 IRS 

93 Bangkok 0.000 1 0.000 1 0.000 1 314,784 88 71.65 43 236.79 142 1.000 CRS 

94 Pathumthani 0.001 88 0.001 88 0.001 88 255,639 31 456.67 147 85.09 76 0.999 DRS 

95 Pathumthani 0.000 1 0.000 1 0.000 1 148,264 8 70.57 41 O   1.000 CRS 

96 Pathumthani 0.000 1 0.000 1 0.000 1 334,044 126 64.72 38 46.83 41 1.000 CRS 

97 Pathumthani 0.000 1 0.000 1 0.000 1 253,212 30 192.78 99 120.83 99 1.000 CRS 

98 Pathumthani 0.000 1 0.000 1 0.000 1 329,215 118 70.91 42 48.04 42 1.000 CRS 

99 Pathumthani 0.000 1 0.000 1 0.000 1 312,451 86 191.74 98 63.63 60 1.000 CRS 

100 Pathumthani 0.000 1 0.000 1 0.000 1 143,648 7 535.46 155 233.00 141 1.000 CRS 

101 Pathumthani 0.021 106 0.021 106 0.011 106 320,227 93 261.26 125 117.46 97 0.999 IRS 

102 Pathumthani 0.008 93 0.008 93 0.004 93 209,877 17 372.88 140 171.93 118 0.992 DRS 

103 Pathumthani 0.000 1 0.000 1 0.000 1 226,014 21 184.26 94 199.67 130 1.000 CRS 

104 Nakhonnayok 0.000 1 0.000 1 0.000 1 334,577 130 63.80 37 26.24 15 1.000 CRS 

105 Nakhonnayok 0.000 1 0.000 1 0.000 1 317,001 90 N.A.   95.04 85 1.000 CRS 

106 Nakhonnayok 0.000 1 0.000 1 0.000 1 292,073 55 N.A.   28.58 19 1.000 CRS 

107 Nakhonnayok 0.000 1 0.000 1 0.000 1 321,379 96 38.80 25 59.77 55 1.000 CRS 

108 Nakhonnayok 0.000 1 0.000 1 0.000 1 328,606 115 N.A.   66.19 64 1.000 CRS 

109 Nakhonnayok 0.000 1 0.000 1 0.000 1 342,304 141 N.A.   40.94 38 1.000 CRS 

110 Nakhonnayok 0.001 86 0.001 86 0.000 86 296,175 61 N.A.   142.22 108 0.999 DRS 

111 Nakhonnayok 0.208 172 0.262 172 0.116 172 320,315 94 249.15 114 113.82 95 0.997 DRS 

112 Nakhonnayok 0.210 173 0.266 173 0.117 173 315,942 89 632.49 161 396.30 154 0.994 DRS 

113 Nakhonnayok 0.212 175 0.270 175 0.119 175 349,341 161 145.32 80 59.77 56 0.998 DRS 

114 Nakhonnayok 0.211 174 0.267 174 0.118 174 322,275 99 176.61 90 73.88 67 0.987 DRS 

115 Nakhonnayok 0.154 150 0.182 150 0.083 150 323,184 103 290.69 130 N.A.   0.846 DRS 

116 Prachinburi 0.000 1 0.000 1 0.000 1 334,417 129 176.68 91 N.A.   1.000 CRS 

117 Prachinburi 0.040 119 0.042 119 0.020 119 352,389 171 25.91 17 9.02 7 0.960 IRS 

118 Prachinburi 0.000 1 0.000 1 0.000 1 348,895 159 N.A.   34.56 29 1.000 CRS 

119 Prachinburi 0.370 198 0.587 198 0.227 198 438,730 214 O   O   0.983 DRS 

120 Prachinburi 0.155 151 0.183 151 0.084 151 359,934 185 138.89 76 41.94 39 0.999 IRS 

121 Prachinburi 0.377 199 0.606 199 0.233 199 373,447 207 466.11 148 220.08 137 0.985 DRS 

122 Prachinburi 0.348 194 0.533 194 0.211 194 352,640 173 479.91 151 239.24 143 0.997 IRS 

123 Prachinburi 0.365 197 0.575 197 0.223 197 360,607 188 408.20 142 157.44 113 0.999 DRS 

124 Prachinburi 0.194 167 0.241 167 0.107 167 310,240 84 216.97 108 210.29 135 0.806 DRS 

125 Prachinburi 0.000 1 0.000 1 0.000 1 345,110 150 N.A.   7.80 6 1.000 CRS 

126 Prachinburi 0.189 164 0.232 164 0.104 164 325,400 109 347.18 138 245.90 145 0.972 DRS 

127 Prachinburi 0.365 196 0.575 196 0.223 196 353,977 174 292.29 131 163.06 114 1.000 DRS 

128 Chachoengsao 0.218 180 0.279 180 0.123 180 306,695 76 O   O   1.000 IRS 

129 Chachoengsao 0.243 188 0.321 188 0.138 188 307,009 77 650.72 163 222.87 139 0.974 DRS 

130 Chachoengsao 0.177 161 0.216 161 0.097 161 369,521 202 O   N.A.   0.911 DRS 

131 Chachoengsao 0.190 166 0.235 166 0.105 166 349,347 162 219.47 109 119.83 98 0.994 IRS 

132 Chachoengsao 0.226 184 0.291 184 0.127 184 265,548 36 O   O   0.965 DRS 

133 Chachoengsao 0.220 181 0.282 181 0.124 181 273,065 41 510.85 153 184.50 125 0.999 DRS 

134 Chachoengsao 0.224 183 0.288 183 0.126 183 356,530 176 62.48 35 28.63 20 1.000 DRS 

135 Chachoengsao 0.000 1 0.000 1 0.000 1 355,588 175 N.A.   N.A.   1.000 CRS 

136 Chachoengsao 0.000 1 0.000 1 0.000 1 360,225 187 N.A.   N.A.   1.000 CRS 

137 Chachoengsao 0.046 121 0.048 121 0.023 121 362,009 190 N.A.   29.80 23 0.954 IRS 

138 Sakaeo 0.498 208 0.991 208 0.331 208 375,795 208 22.66 15 N.A.   0.977 DRS 

139 Sakaeo 0.000 1 0.000 1 0.000 1 349,895 164 N.A.   N.A.   1.000 CRS 

140 Sakaeo 0.338 193 0.512 193 0.204 193 362,866 191 N.A.   N.A.   0.998 DRS 

141 Sakaeo 0.442 206 0.792 206 0.284 206 364,152 193 33.59 21 183.25 124 0.982 DRS 

142 Sakaeo 0.513 211 1.053 211 0.345 211 368,697 201 9.35 8 50.93 47 1.000 CRS 

143 Sakaeo 0.301 191 0.430 191 0.177 191 342,483 142 164.06 86 89.93 81 0.993 IRS 

144 Sakaeo 0.522 214 1.091 214 0.353 214 392,101 211 44.35 29 55.83 50 0.790 DRS 

145 Sakaeo 0.379 200 0.609 200 0.233 200 358,618 180 33.48 20 34.28 28 0.981 DRS 

146 Sakaeo 0.350 195 0.539 195 0.212 195 343,950 145 N.A.   N.A.   0.795 DRS 

147 Chanthaburi 0.514 212 1.058 212 0.346 212 379,977 209 72.52 44 48.18 43 0.976 IRS 

148 Chanthaburi 0.520 213 1.082 213 0.351 213 382,913 210 118.99 70 117.09 96 0.985 IRS 

149 Chanthaburi 0.472 207 0.895 207 0.309 207 363,522 192 89.92 57 87.38 79 0.987 DRS 

150 Chanthaburi 0.512 210 1.050 210 0.344 210 365,500 195 40.41 26 25.56 14 0.700 IRS 

151 Chanthaburi 0.506 209 1.023 209 0.338 209 365,315 194 104.82 65 79.53 73 0.989 IRS 
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152 Trat 0.194 168 0.241 168 0.108 168 227,496 23 450.23 145 306.06 151 0.806 DRS 

153 Trat 0.016 101 0.016 101 0.008 101 276,663 46 310.21 133 39.66 35 0.984 DRS 

154 Trat 0.072 127 0.077 127 0.037 127 330,249 119 139.21 78 4.22 5 0.944 DRS 

155 Trat 0.160 156 0.190 156 0.087 156 241,243 26 180.10 93 130.80 104 0.904 DRS 

156 Rayong 0.394 201 0.650 201 0.245 201 365,779 196 2.00 2 35.07 31 0.923 IRS 

157 Rayong 0.419 205 0.722 205 0.265 205 433,263 213 570.03 159 O   1.000 DRS 

158 Rayong 0.406 203 0.685 203 0.255 203 371,420 204 451.02 146 171.13 117 0.999 DRS 

159 Rayong 0.411 204 0.697 204 0.258 204 395,275 212 O   O   0.999 DRS 

160 Rayong 0.401 202 0.670 202 0.251 202 373,370 206 N.A.   123.09 100 0.996 IRS 

161 Chonburi 0.075 130 0.081 130 0.039 130 275,831 43 N.A.   98.86 86 0.926 DRS 

162 Chonburi 0.126 144 0.145 144 0.067 144 251,386 29 11.09 9 129.58 102 0.979 DRS 

163 Chonburi 0.013 99 0.013 99 0.007 99 310,760 85 N.A.   23.55 13 0.987 DRS 

164 Chonburi 0.074 129 0.080 129 0.038 129 246,127 27 N.A.   91.89 83 0.926 DRS 

165 Chonburi 0.080 131 0.086 131 0.041 131 351,849 170 0.00 1 39.34 34 0.975 IRS 

166 Chonburi 0.000 1 0.000 1 0.000 1 336,320 132 N.A.   N.A.   1.000 CRS 

167 Chonburi 0.000 1 0.000 1 0.000 1 281,744 48 N.A.   N.A.   1.000 CRS 

168 Samutprakan 0.000 1 0.000 1 0.000 1 163,919 9 255.50 120 181.64 121 1.000 CRS 

169 Samutprakan 0.000 1 0.000 1 0.000 1 166,631 10 N.A.   261.98 148 1.000 CRS 

170 Samutprakan 0.000 1 0.000 1 0.000 1 286,737 51 76.54 47 56.61 53 1.000 CRS 

171 Samutprakan 0.000 1 0.000 1 0.000 1 105,431 3 N.A.   O   1.000 CRS 

172 Samutsakhon 0.104 140 0.116 140 0.055 140 333,993 125 259.65 122 112.99 94 0.996 DRS 

173 Samutsakhon 0.013 98 0.013 98 0.007 98 347,744 158 204.79 105 83.57 74 0.987 DRS 

174 Samutsakhon 0.067 126 0.072 126 0.035 126 347,410 157 69.95 40 68.46 65 0.970 DRS 

175 Samutsakhon 0.109 141 0.122 141 0.057 141 365,964 197 84.68 50 26.24 16 0.997 DRS 

176 Samutsakhon 0.102 139 0.114 139 0.054 139 256,780 34 477.63 150 210.96 136 0.977 DRS 

177 Nakhonpathom 0.000 1 0.000 1 0.000 1 349,717 163 18.23 13 3.19 2 1.000 CRS 

178 Nakhonpathom 0.000 1 0.000 1 0.000 1 220,290 18 267.25 126 49.99 45 1.000 CRS 

179 Nakhonpathom 0.007 92 0.007 92 0.003 92 291,061 53 444.25 144 168.95 116 0.998 DRS 

180 Nakhonpathom 0.000 1 0.000 1 0.000 1 351,066 169 N.A.   13.75 8 1.000 CRS 

181 Nakhonpathom 0.026 111 0.027 111 0.013 111 103,156 2 O   O   0.974 DRS 

182 Nakhonpathom 0.000 1 0.000 1 0.000 1 308,443 80 13.19 12 14.12 9 1.000 CRS 

183 Nakhonpathom 0.000 1 0.000 1 0.000 1 291,991 54 9.24 7 55.97 51 1.000 CRS 

184 Nakhonpathom 0.000 1 0.000 1 0.000 1 110,131 4 N.A.   N.A.   1.000 CRS 

185 Nakhonpathom 0.000 1 0.000 1 0.000 1 126,049 5 251.25 115 137.59 106 1.000 CRS 

186 Kanchanaburi 0.011 96 0.011 96 0.005 96 359,746 184 116.12 68 76.22 70 0.993 IRS 

187 Kanchanaburi 0.000 1 0.000 1 0.000 1 191,228 13 O   O   1.000 CRS 

188 Kanchanaburi 0.051 123 0.053 123 0.026 123 270,752 40 192.92 100 182.71 122 0.956 DRS 

189 Kanchanaburi 0.063 124 0.067 124 0.032 124 307,769 78 569.82 158 328.50 153 0.937 DRS 

190 Kanchanaburi 0.086 135 0.094 135 0.045 135 168,447 11 O   O   0.931 DRS 

191 Kanchanaburi 0.000 1 0.000 1 0.000 1 328,839 117 20.91 14 102.53 89 1.000 CRS 

192 Kanchanaburi 0.031 115 0.032 115 0.016 115 0 1 O   O   0.969 DRS 

193 Kanchanaburi 0.083 134 0.091 134 0.043 134 344,523 148 37.05 22 49.36 44 1.000 CRS 

194 Kanchanaburi 0.000 1 0.000 1 0.000 1 226,892 22 229.45 112 N.A.   1.000 CRS 

195 Kanchanaburi 0.093 138 0.103 138 0.049 138 294,422 59 638.04 162 O   0.998 DRS 

196 Ratchaburi 0.000 1 0.000 1 0.000 1 139,553 6 O   182.72 123 1.000 CRS 

197 Ratchaburi 0.000 1 0.000 1 0.000 1 326,886 111 129.25 75 85.43 77 1.000 CRS 

198 Ratchaburi 0.000 1 0.000 1 0.000 1 300,135 69 184.71 95 64.70 62 1.000 CRS 

199 Ratchaburi 0.000 1 0.000 1 0.000 1 298,458 66 89.36 55 50.93 46 1.000 CRS 

200 Ratchaburi 0.000 1 0.000 1 0.000 1 357,960 178 3.18 3 3.67 4 1.000 CRS 

201 Phetchaburi 0.217 178 0.276 178 0.121 178 297,157 64 506.03 152 198.84 129 1.000 CRS 

202 Phetchaburi 0.217 179 0.277 179 0.121 179 301,570 71 517.64 154 201.86 133 1.000 CRS 

203 Phetchaburi 0.216 177 0.276 177 0.121 177 294,874 60 575.71 160 226.83 140 0.889 DRS 

204 Phetchaburi 0.214 176 0.273 176 0.120 176 359,146 183 155.42 82 60.07 57 1.000 CRS 

205 Phetchaburi 0.000 1 0.000 1 0.000 1 345,526 151 87.91 54 N.A.   1.000 CRS 

206 Phetchaburi 0.000 1 0.000 1 0.000 1 332,722 122 538.69 156 N.A.   1.000 CRS 

207 Phetchaburi 0.000 1 0.000 1 0.000 1 303,076 75 33.19 19 155.62 112 1.000 CRS 

208 Phetchaburi 0.160 157 0.191 157 0.087 157 284,571 49 255.16 119 181.63 120 0.969 DRS 

209 Phetchaburi 0.205 170 0.258 170 0.114 170 352,438 172 125.01 73 51.10 48 0.995 IRS 

210 Prachuapkhirikhan 0.189 165 0.233 165 0.104 165 360,207 186 N.A.   N.A.   0.990 DRS 

211 Prachuapkhirikhan 0.195 169 0.242 169 0.108 169 309,683 83 N.A.   N.A.   0.805 DRS 

212 Prachuapkhirikhan 0.313 192 0.455 192 0.185 192 341,265 139 37.70 24 40.78 37 0.970 DRS 

213 Prachuapkhirikhan 0.289 190 0.407 190 0.169 190 343,981 146 168.18 87 36.79 33 0.999 DRS 

214 Prachuapkhirikhan 0.205 171 0.259 171 0.114 171 308,527 81 358.35 139 N.A.   0.795 DRS 

Note that DDF1 – DDF3 models are estimated under the assumption of CRS; DDF4, NSMM and PSMM are estimated under the 

assumption of VRS. N.A. denotes the farm had negative NS or negative PS. O denotes the farm is an outlier for NSMM or PSMM.  
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Table D.7 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of non-jasmine rice farms in the Southern 

region 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Chumphon 0.260 83 0.352 83 0.150 83 155,795 84 128.27 46 84.41 57 0.978 DRS 

2 Chumphon 0.255 80 0.342 80 0.146 80 140,021 35 O   O   0.992 DRS 

3 Chumphon 0.231 77 0.300 77 0.130 77 148,941 56 91.89 40 25.52 39 0.995 DRS 

4 Chumphon 0.252 79 0.337 79 0.144 79 170,163 99 O   O   0.971 DRS 

5 Chumphon 0.217 76 0.277 76 0.121 76 182,986 100 214.47 50 31.42 44 0.834 DRS 

6 Chumphon 0.207 73 0.261 73 0.116 73 146,920 51 72.65 38 34.34 47 0.930 DRS 

7 Chumphon 0.243 78 0.322 78 0.139 78 152,400 68 63.04 37 48.45 51 0.973 DRS 

8 Chumphon 0.264 84 0.358 84 0.152 84 159,092 96 16.43 21 3.60 6 0.874 IRS 

9 Suratthani 0.000 1 0.000 1 0.000 1 142,694 41 N.A.   10.61 17 1.000 CRS 

10 Suratthani 0.000 1 0.000 1 0.000 1 146,943 52 3.59 7 16.61 30 1.000 CRS 

11 Suratthani 0.000 1 0.000 1 0.000 1 142,243 40 21.10 23 11.59 18 1.000 CRS 

12 Suratthani 0.004 47 0.004 47 0.002 47 128,319 22 55.22 35 55.71 52 0.996 DRS 

13 Suratthani 0.004 48 0.004 48 0.002 48 123,755 17 15.22 20 71.58 56 0.996 DRS 

14 Suratthani 0.000 1 0.000 1 0.000 1 123,962 18 104.32 41 N.A.   1.000 CRS 

15 Krabi 0.375 96 0.600 96 0.231 96 156,771 89 O   O   0.684 IRS 

16 Krabi 0.000 1 0.000 1 0.000 1 157,417 93 N.A.   N.A.   1.000 CRS 

17 Krabi 0.000 1 0.000 1 0.000 1 157,272 92 N.A.   N.A.   1.000 CRS 

18 Krabi 0.000 1 0.000 1 0.000 1 159,458 98 N.A.   N.A.   1.000 CRS 

19 Krabi 0.348 93 0.535 93 0.211 93 156,132 86 N.A.   1.41 3 0.719 IRS 

20 Krabi 0.000 1 0.000 1 0.000 1 155,724 82 N.A.   N.A.   1.000 CRS 

21 Trang 0.256 81 0.344 81 0.147 81 155,791 83 0.68 3 10.55 16 0.789 IRS 

22 Trang 0.000 1 0.000 1 0.000 1 155,329 80 N.A.   5.60 7 1.000 CRS 

23 Trang 0.392 99 0.646 99 0.244 99 156,433 88 11.75 17 29.22 43 0.947 IRS 

24 Trang 0.380 97 0.612 97 0.234 97 154,322 76 N.A.   O   0.722 DRS 

25 Trang 0.383 98 0.620 98 0.237 98 159,350 97 O   O   0.924 DRS 

26 Trang 0.000 1 0.000 1 0.000 1 156,816 91 N.A.   N.A.   1.000 CRS 

27 Trang 0.000 1 0.000 1 0.000 1 156,176 87 N.A.   N.A.   1.000 CRS 

28 Trang 0.286 86 0.400 86 0.167 86 158,176 95 27.34 26 56.31 53 0.714 DRS 

29 Trang 0.397 100 0.657 100 0.247 100 157,655 94 9.13 15 17.17 31 0.756 IRS 

30 Nakhonsithammarat 0.213 75 0.270 75 0.119 75 96,136 12 O   O   0.787 DRS 

31 Nakhonsithammarat 0.209 74 0.263 74 0.116 74 139,943 33 O   O   0.987 DRS 

32 Nakhonsithammarat 0.000 1 0.000 1 0.000 1 156,778 90 N.A.   N.A.   1.000 CRS 

33 Nakhonsithammarat 0.023 54 0.023 54 0.011 54 146,772 49 N.A.   6.39 9 0.977 DRS 

34 Nakhonsithammarat 0.000 1 0.000 1 0.000 1 131,391 25 N.A.   N.A.   1.000 CRS 

35 Nakhonsithammarat 0.188 69 0.232 69 0.104 69 152,624 70 16.80 22 N.A.   0.997 IRS 

36 Nakhonsithammarat 0.207 72 0.261 72 0.115 72 125,794 20 O   O   0.959 DRS 

37 Nakhonsithammarat 0.188 70 0.232 70 0.104 70 146,756 47 123.72 45 O   0.993 IRS 

38 Phatthalung 0.117 64 0.133 64 0.062 64 149,308 59 N.A.   8.16 11 0.883 IRS 

39 Phatthalung 0.125 66 0.143 66 0.067 66 151,177 65 43.67 30 8.17 12 0.919 IRS 

40 Phatthalung 0.066 58 0.071 58 0.034 58 144,174 42 N.A.   26.91 40 0.979 DRS 

41 Phatthalung 0.068 59 0.073 59 0.035 59 145,548 46 40.04 29 7.89 10 0.996 DRS 

42 Phatthalung 0.092 61 0.101 61 0.048 61 112,996 14 12.52 18 31.52 45 0.908 DRS 

43 Phatthalung 0.085 60 0.093 60 0.044 60 76,369 6 3.46 6 103.00 59 0.915 DRS 

44 Phatthalung 0.009 50 0.009 50 0.004 50 140,898 37 N.A.   11.85 19 0.991 IRS 

45 Phatthalung 0.118 65 0.134 65 0.063 65 139,985 34 N.A.   14.37 22 0.995 IRS 

46 Phatthalung 0.000 1 0.000 1 0.000 1 120,554 16 N.A.   44.39 48 1.000 CRS 

47 Phatthalung 0.000 1 0.000 1 0.000 1 146,766 48 N.A.   0.98 2 1.000 CRS 

48 Phatthalung 0.000 1 0.000 1 0.000 1 134,186 27 105.19 42 16.51 29 1.000 CRS 

49 Phatthalung 0.000 1 0.000 1 0.000 1 150,202 62 14.66 19 10.16 15 1.000 CRS 

50 Phatthalung 0.000 1 0.000 1 0.000 1 131,019 23 N.A.   20.89 36 1.000 CRS 

51 Phatthalung 0.014 53 0.014 53 0.007 53 135,270 28 54.96 34 28.54 42 0.986 DRS 

52 Phatthalung 0.000 1 0.000 1 0.000 1 149,146 58 23.68 24 16.14 27 1.000 CRS 

53 Phatthalung 0.010 51 0.010 51 0.005 51 65,624 5 91.27 39 O   0.990 DRS 

54 Phatthalung 0.107 63 0.119 63 0.056 63 78,323 7 O   O   0.893 DRS 

55 Phatthalung 0.000 1 0.000 1 0.000 1 146,807 50 0.00 1 27.64 41 1.000 CRS 

56 Phatthalung 0.000 1 0.000 1 0.000 1 125,913 21 49.96 32 O   1.000 CRS 

57 Phatthalung 0.054 56 0.057 56 0.028 56 137,632 31 26.62 25 18.95 35 0.946 DRS 

58 Songkhla 0.000 1 0.000 1 0.000 1 115,940 15 O   N.A.   1.000 CRS 

59 Songkhla 0.000 1 0.000 1 0.000 1 131,076 24 62.39 36 14.67 24 1.000 CRS 

60 Songkhla 0.000 1 0.000 1 0.000 1 0 1 O   N.A.   1.000 CRS 

61 Songkhla 0.000 1 0.000 1 0.000 1 140,552 36 50.61 33 18.83 34 1.000 CRS 

62 Songkhla 0.000 1 0.000 1 0.000 1 57,508 4 O   O   1.000 CRS 

63 Songkhla 0.000 1 0.000 1 0.000 1 48,837 3 O   N.A.   1.000 CRS 

64 Songkhla 0.000 1 0.000 1 0.000 1 91,869 10 134.22 48 N.A.   1.000 CRS 

65 Songkhla 0.000 1 0.000 1 0.000 1 108,794 13 129.85 47 112.64 61 1.000 CRS 

66 Songkhla 0.000 1 0.000 1 0.000 1 78,874 8 138.38 49 105.14 60 1.000 CRS 

67 Songkhla 0.000 1 0.000 1 0.000 1 141,292 38 N.A.   8.25 13 1.000 CRS 

68 Songkhla 0.000 1 0.000 1 0.000 1 144,838 45 N.A.   2.53 5 1.000 CRS 

69 Songkhla 0.000 1 0.000 1 0.000 1 141,307 39 N.A.   0.00 1 1.000 CRS 
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Table D.7 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

70 Songkhla 0.000 1 0.000 1 0.000 1 90,845 9 O  N.A.  1.000 CRS 

71 Songkhla 0.007 49 0.007 49 0.004 49 19,727 2 O   O   0.994 DRS 

72 Songkhla 0.000 1 0.000 1 0.000 1 147,189 53 N.A.   N.A.   1.000 CRS 

73 Songkhla 0.000 1 0.000 1 0.000 1 132,618 26 116.53 44 N.A.   1.000 CRS 

74 Songkhla 0.000 1 0.000 1 0.000 1 135,391 29 111.65 43 N.A.   1.000 CRS 

75 Satun 0.162 67 0.194 67 0.088 67 154,156 75 5.04 9 24.01 37 0.991 DRS 

76 Satun 0.306 88 0.441 88 0.181 88 154,771 78 9.01 14 18.18 33 0.694 IRS 

77 Satun 0.185 68 0.227 68 0.102 68 92,194 11 49.68 31 O   0.815 DRS 

78 Satun 0.256 82 0.345 82 0.147 82 152,744 71 8.33 13 17.40 32 0.744 IRS 

79 Satun 0.197 71 0.245 71 0.109 71 125,769 19 36.58 28 95.96 58 0.991 DRS 

80 Satun 0.302 87 0.432 87 0.178 87 151,504 66 7.88 11 31.96 46 0.977 DRS 

81 Satun 0.315 90 0.459 90 0.187 90 150,796 64 N.A.   13.36 21 0.969 IRS 

82 Satun 0.313 89 0.456 89 0.186 89 152,573 69 3.43 5 15.27 26 0.931 IRS 

83 Pattani 0.283 85 0.395 85 0.165 85 135,569 30 N.A.   61.43 55 0.717 DRS 

84 Pattani 0.057 57 0.061 57 0.029 57 149,137 57 8.07 12 45.21 49 0.943 DRS 

85 Pattani 0.000 1 0.000 1 0.000 1 147,212 54 N.A.   1.60 4 1.000 CRS 

86 Pattani 0.000 1 0.000 1 0.000 1 155,447 81 N.A.   N.A.   1.000 CRS 

87 Pattani 0.000 1 0.000 1 0.000 1 144,386 43 11.37 16 46.28 50 1.000 CRS 

88 Pattani 0.012 52 0.012 52 0.006 52 138,735 32 N.A.   N.A.   0.988 DRS 

89 Pattani 0.344 91 0.524 91 0.208 91 150,753 63 0.54 2 16.49 28 0.996 IRS 

90 Pattani 0.098 62 0.109 62 0.052 62 150,179 61 N.A.   11.99 20 0.902 DRS 

91 Pattani 0.000 1 0.000 1 0.000 1 144,702 44 N.A.   N.A.   1.000 CRS 

92 Pattani 0.000 1 0.000 1 0.000 1 153,024 72 N.A.   N.A.   1.000 CRS 

93 Pattani 0.347 92 0.530 92 0.210 92 149,495 60 N.A.   14.46 23 0.995 IRS 

94 Pattani 0.044 55 0.046 55 0.023 55 147,559 55 N.A.   8.28 14 0.956 DRS 

95 Pattani 0.352 94 0.543 94 0.213 94 153,766 73 6.87 10 25.14 38 0.992 DRS 

96 Pattani 0.000 1 0.000 1 0.000 1 155,086 79 1.89 4 6.29 8 1.000 CRS 

97 Pattani 0.373 95 0.595 95 0.229 95 154,591 77 4.42 8 15.03 25 0.738 IRS 

98 Pattani 0.000 1 0.000 1 0.000 1 154,130 74 N.A.   N.A.   1.000 CRS 

99 Pattani 0.000 1 0.000 1 0.000 1 155,987 85 N.A.   N.A.   1.000 CRS 

100 Pattani 0.000 1 0.000 1 0.000 1 152,225 67 30.85 27 58.73 54 1.000 CRS 

Note that DDF1 – DDF3 models are estimated under the assumption of CRS; DDF4, NSMM and PSMM are estimated under the 
assumption of VRS. N.A. denotes the farm had negative NS or negative PS. O denotes the farm is an outlier for NSMM and PSMM.  

 

Table D.8 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of glutinous rice farms in the Northern region 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Chiangrai 0.000 1 0.000 1 0.000 1 23,126 64 N.A.   N.A.   0.980 DRS 

2 Chiangrai 0.000 1 0.000 1 0.000 1 12,961 7 N.A.   13.23 23 1.000 CRS 

3 Chiangrai 0.000 1 0.000 1 0.000 1 12,088 5 O   N.A.   0.994 DRS 

4 Chiangrai 0.000 1 0.000 1 0.000 1 17,146 23 N.A.   N.A.   1.000 CRS 

5 Chiangrai 0.000 1 0.000 1 0.000 1 13,606 8 O   O   0.966 DRS 

6 Chiangrai 0.000 1 0.000 1 0.000 1 16,252 18 N.A.   8.99 16 1.000 CRS 

7 Chiangrai 0.000 1 0.000 1 0.000 1 16,917 21 O   O   1.000 CRS 

8 Chiangrai 0.000 1 0.000 1 0.000 1 18,585 29 N.A.   N.A.   0.954 DRS 

9 Chiangrai 0.000 1 0.000 1 0.000 1 17,025 22 22.66 11 13.40 24 1.000 CRS 

10 Chiangrai 0.000 1 0.000 1 0.000 1 14,367 11 N.A.   16.70 26 1.000 DRS 

11 Phayao 0.000 1 0.000 1 0.000 1 21,722 53 38.23 15 0.54 2 1.000 CRS 

12 Phayao 0.000 1 0.000 1 0.000 1 21,068 47 N.A.   4.02 7 1.000 CRS 

13 Phayao 0.000 1 0.000 1 0.000 1 14,512 12 4.29 5 O   1.000 CRS 

14 Phayao 0.000 1 0.000 1 0.000 1 14,078 10 N.A.   34.65 34 0.838 DRS 

15 Phayao 0.000 1 0.000 1 0.000 1 18,468 27 12.20 9 4.97 9 1.000 CRS 

16 Phayao 0.055 85 0.055 84 0.028 83 21,964 55 14.60 10 14.01 25 1.000 CRS 

17 Phayao 0.000 1 0.000 1 0.000 1 15,539 15 9.04 7 N.A.   1.000 CRS 

18 Phayao 0.000 1 0.000 1 0.000 1 19,428 37 N.A.   N.A.   1.000 CRS 

19 Phayao 0.000 1 0.000 1 0.000 1 16,314 19 N.A.   0.78 3 1.000 CRS 

20 Phayao 0.000 1 0.000 1 0.000 1 18,860 31 3.25 3 5.46 11 1.000 CRS 

21 Phayao 0.000 1 0.000 1 0.000 1 19,285 35 N.A.   1.72 5 1.000 CRS 

22 Lampang 0.000 1 0.000 1 0.000 1 25,400 78 N.A.   N.A.   0.979 IRS 

23 Lampang 0.000 1 0.000 1 0.000 1 21,301 48 N.A.   N.A.   1.000 CRS 

24 Lampang 0.000 1 0.000 1 0.000 1 25,790 80 N.A.   20.74 28 1.000 CRS 

25 Lampang 0.000 1 0.000 1 0.000 1 20,733 45 N.A.   N.A.   0.893 DRS 

26 Lampang 0.000 1 0.000 1 0.000 1 21,423 49 N.A.   6.35 12 0.953 DRS 

27 Lampang 0.000 1 0.000 1 0.000 1 26,574 82 N.A.   N.A.   0.861 DRS 

28 Lampang 0.000 1 0.000 1 0.000 1 16,183 17 N.A.   O   1.000 CRS 

29 Lampang 0.048 83 0.078 86 0.030 85 24,764 75 N.A.   3.03 6 0.959 IRS 

30 Lampang 0.072 86 0.053 83 0.031 86 21,484 50 N.A.   4.67 8 0.927 DRS 

31 Lampang 0.000 1 0.000 1 0.000 1 19,683 39 N.A.   N.A.   1.000 CRS 

32 Lamphun 0.000 1 0.000 1 0.000 1 20,983 46 N.A.   O   0.974 DRS 
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Table D.8 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

33 Lamphun 0.000 1 0.000 1 0.000 1 14,680 14 0.00 1 N.A.  1.000 CRS 

34 Lamphun 0.000 1 0.000 1 0.000 1 22,920 62 27.01 13 N.A.   0.965 IRS 

35 Lamphun 0.025 76 0.026 76 0.013 76 23,151 65 N.A.   N.A.   1.000 IRS 

36 Lamphun 0.000 1 0.000 1 0.000 1 23,732 69 N.A.   22.55 30 1.000 CRS 

37 Lamphun 0.000 1 0.000 1 0.000 1 20,485 44 6.61 6 24.10 31 0.993 IRS 

38 Lamphun 0.000 1 0.000 1 0.000 1 13,648 9 N.A.   N.A.   1.000 CRS 

39 Lamphun 0.000 1 0.000 1 0.000 1 5,492 2 N.A.   O   1.000 CRS 

40 Lamphun 0.000 1 0.000 1 0.000 1 19,389 36 N.A.   O   1.000 CRS 

41 Lamphun 0.000 1 0.000 1 0.000 1 0 1 N.A.   O   1.000 CRS 

42 Lamphun 0.023 75 0.024 75 0.012 75 19,660 38 N.A.   7.40 14 0.999 IRS 

43 Chiangmai 0.000 1 0.000 1 0.000 1 18,278 26 N.A.   12.18 22 1.000 CRS 

44 Chiangmai 0.000 1 0.000 1 0.000 1 7,493 3 N.A.   11.84 20 1.000 CRS 

45 Chiangmai 0.000 1 0.000 1 0.000 1 22,433 56 N.A.   N.A.   1.000 CRS 

46 Chiangmai 0.000 1 0.000 1 0.000 1 12,562 6 0.14 2 20.74 29 1.000 CRS 

47 Chiangmai 0.000 1 0.000 1 0.000 1 14,571 13 O   O   1.000 CRS 

48 Chiangmai 0.000 1 0.000 1 0.000 1 19,872 40 N.A.   N.A.   1.000 CRS 

49 Chiangmai 0.004 73 0.004 73 0.002 73 20,410 43 3.57 4 25.44 33 0.998 IRS 

50 Chiangmai 0.005 74 0.005 74 0.003 74 21,571 51 N.A.   7.70 15 0.998 IRS 

51 Chiangmai 0.000 1 0.000 1 0.000 1 19,979 41 N.A.   N.A.   1.000 CRS 

52 Chiangmai 0.000 1 0.000 1 0.000 1 22,554 59 N.A.   N.A.   1.000 CRS 

53 Maehongson 0.000 1 0.000 1 0.000 1 23,507 68 N.A.   9.49 17 1.000 CRS 

54 Maehongson 0.000 1 0.000 1 0.000 1 24,793 76 N.A.   0.00 1 0.944 IRS 

55 Maehongson 0.000 1 0.000 1 0.000 1 23,058 63 N.A.   12.04 21 0.909 IRS 

56 Maehongson 0.000 1 0.000 1 0.000 1 23,440 66 N.A.   N.A.   1.000 CRS 

57 Maehongson 0.047 82 0.047 81 0.023 82 30,603 88 N.A.   6.40 13 0.974 DRS 

58 Tak 0.294 92 0.426 92 0.176 92 31,373 90 N.A.   N.A.   0.993 IRS 

59 Tak 0.260 91 0.318 90 0.148 91 23,453 67 N.A.   N.A.   0.993 DRS 

60 Tak 0.000 1 0.000 1 0.000 1 30,405 87 N.A.   N.A.   0.935 DRS 

61 Tak 0.089 87 0.338 91 0.089 90 24,342 72 N.A.   N.A.   0.818 IRS 

62 Tak 0.000 1 0.000 1 0.000 1 22,499 57 N.A.   N.A.   0.918 IRS 

63 Kamphaengphet 0.000 1 0.000 1 0.000 1 24,135 71 43.39 18 O   0.990 DRS 

64 Kamphaengphet 0.000 1 0.000 1 0.000 1 22,631 60 11.27 8 N.A.   0.918 IRS 

65 Kamphaengphet 0.040 79 0.035 78 0.020 79 24,452 74 41.03 16 O   0.974 DRS 

66 Kamphaengphet 0.000 1 0.000 1 0.000 1 18,528 28 N.A.   N.A.   1.000 CRS 

67 Sukhothai 0.000 1 0.000 1 0.000 1 30,850 89 N.A.   N.A.   0.939 DRS 

68 Sukhothai 0.000 1 0.000 1 0.000 1 32,611 91 N.A.   N.A.   0.920 DRS 

69 Sukhothai 0.171 90 0.090 88 0.068 88 26,555 81 N.A.   O   0.913 DRS 

70 Sukhothai 0.000 1 0.000 1 0.000 1 24,356 73 N.A.   N.A.   1.000 CRS 

71 Phrae 0.043 80 0.045 80 0.022 80 21,612 52 36.08 14 N.A.   1.000 IRS 

72 Phrae 0.000 1 0.000 1 0.000 1 19,249 34 N.A.   N.A.   1.000 CRS 

73 Phrae 0.000 1 0.000 1 0.000 1 15,811 16 N.A.   N.A.   1.000 CRS 

74 Phrae 0.000 1 0.000 1 0.000 1 18,068 25 N.A.   N.A.   1.000 CRS 

75 Phrae 0.000 1 0.000 1 0.000 1 25,229 77 N.A.   N.A.   0.960 DRS 

76 Nan 0.000 1 0.000 1 0.000 1 20,178 42 N.A.   1.09 4 1.000 CRS 

77 Nan 0.000 1 0.000 1 0.000 1 22,905 61 O   17.52 27 1.000 CRS 

78 Nan 0.054 84 0.057 85 0.028 84 19,249 33 N.A.   5.23 10 0.997 DRS 

79 Nan 0.000 1 0.000 1 0.000 1 17,880 24 N.A.   9.94 18 1.000 CRS 

80 Nan 0.000 1 0.000 1 0.000 1 18,827 30 N.A.   10.50 19 1.000 CRS 

81 Uttaradit 0.044 81 0.050 82 0.023 81 18,912 32 25.60 12 24.20 32 0.993 IRS 

82 Uttaradit 0.000 1 0.000 1 0.000 1 22,511 58 O   N.A.   1.000 CRS 

83 Uttaradit 0.036 77 0.035 77 0.018 77 21,786 54 O   N.A.   0.989 DRS 

84 Uttaradit 0.000 1 0.000 1 0.000 1 26,674 83 O   N.A.   1.000 CRS 

85 Uttaradit 0.000 1 0.000 1 0.000 1 28,052 84 O   N.A.   1.000 CRS 

86 Uttaradit 0.000 1 0.000 1 0.000 1 9,255 4 O   N.A.   1.000 CRS 

87 Phitsanulok 0.000 1 0.000 1 0.000 1 16,440 20 O   N.A.   0.937 DRS 

88 Phetchabun 0.038 78 0.040 79 0.019 78 25,651 79 43.40 19 N.A.   0.999 IRS 

89 Phetchabun 0.000 1 0.000 1 0.000 1 23,973 70 O   O   0.996 DRS 

90 Phetchabun 0.000 1 0.000 1 0.000 1 30,326 86 O   O   1.000 CRS 

91 Phetchabun 0.091 88 0.084 87 0.044 87 50,389 92 O   O   0.927 DRS 

92 Phetchabun 0.153 89 0.091 89 0.069 89 29,772 85 42.06 17 N.A.   0.969 DRS 

Note that DDF1 – DDF4, NSMM, and PSMM models are estimated under the assumption of VRS. N.A. denotes the farm had negative 
NS or negative PS. O denotes the farm is an outlier for NSMM and PSMM. 
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Table D.9 Ranking by different efficiency measures, returns to scale, technical, 

environmental, and scale efficiency estimates of glutinous rice farms in the North-eastern 

region 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

1 Loei 0.000 1 0.000 1 0.000 1 19,932 108 N.A.   N.A.   1.000 CRS 

2 Loei 0.000 1 0.000 1 0.000 1 17,988 95 N.A.   1.00 5 1.000 CRS 

3 Loei 0.000 1 0.000 1 0.000 1 16,187 70 N.A.   14.69 60 1.000 CRS 

4 Loei 0.023 69 0.024 69 0.012 69 21,222 121 0.00 1 22.49 80 0.977 DRS 

5 Loei 0.045 81 0.047 81 0.023 81 20,343 112 43.40 74 15.97 65 0.955 DRS 

6 Loei 0.000 1 0.000 1 0.000 1 11,898 18 N.A.   N.A.   1.000 CRS 

7 Nongbualamphu 0.000 1 0.000 1 0.000 1 15,183 59 N.A.   N.A.   1.000 CRS 

8 Nongbualamphu 0.000 1 0.000 1 0.000 1 10,490 7 N.A.   3.31 18 1.000 CRS 

9 Nongbualamphu 0.185 173 0.226 173 0.102 173 18,071 96 N.A.   11.31 52 0.962 DRS 

10 Nongbualamphu 0.000 1 0.000 1 0.000 1 16,430 76 N.A.   N.A.   1.000 CRS 

11 Nongbualamphu 0.038 74 0.039 74 0.019 74 27,635 155 N.A.   18.93 70 0.962 DRS 

12 Nongbualamphu 0.000 1 0.000 1 0.000 1 28,515 156 46.81 79 N.A.   1.000 CRS 

13 Nongbualamphu 0.129 125 0.147 125 0.069 125 17,527 89 3.51 9 3.15 17 1.000 CRS 

14 Nongbualamphu 0.000 1 0.000 1 0.000 1 14,869 53 N.A.   N.A.   1.000 CRS 

15 Udonthani 0.153 147 0.180 147 0.083 147 55,238 180 50.07 83 37.72 100 0.923 DRS 

16 Udonthani 0.000 1 0.000 1 0.000 1 11,236 11 2.96 6 N.A.   1.000 CRS 

17 Udonthani 0.003 62 0.003 62 0.001 62 0 1 65.12 93 12.02 54 0.997 DRS 

18 Udonthani 0.000 1 0.000 1 0.000 1 14,986 55 N.A.   33.75 93 1.000 CRS 

19 Udonthani 0.047 82 0.049 82 0.024 82 13,789 39 16.08 39 22.88 81 0.953 DRS 

20 Udonthani 0.134 131 0.155 131 0.072 131 26,063 147 3.18 7 20.26 73 0.992 DRS 

21 Udonthani 0.003 64 0.003 64 0.002 64 17,075 84 N.A.   5.50 23 0.997 DRS 

22 Udonthani 0.156 149 0.185 149 0.084 149 42,266 177 O   O   0.937 DRS 

23 Udonthani 0.091 101 0.100 101 0.047 101 21,367 125 6.43 17 31.29 90 0.975 DRS 

24 Udonthani 0.142 140 0.165 140 0.076 140 26,605 150 141.03 107 O   0.999 DRS 

25 Udonthani 0.191 174 0.236 174 0.105 174 16,966 82 5.85 14 6.40 29 0.965 DRS 

26 Udonthani 0.000 1 0.000 1 0.000 1 14,518 48 12.57 31 N.A.   1.000 CRS 

27 Udonthani 0.115 116 0.131 116 0.061 116 17,745 91 N.A.   2.71 14 0.954 IRS 

28 Udonthani 0.047 83 0.049 83 0.024 83 33,719 168 N.A.   N.A.   0.953 DRS 

29 Udonthani 0.134 130 0.155 130 0.072 130 25,319 145 N.A.   N.A.   0.991 DRS 

30 Nongkhai 0.169 165 0.204 165 0.092 165 40,122 175 O   40.73 103 0.990 DRS 

31 Nongkhai 0.168 161 0.201 161 0.091 161 38,042 172 O   57.06 113 0.991 DRS 

32 Nongkhai 0.168 163 0.202 163 0.092 163 23,322 134 36.05 71 34.94 97 0.998 DRS 

33 Nongkhai 0.146 143 0.171 143 0.079 143 16,232 72 8.21 20 23.49 83 0.994 IRS 

34 Nongkhai 0.041 79 0.042 79 0.021 79 17,824 92 N.A.   N.A.   0.959 DRS 

35 Nongkhai 0.171 167 0.207 167 0.094 167 30,249 162 43.86 75 34.61 96 0.991 DRS 

36 Nongkhai 0.132 129 0.153 129 0.071 129 25,182 143 N.A.   25.39 85 0.998 DRS 

37 Nongkhai 0.169 164 0.203 164 0.092 164 20,379 113 10.58 25 37.18 98 1.000 CRS 

38 Nongkhai 0.168 162 0.202 162 0.092 162 25,956 146 19.89 47 50.55 110 0.998 DRS 

39 Nongkhai 0.167 160 0.200 160 0.091 160 29,612 160 30.03 64 71.49 118 0.994 DRS 

40 Sakonnakhon 0.117 117 0.132 117 0.062 117 16,305 74 145.28 108 67.96 116 0.883 DRS 

41 Sakonnakhon 0.076 91 0.082 91 0.039 91 25,061 142 N.A.   O   0.924 DRS 

42 Sakonnakhon 0.149 145 0.175 145 0.080 145 18,535 99 9.33 22 6.27 28 0.967 DRS 

43 Sakonnakhon 0.107 110 0.120 110 0.056 110 11,530 16 12.97 32 2.69 13 0.994 DRS 

44 Sakonnakhon 0.135 133 0.156 133 0.073 133 43,579 178 N.A.   N.A.   0.865 DRS 

45 Sakonnakhon 0.140 138 0.163 138 0.075 138 16,210 71 24.25 52 11.73 53 0.990 DRS 

46 Sakonnakhon 0.000 1 0.000 1 0.000 1 21,134 119 34.89 68 O   1.000 CRS 

47 Sakonnakhon 0.000 1 0.000 1 0.000 1 14,745 52 8.13 19 O   1.000 CRS 

48 Sakonnakhon 0.135 132 0.156 132 0.072 132 19,470 105 26.67 58 27.68 87 0.967 DRS 

49 Sakonnakhon 0.123 120 0.140 120 0.066 120 27,358 153 O   O   0.877 DRS 

50 Sakonnakhon 0.083 93 0.090 93 0.043 93 12,210 23 N.A.   7.84 37 0.947 DRS 

51 Sakonnakhon 0.095 103 0.104 103 0.050 103 19,092 102 15.90 38 N.A.   0.905 DRS 

52 Nakhonphanom 0.159 154 0.190 154 0.087 154 23,492 136 N.A.   2.32 11 0.998 DRS 

53 Nakhonphanom 0.204 178 0.256 178 0.113 178 20,947 117 N.A.   1.60 6 0.996 DRS 

54 Nakhonphanom 0.000 1 0.000 1 0.000 1 25,194 144 N.A.   N.A.   1.000 CRS 

55 Nakhonphanom 0.000 1 0.000 1 0.000 1 10,778 9 3.33 8 17.20 69 1.000 CRS 

56 Nakhonphanom 0.181 170 0.221 170 0.100 170 14,568 50 16.58 40 2.25 9 0.996 DRS 

57 Nakhonphanom 0.161 156 0.192 156 0.088 156 16,702 79 4.94 11 21.68 77 0.981 IRS 

58 Nakhonphanom 0.199 177 0.249 177 0.111 177 27,259 152 O   O   0.965 DRS 

59 Nakhonphanom 0.000 1 0.000 1 0.000 1 33,866 169 N.A.   N.A.   1.000 CRS 

60 Nakhonphanom 0.194 176 0.241 176 0.108 176 22,495 130 60.86 89 9.35 45 1.000 DRS 

61 Nakhonphanom 0.166 158 0.199 158 0.090 158 15,337 60 17.30 42 25.52 86 0.972 DRS 

62 Nakhonphanom 0.096 106 0.106 106 0.051 106 12,183 22 6.14 15 7.09 34 0.946 IRS 

63 Nakhonphanom 0.176 169 0.214 169 0.097 169 12,900 28 25.66 56 2.26 10 0.916 DRS 

64 Mukdahan 0.016 67 0.016 67 0.008 67 27,457 154 N.A.   N.A.   0.984 DRS 

65 Mukdahan 0.141 139 0.164 139 0.076 139 40,558 176 O   O   0.984 DRS 

66 Mukdahan 0.000 1 0.000 1 0.000 1 17,026 83 O   O   1.000 CRS 

67 Mukdahan 0.108 111 0.121 111 0.057 111 9,868 4 10.99 26 N.A.   0.950 DRS 

68 Mukdahan 0.140 137 0.162 137 0.075 137 32,408 166 O   O   0.932 DRS 

69 Mukdahan 0.124 121 0.141 121 0.066 121 14,549 49 32.13 66 N.A.   0.918 DRS 
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Table D.9 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

70 Yasothon 0.146 141 0.171 141 0.079 141 17,106 85 8.41 21 N.A.  0.889 IRS 

71 Yasothon 0.000 1 0.000 1 0.000 1 14,470 47 1.34 4 15.71 64 1.000 CRS 

72 Yasothon 0.065 86 0.069 86 0.033 86 19,968 109 N.A.   10.60 49 0.991 IRS 

73 Yasothon 0.000 1 0.000 1 0.000 1 15,066 56 N.A.   N.A.   1.000 CRS 

74 Yasothon 0.096 105 0.106 105 0.050 105 24,001 139 5.17 12 14.48 59 0.998 DRS 

75 Yasothon 0.000 1 0.000 1 0.000 1 37,450 171 N.A.   N.A.   1.000 CRS 

76 Yasothon 0.000 1 0.000 1 0.000 1 33,609 167 N.A.   N.A.   1.000 CRS 

77 Yasothon 0.000 1 0.000 1 0.000 1 14,308 45 N.A.   6.75 33 1.000 CRS 

78 Yasothon 0.121 118 0.138 118 0.064 118 14,584 51 17.47 43 21.73 78 0.879 IRS 

79 Amnatcharoen 0.149 146 0.175 146 0.081 146 15,174 58 14.12 35 15.48 63 0.993 DRS 

80 Amnatcharoen 0.182 172 0.223 172 0.100 172 39,214 173 113.44 101 O   0.993 DRS 

81 Amnatcharoen 0.156 150 0.185 150 0.085 150 40,001 174 N.A.   6.23 27 0.995 DRS 

82 Amnatcharoen 0.181 171 0.221 171 0.100 171 44,449 179 O   66.26 115 0.993 DRS 

83 Amnatcharoen 0.042 80 0.043 80 0.021 80 13,694 37 27.96 61 15.25 61 0.958 IRS 

84 Ubonratchathani 0.138 135 0.160 135 0.074 135 24,567 140 N.A.   5.31 22 0.986 IRS 

85 Ubonratchathani 0.159 153 0.189 153 0.086 153 15,779 65 34.73 67 2.49 12 0.999 DRS 

86 Ubonratchathani 0.157 152 0.187 152 0.085 152 21,179 120 117.53 103 O   0.999 IRS 

87 Ubonratchathani 0.166 159 0.199 159 0.091 159 23,621 137 63.32 91 19.51 71 0.999 IRS 

88 Ubonratchathani 0.163 157 0.194 157 0.089 157 20,232 111 45.46 77 39.30 101 0.997 DRS 

89 Ubonratchathani 0.000 1 0.000 1 0.000 1 10,972 10 N.A.   N.A.   1.000 CRS 

90 Ubonratchathani 0.098 108 0.108 108 0.051 108 14,917 54 48.77 81 9.09 43 0.902 DRS 

91 Ubonratchathani 0.022 68 0.022 68 0.011 68 18,795 101 18.58 44 31.98 91 0.991 DRS 

92 Ubonratchathani 0.028 72 0.029 72 0.014 72 17,408 86 5.55 13 20.30 74 0.991 DRS 

93 Ubonratchathani 0.157 151 0.186 151 0.085 151 16,478 77 52.85 86 5.19 21 0.952 IRS 

94 Ubonratchathani 0.115 115 0.130 115 0.061 115 14,038 43 28.87 63 N.A.   0.885 IRS 

95 Ubonratchathani 0.155 148 0.184 148 0.084 148 13,818 41 22.10 50 N.A.   0.845 IRS 

96 Ubonratchathani 0.000 1 0.000 1 0.000 1 13,779 38 N.A.   8.79 41 1.000 CRS 

97 Sisaket 0.000 1 0.000 1 0.000 1 13,457 36 36.04 70 0.77 4 1.000 CRS 

98 Sisaket 0.000 1 0.000 1 0.000 1 12,675 26 9.44 23 15.40 62 1.000 CRS 

99 Sisaket 0.000 1 0.000 1 0.000 1 12,103 19 15.64 37 3.89 19 1.000 CRS 

100 Sisaket 0.000 1 0.000 1 0.000 1 11,780 17 13.02 33 8.15 38 1.000 CRS 

101 Sisaket 0.000 1 0.000 1 0.000 1 15,422 61 9.96 24 20.53 76 1.000 CRS 

102 Sisaket 0.000 1 0.000 1 0.000 1 11,505 15 4.88 10 7.80 36 1.000 CRS 

103 Sisaket 0.000 1 0.000 1 0.000 1 10,299 6 N.A.   1.75 7 1.000 CRS 

104 Surin 0.003 63 0.003 63 0.002 63 13,324 33 13.23 34 6.67 32 0.997 IRS 

105 Surin 0.000 1 0.000 1 0.000 1 13,924 42 31.01 65 N.A.   1.000 CRS 

106 Surin 0.000 1 0.000 1 0.000 1 16,392 75 104.91 98 37.69 99 1.000 CRS 

107 Surin 0.000 1 0.000 1 0.000 1 12,461 24 47.88 80 N.A.   1.000 CRS 

108 Surin 0.000 1 0.000 1 0.000 1 11,274 12 11.21 28 5.65 24 1.000 CRS 

109 Surin 0.000 1 0.000 1 0.000 1 8,992 3 74.83 95 N.A.   1.000 CRS 

110 Surin 0.000 1 0.000 1 0.000 1 9,872 5 11.24 29 N.A.   1.000 CRS 

111 Buriram 0.000 1 0.000 1 0.000 1 16,777 81 0.64 2 9.32 44 1.000 CRS 

112 Buriram 0.000 1 0.000 1 0.000 1 12,965 29 N.A.   N.A.   1.000 CRS 

113 Buriram 0.111 113 0.125 113 0.059 113 12,539 25 N.A.   2.89 15 0.889 IRS 

114 Buriram 0.085 95 0.093 95 0.044 95 14,052 44 6.25 16 6.48 30 0.962 IRS 

115 Buriram 0.039 75 0.040 75 0.020 75 12,161 21 6.46 18 6.15 26 0.977 IRS 

116 Buriram 0.100 109 0.111 109 0.052 109 13,071 31 11.12 27 9.66 46 0.996 IRS 

117 Buriram 0.139 136 0.162 136 0.075 136 16,048 69 51.82 84 23.69 84 0.983 DRS 

118 Mahasarakham 0.058 85 0.062 85 0.030 85 5,085 2 O   O   0.942 DRS 

119 Mahasarakham 0.000 1 0.000 1 0.000 1 11,348 13 N.A.   N.A.   1.000 CRS 

120 Mahasarakham 0.000 1 0.000 1 0.000 1 23,302 133 N.A.   2.01 8 1.000 CRS 

121 Mahasarakham 0.052 84 0.055 84 0.027 84 16,234 73 N.A.   10.08 48 0.982 IRS 

122 Mahasarakham 0.069 88 0.074 88 0.036 88 18,647 100 N.A.   13.07 58 0.994 DRS 

123 Mahasarakham 0.089 100 0.098 100 0.047 100 19,231 103 75.24 96 28.35 89 0.982 IRS 

124 Mahasarakham 0.095 104 0.105 104 0.050 104 29,477 158 108.42 99 47.55 107 0.994 DRS 

125 Mahasarakham 0.088 98 0.097 98 0.046 98 31,237 163 168.34 109 20.52 75 0.993 DRS 

126 Mahasarakham 0.089 99 0.097 99 0.046 99 24,732 141 111.38 100 52.17 112 0.999 DRS 

127 Mahasarakham 0.114 114 0.129 114 0.060 114 23,159 132 50.03 82 20.04 72 0.900 DRS 

128 Mahasarakham 0.086 96 0.094 96 0.045 96 21,784 127 70.30 94 N.A.   0.997 DRS 

129 Mahasarakham 0.072 89 0.078 89 0.037 89 15,924 67 20.44 48 49.90 109 0.984 DRS 

130 Mahasarakham 0.000 1 0.000 1 0.000 1 18,473 98 N.A.   N.A.   1.000 CRS 

131 Mahasarakham 0.088 97 0.096 97 0.046 97 17,510 88 O   0.00 1 0.996 DRS 

132 Mahasarakham 0.040 78 0.042 78 0.021 78 20,966 118 24.61 53 10.68 50 0.968 DRS 

133 Roiet 0.000 1 0.000 1 0.000 1 11,439 14 N.A.   N.A.   1.000 CRS 

134 Roiet 0.091 102 0.100 102 0.048 102 22,791 131 137.62 106 39.43 102 0.999 IRS 

135 Roiet 0.000 1 0.000 1 0.000 1 13,810 40 41.91 73 N.A.   1.000 CRS 

136 Roiet 0.075 90 0.081 90 0.039 90 15,724 64 27.37 59 8.52 40 0.931 IRS 

137 Roiet 0.080 92 0.087 92 0.042 92 21,331 124 16.67 41 0.03 2 0.956 IRS 

138 Kalasin 0.000 1 0.000 1 0.000 1 20,000 110 27.62 60 48.12 108 1.000 CRS 

139 Kalasin 0.000 1 0.000 1 0.000 1 17,938 94 21.93 49 43.29 105 1.000 CRS 

140 Kalasin 0.000 1 0.000 1 0.000 1 10,663 8 N.A.   7.11 35 1.000 CRS 

141 Kalasin 0.000 1 0.000 1 0.000 1 16,583 78 25.07 54 57.80 114 1.000 CRS 
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Table D.9 Continued 

Farm No. Province DDF1 Rank DDF2 Rank DDF3 Rank DDF4 Rank NSMM Rank PSMM Rank SE RTS 

142 Kalasin 0.024 70 0.024 70 0.012 70 26,354 149 120.94 104 46.93 106 0.979 DRS 

143 Kalasin 0.000 1 0.000 1 0.000 1 18,345 97 N.A.   N.A.   1.000 CRS 

144 Kalasin 0.000 1 0.000 1 0.000 1 13,418 34 N.A.   N.A.   1.000 CRS 

145 Kalasin 0.000 1 0.000 1 0.000 1 19,371 104 N.A.   N.A.   1.000 CRS 

146 Kalasin 0.000 1 0.000 1 0.000 1 15,126 57 N.A.   N.A.   1.000 CRS 

147 Kalasin 0.000 1 0.000 1 0.000 1 23,441 135 N.A.   N.A.   1.000 CRS 

148 Kalasin 0.000 1 0.000 1 0.000 1 20,804 116 97.98 97 N.A.   1.000 CRS 

149 Kalasin 0.035 73 0.036 73 0.018 73 20,490 114 N.A.   6.06 25 0.971 DRS 

150 Kalasin 0.040 77 0.042 76 0.020 77 15,950 68 19.25 45 4.00 20 0.980 DRS 

151 Kalasin 0.040 76 0.042 77 0.020 76 21,309 122 N.A.   23.38 82 0.960 DRS 

152 Khonkaen 0.146 142 0.171 142 0.079 142 37,064 170 127.94 105 69.50 117 0.992 DRS 

153 Khonkaen 0.084 94 0.092 94 0.044 94 17,890 93 N.A.   12.75 57 0.935 DRS 

154 Khonkaen 0.136 134 0.157 134 0.073 134 15,800 66 23.76 51 8.48 39 1.000 CRS 

155 Khonkaen 0.000 1 0.000 1 0.000 1 13,446 35 11.48 30 N.A.   1.000 CRS 

156 Khonkaen 0.148 144 0.174 144 0.080 144 17,436 87 57.18 87 34.17 94 0.982 DRS 

157 Khonkaen 0.175 168 0.212 168 0.096 168 13,146 32 26.58 57 16.28 67 0.978 DRS 

158 Khonkaen 0.160 155 0.190 155 0.087 155 15,458 62 28.51 62 16.09 66 0.964 DRS 

159 Khonkaen 0.097 107 0.107 107 0.051 107 15,559 63 35.98 69 21.91 79 0.903 IRS 

160 Khonkaen 0.000 1 0.000 1 0.000 1 22,017 128 0.81 3 16.78 68 1.000 CRS 

161 Khonkaen 0.131 127 0.150 127 0.070 127 19,564 106 51.93 85 32.82 92 1.000 CRS 

162 Khonkaen 0.110 112 0.124 112 0.058 112 27,021 151 64.67 92 43.10 104 0.890 DRS 

163 Khonkaen 0.125 123 0.143 123 0.067 123 16,715 80 58.82 88 N.A.   0.983 IRS 

164 Chaiyaphum 0.000 1 0.000 1 0.000 1 14,311 46 N.A.   12.52 55 1.000 CRS 

165 Chaiyaphum 0.204 179 0.257 179 0.114 179 28,926 157 61.08 90 O   0.951 DRS 

166 Chaiyaphum 0.026 71 0.026 71 0.013 71 29,510 159 45.92 78 3.06 16 0.980 DRS 

167 Chaiyaphum 0.005 65 0.005 65 0.002 65 21,654 126 N.A.   10.98 51 0.995 DRS 

168 Chaiyaphum 0.209 180 0.265 180 0.117 180 17,636 90 25.11 55 9.84 47 0.997 IRS 

169 Chaiyaphum 0.193 175 0.239 175 0.107 175 22,363 129 19.47 46 34.39 95 0.997 DRS 

170 Chaiyaphum 0.126 124 0.144 124 0.067 124 21,326 123 N.A.   N.A.   0.977 IRS 

171 Nakhonratchasima 0.000 1 0.000 1 0.000 1 19,630 107 N.A.   N.A.   1.000 CRS 

172 Nakhonratchasima 0.121 119 0.138 119 0.064 119 12,761 27 45.40 76 28.03 88 0.948 DRS 

173 Nakhonratchasima 0.000 1 0.000 1 0.000 1 12,139 20 1.93 5 6.56 31 1.000 CRS 

174 Nakhonratchasima 0.170 166 0.205 166 0.093 166 32,098 165 O   12.62 56 0.962 DRS 

175 Nakhonratchasima 0.132 128 0.152 128 0.071 128 31,412 164 O   50.83 111 0.994 DRS 

176 Nakhonratchasima 0.068 87 0.073 87 0.035 87 30,192 161 N.A.   0.26 3 0.992 DRS 

177 Nakhonratchasima 0.130 126 0.149 126 0.069 126 13,059 30 36.73 72 8.96 42 0.998 IRS 

178 Nakhonratchasima 0.014 66 0.015 66 0.007 66 26,235 148 N.A.   N.A.   0.986 DRS 

179 Nakhonratchasima 0.124 122 0.142 122 0.066 122 23,925 138 113.61 102 N.A.   0.955 DRS 

180 Nakhonratchasima 0.000 1 0.000 1 0.000 1 20,670 115 14.21 36 O   1.000 CRS 

Note that DDF1 – DDF3 models are estimated under the assumption of CRS; DDF4, NSMM and PSMM are estimated under the 
assumption of VRS. N.A. denotes the farm had negative NS or negative PS. O denotes the farm is an outlier for NSMM and PSMM. 


