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Abstract
Executive functions, a set of cognitive processes that enable flexible behavioral control, are known

to decay with aging. Because such complex mental functions are considered to rely on the dynamic

coordination of functionally different neural systems, the age-related decline in executive functions

should be underpinned by alteration of large-scale neural dynamics. However, the effects of age on

brain dynamics have not been firmly formulated. Here, we investigate such age-related changes in

brain dynamics by applying “energy landscape analysis” to publicly available functional magnetic res-

onance imaging data from healthy younger and older human adults. We quantified the ease of

dynamical transitions between different major patterns of brain activity, and estimated it for the

default mode network (DMN) and the cingulo-opercular network (CON) separately. We found that

the two age groups shared qualitatively the same trajectories of brain dynamics in both the DMN

and CON. However, in both of networks, the ease of transitions was significantly smaller in the older

than the younger group. Moreover, the ease of transitions was associated with the performance in

executive function tasks in a doubly dissociated manner: for the younger adults, the ability of execu-

tive functions was mainly correlated with the ease of transitions in the CON, whereas that for the

older adults was specifically associated with the ease of transitions in the DMN. These results pro-

vide direct biological evidence for age-related changes in macroscopic brain dynamics and suggest

that such neural dynamics play key roles when individuals carry out cognitively demanding tasks.
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1 | INTRODUCTION

Normal aging is associated with the decline in many mental functions

which affects older adults’ quality of life (Davis, Marra, Najafzadeh, &

Liu-Ambrose, 2010). While some cognitive skills (e.g., vocabulary and

other crystalized knowledge about general information) are maintained

with age, a clear age-related decline has been observed in executive

functions which allow for flexible and goal-directed cognitive control

by integrating diverse information (Park et al., 2002; Salthouse, 2009).

Given accumulating evidence for associations between efficient inte-

gration of cognitive information and finely-coordinated large-scale neu-

ral dynamics (Fries, 2005; Rolls, Loh, Deco, & Winterer, 2008; Deco,

Jirsa, & McIntosh, 2011; Uhlhaas & Singer, 2012; Kopell, Gritton, Whit-

tington, & Kramer, 2014; Wang & Krystal, 2014; Watanabe & Rees,
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2017), it is reasonable to assume that such age-related deterioration of

executive functions is underpinned by age-associated changes in neural

dynamics.

Theoretically, some studies have suggested crucial roles of brain

dynamics in age-related alterations of executive functions (Nakagawa,

Jirsa, Spiegler, McIntosh, & Deco, 2013; Rolls & Deco, 2015). Behav-

ioral research also suggests that cognitive decline with aging is relevant

to dynamics—in particular transitory dynamics (i.e., temporal transitions

in behavioral states). For example, older adults, relative to younger

adults, are more distracted by task-irrelevant information, such as their

internal thoughts and external events (Hasher, Stoltzfus, Zacks, &

Rypma, 1991; Gazzaley, Cooney, Rissman, & D’Esposito, 2005). These

results suggest that transitions from one state to another may happen

too frequently in the older-aged brain as well as in older adults’

behavior.

Empirically, however, whether and how declines in cognitive func-

tions are correlated with age-related alterations in large-scale neural

dynamics are poorly understood. Previous human neuroimaging studies

have reported associations between age-related cognitive changes and

static brain architecture, such as focal white/gray matter structures

(Allen, Bruss, Brown, & Damasio, 2005; Raz et al., 2005; Andrews-

Hanna et al., 2007; Persson et al., 2016) and density of neurochemical

substances (Berry et al., 2016). In addition, associations between age-

related cognitive changes and dynamical features of the brain, such as

functional connectivity (Andrews-Hanna et al., 2007; Damoiseaux

et al., 2008; Esposito et al., 2008; Sambataro et al., 2010; Grady et al.,

2010; Onoda, Ishihara, & Yamaguchi, 2012; Tomasi & Volkow, 2012;

Grady, 2012; Meier et al., 2012; Ferreira & Busatto, 2013; Geerligs,

Maurits, Renken, & Lorist, 2014, 2015; Madhyastha & Grabowski,

2014), signal variability (Garrett, Kovacevic, McIntosh, & Grady, 2010,

2013), 1/f noise (Voytek et al., 2015), patterns of brain activity during

tasks (Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008; Jimura & Braver,

2010), and neural oscillations (Pons, Cantero, Atienza, & Garcia-Ojalvo,

2010; Voytek & Knight, 2015) have been investigated. However, these

studies neither revealed how different parts of the brain dynamically

integrate and disintegrate to create different activity patterns nor how

one’s brain transits among different activity patterns.

To address this fundamental question on aging brains, here, we

conceptualized “ease of transitions” in neural dynamics as the rate of

transitions between different major brain activity patterns that fre-

quently appear during rest. We tested (1) whether the ease of transi-

tions in neural dynamics is different between older versus younger

adults and (2) whether the association between the executive ability

and the ease of transitions in neural dynamics differs between younger

and older adults. To address these questions, we focused on the

default mode network (DMN; Raichle et al., 2001) and the cingulo-

opercular network (CON; Dosenbach et al., 2007). We chose the DMN

and CON for two reasons. First, recent studies suggested that the

executive ability of older adults depends more strongly on the DMN

than that of younger adults (Duverne, Motamedinia, & Rugg, 2009;

Turner & Spreng, 2015; Maillet & Schacter, 2016). Second, the CON is

implicated in executive functions in older adults (Meier et al., 2012;

Amer, Anderson, Campbell, Hasher, & Grady, 2016; Schmidt, Burge,

Visscher, & Ross, 2016).

We characterized neural dynamics of the DMN and CON by

applying a data-driven approach called energy landscape analysis

(Watanabe et al., 2014a,b; Ezaki, Watanabe, Ohzeki, & Masuda, 2017;

Watanabe & Rees, 2017) to resting-state functional MRI (fMRI) signals

collected from younger (18 years� and�30 years) and older adults

(60 years� and�85 years; Table 1). Our analysis pipeline is schemati-

cally shown in Figure 1. Technically, for each brain system (Figure 2),

we first inferred an energy landscape and then estimated neural

dynamics as movements of a “ball” on the landscape (Figure 3). Activity

patterns with a small energy value (i.e., lower positions on the land-

scape) appear with a high frequency. Based on the neural dynamics, we

identified major brain activity patterns as those frequently visited and

located at the bottom of a basin in the energy landscape, and finally

quantified the ease of dynamical transitions based on the frequency

with which major activity patterns were visited. Because the fronto-

parietal network (FPN) has also been implicated in aging of executive

functions (Dosenbach, Fair, Cohen, Schlaggar, & Petersen, 2008), we

additionally carried out the analysis on FPN but did not obtain signifi-

cant results. We will discuss this point in Section 2.3.

2 | MATERIALS AND METHODS

2.1 | Participants

We used data from 28 younger adults (19–30 years) and 28 older

adults (60–85 years) from the Nathan Kline Institute’s (NKI) Rockland

phase I Sample (Table 1; Nooner et al., 2012): http://fcon_1000.proj-

ects.nitrc.org/indi/pro/nki.html. A similar age cut-off has been widely

used in the literature on cognitive aging (Park, Polk, Hebrank, & Jen-

kins, 2010, 2010b; Chadick, Zanto, & Gazzaley, 2014). The two groups

were matched on race and sex, and did not significantly differ in IQ

(Table 1). All of them were right handed. Data from one younger female

participant were not included in the analyses of behavioral scores

because she did not complete a cognitive task.

TABLE 1 Demographic data

Younger Older

Age (mean6 std) 22.6162.96 70.9667.51

IQ*

Performance IQ (mean6 std) 112.71611.04 111.93615.43

Verbal IQ (mean6 std) 109.61612.35 111.1669.80

Full IQ (mean6 std) 113.04611.50 111.86611.87

Female/male 14/14 14/14

Executive score** (mean6 std) 0.556 0.77 20.536 0.92

*IQ was evaluated by the Wechsler Abbreviated Scale of Intelligence
(WASI) (Wechsler, 1999)
**Executive score was determined by the Delis-Kaplan Executive Func-
tion System (Delis, Kaplan, & Kramer, 2001; Delis, Kramer, Kaplan, &
Holdnack, 2004).
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2.2 | Behavioral data and executive score

Participants’ executive functions were assessed by the Delis-Kaplan

Executive Function System (D-KEFS; Delis, Kaplan, & Kramer, 2001;

Delis, Kramer, Kaplan, & Holdnack, 2004) which consists of multiple

cognitive tests to assess executive functions. In accordance with previ-

ous literature (Latzman & Markon, 2010; Barbey et al., 2012), we con-

structed a composite executive score for each individual by applying a

factor analysis to scores from five tests in D-KEFS (Supporting Informa-

tion Table S1): verbal fluency, sorting task, 20 questions, color word

task, and design fluency. The analysis revealed three factors with the

eigenvalues greater than 1 but the scree plot showed only one sharp

bend in the array to eigenvalues after the first factor. Therefore, the

factor score for the first factor was used as an executive score in the

current study. The eigenvalue of this factor was 4.26 and it accounted

for 43% of the variance with all items having positive loadings (Sup-

porting Information Table S1). Participants’ IQ was assessed by the

Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999); a

full scale intelligence quotient, verbal IQ, and performance IQ scores

were used in the current study.

2.3 | Definition of brain systems

We determined the regions of interest (ROIs) of the DMN and CON by

employing the coordinates obtained in a previous study (Fair et al.,

2009). The original systems have 12 and 7 ROIs for the DMN and

FIGURE 1 Pipeline of the energy landscape analysis. First, BOLD signals from selected ROIs (a) are binarized (b). Then, the frequency of
each activity pattern is calculated (c). The distribution of the frequency of activity patterns is fitted by the MEM (d), from which an energy
landscape is constructed (e). Finally, the brain dynamics quantified as the ease of transitions on the energy landscape (called “efficiency
score”) is associated with a participant’s behavioral score (called “executive score”), as shown in (f) [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 2 Location of the ROIs in each functional system. Retro splen: retro splenial cortex, latP: lateral parietal cortex, pCC: posterior
cingulate cortex, parahippo: parahippocampal cortex, inf templ: inferior temporal cortex, sup frontal: superior frontal cortex, vmPFC:
ventromedial prefrontal cortex, amPFC: anteromedial prefrontal cortex, ant thal: anterior thalamus, dACC/msFC: dorsal anterior cingulate
cortex/medial superior frontal cortex, al/fO: anterior insula/frontal operculum, aPFC: anterior prefrontal cortex [Color figure can be viewed
at wileyonlinelibrary.com]
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CON, respectively (Figure 2). For the DMN, the pairwise maximum

entropy model (MEM) did not yield a high accuracy of fit, presumably

due to the insufficiency in the data length (Table 2). It should be noted

that in the pairwise MEM, the accuracy of fit generally decreases with

NROI if the amount of the observed data is fixed (Ezaki et al., 2017).

Therefore, we analyzed the right- and left-hemisphere DMNs (the

right/left DMN with 8 ROIs, respectively) instead of the original DMN.

The number of ROIs for these one-hemisphere systems was not equal

to the half of the original DMN because some ROIs (i.e., amPFC,

vmPFC, pCC, and retro splen) were almost on the midline such that

they were used in both the right and left DMNs.

2.4 | fMRI data acquisition and preprocessing

The MRI data were recorded in a 3T scanner (MAGNETOM, TrioTim

syngo MR B15, Siemens). fMRI data were obtained during rest with an

echo planner imaging (EPI) sequence (TR52,500 ms, TE530 ms, flip

angle5808, 38 slices, spatial resolution53 3 3 3 3 mm3, FOV5216

ms, acquisition time510 min 55 s). Anatomical images were acquired

with T1-weighted sequence (MPRAGE; TR52,500 ms, TE53.5 ms,

flip angle588, spatial resolution51 3 1 3 1 mm3). During the EPI

data acquisition, the participants were asked to be relaxed with their

eyes open.

Data preprocessing was performed using FMRIB’s Software

Library (FSL; www.fmrib.ox.ac.uk/fsl), including skull stripping of

structural images with BET, motion correction with MCFLIRT, and

smoothing with full-width half-maximum 5 mm. Registration was per-

formed with FLIRT; each functional image was registered to the partici-

pant’s high-resolution brain-extracted structural image and the

standard Montreal Neurological Institute (MNI) 2-mm brain. We also

applied additional preprocessing steps to the functional data to remove

spurious variance. First, we regressed out six head motion parameters,

global signal, cerebrospinal fluid (CSF) signal, and white matter (WM)

signal with FSL FEAT. For each participant, CSF, gray matter (GM) and

WM were segmented through FSL’s FAST based on his/her T1. We

next applied band-pass temporal filtering (0.01–0.1 Hz). The data were

then re-smoothed by Gaussian kernels with sigma52.12 (the same

setting as the one applied during the initial smoothing) with an FSL

command line tool called SUSAN to improve the signal-to-noise ratio.

Finally, we extracted the global signal for each volume again and sub-

tracted this global signal from the averaged signal of all voxels within

each spherical ROI (radius54 mm) in the DMN and CON (Watanabe

et al., 2013, 2014b). In this way, we avoided overestimation of syn-

chronization in brain activity between different ROIs.

We confirmed that the magnitude of the head motion was not sig-

nificantly different between the younger and older adults (t545–.33,

p5 .75). We quantified the magnitude of the head motion by the aver-

age displacement of each volume relative to the previous volume, com-

puted from the translation parameters in the x (left/right), y (anterior/

posterior), and z (superior/inferior) directions as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21y21z2

p
(Van Dijk,

Sabuncu, & Buckner, 2012).

2.5 | Fitting of the pairwise MEM

We fitted the pairwise MEM to the fMRI data using a standard method

as follows (Watanabe et al., 2013; Ezaki et al., 2017; Figure 1). Because

the method demands a relatively large amount of data, we pooled the

fMRI signals from the participants in the same age group and then fit-

ted a pairwise MEM. Consider a system of NROI ROIs. For each ROI,

FIGURE 3 Schematic of dynamics of the activity pattern constrained on an energy landscape. The figure to the left is a blow-up of the fig-
ure to the right around an activity pattern. Because there are seven ROIs in this example, the focal activity pattern has seven neighboring

activity patterns, as shown in the left figure. A transition to a neighboring activity pattern with a lower energy (shown in blue) is more likely
to occur than a transition to an activity pattern with a higher energy (shown in a warm color) [Color figure can be viewed at wileyonlineli-
brary.com]

TABLE 2 Accuracy of the fitting by the pairwise MEM. Four ROIs
in the DMN in the medial part of the brain were shared by the
right and left DMNs

Right
DMN

Left
DMN

Whole
DMN

Whole
CON

NROI 8 8 12 7

Younger 0.930 0.911 0.659 0.973

Older 0.866 0.839 0.467 0.971
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labeled i (51, . . ., NROI), we denote the binarized activity at time t by

rt
i 1 � t � Tð Þ, which is equal to either 11 (active) or 21 (inactive). For

each ROI in each participant, we set a threshold, above which we

regarded the ROI to be active, to the average signal value for the ROI

across time for the participant, resulting in approximately 50% of time

points being active for the ROI for the participant. Thus, the threshold

value was different across ROIs and across participants. We confirmed

that the accuracy of fitting, defined in the following, is insensitive to

the threshold value as long as the fraction of active time points falls

within 0.25 and 0.75 (Supporting Information Figure S1). The activity

pattern at time t is specified by an NROI-dimensional binary

vector rt
1; r

t
2; . . . ; r

t
NROI

h i
(Figure 3). Note that there are 2NROI possible

activity patterns, which are enumerated as V15[–1, 21, . . ., 21], . . .,

V2NROI 5 [1, 1, . . ., 1].

For each ROI, we aggregated the data over time and across the

participants in the same age group, and calculated the frequency that

each activity pattern Vk (k51, . . ., 2NROI ) was realized, denoted by

Pempirical Vkð Þ. For the pairwise MEM, the frequency obeys the Boltz-

mann distribution,

P Vkð Þ5 e2E Vkð Þ=
X2NROI

l51
e2E Vlð Þ; (1)

where E Vkð Þ represents the energy for activity pattern Vk defined by

E Vkð Þ52
XN

i51
hiri2 1=2ð Þ

XNROI

i51

XNROI

j51
Jijrirj: (2)

Here, the fitting parameters hi and Jij represent the tendency for

the ith ROI to be active when it is isolated and the strength of the

interaction between the ith and jth ROIs, respectively. A small energy

value corresponds to a large frequency of appearance of an activity

pattern by definition.

To obtain hi and Jij (i, j51, . . ., NROI), we first calculated the aver-

age and pairwise correlation of the empirical data as follows:

hrii5 1=Tð Þ
XT

t51
rt
i ; (3)

hrirji5 1=Tð Þ
XT

t51
rt
ir

t
j : (4)

The average and correlation expected from the model (Equation 1)

for given hi and Jij (i, j51, . . ., N) are equal to hriim5
P2NROI

k51
ri Vkð Þ P

Vkð Þ and hrirjim5
P2NROI

k51
ri Vkð Þ rj Vkð Þ P Vkð Þ; respectively. We itera-

tively adjusted hi and Jij according to hnewi 5 holdi 1a hrii2hriimð Þ and
Jnewij 5 Joldij 1a hrirji2hrirjim

� �
such that the values of hriim and

hrirjim gradually approach the empirical values (Equations 3 and 4).

This iterative scheme is a gradient decent method minimizing the

Kullback-Leibler divergence given by D2 5
P2NROI

k51 Pempirical Vkð Þ � log2
Pempirical Vkð Þ=�

Pmodel Vkð ÞÞ. We set a50:1.

2.6 | Accuracy of fit

We used the following accuracy measure (Schneidman, Berry, Segev, &

Bialek, 2006; Shlens et al., 2006; Watanabe et al., 2013, 2014a, 2014b;

Ezaki et al., 2017) to assess the goodness of the fit of the pairwise

MEM to the fMRI data obtained from each age group:

rD5 D12D2ð Þ=D1; (5)

where D1 represents the Kullback-Leibler divergence between the

MEM and data when the MEM is restricted to have no interaction

term, that is, Jij50 for all i and j. We obtain rD51 when the pairwise

MEM perfectly reproduces the empirical distribution of activity pat-

terns, whereas rD50 when the pairwise interaction (i.e., Jij) does not

contribute to improve the fitting.

2.7 | Disconnectivity graph

For each age group, we calculated a disconnectivity graph (Becker &

Karplus, 1997; Wales, Miller, & Walsh, 1998; Wales, 2010) from the

estimated pairwise MEM in the same way as was done in our previ-

ous studies (Watanabe et al., 2014a,b; Watanabe & Rees, 2017). In

the network of activity patterns, where each activity pattern consti-

tutes a node, activity patterns Vk and Vk' were defined to be adja-

cent (i.e., directly connected by an edge) if they were the same

across all ROIs except for one. Therefore, each activity pattern was

adjacent to N activity patterns. For example, if NROI53, activity pat-

tern [1, 1, 1] is adjacent to [–1, 1, 1], [1, 21, 1], and [1, 1, 21]. Then,

we identified the activity patterns whose energy values were smaller

than all of their NROI adjacent activity patterns, that is, local minima

in the energy landscape (bottom of a basin in Figure 3). Local minima

are the activity patterns that are more likely to appear than all their

neighboring patterns.

We obtained the disconnectivity graph from the network of

activity patterns as follows. First, we identified all local minima by

exhaustively examining whether each activity pattern was a local

minimum. Second, we set an energy threshold value, denoted by

Eth, to the energy value of the activity pattern that attained the sec-

ond largest energy value among the 2NROI activity patterns. Third,

we removed the nodes corresponding to the activity patterns whose

energy exceeded Eth. When Eth, is the second largest energy, the

node with the largest energy was removed. We also removed the

edges incident to the removed nodes. Fourth, we checked whether

each pair of local minima was connected in the reduced network.

Fifth, we lowered Eth to the next largest energy value realized by an

activity pattern. Then, we repeated the third to fifth steps, that is,

removal of the nodes and edges, checking of connectivity between

local minima, and lowering of Eth, until all the local minima were iso-

lated. In the course of the procedure, we obtained for each pair of

local minima the largest Eth value at which the two local minima

were disconnected. This Eth value is equal to the energy barrier that

the dynamics of the brain have to overcome to reach from one

local minimum to the other. Finally, we constructed a hierarchical

tree whose terminal leaves represented the local minima. The verti-

cal positions of these leaves represent their energy values. Those of

the branches represent the height of the energy barrier that sepa-

rates the local minima belonging to the two branches.
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2.8 | Attractive basin of a local minimum

The attractive basin of an energy local minimum for each age group

was computed as follows (Stillinger & Weber, 1984; Becker & Karplus,

1997; Zhou, 2011; Watanabe et al., 2014a,b; Ezaki et al. 2017; Wata-

nabe & Rees, 2017). First, we selected a node i in the network of activ-

ity patterns. If the selected node was not a local minimum, we moved

to the node with the smallest energy value among the nodes adjacent

to the currently visited node. We repeated moving downhill in this

manner until a local minimum was reached. The initial node i belongs to

the basin of the finally reached local minimum. We ran this procedure

for each initial node i.

2.9 | Index of ease of dynamic transitions: Efficiency

score

For each network, we denote the two synchronized activity patterns

by s1 5 [1, 1, . . ., 1] (i.e., all ROIs are active) and s– 5 [–1, 21, . . ., 21]

(i.e., all ROIs are inactive). For each individual, we defined the rate of

transitions between s1 and s– as the sum of the number of times that

the activity rt
1; r

t
2; . . . ; r

t
NROI

h i
has left s1 and arrived at s– before

revisiting s1, and the number of times that rt
1; r

t
2; . . . ; r

t
NROI

h i
has left

s– and arrived at s1 before revisiting s–, divided by the number of

volumes.

We denote by b1 the attractive basin of s1 excluding s1 and by b–

the attractive basin of s– excluding s–. Because the disconnectivity

graph of the DMN had only two major activity patterns, s1 and s– (Fig-

ure 4a), we classified all activity patterns of the DMN into the following

four categories: s1, s–, b1, and b– (Figure 6a). Because the disconnectiv-

ity graph of the CON had a few local minima in addition to s1 and s–,

we classified the activity patterns of the CON into five categories: s1,

s–, b1, b–, and the others (denoted by bother; Figure 6b). To define the

rate of peripheral transitions for each individual, we first calculated the

rate of transitions between b1 and b– as the sum of the number of

times that rt
1; r

t
2; . . . ; r

t
NROI

h i
for the individual transited from b1 to

b– and the number of times that rt
1; r

t
2; . . . ; r

t
NROI

h i
transited from b–

to b1, divided by the number of volumes. It should be noted that we

used b1 and b– that were derived from the energy landscape calculated

for the age group to which the focal individual belongs, whereas we

counted the transitions between b1 and b– for the fMRI signals

obtained from the individual, not the group of individuals. We refer to

transitions between b1 and b– that do not involve transitions to s1 or

s– as peripheral transitions. Precisely, the rate of peripheral transitions

was defined as the rate of transitions between b1 and b– subtracted by

FIGURE 4 (a) Disconnectivity graph for each system and age group. (b) Frequency of s1 and s– for each system and age group. Each
symbol and bar represent the results for a participant and their average, respectively. **pBonferroni< .01, in two-sample t tests (Nyounger 5 28
and Nolder527). The crosses represent outliers. Note that inclusion of these outliers did not influence the statistical significance (DMN:
t5353.76, pBonferroni<1023, d51.01, CON: t4953.39, pBonferroni< .01, d50.91 in two-sample t tests) [Color figure can be viewed at
wileyonlinelibrary.com]
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the rate of transitions between s1 and s–. The efficiency score for an

individual was defined as the ratio of the rate of transitions between

s1 and s– to the rate of peripheral transitions. Thus, the efficiency score

reflects how frequently transitions between different major brain activ-

ity patterns occur relative to peripheral transitions.

2.10 | Numerical simulations

We carried out numerical simulations to emulate brain dynamics con-

strained on the estimated energy landscape. As in our previous studies

(Watanabe et al., 2014a,b; Watanabe & Rees, 2017), we employed the

Metropolis-Hastings algorithm (Chib & Greenberg, 1995; Zhou, 2011).

First, we set the initial activity pattern to s1. Then, in each time step, a tran-

sition from the current activity pattern Vk to one of its N adjacent activity

patterns Vk', selected with probability 1/N, was attempted. The transition

to the selected pattern took place with probability q5min 1; exp Ef½
Vkð Þ2E Vk'

� �g�. With probability 12q, the attempted transition was dis-

carded. We ran the dynamics for sufficiently many time steps, that is, 108,

such that the initial condition did not influence the results.

2.11 | Statistics

The age factor in our analysis of variance (ANOVA) was dichotomous

(i.e., younger versus older). We made this choice because we had to

pool data over participants in each age group to secure a sufficient

amount of data for the present analysis.

In the analysis at the individual’s level, we excluded outliers based

on the Tukey’s criteria of 1.5 interquartile range (Tukey, 1977). We con-

firmed that our main results were not affected by the choice of a

method for excluding the effect of outliers (see Supporting Information).

3 | RESULTS

3.1 | Behavioral results

General intelligence was not significantly different between younger

and older individuals (performance IQ, F1,5350.05, p5 .83; verbal IQ,

F1,5250.25, p5 .25; full IQ, F1,5350.14, p5 .71; Table 1). The older

adults showed a significantly lower performance than the younger

adults in terms of the executive score (F1,53522.2, p< .001, h25 .22;

Table 1). This result is consistent with the previous results on age-

related declines in executive functions (Park et al., 2002; Salthouse,

2009) and suggests the validity of this behavioral index.

3.2 | Accuracy of fitting of a pairwise MEM to fMRI

data

We analyzed resting-state fMRI data from the younger and older indi-

viduals because such resting-state brain activity is considered to be

closely related to various cognitive functions of humans (Deco et al.,

2011). After pooling the binarized fMRI data across the participants in

each age group (i.e., younger/older), we fitted the pairwise MEM for

each age group and each system (i.e., DMN or CON) and found that in

all the cases, the model accurately fitted to the empirical fMRI signals

(accuracy of fit�83%, Table 2; Figure 5a). In addition, the parameter

values estimated for the pairwise MEM did not change when we esti-

mated them for different subsets of the participants (Figure 5b), sug-

gesting the robustness of the current method. The accuracy of fit was

consistently larger for the younger than older adults (Table 2), whose

implication will be discussed in the Section 4.4.

3.3 | Identification of major activity patterns

Such accurate fitting of the pairwise MEM allows us to assign a hypo-

thetical “energy value’’ to each of the 2NROI activity patterns. The

energy value here is not a physical quantity but a computational con-

struct rooted in statistical physics and uniquely encodes the probability

with which each activity pattern appears (Figure 3). By definition, an

activity pattern with a smaller energy value occurs more frequently.

Based on the energy values assigned to all the 2NROI activity pat-

terns, we built and analyzed an energy landscape for each brain system

(i.e., DMN or CON) for each age group (Figure 3) by creating a discon-

nectivity graph for each energy landscape (Figure 4). We refer to local

minima of the energy as major activity patterns. The disconnectivity

graph shows the height of the barrier between an arbitrary pair of

major activity patterns (the smallest height that one has to ‘climb’ to

move from one major activity pattern to another).

For both the right and left DMNs in both age groups, the discon-

nectivity graph was composed of two local minimum activity patterns,

which are s1 (all ROIs are active) and s– (all ROIs are inactive; Figure

4a). This result suggests that brain dynamics in the DMN are domi-

nated by the synchronized activity patterns irrespectively of age.

Despite this similarity, the older group, relative to the younger

group, had larger energy values (i.e., smaller frequency of appearance) at

s1 and s– and a smaller energy barrier between s1 and s–, which suggests

FIGURE 5 Fitting of the pairwise MEM. (a) Comparison between
the probability with which each activity pattern is realized. A circle
represents one of the 2NROI activity patterns. The diagonal is shown
by the solid line. Pempirical and Pmodel represent the probability for
the empirical data and that based on the MEM, respectively. (b)
Consistency between the estimated parameter values across
participants. The Jij values estimated from the first half of the
participants and those estimated from the second half of the
participants are compared. A circle corresponds to the Jij value
calculated for a pair of i and j. Both panels were based on the data
obtained from the right DMN (NROI58) of the younger
participants’ group [Color figure can be viewed at
wileyonlinelibrary.com]
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that dynamics of transitions between s1 and s– are different between

the two groups. We corroborated this observation by carrying out an

individual-level analysis to show that the frequency of visiting s1 and s–

was significantly smaller for the older than younger adults (t4055.11,

pBonferroni<1024, Cohen’s d51.36; the left panel of Figure 4b).

In contrast, the CON had more complicated disconnectivity graphs

with more branches and local minima. Nevertheless, as was the same

as the DMN, s1 and s– were the most major brain activity patterns

with the smallest energies (i.e., the highest frequency of appearance) in

both age groups (Figure 4a), and they were visited with a higher fre-

quency in the younger than the older group (t4454.03,

pBonferroni<1023, d51.08; the right panel of Figure 4b).

3.4 | Quantification of ease of transitions in brain

dynamics

We hypothesized that the age-related differences in brain dynamics, or

more specifically, ease of transitions (i.e., the rate of transitions

between different major activity patterns), are linked to individuals’ per-

formance in executive functioning. To test this hypothesis, we used the

inferred energy landscapes to quantify ease of transitions in the brain

dynamics for each brain system and each age group. We then calcu-

lated frequencies of transitions between the four categories of activity

patterns (DMN) or five categories (CON) for each individual. We did so

by directly investigating time series of the empirical data for each indi-

vidual (Figure 6b,c) and by performing random-walk numerical simula-

tions for each age group to verify the validity of the present approach

(Figure 6d,e).

For the empirical fMRI data, we found that in both of the DMN

and CON, the individuals in the younger group showed more frequent

transitions between s1 and s– than those in the older group did

(F1,53534.8, p<1026, h25 .17 for the main effect of Age in ANOVA

[Age: younger/older] 3 [System: DMN/CON] on the rate of transitions

between s1 and s–; Figure 6b). In contrast, the individuals in the older

group showed more frequent “peripheral transitions”, that is, transitions

between b1 and b– that did not involve transitions to s1 or s– (see Sec-

tion 2 for the definition; F1,53525.1, p<1025, h25 .06 for the main

effect of Age in another two-way factorial ANOVA [Age: younger/

older] 3 [System: DMN/CON] on the peripheral transition score; Fig-

ure 6c). In older adults, once their brain activity pattern exits from s1 or

s–, the activity pattern tends to fluctuate between basins b1 and b–

without easily reaching s1 or s– (Figure 6f). The rank order of these

results was reproduced by group-level numerical simulations of the

random-walk model, which supports the validity of the present analysis

method (Figure 6d,e). Altogether, these results imply that brain dynam-

ics of younger adults are more efficient than those of older adults in

the sense of ease of transitions between s1 or s–.

We confirmed the implications of these results by quantifying the

efficiency of brain dynamics for each individual using an “efficiency

score’’. The efficiency score was defined as the ratio of the rate of tran-

sitions between s1 and s– to the rate of peripheral transitions. Four

participants (one younger individual and three older individuals) were

identified as outliers in terms of the efficiency score. After excluding

these four participants, we found that the efficiency score was smaller

in the older group than the younger group, in both DMN and CON

(main effect of Age: F1,49521.6, p<1024, h25 .12 in a two-way fac-

torial Age 3 System ANOVA; Figure 7a). The same ANOVA also

revealed a significant age-by-system interaction (F1,4954.53, p< .05,

h25 .03). This interaction reflects the fact that the difference in the

efficiency score between the DMN and CON (DMN – CON) was sig-

nificantly larger in the older group than the younger group (t3752.15,

p< .05, d50.60 in a post-hoc two-sample t test), suggesting that com-

pared to the CON, the ease of transitions in the DMN dynamics less

deteriorates with aging.

3.5 | Association between efficiency of brain

dynamics and executive ability

Then, we tested whether the efficiency score predicts the executive

score. We found that the executive score for the younger adults was

significantly correlated with the efficiency score for the CON (r5 .57,

p5 .0025, pBonferroni< .05, df524) but not with the efficiency score

for the DMN (r5–.097, p5 .64, df524; Figure 7b). The older adults

showed the opposite pattern: the executive score was not significantly

correlated with the efficiency score for the CON (r5–.099, p5 .64,

df523), whereas it was significantly correlated with the efficiency

score for the DMN (r5 .54, p5 .0057, pBonferroni< .05, df523). These

results were robust against some variation in the threshold for binariz-

ing fMRI signals, in particular in the DMN (Supporting Information

Figure S4).

In addition, the correlation coefficient between the executive score

and the efficiency score was significantly larger for the DMN than the

CON in the older group (t2252.20, p5 .039) but not in the younger

group (t23521.74, p5 .096; Figure 7c). It should be noted that the dif-

ference between the correlation coefficients was assessed by the Wil-

liam’s t test for comparing two nonindependent correlations with a

variable in common (Weaver & Wuensch, 2013). Even after including

the four outliers, the older adults still showed a stronger correlation

between their executive score and efficiency score for the DMN than

for the CON (t2552.04, p5 .05), whereas the younger adults did not

(t25520.26, p5 .80).

These results suggest that the executive ability of younger adults

is related to the efficiency in brain dynamics of the CON rather than

that of the DMN, whereas the executive ability of older adults relies on

the DMN efficiency rather than on the CON efficiency. In contrast, the

frequency of visiting the synchronized activity patterns (i.e., s1 or s–), a

simpler index to characterize large-scale dynamics in the brain, did not

consistently predict the executive score in the two age groups (DMN,

younger: r5 .16, p5 .41, df525; CON, younger: r5 .22, p5 .26,

df525; DMN, older: r5 .38, p5 .049, df526; CON, older: r5–.014,

p5 .47, df526; all correlations, pBonferroni> .05).

3.6 | Association between functional connectivity

and executive ability

As a control analysis, we compared the within-system functional con-

nectivity (FC) between the younger and older groups. The within-
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system FC was estimated as an averaged Pearson correlation over all

pairs of ROIs belonging to each brain system (i.e., DMN or CON). The

average of FC was calculated after applying Fisher’s Z transformation

to raw Pearson correlation values. In both DMN and CON, the within-

network FC significantly declined with age (main effect of age group:

F1,53536.2, p<1026, h25 .23 in a two-way factorial ANOVA, [Age:

FIGURE 6 Transition rates on the energy landscape of the DMN and CON. (a) Schematic showing the procedure to categorize the 2NROI

activity patterns into four groups in the case of the DMN. The figure on the top depicts a hypothetical energy landscape, similar to Figure
3, and the dynamics of the activity pattern shown by the movement of a ball. The synchronized activity patterns, s1 and s–, are local
minima. The dotted line divides the basins of attraction for s1 and s–, that is, b1 and b–. We classified the activity patterns into these four
groups. Note that s1 and s– are composed of a single synchronized activity pattern. The probability flow between activity patterns is
depicted in the figure to the bottom. We aggregate the probability flow from activity patterns in b– to those in b1, for example, to obtain
the probability flow from group b– to b1. (b)–(e) Transition rates compared between the younger and older groups. (b) Rate of transitions
between s1 and s– for the two systems and two participant groups, calculated from the empirical data. (c) Rate of peripheral transitions
calculated from the empirical data. (d) Rate of transitions between s1 and s– constructed from the numerically simulated data. (e) Rate of
peripheral transitions calculated from the numerically simulated data. In (b)–(e), the bars represent the group-averaged results. In (b) and (c),
a circle represents a participant. A cross represents an outlier. (f) Conditional transition probability (i.e., transition rate divided by the proba-
bility that the group of the activity patterns in question is visited) between each possible pair of s1, s–, b1, b–, and bother in the DMN and
CON for the two age groups. See Supporting Information for the results separately obtained for the right and left DMNs. **pBonferroni < .01,
in two-sample t tests (Nyounger 5 Nolder528 before excluding outliers). Note that the inclusion of the outliers did not influence the statisti-
cal significance reported in the main text (main effects of Age: (b) F1,54525.1, p<1025, h25 .34, (c) F1,54518.4, p<1024, h25 .06 in two-
way factorial Age 3 System ANOVAs) [Color figure can be viewed at wileyonlinelibrary.com]
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younger/older] 3 [System: DMN/CON]; Figure 8). However, the inter-

action between the age and brain system was not significant

(F1,5350.086, p5 .77). The FC was not significantly correlated with

the executive score, either (DMN, younger: r5 .18, p5 .37, df525;

CON, younger: r5 .27, p5 .17, df525; DMN, older: r5 .33, p5 .085,

df526; CON, older: r5 .12, p5 .53, df526; uncorrected p values).

We also compared DMN-CON connectivity between the two age

groups. The FC between the DMN and the CON was estimated as the

Pearson correlation averaged over all pairs of ROIs one of which

belongs to the DMN and the other to the CON. The DMN-CON FC

declined with age (t5452.4, p5 .019, d50.65). This result is consistent

with a previous study (Petrican, Taylor, & Grady, 2017). However, the

DMN-CON FC was not significantly correlated with the executive

score (younger: r5 .057, p5 .78, df525; older: r5 .13, p5 .52,

df526).

4 | DISCUSSION

By applying the energy landscape analysis to resting-state fMRI data,

we quantified “ease of transitions” in the intrinsic human brain dynam-

ics and found its correlate with the executive functions of younger and

older adults. While major activity patterns were similar between the

FIGURE 7 (a) Efficiency score, which measures the ease of transitions between the synchronized activity patterns, compared between the
two age groups for the DMN and CON. The bars represent average values excluding the outliers shown by the crosses. A circle and cross
represent a (non-outlier) participant and an outlier, respectively. The efficiency scores from one younger adult and two older adults were
identified as outliers for the CON, and the efficiency score from one additional older adult was identified as an outlier for the DMN.
**pBonferroni< .01 in post-hoc two-sample t-tests. The inclusion of the outliers marginally influenced the significance of the age-by-system inter-
action (F1,5453.92, p5 .053 in a two-way factorial Age3 System ANOVA) but did not influence the main effect of Age (F1,54514.4, p<1023,
h25 .08). Panels (b) and (c) show the relationship between the efficiency score and the executive score. (b) Younger group. (c) Older group. A
symbol represents a participant. The Pearson’s correlation coefficient, denoted by r, was calculated for each age group. The linear regression is
shown by the lines. A significant difference was found in the correlation coefficient (r) between the DMN and CON in the older group (t52.2,
p5 .039, r5 .43, Nolder525), whereas no significant difference was found in the younger group (t51.74, p5 .096, Nyounger526). See Support-
ing Information for the results separately obtained for the right and left DMNs [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Average functional connectivity compared between the
younger and older groups. The circles and the cross represent the
averages of the absolute value of the functional connectivity over
all ROI pairs in a brain system (i.e., DMN or CON) for (non-outlier)
individuals and the outlier, respectively. The bars represent the
group averages calculated without the outlier. **pBonferroni<1022

in post-hoc two-sample t tests. The inclusion of the outlier did not
influence the statistical significance of the results (main effect of
Age: F1,54523.6, p<1024, h25 .54, age-by-system interaction:
F1,5450.28, p5 .60 in a two-way factorial ANOVA, [Age: younger/
older] 3 [System: DMN/CON]) [Color figure can be viewed at
wileyonlinelibrary.com]
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different age groups, transitions between them were less frequent in

the older than the younger adults, which was reflected in a significantly

lower efficiency score of neural dynamics for the older adults. Such a

decline in the efficiency score due to aging was smaller at the DMN

than the CON. In addition, we found that in the older adults, the effi-

ciency score at the DMN, but not the CON, was correlated with their

executive performance. By combining these findings, we suggest that

brain dynamics in the DMN are critical to support older adults’ execu-

tive functioning and that ease of transitions in neural dynamics may be

essential for sustaining their executive performances.

4.1 | DMN, CON, and other brain systems

We found that the ease of dynamical transitions observed in the

CON’s neural activity was correlated with the executive score in the

younger but not older group. This result is consistent with previous

observations suggesting critical roles of the CON in executive control

(Dosenbach et al., 2007, 2008). In contrast, the ease of transitions in

the DMN was correlated with the executive score in the older group

specifically. These findings support the hypothesis that, differently

from younger adults, older individuals heavily rely on the DMN rather

than the CON for cognitive functions (Maillet & Schacter, 2016). A

major support for this hypothesis has come from reduced deactivation

within the DMN during cognitively demanding tasks, such as a difficult

working memory task or semantic classification task (Maillet &

Schacter, 2016). Our results for the DMN are consistent with this

hypothesis.

We focused on the DMN and CON based on previous studies that

predicted age-related changes in brain activity of the two brain systems

(Maillet & Schacter, 2016). As a control, we analyzed an auditory net-

work (Power et al., 2011), which should be less relevant to executive

functioning and found no significant correlation between the efficiency

and executive scores (see Supporting Information). These results sug-

gest that the observed effects are specific to networks relevant to

executive functioning.

Because the fronto-parietal network (FPN) has also been impli-

cated in the effects of aging on executive functioning (Dosenbach

et al., 2008), we also carried out the same set of analysis for the right-

hemispheric and left-hemispheric FPNs but did not find the correlation

between the executive score and the efficiency score (see Supporting

Information). Such dissociated results between the CON and FPN may

be due to their differential roles for higher-order cognitive functions. In

fact, previous studies suggest that the CON and FPN have different

time scales in top-down control (Dosenbach et al., 2008), are involved

in different stages of working memory control (Wallis, Stokes, Cousijn,

Woolrich, & Nobre, 2015), and play dissociable roles in alertness (Sada-

ghiani & D’Esposito, 2015). Therefore, given that the current executive

functioning score represents various cognitive components, future

studies would have to compare neural dynamics of the CON and FPN

using brain activity data during more specific psychological tasks.

Our energy landscape analysis method can treat only a relatively

small number of ROIs. For this reason, we have not analyzed various

other brain systems whose documented numbers of ROIs is large (Fair

et al., 2009; Power et al., 2011). Furthermore, we have not analyzed

inter-connected brain systems because the number of ROIs in such an

inter-connected system is large. Yet aging is suggested to induce

changes in structural and functional connectivity at a whole-brain level,

either positive or negative, which may be related to modulation in

information integration/channeling across modalities in aging

(Andrews-Hanna et al., 2007; Allen et al., 2011; Meier et al., 2012;

Chan, Park, Savalia, Petersen, & Wig, 2014; Geerligs et al., 2014;

Spreng, Stevens, Viviano, & Schacter, 2016). Another consistently

observed pattern is hemispheric asymmetry reduction in older adults

(Cabeza, 2002). A large amount of data or a new technique is required

to advance the applicability of the energy landscape analysis to combi-

nations of brain systems as well as to a single brain system with a large

number of ROIs. This is a main limitation of the current approach.

4.2 | Energy landscape analysis and other methods
for understanding brain dynamics

Signal variability analysis is a different data-driven approach to charac-

terize brain dynamics. Prior research showed that fMRI signals were

less variable over time for older than younger adults (Garrett et al.,

2010, 2013). By referring to the phenomenon called the stochastic res-

onance, they speculated that a large amount of noise in fMRI signals

observed for younger adults may be beneficial in efficient switching

between energy local minima corresponding to particular cognitive

states. Although the present research did not aim to test the stochastic

resonance, our results are consistent with their theory in the point that

dynamical transitions between the specified activity patterns, such as

s1 and s–, are easier for younger than older adults. It should be noted

that we explicitly constructed energy landscapes from fMRI data,

whereas energy landscapes are conceptual objects in the previously

conducted signal variability analysis.

In a separate line of research, a computational study employed

simulations of biophysical models and suggested that the depth of the

attractive basin in an energy landscape decreases by cognitive symp-

toms of schizophrenia, deteriorating short-term memory and attention

(Loh, Rolls, & Deco, 2007). Our results are consistent with theirs,

whereas participants’ characteristics, methodologies, and relevant spa-

tial scales are quite different between the two studies. Other computa-

tional approaches to aging used attractor dynamics and employed

biophysical modelling as well (Nakagawa et al., 2013; Rolls & Deco,

2015). In contrast, in the current study, we revealed that the ease of

transitions between the major activity patterns was different between

the two age groups by analyzing large-scale brain dynamics in a data-

driven manner without biophysical modeling.

We found that in both DMN and CON the within-network func-

tional connectivity significantly declined with age, consistent with pre-

vious findings for the DMN (Andrews-Hanna et al., 2007; Damoiseaux

et al., 2008; Esposito et al., 2008; Grady et al., 2010; Sambataro et al.,

2010; Tomasi & Volkow, 2012; Onoda et al., 2012; Ferreira & Busatto,

2013; Geerligs et al., 2014, 2015; Madhyastha & Grabowski, 2014) and

the CON (Meier et al., 2012; Geerligs, Renken, Saliasi, Maurits, & Lorist,

2015). These connectivity results are consistent with our result that

younger adults have shown larger synchronization than older adults in
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both DMN and CON (Figure 4b). However, the functional connectivity

in either DMN or CON was not correlated with the executive score. In

addition, the functional connectivity in the DMN increased with age in

some studies or did not change with age in other studies (Biswal et al.,

2010; Koch et al., 2010; Park et al., 2010a; Allen et al., 2011; Jones

et al., 2011; Meier et al., 2012; Campbell, Grigg, Saverino, Churchill,

and Grady, 2013; Ferreira and Busatto, 2013; Persson, Pudas, Nilsson,

and Nyberg, 2014; Ward et al., 2015; Turner and Spreng, 2015). Given

these mixed results on age-related alterations in functional connectiv-

ity, the energy landscape analysis may provide an alternative promising

approach toward understanding cognitive aging in the brain. We explic-

itly showed that as individuals age, transitions between the synchron-

ized activity patterns are reduced. Changes in functional connectivity

alone do not tell how the ease of transitions is affected.

However, the energy landscape analysis is not the only method for

revealing association between brain dynamics and cognitive aging. For

example, parameter values estimated for a dynamic causal model were

associated with cognitive performance, and the association was stron-

ger for older than younger adults in a couple of brain systems including

the DMN (Tsvetanov et al., 2016). This result is consistent with ours.

Other methods that aim to minimize confounding effects of non-

neuronal signals contained in fMRI signals may also yield similar results.

Dynamic functional connectivity is another method to track neural

dynamics, in particular in fMRI data. As the name suggests, it analyzes

time-varying correlation between pairs of ROIs using sliding windows

or other methods (Hindriks et al., 2016; Choe et al., 2017). In contrast,

energy landscape analysis quantifies changes of a collection of fMRI

signals at different ROIs over time. At each time point, the brain state

in the energy landscape analysis is given by a vector summarizing

whether each ROI is active or inactive, rather than connectivity

between ROIs. Investigating differences between the results produced

by these two methods warrants future work.

4.3 | Age-related changes in the brain

While we focused on younger and older adults in the paper, we carried

out the same analysis using middle-aged individuals. The results were

roughly in the middle between those for the younger group and those

for the older group (Supporting Information Figure S5). In accordance,

the strength of the correlation between the efficiency and executive

scores was not different between the DMN and the CON.

Age-related differences exist not only in neural activity. For exam-

ple, aging is typically accompanied with the changes in the gray matter

volume (e.g., Allen et al., 2005; Fjell et al., 2013). However, we con-

firmed that our results were not confounded by the gray matter vol-

ume (Supporting Information). In addition, older adults tend to show

reduced heart rate variability, which in turn can lead to larger variances

and noise in the functional connectivity of the resting-state BOLD sig-

nal (Tsvetanov et al., 2015). BOLD signals can also include vascular/res-

piration signals that may differ between younger and older adults

(Power, Plitt, Laumann, & Martin, 2017). We were not able to assess

the contribution of these factors to the present results due to the lack

of the physiological data.

While the current sample showed age-related declines in executive

functions as observed in the previous studies (Park et al., 2002; Salt-

house, 2009), the IQ scores were not significantly different between

younger and older adults in the present study unlike some previous

studies (Kaufman, Reynolds, & McLean, 1989). In a related vein, we did

not find age-related changes in the head movement, while previous

studies often reported that older adults would move more (Mowinckel,

Espeseth, & Westlye, 2012). These results raise a question about the

generalizability of the current findings. Future research should address

whether similar patterns are obtained for other independent and larger

samples.

4.4 | Methodological issues

Our analysis method implicitly assumes that the brain dynamics are

completely described by the shape of the energy landscape except for

stochasticity. In particular, the history of brain dynamics is assumed not

to influence the next activity pattern, whereas the current activity pat-

tern can. Such a memoryless process is called a Markov process. With

a discrete time step of TR52,500 ms, we validated the Markovian

assumption by simulating Markovian random-walk processes whose

transition probabilities were determined by the energy landscape. We

found that numerically obtained transition rates (Figure 6d,e) were

close to those obtained directly from the empirical data (Figure 6b,c) in

both of the DMN and CON. The hidden Markov model is another

approach that quantifies memoryless stochastic transitions between

states and has been recently applied to neuroimaging data (Baker et al.

2014; Vidaurre et al. 2016). Comparison between such an approach

and the present one warrants future work.

We did not look into the shape of disconnectivity graphs, which

was different between the DMN and CON (Figure 4a). The biological

reason and functional relevance of this difference are unclear. Discon-

nectivity graphs of the DMN and CON during tasks may provide infor-

mation regarding functional relevance of different attractive basins, as

in our previous study using a bistable visual perception task (Watanabe,

et al. 2014b).

The maximum entropy model fitted better to the data obtained

from the younger than older adults (Table 2). This was also the case for

the FPN and the auditory network (Supporting Information). There are

two possible reasons underlying this result. First, the younger group

yielded a higher frequency of visit to the two synchronized activity pat-

terns, which were by far the most frequently visited activity patterns.

By definition, the value of the accuracy of fit would be large when the

maximum entropy model accurately estimates the frequency of visit to

frequent activity patterns, even if the model is somewhat inaccurate on

other activity patterns. A second possible reason is that we had to pool

data across individuals in the same group and heterogeneity across the

individuals may be larger for the older than the younger group. In the

group-based analysis, the dependency of the accuracy of fit on the age

may act as a covariate of no interest influencing the statistical results,

which is a limitation of the present study. A larger amount of data to

secure a high accuracy value for both groups or development of meth-

ods requiring less data will probably mitigate the problem.
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The main results here were based on a set of ROIs defined in a

previous study (Fair et al., 2009), whereas the supplementary results

regarding the auditory network used a different and more detailed ROI

set (Power et al., 2011). We did not use the finer atlas for DMN and

CON (Power et al., 2011) because our method is limited to a relatively

small number of ROIs (i.e., around 10 ROIs) given the current amount

of data. The DMN and CON in the finer atlas are composed of 59 and

14 ROIs, respectively. Even if we focus on a single brain hemisphere,

the number of ROIs in the finer atlas is still too large for our analysis.

Furthermore, we should note that whichever brain atlas we use, the

ROI coordinates are calculated based on neuroimaging data obtained

from young adults. Therefore, the ROI coordinates used in the present

study may underrepresent the brain of older adults (Geerligs, Tsveta-

nov, & Henson, 2017). To address this concern, we conducted a seed-

based functional connectivity analysis. We used a 4-mm sphere ROI in

the right anterior insula (x536, y516, z55) as a seed for the CON

(Sadaghiani & D’Esposito, 2015) and found that this seed region

showed significant connectivity with most of the coordinates used to

define the CON in the present study not only in younger adults but

also in older adults (see Supporting Information Figure S8 and Table

S2). We also used a 4-mm sphere ROI in the posterior cingulate

(x522, y5229, z539) as a seed for the DMN. Once again, we

found spatial maps that were similar between the two age groups and

included most of the coordinates for the DMN for both age groups.

The results were qualitatively the same for the FPN, where the seed

region was a 4-mm sphere ROI in the right dorsolateral prefrontal cor-

tex (x543, y521, z538). These results suggest that, although the

ROIs used in the current study were defined based on a younger sam-

ple in a previous research (Fair et al. 2009), these ROIs are still valid for

both younger and older groups in our sample.

We removed the global signal before submitting the fMRI data to

our analysis pipeline. However, justification of global signal regression

remains controversial. Global signal regression should be used with

care when one compares groups with different characteristics of fMRI

signal fluctuations (Murphy & Fox, 2017), which may apply to the pres-

ent study in which we compared younger and older groups. We opted

not to try different preprocessing methods because there is no gold

standard and it is even difficult to select an alternative preprocessing

method (Murphy & Fox, 2017).

Our results indicate that resting-state data bring us useful informa-

tion on cognitive aging. However, integrating resting-state data with

data during more specific cognitive tasks will further our understanding

of neural mechanisms underlying age-related cognitive decline (Camp-

bell & Schacter, 2017; Geerligs & Tsvetanov, 2017; Grady, 2017).
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