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Abstract 

 Apraxia (a disorder of complex movement) suggests that the left inferior parietal lobule 

plays a role in kinematic or spatial aspects of imitation, which may be particularly important for 

meaningless (i.e., unfamiliar intransitive) actions. Mirror neuron theories indicate that the inferior 

parietal lobule is part of a frontoparietal system that can support imitation by linking observed and 

stored actions through visuomotor matching, and have less to say about different subregions of the 

left inferior parietal lobule, or how different types of action (i.e., meaningful or meaningless) are 

processed for imitation. We used repetitive transcranial magnetic stimulation (rTMS) to bridge this 

gap and better understand the roles of the left supramarginal gyrus and left angular gyrus in 

imitation. We also examined if these areas are differentially involved in meaningful and 

meaningless action imitation. We applied rTMS over the left supramarginal gyrus, left angular 

gyrus, or during a no-rTMS baseline condition, then asked participants to imitate a confederate’s 

actions whilst the arm and hand movements of both individuals were motion-tracked. rTMS over 

both the left supramarginal gyrus and the left angular gyrus reduced the velocity of participants' 

finger movements relative to the actor during imitation of finger gestures, regardless of action 

meaning. Our results support recent claims in apraxia and confirm a role for the left inferior parietal 

lobule in kinematic processing during gesture imitation, regardless of action meaning. 

 

Introduction 

 Neuroscientific research implicates the left parietal lobe in imitation (Caspers et al., 2010; 

Molenberghs et al., 2009), but neither the precise area nor its exact role are fully established. Some 

neuropsychologists studying the apraxias - disorders of complex movement in which different types 

of imitation can be impaired - suggest that the left parietal lobe controls kinematic (Buxbaum et al., 

2014) or spatial (Goldenberg, 2009) aspects of imitation, and that the inferior parietal lobule (IPL) 

in particular is critical for imitating meaningless actions. Theories of social interaction based on the 



3 

putative human mirror neuron system, by contrast, indicate that the IPL is part of a frontoparietal 

system that links observed and stored actions through visuomotor matching (Rizzolatti et al., 2014), 

in terms of movements (Iacoboni, 2009; Iacoboni & Dapretto, 2006) or goals (Hamilton, 2008, 

2014). In this way, the IPL could provide a scaffolding for imitation. These theories, however, often 

say less about the specific role of IPL subregions (supramarginal gyrus, SMG; angular gyrus, AG), 

or how the left IPL might or might not be differentially involved in meaningful and meaningless 

action imitation. 

 

 These differing views result from different approaches to studying imitation. 

Neuropsychological studies of apraxia have historically distinguished lesioned regions-of-interest, 

and compared different types of imitative action (Goldenberg, 2009). However, neuroimaging 

studies in healthy people have often used only a single or stereotyped action type (e.g., finger 

tapping) which can make it hard to draw conclusions about different imitative capacities (but see 

Bien et al., 2009; Carmo et al., 2012; Decety et al., 1997; Grèzes, 1998; Higuchi et al., 2012; Koski 

et al., 2003; Krüger et al., 2014; Menz et al., 2009; Mühlau et al., 2005; Rumiati et al., 2005; 

Tanaka et al. 2001; Tanaka & Inui et al., 2002). 

 

 Furthermore, neuroscience-driven work on imitation in healthy individuals is often defined 

by the experimental scanning environment. Experimental paradigms typically use a single 

participant responding to pre-recorded stimuli in the confines of an fMRI scanner, which tends to 

limit the imitative capacity afforded by viewing and acting with the entire arm and hand. We 

wanted to better understand imitation as a dynamic social experience, an approach that may be 

essential to understand realistic imitation behaviour (Reader & Holmes, 2016). In addition, in 

research both with healthy individuals and apraxia patients there is little use of motion-tracking for 

characterising imitation in an objective fashion (with some exceptions, e.g., Braadbaart et al., 2012; 
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Campione & Gentilucci, 2011; Gold et al., 2008; Hayes et al., 2016, Hermsdörfer et al., 1996; 

Krüger et al., 2014; Pan & Hamilton, 2015; Reader & Holmes, 2015; Sacheli et al., 2012, 2013, 

2015a, 2015b; Wild et al., 2010; Williams et al., 2013), despite the fact that kinematics are an 

important element of social interactions (Krishnan-Barman et al., 2017). With this in mind, we used 

two-person motion-tracking in this experiment to better understand the links between actor and 

imitator behaviour. 

 

 To bring work on imitation in neuropsychology and healthy participants together, we used 

non-invasive brain stimulation to arbitrate between the roles of the two broad left IPL subregions 

SMG and AG in imitation, and, secondary to this, to test whether these regions are differentially 

involved in meaningful and meaningless action imitation. In particular, we were interested in 

examining both imitation accuracy and kinematics in an exploratory fashion. We applied repetitive 

transcranial magnetic stimulation (rTMS) to the left SMG, left AG, or during a no-rTMS baseline, 

then asked participants to imitate a confederate’s actions in a two-person, ecologically valid and 

naturalistic motion-tracking paradigm. 

 

Materials and methods 

Participants 

 We recruited 12 participants from the University of Reading and the surrounding area 

(mean±SE age = 23.2±1.1 years, 5 males, 2 left handed). Left-handed participants were not 

excluded since, in the SMG at least, praxis representation is not related to handedness (Króliczak et 

al., 2016). The experiment was approved by the University of Reading ethics committee (ref: 

UREC 15/49); participants gave written, informed consent; the experiments were conducted in 

accordance with the Declaration of Helsinki (as of 2008). 
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Stimuli and apparatus 

 Positions of the participant’s right arm and hand and a confederate’s left arm and hand were 

recorded using a Polhemus Liberty motion tracking system (Polhemus Inc., Colchester, VT, USA) 

recording 16 channels (8 per person) with 6 degrees of freedom (x, y, z, azimuth, elevation, and 

roll) at 240Hz. Trackers were attached to the shoulder (acromial end of the clavicle), elbow 

(olecranon), wrist (pisiform), and the thumb and finger tips, using adhesive medical tape or 

Velcro™. rTMS was applied using a PowerMAG 100 (Mag & More GmbH, Munich, Germany) 

with a 70mm figure-of-eight coil. 

 

 The experiment was controlled and data acquired using custom software written in 

MATLAB 2014b (Mathworks, Inc.) and using the ProkLiberty interface 

(https://code.google.com/p/prok-liberty/). We used LabMan and the HandLabToolbox to document 

and control experiments and analyse data. The associated repositories are, or will be, freely 

available at https://github.com/TheHandLaboratory, whilst raw data are available on request.  

 

 Thirty gestures were used as stimuli. This included five meaningful hand, five meaningful 

finger, and twenty matched meaningless gestures. For each meaningful gesture, two matched 

meaningless gestures were created. In the case of finger gestures, this was done by changing the 

fingers used and/or the orientation of the hand. In the case of hand gestures, this was done by 

changing the orientation and/or position of the hand. We used more meaningless than meaningful 

gestures to reduce the number of times participants were exposed to these actions, reducing the 

likelihood that they would associate them with a particular meaning. The finger gestures signified 

"okay", "thumbs up", "shoot", "peace", and "silence". The hand gestures signified "salute", "stop", 

"shock", "looking into the distance", and "I'm listening" (Figure 1A). Emblematic gestures were 

used since, unlike pantomimed actions which imply an object and require continuous motion, 
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emblematic gestures are point-to-point which is more appropriate for motion-tracking (i.e., it is 

straightforward to extract a single velocity curve for analysis). 

 

[FIGURE 1 ABOUT HERE] 

 

 During the imitation task, participants sat opposite a confederate at a round plastic table 

(diameter=85cm), approximately 100cm apart (Figure 1B). A Blu Tack® start point was located 

20cm away from each person's abdomen. To inform the confederate of the actions they needed to 

perform, a computer screen (unobservable by the participant imitator) was placed parallel to the 

table, approximately 50cm to the left of the actor. 

 

TMS site localisation 

 Visualisation of the participant’s brain used T1 weighted MR images alongside Brainsight 

2.2.13 (Rogue Research Inc., Montreal, Canada). Due to SMG and AG size, stimulation locations 

were based on guidance from previous experimental activation and cytoarchitectonic maps (Caspers 

et al., 2006, 2008). The stimulation site for left SMG was area PF, located by finding the dorsal 

extension of the posterior end of the Sylvian fissure and the anterior end of the intraparietal sulcus, 

drawing an imaginary line between them, and stimulating the centre of this line. Evidence suggests 

that area PF usually falls within these limits (Caspers et al. 2006). Since AG activation in 

neuroimaging studies of imitation appears to be less frequent than SMG activation, the stimulation 

site was the centre of the left AG, aiming to cover both PGa (anterior) and PGp (posterior). The AG 

site was located half way between the dorsal extension of the posterior superior temporal sulcus and 

the intraparietal sulcus. Mean±95% CI locations are shown in Figure 1C. For both AG and SMG the 

coil was oriented orthogonal to the main orientation of the gyrus limits. The location of the coil in 
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the no-rTMS baseline condition was placed directly between the AG and SMG positions, but held 

parallel against the head, such that no or minimal stimulation of the brain should occur. 

 

rTMS parameters 

 Monophasic rTMS was applied to the left SMG, left AG, and in the no-rTMS condition (coil 

held away from the head) at 1Hz and 110% of distance adjusted resting motor threshold (RMT, 

Stokes et al., 2007). RMT (Rossini et al., 1994) was obtained at the start of the first session. 

Mean±SE RMT was 69±4.1% of maximum stimulator output (MSO). The distance from M1, SMG, 

and AG, to the scalp was measured using Brainsight. The no-rTMS site distance was measured 

from the cortical tissue directly underlying the no-rTMS site to the scalp. Stimulation intensity was 

limited to a maximum of 85% MSO in order to prevent the coil overheating. Mean±SE stimulation 

intensity in each condition was as follows: SMG=70±4.1%, AG=72±4.4%, no-rTMS=71±3.9% 

MSO. 

 

Design and procedure 

 Participants took part in three sessions split at least a week apart. On a single day rTMS was 

applied twice (once for meaningless, once for meaningful) for 15 minutes (900 pulses at 1Hz) to 

either the left SMG, left AG, or in the no-rTMS baseline condition, in counterbalanced order across 

participants. After each rTMS application, participants took part in either a meaningful or 

meaningless action imitation task. Meaningless and meaningful actions were segregated into their 

own separate trials (each following a single rTMS application), since there is evidence to suggest 

that performing novel and known actions in a sequence could recruit a single processing route, 

whilst presenting them separately recruits separate routes (Tessari & Rumiati, 2004; but see Press & 

Heyes, 2008; Reader et al., under review). Task order was counterbalanced across stimulation sites. 
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Imitators were not given detailed instructions regarding the task constraints, and were simply told to 

imitate the confederate, with the aim that this would ensure naturalistic performance in the task.  

 

 Both confederate and imitator began with their thumb and forefinger gripping their start 

points. In both meaningful and meaningless imitation tasks, action images appearing on a computer 

screen (in a random order, one per trial) signalled the confederate to perform the displayed action, 

which they performed and maintained briefly before returning their hand to the start point. Five 

seconds after presentation of the image to the confederate, a tone indicated the participant to imitate 

the action they had observed, which they performed in a mirror fashion (i.e., using their right hand 

to copy the confederate’s left hand). After completing the action, they returned their hand to the 

start point before the next trial. Following a single application of rTMS, each meaningful action was 

presented six times, or each meaningless action was presented three times, giving a total of 60 trials 

per condition and TMS site. Imitation was performed in same-sex dyads, with either a male 

confederate or one of two female confederates. The same confederate was used as actor for every 

condition of a given participant. 

 

 Following the third rTMS session, participants were presented with a questionnaire featuring 

the meaningful and meaningless images in pseudorandom order. They were asked to state whether 

they thought each gesture had a meaning and, if it did, to provide an explanation. This was done 

with the aim of excluding participants if they failed to meet an arbitrary 60% agreement with our 

meaningful and meaningless action categorisation, but no participants failed this criterion. 

Mean±SE agreement on the meaningful gestures was 75.8±7.83%, and the mean percentage of 

meaningless gestures described as meaningful was 5.83±1.83%. 
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Data analysis 

 An automated script was used for pre-processing and extraction of variables. The analysis 

routines processed the position data from each trial of each participant and rejected artefacts (e.g., 

trials with missing samples or spikes resulting from electromagnetic interference) before filtering 

with a bidirectional low-pass 4th order Butterworth filter (cutoff frequency 15Hz). 5.3% of trials 

were removed due to incorrect start times or artefacts. 

 

 The imitator's and actor's 3D velocity over their primary movement (movement onset to 

gesture completion, mean±SE duration=1021±34.3ms) were resampled to 240 samples then 

correlated in order to provide a measure of imitation accuracy (Reader & Holmes, 2015). The 3D 

velocity profiles for each of the imitator's trackers were correlated with each of the actor's 

corresponding trackers: shoulder (SH), elbow (EL), wrist (WR), thumb (TH), index finger (IN), 

middle finger (MI), ring finger (RI), and little finger (LI). 3D velocity profiles were used since they 

provide a measure of the change in the 3D position of the trackers over time, and thus the formation 

of the final hand posture over time. This was considered preferable to using the x, y, and z position 

values since it allowed us to reduce the number of statistical comparisons, and the likelihood of 

false positives. 

 

In order to use parametric statistics on the resulting r-values they were converted into Z-values 

using Fisher's transformation (Z=0.5*ln((1+r)/(1-r))), where ln is the natural logarithm. JASP 

(version 0.8.0.0, JASP Team) was used to perform two-way repeated measures ANOVAs on the 

means of all relevant trials for each of these variables across each crossed condition (Table 1). 

Preliminary analysis indicated that hand gestures were biasing the results (i.e., the mean Z-values 

for all digits were similar since the digits generally moved together). Because of this we split the 

hand and finger gestures before examining accuracy, then corrected for multiple comparisons using 
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Bonferroni correction, reducing our alpha used to determine a statistically significant result to .025. 

We then performed the following analysis on the hand and finger data separately. 

 

 In order to assess whether there were time-dependent significant differences in the 

stimulation-site related main effects or interaction, t-statistic plots were created to examine changes 

in the imitator (i.e., regardless of the actor) 3D velocity for each instance (Figure 2). We took this 

time-series-driven approach in order to inform us of possible differences in peak kinematic values 

in separate trackers, without the inflated type 1 error that would occur were we to examine multiple 

kinematic parameters in multiple trackers. In cases where the t-value was at a significant level for 

any sequence of samples in the time-series, we performed permutation testing on the relevant data. 

 

 Permutation testing was performed over 10,000 iterations to create a custom empirical null 

distribution of the length of samples with significant t-statistics, which was then used to decide 

whether an observed sequence was significantly long. This is similar to the use of cluster based 

statistics in fMRI, where a fixed, arbitrary threshold is used for creating clusters, then a second 

threshold is calculated for determining how large a cluster needs to be before it is statistically 

significant. On each iteration, the condition labels for each participant's data were 

pseudorandomised, and the original analyses were then repeated exactly, in order to obtain t-

statistics, and sequences of significant t-statistics for the difference between 'SMG' and 'AG' 

conditions, under the null hypothesis. From this we were able to assign a p-value to our actual 

results by seeing what proportion of the tail of the distribution was greater (or lesser) than or equal 

to the actual result. We examined the minimum length of sequences of continuous values in which 

|t|>2.201 (i.e., statistically significant at a samplewise p<.05), and also the p-values associated with 

the sequences of timepoints in our recorded data where |t|>2.201. 
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 Where significantly long sequences were found, we examined the standard kinematic 

parameters that occurred during those periods to confirm whether the differences were derived from 

the SMG-AG comparison, or if there was further information to be gained from the no-rTMS 

baseline. Imitator peak kinematic parameters were examined using one-tailed post-hoc paired t-

tests. To check that any differences were derived from imitator rather than actor performance, we 

ran the same analysis on the actor peak values using two-tailed paired t-tests. For all post-hoc paired 

t-tests Hedges’ grm was chosen to report effect sizes in repeated measures comparisons (Lakens, 

2013). 

 

Results 

 No significant effects of stimulation site, nor interaction between stimulation site and 

meaning were observed in imitation accuracy (Table 1). In hand gestures, the shoulder and elbow 

positions were significantly more correlated for meaningless than for meaningful actions. This 

effect was also significant in the same direction for the shoulder in finger gestures, and, only when 

uncorrected for multiple comparisons, in the elbow. 

 

[TABLE 1 ABOUT HERE] 

 

[FIGURE 2 ABOUT HERE] 

  

 Figure 2A shows the t-statistic plots for the main effect of SMG versus AG in hand gestures. 

Figure 2B shows the t-statistic plots for the interaction between stimulation site and meaning in 

hand gestures. Figure 2D shows the t-statistic plots for the interaction between stimulation site and 

meaning in finger gestures. No significantly long sequences were observed in these data.  
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 Figure 2C shows the t-statistic plots for SMG versus AG in meaningful and meaningless 

actions for finger gestures. Permutation testing for the thumb revealed a significant sequence 

between 59 and 108 samples (p=.035). The index finger showed a significant sequence between 65 

and 119 samples (p=.022). The ring finger showed a significant sequence between 72 and 116 

samples (p=.041). The little finger showed a significant sequence between 67 and 114 samples 

(p=.036). The middle finger sequence between 70 and 106 samples was not significantly long 

(p=.054). 

 

[FIGURE 3 ABOUT HERE] 

  

 The mean peak velocity (PV) for the digits in finger gestures was examined post-hoc since 

the above significant sequences overlapped with this kinematic parameter. Figure 3 emphasises this 

difference in the original data for the thumb. One-tailed t-tests for imitator mean digit PV (Figure 4) 

indicated a Bonferroni-corrected significant (p<.025) difference, where stimulation over AG 

resulted in a greater mean digit PV than over SMG (t(11)=2.23, p=.024, grm=0.207), and a similar 

difference where stimulation over AG resulted in a greater mean digit PV than the sham baseline 

(t(11)=2.10, p=.030, grm=0.182). There was no significant difference in mean digit PV between 

stimulation over SMG and the sham baseline t(11)=-0.503, p=.303, grm=0.0465). 

 

 We then used two-tailed t-tests to perform the same analysis on the PV of the actor in their 

finger gestures (Figure 4), which revealed a Bonferroni-corrected significant (p<.025) difference 

between mean digit PV in the AG condition and sham baseline (t(11)=2.91, p=.014, grm=0.529). 

There was no significant difference in mean digit PV following stimulation over SMG and the sham 

baseline (t(11)=1.89, p=.086, grm=0.331), or between SMG and AG conditions (t(11)=-1.71, 

p=.115, grm=0.222). This suggested that actor behaviour was biased, so we also decided post-hoc to 

examine the imitator PV relative to the actor PV to try and control for the effects of this bias. 
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[FIGURE 4 ABOUT HERE] 

 

 We examined the imitator mean digit PV relative to the actor mean digit PV in finger 

gestures using two-tailed t-tests and a Bonferroni-corrected alpha criterion of .025 (Figure 5). There 

were no significant differences using this corrected criterion. However, mean digit relative PV was 

reduced following SMG stimulation compared to the sham baseline (t(11)=-2.37, p=.037, 

grm=0.335), and also following AG stimulation compared to the sham baseline (t(11)=-2.31, p=.041, 

grm=0.281). There was also no significant difference in mean digit relative PV between SMG and 

AG stimulation (t(11)=-0.316, p=.758, grm=0.0424). 

 

[FIGURE 5 ABOUT HERE] 

 

Discussion 

 We tested participants’ ability to imitate meaningful and meaningless hand and finger 

gestures following rTMS over the left SMG, left AG, or after a no-rTMS baseline. Whilst there 

were no differences in imitation accuracy between stimulation sites, we observed that participants' 

digit peak velocity was lower relative to the actor in finger gestures following left SMG or left AG 

stimulation, though with a larger effect size in the SMG condition. These results provide the first 

causal evidence, using brain stimulation in healthy individuals, for a role of the left IPL in 

processing the kinematics of finger movements during gesture imitation. 

 

 Whilst stimulation did not influence imitation accuracy, there was some evidence for 

differences between accuracy in meaningful and meaningless action performance. Interestingly, 

participants matched the confederate's shoulder and elbow movements to a significantly greater 

degree in meaningless actions. Meaningless actions may rely more on matching action kinematics 
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(e.g., Rumiati & Tessari, 2002; Tessari & Rumiati, 2004; Wild et al., 2010) than meaningful 

actions. The fact that effects were only observed in the shoulder and elbow may reflect the fact that 

the differences in accuracy were easier to detect in proximal effectors with lower degrees of 

freedom. 

 

 Examining t-statistics over time, we found significantly long periods during which imitator 

finger velocity was significantly lower following rTMS over left SMG compared to left AG during 

imitation of finger gestures, but regardless of action meaning. This effect was also reflected in mean 

digit PV. To account for possible differences in actor behaviour, we examined imitator mean digit 

PV relative to the actor mean digit PV, and found that participants showed significantly reduced 

mean digit PV relative to the actor following SMG and AG stimulation compared to baseline. This 

result seems to indicate that during the imitation of finger gestures, rTMS to the left SMG or left 

AG reduces digit velocity relative to the observed actor. Further study is necessary to understand 

the underlying processes altered in this experiment, but these results have the potential to bring 

together both findings from apraxia and discussions of the putative mirror neuron system in healthy 

individuals. 

 

As noted in the introduction, some suggest that the putative human mirror neuron system 

supports our imitative capacity. The IPL is one area of this proposed frontoparietal system 

(Hamilton, 2015), that has been suggested to support imitation through visuomotor matching of 

seen actions and those that are already in the motor repertoire. This theory provides one explanation 

for our result in the absence of any stimulation-related effects specific to action meaning. That is, 

disturbed visuomotor matching following stimulation over left IPL could reduce the velocity with 

which the fingers shape complex postures relative to the actor. However, this effect does not 

necessarily stem from an rTMS-induced inhibition of direct matching. Rather, by considering 
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claims made in the mirror neuron literature and neuroimaging studies of healthy individuals, recent 

discussions in apraxia, and recognising the possibility that different areas of the IPL may subserve 

different aspects of imitation, we may be able to provide a more holistic explanation for the 

observed data. 

 

 Buxbaum et al. (2014) found that damage to the left IPL was associated with deficits in 

kinematic (rather than postural) aspects of movement for novel and tool-related actions. Similar 

results were found in a more recent voxel-based lesion-symptom mapping study by Dressing et al. 

(2016). Buxbaum et al. (2014) suggested that the left IPL computes "movement plans [as] dynamic 

changes in the relative spatial positions of body parts needed to reach a goal configuration" (p. 13). 

If this is the case, changes in effector movement relative to the goal (the actor movement) are a 

possible consequence of left IPL stimulation. Our results indicate that this is true for both 

intransitive meaningful and meaningless actions. Whilst meaningless action imitation may be more 

reliant on kinematic processing (Buxbaum et al., 2014), kinematic information might still be 

relevant to the way in which one must replicate a meaningful action. To take an extreme example, 

the imitator is not likely to ignore explicit but irrelevant kinematics, such as a particularly slow or 

rapid action which does not assist in the development of the final posture (see Forbes & Hamilton, 

2017, for evidence that possibly supports this). 

 

 Our results seem, then, to confirm the importance of the left IPL in meeting the kinematic 

requirements of the observed action, over and above the meaning of that action. The sensitivity of 

the IPL to observed movement kinematics (Becchio et al., 2012) might substantiate this claim, and 

since movement necessarily contains kinematic features, our results may help to explain why left 

IPL activity is frequently reported during imitation in healthy individuals, regardless of the type of 

action imitated (e.g., Jack et al., 2011; Molenberghs et al., 2010; Mühlau et al., 2005; Tanaka et al., 

2002). There is also evidence, at least for tool-related actions, that damage to the left IPL is more 
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reliably associated with deficits in action performance, rather than action recognition (Tarhan et al., 

2015), potentially confirming the priority that the left IPL places on processing movement during 

imitation, rather than semantic encoding (which may be more reliably served by the temporal lobe 

e.g., Dressing et al., 2016; Kalénine et al., 2010). 

 

 It is worth stressing here that our assertion is made in the light of our use of intransitive 

emblematic gestures, whilst the term ‘meaningful gesture’ in apraxia literature commonly refers to 

action pantomimes (i.e., pretending to perform a tool-use hand action without the tool in hand). A 

more detailed discussion of the distinctions between object-directed and emblematic gestures is 

provided by Buxbaum et al., 2005. However, there is evidence that damage to the IPL can be 

associated with deficits in both the imitation of communicative and tool-use gestures (e.g., Dressing 

et al., 2016), implying that our findings may be applicable beyond the specific action types used in 

this experiment. We do, of course, suggest further testing this hypothesis. 

 

 It is also worth noting that the size of the IPL indicates that it is not solely involved in the 

kinematic matching process we have proposed. Indeed, this was part of our motivation for using 

cytoarchitectonically defined brain regions for stimulation. It is perhaps more feasible that the left 

parietal lobe is involved in multiple processes for imitation, and that these processes may be 

dependent on the type of action to be imitated. For example, the parietal operculum (POp), anterior 

to area PF, or the anterior intraparietal sulcus (aIPS), superior to area PF, have also been found to be 

involved in imitation. Specifically, some have suggested that during imitation the left POp is 

involved in comparing information about the imitator’s body with the observed actor’s body 

(Krüger et al., 2014; Mengotti et al., 2013), and that activity in this area is correlated with the 

subsequent accuracy of the imitative action (Krüger et al., 2014). The left aIPS, however, has been 

suggested to guide object-directed hand movements (Tunik et al., 2007) and, importantly, also 

appears to represent the goals of observed object-directed actions (Hamilton, 2008, 2014; Hamilton 
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& Grafton, 2006, 2007; Sacheli et al., 2015). As such, the aIPS could support the imitation of 

object-directed actions because it ostensibly provides a “common representational system for the 

actions of self and other” (p. T84, Tunik et al., 2007). The sensitivity of the aIPS for both observed 

and performed action goals (Oosterhof et al., 2010) is in keeping with claims that this area may be 

part of the putative human mirror neuron system (Tunik et al., 2007). Lastly, Goldenberg & 

Randerath (2015) suggested that the left IPL could have a role in the apprehension of spatial 

relationships. They report that damage to this area can result in shared deficits in the imitation of 

meaningless hand gestures, which require placing the hand in relation to other parts of the body 

whilst the finger positions remain invariant, and in tasks such as the Token Test which require 

patients to classify objects based on their spatial and physical properties.  

 

 With the above in mind we can distinguish four potential elements of imitation served by the 

left parietal lobe. Left area PF and/or area PG - the parts of the SMG and AG stimulated in this 

experiment - could be involved in creating movement plans based on the spatiotemporal 

requirements of the to-be-performed action (i.e., the kinematics), regardless of whether the action is 

imitative. The POp could then ensure that these spatiotemporal requirements are met during 

imitative scenarios, by comparing the imitator’s body to that of the actor (Krüger et al., 2014; 

Mengotti et al., 2013). This checking process may be essential for meaningless intransitive actions, 

in the absence of objects to provide context, and could provide one explanation for the defective 

imitation of meaningless gestures frequently associated with left IPL damage (Goldenberg, 2009). 

The aIPS, in contrast, could be useful for informing imitation in object-directed scenarios (but see 

Martin et al., 2016), where visuomotor matching between the observed and to-be-performed action 

can be done at the goal rather than movement level (Hamilton, 2014). There may also be a role for 

the left IPL in processing spatial relationships during imitation. This may be particularly important 

for the imitation of meaningless hand gestures (Goldenberg & Karnath, 2006; Goldenberg & 

Randerath, 2015), since this task could be reliant on the decomposition of visual information about 
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the observed gesture into “simple spatial relationships between a limited number of defined body 

parts” (p. 47, Goldenberg & Randerath, 2015). The absence of specific effects for meaningless hand 

gesture imitation in our experiment is discussed later. 

 

 In light of the discussion above, it is also necessary for us to comment on the similar effects 

observed for both of our active stimulation sites. Unfortunately, our study was not able to reveal 

more about the possible division of labour between the left SMG and AG. The existence of similar 

effects in both the left SMG and AG may not necessarily reflect similar roles for each of these 

regions, but perhaps the connectivity between them. For example, the left AG stimulation may have 

had an effect on information processing between the AG and SMG, with the greater effect size 

observed following SMG stimulation (Hedges’ grm = 0.335 versus 0.281) partially supportive of this 

claim. Since the AG is anatomically connected to the posterior SMG (Seghier, 2013), rTMS over 

both areas might induce a reduction in efficient SMG functioning if information regarding the 

kinematic constraints of the observed action is passed in a posterior-anterior (AG to SMG) fashion. 

It is also worth noting that a previous study indicated that the AG could be involved in both 

meaningful and meaningless action imitation (Vanbellingen et al., 2014). However, the location of 

AG in that experiment was more ventral and anterior to ours. 

 

 An alternative explanation for the similar effects observed for both stimulation sites is that 

our results reflect an influence of unspecified peripheral stimulation of another area of the IPL, for 

example, cytoarchitectonic area PFm, which lies between PF (in the SMG) and PGa (AG). 

Interestingly, a previous study by Weiss et al. (2013) using transcranial direct current stimulation 

(tDCS), found that anodal stimulation over left area PFm improved participants’ gesture matching 

ability. However, the authors suggested that their result could have been driven by a combined 

effect of SMG and AG stimulation, considering the central position of PFm, and the size of tDCS 
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electrodes. Weiss et al. (2013) stated that both parts of the IPL may have to be stimulated 

simultaneously in order to facilitate gesture matching. Considering our results, the same could be 

true for influencing gesture imitation, and further highlights the importance of considering in detail 

the role of different regions of the IPL, along with their interactions. 

 

 One response to this problem is to suggest further neurostimulation research aimed at 

disentangling the relative contributions of the seven parcellated regions of the IPL (PFt, PFop [the 

POp], PFcm, PF, PFm, PGa, PGp), along with the aIPS. Such an endeavour would be essential in 

order to clarify how different areas of the left parietal lobe may or may not interact, and their 

relative contributions to different types of action and action imitation. In addition, neuroimaging 

approaches that compare brain activity with actual imitative performance (i.e., Frey & Gerry, 2006; 

Krüger et al., 2014), across different types of action, are also likely to be invaluable. In general we 

suggest that, where possible, researchers try to report in more detail at least the distinction between 

the SMG and AG, if not their parcellated subregions, rather than stating a role for the IPL in 

general. 

 

 A potential limitation of this study, and another possible explanation for the consistent 

effects observed in both the SMG and AG, is that these results simply reflect a TMS-general 

influence, in the absence of an active control site. TMS can cause changes in behaviour distinctly 

unrelated to changes in cortical activity, whereby the clicking sound of the TMS coil alone can 

facilitate or inhibit reaction times dependent on the time of stimulation within a trial (Duecker et al., 

2013; Meteyard & Holmes, 2018). However, as far as we are aware this has only been found for 

online TMS protocols, and we are not aware of data suggesting that the offline approach we used is 

also likely to result in ‘mere-presence’ effects of rTMS. In addition, the no-rTMS session involved 

much of the same conditions as in the active stimulation sessions (e.g., 15 minutes of waiting during 

TMS application, clicking sound). 
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 Finally, it is interesting that our primary result was found specifically for finger gestures, 

rather than hand gestures. This is partly at odds with some previous findings in apraxia, though our 

stimuli were not modelled on previous distinctions between hand and finger gestures – our main 

aim was to ensure there was a sufficient number of different emblematic stimuli for participants to 

copy. There is some evidence to suggest that defective finger gesture imitation is more associated 

with left inferior frontal gyrus damage, compared to defective hand gesture imitation, which is more 

associated with left IPL damage (Goldenberg & Karnath, 2006). As stated above, some discuss the 

role of the left IPL in hand gesture imitation in terms of ‘body part coding’, where hand gesture 

imitation is reliant on the spatial mapping of the hand in relation to other body parts (e.g., 

Goldenberg & Karnath, 2006; Goldenberg & Randerath, 2015). However, some experimenters have 

failed to find a dissociation for brain regions related to defective hand and finger imitation (Achilles 

et al., 2017). It is also possible that the movement to attain the posture, rather than the final hand 

position alone may be an important factor. For example, whilst the Goldenberg (1996) assessment 

for meaningless  gestures (as used by Goldenberg & Karnath, 2006 and Goldenberg & Randerath, 

2015) considers only performance on the final gesture posture, Buxbaum et al. (2014) examined 

dynamic movements, hence their suggestion that dynamic change in body part position is important. 

It is possible that the difference between kinematic and postural elements of movement may take 

precedence over the difference between hand and finger gestures, though further research would be 

needed to clarify this. If this is the case, the fact we only observed kinematic effects in the finger 

velocities for finger-specific gestures may reflect the fact that the dynamic change of each of the 

fingers independently is more complex than the movement of the hand as a whole.  

 

 In conclusion, we found that the left IPL is involved in matching observed digit velocity in 

action imitation, regardless of action meaning. More work is needed to expand on how imitation 
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kinematics are processed in the left IPL, and the relative contributions of the SMG and AG and their 

respective cytoarchitectonic subregions. These nuances can be examined using neuronavigated 

TMS. Our results highlight that brain stimulation may help close the gap in understanding imitation 

in apraxia and in healthy people, particularly if it is combined with large-scale motion-tracking. 
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Table 1: Two-way ANOVA main effects and interactions for actor-imitator correlations (Z-

values) in hand and finger gestures; significant p-values (<.025) are in bold; SH: shoulder, 

EL: elbow, WR: wrist, TH: thumb, IN: index finger, MI: middle finger, RI: ring finger, LI: 

little finger 

Gesture Tracker 

Mean(±SE) Z-value 
Main effect 

Site*meaning 

interaction 
Site Meaning 

SMG AG 
No-

rTMS MF ML 

Site Meaning 
F 

(2,22) 
p ƞp

2 F 
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p ƞp

2 F (1,11) p ƞp
2 

Hand 

SH 
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(0.0725) 

0.485 

(0.0687) 
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(0.0534) 

0.388 
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(0.0669) 
0.243 .787 .022 39.2 <.001 .781 2.84 .080 .205 

EL 
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(0.0930) 

0.860 

(0.0989) 

0.918 

(0.0708) 

0.753 

(0.0862) 

1.04 

(0.0679) 
0.253 .779 .022 28.8 <.001 .723 1.48 .250 .118 

WR 
1.54 

(0.0833) 

1.57 

(0.0740) 

1.50 

(0.0673) 

1.54 

(0.0658) 

1.53 

(0.0822) 
1.07 .359 .089 0.051 .826 .005 0.256 .777 .023 

TH 
1.54 

(0.0760) 

1.53 

(0.0835) 

1.52 

(0.0646) 

1.53 

(0.0730) 

1.53 

(0.0708) 
0.076 .927 .007 0.002 .966 <.001 0.905 .419 .076 

IN 
1.48 

(0.0861) 

1.50 

(0.0772) 

1.49 

(0.0650) 

1.48 

(0.0766) 

1.50 

(0.0686) 
0.045 .956 .004 0.263 .618 .023 0.696 .509 .060 

MI 
1.53 

(0.0845) 

1.52 

(0.0744) 

1.52 

(0.0615) 

1.51 

(0.0750) 

1.54 

(0.0638) 
0.004 .997 <.001 0.322 .582 .028 0.698 .508 .060 

RI 
1.53 

(0.0830) 

1.52 

(0.0738) 

1.52 

(0.0616) 

1.51 

(0.0743) 

1.53 

(0.0621) 
0.027 .974 .002 0.173 .685 .015 0.694 .510 .059 

LI 
1.52 

(0.0854) 

1.52 

(0.0749) 

1.52 

(0.0624) 

1.52 

(0.0769) 

1.52 

(0.0648) 
0.011 .989 .001 0.014 .909 .001 0.620 .547 .053 

Finger 

SH 
0.122 

(0.0328) 

0.119 

(0.0398) 

0.112 

(0.0280) 

0.0486 

(0.0309) 

0.187 

(0.0277) 0.040 .961 .004 37.1 <.001 .771 0.099 .906 .009 

EL 
0.460 

(0.0845) 

0.492 

(0.112) 

0.359 

(0.0683) 

0.386 

(0.0791) 

0.488 

(0.0710) 
1.14 .337 .094 6.54 .027 .373 2.03 .155 .156 

WR 
1.30 

(0.0786) 

1.34 

(0.0603) 

1.21 

(0.0633) 

1.31 

(0.0594) 

1.25 

(0.0694) 
3.19 .061 .225 1.95 .190 .151 1.33 .285 .108 

TH 
1.27 

(0.0538) 

1.31 

(0.0671) 

1.20 

(0.0553) 

1.30 

(0.0614) 

1.23 

(0.0469) 
2.18 .137 .165 2.27 .160 .171 0.045 .956 .004 

IN 
1.18 

(0.0563) 

1.24 

(0.0701) 

1.14 

(0.0610) 

1.20 

(0.0654) 

1.17 

(0.0495) 
1.53 .239 .122 .579 .463 .050 0.739 .489 .063 

MI 
1.22 

(0.0521) 

1.31 

(0.0516) 

1.19 

(0.0513) 

1.28 

(0.0507) 

1.20 

(0.0403) 
2.85 .079 .206 3.43 .091 .238 .088 .916 .008 

RI 
1.25 

(0.0604) 

1.31 

(0.0511) 

1.19 

(0.0506) 

1.27 

(0.0540) 

1.23 

(0.0414) 
2.77 .085 .201 1.17 .303 .096 0.594 .561 .051 

LI 
1.23 

(0.0576) 

1.31 

(0.0595) 

1.18 

(0.0487) 

1.28 

(0.0536) 

1.20 

(0.0421) 
2.90 .076 .208 6.45 .028 .370 0.772 .474 .066 



34 

Figure 1: A) Example meaningful finger and hand gestures alongside their matched 

meaningless counterparts. B) Experimental set-up. Dots indicate the location of motion 

trackers. The tracking box was placed under the table, and the actor's actions were cued 

through images displayed on a computer screen that was not observable to the imitator. C) 

95% confidence ellipsoids for the TMS target sites shown on a representative participant’s 

brain. Mean±95% CI MNI coordinates for the SMG: x=-57±2.81 y=-44±4.42 z=44±3.12, and 

AG: x=-37±4.37 y=-77±3.10 z=40±6.64 
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Figure 2: t-statistic plots for resampled comparisons in all trackers; A) SMG versus AG in 

hand gestures B) stimulation site* meaning interaction in hand gestures C) SMG versus AG 

in finger gestures D) site*meaning interaction in finger gestures; In all plots the black 

horizontal lines indicate positive and negative critical t-values. Shoulder in dashed magenta, 

elbow in dashed cyan, wrist in dashed grey, thumb in solid light green, index finger in solid 

blue, middle finger in solid orange, ring finger in solid purple, little finger in solid dark green 

(in colour online). 
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Figure 3: Original mean velocity curve for the thumb comparing SMG and AG in finger 

gestures. SMG in blue, AG in red (in colour online), dashed lines indicate SE. 
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Figure 4: Mean digit peak velocity for finger gestures in imitator and actor data; Error bars 

indicate standard error, whilst single points show individual participant values. * = p<.05 

corrected, † = p<.05 uncorrected. 
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Figure 5: Mean digit peak velocity for finger gestures in imitator relative to actor data; Error 

bars indicate standard error, whilst single points show individual participant values. † = p<.05 

uncorrected. 

 


