
Return levels of temperature extremes in 
southern Pakistan 
Article 

Published Version 

Creative Commons: Attribution 3.0 (CC-BY) 

Open access 

Zahid, M., Blender, R., Lucarini, V. ORCID: 
https://orcid.org/0000-0001-9392-1471 and Bramati, M. C. 
(2017) Return levels of temperature extremes in southern 
Pakistan. Earth System Dynamics, 8 (4). pp. 1263-1278. ISSN 
2190-4987 doi: 10.5194/esd-8-1263-2017 Available at 
https://centaur.reading.ac.uk/75891/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.5194/esd-8-1263-2017 
To link to this article DOI: http://dx.doi.org/10.5194/esd-8-1263-2017 

Publisher: European Geosciences Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Earth Syst. Dynam., 8, 1263–1278, 2017
https://doi.org/10.5194/esd-8-1263-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Return levels of temperature extremes in
southern Pakistan

Maida Zahid1, Richard Blender1, Valerio Lucarini1,2, and Maria Caterina Bramati3
1Meteorological Institute, University of Hamburg, Hamburg, Germany

2Department of Mathematics and Statistics, University of Reading, Reading, UK
3Department of Statistical Science, Cornell University, New York, USA

Correspondence: Maida Zahid (maida.zahid@uni-hamburg.de)

Received: 16 December 2016 – Discussion started: 2 January 2017
Revised: 18 October 2017 – Accepted: 7 November 2017 – Published: 22 December 2017

Abstract. Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to
temperature extremes. In order to improve rural and urban planning, it is useful to gather information about
the recurrence of temperature extremes. In this work, return levels of the daily maximum temperature Tmax
are estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. We adopt the peaks over
threshold (POT) method, which has not yet been used for similar studies in this region. Two main datasets are
analyzed: temperatures observed at nine meteorological stations in southern Pakistan from 1980 to 2013, and the
ERA-Interim (ECMWF reanalysis) data for the nearest corresponding locations. The analysis provides the 2-,
5-, 10-, 25-, 50-, and 100-year return levels (RLs) of temperature extremes. The 90 % quantile is found to be a
suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50 ◦C at northern stations
and above 45 ◦C at the southern stations. The RLs of the observed TWmax exceed 35 ◦C in the region, which
is considered as a limit of survivability. The RLs estimated from the ERA-Interim data are lower by 3 to 5 ◦C
than the RLs assessed for the nine meteorological stations. A simple bias correction applied to ERA-Interim data
improves the RLs remarkably, yet discrepancies are still present. The results have potential implications for the
risk assessment of extreme temperatures in Sindh.

1 Introduction

Extreme maximum temperature events have received much
attention in recent years because of the associated danger-
ous impact on the increased risk of mortality (IPCC, 2012).
Additionally, climate change scenarios suggest that in most
regions the probability of occurrence of extremely high tem-
perature is very likely to increase in the future (Sheridan
and Allen, 2015). An example of the potential impact of
raising maximum temperatures is the recent heat wave in
southern Pakistan (Sindh), which occurred between 17 and
24 June 2015 and broke all the records with a death toll
of 1400 people and over 14 000 people hospitalized. The
temperatures in different cities of the Sindh region were
in the range of 45.5–49 ◦C during the event (Imtiaz and
Rehman, 2015). Karachi had the highest number of fatalities
(1200 people approximately). The Pakistan Meteorological

Department (PMD) issued a technical report stating a very
high heat index (measuring the heat stress on humans due
to high temperature and relative humidity) during this heat
wave (Chaudhry et al., 2015).

In summer, Sindh becomes very hot and with the arrival of
a monsoon the humidity increases in the region (Chaudhry
and Rasul, 2004). The extremely hot and humid conditions
can have lethal effects and can impact the overall human hab-
itability of a region (Pal and Eltahir 2015). The human body
generally maintains a temperature of around 37 ◦C. However,
the human skin regulates at or below 35 ◦C to release heat
(Sherwood and Huber, 2010). Under combined high temper-
atures and high levels of moisture content in the atmosphere,
the human body cannot maintain the skin temperature be-
low 35 ◦C and can develop ailments like hyperthermia, heat
strokes, and cardiovascular problems. Hyperthermia is a con-
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dition in which extremely high body temperature is reached,
resulting from the inability of the body to release the excess
heat. Hyperthermia can occur even in the fittest human be-
ings, if exposed for at least 6 h to an environment in which
the wet-bulb temperature is greater than 35 ◦C.

This study devotes special attention to Sindh (23.5–
28.5◦ N and 66.5–71.1◦ E) because of its recent exposure to
the intense temperature extremes (Zahid and Rasul, 2012). It
is bounded in the west by the Kirthar Mountains, to the north
by the Punjab Plains, in the east by the Thar Desert, and to the
south by the Arabian Sea (Indian Ocean), while in the center
there is fertile land around the Indus River. Cotton, wheat,
sugar cane, rice, wheat, and gram crops are cultivated near
the banks of the Indus River (Chaudhry and Rasul, 2004).
Cotton is the cash crop of the country. High population den-
sity, limited resources, poor infrastructure, and high depen-
dence of the local agriculture on climatic factors mark this
region as highly vulnerable to the impacts of climate change.
The Intergovernmental Panel on Climate Change (IPCC) sce-
narios estimate an increase in the temperature of the order of
4 ◦C for this region by the end of 2100. This may signifi-
cantly reduce crop yields and cause huge economic losses
to the country (Islam et al., 2009; Rasul et al., 2012; IPCC,
2012, 2014). Furthermore, the risks of heat strokes, cardiac
arrest, high fever, diarrhea, cholera, and vector-borne dis-
eases might increase.

Extreme value theory (EVT) provides the statistical ba-
sis for increasingly widespread quantitative investigations of
extremes in climate studies (Coles, 2001; Zhang et al., 2004;
Brown et al., 2008; Faranda et al., 2011; Acero et al., 2014).
The peaks over threshold (POT) approach aims to describe
the distribution of the exceedances of the stochastic variable
of interest above a threshold. Under very general conditions,
the exceedances are asymptotically distributed according to
the generalized Pareto distribution (GPD). The GPD has re-
markable properties of universality when the asymptotic be-
havior is considered (Lucarini et al., 2016), while one can
expect that the threshold level above which the asymptotic
behavior is achieved depends on the characteristics of the
analyzed time series. In particular, when looking at spatial
fields, the threshold level depends on the geographical loca-
tion.

In this study, we have chosen to analyze the temperature
extremes in the Sindh region taking the point of view of
threshold exceedances associated with the GPD family of
distributions. We have done this because the statistical infer-
ence provided by the POT method provides a more efficient
use of data and has better properties of convergence when fi-
nite datasets are considered with respect to alternative meth-
ods for the analysis of extremes, such as the block maxima
method, which is used to fit the observed data to the general-
ized extreme value (GEV) distribution (Lucarini et al., 2016).
Additionally, here we are interested in investigating the ac-
tual tails of the distributions and not the statistics of yearly
maxima, for example. Thus, the POT approach is indeed

more appropriate. While the POT method has been applied
for studying temperature extremes in different regions of the
world (Burgueño et al., 2002; Nogaj et al., 2006; Coelho et
al., 2007; Ghil et al., 2011), to our knowledge, it has never
been used to analyze the statistics of temperature extremes
in Sindh. Thanks to the properties of universality of the GPD
distribution (Lucarini et al., 2016), the POT approach can in
principle provide reliable estimates of return periods and also
the return levels (RLs) for time ranges longer than what is ac-
tually observed. This information and this predictive power
can be beneficial for policy-makers and other stakeholders
since it is exactly the kind of information planners need when
designing infrastructures that must last a very long time. Note
that commonly used, more empirical approaches to the study
of extremes, such as those used more for assessing the “mod-
erate extremes” (IPCC, 2012), do not have any property of
universality and might have weak predictive power.

It is useful to consider two indicators of extremely hot con-
ditions: (1) temperature extremes Tmax and (2) wet-bulb tem-
perature extremes TWmax. Therefore, we estimate the return
levels of Tmax and TWmax over different return periods dur-
ing summer (May–September) in Sindh. We apply the POT
method to the observational data of the nine weather stations
provided by the PMD and the ERA-Interim reanalysis data
of European Center for Medium-Range Weather Forecasts
(ECMWF) for the corresponding grid points from 1980 to
2013. ERA-Interim reanalysis data are generally very good
at also replicating trends in temperature percentile (Cornes
and Jones, 2013). Nonetheless, it is, in principle, not obvious
that ERA-Interim data can simulate meteorological extremes
well, as reanalyses are constructed in such a way that typical
conditions are well reproduced. This is why we look at how
well ERA-Interim data perform in the target area against ob-
servations. If the ERA-Interim dataset characterizes the ex-
tremes well, it could be an option for the regions within Sindh
where no observational data are available. Furthermore, a
standard bias correction is applied to the ERA-Interim data
to assess whether removing the bias in the bulk of the statis-
tics substantially improves representation of the return levels
of extremes. Given the shortness of the datasets, as we will
show later, it is appropriate to analyze the extremes without
taking into consideration possible long-term trends (Frei and
Schär, 2001); see also the discussion in Felici et al. (2007).
The provision of POT-based information on stationary ex-
tremes is already quite relevant in terms of impacts for the
public and private sectors as it fills a big data gap in Sindh. A
possibility for investigating time dependency in the tempera-
ture extremes is considering the centennial NCEP reanalysis
(Compo et al., 2011) and using suitable bias correction pro-
cedures. Such an analysis is not performed at this stage as we
focus on observational data.

The paper is organized as follows. In Sect. 2 we present
the datasets we study and the statistical methods we use for
assessing the properties of extremes. In Sect. 3 we show and
discuss the main results. In Sect. 4 we make a summary of the
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Table 1. Code, name, geographic coordinates, and altitude of the stations.

Code Name PMD weather stations ERA-Interim stations

Latitude Longitude Altitude (m) Latitude Longitude

JCB Jacobabad 28◦18′ N 68◦28′ E 55 28◦4′ N 68◦15′ E
MJD Mohenjo Daro 27◦22′ N 68◦06′ E 52.1 27◦5′ N 67◦75′ E
RHI Rohri 27◦40′ N 68◦54′ E 66 27◦75′ N 69◦25′ E
PDN Padidan 26◦51′ N 68◦08′ E 46 26◦8′ N 68◦5’E
NWB Nawabshah 26◦15′ N 68◦22′ E 37 26◦25′ N 68◦0′ E
HYD Hyderabad 25◦23′ N 68◦25′ E 40 25◦5′ N 68◦15′ E
CHR Chor 29◦31′ N 69◦47′ E 5 25◦3′ N 69◦6′ E
KHI Karachi 24◦54′ N 67◦08′ E 21 25◦2′ N 67◦5′ E
BDN Badin 24◦38′ N 68◦54′ E 10 24◦75′ N 68◦65′ E

main findings and present our conclusions and perspectives
for future investigations.

2 Data and methodology

2.1 Meteorological station data

The daily maximum temperature and relative humidity data
recorded at nine meteorological stations in Sindh from 1980
to 2013 are provided by the PMD (see Table 1). We select
nine stations, which contain a negligible amount of miss-
ing values after 1980 and are suitable for the POT analysis
(Fig. 1). An additional criterion is that only those stations at
which no changes occurred in measuring instruments during
the last 33 years were chosen (Brunetti et al., 2006). None of
the station data show gaps with a duration longer than 2 days,
which are treated by replacing the missing value with the av-
erage of the two previous values.

The temperature data are discretized unevenly with inter-
vals up to 1 ◦C. Deidda and Puliga (2006) proposed a Monte
Carlo approach for addressing this issue. They showed that
finite resolution in precipitation data affects the convergence
of parameter estimation in the extreme value analysis. They
suggested generating many synthetic datasets by adding nu-
merical noise to the original data and then providing the
best estimate of the parameters of the extreme value distribu-
tions by averaging over all the best fits obtained in each syn-
thetic dataset. Following their suggestion, we produce high-
resolution data to compensate for the effect of discretization
and thus to improve the convergence of the estimator. In or-
der to convert the temperature readings to higher resolution,
we add a uniform random variable in the interval [−0.5, 0.5].
The main property of this noise is round (T + r)= T , where
T is the temperature with 1◦ resolution and “round” is the nu-
merical function, which maps the interval [T − 0.5, T + 0.5]
to T . Thus, adding the noise does not perturb the informa-
tion content of the observations. This procedure is applied to
all temperature data, irrespective of the actual resolution, and
replicated 100 times using a Monte Carlo approach. For each
synthetic dataset, we perform the statistical best fit described

Figure 1. Study domain (23.5–28.5◦ N , 66.5–71.1◦ E).

later in the paper and then average the results. We check the
influence of this noise parameterization and find no signifi-
cant bias in the RL estimates. The advantage of adding noise
is to avoid the spurious statistical effects associated with the
presence of discrete values assigned to the temperature read-
ings. Using the described bootstrap method, we reduce such
problems without biasing the data.

2.2 ERA-Interim reanalysis data

The gridded daily maximum temperature and relative hu-
midity data of ERA-Interim reanalysis are obtained from the
ECMWF Public Datasets web interface (http://apps.ecmwf.
int/datasets/). ERA-Interim is generated by the ECMWF
model with a resolution of 0.75◦× 0.75◦ (Dee et al., 2011).
The gridded data are then extracted at the closest grid points
of all stations for the period 1980–2013 (Fig. 1). The latitude
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and longitude of the ERA-Interim stations are displayed in
Table 1.

The extreme temperature analysis is restricted to the sum-
mer season (May–September) over a period of 33 years. We
have tested the datasets by applying the Mann–Kendall test;
the results show that trends are not significant in such a short
time interval. One of the main requirements for performing
the POT analysis is assuming the stationarity of the time se-
ries. Therefore, as in Bramati et al. (2014), the augmented
Dickey–Fuller (ADF) test of stationarity is performed on all
time series (Dickey and Fuller, 1979). In all cases we find no
sign of long-term correlations in the data. Short-term corre-
lations (daily timescale) typically lead to clusters of extreme
values and are studied by computing the extremal index θ
in all time series and treated using the associated standard
de-clustering technique (see more details in Sect. 2.4).

2.3 Wet-bulb temperature calculations

The wet-bulb temperature measures the heat stress better
than other existing heat indices because it establishes the
clear thermodynamic limit on heat transfer that cannot be
overcome by adaptations like clothing, activity, and ac-
climatization (Pal and Eltahir, 2015; Sherwood and Huber,
2010). Here, we use an empirical equation developed by
Stull (2011) to measure the wet-bulb temperature.

TW= T atan (α1
√

RH+α2)+ atan (T +RH) (1)

− atan (RH+α3)+α4(RH)3/2 atan (α5RH)−α6,

where TW is the wet-bulb temperature (◦C), T is the temper-
ature (◦C), and RH is the relative humidity (%). This relation-
ship is based on an empirical fit, as in Stull (2011), where the
coefficient values are α1 = 0.151977, α2 = 8.313659, α3 =

−1.676331, α4 = 0.00391838, α5 = 0.023101, and α6 =

4.686035. Equation (1) covers a wide range of relative hu-
midity and air temperatures with an accuracy of 0.3 ◦C.

2.4 Peaks over threshold

In order to determine the return levels of extreme maximum
temperatures and maximum wet-bulb temperatures, the POT
approach is applied to the data obtained from the meteoro-
logical stations in Sindh and from the ERA-Interim archive.

Multiple occurrences are an important characteristic of ex-
treme climatic events and are referred to as clustering. Clus-
ters are consecutive occurrences of above-threshold events. It
is important to post-process the clustered extremes in order to
take into account the assumption of a weak, short time corre-
lation between extreme events, which is crucial for our statis-
tical analysis. We have treated the clusters using the concept
of the extremal index (EI) (see Newell, 1964; Loynes, 1965;
O’Brien, 1974; Leadbetter, 1983; Smith, 1989; Davison and
Smith, 1990). The EI θ measures the degree of clustering
of extremes. It ranges between 0 and 1 (θ = 0 means strong

clustering and dependence, θ = 1 absence of clusters and in-
dependence). Leadbetter (1983) interprets 1/θ as the mean
number of exceedances in a cluster.

The EI θ can be estimated in two different ways. Here,
we apply the “intervals estimator” automatic de-clustering
by Ferro and Segers (2003). A positive aspect of this method
is that it avoids the subjective choice of cluster parameters.
The main ingredient is the use of an asymptotic result for the
times between threshold exceedances. The exceedance times
are split into two types, a set of vanishing intra-exceedance
times within the clusters and an exponentially distributed set
of inter-exceedance times between clusters. The method is
iterative, starting with the largest return times and stopping
when a limit for the inter-exceedance times is reached. The
standard errors of the estimated parameters are obtained us-
ing a bootstrap procedure. In this study, once we select an ap-
propriate value for the threshold (see below) the EI value is
≤ 0.5 in all the considered time series. Therefore, it is neces-
sary to de-cluster the extremes by choosing the largest event
in each cluster before fitting it to the GPD.

As mentioned before, for the exceedances over threshold,
we use the GPD, which is characterized by two parameters,
the shape ξ and the scale σ . The GPD for exceedances x−u
of a random variable x reads as

G(x)= 1−
[

1+ ξ
(
x− u

σ

)]− 1
ξ

(x > u,ξ 6= 0), (2)

where u is the threshold. The shape parameter ξ determines
the tail behavior while the scale parameter σ measures the
variability. For a negative shape parameter, ξ < 0, the distri-
bution is bounded (Weibull distribution). For vanishing shape
parameter, ξ = 0, the distribution is exponential, and for a
positive shape parameter, ξ > 0, the distribution has no up-
per bound (Pareto distribution).

In particular, for a negative shape parameter ξ < 0 the
GPD has the upper bound

Amax = u−
σ

ξ
(3)

G(x)= 0 (x > Amax,ξ < 0) ,

where Amax is an absolute maximum (Lucarini et al., 2014).
In general, the best estimate for the two parameters’ shape
ξ and scale σ depend on the threshold u (Coles, 2001). The
choice of the optimal threshold for performing statistical in-
ference from a time series is crucial. Choosing a very large
value for u reduces the number of exceedances to a few
values, inflating the variance of the estimators, so that the
analysis is unlikely to yield any useful results. Conversely,
choosing a too-small value for u would violate the asymp-
totic nature of the model, with a possibly biased estimation
and wrong model selection (Coles, 2001); see details later
in Sect. 3.1. The shape ξ , the scale σ , and the RLs are esti-
mated using the maximum likelihood estimator (MLE) using
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the R software (R Development core team, 2015), which also
provides an estimate of the standard error of the estimates.

Additionally, we wish to investigate the N – years RLs
xN , which are exceeded on the timescale of N years (Coles,
2001) and can be expressed as

xN = u+
σ

ξ

[
(Nnyζu)ξ − 1

]
, (4)

where N represents the return period in years, ny is the num-
ber of observations per year, ζu is the probability of an indi-
vidual observation exceeding the threshold u, the shape pa-
rameter is ξ , and the scale parameter is σ .

2.5 Bias correction method

A simple bias correction is applied to each ERA-Interim
time series through a rescaling that adjusts the first two mo-
ments (mean and variance) to the sample moments calculated
for the corresponding observations (Acharya et al., 2013).
Therefore, the bias correction is applied to the entire time
series and it is not tailored to the extreme events only. The
idea is to check whether by adjusting the properties of the
bulk of the statistics we improve the skill of the ERA-Interim
dataset considerably in describing extreme events. The bias-
corrected ERA-Interim time series x is expressed as

x = z+
yERA− y

σy
σz, (5)

where yERA is the ERA-Interim time series, y and σy its
mean and standard deviation, and z and σz are the mean
and standard deviation of the meteorological station temper-
atures. The properties of extremes are commonly assumed
to be closely controlled by the first two moments of the un-
derlying distribution – for example, the IPCC (2012) relates
changes in the properties of extremes to changes in the mean
and in the standard deviation of the underlying distributions.
EVT clarifies that, in fact, only a loose link exists between
true extremes and the bulk of the events. Note that the pro-
posed method of bias corrections has no impact on the esti-
mates of the shape parameter, while it affects the scale and
location parameters, thus impacting the RLs.

3 Results and discussion

3.1 Threshold selection

The threshold selection is the first step in a POT analysis.
One needs to test whether the asymptotic regime is reached,
i.e., whether one is choosing true extremes. It must be noted
that EVT does not predict where (in terms of quantiles) one
should expect the asymptotic regime to start. This can be
investigated by checking whether the best fits of the shape
parameter ξ and the modified scale parameter σ ∗ = σu− ξu
are stable with respect to increases in the chosen value of
u (Scarrott and MacDonald, 2012). The optimal threshold u

Figure 2. Modified scale (σ∗) and shape parameter (ξ ) of the ob-
served Tmax (◦C) at Karachi. The red vertical lines represent the
selected threshold according to the station quantiles.

is selected as the lowest value at which the two parameters
are invariant in order to reach the asymptotic limit (Coles,
2001; Furrer et al., 2010). This choice allows for having as
many data as possible for performing the statistical inference,
thus having lower variance for the estimators of the parame-
ters. Figure 2 shows the parameter stability plots of the Tmax
reading for Karachi, as an example to explain the threshold
selection procedure.

In addition to diagnostic plots of the modified scale pa-
rameter σ ∗ and the shape parameter ξ , the mean residual life
plot is used to select the appropriate threshold for the POT
analysis (Davison and Smith, 1990). The idea is to select the
lowest value of the threshold when the plot is approximately
linear. In the case of the Karachi data for Tmax , the plot ap-
pears to be linear and stable for u= 36 ◦C, indicating u= 36
as the most suitable threshold for the POT analysis (Fig. 3).
We observe that the 90 % quantile is an appropriate threshold
for all the station data, as well as the ERA-Interim datasets,
and for both Tmax and TWmax.

3.2 GPD fit

The goodness of fit is evaluated using quantile–quantile (Q–
Q) plots and hypothesis testing. The Q–Q plot analysis is
performed for the stations observed, the ERA-Interim, the
bias-corrected ERA-Interim daily Tmax, and TWmax. TheQ–
Q plots of the observed Tmax show that the GPD fits well
in most stations. However, in a few stations like Jacobabad,
Mohenjo Daro, Padidan, and Chor the empirical values show
slight deviation from the modeled values. In spite of minor
deviations at some stations, most of the exceedances are still
fitted well by the model. The Q–Q plots of the observed
TWmax also fits well to the model at all stations.

www.earth-syst-dynam.net/8/1263/2017/ Earth Syst. Dynam., 8, 1263–1278, 2017



1268 M. Zahid et al.: Return levels of temperature extremes in southern Pakistan

Table 2. Results of the Kolmogorov–Smirnov goodness of fit test and Anderson–Darling test between empirical and GPD fits.

Test statistics P value

JAC MJD RHI PDN NWB HYD CHR KHI BDN

Observed Tmax

Kolmogorov–Smirnov 0.947 0.340 0.996 0.139 0.941 0.385 0.928 0.306 0.666
Anderson–Darling 0.553 0.978 0.654 0.857 0.157 0.649 0.233 0.869 0.145

ERA-Interim Tmax

Kolmogorov–Smirnov 0.169 0.125 0.553 0.456 0.322 0.187 0.419 0.456 0.332
Anderson–Darling 0.355 0.263 0.165 0.587 0.615 0.398 0.266 0.687 0.425

Bias-corrected ERA-Interim Tmax

Kolmogorov–Smirnov 0.452 0.4729 0.197 0.489 0.269 0.137 0.158 0.243 0.312
Anderson–Darling 0.352 0.315 0.235 0.270 0.335 0.289 0.216 0.390 0227

Observed TWmax

Kolmogorov–Smirnov 0.981 0.111 0.341 0.226 0.457 0.545 0.441 0.385 0.211
Anderson–Darling 0.623 0.745 0.587 0.884 0.199 0.123 0.789 0.669 0.473

ERA-Interim TWmax

Kolmogorov–Smirnov 0.712 0.564 0.955 0.425 0.258 0.134 0.856 0.497 0.222
Anderson–Darling 0.236 0.474 0.516 0.219 0.356 0.117 0.537 0.464 0.613

Bias-corrected ERA-Interim TWmax

Kolmogorov–Smirnov 0.268 0.688 0.127 0.372 0.268 0.229 0.591 0.582 0.478
Anderson–Darling 0.373 0.484 0.278 0.432 0.306 0.283 0.365 0.445 0.483

Figure 3. Mean residual life plot of the station-observed Tmax (◦C)
at Karachi.

The Q–Q plots of the empirical ERA-Interim Tmax and
TWmax data reveal substantial differences with respect to the

corresponding GPD fits. The empirical values of the higher
quantiles deviate from the theoretical quantiles in all stations.
However, if the higher quantiles are disregarded, then sta-
tions like Jacobabad, Mohenjo Daro, Rohri, Padidan, Nawab-
shah, Chor, and Badin fit very well with the model. The Q–
Q plots of the bias-corrected ERA-Interim Tmax and TWmax
show better results than the ERA-Interim. We notice that the
Tmax of the ERA-Interim and bias-corrected ERA-Interim fits
better than the TWmax if the highest quantiles are ignored,
indicating that the bias procedure is, as expected, unable to
correctly treat the statistics of the largest events.

In order to assess the goodness of fit, we apply the
Kolmogorov–Smirnov test and Anderson–Darling test to the
data of meteorological stations, ERA-Interim, bias-corrected
ERA-Interim Tmax, and TWmax. The p values indicate a good
performance of the fit procedure. Table 2 shows the results
of the Kolmogorov–Smirnov and Anderson–Darling statis-
tics of the Tmax and TWmax in all the datasets.

3.3 Parameter estimates

Here, we analyze the shape parameter ξ , the scale parameter
σ , and threshold u for all considered datasets. The standard
errors of the shape ξ and the scale σ parameters are given in
Table 3. The spatial distribution of the shape parameter ξ and
the scale parameter σ of the GPD in Sindh is shown in Fig. 4.
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Table 3. Estimated parameters shape ξ , scale σ , and standard error 1ξ , 1σ of all the datasets.

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN

Station-observed Tmax

Shape ξ −0.387 −0.255 −0.418 −0.326 −0.332 −0.329 −0.310 −0.222 −0.329
Standard error 1ξ 0.031 0.022 0.022 0.021 0.020 0.031 0.037 0.034 0.031
Scale σ 2.754 2.081 2.351 2.214 2.139 2.228 2.562 2.568 2.228
Standard error 1σ 0.142 0.104 0.107 0.107 0.103 0.116 0.146 0.144 0.116

ERA-Interim Tmax

Shape ξ −0.195 −0.178 −0.207 −0.218 −0.213 −0.338 −0.285 −0.037 −0.251
Standard error 1ξ 0.032 0.034 0.034 0.028 0.026 0.031 0.033 0.050 0.037
Scale σ 1.464 1.323 1.344 1.504 1.563 2.065 1.849 1.330 2.041
Standard error 1σ 0.079 0.073 0.074 0.078 0.078 0.108 0.094 0.090 0.115

Bias-corrected ERA-Interim Tmax

Shape ξ −0.195 −0.178 −0.207 −0.218 −0.213 −0.338 −0.285 −0.037 −0.251
Standard error 1ξ 0.032 0.034 0.034 0.028 0.026 0.031 0.033 0.050 0.037
Scale σ 1.983 1.791 1.820 2.038 2.116 2.798 2.308 1.801 2.763
Standard error 1σ 0.108 0.100 0.100 0.106 0.106 0.146 0.123 0.122 0.156

Station-observed TWmax

Shape ξ −0.176 −0.186 −0.215 −0.215 −0.216 −0.323 −0.242 −0.219 −0.186
Standard error 1ξ 0.038 0.035 0.034 0.044 0.026 0.026 0.034 0.036 0.032
Scale σ 2.759 2.045 1.960 2.078 1.857 2.372 2.512 2.337 1.903
Standard error 1σ 0.159 0.114 0.108 0.128 0.093 0.119 0.138 0.132 0.105

ERA-Interim TWmax

Shape ξ −0.089 −0.094 −0.068 −0.125 −0.158 −0.177 −0.090 −0.019 −0.173
Standard error 1ξ 0.037 0.029 0.032 0.034 0.031 0.037 0.035 0.035 0.037
Scale σ 1.287 1.243 1.231 1.440 1.610 1.649 1.3423 0.680 1.788
Standard error 1σ 0.074 0.066 0.067 0.080 0.087 0.095 0.076 0.039 0.102

Bias-corrected ERA-Interim TWmax

Shape ξ −0.089 −0.094 −0.068 −0.125 −0.158 −0.177 −0.090 −0.019 −0.173
Standard error 1ξ 0.037 0.029 0.032 0.034 0.031 0.037 0.035 0.035 0.037
Scale σ 1.356 1.646 1.758 1.494 1.520 2.052 2.146 1.399 2.152
Standard error 1σ 0.078 0.087 0.096 0.083 0.082 0.119 0.121 0.081 0.123

The shape parameters ξ are negative in all datasets at all sta-
tions. This is hardly surprising, as meteorological and physi-
cal processes make sure that the temperature cannot grow lo-
cally without control. One finds a certain degree of variabil-
ity across stations in the estimated value of the shape param-
eter. In the case of the observed Tmax, one obtains ξ estimates
ranging between −0.418 and −0.223, while for TWmax the
range is between −0.323 and −0.177, so that values slightly
closer to zero are found, thus allowing for larger excursions
towards very high values with respect to the case of the ex-
tremes of the actual temperature. When looking at the bias-
corrected ERA-Interim data, the range of values for the shape
parameter of Tmax (TWmax) is between −0.305 and −0.002
(−0.18 and −0.01). While there is a good match in the spa-
tial patterns of the estimates for the observation vs. ERA-
Interim datasets, the presence of values much closer to zero

in the second case suggests the presence of some inadequa-
cies in the representation of extremes in the reanalysis. This
is not entirely unexpected, as reanalyses are constructed in
such a way that typical conditions are well reproduced. Note
that our simple bias correction procedure, while not impact-
ing the estimates of the shape parameters, allows for the im-
provement of the estimates of the return levels, as discussed
below.

The scale parameters σ measure the variability in the GPD
distributions. The highest values of the scale parameters σ
of Tmax and TWmax are observed at stations such as Jacoba-
bad, Padidan, Karachi, Hyderabad, and Chor in all datasets.
This indicates that the variability in temperature extremes is
higher at these stations, and one can expect higher return val-
ues of Tmax and TWmax here with a similar shape parameter
and the same threshold according to Eq. (4). The scale pa-
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Figure 4. Spatial distribution of the shape parameters ξ and scale parameters σ of the station-observed data, ERA-Interim, and bias-corrected
ERA-Interim Tmax (a–c) and TWmax (d–f) (◦C).

rameters σ of the observed Tmax range from 2.08 to 2.76,
and the TWmax values from 1.86 to 2.76. In the ERA-Interim
analysis, the scale parameter σ of Tmax is between 1.00 and
1.95, and TWmax between 0.74 and 1.75. We observe a dif-
ference in the scale parameters of both the observed, ERA-
Interim Tmax, and TWmax. We find that, unsurprisingly, the
scale parameters of the bias-corrected ERA-Interim data are
much closer to those estimated for Tmax and TWmax using
the station data. In the bias corrected ERA-Interim Tmax, the
scale parameters σ are in the range of 1.50–2.75, while for
TWmax they are in the range of 1.40–2.40 (Fig. 4). All the
temperature scale parameters are in degrees Celsius.

3.4 Absolute maxima

Once the shape parameters ξ , the scale parameters σ , and
the thresholds u are determined, it is possible to compute the
theoretical absolute maxima using Eq. (3) (Sect. 2.4). Theo-
retical absolute maxima can be compared with the observed
ones for each station to better understand whether our fits
are in agreement with the observed data. The daily maxi-

mum temperature Tmax and the maximum wet-bulb tempera-
ture TWmax (station data, the ERA-Interim, and the bias cor-
rected ERA-Interim) have negative shape parameters ξ at all
stations. This means that according to Eq. (2) in Sect. 2.4,
the probability distribution function (pdf) is bounded by the
maximum values. These maximum values are the theoretical
upper limits predicted with the GPD fit. The analysis shows
that the observed absolute maxima Tmax and TWmax at all
stations of the three datasets are below the theoretical abso-
lute maximum, as expected (Fig. 5). This gives us confidence
on the quality of our fit. The following piece of information
can also be derived: assume that in the future one observes
an extreme event larger than the maximum inferred in the
present dataset; this may suggest some non-stationarity in the
most recent portion of the dataset.

3.5 Return levels

The RLs are computed considering various return periods
(2, 5, 10, 20, 50, 100 years). As stated above, using a sta-
tistical approach based on the universality of EVT, we are
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Figure 5. Absolute maxima Amax in degrees Celsius. (a) Station-observed Tmax. (b) ERA-Interim and bias-corrected ERA-Interim Tmax.
(c) Station-observed TWmax. (d) ERA-Interim and bias-corrected ERA-Interim TWmax.

able to extrapolate the results for time horizons longer than
the one for which observations are taken. Clearly, uncertain-
ties grow when longer time horizons are considered. The RL
plots of the stations observed, the ERA-Interim, the bias-
corrected ERA-Interim daily maximum temperature Tmax,
and the daily maximum wet–bulb temperature TWmax are
displayed in Figs. 6 and 7. The values of the RLs follow the
north–south gradient of the climatic mean temperatures. The
northern part of Sindh (Jacobabad, Mohenjo Daro, Rohri, Pa-
didan, and Nawabshah) is hotter than the southern part (Hy-
derabad, Chor, Karachi, and Badin).

The 2-, 5-, 10-, 20-, 50-, and 100-year RLs estimated in
Sindh for station observed Tmax reach over 50 ◦C in Jacob-
abad, Mohenjo Daro, Padidan, and Nawabshah, and over
45 ◦C in Rohri, Hyderabad, Chor, Karachi, and Badin. The
corresponding ERA-Interim Tmax RLs are at least 3 to 5 ◦C
lower in all stations, while having correct representation of
the geographical variability in the field. For example, the
RL of 42 ◦C at Badin has a 3-year return period in the ob-
servations Tmax but a 30-year return period in ERA-Interim
(Fig. 6).

The RLs of TWmax are above 35 ◦C at all meteorological
stations. As for ERA-Interim, the RLs of TWmax are greater
than 30 ◦C for all the stations except Karachi, which has RLs
less than 30 ◦C. Here, we see again that the RLs of the ERA-
Interim TWmax are lower than the RLs of station TWmax.
Going again to the Badin stations, the 4-year return period
observed for TWmax is 38 ◦C, while the ERA-Interim dataset
shows the same RL in a 15-year return period (Fig. 7).

The bias-corrected ERA-Interim Tmax and TWmax show
some improvements in the RLs at all stations. When looking
at the Nawabshah, Hyderabad, Karachi, and Badin stations,
the RLs agree with those obtained from the station data in the
range of 5–100 years, while disagreements exist in the range
of 2–5 years. At the rest of the stations, the bias-corrected
data RLs are closer to those of the station data, yet not statis-
tically compatible with them. When looking at the wet-bulb
temperature TWmax analysis, the RLs of the bias-corrected
ERA-Interim show some overlap with those derived from
station observations in Mohenjo Daro, Hyderabad, and Chor,
while no overlap is found at the other stations. One under-
stands that the simple bias correction methods proposed im-
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Figure 6. Return level plots of the station-observed Tmax (black), ERA-Interim Tmax (red), and bias-corrected ERA-Interim Tmax (green) in
degrees Celsius. The blue line is to show a difference in the observed and ERA-Interim RLs.

prove the quality of the representation of extremes by ERA-
Interim, but many discrepancies remain (Figs. 6 and 7).

We also spatially plot the station and bias-corrected ERA-
Interim Tmax and TWmax RLs for the 5-, 10-, 25-, and 50-year
return periods (Figs. 8 and 9), as a detailed spatial overview
of the temperature extremes in Sindh might be of interest
to policy-makers. The spatial RLs of the station and bias-
corrected ERA-Interim Tmax show differences in tempera-
ture; the hottest stations have the highest RLs. We notice that
for Jacobabad, Mohenjo Daro, Padidan, and Nawabshah the
RLs are between 50 and 53.6 ◦C and for Rohri, Hyderabad,

Chor, Karachi, and Badin they are between 45.5 and 50 ◦C
in a 5- to 50-year return period (Fig. 8). These extreme tem-
peratures can impact the yields because crops are very sen-
sitive to temperature variations, and even a rise of 1 ◦Celsius
can cause detrimental changes in the phenological stages of
the crops (Hatfield and Preuger, 2015). Every crop has a cer-
tain limit to tolerance of temperature. When temperature ex-
ceeds this limit, the crop yield is drastically reduced. Ab-
bas et al. (2017) notice a 33 % decrease in major crops of
Sindh due to warmer and drier weather. Karachi and Badin
are expected to have decreased rice cultivation, hatching of
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Figure 7. Return level plots of the station-observed TWmax (blue), ERA-Interim Tmax (pink), and bias-corrected ERA-Interim Tmax (green)
in degrees Celsius. The black line is to show a difference in the observed and ERA-Interim RLs.

fisheries, and mangrove forests surrounding these cities. Fur-
thermore, temperature extremes can pose a serious threat to
cotton, wheat, and rice yields in the Rohri and Mohenjo Daro
areas due to increased crop water requirements.

In summer, the temperature and humidity increase to an
extent that there are high chances of pests rapidly spreading
in the crops. Temperature extremes not just directly impact
the quantity and quality of grains but can also be a reason
for urban flooding affecting agricultural lands (Luo et al.,
2015a). Sindh produces cotton, wheat, rice, mango, banana,
and dates; thus, a correct estimate of temperature extremes is
very important.

The spatial RLs of station and bias-corrected ERA-Interim
TWmax for the 5-, 10-, 25-, and 50-year return periods show
the highest RL as greater than 35 ◦C at all stations (Fig. 9).
This is very serious for human health due to the working-day
hours of populations in agriculture, building construction,
and port activities. Karachi and Badin, being closest to the
coast, are at the highest risk of temperature extremes. Thus,
an immediate plan for adaptations is needed in Sindh to deal
with such a hazard. The high values of TWmax also indicate
high levels of humidity in the region during summer, which
is also proved by Kalim and Shouting (2012) and Freychet et
al. (2015).

www.earth-syst-dynam.net/8/1263/2017/ Earth Syst. Dynam., 8, 1263–1278, 2017



1274 M. Zahid et al.: Return levels of temperature extremes in southern Pakistan

Figure 8. Spatial distribution of the station-observed Tmax (red) and bias-corrected ERA-Interim Tmax (blue) return levels in degrees Celsius
corresponding to return periods of 5, 10, 25, and 50 years in southern Pakistan.

4 Summary and conclusion

The main objective of this study is the assessment of the
return levels of the extreme daily maximum temperatures
Tmax and wet-bulb temperatures TWmax in southern Pakistan
(Sindh). In addition, the performance of the ERA-Interim
TWmax is compared to the weather station TWmax to assess
its ability to estimate temperature extremes in Sindh. More-
over, a simple bias correction is applied to the ERA-Interim
data to see whether correcting the first two moments of its
statistics helps in improving its performance in representing
temperature extremes.

The POT method is applied to the daily maximum temper-
ature (Tmax) and wet-bulb temperature (TWmax) data of nine
stations and to the corresponding nearest ERA-Interim tem-

perature data. After testing the asymptotic statistical proper-
ties, the 90 % quantile is found to be an appropriate threshold
choice for all datasets. The Q–Q plots are used to assess the
GPD fit, which is acceptable for both Tmax and TWmax station
data for all three datasets. However, the bias-corrected ERA-
Interim data show more improved GPD fits than the ERA-
Interim data. The shape parameters ξ are, in general, negative
at all stations. The scale parameters σ show high values in Ja-
cobabad, Padidan, Karachi, Hyderabad, and Chor, indicating
higher variability in temperature extremes in these regions.
The RLs of Tmax and TWmax are estimated for the 2-, 5-, 10-,
25-, 50-, and 100-year return periods in all datasets. The RLs
of Tmax estimated using the meteorological station tempera-
tures are greater than 50 ◦C in Jacobabad, Mohenjo Daro, Pa-
didan, and Nawabshah and greater than 45 ◦C in Rohri, Hy-
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Figure 9. Spatial distribution of the station-observed TWmax (brown) and bias-corrected ERA-Interim TWmax (orange) return levels in
degrees Celsius corresponding to return periods of 5, 10, 25, and 50 years in southern Pakistan.

derabad, Chor, Karachi, and Badin. While the RLs of TWmax
in station data are larger than 35 ◦C in all of Sindh, when us-
ing ERA-Interim temperatures, they are estimated as greater
than 45 ◦C in northern Sindh and greater than 40 ◦C in south-
ern Sindh.

Our results predict extremely high values of Tmax and
TWmax in the region. The Tmax extremes contribute to an in-
creased rate of evaporation, which in turn may intensify the
hydrological cycle, causing precipitation events and flood-
ing (Cheema et al., 2012; Luo et al., 2015b). Additionally,
crop varieties need to be changed under such a hot climate
to avoid the risks of temperature extremes. The extremes
of daily maximum wet-bulb temperature TWmax are esti-
mated as above the human survivability threshold of 35 ◦C
throughout the region; thus, the risk of hyperthermia is very

high here. The most vulnerable people are those who are in-
volved in everyday outdoor activities like farming, fishing,
and building construction and athletes, the elderly, and in-
fants can suffer from heat strokes, dehydration, etc. The hu-
man habitability in such a warm region is already at risk and
one can expect that these issues will be worse in future cli-
mate conditions.

We found that the RLs from the stations and ERA-Interim
showed differences between 3 and 5 ◦C for both shorter
and longer return periods due to the minor variations in
the shape and scale parameters. Although the ERA-Interim
dataset does not capture the magnitude of the extremes well,
it still provides a good representation of their spatial fields.
The biases between the station and the ERA-Interim data are
relevant when one wishes to address the impact of hot cli-
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matic extremes on human life and on active crop production
in the region. It is of primary importance to understand the
physical reasons behind such inconsistencies, which make it
hard to reasonably use ERA without bias correction. Clearly,
such inconsistencies might result either from a misrepresen-
tation of local processes dominated by near-surface processes
(namely, heat and water fluxes) or from an inadequacy of the
reanalysis in reproducing synoptic and sub-synoptic condi-
tions responsible for extremely hot and humid conditions.
This matter is surely worth investigating but is well beyond
the scope of this paper.

We applied a simple bias correction, i.e., adjusting the
mean and standard deviation for ERA-Interim Tmax and
TWmax data, to check the improvements in return levels.
We noticed that the bias-corrected ERA-Interim Tmax and
TWmax give the return levels closer to the ones observed by
the meteorological stations than the original ERA-Interim re-
turn levels at all stations. Although the bias-corrected ERA-
Interim shows a good correspondence with the meteoro-
logical station data, statistically significant differences re-
main in most cases. Therefore, one must use more advanced
bias correction methods for precisely analyzing extremes.
We propose repeating this analysis in global climate mod-
els (GCMs) (CMIP5, CMIP6) and regional climate models
(RCMs) (CORDEX) to study the properties of extremes. All
models use reanalysis as input and generate information of
extremes, which involves biases that if not corrected can lead
to significant errors in prediction of present and future ex-
tremes. Therefore, in order to reduce the uncertainties in im-
pact assessment, it is necessary to improve the reanalysis be-
fore using it in GCMs and RCMs.

The results have practical implications for assessing the
risk of extreme temperature events in Sindh. All the re-
sults are placed in the web tool SindheX (www.sindhex.org),
which will be freely available online soon after the publi-
cation of this paper. The maps and graphs are prepared to
guide the local administrations in prioritizing the regions in
terms of adaptations like preparation of baseline contingency
plans for dealing with strong heat waves based on the cur-
rent climatology. Such measures are not yet present in the
territory and lead to many casualties each year. Our results
will not only contribute to the regional planning but can also
be useful for ongoing EU projects (SUCCESS, CSCCC), the
World Bank project (Sindh Resilience Project), and mega-
construction projects like the China–Pakistan Economic Cor-
ridor.

Data availability. The observation data are collected via email
request to the Climate Data Processing Center (CDPC), Pak-
istan Meteorological Department (PMD) (http://www.pmd.gov.
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