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Abstract: 

Since the micellization kinetics is influenced by polymer structure, the spherical 

three-dimensional topology of amphiphilic dendritic copolymers (ADPs) which 

hinders the phase separation during micellization is assumed to make the 

micellization kinetics different. In the literatures, most of the attention has been paid 

to the morphology transition or the morphology at equilibrium and the micellization 

kinetics of ADPs is rarely reported. In this study, the micellization processes of 

amphiphilic dendritic copolymers from unimers to the final equilibrium micelles were 

monitored by laser light scattering. Based on the closed association mechanism, the 

thermodynamics of micellization was analysed. The negative thermodynamic 

quantities indicate that the micellization of ADPs is driven by enthalpy. Based on the 

change of scattering intensity and hydrodynamic radius (Rh) with time, the detailed 

micellization kinetics was analysed, which contains two steps. By controlling the 

temperature and type of solvent, a system in which the concentration has little 

influence on Rh is obtained. The relaxation times of the two steps decrease with 

concentration, indicating that at higher concentration the rate of micellization is 

quicker. With the increasing mass fraction of the hydrophobic part, the relaxation 

times decrease and the driving force of micellization increases.  

Key words: Amphiphilic dendritic copolymers; Micellization; Kinetics; 

Concentration; Relaxation times 
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1. Introduction  

Micellization of surfactants and block copolymers has been investigated 

extensively [1-4]. However, the theoretical investigations on the micellization kinetics 

of amphiphilic dendritic copolymer have been greatly lagged behind the surfactants 

and linear polymer. The micellization processes can be investigated using 

time-resolved small-angle X-ray scattering, stopped-flow light scattering, etc. [5,6]. 

Usually, micellization is caused by the abrupt change of the solvent quality, pH or 

temperature.  

Temperature is an important factor in controlling the physical and chemical 

processes of a polymer solution. Above or below a critical temperature, 

thermosensitive polymers undergo a phase transition from a soluble to an insoluble 

state. The aqueous solution of a poly(N-isopropylacrylamide) polymer usually 

exhibits a lower critical solution temperature (LCST) behaviour [7], while polymers 

such as polystyrene-poly(tert-butylstyrene) in a nonsolvent exhibit a upper critical 

solution temperature (UCST) [8,9]. Three temperature regions corresponding to the 

state of stable unimers, the unimer-micelle transition and the micellar state were found 

with the change of temperature in the micellization processes [8]. The 

thermodynamics of different micellizing systems have been investigated [9]. Usually, 

the micellization of a polymer in an organic solvent with a UCST is driven by the 

enthalpy and the entropy-driven processes are favoured for aqueous polymer solutions 

with a LCST. 

For surfactants, the Aniansson and Wall theory has been widely accepted to 
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descrip the micellization processes, in which only the insertion/expulsion of 

individual unimers is included [1]. In the first step of micellization, the aggregation 

number of the micelles redistributes, while the micelle number remains constant. In 

the following step, through formation and decomposition processes, the micelle 

number changes and the micellization process approaches equilibrium. Honda et al. 

reported the micellization of block copolymers [3]. The unimers quickly associated to 

form quasi-equilibrium micelles and the number of micelles increased in the first step. 

Accompanying the deformation of the quasi-equilibrium micelles, the micelle size 

grows and the micellization in the second step finally approaches equilibrium. 

Compared with surfactants and block copolymers, the compact structure of the 

amphiphilic dendritic copolymers hinders the phase separation during themicellization 

process [10], which makes the micellization behaviors different.  

Compared to surfactants and amphiphilic block copolymers, amphiphilic 

dendritic copolymers are new members in the family of amphiphilic molecules. The 

self-assembly behaviors of amphiphilic dendritic copolymers have been actively 

investigated in the past decades [11-15]. Various morphologies such as micelles, 

vesicles, filers have been reported [16-18] and micelles are the most prevalent 

structure. The fusion and fission process of vesicles which are large enough for 

observation by the optical microscopy has been observed in detail [19.20]. The 

multimicelle aggregation mechanism (MMA) was reported by Yan et al. and they 

proposed that the large micelles are the secondary aggregation of the unimers [11,12]. 

The detailed aggregation processes of the amphiphilic dendritic copolymers were 
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explored with dissipative particle dynamics simulation [21]. In this simulation, by 

varying the interaction parameters of the hydrophobic core, hydrophilic shell and 

water (solvent), different micellization mechanisms are observed, which are the 

unimolecular micelle aggregation mechanism and the small micelle aggregation 

mechanism. The former is the direct aggregation of the unimers, whereas in the small 

micelle aggregation mechanism, the large micelles are the secondary aggregation of 

the microphase-separated small micelles. Except for the computer simulation, little 

attention has been paid to the micellization kinetics of the amphiphilic dendritic 

copolymers.  

In our previous reports [22], we have investigated the micellization processes of 

the ADPs by mixing of a selective solvent with a common solvent, in which two steps 

could be distinguished clearly and this is the first time the detailed micellization 

kinetics has been studied. In the first step the small micelles quickly associate to form 

larger micelles and in the second step accompanying the fission and fusion of micelles, 

the aggregation approaches dynamical equilibrium. However, due to the solvent 

mixing, filtration in the sample preparation and the quick association of the unimers, 

the initial formation information of the micelles is missing and the analysis of 

micellization is mainly focused on the fusion of small micelles. In this work, in order 

to track the aggregation processes from unimers to the final equilibrium micelles of 

the ADPs, after filtration the temperature was controlled to a critical value at which all 

the ADPs can undergo micellization. Also, in the previous reports [22], the influence 

of concentration on the relaxation times is contrary to the block copolymers and by 
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analysing the micelle concentration, we found that the increasing relaxation time is 

caused by the decreasing micelle concentration with increasing unimer concentration. 

For a comprehensive understanding of the relation of micelle size and relaxation time 

of the ADPs, in this study, we choose a system in which the unimer concentration has 

little influence on the micelle size. The change of relaxation times is caused only by 

the unimer concentration and DA. 

In this paper, first, the critical micellization temperature (cmt) at which 

micellization starts was measured. Second, the thermodynamics of micellization was 

studied. Then the influence of the concentration and DA on the micellization 

processes were investigated and discussed. Based on the temperature-jump methods, 

the micellization processes of the ADPs from unimers to the final equilibrium 

micelles were explored. 

2. Materials and methods 

2.1. Materials 

The ADPs were synthesized according to the literature [23] and the synthesis 

steps are shown in Scheme S1. DA is the percentage of the amino groups in 

hyperbranched polyethyleneimine which react with the dendritic palmitate chains. 

The structural parameters are listed in Table S1.  

2.2 Methods 

The time-dependent scattering intensity and hydrodynamic radius were measured 

by an ALV CGS-3 light scattering spectrometer. The average radius of gyration (Rg) 

of the micelles was calculated according to the Guinier plot ln(Iq) = ln(I0) – q2Rg
2/3, 



7 
 

where Iq is the intensity at the scattering vector q and I0 is the intensity in the q=0 

limit. The restriction of the Guinier plot is qRg<1 [24]. The scattering vector q = 

(4πn/λ)sin(θ/2), n is the refractive index of the solvent, λ is the wavelength of the light, 

θ is the scattering angle. From Laplace inversion of the intensity-intensity time 

correlation function, the distribution function of the decay rate can be obtained and 

the average decay rate (Γ) at different angles can be calculated. From the equation Γ = 

Dq2, the diffusion coefficient (D) can be obtained. Based on the Stokes-Einstein 

equation Rh = kBT/6πηD, the average hydrodynamic radius was calculated, where kB is 

the Boltzmann constant, T is the absolute temperature and η is the solvent viscosity 

[25,26]. The temperature was controlled by a circulator bath and the accuracy is 

0.02 °C. The solutions of ADPs in the laser light scattering were filtered with 

millipore filters (0.22 μm).  

3. Results and discussions 

3.1 The critical micellization temperature of the ADPs 

Because of the strong dependence of the scattering intensity on the volume of the 

scatterer, light scattering is a powerful tool to detect the onset of micellization. By 

increasing concentration or changing temperature, the micellization of a polymer 

solution can be initiated. For the ADPs with a hydrophilic core and a hydrophobic 

shell, glycol dimethyl ether with a low polarity is a poor solvent [10]. The ADPs in 

glycol dimethyl ether undergo micelle formation with the decrease of temperature, 

which leads to an increase of scattering intensity. The change of scattering intensity 

with temperature is shown in Fig. 1 and the scattering intensity increase sharply in a 
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narrow temperature range with decreasing temperature. The corresponding 

temperature of the transition point in Fig. 1 is the cmt. The polarity of the ADPs 

decreases with increasing DA which induces a poor solubility of the ADPs at higher 

DA and, at a given concentration, the cmt increases with increasing DA (Fig. S1). 

 

Fig. 1. The change of scattering intensity with temperature for P-1 at 0.5 mg/mL. 

3.2 Thermodynamics of ADPs micellization 

A thermodynamic analysis is essential to understand the micellization 

processes. The experiment methods to obtain the thermodynamic parameters 

mainly contain two approaches [9]. The first is the direct measurement of the 

enthalpy by differential scanning calorimetry. In this experiment, Because of 

the low mass percent (<0.05%), the errors arising from the evaporation of 

solvent and other aspects cannot be ignored and this method is invalid. The 

second is based on the closed association model to estimate the thermodynamic 

parameters. The micellization system with a large aggregation number and 

narrow micelle size distribution obeys the closed association model [8,9,27]. 

The standard free energy (△G0) and standard enthalpy (△H0) of micelle 



9 
 

formation can be estimated by eq1 and eq 2, where R = 8.314 J/(mol K) and 

cmc is the critical micelle concentration at the temperature T. 

 

  )ln(0 cmcRTG                         (1) 

   )/1(/)ln(0 TdcmcdRH                       (2) 

 

 

Fig. 2. Logarithmic of critical micelle concentration as a function of the reciprocal of temperature. 

Table 1 The thermodynamic quantities of the ADPs. 

DA 38% 41% 51% 60% 

△H0/kJ mol-1 -290 -241 -234 -213 

△G0/ kJ mol-1 -36 -37 -37 -38 

T△S0/kJ mol-1 -254 -205 -197 -176 

 

Here, the cmc and T can be replaced by the concentration and cmt. By the 

integration of eq 2, eq 3 is obtained and a is an arbitrary constant. Through the 

linear fitting of ln(cmc) versus 1/T, the values of △H0 can be calculated (Fig. 
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2). The correlation coefficients of the linear fitting in Fig. 2 are above 0.95. The 

values of △G0 and standard entropy (△S0) were calculated according to eq 1 

and eq 4 at C = 0.01 mg/mL. The thermodynamic quantities are shown in Table 

1. The negative thermodynamic quantities indicate that the micellization is 

driven by enthalpy and the formation of micelles is an exothermic process. The 

negative enthalpy results from the attractive interaction from the insoluble part 

of the ADPs. On the contrary, the entropic factors tend to disperse the ADPs 

randomly in solution. The influence of enthalpy outweighs the entropy, which 

leads to the micellization of ADPs. 

 a)ln(
0





RT

H
cmc                        (3) 

 TGHS /)( 000                       (4) 

3.3 The micellization kinetics of the ADPs 

The time scale of the micellization of block copolymers ranges from 

milliseconds to hours depending on the micellization conditions [3,10,28-31]. 

For poly(ethylene-alt-propylene)-poly (ethylene oxide), the micellization is 

completed within hundreds of seconds [31]. The micellization was considered 

as a nucleation and growth type governed by the unimer insertion or expulsion 

mechanism, in which the micelle size and overall rate increase with 

concentration. The micellization of poly(α-methylstyrene)-block-poly 

(vinylphenethyl alcohol) in selective solvent takes tens of hours with a fast step 

and slow step, and the weight of the micelle increase with concentration [3]. 



11 
 

For triblock copolymers, the micellization processes involves both the fusion of 

small micelles (the first step) and the insertion/expulsion of copolymer chains 

(the second step) [32]. The relaxation time decreases with increasing 

concentration and the diffusion coefficient of the unimers is constant, which 

leads to decreasing micelle size of the triblock copolymers with increasing 

concentration [32]. Dissipative particle dynamics simulation results show that 

the aggregation number of the micelles keeps constant with the increasing 

concentration [33]. For amphiphilic hyperbranched copolymers, the micelle 

size increases with increasing concentration [34]. The micellization kinetics and 

micelle size are related to the particular polymer in the amphiphiles and the 

micellization conditions. Both the relaxation times and the micelle size are 

strongly dependent on the polymer, solvent, temperature, etc. 

The experimental temperature was set to be 276.15 K, which is lower than 

the cmt. At the temperatures higher than 276.15 K, the distribution of the 

micelles is polydisperse and the phenomenon is unfavorable for the analysis of 

the kinetics. As shown in Fig. 3, the scattering intensity increases from the 

values corresponding to the unimers to larger values corresponding to the final 

equilibrium micelles with a rapid increase followed by a slow increase, which 

are the first step and the second step. The time-dependent scattering intensity of 

P-2, P-3 and P-4 was shown in Fig. S2. The results in Fig. 4 are the change of 

Rh with time and the increasing trend is the same as for the scattering intensity 

(Fig. S3).  
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Fig. 3. Time-dependent scattering intensity of P-1 at different concentration.  

 

Fig. 4. Time-dependent hydrodynamic radius of P-2 at different concentrations.  

The Rh of the micelles increases with the unimer concentration in the solvent 

mixture of chloroform and methanol as previously reported [22]. However, in the 

present system, the influence of the unimer concentration on the micelle size is 

different. The values of Rh change little with increasing concentration (Fig. 4 and Fig. 

S4). It is known that the scattering intensity of the solution is related to the micelle 

size and the number density of the micelles. As shown in Fig. 4, the scattering 

intensity increases with the concentration. The weak change of Rh with concentration 

indicates that the increasing scattering intensity arises from the increasing number 

density of the micelles. Fig. S5a shows the change of decay rate and scattering 
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intensity with scattering vector. The values of Rh and Rg of the micelles were 

calculated according to the Stokes-Einstein equation and the Guinier plot respectively. 

In Fig. S5b, the ratio of Rg and Rh is around 0.775, indicating that the morphology of 

aggregates at equilibrium is micelle [35-37]. The values of the Rg of the four ADPs at 

0.04 mg/L are 38 nm, 28 nm, 25 nm, and 17 nm, which is consistent with the micelle 

size obtained from transmission electron microscope (TEM) images (Fig. S6). 

In order to prove that during the micellization processes the morphology of the 

aggregates is spherical micelles, the aggregates were observed by TEM at 300 s and 

600 s after the micllization began. As shown in Fig. S7, the average size of the 

spherical micelles is 12 nm (300 s) and 16 nm (600 s). Also, the ratio of Rg and Rh 

after 2000s was calculated and the values are around 0.775 (Fig. S8). These results 

indicate that the morphology of the aggregates is spherical micelles during the whole 

micellization processes. 

The relaxation processes of the micellization of ADPs were analyzed according 

to the surfactants and block copolymers [1,5]. The function of the normalized 

scattering intensity and time can be fitted by using a double exponential function (eq 

5). Where I∞ is the scattering intensity at infinitely long time, C1 and C2 are the 

normalized amplitudes (C1 + C2 = 1), τ1 and τ2 are the relaxation times of the two 

steps. The mean micelle formation constant, τf , can be calculated according to eq 6. 

 
21 /

2
/

1t /）（
 tt

eCeCIII


                      (5) 

 2211f  CC                             (6) 

Because of the rapid aggregation of the unimers and fusion of the small micelles, 



14 
 

the scattering intensity changes suddenly at early stage of the first step. The value of 

Rh which is obtained from the CONTIN Laplace inversion of the intensity-intensity 

time correlation function cannot be calculated at the early stage in the first step. 

However, the change of scattering intensity maps that of Rh (Fig. S3), so the kinetic 

processes of the micellization are expressed by the evolution of scattering intensity. 

As shown in Fig. S9 and Fig. 5, the relaxation times τ1, τ2 and τf decrease with 

concentration, indicating that the aggregation approaches equilibrium quicker at 

higher concentration. In the previous report, the micelle size increases with 

concentration, which induces the lower micelle concentration at higher unimer 

concentration [22]. The concentration dependent fission and fusion of the micelle is 

based on the mechanism of collision. The lower micelle concentration at higher 

unimer concentration leads to an increase in relaxation time, which is different from 

the results in this system. 

 

 

Fig. 5. Plot of τf vs concentration. 

Unimer entry/expulsion and micelle fusion/fission are the two micellization 

mechanisms of block copolymers. For block copolymers, the unimer entry/expulsion 
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is faster than the fusion and fission of micelles at equilibrium [32]. In the second step, 

the concentration of the unimers is close to the critical micelle concentration 

[5,32].5,32 The unimer entry/expulsion mechanism in the second step leads to the 

independence of the relaxation time on the unimer concentration, while, the relaxation 

time of the fusion/fission is inversely proportional to the concentration [38]. The 

decreasing τ2 with concentration illustrates that the second step of the aggregation is 

consistent with the fusion/fission mechanism. Though the relaxation time in the 

previous and present report is different, the fission and fusion mechanism is the same 

and the time scale of the micellization is dependent on the solvent, polymer, 

temperature. 

As micellization proceeds, the micelle size distribution of block copolymes 

becomes narrower [3]. The distribution functions of the micelle are shown in Fig. 6 

and Fig. S10. The black lines in Fig. 6 are the distributions of Rh of the unimers at 

room temperature in glycol dimethyl ether. Compared with the distribution of the 

unimers at room temperature, shortly after the beginning of the aggregation, almost all 

of the unimers aggregate to form micelles. At lower concentration, the distribution of 

micelles in the initial stage is broader and gradually becomes narrower. The 

polydispersity index (PDI) of the distribution of the micelles is shown in Fig. S11, 

which is broader in the first step and narrower in the second step.  
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Fig. 6. Time-dependent distribution of Rh for P-1 at 0.02 mg/mL. 

The micellization processes of the ADPs can be illustrated by Scheme 1. 

The sudden change of the scattering intensity is caused by the quick association 

of the uinmers to form small micelles and the fusion of small micelles to large 

micelles in the first process of the micellization. The fission and fusion occurs 

among the micelles in the second process, which cause the size and number of 

micelles to change with time. The micellization processes (Scheme 1) agree 

well with the MMA mechanism which is proposed by Yan et al. [11,12]. 
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Scheme 1. The proposed micellization steps of the ADPs. 

3.4 Influence of DA on the micellization kinetics 

The driving force for the micellization of amphiphilic block copolymers 

increases with increasing chain length of the insoluble part and the micellization 

mechanism of the slow step transformed from the unimer insertion/expulsion to 

micelle fusion/fission [39]. The micelle size and aggregation number increase with 

increasing size of the insoluble part. For amphiphilic hyperbranched copolymers, the 

micelle size increases with increasing weight fraction of the insoluble part in water 

[15]. Fig. 7 shows the dependence of the scattering intensity on DA at the same 

unimer molar concentration. For P-1, P-2 and P-3, the scattering intensity increases 

with DA, while for P-4 the scattering intensity in the first step is stronger than P-1 and 

in the second step the scattering intensity is almost the same with P-1. In order to 

understand this phenomenon, the values of the average hydrodynamic radius were 

When T is lower than the UCST

Ⅰ

Ⅱ
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calculated. The Rh decreases with DA as shown in Fig. 8, which is contrary to the 

previous reports [22], and this will be explained later. For P-1, P-2 and P-3 the 

increasing scattering intensity results from the increasing number density of the 

micelles with DA.  

 

Fig. 7. Time-dependent scattering intensity of the ADPs with different DA. 

 

Fig. 8. Change of the Rh with DA. 

Table 2. The relaxation time of the ADPs at 6×10-11 mol/mL. 

DA 38% 41% 51% 60% 

τ1/s 602.5 372.5 241.6 204.0 

τ2/s 6556.8 4687.5 4872.7 4088.7 

τf/s 1805.3 1781.6 1777.5 1267.3 
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It is known that the nonpolarity of the ADPs increases with DA. Although glycol 

dimethyl ether is a weak polar solvent, the solubility of the ADPs decreases as DA 

increases. Table 2 shows that τ1, τ2 and τf decrease with DA, indicating that with 

increasing DA, the driving force for the aggregation increases. For the ADPs in the 

solvent mixture [22], because of the decreasing micelle concentration, the relaxation 

times (τ1, τ2) increase with the unimer concentration, which is different from the 

phenomenon in this system. The diffusion coefficients of the ADPs unimers at 6×10-11 

mol/mL decrease with DA (Table S1). The smaller τf means that the micelles take 

shorter time to grow. The decreasing diffusion coefficient of the unimers and smaller 

τf indicate that at higher DA less unimers will be incorporated into the micelles and 

the micelle size is smaller [32]. The scattering intensity is proportional to the sixth 

power of the micelle size. For P-4, the increasing number density of micelles cannot 

make up the losing scattering intensity caused by the micelle size, so the scattering 

intensity of P-4 is weaker (Fig. 7). 

Conclusions 

The temperature induced micellization of the ADPs was investigated by laser 

light scattering. When the temperature jumps from room temperature to the cmt, the 

micellization of the ADPs begins due to the decreasing solubility and this behavior is 

induced by the enthalpic factors. According to the change of scattering intensity and 

Rh with time, the micellization was divided into two steps with different relaxation 

times. The quick association of the unimers and fusion of the small micelles lead to 

the rapid increase of the micelle size in the first step. In the second step, through the 
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fission and fusion of the micelle, the micelle size increases gradually and finally 

approaches equilibrium. Changing concentration has little effect on Rh. The decrease 

in relaxation time with concentration means a quicker aggregation rate. At higher DA, 

the content of nonpolar part increases, so the solubility of the ADPs decreases, which 

means that the driving force of micellization is stronger at higher DA. Because of the 

decrease in unimers diffusion coefficient and relaxation time with DA, the Rh of the 

micelles decreases. These results are not in conflict with our previous report (Zhang et 

al. Macromolecules, 2017, 50, 1657). The different influence of the concentration and 

DA on the micellization kinetics is due to the use of a different solvent and the change 

of temperature as a driver of micellization. On the other hand, this phenomenon 

illustrates that the micellization kinetics is complicated and dependent on the polymer, 

solvent and temperature. The in situ study of the micellization kinetics is consistent 

with the previous assumption, which illustrates the micellization in a MMA 

mechanism [11, 12]. Except for the optical microscopy for the observation of the 

fusion and fission of larger aggregates [19, 20], laser light scattering is an effective 

method to study the kinetics of smaller aggregates. The understanding of 

micellization kinetics is beneficial to optimize the application of the micelles in 

the field of drug delivery, biosensing etc. [40-42]. In the future study, the 

influence of the degree of branching of the core on the aggregation kinetics will 

be studied. 
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Figure Captions 

Fig. 1. Scattering intensity vs temperature. 

Fig. 1. The change of scattering intensity with temperature for P-1 at 0.5 

mg/mL. 

Fig. 2. Logarithmic of critical micelle concentration as a function of the 

reciprocal of temperature. 

Fig. 3. Time-dependent scattering intensity of P-1 at different 

concentration.  

Fig. 4. Time-dependent hydrodynamic radius of P-2 at different 

concentrations. 

Fig. 5. Plot of τf vs concentration. 

Fig. 6. Time-dependent distribution of Rh for P-1 at 0.02 mg/mL. 

Fig. 7. Time-dependent scattering intensity of the ADPs with different 

DA. 

Fig. 8. Change of the Rh with DA. 

 

Table 1 The thermodynamic quantities of the ADPs. 

DA 38% 41% 51% 60% 

△H0/kJ mol-1 -290 -241 -234 -213 

△G0/ kJ mol-1 -36 -37 -37 -38 

T△S0/kJ mol-1 -254 -205 -197 -176 
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Table 2. The relaxation time of the ADPs at 6×10-11 mol/mL. 

DA 38% 41% 51% 60% 

τ1/s 602.5 372.5 241.6 204.0 

τ2/s 6556.8 4687.5 4872.7 4088.7 

τf/s 1805.3 1781.6 1777.5 1267.3 

 

 


