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 ABSTRACT 
 

The aims of this work were to study the effect of acid adaptation on the survival of the 

stationary phase Lactobacillus plantarum NCMIB 8826 cells, a model potential probiotic 

strain, in several highly acidic fruit juices namely cranberry (pH 2.7), pomegranate (pH 3.5), 

and lemon & lime juices (pH 2.8) and to investigate the mechanisms involved in cellular 

response. The results indicated that exposure of the cells in both acidified solutions (buffers 

and de Man, Rogosa and Sharpe medium; MRS) adjusted to pH 6 to 3 by hydrochloric acid 

and citric acid for a short period of time significantly improved cell survival in the fruit 

juices, although the impact on cell viability was less than 107 CFU/ml for 6 weeks which was 

required for probiotic drinks. Furthermore, the prolonged exposure time (1 to 5 h) and low 

temperature (10 and 4 οC) were used to enhance the cell viability of Lactobacillus plantarum 

NCMIB 8826 but the improvements by these techniques could not make it as a promising 

strain for probiotic drinks. Analysis of citric and lactic acids as well as γ-aminobutyric acid 

(GABA) indicated that the citrate fermentation pathway and the glutamate decarboxylase 

system, which have been implicated in acid response in several lactobacilli, were not 

involved in this case while the analysis of the cellular fatty acid content showed that the 

cyclopropane fatty acid, cis-11,12-methylene octadecanoic acid (C19cyclow7c), significantly 

increased (by ∼1.7 fold) during acid adaptation, which was accompanied by a significant 

upregulation of the cyclopropane synthase (cfa) gene (by ∼12 fold), as demonstrated by 

reverse transcription polymerase chain reaction. It was likely that these changes led to a 

decrease in membrane fluidity and to lower membrane permeability, which prevent the cells 

from proton influx during storage in fruit juices. Examination of the cell morphology by 

cryo-scanning electron microscopy revealed that the cell surface of acid adapted cells was 

rougher and thicker compared to control cells, suggesting that the composition and structure 
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of the peptidoglycan was possibly modified during acid exposure. A significant finding of 

this study was the observation that alanine, which represented the most abundant intracellular 

amino acid (> 45%), was significantly reduced in the case of acid adapted cells (∼20%) 

compared to control cells, which coincided with a significant decrease in the extracellular 

alanine (~10%). It seems, therefore, likely that upon acid adaptation the cells utilized the 

available alanine to increase in the D-alanylation of wall teichoic acid, resulting in a positive 

cell wall with enhanced ability to reduce the influx of protons during storage in fruit juices. 

Moreover, proteomic analysis was also performed using 2D-gel electrophoresis, which led to 

the identification of eight proteins exhibiting a difference in % volume of at least 1.4 in 

expression levels between acid adapted and control cells. Among these, five proteins, 

molecular chaperone GroEL, aminopeptidase C, 30S ribosomal protein S1, D-alanine-D-

ligase, and UPF0356 protein Ip_2157 were upregulated, whereas three proteins, 30S 

ribosomal protein S2, aspartate semialdehyde dehydrogenase, and the hypothetical protein 

HMPREF0531_11643 were downregulated in acid adapted cells compared to control cells.  
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CHAPTER 1 

General Introduction 

1.1. Background 

The concept of using microbes to prevent and in some cases cure diseases has 

been established for a long time. The initial evidence of the link between consumption 

of beneficial microorganisms, such as lactic acid bacteria (LAB), and well-being was 

substantiated around 1900, when Nobel Prize-winner, Metchnikoff, revealed the 

association between the consumption of fermented dairy products and life expectancy of 

Bulgarians (Metchnikoff, 1907). In order to describe this connection, the term 

“Probiotic” was introduced by Lilly and Stillwell (1965). The definition of probiotics 

has changed considerably over the years, and the most widely accepted definition is the 

one by the Food and Agriculture Organization of the United Nations/World Health 

Organization (FAO/WHO., 2002) “live microorganisms which confer a health benefit 

on the host when supplied in adequate amounts”. A large number of studies have 

demonstrated the positive effects of probiotics on human health, which include the 

prevention of diarrhoea caused by pathogenic bacteria and viruses (Malaguarnera et al., 

2012), the inhibition of pathogen colonization (Dhanani et al., 2011), the lowering of 

cholesterol level (Ooi and Liong, 2010), the stimulation of the immune system (Ashraf 

and Shah, 2014), the treatment of inflammatory bowel disease (IBD) (Rogers and 

Mousa, 2012), the prevention of intestinal and vaginal infections (Zuccotti et al., 2008), 

the reduction of food allergies (Savilahti et al., 2008), the prevention of cancer (Liong, 

2008), the prevention of atherosclerosis (Tsai et al., 2009) and the amelioration of 

lactose intolerance (Heyman, 2000). These potential health benefits have induced the 

http://www.fao.org/home/en/
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food industry to develop appropriate methods and technologies for the incorporation of 

probiotics into various food products and nutraceutical formulations.  

Probiotics have been incorporated mainly into dairy products, such as yoghurt, 

as these constitute favourable vehicles due to the acidic pH compared to other probiotic 

products; in yoghurt the pH is ~4 whereas in most chesses is >5.0. The development of 

non-dairy probiotic products such as fermented meats, cereals, vegetables, and fruit 

juices is a challenging task for the food industry in their effort to expand the range of 

probiotic containing foods (Luckow and Delahunty, 2004, Champagne et al., 2005). 

Fruit juices are a promising vehicle for the delivery of probiotics as they contain 

relatively high amount of sugars, essential vitamins and minerals, which could be used 

as energy and nutrition sources for the survival of probiotics during storage (Ding and 

Shah, 2008) and offer an alternative choice to consumers with lactose intolerance 

(Prado et al., 2008). Moreover, the fruit juice market is very large, as fruit juices are 

easily consumed by various ages. However, a key for successfully developing new 

probiotic products, particularly in the case of fruit juices, is to ensure the survival of the 

probiotic strain in the fruit juices during refrigerated storage for up to 6 weeks, which is 

the normal storage period for fruit juices. Considering a starting cell concentration in 

juices of around 108  to 109 colony forming units (CFU)/ml and the fact that the 

recommended minimum probiotic concentration for the efficacy is approximately 107 

CFU/ml of product (Corcoran et al., 2007), this suggests that the decrease in cell 

concentration during storage should be less than 1 to 2 log CFU/ml. A substantial 

amount of work has been conducted where probiotic strains have been incorporated in a 

variety of fruit juices, including orange, apple, pineapple, peach, cranberry, strawberry 

and pomegranate; the results have demonstrated that cell survival depends on the strain 

and juice used but overall in many cases it was rather low due to the high acidity of the 
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juices and the likely presence of antimicrobial compounds, such as polyphenols and 

organic acids, at high concentrations (Vinderola et al., 2002, Sheehan et al., 2007a, 

Champagne and Gardner, 2008, Tezcan et al., 2009, Nualkaekul and 

Charalampopoulos, 2011, Mousavi et al., 2011).  

Overall, several approaches have been used to enhance the cell viability of 

probiotic strains in acidic conditions, including the development and modification of the 

food matrices (Corcoran et al., 2005), microencapsulation (Nualkaekul et al., 2012), and 

adaptation of the cells to acid stress (Saarela et al., 2011). Amongst these, encapsulation 

has been investigated the most; however, the main issue is that in many cases the size of 

the capsules produced by the most scalable method (extrusion) is rather large, normally 

between 500 µm and 3 mm, which can affect considerably the organoleptic properties 

of the product. In order to achieve microcapsules with size less than 200 µm, an 

emulsification based microencapsulation method has to be used, which is difficult to 

scale up and also to remove the residual oil from the capsules. A short exposure of 

probiotic bacteria to acid prior to their incorporation into fruit juices followed by 

subsequent storage at refrigerated temperature (Saarela et al., 2011) seems to be a viable 

approach for reducing cell injury and loss of viability during processing, storage, and 

potentially during subsequent passage through the gastrointestinal tract (GIT) 

(Vinderola et al., 2000, Shah, 2000, Gueimonde et al., 2004). This strategy allows the 

cells to activate their defence mechanisms to acid stress, such as maintenance of ∆pH 

homeostatic, alteration of cell envelope, and protection and restoration of proteins and 

DNA, in order to protect them against the adverse environment of a food matrix, i.e. the 

highly acidic environment of fruit juices (Van de Guchte et al., 2002, Spano and Massa, 

2006, Lorca and de Valdez, 2009). Based on this concept, several studies have been 

conducted using various acids for adapting bacterial cells, including lactic acid (Lorca 
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and de Valdez, 2001), hydrochloric acid (HCl) (Rallu et al., 1996) and malic acid 

(Saarela et al., 2011). Interestingly, the study of Pudlik and Lolkema (2011b) also 

highlighted the positive effects of citrate in enhancing acid tolerance of Lactococcus 

lactis. This study agrees with the results obtained by Nualkaekul and Charalampopoulos 

(2011) and Mousavi et al. (2011), who suggested that the high concentration of citric 

acid in various fruit juices appeared to improve the survival of Lactobacillus plantarum 

during refrigerated storage.  

1.2. Probiotics 

1.2.1. History of definition 

The relationship between the consumption of food products containing microbes 

and human health was first discovered by Metchnikoff (1907), a Russian scientist. As a 

result of this, he was awarded a Noble prize in 1908. At the same time, Tissier (1906), a 

French paediatrician, also suggested the administration of bifidobacteria in children in 

order to reduce their suffering from diarrhoea. Subsequently, the diverse positive effects 

of certain beneficial microbes to human health were investigated in a number of studies. 

For instance, the implantation of non-LAB which can prevent pathogenic bacteria in 

intestine was demonstrated by Nissle (1916). Additionally, the important role of the 

intestinal bacteria for resistance to disease was verified by Bohnhoff et al. (1954), Freter 

(1955) and Collins and Carter (1978). However, it is interesting to notice that the first 

use of the word “Probiotic” was introduced by Lilly and Stillwell (1965), whereas 

Parker (1974) was the first to use the term probiotic in the sense that it is used today. 

The next definition of probiotics as "a live microbial feed supplement which 

beneficially affects the host animal by improving its intestinal microbial balance" was 

given by Fuller (1989). In 1992, Havenaar and Huis In't Veld extended the definition of 
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probiotics to: “A viable mono- or mixed culture of microorganisms which when applied 

to animal or man, beneficially affects the host by improving the properties of the 

indigenous microflora” (Havenaar and Huis In’t Veld, 1992). The definition of 

probiotics was continually modified by various researchers, including Salminen (1996), 

“A live microbial culture or cultured dairy product which beneficially influences the 

health and nutrition of the host” and Schaafsma (1996) “Oral probiotics are living 

microorganisms which upon ingestion in certain numbers, exert health effects beyond 

inherent basic nutrition”. In 2001, Schrezenmeir and de Vrese suggested a new 

definition of probiotics, “A preparation of or a product containing viable, defined 

microorganisms in sufficient numbers, which alter the microflora (by implantation or 

colonization) in a compartment of the host and by that exert beneficial health effects in 

this host” (Schrezenmeir and de Vrese, 2001). Finally, probiotics are currently 

internationally endorsed as “Live microorganisms which, when administered in 

adequate amounts, confer a health benefit on the host”, a definition given by 

FAO/WHO. (2002). This last definition is rather broad compared to the previous ones, 

and includes both human and animal applications of probiotics, as well as a broad 

spectrum of benefits to the host and not just to the gut. 

1.2.2. Functional properties and health benefits of probiotics 

During the last two decades, probiotics have been widely used for treatment and 

prevention of various diseases, such as diarrhoea and acute gastroenteritis, IBD, lactose 

intolerance, food allergies, hypercholesterolemia and cardiovascular diseases, and 

cancers. However, the causal relationships between their health claims and mechanisms 

of action have not been fully elucidated (Marco et al., 2006). In order to understand 

how probiotics deliver health benefits to their hosts, the current knowledge relating to 
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the mechanisms of action of probiotics toward human health are summarized in Table 

1.1 and discussed throughout this section. 

Table 1.1 Causal relationships between diseases and mechanisms of action of probiotics 

Diseases Causes Mechanism of actions 
Diarrhoea Overgrowth of 

bacteria and viruses 

1. Modulation of gut microbiota 

• Production of antimicrobial compounds 

• Competition for binding and receptor sites 

• Improvement of mucus production 

2. Immunomodulation  

• Enhancement of production of IgA 

• Activation of NK cells 

IBD Chronic 

inflammation of all 

or part of GIT 

caused by bacterial 

infection 

1. Anti-inflammation 

• Production of anti-inflammatory cytokines 

2. Inhibition of intestinal epithelial apoptosis 

• Activation of Akt/protein kinase B 

• Inhibition of p38/ MAPK 

Lactose intolerance Lactose 

maldigestion 

1. Production of lactose cleaving enzyme, β-

galactosidase 

Food allergies Type-1 

hypersensitivity 

1. Anti- hypersensitivity and allergy 

• Inhibition of IgE 

Hypercholesterolemia 

and cardiovascular 

diseases 

High cholesterol 

level in the blood 

1. Assimilation and binding of dietary cholesterol in 

the intestine 

2. Hydrolysis of bile acids by production of bile salt 

hydrolase 

Colon cancer Carcinogens and 

mutagens produced 

by enteric bacteria 

1. Ability to bind and degrade potential carcinogens 

2. Production of anti-tumorigenic or anti-mutagenic 

compounds 

 

1.2.2.1. 67BTreatment and prevention of disorders associated with GIT 

 Probiotics have been reported to improve many types of diarrhoea with different 

degrees of success. Several probiotic strains, such as Lactobacillus rhamnosus GG and 

Bifidobacterium lactis Bb-12 have been used in an attempt to modulate the indigenous 
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intestinal microflora in children who develop diarrhoea (Guandalini, 2011). A number 

of positive effects, such as decreasing number of incidents, shortening of duration, and 

reducing of viral shedding have been observed after administration of these probiotics 

(Tuohy et al., 2003). Although the mechanisms of action behind these beneficial effects 

are still unclear, the most impressive evidence in probiotics combating pathogens and 

diseases is achieved by modulating the gut microbiota (e.g. the production of 

antimicrobial compounds, competition for binding and receptor sites and increased 

mucus production) as demonstrated by several in vitro and in vivo studies. For example, 

Ogawa et al. (2001) showed that the co-incubation of Lactobacillus casei strain Shirota 

or Lactobacillus acidophilus YIT0070 with Escherichia coli O157:H7 strain 89020087 

in a batch fermentation system reduced the survival of E. coli due to the production of 

lactic acid. Similarly, Corr et al. (2007) demonstrated that the administration of 

Lactobacillus salivarius UCC118 in mice enhanced their resistance against invasion of 

the foodborne pathogen Listeria monocytogenes due to the production of the broad-

spectrum class II bacteriocin (Abp118). Mack et al. (1999) reported that co-incubation 

of L. plantarum 299v and L. rhamnosus GG with HT-29 human intestinal epithelial 

cells increased the expression levels of the MUC2 and MUC3 proteins. Upregulation of 

these two human intestinal proteins by both bacterial strains enhanced mucus 

production in HT-29 human intestinal epithelial cells, which resulted in inhibiting the 

attachment of pathogenic E. coli to the cell line. However, it should be noted that the 

immunomodulation properties of probiotics are also involved in the treatment of 

diarrhoea, especially diarrhoea caused by rotavirus. For instance, L. rhamnosus GG and 

Bifidobacterium lactis Bb-12 were shown to enhance immunoglobulin A (IgA) 

production in the microfold cells of the Peyer's patches which contributed to the 

protection of human host against viruses. Such immunomodulatory effects might be 
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induced by their cell wall components (Majamaa et al., 1995, Fukushima et al., 1998). 

Additionally, Takeda et al. (2006) found that L. casei strain Shirota could trigger the 

production of interleukin (IL) -12 which elicited the response of natural killer (NK) 

cells against pathogen infections.  

In addition to the above, the beneficial effects of probiotics in the GIT have also 

been reported for the management of IBD, including ulcerative colitis and Crohn’s 

disease. In this case, the plausible mechanisms of action seem to involve the anti-

inflammatory properties of probiotics, as the pathogenesis of both Crohn’s disease and 

ulcerative colitis is associated with the chronic inflammation of all or part of the GIT. 

As probiotics have been proved to reduce inflammatory responses, the administration of 

probiotics is used to reduce the expression of proinflammatory cytokines, especially 

tumour necrosis factor alpha (TNF-α), IL, interferon, and nuclear factor-kappa B, which 

play an important role in cell signalling and regulation of inflammatory responses. For 

instance, Kamada et al. (2008) indicated that E. coli strain Nissle 1917 displayed a 

direct anti-inflammatory activity on HCT15 intestinal epithelial cells by suppressing the 

production of IL-8, a neutrophil chemotactic factor, leading to the reduction of TNF-α; 

Hart et al. (2004) showed that a commercial mixture of probiotics, VSL#3, consisting of 

four lactobacilli, three bifidobacteria, and one streptococci strain, induced the 

production of IL-10, an anti-inflammatory cytokine, after co-incubation with blood cells 

and lamina propria dendritic cells in vitro. However, several studies showed that the 

beneficial effect of probiotics for the  treatment of IBD is not limited only to the 

reduction of inflammatory response, but also involves the inhibition of intestinal 

epithelial apoptosis; as this mechanism has been proved to enhance the survival of cells 

during development of IBD. Yan and Polk (2002) suggested that a co-culture of           

L. rhamnosus GG with either young adult mouse colon cells or HT-29 human intestinal 



 

9 

epithelial cells can activate anti-apoptotic factor Akt/protein kinase B and inhibit pro-

apoptotic p38/mitogen-activated protein kinase (MAPK) in epithelial cells, resulting in 

the reduction of epithelial apoptosis via a proinflammatory cytokine dependent 

mechanism.  

1.2.2.2. Relief of lactose intolerance 

 It is well known that people with lactose intolerance can tolerate lactose in 

yoghurt much better than in milk, even though yoghurt and milk have similar amounts 

of lactose (Gurr, 1987). This is due to the fact that probiotic strains in yoghurt have the 

ability to produce the lactose cleaving enzyme, β-galactosidase, leading to the reduction 

of lactose present in the digestive tract (De Vrese et al., 2001). Furthermore, many 

studies have also reported the effect of probiotics in the relief of lactose intolerance. For 

example, Almeida et al. (2012) showed that four-week consumption of a probiotic 

mixture (L. casei strain Shirota and Bifidobacterium breve strain Yakult) improved 

lactose intolerance symptoms (e.g. bloating, cramps, and loose stools) in lactose-

intolerant patients. These results indicate that lactose intolerance can be improved by 

regularly consuming fermented dairy products due to the production of β-galactosidase 

enzyme by the probiotic strains present in them. This mechanism of action is perhaps 

the strongest evidence of a health benefit exerted by probiotics and is the only 

mechanism currently accepted by the European Food Safety Authority (Hill et al., 

2014). 

1.2.2.3. Reduction of food allergies 

The idea of alleviating food hypersensitivity and allergy by probiotics is mainly 

based on their ability to suppress IgE production, as food hypersensitivity and allergy 

generally occur when IgE mistakenly treats harmless food compounds as a threat. This 
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leads to the secretion of vasoactive amines (i.e. histamines) by mast cells and basophils 

via type-1 hypersensitivity which then triggers an allergic reaction. Shida et al. (2002) 

reported that the administration of L. casei strain Shirota in mice can suppress IgE 

production by promoting a dominant Th1-type immune response mediated by IL-12 

induction. Dev et al. (2008) also found that the administration of a probiotic mixture 

(Bifidobacterium longum and Bifidobacterium infantis) suppressed the increase of 

histamine receptor-1 and histidine decarboxylase, an enzyme which synthesizes 

histamine from L-histidine, in rat nasal mucosa. Therefore, there is less histamine 

production in rat fed with these probiotics. Additionally, Schiffer et al. (2011) showed 

that the injection of L. casei into mice inhibited IgE-induced passive systemic 

anaphylaxis and mast cell activation. It must be highlighted, however, that the uses of 

probiotics for food hypersensitivity and allergy are only able to protect against the 

condition rather than cure them. 

1.2.2.4. Lowering of cholesterol  

There is some evidence showing that probiotics could potentially lower the 

levels of plasma cholesterol. This benefit seems to occur through the assimilation of 

dietary cholesterol in the intestine by probiotics and through the deconjugation of bile 

acids by the bile salt hydrolase enzyme produced by probiotics (Zhuang et al., 2012). 

To this end, Liong and Shah (2005) demonstrated that L. acidophilus and L. casei could 

remove cholesterol when grown in culture medium under conditions similar to those 

found in the human intestine; however, the amount of cholesterol removed from the 

media was strain specific. This ability of probiotics was also demonstrated by Lye et al. 

(2010) who found that L. acidophilus and L. bulgaricus were able to remove cholesterol 

from the media and accumulate it onto their cell surface. These in vitro results 
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demonstrated that probiotics could lower plasma cholesterol through reduction of 

available cholesterol in the intestine. Moreover, Jones et al. (2004) found that bile salt 

hydrolase produced by L. plantarum was able to hydrolyse conjugated bile acids to 

deconjugated bile acids. This leads to substantial loss of bile acids which play an 

essential role in fat digestion, as deconjugated bile acids are less soluble and difficult to 

reabsorb back through the intestine than their conjugated form. Therefore, serum 

cholesterol was used by the liver in order to replenish the bile acids which are lost in 

faeces due to hydrolysis by the bile salt hydrolase produced by L. plantarum. However, 

the ability of probiotics in lowering cholesterol is still in doubt as some of these studies 

have reported a significant effect, while others have not. 

1.2.2.5. Prevention of cancer 

Although there is some evidence of cancer-preventing properties of probiotics, 

which have been reported in animal and human studies, the exact role of probiotics in 

the context of anticancer activities and the mechanisms of action have not been clearly 

elucidated. However, it has been suggested that a possible mechanism could involve the 

binding and degrading of potential carcinogens, the production of anti-tumorigenic or 

anti-mutagenic compounds in the colon, and enhancement the host's immune response 

(Hirayama and Rafter, 2000). For example, Goldin and Gorbach (1984) reported that 

the administration of L. acidophilus NCFM and N-2 reduced the levels of faecal 

enzymes (i.e. β-glucuronidase, azoreductase, nitro-reductase and urease) which can 

convert procarcinogens to carcinogens in human subjects. Pool Zobel et al. (1996) also 

showed that a probiotic mixture (L. acidophilus, Lactobacillus gasseri P79, 

Lactobacillus confusus DSM 20196, Streptococcus thermophilus NCIM 50083, 

Bifidobacterium breve and Bifidobacterium longum) prevented the induction of DNA 
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damage by N-methy-N'-nitro-N-nitrosoguanidine in colon cells of rats. Overall, 

however, the existing amount of evidence is not sufficient to establish a correlation 

between probiotic administration and cancer treatment, in human subjects. More studies 

are therefore required before such a claim can be made.  

1.2.3. Selection of probiotic strains  

Probiotics have been recognized as functional food ingredients due to the 

advancement of scientific evidence indicating their potential health-promoting effects, 

as discussed above. Several microbial strains, mainly Bifidobacterium species and 

Lactobacillus species (Table 1.2), have been incorporated into various food products 

and claimed as probiotics. The vast amount of strains used seems to lead to skepticism 

amongst the general population (i.e. potential customers) regarding the efficacy of 

probiotic strains. These issues have been diminished by the guidelines for the evaluation 

of probiotics in food, produced by FAO/WHO (2002). These guidelines state that 

probiotics need to meet certain requirements before they can be claimed as probiotics. 

More specifically, i) genus, species, and strain need to be identified and declared, ii) 

positive health benefits need to be tested in vitro and in animal studies, iii) safety 

information needs to be presented, iv) clinical trials need to be conducted, and v) 

content, dosage, shelf-life, and health claim need to be labelled. These criteria should 

ensure that probiotics are regulated and made in a way which is safe for human 

consumption and effective. However, recently the concept of what can be defined as 

probiotics was revised in 2014 by an expert group of international scientists working on 

behalf of FAO/WHO (Hill et al., 2014). The principal concepts were the same as 

previous guidelines with the exception of one modification; a core group of well-studied 

probiotic species such as Bifidobacterium adolescentis, Bifidobacterium animalis, 
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Bifidobacterium bifidum, Bifidobacterium breve, L. acidophilus, L. casei, L. fermentum, 

L. gasseri, L. johnsonii, L. paracasei, L. plantarum, L. rhamnosus, and L. salivarius, 

can ascribe the general beneficial effects on gut. Clinical trials are not essential to be 

conducted on specific strains belonging to these species in order to claim their general 

health effects. However, these guidelines have not explicitly stated the essential 

properties that microorganisms should have in order to be considered as probiotics. For 

example, Collins et al. (1998) suggested that a good probiotic strain should have some 

of the following properties: i) it should originate from humans so that it can adhere to 

and colonise the human GIT; ii) it should have a history of being non-pathogenic even 

in immunocompromised hosts so that it is safe to use in humans; iii) it should tolerate 

the low pH of the gastric juice and high concentrations of both conjugated and 

unconjugated bile acids so that it can survive during passage through the upper GIT; iv) 

it should exhibit antibacterial properties (e.g. produce lactic acid) so that it can inhibit 

the growth of potentially pathogenic bacteria; v) it should stimulate or inhibit immune 

response via epithelial cells, dendritic cells, monocytes/macrophage and lymphocytes in 

the digestive tract so that it can modulate the host’s immune responses; vi) it should 

survive during product manufacturing and storage until the time of consumption so that 

it can deliver the desired health benefits to the host. Using these criteria for microbial 

selection should increase the possibility for obtaining potential probiotic strains that can 

be used in food products. However, it needs to be emphasised that certain of the above 

properties are strain specific, thus effective probiotic screening programs are important 

for selecting appropriate strains. Additionally, the knowledge derived from human 

microbiome research using a range of emerging molecular methods, such as 

metagenomics, metatranscriptomics and metabolomics will further enhance our 

understanding about the correlations between microbiota and their impact on human 
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health or diseases and also assist in the identification of novel probiotic strains from 

indigenous microbial species (Hemarajata and Versalovic, 2012). Finally, it is essential 

to note that there were a number of reasons for selecting L. plantarum NCIMB 8826 as 

the model potential probiotic strain in this thesis. The strain is of human origin and has a 

good safety history in clinical trials (De Vries, 2006). The strain has demonstrated good 

survival in vitro and in vivo, e.g. it can survive well in model gastric solutions at pH<3 

(Charalampopoulos et al., 2003, Parente et al., 2010), it can persist in the mouse 

intestine for 10 days after oral administration (Pavan et al., 2003), and it can resist the 

conditions of the human digestive tract (up to ileum) with 7% survival (Vesa et al., 

2000). A number of potential health benefits have been shown (e.g. modulation of gut 

microbiota, anti-inflammation, anti-allergic, and immunomodulation) in vitro and in 

animal models. For example, the modulation of gut microbiota through competition for 

binding and receptor sites was shown by Sánchez et al. (2009) and Hevia et al. (2013). 

The serine/threonine-rich proteins which were secreted by L. plantarum NCIMB 8826 

displayed an ability to bind to mucin and fibronectin located on human epithelial cells. 

From these results, they suggested that the production of these proteins helped in 

improving the adhesion and colonization of this bacterium to the human intestinal 

mucosa. The anti-inflammatory properties of this strain were reported by Foligné et al. 

(2006). They showed that daily gavage administration of L. plantarum NCIMB 8826 

with a cell concentration of 108 to 109 CFU helped to reduce colitis induced by 

trinitrobenzene sulfonic acid in mice. They demonstrated that this process occurred due 

to the production of IL-10, an anti-inflammatory cytokine, by this strain after co-

incubation with human peripheral blood mononuclear cells in vitro (Foligne et al., 

2007). The immunomodulation activity of L. plantarum NCIMB 8826 was 

demonstrated by Dong et al. (2012). They showed that this strain was able to induce the 
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production of IL-12 in vitro which helps to promote the development of T-cells and 

stimulate the secretion of IFN-γ. These lead to the activation of T-cells and NK cells 

which respond to viral infection and tumour formation. The anti-allergic activity of this 

strain was also reported by Pochard et al. (2005). They found that this strain could 

reduce the effect of mite allergen (Der p 1) on dendritic cells via the reduction of IL-4 

which was involved in the development of B-cells, as well as decreased IL-5 which 

stimulates B cell growth, and increase immunoglobulin secretion. From these results, it 

seems likely that the administration of L. plantarum NCIMB 8826 may have led to 

change in IL-4 and IL-5 production/level by host cells which resulting in the lower 

production of antibodies in allergic patients after challenge with mite allergen compared 

with healthy people.  

Certain health benefits have been also demonstrated in human trials. Karczewski 

et al. (2010) reported that oral administration of L. plantarum NCIMB 8826 was able to 

decrease the epithelial barrier dysfunction in humans by increasing the localization of 

zonula occludens-1 and transmembrane proteins, which are the essential proteins for 

strengthening the tight junctions, via the toll-like receptor 2 signalling pathway. The 

complete genome sequence of this bacterium is available. This information should 

allow the molecular investigation of certain genes, (e.g. those responsible for the 

synthesis of antimicrobial compounds and exopolysaccharide (EPS) production, and 

sugar metabolism) which can affect the adaptability and survival of the cells in foods as 

well as in the GIT. L. plantarum NCIMB 8826 can thus be considered a potential 

probiotic strain as it meets the requirements underlined in the guidelines for the 

evaluation of probiotics by FAO/WHO (2002) and it is also one of most well-defined 

probiotic strains which can ascribe the general beneficial effects on gut physiology and 

human health of L. plantarum at species level (Hill et al., 2014).  

https://en.wikipedia.org/wiki/B_cell
https://en.wikipedia.org/wiki/Immunoglobulin
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Table 1.2 List of microorganisms considered as probiotics adapted from Holzapfel et al. 
(2001)  
Lactobacillus species Bifidobacterium species 

Lactobacillus acidophilus 
Lactobacillus amylovorus 
Lactobacillus brevis 
Lactobacillus casei 
Lactobacillus casei subsp. rhamnosus 
Lactobacillus crispatus 
Lactobacillus delbrueckii subsp. bulgaricus 
Lactobacillus fermentum 
Lactobacillus helveticus 
Lactobacillus gallinarum 
Lactobacillus gasseri 
Lactobacillus johnsonnii 
Lactobacillus paracasei 
Lactobacillus plantarum 
Lactobacillus reuteri 
Lactobacillus rhamnosus 
 

Bifidobacterium adolescentis 
Bifidobacterium animalis 
Bifidobacterium bifidum 
Bifidobacterium breve 
Bifidobacterium infantis 
Bifidobacterium lactis 
Bifidobacterium longum 

Other LAB Non-LAB and yeast 

Enterococcus faecalis 
Enterococcus faecium 
Lactococcus lactis subsp. cremoriss 
Lactococcus lactis subsp. lactis 
Leuconostoc mesenteroides 
Pediococcus acidilactici 
Sporolactobacillus inulinus 
Streptococcus thermophilus 

Bacillus cereus var. toyoi 
Escherichia coli strain Nissle 
Propionibacterium freudenreichii 
Saccharomyces cerevisiae 
Saccharomyces boulardii 
 
 
 

1.2.4. Products with probiotics on the market 

At present, there are various dairy products supplemented with probiotic bacteria 

on the market, e.g. fermented dairy products, cottage cheese, ice cream, frozen dairy 

desserts (Shah, 2007), but the top selling product has always been yoghurt. It must be 

noted though that the commercial success of yoghurt ultimately depends on its taste, 

appearance, price, and in addition to those, to potential health benefits to consumers 

(Heller, 2001). From a technical point of view, yoghurt is considered as a very good 

probiotic carrier because of the high buffering capacity of milk (Salminen and Playne, 
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2001). Moreover, the pH of yoghurt normally ranges from pH 4.0 to 4.4 (Hamann and 

Marth, 1984) which is suitable for long term refrigerated storage of Lactobacillus and 

Bifidobacterium species (Rivera-Espinoza and Gallardo-Navarro, 2010).  

The development of non-dairy probiotic products, such as fermented meats (e.g. 

dry sausages), cereals (e.g. sourdough), vegetables (e.g. sauerkraut) and fruit juices, is a 

challenging task for the food industry in its efforts to expand the range of probiotic 

containing foods (Luckow and Delahunty, 2004, Champagne et al., 2005). Table 1.3 

presents a list of potential non-dairy probiotic products which have been investigated. 

According to Luckow and Delahunty (2004), Champagne et al. (2005), and Rivera-

Espinoza and Gallardo-Navarro (2010), a number of factors need to be considered for 

the successful development of probiotic products including: i) strain selection, ii) 

physiological state of the probiotic strain, iii) physical conditions during processing and 

storage, iv) physicochemical parameters of the product, e.g. pH, water activity, carbon, 

nitrogen, mineral and oxygen content, and v) organoleptic properties and consumer 

acceptability. Considering the above criteria, it can be suggested that fruit juices are 

promising vehicles for the delivery of probiotics as they contain relatively high amounts 

of sugars, minerals, and vitamins, which could be used as energy and nutrition sources 

for the survival of probiotics during storage (Ding and Shah, 2008) and offer an 

alternative choice to consumers with lactose intolerance (Prado et al., 2008). Moreover, 

fruit juices have sensory profiles which are acceptable to all age groups and are also 

perceived by consumers as being healthy and refreshing foods (Rivera-Espinoza and 

Gallardo-Navarro, 2010).  
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Table 1.3 List of non-dairy products containing probiotics adapted from Granato et al. 
(2010) 

Category Product 
Fruit and vegetable based 
products 

 Vegetable-based drinks  
 Fermented banana pulp  
 Fermented banana   
 Beets-based drink   
 Tomato-based drink   
 Many dried fruits   
 Green coconut water   
 Peanut milk    
 Cranberry, pineapple, and orange juices 
 Ginger juice    
 Grape and passion fruit juices  
 Cabbage juice   
 Carrot juice    
 Noni juice    
 Onion     
 Banana puree  
 Non-fermented fruit juice beverages  
 Blackcurrant juice 

Soy based products  Non-fermented soy-based frozen desserts 
 Fermented soymilk drink   
 Soy-based stirred yoghurt -like drinks 

Cereal based products  Cereal-based puddings   
 Rice-based yoghurt   
 Oat-based drink    
 Oat-based products    
 Yosa (oat-bran pudding)  
 Mahewu (fermented maize beverage)  
 Maize-based beverage   
 Wheat, rye, millet, maize, and other cereals fermented 

beverages 
 Malt-based drink    
 Boza (fermented cereals)  
 Maize, sorghum, and millet malt fermented beverages 
 Millet or sorghum flour fermented beverage 

Other non-dairy products  Starch-saccharified drink  
 Cassava-flour product  
 Meat products  
 Dosa (rice and chickpea)  
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1.2.5. Probiotic-containing fruit juices 

A considerable amount of research has been conducted to address the cell survival 

relevant to the incorporation of probiotics in various fruit juices including orange, apple, 

kiwi, pineapple, peach, cranberry, cashew apple, strawberry, and pomegranate juices 

(Table 1.4). Strain selection is of high importance considering that not all species or 

strains can tolerate a highly acidic environment, such as that of fruit juices (pH 2.5 to 

3.5). Among the LAB, lactobacilli are considered more robust than other genera, such 

as lactococci and streptococci. Besides the intrinsic properties of the strains, the type of 

juice used affects cell survival significantly. For example, L. casei, L. rhamnosus and  

L. paracasei survived very well in orange and pineapple juice for more than 12 weeks 

of refrigerated storage, whereas in cranberry juice they died very quickly (<9 days) 

(Sheehan et al., 2007a). Very low survival was also observed for L. delbruekii and       

L. plantarum in pomegranate juice after 2 weeks of storage (Mousavi et al., 2011). 

Research carried out by our research group demonstrated that the cell viability of         

L. plantarum in cranberry juice decreased by more than 8 log CFU/ml within a week of 

storage (Nualkaekul and Charalampopoulos, 2011). These results were similar to the 

work of Sheehan et al. (2007a), who demonstrated that the cell viability of L. salivarius, 

L. casei and Bifidobacterium lactis decreased by more than 4 log CFU/ml while that of 

L. rhamnosus and L. paracasei decreased by approximately 3 log CFU/ml after 2 days 

of storage in cranberry juice (Sheehan et al., 2007a). The main physicochemical factor 

influencing cell survival is the pH of the juice; for example cranberry and pomegranate 

juices have a pH between 2.5 and 2.8, whereas the pH of orange, apple and pineapple is 

higher, ranging from 3.3 to 4.0. Besides pH, most juices have large amounts of organic 

acids, in particular citric and malic acid (Flores et al., 2012), which are likely to have 

adverse effects on cell viability in their undissociated form (this happens at a pH higher 
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than their pKa value), as they can easily enter into the cell leading to a decrease in 

intracellular pH (pHi) and eventually to cell death (Beales, 2004). Moreover, fruit juices 

and in particular juices from berries contain considerable amount of polyphenols, some 

of which have antimicrobial activities against LAB, including lactobacilli (Puupponen-

Pimiä et al., 2001).  
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Table 1.4 Survival of probiotic bacteria in various types of fruit juices  

Microorganism Fruit juices 

Starting 

cells 

(CFU/ml) 

Duration of 
storage when 
cell viability 
was higher 

than 106 
(CFU/ml) 

References 

 L. salivarius subsp. salivarius UCC118 
 L. salivarius subsp. salivarius UCC500 
 B. animalis subsp. lactis Bb-12 
 L. paracasei subsp. paracasei NFBC4338 
 L. rhamnosus GG 
 L. casei DN- 114 001 

 Orange 108 1 week 
1 week 
6 weeks 
>12 weeks 
>12 weeks 
>12 weeks 

(Sheehan et al., 
2007a) 

 L. salivarius subsp. salivarius UCC118 
 L. salivarius subsp. salivarius UCC500 
 B. animalis subsp. lactis Bb-12 
 L. paracasei subsp. paracasei NFBC4338 
 L. rhamnosus GG 
 L. casei DN- 114 001 

 Pineapple 
 

108 1 week 
1 week 
4 weeks 
>12 weeks 
>12 weeks 
>12 weeks 

 L. salivarius subsp. salivarius UCC118 
 L. salivarius subsp. salivarius UCC500 
 B. animalis subsp. lactis Bb-12 
 L. paracasei subsp. paracasei NFBC4338 
 L. rhamnosus GG 
 L. casei DN- 114 001 

 Cranberry 108 <1 week 

 L. acidophilus 
 L. brevis 
 L. rhamnosus 
 L. fermentum 
 L. plantarum 
 L. reuteri 

 Blend of 
pineapple, apple, 
orange, pear 
and/or grape, 
passion fruit, 
lemon and purees 
(peach, 
strawberry, 
mango and kiwi) 

107 4 weeks 
>11 weeks 
>11 weeks 
>11 weeks 
>11 weeks 
>11 weeks 
 

(Champagne and 
Gardner, 2008) 

 L. acidophilus DSMZ 20079 
 L. paracasei DSMZ 15996 
 L. plantarum DSMZ 20174 
 L. delbrueckii DSMZ 20006 

 Pomegranate 107 <1 week  
<1 week  
1 week 
1 week 

(Mousavi et al., 
2011) 

 L. acidophilus LA39 
 L. casei A4 
 L. delbrueckii D7 
 L. plantarum C3 

 Beetroot 106 2 weeks 
4 weeks 
4 weeks 
4 weeks 

(Yoon et al., 2005) 

 L. casei NRRL B-442  Cashew apple 107 6 weeks (Pereira et al., 
2011) 

 L. plantarum NCIMB 8826  Orange 
 Grapefruit 
 Blackcurrant 
 Pineapple 
 Lemon 
 Pomegranate 
 Cranberry 

108 6 weeks 
6 weeks 
6 weeks 
6 weeks 
6 weeks 
2 weeks 
<1 week  

(Nualkaekul and 
Charalampopoulos, 
2011) 

 

 

 

 



 

22 

1.2.6. Genetically modified (GM) probiotics in foods 

Although a variety of techniques has been developed to generate GM 

microorganisms, such as cloning systems, chromosome modification systems and 

expression systems, few GM products find their way into the food market because the 

food products produced with the aid of GM microorganisms are banned in many 

countries (Sybesma et al., 2006). For example, the regulation for GM foods in the 

European Union (EU) is very stringent. Any genetic modifications that do not occur 

naturally are considered as GM microorganisms which are unacceptable in food 

production (Kondo and Johansen, 2002). However, the regulatory standpoint on GM 

foods is different from country to country. In the United States of America (USA), the 

commercial opportunities for GM foods are more promising for the future than in EU 

because the FDA regulation for GM foods, which is known as generally recognized as 

safe (GRAS), focuses on the nature of the products, rather than the process in which 

they are created (Kondo and Johansen, 2002). This means that the method of deriving 

new GM foods is not the primary concern in the evaluation of safety but instead the 

safety of the final product is given the highest consideration. As a result many products 

produced from GM microorganisms are launched into the food market in USA, such as 

cellulase enzyme derived from a GM-Myceliophthora, eicosapentaenoic acid-rich 

triglyceride oil derived from a GM-Yarrowia lipolytjca. However, it needs to be noted 

that no products with live GM LAB has been released on the market (Sybesma et al., 

2006) or even accepted as GRAS yet. This might be due to the fact that GM LAB do not 

have a history of safe use as food ingredient which is the most important aspect of the 

GRAS criteria. Moreover, it is not possible to guarantee they are safe for human 

consumption based on limited scientific evidence currently available. To achieve this, 

the safety of GM microorganisms needs to be demonstrated including genetic stability, 
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potential gene transfer, and the interactions with indigenous microflora (Feord, 2002). 

Research in this area is very important as GM probiotics might be able to provide 

considerable, technological, functional and health benefits in the future.  

1.2.7. Survival of GM-probiotics in the gut 

It is well established that the beneficial effects of probiotics can be expected 

only when the cells are viable and thus are able to survive in the human gut. However, 

many potential probiotics die during passage through the GIT because they are 

challenged by many stressful conditions, such as acid stress, bile stress, oxygen stress, 

etc. Improving stress responses of probiotic strains by genetic modification might be an 

answer for enhancing the survival of probiotics during passage through the human gut. 

However, this strategy might not always ensure good survival in the GIT because of 

unintended effects occurring during genetic modification (e.g., inhibition of specific 

metabolites from the overproduction of certain proteins, toxicity associated with 

overexpression of target proteins), which might impact cell survival.  

To our knowledge, there is a limited number of studies on the survival of 

engineered stress resistant probiotics in the gut. The introduction of betL gene, encoding 

for a secondary glycine betaine transport system linked to the salt tolerance of Listeria 

monocytogenes, into Bifidobacterium breve UCC2003 was performed to improve the 

survival of Bifidobacterium breve UCC2003 in the gut, as this gene has been found to 

increase the pressure stress (Smiddy et al., 2004) and viability in certain foods (Sleator 

et al., 2003). It was found that the strain after insertion of the betL gene exhibited 

significantly increased tolerance to gastric juice and to conditions of elevated osmolarity 

mimicking the gut environment when compared to the control strain lacking betL gene 

(Sheehan et al., 2007b). Moreover, the strain having the betL gene was able to survive 
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and colonize better in murine intestine than the control strain (Sheehan et al., 2007b). 

Similarly, the transformation of bilE genes involved in bile stress response in Listeria 

monocytogenes were cloned into Lactococcus lactis NZ9000 and Bifidobacterium breve 

UCC2003. The results showed that both strains harbouring bilE genes exhibited 2.5 log 

CFU/ml higher survival rate than the wild type strains when grown in porcine bile at 

concentrations similar to that found in the intestine. Furthermore, they persisted longer 

in the murine GIT and were recovered in higher amounts from murine faeces compared 

to the control strains (Watson et al., 2008). Based on these promising results, it seems 

likely that a LAB strain engineered to be resistant to a variety of stresses could possibly 

be able to survive in the human gut better than wild type strains. This is a line of 

research worth exploring in an effort to improve the technological and functional 

properties of probiotics.  

1.3. 9BLAB 

1.3.1. 36BThe taxonomy of LAB  

As mentioned above, LAB are the bacteria that are most commonly used as 

probiotics. Species of the genera Carnobacterium, Enterococcus, Lactobacillus, 

Lactococcus, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, 

Vagococcus and Weissella are typical LAB associated with foods (Vandamme et al., 

1996). The term LAB was introduced because these bacteria have the ability to ferment 

and coagulate milk and form lactic acid as a major end product. In 1919, Orla Jensen 

classified LAB based on their morphological and physiological characteristics. For 

several decades, the taxonomy of LAB was based on classical approaches. On account 

of the advances in molecular techniques, polyphasic approaches including 

chemotaxonomic and phylogenetic studies have become key criteria for the 
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classification of LAB. With the application of new bacterial systematics, LAB are 

recognized as a part of Gram-positive bacteria with low G+C content in DNA (≤55 

mol%) and belong to the phylum Firmicutes, class Bacilli, and order Lactobacillales 

(Garrity and Holt, 2001). They are represented as a group of bacteria distributed in six 

families: Aerococcaceae (7 genera), Carnobacteriaceae (16 genera), Enterococcaceae 

(17 genera), Lactobacillaceae (3 genera), Leuconostoccaeae (4 genera) and 

Streptococcaceae (3 genera) (Tsakalidou and Papadimitriou, 2011). In total, more than 

40 genera of LAB have been established; the largest genus is Lactobacillus which was 

first proposed by Beijerinck in 1901 (Versalovic and Wilson, 2008). Lactobacilli are 

Gram-positive bacteria, usually non-motile, non-spore forming rods and lack 

cytochromes as well as porphyrins. They are catalase negative, aerotolerant anaerobes, 

fastidious, acid-tolerant, and strictly fermentative. Their optimum growth temperature 

and pH range between 30 and 40 °C and from 5.5 to 6.2, respectively (Axelsson, 2004). 

At the time of writing, this genus comprised 214 recognized species. However, some 

species of the Lactobacillus genus have not been confirmed, as the phylogenetic 

relationship alone is not enough to elucidate the taxonomy. In order to resolve this 

issue, Claesson et al. (2008) used an array of whole-genome and single-marker 

phylogenetic approaches to establish four sub-generic groups, namely, Group A          

(L. acidophilus, L. helveticus, L. delbrueckii subsp. bulgaricus, L. johnsonii, and            

L. gasseri), Group B (L. salivarius, L. plantarum, L. reuteri, L. brevis, and Pediococcus 

pentosaceus), Group C (L. sakei and L. casei), and Group D (Leuconostoc 

mesenteroides and Oenococcus oeni).  
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1.3.2. Overview of stress response in LAB 

The LAB is a highly heterogeneous group, as these bacteria can be isolated from 

various environments, which reflects the diverse properties of this group. For example, 

Lactobacillus suebicus is able to grow at pH 2.8, Enterococcus faecium is able to 

survive to pH as high as 9.6, Carnobacterium viridans tolerates up to approximately   

26 % NaCl, Leuconostoc gelidum can survive at low temperature (0 to 2 °C), and              

L. delbrueckii subsp. delbrueckii can endure high temperatures (55 °C) (Tsakalidou and 

Papadimitriou, 2011). The reason that LAB can survive in adverse environments is that 

they have developed stress-sensing systems and defence mechanisms (Hartke et al., 

1996, Van de Guchte et al., 2002, Spano and Massa, 2006, Lorca and de Valdez, 2009). 

Like most other living organisms, LAB have genes/regulators responsible for each 

stress; the activation of defence mechanisms against a specific stress is commonly 

induced by the expression of several gene clusters resulting in a series of changes in 

their global regulatory network (VanBogelen et al., 1999, Van de Guchte et al., 2002, 

De Angelis and Gobbetti, 2004). For example: i) Heat shock induces the synthesis of a 

specific set of proteins known as heat shock proteins which are controlled by several 

regulators (Class I: HrcA, Class II: sigma factor, Class III: CtsR, and Class IV: 

unknown regulators). These proteins protect the cells by reducing the degradation and 

aggregation of proteins caused by high temperature. ii) Cold stress induces the synthesis 

of another set of proteins called cold shock proteins for which the control regulator is 

not clear. These proteins are synthesized in order to maintain membrane fluidity by 

increasing the degree of unsaturated fatty acids and increase the rate of transcription as 

well as translation by declining the coiling of a DNA strand. iii) Acid stress induces the 

synthesis of several proteins that are related to various stress response systems, such as 

F-ATPase, arginine/agmatine deiminase (ADI/AgDI), decarboxylases, cell membrane 



 

27 

and cell envelope biosynthesis. These proteins are produced to control ∆pH 

homeostasis, protect proton influx and repair damage of other proteins in response to 

acid stress. Moreover, the time required to initiate a stress response depends on the type 

of stress. For example, the response to acid, heat and osmotic shock requires less time 

(min), with acid stress requiring less than 20 min for the majority of changes to take 

place in the cell membrane, whereas the response to cold shock requires more time (h) 

(Fozo and Quivey Jr, 2004, Tsakalidou and Papadimitriou, 2011).  

1.3.3. Responses of LAB to acid stress  

Acid stress response has been previously reported in several LAB, e.g. 

Lactococcus lactis (Budin‐Verneuil et al., 2005), L. bulgaricus (Fernandez et al., 2008), 

L. reuteri (Rollan et al., 2003), L. delbrueckii subsp. bulgaricus (Zhai et al., 2014),      

L. casei (Wu et al., 2012b), L. rhamnosus (Koponen et al., 2012), L. acidophilus (Lorca 

and de Valdez, 2001), L. helveticus (Guerzoni et al., 2001), L. plantarum (Pieterse et 

al., 2005) and L. sanfranciscensis (De Angelis et al., 2001). According to these studies, 

multiple systems have been proposed as the systems used by LAB to maintain their 

viability in low pH environments; the main ones include ∆pH homeostasis and 

alkalization of the external environment, and cell envelope alteration. 

The main biochemical pathways involved in ∆pH homeostasis and the 

alkalization of the external environment include: increased H+-ATPase or F-ATPase 

activities (Kullen and Klaenhammer, 1999), the ADI and AgDI pathway (De Angelis et 

al., 2002, Lucas et al., 2007), glutamate decarboxylase (GAD) (Sanders et al., 1998, Su 

et al., 2011) and the citrate fermentation pathway (Martín et al., 2004). H+-ATPase or 

F-ATPase enzymes pump protons outside the cell via adenosine triphosphate (ATP) 

hydrolysis. This activity increases as the pH decreases and it has been demonstrated that 
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it is essential for cell viability at low pH (Kobayashi et al., 1984, Kobayashi et al., 

1986, Nannen and Hutkins, 1991, Yokota et al., 1995, Miwa et al., 1997). The ADI 

pathway converts arginine to ammonia, ornithine/putrescine and carbon dioxide (CO2). 

Ammonia production contributes to survival at low pH through the neutralization of the 

medium (Poolman et al., 1987). GAD converts glutamate to γ-aminobutyric (GABA) 

and CO2, a proton consuming reaction, which also contributes towards the reduction of 

pHi (Sanders et al., 1998, Azcarate-Peril et al., 2004, Feehily and Karatzas, 2013). The 

citrate fermentation pathway involves the release of lactate from the cytoplasm out of 

the cells through the exchange with divalent citrate present in the media. This system 

generates a proton motive force (PMF) which can be used for ATP synthesis in order to 

pump protons out of the cells (Pudlik and Lolkema, 2011a). 

The second system of acid stress in LAB involves structural changes of the cell 

envelope. The aim of these changes is to decrease the influx of protons into the cells. 

More specifically, in order to decrease proton permeability into the cell, LAB can 

change the fatty acid composition of the cell membrane, in particular the ratio of 

unsaturated and saturated fatty acids as well as the concentration of cyclopropane fatty 

acid (CFA) (Guerzoni et al., 2001, Streit et al., 2008, Montanari et al., 2010, Wu et al., 

2012b). Additionally, there are suggestions of an association between peptidoglycan 

synthesis and teichoic acid in the cell wall, which is responsible for binding of cations 

(Swoboda et al., 2010), and sensing environmental stress (Jordan et al., 2008).  

1.3.3.1. The role of F-ATPase in acid stress response 

A number of studies have established that the membrane bound F-ATPase is 

involved in enhancing the survival of bacteria such as Salmonella typhimurium 

(Kobayashi et al., 1984, Kobayashi et al., 1986),  Listeria monocytogenes (Cotter et al., 
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2000), Lactococcus lactis and L. casei (Nannen and Hutkins, 1991, Yokota et al., 1995) 

when challenged by acidic conditions. The main function of F-ATPase is to remove 

protons from the cytoplasm by pumping them through the membrane-bound subunit, at 

the expense of the ATP which is produced during glycolysis. The result is a cytoplasm 

that is more alkaline than the external environment. Amplification of the proton-

translocating ATPase was shown to be involved in the regulation of cytoplasmic pH in 

Enterococcus hirae (Kobayashi et al., 1984). Subsequent studies showed that the 

differences in proton movement were directly attributed to the amount of F-ATPase 

being produced (Bender et al., 1986, Belli and Marquis, 1991). Correspondingly, 

Nannen and Hutkins (1991) demonstrated that the specific activity of F-ATPase from 

LAB increases as the extracellular pH moves from neutral to acidic. The F-ATPase 

structure was first established in E. coli by Walker et al. (1984) and consists of eight 

subunits. Five subunits (α, β, γ, δ, and ε) constitute a globular structure F1, which is an 

extrinsic membrane domain, while the remainders (a, b, and c) form an intrinsic 

membrane-bound subunit, F0. The F-ATPase in E. coli is encoded by the apt operon 

containing nine corresponding genes which are designated as A, B, C, D, E, F, G, H, 

and I (atpIEBFHAGDC), whereas F-ATPase in L. acidophilus is organized somewhat 

differently. It contains only eight corresponding genes, atpBEFHAGDC, in which the 

atpI, an unknown function gene, is absent (Kullen and Klaenhammer, 1999). The 

atpBEF gene encodes the membrane-bound element of the enzyme while the 

atpHAGDC establishes the catalytic site for ATP hydrolysis. Overall, the role of          

F-ATPase in the survival of LAB during acid stress is not clearly elucidated. However, 

in a previous study, Yokota et al. (1995) compared the survival of a Lactococcus lactis 

strain with that of its mutants, which were lacking F-ATPase, under growth conditions 

at pH 6 and 4. The parent strain showed significantly better survival in acidic conditions 
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than the mutant strains, indicating that membrane-bound ATPase is essential for this 

microorganism to survive at low pH, probably through its function of proton pumping 

for maintaining cytoplasmic pH levels. This confirmed previous work, which showed an 

upregulation of genes related to F-ATPase in LAB at low pH. For example, Kullen and 

Klaenhammer (1999) showed a significant upregulation of the atpBEF genes in            

L. acidophilus when incubated in de Man, Rogosa and Sharpe medium (MRS) at pH 3.5 

compared to pH 5.6, whereas Ventura et al. (2004) demonstrated a rapid 15 fold 

increase in the expression of the atpD gene in Bifidobacterium lactis after exposure to 

MRS at pH 3.5 compared to pH 6.0. Duary et al. (2010) also demonstrated that 

increased transcription of the atpD gene following incubation of L. plantarum in MRS 

at different pH (pH 2.5, 3.5, 4.5 and 6.5) was correlated with increased acidity of the 

medium. 

1.3.3.2. The role of ADI/AgDI pathway in acid stress response 

The production of ammonia, which helps to raise the pHi, appears to be one of 

the key mechanisms of acid resistance in LAB (Rollan et al., 2003, Wu et al., 2012a, 

Zhang et al., 2012). Ammonia can be produced through the fermentation of arginine 

and the less abundant amino acid agmatine. Some genera of LAB, including lactococci, 

streptococci, and lactobacilli can utilize the ADI pathway to survive in acidic 

environments. The ADI system converts arginine to ornithine, ammonia and CO2, while 

concomitantly generating one mole of ATP, as shown in figure 1.1. The generation of 

ammonia increases the pHi through the alkalization of the cytoplasm. This system is 

repressed by carbohydrates and is induced by arginine, but it is not clear whether 

induction is influenced by environmental pH (Poolman et al., 1987, Curran et al., 1995). 

The genetic organization of this system (arcABCTD) has been examined and consists of 
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arcA (encoding arginine deiminase), arcB (encoding ornithine transcarbamylase), arcC 

(encoding carbamate kinase), arcT (encoding putative transaminase), and arcD 

(encoding putative arginine/ornithine antiporter) (Zuniga et al., 1998). In addition to the 

ADI system, some LAB such as Streptococcus mutans (Griswold et al., 2004) and 

Lactobacillus brevis (Lucas et al., 2007) utilize agmatine as a substrate through the 

AgDI pathway to produce ammonia resulting in acid protection. The biochemical 

pathway is similar to that of the ADI system; in this case agmatine is converted to 

putrescine (Figure. 1.1). The genetic organization of the AgDI pathway operon in 

Lactobacillus brevis is aguRBDAC (Lucas et al., 2007). The role of ADI pathway in 

response to acid stress was confirmed by Wu et al. (2012a) and Zhang et al. (2012) who 

reported that the cell survival of L. casei in acidified MRS using lactic acid at pH 3.3 

was improved (by ∼1.4 to ∼3.4 times) after adding 50 mM of aspartate or arginine into 

the media. More specifically, added aspartate can be absorbed and converted to arginine 

by argininosuccinate synthetase (Ass) and argininosuccinate lyase (Asl), while added 

arginine can be directly utilized leading to the production of ammonia via the ADI 

pathway in order to reduce the pHi.  

 

Figure 1.1 Simplified schemes describing the ADI and AgDI pathways in LAB 
(Griswold et al., 2009). 
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1.3.3.3. The role of decarboxylation reaction in acid stress response 

Although several systems are utilized by LAB to withstand low pH, the GAD 

system is deemed to be one of the most important systems for acid resistance. GAD is 

present in many bacteria, but it varies across species. Lactobacilli seem to possess only 

one decarboxylase and one antiporter, which are gadB and gadC, respectively (Feehily 

and Karatzas, 2013). The GAD, gadB, converts internalized glutamate to GABA 

through the consumption of a proton with the concomitant production of a molecule of 

CO2, while the putative membrane protein, gadC, is suggested to be involved in the 

antiporter of glutamate and GABA. The net result of the combined action of gadCB is 

the removal of a proton from the cytosol, which leads to an increase in the internal pH. 

However, this system requires the presence of glutamate and Cl- ions (Sanders et al., 

1998). Chloride-dependent activation of gadCB is controlled by gadR, a regulatory gene 

located just upstream of gadCB. Overall, a putative GAD system has been shown to 

confer acid resistance to LAB in media supplemented with glutamate (Komatsuzaki et 

al., 2005, Su et al., 2011). Although there are no published work confirming whether 

the GAD system can enhance the survival of LAB, it is interesting to note that L. reuteri 

wild type cells incubated in phosphate buffer with 10 mM glutamate (pH 2.5 using HCl, 

37 °C, 24 h) were able to produce and secrete GABA out of the cells but this was not 

the case of the mutant strain which lacked gadB (Su et al., 2011).  

1.3.3.4. The role of the citrate fermentation pathway in acid stress response 

The citrate fermentation pathway has been implicated in the acid adaptation of 

LAB and has been studied in detail, primarily in Lactococcus lactis (García-Quintáns et 

al., 1998). This pathway involves the uptake of citrate into the cell by exchange of 

lactate produced from the glycolysis pathway. Once citrate is inside the cell, it is 
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converted to pyruvate; for this to be done three enzymes are required, i.e. citrate 

permease, citrate lyase and oxaloacetate decarboxylase (Hugenholtz, 1993). The first 

step is the conversion of citrate to acetate and oxaloacetate by citrate lyase. Then, 

oxaloacetate is converted to pyruvate and CO2 by consuming a proton which is 

catalyzed by oxaloacetate decarboxylase as shown in figure 1.2. It has been suggested 

that the presence of citrate in the growth medium induced the activity of citrate lyase 

(Bekal-Si Ali et al., 1999, Bott, 1997, Martín et al., 2000). The genetic organization for 

citrate fermentation in Lactococcus lactis (citM-citCDEFXG) has been examined and 

consists of citM (encoding malic enzyme), citCXG (encoding accessory genes required 

for the synthesis of an active citrate lyase complex), and citFED (encoding the α, β, and 

γ subunits of citrate lyase (Martín et al., 2004). According to Martı́n et al. (1999) and 

Pudlik and Lolkema (2011a) the citrate fermentation pathway also generates a PMF 

through the electrogenic membrane exchange of divalent citrate and monovalent lactate, 

which is catalyzed by citrate permease (citP). The expression of this gene is induced at 

a transcriptional level by the acidification of the medium (García-Quintáns et al., 1998, 

Martı́n et al., 1999, Martín et al., 2004). The citrate fermentation pathway is utilized by 

LAB, including members of the genera Lactoccocus, Lactobacillus, Leuconostoc and 

Pediococcus (Poolman et al., 1991). In contrast, the malolactic fermentation pathway 

uses the PMF generated from the exchange of malate instead of citrate to secrete lactic 

acid out of the cytoplasm in order to help the cells survive in acidified conditions 

(Sheng and Marquis, 2007). Although there is no information currently demonstrating 

an improvement of cell viability after acid stress and the potential role of the citrate 

fermentation pathway, it must be noted that citric acid has been shown to support         

L. plantarum DSM 20174 growth under acidic conditions (pH 4 to 5) when used in 
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combination with glucose, although to a lesser extent than when used as the sole carbon 

source (Kennes et al., 1991). 

 

Figure 1.2 Response of the cit operons to acidic stress and the contribution to pH 
homeostasis in Lactococcus lactis CRL264 (Martín et al., 2004) 

1.3.3.5. The role of cell membrane fatty acids in acid stress response 

It is well documented that the proton permeability through the cell membrane is 

regulated by the membrane fluidity, which depends on the membrane fatty acid 

composition (Lemos et al., 2005). Bacteria are able to change their membrane 

composition in response to external stimulants, in order to maintain a degree of 

membrane fluidity which improves their survival (Beney and Gervais, 2001). Even 

though there are several external influences that affect the integrity and properties of the 

cell membrane in harsh environments, acid stress is one of the factors that has an impact 

on the cell membrane fluidity. Many previous reports have suggested that a relationship 
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exists between acid stress and change in membrane fluidity (Lemos et al., 2005, Zhang 

and Rock, 2008). At low pH, the cellular adaptive mechanisms induce a decrease in the 

unsaturated membrane fatty acid content, which leads to an increase in the fluid-to-solid 

phase transition and to a decrease in membrane fluidity; this phenomenon which is 

known as homeoviscous adaptation has been reported for a number of LAB. Broadbent 

et al. (2010) reported that acid adaptation of L. casei cells at low pH, using MRS 

acidified with HCl at different pH (pH 3 to 5, 37 °C, 10 to 20 min), led to a decrease in 

the proportion of the unsaturated to saturated fatty acid and to an increase in the amount 

of CFA when the cell were exposed to MRS acidified with HCl (pH 2, 37 °C, 140 min). 

These changes led to a decline in membrane fluidity. A similar change in cyclopropane 

composition during acid stress, as the means for maintaining their membrane fluidity, 

was also reported for L. helveticus (Montanari et al., 2010). Moreover, Wu et al. 

(2012b) demonstrated that a L. casei mutant strain, which was obtained by serial sub-

culturing the cells in MRS medium (pH 4.3) for 70 days, showed better survival in 

acidified solutions (pH 2.5 and 3.0) than the parent strain. They attributed this partly to 

the higher amount of cyclopropane (octadecanoic acid, C19cyclo) in the mutant strains    

(3 % higher cyclopropane than the parent strain initially (i.e. 0) and 9 % higher 

cyclopropane after 60 min in acidified solutions). The overexpression of the 

cyclopropane synthase (cfa) gene in L. plantarum during acid stress was reported (Seme 

et al., 2015), although fatty acid analysis was not done in that study. Overall, the above 

indicate that during acid stress, changes in the membrane fatty acids composition, 

particularly increases in the degree of saturated fatty acids and the levels of 

cyclopropane, most likely affect to membrane fluidity and thus the influx of protons, 

and consequently could possibly play an important role in the survival of L. plantarum 

at low pH.  
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1.3.3.6. The role of cell wall peptidoglycan in acid stress response 

Peptidoglycan is a major component of the Gram positive cell wall and its role is 

to maintain the cell shape and structure, which are important features influencing cell 

viability (Tiyanont et al., 2006). Peptidoglycan consists of sugars and amino acids; the 

sugar components are made of alternating N-acetylglucosamine (GlcNAc) and             

N-acetylmuramic acid (MurNAc) linked by β-1,4 bonds, whereas amino acids, or 

peptide chains containing 3 to 5 amino acids, are covalently linked through the 

MurNAc. These peptide chains have diverse amino acid composition, depending on the 

different species, and can be cross-linked directly or indirectly by an interpeptide cross-

bridge, i.e. a short chain of one or more amino acids (Figure 1.3). Typically, the stem 

peptide sequence in LAB is L-Alanine-γ-D-Glutamate-X-D-Alanine, where the third 

amino acid (X) is L-lysine in Lactococcus lactis and most lactobacilli; however it can 

also be diaminopimelic acid (DAP) in L. plantarum or L-ornithine in L. fermentum 

(Chapot-Chartier and Kulakauskas, 2014). 

An important group of molecules found within the cell wall of Gram positive 

bacteria, including lactobacilli such as L. plantarum, is wall teichoic acids (WTA) (Bron 

et al., 2012, Tomita et al., 2012). WTA are covalently attached to peptidoglycan by a 

disaccharide as shown in the figure 1.4. Recent studies have reported the binding of    

D-alanine to WTA, which can reduce the negative charge of the cell envelope (Giaouris 

et al., 2008, Swoboda et al., 2010, Brown et al., 2013), which might have potential 

implications in acid stress response of bacteria with potential effects on how WTA bind 

to D-alanine via a process known as D-alanylation or teichoic acid alanylation. The 

phosphodiester linkage between the D-alanyl ester residue and the sn glycerol              

1-phosphate of teichoic acids, which is controlled by dltABCD operon (Weidenmaier 

and Peschel, 2008, Brown et al., 2013), can reduce the negative charge of the cell 
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envelope; this can be attributed to the protonated amino group of the D-alanyl ester 

residue, which acts as a counter ion to the negatively charged phosphate group of the 

glycerol 1-phosphate unit of teichoic acid (Neuhaus and Baddiley, 2003). It seems 

likely that the higher the D-alanine content, the more positively charged the cell 

envelope. Moreover, proteomic analysis of acid treated L. casei indicated that the 

MurA, MurG and Ddl enzymes, which are involved in peptidoglycan biosynthesis, were 

overexpressed during acid stress at pH 3.5 compared to pH 6.5 (Wu et al., 2012a) 

indicating a potential link between peptidoglycan biosynthesis and acid stress response. 

To our knowledge, the potential involvement of teichoic acid in response to acid stress 

has not been investigated for LAB. The hypothesis investigated in this thesis is that the 

changes occurring in the configuration of teichoic acid due to D-alanylation, which 

should reduce the overall negative charge, are responsible for controlling the influx of 

protons inside the cytoplasm and hence contribute to acid tolerance of cells. 
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Figure 1.3 Schematic representation of the main aspects of the structure of 
peptidoglycan (Chapot-Chartier and Kulakauskas, 2014). 

 

Figure 1.4 Teichoic acid polymers located within the Gram-positive cell wall (Brown et 
al., 2013). 

N-acytylglucosamine (Glc) 
N-acytylmuramic acid (Mur) 
L-Alanine (L-Ala) 
D-Glutamic (D-Glu) 
L-Lysine (L-Lys) 
D-Aspartic acid (D-Asp) 
O-acetylation (O-Ac) 
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1.4. Aims and objectives  

The aims of this study were to evaluate the potential of using an acid adaptation 

method to enhance the survival of a model potential probiotic strain (L. plantarum 

NCIMB 8826) during storage in various fruit juices, and to investigate the possible 

mechanisms involved. The main objectives were: 

1. To study the effects of acid adaptation on subsequent cell survival during storage 

in fruit juices and optimize the conditions for acid adaptation (e.g. acid type, acid 

solution, time). 

2. To investigate the mechanisms leading to potential improvement in the survival of 

acid adapted cells in fruit juices using complementary approaches, including cell 

morphology analysis, extracellular and intracellular compounds analysis (e.g. 

organic acids, GABA, amino acids), and proteomic analysis. 
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CHAPTER 2 

The effect of citric acid adaptation on the subsequent survival 

of L. plantarum NCIMB 8826 in fruit juices during 

refrigerated storage 

2.1. Introduction  

The development of new products is an essential part of a successful business 

strategy to ensure that business is productive and competitive within the global market. 

In this respect, the development of non-dairy products, such as fermented meats, cereal-

based beverages and fruit juices containing probiotics is a challenging task with high 

potential for commercialization by the food industry (Luckow and Delahunty, 2004, 

Champagne et al., 2005). Fruit juices are suitable vehicles for the delivery of probiotics 

as they contain high amounts of sugar, minerals and vitamins which could be used as 

energy and nutrition sources for the survival of probiotics during storage (Ding and 

Shah, 2008). Moreover, they not only are consumed frequently and loyally by 

consumers but also are an alternative choice for lactose intolerant individuals who are 

looking for non-dairy functional products to include in their daily diet (Prado et al., 

2008).  

The survival of probiotics within any carrier food matrix is a major issue for new 

product development, as a large number of cells die during processing and storage and 

also during passage through the GIT following ingestion (Vinderola et al., 2000, Shah, 

2000, Gueimonde et al., 2004). In the case of fruit juices, their low pH (ranging 

between 2.5 and 3.8) has an adverse effect on bacterial survival (Champagne et al., 

2005, Sheehan et al., 2007). In order to convey their health benefits, the minimal dose 

required for efficacy is suggested to be over 107 CFU/g or ml of product (Corcoran et 
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al., 2007). However, the cell concentration might vary between different probiotic 

products (e.g. 109 CFU/serving is recommended by FAO/WHO; Hill et al., 2014) as the 

beneficial effects of probiotics are influenced by various factors, including the intrinsic 

properties of the strain used, the type of product and storage conditions, as well as the 

target site in the GIT. Therefore, the minimal dose required for a probiotic product to 

exert a beneficial health effect needs to be established ideally by clinical trials before 

making a potential claim. To meet the minimal dose requirements for probiotic 

applications, many approaches have been used to ensure probiotic survival during food 

production, storage, and in the GIT, including selecting suitable food systems (Corcoran 

et al., 2005), microencapsulation (Nualkaekul et al., 2012), and stress adaptation 

(Saarela et al., 2011). Among these, the ability of bacterial cells to adapt to 

unfavourable environments through the induction of various stress responses prior to 

their incorporation into the food matrix seems to be a promising approach, as it would 

require less process alterations, capital investment and product re-design compared to 

other approaches, such as encapsulation. 

For many LAB species a short acid adaptation period, before transferring them 

to harsh acidic environments often results in cells which are able to survive longer 

compared to those with non-adapted cells. This strategy allows the cells to activate their 

defence mechanisms for protecting themselves before passing through adverse 

conditions. Such mechanisms include the upregulation of stress response proteins, 

particularly chaperone proteins which play an important role in protein homeostasis 

(Hartke et al., 1996, Lim et al., 2000, Wu et al., 2014) and the reduction of membrane 

fluidity through the alteration of cell membrane fatty acids which can protect against the 

influx (Montanari et al., 2010, Wu et al., 2012). As a result, acid adaptation has been 

used to improve cell survival of LAB in acidic conditions in many studies. For instance, 
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exposure of L. acidophilus cells for 15 to 60 min in MRS acidified to different pH 

values (pH 3.8 to 6.0) resulted in an increase in their acid tolerance during subsequent 

incubation in MRS at pH 3 (Lorca et al., 1998). Similarly, 16 h exposure of 

Bifidobacterium longum in MRS supplemented with 0.05% L-cysteine, acidified at pH 

4 and 5 resulted in more resistant cells which survived well in artificial gastric solution 

(pH 2) (Sanchez et al., 2007). Exposure of L. casei to MRS at pH 4.5 for 1 h was able to 

enhance its survival in acidified MRS at pH 3.5 compared to 1 h exposure in MRS at 

pH 5 and 6 (Wu et al., 2014). Moreover, 30 min exposure of L. plantarum in acidified 

MRS (pH 4.5 and 5.0 using HCl), extensively increased its tolerance in acidified MRS 

(pH 2) for up to 90 min compared to the control, (30 min in MRS at pH 7) (Seme et al., 

2015). Based on this concept, exposure of probiotic cells to acid prior to their 

incorporation into fruit juices seems to be a promising approach for reducing cell injury 

and loss of viability during storage in juices, caused by the high acidity of the juices. 

Although this has been shown previously by Saarela et al. (2011) with Bifidobacterium 

animalis subsp. lactis, the improvement in cell viability obtained in their study was not 

enough for the method to be translated into a commercial application. In order to 

develop a suitable acid adaptation method, a number of factors should be investigated 

including the physiological state of the cells at the time of exposure to the acid 

solutions, the types of acid used, the time of exposure, and the intrinsic properties of the 

probiotic strains. 

It is well known that stationary phase cells are more robust to various types of 

stresses than exponential phase cells (Lee et al., 1994, Storz and Hengge, 2011), 

because bacterial cells enter the stationary phase of growth when the environment is not 

appropriate for them to grow; due to the depletion of nutrients and/or the accumulation 

of waste products. In order to survive in such conditions, the cells need to change their 
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physiology and morphology (e.g. upregulation of genes) enabling them to rapidly adapt 

to those stresses (Bačun-Družina et al., 2011). Consequently, only cells which can adapt 

remain viable during a prolonged stationary phase. This means that the viable cells 

obtained from this stage of cell growth should be more robust toward stresses than those 

derived from exponential phase which have not been exposed to considerable stresses. 

For these reasons, studies on the long-term survival of cells in acidic food formulations 

(e.g. acidified milks, juices) often employ stationary phase cells. For example, treatment 

of stationary phase Lactobacillus cells with acid has been shown to increase the 

tolerance of the cells to low pH during subsequent storage in acidic solutions and media 

(Bâati et al., 2000, Lorca and de Valdez, 2001, Saarela et al., 2004, Seme et al., 2015). 

Regarding the acid type, many studies have been conducted using different acids for 

bacterial adaptation, including lactic acid (Lorca and de Valdez, 2001), HCl (Rallu et 

al., 1996) and malic acid (Saarela et al., 2011), but none have compared the degree of 

acid tolerance caused by the different types of acid. Using different types of acid for cell 

adaptation could lead to different levels of acid adaptation and therefore cell survival. 

Moreover, Beales (2004) suggested the occurrence of synergistic effects between pH 

and the undissociated form of a weak acid on cell survival, leading to increased acid 

tolerance than when using a strong acid. Interestingly, the study of García-Quintáns et 

al. (1998) highlighted the positive effect of citrate adaptation in improving the acid 

tolerance of Lactococcus lactis grown in M17 medium with no pH control. This finding 

relates to the results by Nualkaekul and Charalampopoulos (2011) and Mousavi et al. 

(2011) who suggested that the high concentration of citric acid in fruit juices improved 

the survival of L. plantarum during refrigerated storage. However, the exact role of 

citric acid adaptation in the survival of LAB during storage is not understood. 
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Following on from their work, in this study citric acid was one of the acids used to 

adapt stationary phase L. plantarum cells in order to elucidate its mode of action. 

Besides acid exposure, cold adaptation has also been suggested as a suitable 

strategy for enhancing the shelf life of probiotics during refrigerated storage (Panoff et 

al., 1994, Kim and Dunn, 1997). Some reports have demonstrated that an acid 

adaptation can also improve the cryotolerance of L. reuteri (Palmfeldt and Hahn-

Hägerdal, 2000), L. acidophilus (Wang et al., 2005) and L. delbrueckii (Streit et al., 

2008). From these studies, it seems likely that there is a link between acid and cold 

adaptation. To this end, combinations of acid and cold adaptation were investigated in 

this study as the means for enhancing cell survival during subsequent storage in fruit 

juices at 4 °C. 

Various studies have been conducted to identify the potential use of fruit juices as 

carrier food vehicles for probiotics, including orange, apple, kiwi, pineapple, peach, 

cranberry, pomegranate and strawberry juices (Vinderola et al., 2002, Sheehan et al., 

2007, Mousavi et al., 2011). Some fruit juices displayed very low cell viability during 

refrigerated storage, particularly cranberry juice (no viable cells after 1 week of 

refrigerated storage) most likely due to its low pH (~2.5) and high phenolic compound 

content (Sheehan et al., 2007, Nualkaekul and Charalampopoulos, 2011).  

L. plantarum NCIMB 8826 has been selected for this thesis as it meets several 

criteria proposed in the FAO/WHO guidelines (2002) for the evaluation of probiotics in 

foods and it is one of the core groups of well-studied probiotic species that can claim 

the general beneficial effects on gut physiology and health at species level without 

conducting clinical trials (Hill et al., 2014). More specifically, this strain has been 

isolated from human saliva (Hols et al., 1997), has a good safety record (De Vries, 

2006), has been shown to survive well in model gastric solutions at pH < 3 
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(Charalampopoulos et al., 2003, Parente et al., 2010) and in conditions of the upper 

human digestive tract (mouth to ileum) (Vesa et al., 2000), and has been shown to exert 

immune (Pochard et al., 2005) as well as anti-inflammatory activities in vitro (Foligne 

et al., 2007) and in animal studies (Foligné et al., 2006). Moreover, it has been shown 

that it can decrease the epithelial barrier dysfunction in human subjects (Karczewski et 

al., 2010).  

2.2. Materials and methods 

2.2.1. Bacterial strain  

L. plantarum NCIMB 8826 (National Collection of Industrial and Marine 

Bacteria, UK) was used throughout this study. The stock culture was stored at -80 °C in 

MRS (Oxoid, UK) containing 10% (v/v) glycerol (Sigma-Aldrich, UK).  

2.2.2.  Fruit juices 

Three commercial fruit juices, namely cranberry (OceansprayTM), pomegranate 

(PureplusTM) and lemon & lime (This water®), available on the UK market, were used 

in this study. The cranberry juice consisted of water (83%), cranberry juice from 

concentrate (27%), sugar (11 g/100 ml), and vitamin C (32 mg/100 ml). The 

pomegranate juice consisted of water (68%), pomegranate juice from concentrate 

(32%), sugar (11.7 g/100 ml), protein (0.2 g/100 ml) and fat (0.2 g/100 ml). The lemon 

& lime juice consisted of fresh lemon and lime juice (100%). All fruit juices used in this 

experiment had no preservatives or additives.  

2.2.3. Growth of L. plantarum NCIMB 8826 

Initially, the growth of L. plantarum NCIMB 8826 was monitored every 3 h in 

MRS broth incubated at 37 °C for 30 h in order to identify the early stationary phase of 
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the cell growth and thus the optimum harvest time for the cell adaptation experiments. 

To prepare the inoculum, a two-step propagation procedure was used; the cells were 

thawed from a cryovial and transferred onto MRS agar by streak plating. After 

incubation (3 days, 37 °C), a single colony was inoculated into 25 ml of MRS broth and 

grew overnight for 18 h at 37 °C. The growth of the bacterial culture was measured 

using a spectrophotometer (Biomate 3, Thermo Scientific, UK) at 600 nm. It needs to be 

noted that the cell culture was serially diluted with fresh MRS before measuring the 

optical density (OD). The final OD600 value was calculated back to the original 

concentration by multiplying with dilution factor. Then, an appropriate volume of the 

overnight culture (18 h) was calculated and inoculated into fresh 250 ml of MRS broth 

to obtain a starting OD600 of ~0.2. The new culture was incubated at 37 °C in an orbital 

shaker (KS 501 digital, IKA, Germany) set at 200 rpm for 30 h. A 15 ml aliquot of this 

culture was collected every 3 h and the pH was immediately measured using a pH meter 

(S20 SevenEasyTM, METTLER TOLEDO, UK), while the cell viability was determined 

by the spread plate method on MRS agar, incubated at 37 °C for 3 days. The colonies 

were counted using a colony counter (Colony counter SC5, StuatTM, UK). The results 

were expressed as CFU/ml. Biological triplicate comprising technical triplicate were 

conducted for this experiment. The data shown are expressed throughout as mean ± 

standard deviation (SD). 

2.2.4. Effects of acid adaptation on subsequent cell survival in cranberry juice 

2.2.4.1. Adaptation of cells in buffered solutions at various pH 

In the first set of adaptation experiments, the role of pH and types of acid (weak 

acid versus strong acid) on the survival of early stationary phase cells of L. plantarum 

NCIMB 8826 were evaluated. To this end, the cells were incubated at 37 °C for 1 h in 
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two different buffers, phosphate and citrate buffer, with the pH adjusted to pH 2, 3, 4, 5 

and 6 using HCl (Sigma-Aldrich, UK) in the case of the phosphate buffer, and citric 

acid (Sigma-Aldrich, UK) as well as sodium citrate (Sigma-Aldrich, UK) in the case of 

the citrate buffer. Cells incubated in 0.1 M phosphate buffered saline (PBS, Oxoid, UK) 

with a pH of 7.3 were used as the control.  

2.2.4.1.1. Preparation of stationary phase cells 

As discussed previously, late stationary phase cells are more robust to various 

stresses compared to other cell stages. The reason for selecting early stationary phase 

cells instead of late stationary phase cells was that the latter is generally more stressed 

due to the lack of nutrients and the accumulation of toxic waste products. Based on the 

growth pattern of L. plantarum NCIMB 8826 observed in the section 2.3.1, the cells 

needed to be cultured for at least 15 h before reaching early stationary phase. To this 

end, a single colony prepared as described in section 2.2.3 was inoculated into 10 ml of 

MRS broth and grown overnight for 18 h at 37 °C. The OD600 of the cell culture was 

measured by a spectrophotometer and then an appropriate volume of the cell culture 

was calculated and added into fresh 100 ml of MRS broth in order to obtain a starting 

OD600 of ~0.2. The cells were then incubated at 37 °C on an orbital shaker set at 200 

rpm for 15 h; at which point, the concentration of the early stationary phase cells was 

∼1010 CFU/ml.  

2.2.4.1.2. Preparation of citric acid and HCl exposed cells 

Early stationary phase cells, prepared as mentioned above, were harvested from 

50 ml of culture by centrifugation 3,500 g for 15 min; (Heraeus™ Multifuge™ X3 

Centrifuge, Thermo Scientific, UK). The pellets were washed twice with 0.1 M PBS 

(pH 7.3) and resuspended in 5 ml of 0.1 M PBS (pH 7.3), resulting in a 10-fold 
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concentration of bacterial cells; this way a cell concentration of ∼1011 CFU/ml was 

obtained. The cell suspension (250 µl) were then added into two types of filter sterilised 

(0.2 µm, Minisart, Sartorius AG, Germany).acidified buffers (pH 2, 3, 4, 5, 6), namely 

0.1 M PBS (25 ml) and 0.15 M citrate buffer (25 ml), as well as a control solution (pH 

7.3), namely 0.1 M PBS (25 ml).The cell concentration in the acidified solution was 

∼109 CFU/ml in all cases; the cells were incubated at 37 °C for 1 h.  

2.2.4.1.3. Addition of 1 h acid adapted cells into cranberry juice 

After incubation, the cells were collected from each acidified solution by 

centrifugation at 3,500 g for 15 min. The pellets were washed twice with 0.1 M PBS 

(pH 7.3), harvested by centrifugation at 3,500 g for 15 min and resuspended in 2.5 ml of 

cranberry juice. An aliquot (250 µl) of this cell suspension was used to inoculate 25 ml 

of cranberry juice contained in 50 ml sterile plastic container. Consequently, the initial 

cell concentration in the juices was approximately ∼108 CFU/ml. The juice was stored 

at 4 °C. Based on previous work by Nualkaekul and Charalampopoulos (2011), it was 

known that L. plantarum NCIMB 8826 was able to survive in cranberry juice for less 

than a week; therefore, the cell survival in cranberry juice in this particular experiment 

was monitored immediately upon inoculation of the juices and then every day until cell 

death. The cell viability was measured by the same method described in section 2.2.3. 

Biological triplicate comprising technical triplicate were conducted for each pH. The 

effects of acid adaptation on the survival of L. plantarum in cranberry juice were 

analysed using one-way analysis of variance (ANOVA) and Tukey’s post-hoc test at 

95% confidence level.  
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2.2.4.2. Adaptation of cells in MRS at various pH  

A second set of adaptation experiments using acidified MRS instead of acidified 

buffers was performed in order to evaluate whether MRS, which contains glucose, 

peptone and yeast extract, can serve as a nutrient and an energy source for the cells 

during acid adaptation. This might be important for enhancing the survival of the cells 

and avoid starvation which might be taking place when the cells were adapted in the 

acidified buffers. Moreover, from an industrial point of view, it would be more efficient 

and economically viable to adapt the cells in the fermentation medium at the end of the 

fermentation process rather than harvesting, washing and re-suspending the cells in a 

buffer. To this end, the control and citric adapted cells were prepared and cultured as 

mentioned in section 2.2.4.1.2 but instead of using acidified buffers the cells were 

incubated for 1 h at 25 °C in 25 ml of MRS acidified to pH 3, 4, 5 and 6 with citric acid, 

while unmodified MRS with a pH of 6.4 was used as the control. It must be noted that 

acid adaptation at pH 2 was excluded from this experimental set as MRS became cloudy 

when it was acidified to pH 2. Moreover, the incubation temperature during acid 

adaptation in the case of MRS (25 °C) was lower than that used for the buffers (37 °C) 

in order to prevent cell growth. After incubation, the cells collected from each solution 

were added into 25 ml of cranberry juice following the method in section 2.2.4.1.3. Cell 

viability was measured immediately upon inoculation of the juices and then after 1, 2, 

and 3 days of storage using the spread plate method, as described in section 2.2.3. 

Biological triplicate comprising technical triplicate were conducted for each pH. The 

effects of acid adaptation on the survival of L. plantarum NCIMB 8826 in cranberry 

juice were analysed using one-way ANOVA and Tukey’s post-hoc test at 95% 

confidence level.  
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2.2.5. Influence of exposure time in citrate buffer at pH 3  

In the third set of adaptation experiments, the aim was to evaluate the effect of 

exposure time on acid adaptation. It should be noted that citrate buffer acidified to pH 3 

was used in this experiment, because these cells showed the greatest survival during 

storage in cranberry juice (section 2.3.2.1). Although the cells exposed with MRS 

acidified to pH 3 showed the same results (section 2.3.2.2), the acidified citrate buffer 

was more appropriate as it avoided cell growth at 37 °C during acid adaptation process. 

To this end, the control and citrate exposed cells were prepared and cultured as 

mentioned in section 2.2.4.1.2; however, the cell cultures were incubated only in citrate 

buffer acidified to pH 3 at 37 °C for various periods of time (1, 2, 3, 4, and 5 h). After 

incubation, the collected cells from each solution were added into 25 ml of cranberry 

juice using the methods stated in section 2.2.4.1.3. Cell viability was measured 

immediately after inoculation of the juice and then after 1, 2, and 3 days of storage, by 

the spread plate method as described in section 2.2.3. Biological triplicate comprising 

technical triplicate were conducted. The effects of exposure time on the survival of      

L. plantarum in cranberry juice were analysed using one-way ANOVA and Tukey’s 

post-hoc test at 95% confidence level. 

2.2.6. Effect of cold adaptation on subsequent cell survival in cranberry juice  

In the fourth set of adaptation experiments, the effect of temperature on the 

survival of cells in cranberry juice was investigated. More specifically, L. plantarum 

NCIMB 8826 cells were incubated at various temperatures, including 4, 10, 25, and    

37 οC for 2.5 and 5 h (pH 7.3) to evaluate whether cold adaptation can improve 

subsequent cell survival in acidic condition. It must be noted that 0.1 M PBS (pH 7.3) 

was selected as the incubation solution rather than unmodified MRS in order to 
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minimise the influence of pH and nutrients during cell adaptation, which would skew 

the results. Moreover, the reason for selecting 10 οC and 2.5 and 5 h incubation times 

was based on Kim and Dunn’s findings that cell viability of Lactococcus lactis subsp. 

lactis was significantly improved, by 25 % to 37 %, during 24 h storage at -20 °C 

following cold shock at 10 °C for 2.5 h (Kim and Dunn, 1997). Cell viability further 

increased when the incubation time was extended to 5 h. Refrigerated temperature of 4 

°C was also examined due to the fact that it is the temperature generally used to 

preserve fruit juices. 

2.2.6.1. Preparation of control and cold adapted cells 

 Early stationary phase cells were prepared as previously (2.2.2.4.1.2). Aliquot 

(250 µl) of cell suspension were added into 25 ml of 0.1 M PBS (pH 7.3) in 50 ml 

conical centrifuge tubes (VWR international, UK) and then incubated at 4, 10, 25, and 

37 οC, respectively. One set of cell suspensions at each temperature was incubated for 

2.5 h and a second set was incubated for 5 h. After incubation, the collected cells were 

added into 25 ml of cranberry juice following the methods stated in section 2.2.4.1.3. 

The cell viability was measured immediately after inoculation of the juices and then 

after 1, 2, and 3 days of storage by the spread plate method as described in section 2.2.3. 

Biological triplicate comprising technical triplicate were conducted for each treatment. 

The effects of temperatures and exposure time on the survival of L. plantarum NCIMB 

8826 in the cranberry juice were analysed using two-way ANOVA and Tukey’s post-

hoc test at 95% confidence level. 
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2.2.7. Effect of combined acid and cold adaptation on subsequent survival of      

L. plantarum NCIMB 8826 cells in cranberry juice  

In the fifth set of adaptation experiments, L. plantarum NCIMB 8826 cells were 

incubated in citrate buffer acidified to pH 3 at 4 °C for 3 h (versus 37 °C as the control) 

to investigate the potential synergistic effect of pH and temperature during cell 

adaptation. The pH, type of acid, and exposure time used in this experiment were 

selected based on the results from the experiments described in sections 2.3.2 (acid 

adaptation) and 2.3.3 (exposure time) whereas the temperature was obtained from 

section 2.3.4 (cold adaptation). More specifically, the adapted cells in acidified citrate 

buffer (pH 3) for 3 h showed the greatest cell survival in cranberry juice (72 h) while 

the adapted cells in 4 °C for both 2.5 and 5 h displayed the greatest cell survival in 

cranberry juice (24 and 48 h). For this reason the conditions selected for the combined 

acid and cold adaptation were pH 3 at 4 °C for 3 h; 37 °C was the set temperature for 

the control. The control and citrate exposed cells were prepared and cultured as 

described in section 2.2.4.1.2. After adaptation for 3 h, the collected cells were 

incorporated into 25 ml of cranberry juice following the methods stated in section 

2.2.4.1.3. The cell viability was measured immediately after inoculation and then after 

1, 2, and 3 days of storage by the spread plate method, as described in section 2.2.3. 

Three sets of biological replicate experiments were conducted for each treatment. The 

synergistic effects of acid and cold adaptation on the survival of L. plantarum NCIMB 

8826 in cranberry juice were analysed using paired t-test at 95% confidence level. 

2.2.8. Survival of acid adapted cells in pomegranate, and lemon & lime juices 

In the sixth set of adaptation experiments, the aim was to evaluate whether the 

improvement in cell survival due to acid adaptation, which was seen in some cases in 
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cranberry juice, would be sustained during longer storage periods or in other juices. 

MRS was used in this case to adapt the cells based on the rationale that it might provide 

nutrients and energy sources for the cells which would help them to adapt during acid 

adaptation, although the effect of media was not seen in this study (section 2.3.2.2). 

Pomegranate and lemon & lime juices were selected as previous work had shown they 

supported relatively good cell survival during refrigerated storage. The cells were 

exposed to MRS acidified to pH 3 at 25 °C for 1 h and then transferred to pomegranate 

and lemon & lime juices following the methods described in section 2.2.4.2. Cell 

viability in this experiment was measured every week for up to 6 weeks in pomegranate, 

and lemon & lime juices based on the findings from a previous study (Nualkaekul and 

Charalampopoulos, 2011).  

2.3. Results and discussion 

2.3.1. Growth of L. plantarum NCIMB 8826 in MRS  

The growth of L. plantarum NCIMB 8826 measured by OD600 and viable cell 

counts followed the typical sigmoidal curve obtained for most bacteria (Figure 2.1A). 

No lag phase was observed during the growth of cells. The cell concentration observed 

by viable cell counts increased from ∼107 to ∼1010 CFU/ml within approximately 15 h, 

after which the slope became stable. The curve of OD600 started from ∼0.2 and rose to 

∼8 after approximately 18 h, after which it remained stable. Although 3 h deviation 

between two methods was observed, the 15 h time point was selected as the point of 

harvest, as the cells at that point were entering the early stationary phase based on the 

viable cell count. It must be noted that the spectrophotometric method does not 

distinguish between live and dead cells, while in addition to this, any morphological 
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changes commonly taking place during the end of growth (e.g. cells becoming longer 

and bigger) would overestimate the result.  

In terms of pH, the graph exhibited a downward sigmoidal curve (Figure 2.1B) as 

expected, since the cells produce lactic acid during growth and the pH of the MRS broth 

was not controlled in this study. The pH decreased from pH 7.0 to a pH of 4.6 after 15 

h, the time when the cells reached the early stationary phase, and decreased further 

down to 4.3 after 24 h. It must be noted though that the early stationary phase cells 

obtained at 15 h, were already acid exposed at pH between 5.0 and 4.6 for at least 6 h 

before conducting the acid adaptation experiments. Nevertheless, the effect of further 

acid exposure (in buffers or MRS) can still be evaluated when compared with the 

control cells (no subsequent acid exposure). 
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Figure 2.1 Growth of L. plantarum NCIMB 8826 in MRS incubated at 37 °C for 30 h 
and shaken at 200 rpm. (A) The cell concentration was measured by OD600 and viable 
cell counts; and (B) pH of medium during growth of L. plantarum NCIMB 8826. Data 
are expressed in mean ± SD (n=3) 
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2.3.2. Effects of acid adaptation on subsequent cell survival in cranberry juice  

2.3.2.1. Adaptation of cells in buffered solutions at various pH 

Exposure of the cells for 1 h in both acidic solutions (HCl and citric acid), even at 

a pH as low as 2, did not significantly impact on cell viability (0 h) compared to the 

PBS control (pH 7.3) (Figure 2.2). This might be due to the short period of time used 

for acid adaptation (1 h) in this experiment. Overall, the results indicated that acid 

adaptation of cells collected at 15 h of culture (MRS, pH 4.6) in both acidic solutions at 

pH values higher than 2 significantly improved subsequent cell survival in cranberry 

juice (24 to 48 h) compared to the control cells (PBS, pH 7.3); the greatest results were 

obtained after adapting the cells in pH 3, followed by pH 4, 5 and 6. Acid adaptation at 

pH 2 was detrimental towards the survival of the cells in cranberry juice as the viable 

cells were below the detection limit (100 CFU/ml) after only one day of storage. 

Although the results were promising, acid adaptation was not able to improve 

sufficiently the survival of this particular strain during storage in cranberry juice, as the 

viable cell counts were below those required for probiotic application (>107 CFU/ml). 

This effect of pH has been observed in the previous work (Seme et al.,2015), 

although a different strain, L. plantarum KR6, and different experimental set up were 

used. Non-acid stressed cells of L. plantarum KR6 exposed to acidified MRS (pH 4.5 

using HCl) for 30 min, increased survival in acidified MRS (at pH 2) by about 100 

times compared to the control (cells exposed to MRS at pH 7 for 30 min). The 

researchers suggested that this behaviour might relate to the upregulation of genes 

involved in membrane fatty acid biosynthesis, and in particular cfa, as determined by 

qPCR analysis. To this end, the higher survival rates of L. plantarum NCIMB 8826 in 

cranberry juice (24 to 48 h) after 1 h acid adaptation (pH 6, 5, 4 and 3) might be 
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associated with changes in the composition of the membrane fatty acids which is used 

as a mechanism by the cells in order to regulate the proton permeability through their 

cell membrane (Lemos et al., 2005, Zhang and Rock, 2008). This hypothesis will be 

investigated later in chapter 3. It is interesting to note that compared to the control cells 

(PBS, pH 7.3) some improvements in cell survival were observed in the case of cells 

adapted at pH 5 and 6; i.e. values higher than the pH at which the cells were collected at 

the 15 h time point (pH ~ 4.6). This indicates that any changes in pH, even from an acid 

to a more alkaline environmental could affect the response of the cells during 

subsequent exposure to the acidic environment of fruit juices. 

Similar viability profiles of L. plantarum NCIMB 8826 were seen during the first 

2 days storage in cranberry juice for adapted cells irrespective of type of acid used to 

acidify the buffers (HCl versus citric acid) (Figure 2.2). However, the adapted cells in 

acidified citrate buffer (pH 3 and 4) were able to survive in cranberry juice beyond 2 

days of storage, albeit at low concentrations (∼103 and ∼102 CFU/ml, respectively), 

indicating that changes caused by citric acid have more positive effect on cell survival 

in cranberry juice than that by HCl.  
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Figure 2.2 Cell concentration (log CFU/ml) of L. plantarum NCIMB 8826 during 
refrigerated storage in cranberry juice after pre-treatment in 0.15 M citrate buffer 
acidified to different pH using citric acid, and in 0.1 M PBS acidified to different pH 
using HCl. Results are expressed in mean ± SD (n=3). Significant differences between 
different pH within each group at a specific time point were determined by one-way 
Anova and Tukey’s post-hoc tests. *indicates a significant difference determined by 
one-way Anova (at least one difference in each group means significant difference) 
while a, b, c, different lettering indicates significant differences between each pH 
determined by Tukey’s post-hoc tests.  

 

This phenomenon could be explained on the basis of the study of Pieterse et al. 

(2005), who investigated the effect of the dissociated and undissociated forms of lactic 

acid and that of hydrogen ions alone on L. plantarum WCFS1. The levels of 

gene/operon expression were measured during continuous steady state experiments, in 

which the pH was controlled by automatic titration with 10 M sodium hydroxide. The 

degree of undissociation/dissociation was varied by adding 300 mM of sodium lactate at 

the two different pH values, at pH 6.0 (lactate effect; dissociated>undissociated form) 
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and pH 4.8 (undissociated lactic acid effect; undissociated>dissociated form). Gene 

expression analysis indicated that during acid stress a small number of genes/operons 

were differentially expressed in response to the hydrogen ions and the dissociated form 

of lactic acid. On the other hand, stressing the cells with the undissociated form of lactic 

acid resulted in the overexpression of several genes/operons in L. plantarum WCFS1. 

More specifically, 18 genes or operons which are involved in multiple cell surface 

proteins were overexpressed. Such overexpression of these key proteins might have 

taken place in the case of the experiment in the present study, in which another weak 

organic acid was used, i.e. citric acid instead of lactic acid.  

Another potential mechanism responsible for the improved survival of citric acid 

treated cells compared to the HCl treated cells, could have involved the transportation 

of citrate inside the cells, as part of the citrate fermentation pathway, which has been 

reported to be more active in Lactococcus lactis MG 1363 at pH 4.5 compared to that at 

pH 6.5 (García-Quintáns et al., 1998). The transport of citrate in exchange of lactate 

which is catalyzed by citrate permease (citP) results in a considerable increase in the 

membrane potential, a difference in the electric charge across the membrane, a 

transmembrane pH gradient, and a difference in the concentration of ions across the 

membrane (García-Quintáns et al., 1998, Pudlik and Lolkema, 2011). Both the 

membrane potential and the transmembrane pH gradient are known as PMF. More 

specifically, the uptake of citrate into the cell not only generates energy due to the 

electric potential but also drives a proton into the cell due to the pH gradient. Once 

inside the cell, the energy from the PMF can be used for ATP production by ATP 

synthase in order to pump protons outside the cell, while the proton can be used for 

citrate metabolism to produce pyruvate and CO2 by oxaloacetate decarboxylase (Pudlik 

and Lolkema, 2011). The above indicates that the citrate fermentation pathway is a 
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likely mechanism used to protect the cells during acid stress. Although the increase in 

the transportation of citric acid at low pH was reported in Lactococcus lactis CRL 264 

(Magni et al., 1999) and in Leuconostoc paramesenteroides J1 (Martı́n et al., 1999), this 

is a mechanism that can possibly occur in other lactic acid bacteria, as the existence of 

the citrate fermentation pathway was reported in growth experiments with Leuconostoc 

mesenteroides 19D (Marty-Teysset et al., 1995), Lactococcus lactis CRL 264 (Magni et 

al., 1999), Lactobacillus rhamnosus ATCC 7469 (de Figueroa et al., 1996) and            

L. plantarum DSMZ 20174 (Kennes et al., 1991). 

2.3.2.2. Adaptation of cells in MRS at various pH  

The adapted cells in acidified MRS with citric acid (Figure 2.3) displayed a 

similar survival profile as that observed in acidified citrate buffer (Figure 2.2), although 

some differences were observed e.g. improvement in cell survival after 72 h of storage 

(by ∼1 log CFU/ml) for pH 3 and 4, and extension of protection time (from 24 to 48 h) 

for pH 6. Overall however, the use of acidified MRS, which contains nutrients and 

energy sources for cells, was not able to improve considerably the survival of               

L. plantarum NCIMB 8826 in cranberry juice, compared to the use of acidified buffers. 

It seems likely that the response of the cells as a result of the acid adaptation process 

was primarily influenced by the pH of acidified solutions (pH 3 to 6) and type of acids 

(weak versus strong acids) rather than by the presence of nutrients and energy sources 

in the medium. 
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Figure 2.3 Survival of L. plantarum NCIMB 8826 during refrigerated storage in 
cranberry juice after pre-treatment in MRS acidified to different pH using citric acid. 
Results are expressed in mean±SD (n=3). Significant differences between different pH 
within its group at a specific time point were determined by one-way Anova and 
Tukey’s post-hoc tests. *indicates significant difference determined by one-way Anova 
while a, b, c, different lettering indicates significant differences between each pH 
determined by Tukey’s post-hoc tests.  

 

2.3.3. 49BInfluence of exposure time in citrate buffer at pH 3  

Increasing the exposure time of the cells in acidified citrate buffer (pH 3) from 1 

h up to 5 h has an effect on cell survival in cranberry juice (Figure 2.4). Exposure of the 

cells in acidified citrate buffer (pH 3) for 2 and 3 h resulted in the highest survival in 

cranberry juice (48 h), followed by 1, 4, 5 h exposure. It seems likely that an incubation 

time of less than 1 h would not be enough to impact protection to the cells, whereas 

incubation for more than 3 h imparted negative effects on cell survival. This negative 

effect might be associated with cell injury or damage during prolonged acid adaptation 

caused by the antimicrobial effects of the undissociated form of citric acid (Beales, 

2004). However, this hypothesis cannot be confirmed without the examination of the 

surface cell morphology under scanning electron microscope (SEM) at different 
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exposure times. Overall, the results suggest that the cells should be incubated for at least 

2 to 3 h in order to gain maximum protection from further acid exposure. 

 

 
  

Figure 2.4 Survival of L. plantarum NCIMB 8826 during refrigerated storage in 
cranberry juice after pre-treatment in acidified citrate buffer (pH 3, 37 °C) for different 
times. Results are expressed in mean±SD (n=3). Significant differences between 
different pH within its group at a specific time point were determined by one-way 
Anova and Tukey’s post-hoc tests. *indicates significant difference determined by one-
way Anova while a, b, different lettering indicates significant differences between each 
exposure time determined by Tukey’s post-hoc tests. 

 

2.3.4. 50BEffect of cold adaptation on subsequent cell survival in cranberry juice  

There were no significant differences between the 2.5 and 5 h incubation time for 

all temperatures (Figure 2.5), while exposure of the cells to 4  and 10 °C significantly 

improved the cell viability in cranberry juice (24 and 48 h) compared to exposure to 25  

and 37 °C (∼1 to ∼3 log CFU/ml). This suggests that exposure time did not affect cell 

survival in cranberry juice like temperatures (4 and 10 °C). However, no viable cells 

were observed at 72 h of refrigerated storage in cranberry juice (Figure 2.5), in contrast 

to the results with the cells in acidified citrate buffer (pH 3 and 4) (Figure 2.2). This 
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indicates that cold adaptation was less effective than acid adaptation in protecting the 

cells in cranberry juice. Taking into account the results from two studies including, i) 

the increase in the C16:0 and C18:2 membrane fatty acids in L. acidophilus CRL 640 when 

grown at 25 °C compared to 37 °C (Murga et al., 2000), and ii) the increase in C18:1 

fatty acid content in L. plantarum when the cells were grown at 10 °C compared to 30 

and 40 °C (Russell et al., 1995), the improvement in cell survival in cranberry juice (24 

to 48 h) by cold adaptation (4 and 10 °C) might be associated with changes in the cell 

membrane fatty acid composition which is the same process as in acid adaptation. 

Additionally, it has been suggested that cellular adaptation to cold stress not only results 

in the alteration of the cell membrane fatty acid composition, but may also be related to 

the expression of certain heat shock proteins which are involved in acid tolerance, such 

as, DnaK and GroEL (Salotra et al., 1995). To understand better the possible influence 

of cold stress exposure towards acid tolerance, the cellular fatty acid composition was 

determined, and the results are reported and discussed in chapter 3.   
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Figure 2.5 Survival of L. plantarum NCIMB 8826 during refrigerated storage in 
cranberry juice after pre-treatment in PBS (pH 7.3 at 37, 25, 10, and 4 °C) for both 2.5 
and 5 h. Results are expressed in mean±SD (n=3). Significant differences for 
temperature and exposure time within each group at a specific time point were 
determined by two-way Anova and Tukey’s post-hoc tests. *indicates significant 
difference determined by two-way Anova (at least one difference in its group means 
significant difference) while a, different lettering indicates significant differences 
between each treatment determined by Tukey’s post-hoc tests 
 

2.3.5. 51BEffect of combined acid and cold adaptation on subsequent survival of      

L. plantarum cells in cranberry juice  

There were no significant differences in terms of cell viability between the cells 

adapted in acidified citrate buffer (pH 3) at 37 and 4°C during storage in cranberry juice 

from 24 to 72 h (Figure 2.6). This indicates that a synergistic effect of pH and 

temperature did not occur during cell adaptation, although both pH (pH 3) and 

temperature (4°C) had separate positive effects on the survival of L. plantarum NCIMB 

8826 during storage in cranberry juice as previously discussed. There are two possible 

explanations for this; either the cellular mechanism in the case of temperature (4°C) 

might not be functional when the cells are exposed to acidic environment (pH 3) or a 
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similar mechanism was used in the case of cold and acid adaptation. This hypothesis 

will be investigated and discussed in chapter 3.  

 
 

Figure 2.6 Comparison of cell viability between acid adaptation and combination of acid 
and cold adaptation stored in cranberry juice at 4 °C. Results are expressed in mean±SD 
(n=3). Significant differences at specific time point were determined by paired t-test. 
*indicates significant difference. 

 

2.3.6. 52BSurvival of acid adapted cells in pomegranate and lemon & lime juices 

Acid adaptation (MRS, pH 3) for 1 h improved cell survival in pomegranate and 

lemon & lime juices compared to the control (MRS, pH 6.4) as previously seen in 

cranberry juice, although different degrees of cell protection were observed (Figure 

2.7). More specifically, the adapted cells exhibited better survival, by more than 1 log 

CFU/ml for the first and second week compared to the control cells; however, no 

significant differences were observed for the third week and beyond in both juices. 

These results indicate that acid adaptation had a positive effect on cell survival in 

pomegranate and lemon & lime juices but only for the initial stages of storage, 

suggesting that the alteration process by acid adaptation was not permanent. 
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The significant loss in the cell viability of L. plantarum NCIMB 8826 observed in 

all fruit juices used in this study during storage, is most likely due to the low pH of the 

juices as the pH, which for most juices ranges between 2.5 and 3.8, has an adverse 

effect on bacterial survival (Champagne et al., 2005, Sheehan et al., 2007). More 

specifically, the pH of cranberry, pomegranate and lemon & lime juices were 2.7, 3.5, 

and 2.8, respectively. Interestingly, although the pH values of cranberry and lemon & 

lime juice were very similar, the survival rates were considerably different; the cells 

died within the first week of storage in cranberry juice whereas in lemon & lime juice 

they were viable until week 5. This most likely indicates that other compounds present 

in cranberry juice might have negative effects on cell survival. Considering the high 

levels of total phenolic compounds (1.5 g/l) that have been reported for the same 

cranberry juice product (Nualkaekul and Charalampopoulos, 2011), these could be 

certain phenolic compounds which have strong antimicrobial effects such as benzoic 

acid (Sheehan et al., 2007) and coumaric acid (Landete et al., 2007). Moreover, the 

presence of phenolic compounds in the fruit juices used in this study might also explain 

why the cells died quicker in pomegranate juice compared to lemon & lime juice (4 

weeks versus 5 weeks) despite the fact that the pH in the former was higher. However, 

this cannot be confirmed as the phenolic compounds were not determined for all juices. 

Considering the average shelf life of refrigerated fruit juices (∼6 weeks) (Esteve 

and Frígola, 2007) and the concentration of viable cells required for probiotics 

application (∼107 CFU/ml) (Corcoran et al., 2007), the cell concentrations of                

L. plantarum NCIMB 8826 in each fruit juice should be higher than ∼107 CFU/ml after 

6 weeks in order to exert its beneficial effects upon consumption. However, the viable 

cells higher than ∼107 CFU/ml were only observed at week 2 and 3 in pomegranate and 

lemon & lime juices, respectively. These results suggest that the improvement in cell 
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survival after acid adaptation was not significant enough to make these particular fruit 

juices suitable commercial products for the delivery of L. plantarum NCIMB 8826. 

However, the pomegranate and lemon & lime juices still have the potential for being 

used as probiotic carriers as they provide a relatively mild environment for the cells, 

compared to the harsh environment of cranberry juice. To this end, new strategies that 

could prolong probiotic survival in these fruit juices, such as use of microencapsulation 

techniques to encapsulate the cells within polymeric matrices that can protect the cells 

from acid or use of other bacteria strains that are more robust to acidic environments 

than L. plantarum NCIMB 8826 or using other mild fruit juices should be considered 

before conducting a new experiment in the future. 
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Figure 2.7 Survival of L. plantarum NCIMB 8826 during refrigerated storage in 
pomegranate (A), and lemon & lime (B) after pre-treatment in acidified MRS (pH 3,   
25 °C, 1 h). Results are expressed in mean±SD (n=3). Significant differences at specific 
time point were determined by paired t-test. * indicates significant difference.  
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2.4. Conclusions 

The results from this study demonstrated that acid adaptation for 1 h in different 

acidic solutions (HCl versus citric acid) with pH higher than 2 improved cell survival 

during subsequent storage in cranberry juice, while adaptation at pH 2 the cells died 

within just one day storage in cranberry juice. The presence of nutrients in the MRS 

medium did not improve cell survival in contrast to expectations. Exposure time 

between 1 and 3 h in acidified citrate buffer (pH 3) was the most suitable time for 

adapting the cells, while incubation for more than 3 h had negative effects on cell 

viability. Moreover, the use of weak acid (citric acid) resulted in better cell survival in 

cranberry juice (pH 3 and 4, 72 h) compared to strong acid (HCl). This is most likely 

due to the combined effect of the undissociated form and the pH in the case of weak 

acid, while strong acid exerts only a pH effect. Besides pH, temperatures of 4 and 10 °C 

were able to enhance cell survival in cranberry juice compared to higher temperatures 

(25 and 37 °C), although the improvement was less than that observed after acid 

adaptation (pH 3). The cell survival data obtained indicate that acid adaptation 

improved the survival of L. plantarum NCIMB 8826 during storage in the three fruit 

juices; however, the protection was not significant enough to meet the requirements for 

probiotic applications (∼107 CFU/ml for 6 weeks). To this end, new approaches, such as 

improving acid tolerance cells by other techniques (e.g. serial subculturing of cells after 

storage in these fruit juices, varying the types of acid used for acid adaptation, changing 

the type of fruit juice) could be used in future experiments to prolong the survival of    

L. plantarum NCIMB 8826. 
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CHAPTER 3 

Role of cell membrane during citric acid exposure of                  

L. plantarum NCIMB 8826 in enhancing subsequent storage 

in fruit juices 

3.1. Introduction 

From the previous chapter, it was found that adaptation of L. plantarum NCIMB 

8826 cells in acidic solutions (HCl & citric acid) at different pH, particularly pH 3 and 

4, resulted in better survival during refrigerated storage in fruit juices compared to the 

control cells. This improved survival is most likely associated with the fact that LAB, 

including lactobacilli, have developed a variety of mechanisms to withstand harsh 

conditions, such as low pH. These include the maintenance of ∆pH homeostasis 

possibly through the citrate fermentation pathway, the alteration of membrane integrity 

and functionality, and the upregulation of proteins relevant to acid adaptation (Wu et 

al., 2014). This chapter aims to examine the potential mechanisms of acid exposure on 

subsequent cell survival in low pH environments, namely the citrate fermentation 

pathway and the compositional and structural changes of the cell membrane. 

The citrate fermentation pathway involves the transportation of monovalent 

lactate out of the cells by exchanging it with divalent citrate during acid exposure. This 

system protects the cell by generating a PMF which can be used for ATP production to 

pump protons out of the cell (Pudlik and Lolkema, 2011). Moreover, there is evidence 

indicating an increase in citric acid consumption, most likely due to induction of cit 

genes including citrate lyase and citrate transporter genes, which has been shown to take 

place during growth of Lactococcus lactis under acidic conditions (M17 medium, pH 

4.5) (García-Quintáns et al., 1998, Magni et al., 1999, Martı́n et al., 1999, Martín et al., 
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2004). Although the citrate fermentation pathway has never been reported in                

L. plantarum NCIMB 8826, citric acid has been shown to support L. plantarum DSM 

20174 growth under acidic conditions (pH 4 to 5) when used in combination with 

glucose; though to a lesser extent when used as the sole carbon source (Kennes et al., 

1991). However, the likelihood of the citrate fermentation pathway taking place by 

stationary phase cells during highly acidic conditions and its potential link to acid 

resistance have not been investigated. 

The second potential mechanism involves the overexpression during acid stress of 

several genes/operons encoding multiple cell surface proteins; this for example has been 

shown to occur during growth of L. plantarum WCFS1 in MRS at pH 4.8 (Pieterse et 

al., 2005). Moreover, the striking morphological differences at the surface of acid 

stressed and non-stressed L. plantarum WCFS1 cells were observed under SEM by 

Ingham et al. (2008). However, the relationship between acid tolerance and surface 

proteins has not been investigated in depth.  

A third potential mechanism is the alteration of the cell membrane integrity and 

functionality, as the basic function of the cell membrane is to protect the cell from the 

environment. It is well documented that proton permeability through the cell membrane 

is regulated by the membrane fluidity, which depends on the composition of membrane 

fatty acids (Lemos et al., 2005, Zhang and Rock, 2008). As the cell membrane of 

Lactobacillus species typically consists of saturated, unsaturated and cyclopropane fatty 

acids (Johnsson et al., 1995), changes in the ratios of these fatty acids caused by 

external stimulants, especially acid stress, could potentially improve cell survival in 

adverse conditions including highly acidic environments (Beney and Gervais, 2001). 

More specifically, it is well known that upon acid stress LAB decrease their membrane 

fluidity by increasing the degree of saturation, the level of cyclopropane formation, and 
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the carbon chain length, and by changing the branching position as well as cis/trans 

isomerization of the membrane fatty acids (Montanari et al., 2010). Although these 

changes have been observed in many LAB and can be regarded as a universal response 

to acid stress, the regulation of the genes involved in membrane homeostasis of fatty 

acid biosynthesis, which is the main controlling system in response to acid stress, is not 

well characterized. To this end, the upregulation of only a small number of specific 

genes has been investigated in LAB. Two studies have shown the overexpression during 

acid stress of the cfa gene in L. plantarum KR6 (Seme et al., 2015) and of the              

β-ketoacyl-acyl carrier protein synthase III (fabH) gene in L. bulgaricus (Fernandez et 

al., 2008). The cfa gene stimulates the conversion of monounsaturated fatty acids to 

their cyclopropane derivatives and the fabH gene is a key enzyme in controlling the 

synthesis of saturated fatty acids. Accordingly, these target genes were examined in this 

study, with the aim of understanding their role toward cell membrane fatty acid 

biosynthesis in L. plantarum NCIMB 8826. 

3.2. Materials and methods 

3.2.1. Determination of citric and lactic acid concentration by high performance 

liquid chromatography (HPLC) 

In order to investigate whether the citrate fermentation pathway could have been 

activated during acid adaptation or storage in fruit juices, HPLC method was used to 

analyse the citric and lactic acid concentrations in three groups of samples including: i) 

in acidified solutions (citrate buffer and MRS medium) before and after adding the 

cells, ii) in three fruit juices (cranberry, pomegranate, and lemon & lime) upon 

inoculation of the cells and at the end of the storage period, and iii) inside acid adapted 

and control cells (both from acidified solutions & fruit juices). 
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3.2.1.1. Citric and lactic acid determination in acidified solutions and in juices 

The citric and lactic acid concentrations were determined in the acidified 

solutions used for cell adaptation and also in the supernatants from the fruit juices 

(prepared as described in section 2.2.4.1.2 and 2.2.4.1.3, respectively) before and after 

adding the cells. More specifically, the citric and lactic acid concentrations were 

determined in acidified citrate buffer (pH 3, 37 °C, 1 h) and acidified MRS with citric 

acid (pH 3, 25 °C, 1 h) before and after adding the cells; 0.1 M PBS (pH 7.3, 37 °C, 1 h) 

and unmodified MRS (pH 6.4, 25 °C, 1 h) were used as the controls. Additionally, both 

citric and lactic acid were determined in the fruit juices before and after adding the 

cells, and then after 72 h of storage for cranberry juice, 5 weeks for pomegranate juice 

and 6 weeks for lemon & lime juice. The concentrations of citric and lactic acid were 

analysed using an Agilent 1100 HPLC system with a ultraviolet detector (Agilent 

technologies, UK) according to a previous method (Nualkaekul and Charalampopoulos, 

2011). The separation was carried out using a 250 mm x 4.6 mm x 5 μm organic acid 

column (PrevailTM, Alltech, UK). A solution of 25 mM potassium dihydrogen 

phosphate (KH2PO4) at pH 2.5 was used as the mobile phase and the flow rate was set 

at 1 ml/min. The organic acids were detected at 210 nm. Samples were analysed in 

triplicate. A calibration curve was constructed for each organic acid using standards 

with different concentrations (5 to 300 mM for each organic acid). 

3.2.1.2. Determination of intracellular citric and lactic acid concentrations 

The intracellular citric and lactic acid concentrations of the acid adapted and 

control cells and of the cells in the fruit juices were determined. The cells were 

collected by centrifugation at 3,500 g for 15 min, washed twice with 0.1 M PBS (pH 

7.3), and then rapidly quenched with 25 ml of pre-chilled 0.5 mM tricine in 60% (v/v) 
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methanol (Sigma Aldrich, UK) in dry ice. Next, the pellets were collected by 

centrifugation at 3,500 g for 15 min and were resuspended in 2.5 ml of sterile distilled 

water. Acid-washed 106-mm-diameter glass beads (Sigma Aldrich, UK) were added to 

fill about 1/3 of a 2 ml microtube before 1 ml of the cell suspension was added into the 

microtube. The samples were disrupted thrice using a Mini-Beadbeater (Biospec, UK) 

for 1 min and cooled for 1 min on ice during the breaking process. After cell disruption, 

the samples were centrifuged for 10 min at 15,000 g at 4 °C. The supernatants were 

transferred to a new sterile 1.5 ml microtube and analysed by HPLC based on the 

method described in section 3.2.1.1 

3.2.2. Morphological investigation of the surface of acid adapted and control cells  

The surface of L. plantarum NCIMB 8826 cells was examined by cryo-SEM in 

order to visualize possible changes on the cell surface caused by acid adaptation. To this 

end, 25 ml of early stationary phase cells with a concentration of ∼1010 CFU/ml as 

described in section 2.2.4.1.1 was incubated in acidified MRS (pH 3, 25 °C, 1 h); the 

cells incubated in unmodified MRS (pH 6.4, 25 °C, 1 h) were used as a control. After    

1 h incubation, the pellets were harvested by centrifugation at 3,500 g for 15 min, 

washed twice with 0.1 M PBS (pH 7.3), and transferred into a microtube. The pellets 

were mounted onto a copper holder with colloidal graphite and plunged into liquid 

nitrogen. The frozen specimens were then loaded into a transfer chamber where they 

were fractured with a cold scalpel blade. The specimens were etched at -90 °C for       

10 min and coated by sputtered argon. They were then transferred under vacuum onto 

the cold stage and imaged using a high vacuum field emission SEM (QUANTA 600F, 

FEI, USA). The images were captured and analysed by the xT microscope control 

software.  
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3.2.3. Determination of cellular fatty acid composition  

In order to evaluate the potential effect of the acid adaptation and the combinatory 

effect of acid and cold adaptation on the membrane composition, the concentrations of 

intracellular fatty acids in the adapted and control cells at different pH (pH 3.0 and 6.4) 

and temperatures (4 and 37 °C) were determined by gas chromatography using a 

mixture of fatty acids from 9 to 20 carbons in length and five hydroxyl acids as external 

standards (Sherlock MIS System, MIDI Inc, USA). To this end, 50 ml of early 

stationary phase cells with a concentration of ∼1010 CFU/ml, obtained as described in 

section 2.2.4.1.1, were incubated in MRS (pH 3.0 and pH 6.4, 1 h at 25 °C) and 

acidified citrate buffer (pH 3, 3 h at 4 and 37 °C); in all cases citric acid was used to 

acidify the solutions. After incubation, the pellets were harvested by centrifugation at 

3,500 g for 15 min, washed twice with 0.1 M PBS (pH 7.3), and frozen at -80 οC 

overnight before freeze drying (VirTis BenchTop™ K Series, SP Scientific, UK). 

Finally, the freeze-dried samples were sent to the Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ) in Braunschweig, Germany fatty acid 

analysis. At DSMZ, the fatty acids were extracted from 20 mg of each freeze-dried 

sample according to a standard protocol for fatty acid analysis (Miller, 1982, 

Kuykendall et al., 1988). The mixtures of fatty acid methyl esters produced were 

analysed using the Hewlett-Packard 5898A microbial identification system (Microbial 

ID Inc, USA) equipped with a gas chromatography system (Hewlett-Packard model 

5980), a flame ionization detector (Hewlett-Packard models 3392), and an autosampler 

(Hewlett-Packard models 7673). The detection was performed using a 25 m x 0.2 mm 

5% phenylmethyl silicone capillary column. All peaks were automatically integrated 

and the percentages of each fatty acid were calculated.  
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3.2.4. Gene expression analysis by reverse transcription-polymerase chain 

reaction (RT-PCR) 

In an effort to support the results obtained from the intracellular fatty acid 

analysis, the level of gene expression between adapted (pH 3) and control cells (pH 6.4) 

during citric acid adaptation was evaluated by RT-PCR. cfa and fabH were selected as 

the target genes while the 16S rRNA gene was used as the reference gene in this study 

because it is one of the housekeeping genes (5 gene copies) which exhibit constant 

RNA transcription in L. plantarum NCIMB 8826 cells (Lee et al., 2008). It needs to be 

noted that cfa was selected to evaluate the level of cyclopropanation, as it catalyzes the 

conversion of the cis-double bond of unsaturated fatty acids to the cyclic ring of their 

cyclopropane derivatives; for example oleic acid (C18:1w9c) and cis-vaccenic acid 

(C18:1w7c) are converted to dihydrosterculic acid (C19cyclow9c) and lactobacillic acid 

(C19cyclow9c), respectively (Johnsson et al., 1995). fabH was selected to evaluate the 

synthesis of straight chain fatty acids as this enzyme plays an important role in the first 

step of the elongation process of fatty acids. Consequently, the upregulation of this gene 

reflects the amount of saturated fatty acids being produced, as depicted in figure 3.1.  
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Figure 3.1 Conserved pathway for the formation of fatty acid in bacteria. a) The first 
step in fatty acid synthesis is the conversion of acetyl-CoA to malonyl-CoA by acetyl-
CoA carboxylase (ACC). Next, the malonyl group is transferred to acyl carrier protein 
(ACP) by malonyl transacylase (FabD). Then, condensation is initiated by FabH to form 
the first β‑ketoacyl-ACP intermediate. b) The second step, chain elongation, is 
continued and repeated by serial enzymatic reactions using; i) β-ketoacyl-ACP 
reductase (FabG), ii) β‑hydroxyacyl-ACP dehydrase (FabA or FabZ), iii) enoyl-ACP 
reductase (FabI) until the long chain ACP end product is obtained. c) The long chain 
ACP end product is finally inserted into the membrane phospholipid by acyl transferase 
via the PlsX–PlsY pathway (Zhang and Rock, 2008). 
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3.2.4.1. Design of primers for RT-PCR 

Primer-BLAST, a free primer designing tool (http://www.ncbi.nlm.nih.gov/ 

tools/primer-blast/), was used to design the specific primers for the targeted genes. After 

obtaining the results, each pair of designed primers was checked for their specificity 

toward the genome of L. plantarum WCFS1 using NCBI Blastn 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Furthermore, the primer dimer and hairpin 

structure were calculated by OligoEvaluator (http://www.oligoevaluator.com/Login.jsp) 

before the PCR experiments were performed. 

3.2.4.2. Preparation of samples for RNA extraction 

The pellets of adapted (pH 3, 25 °C, 1 h) and control cells (pH 6.4, 25 °C, 1 h) 

prepared as described in section 3.2.3 were used for RNA extraction. Importantly, prior 

to RNA extraction, these cell pellets needed to be treated with 25 ml of RNA 

stabilization reagent (RNAlater, Qiagen, UK) in order to prevent RNA degradation, as 

gene expression studies require high quantity of RNA. The stabilized cells were 

collected by centrifugation at 3,500 g for 15 min. They were then resuspended in 2.5 ml 

nuclease free water (Qiagen, UK) and then 1 ml of this cell suspension was transferred 

into a 2 ml microtube containing acid-washed 106-mm-diameter glass beads. The 

samples were disrupted thrice by a Mini-Beadbeater following the method described in 

section 3.2.2. After cell breaking, the aqueous phase was collected by centrifugation for 

10 min at 15,000 g (4 °C) and transferred into a new sterile 1.5 ml microtube. The RNA 

of each sample was isolated using RNeasy Mini Kit (Qiagen, UK) according to the 

manufacturer’s instructions. All RNA preparations were treated with RNase-free DNase 

for 20 min at 37 °C during mRNA extraction. Finally, the RNA pellet was dissolved in 

20 µl of nuclease-free water and stored at -20 °C until use. The concentration and purity 

http://www.ncbi.nlm.nih.gov/
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of each RNA sample were determined using NanoDrop ND-1000 (Thermo Scientific, 

UK).  

3.2.4.3. RT-PCR quantification  

By real time RT-PCR, the genes of interest including the reference gene (Table 

3.1) were amplified using QuantiFast SYBR Green RT-PCR Kit (Qiagen, UK). Three 

concentrations of mRNA (1:10, 1:100, and 1:1000 dilutions) were used as the template 

for each set of primers. The amplification was run in triplicate for each sample in white 

96 well plates (Roche Applied Science) using the LightCycler® 480 RT- PCR system. 

Before the RT-PCR products were analysed, preliminary RT-PCR experiments were 

conducted by making a 10 fold serial dilution of the extracted mRNA to set up the 

optimum reaction for amplifying the target genes. Reactions were carried out in a total 

volume of 25 µl, containing 2 µl of mRNA, 1 µl of each primer (0.01 nM), 12.5 µl of 

2X QuantiFast SYBR Green RT-PCR Master Mix, 0.25 µl of QuantiFast RT Mix and 

8.25 µl of RNase free water. A non-template control was included in each run to 

identify possible DNA contamination. The RT-PCR cycler conditions were set as 

follows: Reverse transcription at 50 °C for 10 min, PCR initial activation step at 95 °C 

for 5 min, followed by 35 cycles of denaturation at 95 °C for 10 sec, annealing at 60 °C 

for 30 sec, and elongation with measurement of fluorescence at 72 °C for 30 sec. The 

cycles were followed by a melting curve analysis at 95 °C for 1 min, 55 °C for 30 sec, 

and a slow increase to 95 °C with continuous fluorescence acquisition. The relative 

expression ratio of each candidate gene was determined by comparison with the 

expression levels of the reference gene. The RT-PCR efficiency (E) for each pair of 

primers was calculated by using serial 1:10 dilutions of mRNA of the LightCycler®480 

RT- PCR System. 
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Table 3.1 Target genes and primers used in RT-PCR analysis 

Locus taga gene Function Primer(5’-3’) E value 

lp_rRNA01 16S rRNA 16S ribosomal 
RNA 

Forward primer: TCTGTAACTGACGCCTGAGGC 
Reserve primer: CTGTATCCATGTCCCCGAAG 1.98 

Ip_1696 cfa 
Cyclopropane fatty 
acyl phospholipid 
synthase 

Forward primer: AGCAGCGTCATTTGGAGGAA 
Reserve primer: GACCTGTTGTTTCGACCTGCT 2.23 

Ip_1671 fabH2 3-oxoacyl ACP 
synthase 

Forward primer: GTGCGGGCTTTGTTTATGGG 
Reserve primer: CAGTGCCCAGTGGTCGTATT 1.97 

aDesignated gene loci for annotating the location on L. plantarum WCFS1 chromosome. 

 

3.3. 19BResults and Discussion 

3.3.1. 57BConcentrations of citric and lactic acids after acid adaptation and during 

storage in fruit juices 

During cell adaptation in acidified citrate buffer (pH 3, 37 οC, 1 h), no 

consumption of citric acid was observed and no lactic acid was produced during acid 

adaptation (data not shown). This suggests that the citrate metabolism most likely did 

not take place during incubation of early stationary phase L. plantarum NCIMB 8826 

cells. It might be due to the lack of glucose which is necessary for cell growth as citrate 

metabolism was shown to take place during growth of L. plantarum DSM 20174 in rich 

media at acidic pH (pH 3.6 to 5.0) when citric acid was used as a carbon source; acetate 

and CO2 were the major end products, whereas small amounts of lactic acid were also 

detected (Kennes et al., 1991). Interestingly, when the experiment was carried out with 

a minimal base medium, citric acid did not support cell growth as the sole carbon 

source, but in the presence of citric acid and glucose the growth rate increased 

compared to just glucose (Kennes et al., 1991). Although no detailed metabolite 

analysis was done, it suggests that in the presence of citric acid the cells were 
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potentially able through the citrate fermentation pathway to expel the lactic acid 

(produced through glycolysis) faster, thus increasing growth rate; this was shown to 

take place following a similar experiment with Lactococcus lactis CRL 264 (Magni et 

al., 1999). Taking the above into account and the citrate and lactate results from the acid 

adaptation experiment, in which the buffer used did not contain additional carbon rich 

nutrients, it can be deduced that acid adaptation alone is insufficient to activate citrate 

fermentation pathway, but growth under acidic condition in presence of citric acid 

maybe required. That is, early stationary phase cells did not use the citrate fermentation 

pathway as no lactic acid was being produced, and the citrate fermentation pathway is a 

PMF-generating pathway associated specifically with lactic acid toxicity (Magni et al., 

1999). 

To evaluate whether using a rich medium to carry out the acid adaptation would 

induce the citrate fermentation pathway, the cells were exposed to acidified MRS (pH 3, 

25 οC, 1 h), containing substantial levels of carbon sources (20 g/l glucose) and nitrogen 

(10 g/l peptone; 8 g/l Lab-Lemco’ powder, 4 g/l yeast extract). The results show that 

there were no significant differences in citric and lactic acid concentration between the 

different MRS samples (MRS with no cells at pH 6.4 versus MRS with cells at pH 6.4 

versus MRS with cells at pH 3.0) (data not shown); this indicated that citrate 

fermentation was not activated even in the case of MRS, which contained glucose. 

Overall, the two sets of experiments presented above demonstrated that the citrate 

fermentation did not take place during acid adaptation and therefore this mechanism did 

not contribute toward acid tolerance in L. plantarum NCIMB 8826 cells. 

In the case of fruit juices, no significant change in the concentration of citric 

acid was observed during storage, whereas lactic acid was not detected in any of the 

samples (Table 3.2), indicating that citrate fermentation most likely did not take place 
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during storage in fruit juices as well. In order to confirm this, the concentrations of citric 

and lactic acid were also measured inside the cells, primarily to evaluate whether small 

amounts of citric acid were transported inside the cells and whether glycolysis was 

taking place, which potentially could have resulted in the intracellular production of 

lactic acid. No citric and lactic acid were detected inside the cells, although a number of 

additional unknown peaks were detected in the case of acid adapted cells (data not 

shown), suggesting that the cells could have responded to acid adaptation through the 

accumulation of some small organic compounds. These were most likely not formic 

acid, butyric acid, caproic acid, oxalic acid and malic acid as the retention times of the 

unknown peaks were different to the retention times expected for these compounds with 

this particular column. It was not possible however to identify the compounds with the 

existing HPLC system. Liquid chromatography mass spectrometry would be required 

for identification, which was not available. Nevertheless, based on qualitative analysis 

of the chromatograms and comparisons of the retention times with the literature, it is 

likely that one of these compounds was pyruvic acid, which suggests that possibly some 

low metabolic activity was taking place during storage of the cells. 

The analysis of the citric acid content of the three juices indicated that the lemon 

& lime juice contained the highest amount of citric acid (~30 mM) followed by 

pomegranate (~29 mM) and then cranberry juice (~15 mM) (Table. 3.2), while no lactic 

acid was detected in all cases (data not shown). Besides citric acid, other organic acids 

are likely to be present, such as malic and ascorbic acid, as shown by previous analysis 

of the same fruit juices including cranberry and pomegranate (Nualkaekul and 

Charalampopoulos, 2011). Previous work by Nualkaekul and Charalampopoulos (2011) 

demonstrated that increasing the concentration of citric acid in the synthetic media 

enhanced the survival of L. plantarum NCIMB 8826 during storage, although other 
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factors played a role as well, such as the pH and the sugar concentration. It is interesting 

to note that the citric acid concentration did not decrease during storage in those 

experiments either. Taking into account the survival data from the three juices, it seems 

that the higher the citric acid concentration in the juice the better the cell survival. This 

suggests a protective effect of citric acid which is even more evident when comparing 

the cell survival in cranberry and lemon & lime juices, as both juices had similar pH    

(~ 2.5) yet distinctly different citric acid concentration.  

In summary, the citrate fermentation pathway was not implicated in the acid 

tolerance of L. plantarum NCIMB 8826 cells, as no changes were observed in the 

concentrations of lactic and citric acids after adapting the cells with either acidified 

solution. Nonetheless, high amounts of citric acid in fruit juices help improve the 

survival of L. plantarum NCIMB 8826 during storage in fruit juices, which is in 

accordance with the literature, indicating that citric acid plays a role in enhancing the 

acid tolerance of the cells; however, currently there is limited understanding of the 

mechanism. 

Table 3.2 Extracellular concentrations of citric acid during refrigerated storage at 4 °C 
in three different juices. Results are expressed in mean ± SD (n=3). Significant 
differences of citric concentration among each fruit juice were determined by one-way 
Anova and Tukey’s post-hoc tests. *indicates significant differences among fruit juices.  

Juices Time 

Extracellular citric acid concentration (mM) 

Without cells With 
control cells 

With 
adapted cells 

Cranberry* 
0 h 15.23±0.27 15.09±0.25 15.02±0.20 
72 h 14.84±0.23 15.33±0.34 15.22±0.15 

Pomegranate* 
Week 0 28.84±0.16 28.53±0.18 28.76±0.17 
Week 5 28.75±0.13 28.71±0.15 28.69±0.11 

Lemon & lime* 
Week 0 30.30±0.31 30.41±0.17 30.34±0.36 
Week 6 30.42±0.16 30.37±0.08 30.34±0.07 
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3.3.2. Morphological investigation of the cell surface of acid adapted and control 

cells  

After acid adaptation in acidified MRS (pH 3, 25 οC, 1 h), the surface of adapted 

cells became rougher and thicker while the control cells exhibited a smooth surface 

(Figure 3.2).  

  

Figure 3.2 Cryo-SEM images of L. plantarum after incubation in MRS at pH 6.4, 25 °C 
for 1 h (control cells, A) and MRS at pH 3, 25 °C for 1 h (acid adapted cells, B). 

 

Interestingly, the rough surface of L. plantarum WCFS1 due to acid stress were 

previously reported in the studies of Pieterse et al. (2005) and Ingham et al. (2008), 

which showed that after lactic acid stress, the surface of L. plantarum WCFS1 became 

rougher. In the case of the former study, acid stress was performed using steady state 

cells obtained during a continuous fermentation set up; the medium used was MRS (pH 

4.8, 37 °C) and the dilution rate was 0.3/h. In the latter study the acid adapted cells were 

obtained from microcolonies after transferring mid-log phase cells from liquid broth at 

pH 5 to MRS gel (pH 3, 37 °C, 3 days). Based on Pieterse et al. (2005), the rough 

surface observed in acid stressed cells was associtated with the upregulation of three 

operons/genes encoding for cell surface proteins but their functions were not identified. 

A B 
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Although the functions of these cell surface proteins are unknown, the majority of them 

are likely to be attached to the cell wall surfaces, i.e. as s-layer, peptidoglycan, and cell 

membrane, through several mechanisms (Siezen et al., 2006). These include: i) covalent 

binding to amino- or carboxyl-terminus membrane-spanning anchors, ii) covalent 

binding to the LPxTG motif (Leucine-Proline-any-Threonine-Glycine), iii) covalent 

binding to lipid-bound anchors and iv) non-covalently bound to a variety of domains 

linked to peptidoglycan, teichoic acids, s-layer, surface polysaccharides and cell 

membrane. From all the mechanisms mentioned above, the non-covalent binding to cell 

wall glycopolymer (CWG), particularly wall teichoic acid, seems to be a likely 

mechanism leading to acid protection as teichoic acid plays an essential role in 

controlling the influx of positively-charged substances through the complex 

peptidoglycan network (Kovacs et al., 2006, Perea Velez et al., 2007, Giaouris et al., 

2008, Weidenmaier and Peschel, 2008, Swoboda et al., 2010) and it also controls cell 

morphogenesis and particularly surface roughness, as shown for L. plantarum (Andre et 

al., 2011).  

According to the image of the acid adapted cells (Figure 3.2 B) a rough coat-like 

structure is visible; besides surface proteins, this might be an EPS, particularly a 

capsular exopolysaccharide (CPS) which is secreted outside the cells but is able to form 

a tightly adherent cohesive layer surrounding the cell surface. According to Ruas-

Madiedo et al. (2002) and Nwodo et al. (2012), EPS and CPS can potentially protect the 

cells against a variety of harsh environments such as desiccation, influx of antibiotics 

and toxins, and osmotic stress. Although there are several reports about EPS production 

by L. plantarum (Desai et al., 2006, Mostafa et al., 2006, Nagata et al., 2009, Tsuda et 

al., 2008, Wang et al., 2010), none of these have investigated their function against acid 

stress. However, it is important to note that despite the visible effects of citric acid on 
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the cell surface, no membrane injury or damage was observed due to citric acid 

adaptation. In contrast, this was reported for the cell membrane of L. casei strain Zhang, 

which became thinner and impaired after exposure of the cells to lactic acid at pH 3.5 

for 1 h (Wu et al., 2012).  

A possible hypothesis for the improved survival of acid adapted cells in fruit 

juices is that their thicker surface, potentially as a result of the binding of overexpressed 

surface proteins at the cell wall and particularly the teichoic acid component or due to 

the production of EPS and CPS, decreased the influx of hydrogen protons inside the 

cells. This may also explain why in the case of prolonged storage (after 3 weeks in 

pomegranate and lemon & lime juices) the survival profile was similar between acid 

adapted and control cells, indicating that the change in morphology of the cell surface 

was not permanent. This could be due to the fact that the binding of the surface proteins 

to the wall was becoming less strong or that the EPS and CPS were eroded and released 

into the juices. However, microscopic analysis of the cell surface during storage in the 

juices was not conducted and therefore this cannot be confirmed. Overall, more work, 

including compositional analysis of the cell surface, e.g. by X-ray photoelectron 

spectroscopy, nuclear magnetic resonance and X-ray crystallography, are needed to 

elucidate the potential changes at the surface of the cells and establish the link with acid 

resistance.  

3.3.3. Modification of membrane fluidity by alteration of the cell membrane fatty 

acid composition  

The total amount of saturated fatty acid increased by ~2.3% (cyclopropane is not 

included in the calculations) after acid adaptation whereas the unsaturated fatty acids 

decreased by ~1.3% (Table 3.3). However, these changes were not statistically 
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significant leading to the conclusion that the degree of saturation/unsaturation of 

membrane fatty acids did not change during acid adaptation and therefore did not 

influence the survival of L. plantarum NCIMB 8826 during storage in fruit juices.  

Table 3.3 Relative percentages of cellular fatty acids after incubation of L. plantarum 
cells in control MRS (25 °C, pH 6.4, 1 h)a and acidified MRS (25 °C, pH 3, 1 h)b. 

Systematic nomenclature Lipid number 

Percentage of cellular fatty 
acids 

Control 
cellsa 

Acid 
adapted 
cellsb 

Tetradecanoic acid methyl ester 14:0 4.82±0.62 3.63±0.02 
cis-9-Hexadecenoic acid methyl ester 16:1w7c 8.10±1.31 6.33±0.10 
Hexadecanoic acid methyl ester 16:0 25.86±1.39 24.74±0.58 
cis-9-Heptadecenoic acid methyl ester 17:1w8c 0.83±0.06 0.71±0.01 
cis-9-Octadecenoic acid methyl ester 18:1w9c 11.40±1.32 11.06±0.11 
cis-11-Octadecenoic acid methyl ester 18:1w7c 15.46±2.43 13.73±0.01 
Octadecanoic acid methyl ester 18:0 1.24±0.51 1.26±0.14 
cis-13-Nonadecenoic acid methyl ester 19:1 w6c 25.65±0.21 27.32±1.06 
cis-11,12-Methylene octadecanoic acid 
methyl ester 19:0 cycw7c 6.39±0.41 10.22±0.69* 

*indicates significant difference to control cells (p<0.05) 

 

The major fatty acids of L. plantarum NCIMB 8826 were myristic acid (C14:0), 

palmitic acid (C16:0), palmitoleic acid (C16:1w7c), oleic acid (C18:1w9c), cis-vaccenic acid 

(C18:1w7c) and nonadecenoic acid (C19:1). These acids constituted about 90% of the total 

fatty acids content, which is similar to the fatty acid composition previously reported for 

L. plantarum 2004, with the main exception being the presence of nonadecenoic acid 

(C19:1) (Johnsson et al., 1995). The role of membrane fatty acid composition of LAB in 

acid stress response has been the subject of a number of studies; however, the results 

have been contradictory. The general hypothesis is that by modifying their membrane 

fatty acid composition the cells are able to adjust their membrane viscosity to respond to 

environmental stimuli (Guerzoni et al., 2001, Streit et al., 2008, Montanari et al., 2010, 

Wu et al., 2012). More specifically, in the case of acid stress, the cells should reduce 
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their membrane fluidity to protect the cytoplasm from the influx of hydrogen protons by 

either increasing the degree of saturation or decreasing the degree of unsaturation of the 

membrane fatty acids. The reasoning is that saturated fatty acids are linear and tightly 

pack together resulting in the production of a bilayer which has a high phase transition 

and low permeability, while the cis-double bond unsaturated fatty acids introduce a 

twist in the chain, which disrupts the order of the bilayer and leads to lower transition 

temperatures and higher permeability (Zhang and Rock, 2008). However, as mentioned 

above, the expected changes in the membrane fatty acid composition were not observed 

in this study (although a trend was observed suggesting an increase in the total saturated 

and a decrease in the total unsaturated fatty acids). The discrepancies observed in the 

published work could be attributed to differences in the intrinsic properties of the strains 

used, low accuracy and reproducibility in fatty acid analysis, as well as considerable 

differences in the experimental designs. For example some studies carried out acid 

stress experiments under growth conditions (at low pH or non-controlled pH), whereas 

others under non growth conditions in buffer solutions or media.  

Interestingly, the fatty acid analysis indicates that the relative concentration of 

the cyclopropane fatty acid, cis-11,12-methylene octadecanoic acid (C19cyclow7c) which 

was generally known as lactobacillic acid, significantly increased (from ~ 6% to ~ 10%) 

in the acid adapted cells compared to the control cells (Table 3.3). Although there are 

two cyclopropane fatty acids, dehydrosterculic acid (cis-9,10-methylene octadecanoic 

acid, C19cyclow9c) and lactobacillic acid, which are normally found at high percentages in 

LAB after acid stress and cold stress (Montanari et al., 2010), only lactobacillic acid 

was detected in this study. According to Broadbent et al. (2010) and Wu et al. (2014), 

cyclopropane fatty acids are very important in controlling the biophysical properties of 

the cell membrane. An increase in cyclopropane due to acid stress was also observed 
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previously in L. casei strain Zhang (Wu et al., 2012). More specifically, the survival of 

L. casei strain Zhang was compared with mutants (obtained by serial sub-culturing the 

L. casei strain Zhang cells in MRS medium at pH of 4.3 for 70 days) in MRS acidified 

with HCl (pH 3), MRS acidified with lactic acid (pH 3.5), and simulated gastric juice 

(pH 2.5) for 0 to 2.5 h. The mutant strains showed better survival in the acidified 

solutions than the parental strain due to a higher amount of cyclopropane (octadecanoic 

acid, C19cyclo) (3% to 9% higher at pH 3.5, from 0 to 1 h). Considering the results of this 

study in conjunction with the previous work with lactobacilli, it can be assumed that the 

increase in cyclopropane fatty acid in L. plantarum NCIMB 8826 improved cell 

survival during storage in the fruit juices by lowering the cell membrane fluidity which 

helps reducing the proton influx into the cells. Moreover, an increase in the 

cyclopropane content of L. plantarum DSM 10492 during growth at pH 5.5 in the 

presence of some phenolic compounds, such as caffeic acid, ferulic acid and tannin in 

the growth medium was observed in previous work (Rozes and Peres, 1998). It is 

possible to deduce that the increased levels of cyclopropane in the cell membrane not 

only reduce proton influx but also protect the cells from the phenolic compounds 

present in the fruit juices.  

In the case of the combined acid and cold adaptation, the content of unsaturated 

and saturated fatty acids between the two treatments was very similar (Table 3.4), with 

the exception of a statistically significant increase in cyclopropane (lactobacillic acid, 

C19cyclow9c) for acid adapted cells at 4 °C, although the absolute values were similar 

(9.8% versus 10.1%). A likely hypothesis that has been suggested to explain the 

influence of temperature is that in order for the cell membrane to function efficiently at 

low temperatures, the cells can potentially decrease the membrane fluidity by increasing 

the amount of unsaturated fatty acids (Aguilar et al., 1998, Deshnium et al., 2000). On 
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the other hand, it was seen in this and other studies that in acidic conditions, the cells 

can reduce the membrane fluidity by increasing the levels of saturated fatty acids and 

cyclopropane, in order to circumvent the influx of hydrogen protons inside the cells 

(Streit et al., 2008, Álvarez-Ordóñez et al., 2008, Alonso-Hernando et al., 2010). It 

appears that under highly acidic conditions, as those used in this study, the acid 

adaptation response is more important than cold adaptation, as overall the fatty acid 

compositions of acid adapted cells at 4 and 37 °C were very similar. This is consistent 

with the results presented in section 2.3.5 showing the survival of acid adapted cells (at 

the two temperatures) in fruit juices with similar patterns. 

Table 3.4 Relative percentages of cellular fatty acids after incubation of L. plantarum 
cells in acidified citrate buffer (pH 3, 3 h) at 4 and 37 °C. 

Systematic nomenclature Lipid 
numbers 

Percentage of cellular fatty 
acids 

Acid 
adapted 
cells at     
37 °C 

Acid 
adapted cells 

at 4 °C 

Tetradecanoic acid methyl ester 14:0 3.03±0.01 3.06±0.04 
cis-9-Hexadecenoic acid methyl ester 16:1w7c 5.39±0.14 5.53±0.12 
Hexadecanoic acid methyl ester 16:0 24.02±0.07 24.04±0.43 
cis-9-Heptadecenoic acid methyl ester 17:1w8c 0.55±0.01 0.58±0.12 
cis-9-Octadecenoic acid methyl ester 18:1w9c 8.36±0.02 8.48±0.02 

cis-11-Octadecenoic acid methyl ester 18:1w7c 15.90±0.15 15.60±0.26 
Octadecanoic acid methyl ester 18:0 1.52±0.01 1.45±0.02 
cis-13-Nonadecenoic acid methyl ester 19:1 w6c 28.76±0.42 28.52±0.08 
cis-11,12-Methylene octadecanoic acid 
methyl ester 19:0 cycw7c 9.76±0.03 10.05±0.03* 

*indicates significant difference to control cells (p<0.05) 

3.3.4. Gene expression analysis by RT-PCR 

The cfa mRNA expression levels increased by approximately 12 fold after the 

cells were adapted in acidified MRS (pH 3, 25 °C, 1 h), relative to the control MRS (pH 

6.4, 25 °C, 1 h). This increase in cfa mRNA is consistent with the results in table 3.3, 

which showed that in the acid adapted cells the concentration of cis-11,12-
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methyleneoctadecanoic acid methyl ester (lactobacillic acid) increased from 6.4% to 

10.2% and that of cis-11-octadecenoic acid methyl ester (cis-vaccenic acid) decreased 

from 15.46% to 13.73% compared with the control cells. These results demonstrate the 

significant role of cfa in the process of acid adaptation. The induction of the cfa gene 

under low pH was also observed in previous work with Lactococcus lactis MG 1363 

(Budin-Verneuil et al., 2005) and L. plantarum KR6 (Seme et al., 2015), although a 

different experimental set up was used. More specifically, the amount of cfa mRNA in 

Lactococcus lactis MG 1363 determined by Northern blot analysis was higher when the 

cells were grown in HCl acidified M17 medium (pH 5, 30 min) compared to cells 

grown in control M17 medium (pH 7, 30 min). Upregulation of the cfa gene was shown 

for L. plantarum KR6 cells exposed to HCl acidified MRS (pH 4.5 and 2.5, 30 min) 

compared to control MRS (pH 7, 30 min).  

In respect to the fabH gene, it was found that the levels of fabH mRNA 

increased 6 fold after acid adaptation, although this difference was not statistically 

significant. This increase is in accordance to the study by Fernandez et al. (2008), who 

reported that the level of fabH in L. bulgaricus cells increased 15 fold after being 

exposed to MRS acidified with lactic acid to pH 3.8, and subsequently incubated in 

MRS (pH 4.9 with lactic acid, 40 min). These suggest that an increase in straight chain 

saturated fatty acids should take place during acid adaptation in lactobacilli; however, 

the upregulation of fabH gene did not coincide with the saturated fatty acid profiles data 

between acid adapted and control cells (Table 3.3) as no significant differences were 

observed. This discrepancy might be due to the overexpression of cfa gene which 

utilised newly synthesised unsaturated fatty acids for cyclopropane production as 

mentioned above. Overall, the straight chain saturated fatty acids were synthesized in  
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L. plantarum NCIMB 8826 during acid adaptation but were converted to cyclopropane 

by cfa gene.  

3.4. Conclusions 

In summary, the results from this part of the work indicate that the response of    

L. plantarum NCIMB 8826 cells to short acid adaptation with citric acid did not involve 

the citrate fermentation pathway, which has been reported for Lactococcus lactis, as the 

citric acid was not metabolized and no lactic acid production was observed. In terms of 

cell morphology, the cell surface became rougher and thicker after exposure to acidic 

conditions, which indicates a possible overexpression of surface proteins or the 

production of EPS at the cell surface, resulting in a stronger cell wall with increased 

ability to inhibit the influx of hydrogen protons inside the cells during storage in fruit 

juices. Membrane fatty acid analysis indicated that the cyclopropane fatty acid cis-

11,12-methylene octadecanoic acid (C19cycw7c) content (expressed as percentage of total 

fatty acids) increased significantly (p<0.05) by about 1.67 fold during acid adaptation; 

this coincided with a significant upregulation (12 fold) of the cfa gene. No statistically 

significant (p>0.05) change in the degree saturation/unsaturation of the membrane fatty 

acids was observed in response to acid adaptation, although a trend showing an increase 

in total saturated fatty acids and a decrease in total unsaturated fatty acids was noted. 

Considering these results, it is likely that changes in the membrane fatty acid 

composition, particularly the increase in cyclopropane, in combination with changes in 

the call wall structure (potentially linked to the overexpression of surface proteins) 

enhanced the survival of acid adapted cells in the fruit juices. In order to investigate 

further the possible contribution of these mechanisms to the acid tolerance of the cells, 

proteomic analysis conducted by 2D-gel electrophoresis and mass spectrometry, as well 
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as intracellular analysis of amino acids was conducted. These experiments are presented 

and discussed in chapter 4.  
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CHAPTER 4 

Amino acid, GABA, and proteomic analysis of L. plantarum 

NCIMB 8826 cells in response to acid adaptation 

4.1. Introduction 

It has been demonstrated that amino acid metabolism is involved in the ∆pH 

homeostasis systems used by LAB during acid stress. For example, the accumulation of 

a basic amino acid, such as histidine, intracellularly was reported to protect L. casei 

ATCC 334 during acid stress (Broadbent et al., 2010), whereas L. casei strain Zhang 

accumulated aspartate and arginine intracellularly during acid stress and metabolised 

these to ammonia via the ADI system; this resulted in the generation of ammonia and 

thus the alkalization of the cytoplasm that led to enhanced survival at pH 3.5 for 3 h 

compared to unstressed cells (Wu et al., 2012, Wu et al., 2013). Moreover, the 

conversion of intracellular L-glutamate to GABA, with the concomitant consumption of 

a proton via the GAD system has been shown to contribute to the protection of a 

number of bacterial cells during acid stress including E. coli (Lin et al., 1995, Castanie-

Cornet et al., 1999), Listeria monocytogenes (Cotter et al., 2001), Lactococcus lactis 

(Sanders et al., 1998) and L. reuteri (Su et al., 2011). In order to evaluate the potential 

involvement of amino acids and/or GABA in acid adaptation in this study, the 

intracellular and extracellular amino acid composition and the concentration of GABA 

after acid adaptation were analysed.  

Proteomics is a powerful tool that can be used to monitor the overall changes of 

proteins throughout the cellular protein network during acid adaptation, including 

proteins involved in carbohydrate, lipid and protein metabolisms and stress responses. 

Based on 2D-gel electrophoresis, many studies have reported changes in the level of 
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expression of various proteins in lactobacilli during acid stress conditions including     

L. acidophilus (Lorca and de Valdez, 2001), L. sanfranciscensis (De Angelis et al., 

2001), L. casei (Wu et al., 2011), L. reuteri (Lee et al., 2008) and L. rhamnosus 

(Koponen et al., 2012), although to our knowledge no such studies have been conducted 

with          L. plantarum. The above proteomic studies have identified a large number of 

proteins changing during acid stress including molecular chaperone proteins or stress 

proteins, and proteins involved in fatty acid biosynthesis, nucleotide and amino acid 

biosynthesis, and peptidoglycan biosynthesis. Among these, the most commonly 

identified proteins are stress proteins, particularly the 70-kDa family (DnaK) and the 

60-kDa family (GroEL) which play an important role in the folding and/or assembly of 

proteins (Hartke et al., 1996, Lim et al., 2000, Wu et al., 2014). On the other hand, 

MurA, MurD, and MurG, which are involved in the formation of the peptidoglycan 

backbone GlcNAc and MurNAc, and D-alanine-D-ligase which catalysed the assembly 

of          D-alanyl-D-alanine dipeptide, have been recently reported by Wu et al. (2012) 

and Koponen et al. (2012) to be overexpressed in L. casei and L. rhamnosus, 

respectively. 

As the cell walls of Gram-positive bacteria lack the outer membrane structure of 

Gram-negative bacteria, the thick layer of peptidoglycan in Gram positive bacteria, 

which contains CWGs, is essential for stabilizing and protecting the cell membrane 

from harsh environments (Chapot-Chartier and Kulakauskas, 2014). The major 

component of CWGs is a group of molecules called teichoic acids which can be sub-

classified into two groups: WTA which is covalently linked to peptidoglycan, and 

lipoteichoic acid (LTA) which is anchored to the cytoplasmic membrane (Swoboda et 

al., 2010). More specifically, WTA is covalently linked to the MurNAc component of 

peptidoglycan by a disaccharide, while LTA is anchored to the cytoplasmic membrane 

https://en.wikipedia.org/wiki/Cytoplasmic_membrane
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by a glycolipid. Besides binding to peptidoglycan and cytoplasmic membrane through 

these binding methods, the glycerol-phosphate chain structure of both teichoic acids can 

also bind to D-alanine via teichoic acid alanylation or D-alanylation, which is catalysed 

by the dltABCD operon (Weidenmaier and Peschel, 2008, Brown et al., 2013). The 

phosphodiester linkage between the D-alanyl ester residue and sn glycerol 1-phosphate 

of teichoic acid results in reducing the negative charge of glycerol 1-phosphate (PO3
2-) 

in the cell envelope, as the protonated amino group of the D-alanyl ester residue can 

serve as counterions to the negatively charged phosphate group of the glycerol 1-

phosphate unit of teichoic acid (Neuhaus and Baddiley, 2003). It seems likely that the 

more D-alanine is added the more positive charge the cell envelope has. Many cellular 

functional roles have been previously suggested for teichoic acid, such as maintenance 

cation homeostasis, transportation of ions, nutrients, proteins, and antibiotics, as shown 

for Bacillus subtilis (Neuhaus and Baddiley, 2003), control of divalent cation binding 

(Mg2+ and Ca2+), as shown for L. buchneri and L. plantarum (Baddiley et al., 1973, 

Neuhaus and Baddiley, 2003), regulation of bacterial autolysis by preventing cationic 

autolysins binding on the bacterial surface, as shown for Staphylococcus aureus (Schlag 

et al., 2010), control of cell morphogenesis, particularly surface roughness, as shown for 

L. plantarum (Andre et al., 2011), and adhesion of abiotic surfaces and biofilm 

formation via surface-exposed polysaccharide of CWGs as shown L. rhamnosus 

(Lebeer et al., 2009). However, the most important function during acid stress is 

probably its control of cation binding, as this might help to protect the cells from the 

influx of high concentrations of protons. More specifically, this could be attributed to 

the binding between D-alanine and teichoic acid, which has been shown in a number of 

bacteria (such as Bacillus subtilis, Staphylococcus aureus, L. buchneri, L. plantarum 

and L. rhamnosus) to play an essential role in controlling the influx of positively 

https://en.wikipedia.org/wiki/N-Acetylmuramic_acid
https://en.wikipedia.org/wiki/Cytoplasmic_membrane
https://en.wikipedia.org/wiki/Alanine
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charged substances through the complicated peptidoglycan network (Kovacs et al., 

2006, Perea Velez et al., 2007, Giaouris et al., 2008, Swoboda et al., 2010). The aim of 

this chapter was to evaluate the occurrence and potential contribution of the above 

mentioned mechanisms toward acid resistance of L. plantarum NCIMB 8826 following 

acid adaptation. 

4.2. Materials and methods 

4.2.1. Amino acid analysis  

In order to investigate the potential role of amino acids in protecting the cells 

against acidic environment, the concentration of extracellular and intracellular amino 

acids were evaluated using the EZ faast™ amino acid analysis kit (Phenomenex, USA) 

which does not require any additional treatment for removing the interfering compounds 

(as traditional methods do). This method consists of a solid phase extraction step 

followed by derivatization and liquid/liquid extraction. After that, the derivatized amino 

acids were analysed by Gas Chromatography-Mass Spectrometry (GC-MS).  

4.2.1.1. Amino acid analysis of supernatant samples 

The supernatants of the adapted (pH 3, 25 οC, 1 h) and control cells (pH 6.4, 25 

οC, 1 h) prepared as described in section 3.2.3 were collected for GC-MS analysis.       

A 100 µl aliquot of each supernatant including non-inoculated MRS was mixed with 

200 µl of solution 2 (sodium carbonate). A 25 µl aliquot of the mixed samples and a 25 

µl aliquot of an amino acid standard solution provided with the kit (over 50 amino 

acids) were separately loaded into a sample preparation vial and then 100 µl of 200 

nM/ml norvaline was added into each sample as an internal standard. For solid-phase 

extraction, the samples were slowly filled up and passed through sorbent tips. After that, 
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the samples were washed with 200 µl of HPLC grade water and eluted with 200 µl of 

eluting solution (sodium hydroxide and N-propanol; ratio: 3:2). Then, the derivatized 

amino acids were extracted by 150 µl of isooctane/chloroform (ratio 1:2) and analysed 

by a Clarus 500 GC-MS system (Perkin Elmer, USA). An aliquot (2 µl) of the 

derivatized amino acid solution was injected at 250 °C in split mode (5:1) onto a 0.25 

mm x 10 m Zebron ZB-AAA capillary column (Phenomenex, USA). The oven 

temperature was 110 °C for 1 min, then increased at 30 °C/min to 320 °C, and was then 

held at 320 °C for 2 min. The transfer line was held at 320 °C and the carrier gas flow 

rate was kept constant throughout the run at 1.1 ml/min. The ion source was maintained 

at 220 °C. Samples and mixtures of amino acid standards were analysed in triplicate. A 

calibration curve was plotted for each amino acid and used to calculate the amount of 

the amino acids in the samples. In order to confirm the accuracy of the results, a specific 

mass spectrum fragment ion for each amino acid described in the manual was selected. 

The area of the fragment ion of each amino acid was computed relative to the area of 

the fragment ion (158 m/z) of the internal standard (norvaline) to obtain the amount of 

each amino acid in the sample. 

4.2.1.2. Intracellular amino acid analysis 

The adapted and control cells derived from section 4.2.1.1 were rapidly 

quenched with 40 ml of pre-chilled 0.5 mM tricine in 60% (v/v) methanol (Sigma 

Aldrich, UK) in dry ice. The cell pellets were then collected by centrifugation at 12,000 

g for 5 min, re-suspended in 4 ml of sterile distilled water, and disrupted with a Mini-

Beadbeater as described in section 3.2.2. A 100 µl aliquot of a 1:10 dilution of the 

extract was loaded into a sample preparation vial and the amino acid composition was 

analysed as described in section 4.2.1.1. 
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4.2.2. Quantification of extracellular and intracellular GABA 

In order to evaluate the effect of GAD system toward acid adaptation in            

L. plantarum NCIMB 8826, the concentrations of extracellular and intracellular GABA 

of acid adapted (pH 3) and control cells (pH 6.4) were determined according to the 

method of Tsukatani et al. (2005) following the modifications suggested by O'Byrne et 

al. (2011). Samples (90 µl) of reaction mixture containing 80 mM of Tris–HCl buffer 

(pH 9), 750 mM of sodium sulfate, 10 mM of dithiothreitol, 1.4 mM of NADP+, 2 mM 

of α-ketoglutarate, and 30 µg of GABase (Sigma-Aldrich, UK) were added into a 96-

well microplate. Subsequently, 10 µl of the supernatants prepared as described in 

section 4.2.1.1 and 10 µl of disrupted cells prepared as described in section 4.2.1.2 were 

added into the 96-well microplate. The reactions were monitored for 3 h at 30 °C; non-

inoculated MRS was used as a control. The formation of Nicotinamide adenine 

dinucleotide phosphate was measured as the absorbance at 340 nm using a microplate 

reader (Sunrise™, Tecan, UK). The concentration of GABA in the samples was 

calculated from a calibration curve using standard solutions. All samples and standards 

were analysed in triplicate.  

4.2.3. Proteomic analysis of acid adapted and control cells  

The expression of proteins in acid adapted and control cells was analysed by 2-D 

gel electrophoresis in order to monitor the overall changes in the proteome during acid 

adaptation. This method separates proteins based on their isoelectric points (pI) and 

their molecular weights. Differences between the adapted and control cells were 

identified taking into account the pI, size, and volume of the spots on the gels. Selected 

protein spots were digested using the in-gel trypsin digestion method and identified by 

Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-
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MS/MS). All proteomic analyses were performed at the Faculty of Medical Technology, 

Mahidol University, Thailand, while the differential protein expression analysis and 

spot selection (described in section 4.2.3.3) were carried out at the University of 

Reading. 

4.2.3.1. Protein extraction 

The pellets of acid adapted and control cells prepared as described in section 

3.2.3 were collected and resuspended in 1 ml of lysis buffer consisting of 8 M urea 

(Sigma-Aldrich, UK) and 2% (v/v) CHAPS (GE Healthcare, UK) plus 10 µl/ml of 

protease inhibitor (GE Healthcare, UK). The cells were disrupted thrice by a Mini-

Beadbeater as described in section 3.2.2. The supernatants were transferred to sterile 1.5 

ml microtubes and stored at -80 °C until further analysis. The protein concentration in 

the supernatant was measured by the Bradford assay using Bradford solution (Sigma-

Aldrich, UK). Bovine serum albumin (Sigma-Aldrich, UK), at various concentrations (0 

to 1 mg/ml), was used to construct the calibration curve.  

4.2.3.2. Protein separation 

A 100 µl aliquot of extracted proteins were cleaned up using the 2-D Clean-Up 

Kit (GE Healthcare, Thailand). A 300 μl aliquot of precipitant solution was added into a 

microtube containing 100 µl of extracted proteins. The sample was mixed by inversion 

and incubated on ice for 15 min. A 300 μl aliquot of co-precipitant solution was then 

added into the mixture. After mixing for 5 sec by vortex mixer (vortex genie 2, 

Scientific Industries, USA), the mixture was centrifuged at 12,000 g for 5 min 

(Eppendorf Minispin Plus Microcentrifuge, GE Healthcare, Thailand). The supernatant 

was removed by pipetting prior to adding 40 μl of co-precipitant solution on top of the 

pellet. The sample was kept on ice for 5 min prior to centrifugation (as above) and the 
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supernatant removed. A 25 μl aliquot of distilled water was added to cover the pellet. 

The sample was vortexed for 5 sec, followed by addition of 1 ml of pre-chilled wash 

buffer (-20 °C) and 5 μl of wash additive. The mixture was vortexed until the pellet was 

fully dispersed, then incubated at -20 °C for 30 min, and centrifuged at 8,000 g for 10 

min. The pellet was collected, allowed to air dry for 5 min, and resuspended in 5 µl of 

rehydration buffer which consisted of 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 0.5% 

(v/v) IPG buffer with pH range 3–10 (GE Healthcare, Thailand), 0.002% (w/v) 

bromophenol blue and 12 µl/ml of DeStreak reagent (GE Healthcare, Thailand), with 

the aim to obtain a high enough protein concentration for first-dimension isoelectric 

focusing (IEF). An 18 cm Immobiline DryStrip precast gel (nonlinear gradient from pH 

3 to 10) was rehydrated with 350 µl of the same rehydration buffer overnight on a 

reswelling tray, as recommended by the manufacturer (GE Healthcare, Thailand). A 

total amount of 80 μg (silver stain gel) and 300 μg (Coommasie blue gel) of each 

extracted protein was loaded into Immobiline DryStrip gel ran on the Ettan IPGphor 3 

isoelectric focusing system equipped with a cup with a manifold loading system (GE 

Healthcare, Thailand). Additionally, pre-stained molecular weight markers (NEB, New 

England Biolabs Inc., Thailand) were loaded onto the gel. During the gel run, the 

voltage was increased from 500 to 1,000 V during the first 2 h and then increased to 

8,000 V and kept at that value for 8 h. The temperature was maintained at 20 °C. After 

IEF, the strips were frozen at -80 °C for at least 1 day, thawed at room temperature and 

placed in the equilibration solution, consisting of 50 mM Tris-HCl, pH 8.8, 6 M urea, 

30% (v/v) glycerol, 2% (w/v) SDS, and 0.002% (w/v) bromophenol blue, twice for 15 

min, first in the presence of 10 mg/ml dithioreitol (Sigma-Aldrich, Thailand) and then in 

the presence of 25 mg/ml iodoacetamide (Sigma-Aldrich, Thailand). The second-

dimension gel was performed using ExcelGel SDS Homogeneous 12.5 precast gels. For 
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the gel loaded with 80 μg of extracted protein the proteins were stained with silver 

strain (PlusOne Silver Staining Kit, GE Healthcare Biosciences, Thailand), while the 

gel loaded with 300 μg of extracted protein was stained by Coomassie blue (PlusOne 

Coomassie Tablets, PhastGel Blue R-350, GE Healthcare, Thailand).  

4.2.3.3. Differential protein expression analysis  

After staining, the gel images were digitized using an Image scanner III (GE 

Healthcare, Thailand). Two-dimensional gel analysis was performed by the 

ImageMaster 2D-platinum version 7.0 (GE Healthcare, Thailand) software tool. Images 

acquired from 6 independent gels were grouped in two classes according to the two 

treatments (acid adaptation and control). Each class contained 3 reference gels from the 

same environmental condition. After spot detection and landmark registration, each 

protein spot on the first set (control cells) were matched with its corresponding spot on 

the second set (acid adapted cells). Mismatches were checked and edited. The 

differential protein expression levels on the gels were quantified and computed by pixel 

intensity, area, and volume of the spots. A Student t-test was applied to validate the 

significance of the detected differences between the spot shapes and sizes. Only spots 

with Student t-values higher than 1.4 (P value set at <0.01) and relative expression ratio 

higher than 2 were selected and analysed by LC-ESI-MS/MS. 

4.2.3.4. In-gel trypsin digestion for protein identification  

The selected spots were manually excised from the gel and stored in 1.5 ml 

microtubes at −80 °C until further use. The proteins of interest were in-gel digested 

using the trypsin digestion method. Initially, the gel pieces were washed twice with 100 

µl of 25 mM ammonium bicarbonate (Sigma-Aldrich, Thailand) in 50% (v/v) 

acetonitrile (Merck, Thailand) at room temperature for 30 min. Once the solvent was 
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removed, 50 µl of 100% acetonitrile were added and kept until the gel became white. 

After that, the acetonitrile was discarded and 10 µl of 0.01 mg/ml trypsin (Promega, 

Thailand) in 25 mM ammonium bicarbonate were added into each tube. The reaction 

was carried out at 37 °C for 24 h and the supernatant was centrifuged and collected into 

a new 1.5 ml microtube. This extraction process was repeated twice using 15 µl solution 

of 50% (v/v) acetonitrile and 5% (v/v) trifluoroacetic acid (Sigmal-Aldrich, Thailand) 

for 15 min in order to obtain high amounts of peptides inside the gel piece. All 

supernatants from the extraction processes were pooled together in the same microtube. 

Finally, the extracted peptides were dried in a vacuum centrifuge concentrator 

(CentriVap Benchtop Vacuum Concentrator, Labconco, USA) and reconstituted in 15 

µl of 0.1% (v/v) formic acid (Sigma-Aldrich, Thailand) prior to analysis by LC-ESI-

MS/MS.   

4.2.3.5. LC-ESI-MS/MS analysis of extracted peptides 

The extracted peptides were analysed by a LC-ESI-MS/MS system consisting of 

a liquid chromatography system (Dionex Ultimate 3000, Thermo Scientific, Thailand) 

in combination with an electrospray ionization (ESI) and Quadrupole ion trap mass 

spectrometer (Model amazon SL, Bruker, Germany). The peptide separation was 

performed on a 50 x 0.5 mm x 5 μm C18 reversed phase column (Hypersil GOLD, 

Thermo Scientific, Thailand) protected by a 30 x 0.5 mm x 5 μm C18 guard column 

(Hypersil GOLD, Thermo Scientific, Thailand). 0.1% (v/v) formic acid was used as 

mobile phase A and 100% (v/v) acetonitrile as mobile phase B. The flow rate was 

eluted at 100 μl/min under a gradient condition ranging from 5% B to 80% B in 50 min. 

Mass spectral data from 300 to 1500 m/z were collected in the positive ionization mode. 

http://www.labconco.com/product/centrivap-benchtop-centrifugal-vacuum-concentrator-with-acrylic-lid/537
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4.2.3.6. Protein identification  

For the identification of proteins, all the MS/MS spectra recorded on the tryptic 

peptides present in the obtained gel spots were searched against the protein sequences 

from the NCBI and SwissProt databases using the MASCOT search program 

(www.matrixscience.com). The searching criteria were the following: complete 

carbamidomethylation of cysteine and partial methionine oxidation; an initial mass 

tolerance of ± 200 ppm was applied for all searches; the number of missed cleavage 

sites was allowed up to 1. The MASCOT search scores that were greater than 67 were 

considered to be significantly different (p<0.05) to decrease the possibility of false 

matches between the peptide sequences from the experimental data and the reference 

databases. Moreover, the similarity of the experimental pI and molecular weight data of 

the identified proteins compared to the theoretical ones, obtained from reference 

databases, were also taken into account.  

4.3. Results and discussion 

4.3.1. Extracellular and intracellular amino acid composition  

All amino acids in acidified MRS (pH 3) and unmodified MRS (pH 6.4) 

decreased after adding the cells for 1 h at 25 οC compared to non-inoculated MRS (pH 

6.4) (Figure 4.1). The levels of decrease ranged from 5% to around 75% depending on 

the amino acid. The greatest decreases were observed for glutamic acid, phenylalanine, 

lysine and proline (all between 60% and 75% decreases) for both acid adapted and 

control cells. It is interesting to note that glutamic acid is one of the essential amino 

acids along with valine, leucine, isoleucine, methionine, phenylalanine and tryptophan, 

and as such is required for the growth of L. plantarum WCFS1; lack of these amino 

acids in the media significantly affects its growth (Teusink et al., 2005). Moreover, 
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these amino acids can be used by the bacterial cells for ATP generation through the 

tricarboxylic acid cycle; for example lysine can be converted to the acetyl-coA while 

proline and glutamic acid can be converted to α-ketoglutarate. It is therefore likely that 

the decrease that was observed for these particular amino acids might be associated with 

cell maintenance activities rather than acid resistance. On the other hand, a significant 

decrease in certain extracellular amino acids, in particular alanine (~10% difference), 

glycine (~20% difference), leucine (~15% difference), aspartic acid (~10% difference) 

and tryptophan (~5% difference), was observed between acid adapted and control cells, 

suggesting that these amino acids might be involved in acid adaptation. The particular 

case of alanine and its potential contribution is discussed later on in this chapter in 

detail.  

Alanine was the most abundant intracellular amino acid found in both acid 

adapted and control cells (~47% and ~67%, respectively, of the total amino acid 

content) followed by glycine, glutamic acid, ornithine, and lysine (Table 4.1). In 

response to acid adaptation, only alanine was significantly reduced (by around 1.4 

times), whereas the other amino acids tended to increase in most cases, except for 

aspartic acid and ornithine. Although there is no previous study investigating the 

changes in intracellular amino acid profile of L. plantarum due to acidic environments, 

the role of amino acids in response of acid stress has been previously reported for L. 

casei (Broadbent et al., 2010, Wu et al., 2012, Wu et al., 2013). These studies have 

indicated that the intracellular accumulation of basic amino acids, particularly histidine, 

protected L. casei ATCC 334 during acid stress (Broadbent et al., 2010), whereas the 

accumulation of arginine (a basic amino acid) and to a lesser extent aspartate during 

acid stress of L. casei strain Zhang was able to enhance survival at pH 3.5 for 3 h (Wu 

et al., 2012, Wu et al., 2013). More specifically, intracellular aspartate can be converted 
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to arginine by Ass and Asl at the expense of one molecule of ATP, resulting in the 

intracellular accumulation of arginine. Arginine can be then used to reduce the pHi due 

to the production of ammonia by the ADI pathway. In addition to the above amino acids 

the conversion of intracellular L-glutamate to GABA by the GAD system can lead to 

protection from acid stress in many bacteria (Lin et al., 1995, Sanders et al., 1998, 

Castanie-Cornet et al., 1999, Cotter et al., 2001, Su et al., 2011). 



 

 

132 

 

Figure 4.1 Relative amino acid content of MRS media (relative to non-inoculated MRS) derived from acid adapted cells (acidified MRS, pH 
3, 25 °C, 1 h) and control cells (unmodified MRS, pH 6.4, 25 °C, 1 h). * indicates significant differences for each amino acid between acid 
adapted and control cells determined by paired t-test. 
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Histidine and arginine, both basic amino acids, were not observed in either acid 

adapted or control cells whereas the % intracellular aspartate was not significantly 

different between acid adapted and control cells (Table 4.1), indicating that the ADI 

pathway was most likely not involved in enhancing the acid tolerance of the cells. 

Among the other basic amino acids, lysine significantly increased in acid adapted cells, 

although the increase was relatively low (~1.6%). The above suggested that                  

L. plantarum NCIMB 8826 most likely did not accumulate significant amounts of basic 

amino acids as the means for increasing its pHi.  

The intracellular glutamic acid increased significantly in acid adapted cells 

compared to control cells (~7.5%), which also coincided with the high consumption of 

extracellular glutamic acid. This suggests that a possible mechanism for the cells to 

maintain their pHi in the case of acid stress is through the conversion of intracellular   

L-glutamate to GABA, with the concomitant consumption of a proton, via the GAD 

system. To test this hypothesis the concentration of GABA produced by the GAD 

system was examined (see next section).  

It is very interesting to note that alanine, which represented the most abundant 

intracellular amino acid, was significantly reduced in the case of acid adapted cells by 

∼20% (Table 4.1); this coincided with a significant decrease in extracellular alanine 

(~10%) (Figure 4.1). These decreases suggest that alanine might be utilised by the cells 

as a response to acid adaptation. Furthermore, it has been previously suggested that 

increased D-alanylation of teichoic acid (an esterification reaction), which in the case of 

LAB is covalently linked to peptidoglycan, can potentially protect the cells from the 

influx of hydrogen protons and cationic antimicrobials (e.g. nisin), although the 

mechanisms have not been elucidated (Weidenmaier and Peschel, 2008, Giaouris et al., 
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2008, Swoboda et al., 2010). However, it was reported by MacArthur and Archibald 

(1984) that the degree of ester linkage (binding) between D-alanine and teichoic acid in 

Staphylococcus aureus, a Gram positive bacterium, decreased when the pH of the 

medium increased (degree of binding 0.75 at pH 6.1 to 0.07 at pH 8.1). A similar result 

was shown for Bacillus subtilis when the pH of the growth medium decreased from pH 

7 to pH 5 (a higher degree of binding was observed in the latter case) (Ellwood and 

Tempest, 1972). In this study, determination of degree of ester linkage for acid adapted 

and control L. plantarum NCIMB 8826 cells was not conducted and therefore this 

hypothesis cannot be confirmed. 

Table 4.1 Intracellular amino acid profiles (expressed as % of total amino acids) in cells 
exposed to acidified MRS (pH 3, 25 °C, 1 h) and unmodified MRS (pH 6.4, 25 °C, 1 h).  

Name Fragmention 
(m/z) 

Retention 
time 
(min) 

Percentage of intracellular 
amino acid P value 

for Paired 
t-test  Control 

cells 
Acid adapted 

cells  
Alanine 130 1.49 66.71±2.09 47.32±3.50 0.020 
Glycine 116 1.61 5.91±0.31 10.13±0.54 0.010 
Leucine 172 2.04 0.90±0.90 2.34±0.27 0.200 
Isoleucine 172 2.10 0.45±0.10 1.30±0.23 0.039 
Serine 146 2.36 3.25±0.61 3.74±1.26 0.555 
Proline 156 2.44 0.74±0.09 1.31±0.06 0.023 
Asparagine 155 2.54 0.79±0.22 3.42±0.51 0.020 
Aspartic acid 216 3.11 0.85±0.21 0.77±0.09 0.690 
Glutamic acid 84 3.47 4.03±1.03 11.55±1.39 0.027 
Phenylalanine 148 3.51 0.00±0.00 1.24±0.34 0.024 
Ornithine 156 4.54 11.81±2.86 11.86±1.79 0.988 
Lysine 170 4.80 4.57±0.41 6.14±0.53 0.022 
Results are expressed in mean ± SD where n=3. Significant differences in the content of 
each amino acid between acid adapted and control cells was determined by paired t-test. 
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4.3.2. Extracellular and intracellular GABA content 

Extracellular GABA increased significantly from 1.5 mM in non-inoculated 

MRS to 2.4 mM in unmodified MRS (supernatant from control cells), but no GABA 

was detected in acidified MRS (supernatant from acid adapted cells). This suggests that 

for acid adapted cells GABA were reduced to zero whereas for control cells it was 

produced to about 0.9 mM. This was an unexpected finding, particularly for LAB as 

previous research has shown that the wild type of L. reuteri 100-23 produced GABA 

when incubated for 24 h in acidified phosphate buffer containing 10 mM glutamate (pH 

2.5 using HCl, 37 °C), whereas a gadB mutant strain did not (Su et al., 2011). The 

mechanism proposed in that study was that cellular response to acid stress induced 

GAD which catalysed the conversion of L-glutamate by consumption of a proton, thus 

yielding CO2 and GABA; the latter was secreted out of the cells via its antiporter in 

order to avoid significant drop in pHi. However, the absence of GABA in acid adapted 

L. plantarum NCIMB 8826 cells in this study might be due to pH 3 which is most likely 

lower than the optimum pH for GAD activity. The optimum pH reported for GAD 

activity was various depending on the LAB species, e.g. a pH of ~ 4.2 has been reported 

for L. brevis (Ueno et al., 1997) and a pH of ~ 5.0 for L. sakei (Sa et al., 2015). 

Additionally, the production of extracellular GABA by L. paracasei grown in MRS 

containing 500 mM glutamate at 37 °C for 5 days, was considerably lower at pH 4 

compared to pH 5 and 6 (Komatsuzaki et al., 2005) indicating a negative effect of low 

pH on GAD activity. Furthermore, glutamate is potentially more beneficial for the cells 

than converting it to GABA, as it has a higher buffering capacity than GABA at pH 

values lower than 3 (due to the differences in the pKa of their α-carboxyl groups 
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[glutamate pKa =2.1, GABA pKa =4.2]; (Feehily and Karatzas, 2013), which may also 

explain the absence of GABA in acid adapted cells. 

Taking the above into account, it would be expected that after acid adaptation 

GABA would be similar to non-inoculated MRS (~ 1.5 mM). The fact that no GABA 

was detected indicates that acid adapted cells most likely used GABA as substrate for 

other metabolic activities; more techniques such as Phenotype MicroArrays (Biolog) is 

needed in order to identify the potential biochemical reactions involved or changed. 

Furthermore, as no GABA was produced, and considering the significant decrease in 

glutamic acid (∼70% decrease) in acid adapted cells (Figure 4.1), a major substrate for 

GAD, this raises the question on the fate of glutamic acid. The proposed hypothesis is 

that in the case of acid adapted cells glutamic acid was used as a component for 

peptidoglycan biosynthesis; this will be evaluated based on the results from the 

proteomic analysis and discussed in the following section of this chapter. On the other 

hand, in the case of control cells, glutamic acid seemed to be partly used for the 

production of GABA by GAD as normally found in LAB at pH around 5 to 6.  

No GABA was detected intracellularly for either acid adapted cells or control 

cells. This was expected for acid adapted cells as there was no production of GABA as 

shown and discussed above, but not for the control cells. Interestingly, this result is in 

agreement with the study of Komatsuzaki et al. (2005) who demonstrated that the 

intracellular GABA of L. plantarum, L. brevis and L. paracasei grown in MRS (pH 6.5, 

30 °C, 6 days) was extremely low compared with the extracellular concentration, 

indicating that the GABA produced by control cells was rapidly secreted after its 

synthesis inside the cells. Overall, the results from this part of the study indicated that 

the GAD system did not contribute toward the enhanced survival of acid adapted         



 

137 

 

L. plantarum NCIMB 8826 cells in fruit juices but it seems likely that the glutamic acid 

present in acidified MRS was used for peptidoglycan biosynthesis rather than in ADI 

pathway in order to protect the cells from the low pH of the fruit juices during storage. 

4.3.3. Proteomic analysis of acid adapted and control cells 

Proteomic analysis of L. plantarum NCIMB 8826 cells in acidified MRS (pH 3, 

25°C 1 h) and unmodified MRS (pH 6.4, 25°C, 1 h) was conducted and the obtained 

protein profiles were compared. In the initial experiments, silver stain was used to stain 

the gels (Figure 4.2). Approximately 1,500 protein spots were detected after acid 

adaptation. Most proteins were located between pH 4 to 7 in the gradient gel, which 

ranged from pH 3 to 10. Upon analysis of the data set using the ImageMaster             

2D-platinum software, 18 proteins were selected which had at least 2 fold difference 

(range ratio > 2) in % volume of spots between acid adapted and control cells; these are 

listed in table 4.2 and are pinpointed in figure 4.2. More specifically, after acid 

adaptation at pH 3 for 1 h, 2 proteins were upregulated, 12 proteins were 

downregulated, and 4 proteins were only found in the gel of the control cells. Overall, 

from this initial analysis it was demonstrated that short exposure to citric acid affected 

the expression of several proteins with a pH ranging between 4 and 7. However, these 

proteins were unable to be identified as silver stained proteins were difficult to be 

further analysed with the available identification system. Therefore, Coomassie blue 

staining was thereafter used to analyse and evaluate the expression of proteins in acid 

adapted and control cells. 
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Figure 4.2 Silver stain gels depicting the total protein spots for L. plantarum NCIMB 
8826 after incubation in: (A) MRS at pH 6.4, 25 °C for 1 h (control cells), and (B) 
acidified MRS at pH 3, 25 °C for 1 h (acid adapted cells). The arrows pinpoint the spots 
which were significant differences in shapes and sizes between acid adapted and control 
cells.  



 

139 

 

Table 4.2 Expressed proteins showing at least a range ratio > 2 between acid adapted 
and control cells. The gel was stained with silver stain and analysed using the 
ImageMaster 2D-platinum software. The Match/Spot ID refer to figure 4.2. 

Match/Spot ID Range Ratio 
 

%Volume of 
Control cells 

spot 

%Volume of 
acid adapted 

cells spot 

14 17.16 0.006 0.098 
72 -10.16 0.055 0.005 
159 -5.74 0.020 0.004 
192 -3.93 0.079 0.020 
261 -3.76 0.055 0.015 
120 -3.60 0.024 0.007 
347 -3.01 0.022 0.007 
66 -2.83 0.043 0.015 
219 -2.74 0.026 0.010 
141 -2.65 0.033 0.013 
364 -2.63 0.137 0.052 
681 2.61 0.068 0.177 
167 -2.37 0.013 0.005 
239 -2.24 0.046 0.020 
1022 - 0.01 - 
1609 - 0.01 - 
1191 - 0.02 - 
1167 - 0.03 - 

The expression level was determined by the relative volume of each spot in the gel and 
expressed as %Volume (%Vol = spot volume/Σvolumes of all spots resolved in the gel). 
The range ratio was calculated as the ratio of average values of %Vol between non-
stressed and acid stressed cells. Only spots with a range ratio greater than 2 (with 
significance set at 2-fold change, p<0.05) in the ImageMaster 2D-platinum report were 
considered relevant. (– indicates downregulation)  

 

With Coomassie blue staining, approximately 750 protein spots were detected in 

each gel (Figure 4.3). Out of these, 8 proteins were selected, as their % volume of spots 

changed by about 1.4 fold (range ratio > 1.4) or more; they were then identified by mass 

spectrometry and were compared with the reference proteins obtained by the MASCOT 

search programme. The proteins and their predicted properties and functions are listed 

in table 4.3; they include molecular chaperone GroEL, aminopeptidase C, 30S 

ribosomal protein S1 and S2, aspartate semialdehyde dehydrogenase, D-alanine-D-
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ligase, and two proteins with unknown function which were UPF0356 protein Ip_2157 

and the hypothetical protein HMPREF0531_11643. It needs to be noted that cfa, a ∼45 

kDa protein with a pI of 6.03, was not one of the selected proteins even though it was 

upregulated (12 fold) during acid adaptation as previously discussed. This might be due 

to the fact that a wide range IPG strip (pH 3 to 10) was used in this study, which might 

not be suitable for separating this particular protein; cfa from several L. plantarum 

strains (LC56, LC804, and 299V) was identified using a middle range IPG strip (pH 4 

to 7) in the study of Hamon et al. (2011). In summary, 5 proteins were upregulated and 

3 proteins were downregulated in the case of acid adapted cells compared to control 

cells.  

The molecular chaperones GroEL is a part of the two main groups of molecular 

chaperones which consist of the DnaK chaperone family (DnaK, DnaJ and GrpE) and 

the GroEL chaperone family (GroEL and GroES) (De Angelis et al., 2004). These 

proteins play an important role in the folding and/or assembly of proteins under normal 

and stress conditions (Georgopoulos and Welch, 1993, Ryabova et al., 2013). Desmond 

et al. (2004) indicated that overexpression of GroEL in stress-adapted cells (e.g. heat, 

salt, solvent) had the potential to improve the survival of L. plantarum NFBC 338 under 

stress conditions compared with non-adapted cells. Moreover, this protein was 

previously shown to be upregulated in Lactococcus lactis and L. bulgaricus during acid 

stress along with other related acid shock proteins including GroES, GrpE and DnaK 

(Champomier-Verges et al., 2002). Overall, GroEL was found to be upregulated in 

several lactobacilli due to acid adaptation but there is no proposed mechanism how 

GroEL improves cell viability under acidic conditions. It is likely that the 
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overexpression of GroEL in acid adapted cells might help to prevent the denaturation of 

cellular proteins and to repair them. 

 

Figure 4.3 One of the three Coomassie blue staining gels depicting the total protein 
spots for L. plantarum NCIMB 8826 after incubation in: (A) MRS at pH 6.4, 25 °C for 
1 h (control cells), and (B) MRS at pH 3, 25 °C for 1 h (acid adapted cells). The arrows 
pinpoint the spots which were significant differences in shapes and sizes between acid 
adapted and control cells. 1) Molecular chaperone GroEL, 2) Aminopeptidase C, 3) 30S 
ribosomal protein S1, 4) 30S ribosomal protein S2, 5) Aspartate semialdehyde 
dehydrogenase, 6) D-alanine-D-ligase, 7) UPF0356 protein Ip_2157, and 8) 
Hypothetical protein HMPREF0531_11643. 
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Table 4.3 Expressed proteins showing at least a range ratio > 1.4 between acid adapted 
and control cells. The gel was stained with Coomassie blue and analysed using the 
ImageMaster 2D-platinum software. The spot number refers to figure 4.3. 

Spot No Database 

Accession no. 

Putative function Gene Mass 

(Da) 

pI Protein 

score 

Fold 

change  

Acid stress  

1 gi|489736891 
Molecular chaperone 

GroEL 

groEL 57402 4.69 329 1.55 

Protein degradation 

2 gi|489739850 Aminopeptidase C pepC 50413 4.89 136 1.60 

Protein synthesis 

3 gi|489736494 30S ribosomal protein S1 rpsA 47131 4.79 330 1.46 

4 gi|489734874 30S ribosomal protein S2 rpsB 30208 5.15 157 -1.51 

Amino acid biosynthesis 

5 gi|334880771 
Aspartate semialdehyde 

dehydrogenase 

asd 38422 5.48 91 -1.40 

Peptidoglycan biosynthesis 

6 DDL_LACPL D-alanine-D-ligase ddl 41378 4.86 297 1.52 

Unknown function 

7 Y2157_LACPL 
UPF0356 protein 

Ip_2157 

- 8713 4.49 88 1.47 

8 gi|300494317 
Hypothetical protein 

HMPREF0531_11643 

- 15898 5.33 103 -4.45 

Protein score: the probability whether an observed match between experimental data 
and peptide sequences found in a reference database has occurred by change. 
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Aminopeptidase C is one of the enzymes that catalyze the cleavage of amino 

acids from the amino terminus (N-terminus) of proteins or peptides. The specificity of 

aminopeptidase C has been studied in many LAB using a variety of synthesized amino 

acid β-naphthilamide as substrates, and the results have shown that this peptidase acts 

on specific basic amino acids (arginine, histidine lysine), acidic amino acids (glutamic 

acid and aspartic acid), hydrophobic/uncharged amino acids (alanine and leucine) and 

the aromatic amino acid (phenylalanine) (Christensen et al., 1999). Wu et al. (2011) 

demonstrated that several peptidases, namely, aminopeptidase P, aminopeptidase N, 

endopeptidase, dipeptidase and tripeptidase were induced after acid stress of L. casei 

strain Zhang. However, L. plantarum WCFS1 is known to contain more than 19 

peptidases (Kleerebezem et al., 2003), but only aminopeptidase C was overexpressed in 

this experiment with L. plantarum NCIMB 8826 during acid adaptation compared to the 

control conditions. It is likely that the overexpression of aminopeptidase C provided 

specific amino acids to the cells, particularly alanine, lysine, and glutamic acid, which 

were accumulated inside the cells after acid adaptation (Table 4.1). The hypothesis that 

the overexpression of aminopeptidase C might improve the survival of L. plantarum 

NCIMB 8826 in acidic condition will be discussed further below.  

The expression of the ribosomal protein S1 increased by about 1.5 fold while 

ribosomal protein S2 decreased by about 1.5 fold after acid adaptation. This result is 

contradictory with the fact that ribosomal proteins S1 and S2 contribute toward the 

translation of mRNA by stimulating the binding of the 30S ribosomal subunit to the 

ribosomal binding site of mRNA, the Shine-Dalgarno sequence (Nikolay et al., 2015); 

therefore, the expression patterns of both proteins should be in same direction. There is 

no clear explanation for this phenomenon; however, it is interesting to note that it has 
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been previously suggested that the overexpression of protein S1 resulted in the 

inhibition of general protein synthesis in E. coli (McGinness and Sauer, 2004). Based 

on this, it is likely that the translation of proteins from mRNA might have decreased 

instead of increased during acid adaptation, which is in accordance with the observed 

decrease in the total protein concentration, measured by Bradford’s method, of acid 

adapted cells compared with control cells (data not shown). 

Aspartate semialdehyde dehydrogenase generally catalyses the conversion of    

β-aspartyl phosphate to aspartate β-semialdehyde, which is an important intermediate in 

the biosynthesis of some amino acids including lysine, methionine, leucine and 

isoleucine from aspartate (Biellmann et al., 1980). It is also involved in the production 

of DAP, an essential component for peptidoglycan synthesis of Gram-positive bacterial 

cell walls (Pavelka and Jacobs, 1996). The downregulation of this protein might have 

led to the accumulation of β-aspartyl phosphate or aspartic acid. In that case, aspartic 

acid might have been used to alkalinize the cytoplasm due to ammonia produced via the 

ADI pathway as reported for L. casei strain Zhang during acid stress (Wu et al., 2013) 

and discussed previously in section 4.3.1. However, the % of intracellular aspartic acid 

of acid adapted cells (0.77%) was not significantly different to that of control cells 

(0.85%) (Table 4.1), and therefore it is difficult to pinpoint the potential role, if any, of 

aspartate semialdehyde dehydrogenase towards the acid tolerance of L. plantarum 

NCIMB 8826 cells. 

D-alanine-D-ligase is an enzyme participating in D-alanine metabolism and 

peptidoglycan biosynthesis by catalysing the ligation of two D-alanine molecules to 

form the D-alanyl-D-alanine dipeptide, a key building block in peptidoglycan 

biosynthesis (Bruning et al., 2011). This role of D-alanine-D-ligase is in accordance 

https://en.wikipedia.org/wiki/D-alanine_metabolism
https://en.wikipedia.org/w/index.php?title=Peptidoglycan_biosynthesis&action=edit&redlink=1
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with the observed significant reduction in the % of intracellular alanine of acid adapted 

cells compared to control cells (Table 4.1) and the decrease in the extracellular alanine 

observed for acid adapted cells (Figure 4.1). Based on these changes, it is likely that 

acid adapted cells utilised alanine to increase the thickness the peptidoglycan or modify 

its structure, for example through increased bonding of alanine and WTA leading to 

tighter cell wall, which was also indicated by electron microscopy in chapter 3. As 

discussed previously, teichoic acid has been shown to play an essential role in 

controlling the influx of positively-charged substances through the peptidoglycan 

network (Kovacs et al., 2006, Perea Velez et al., 2007, Giaouris et al., 2008, Swoboda 

et al., 2010). However, it must be noted that D-alanine-D-ligase might compete for 

alanine which, as discussed previously, is likely to be used during acid adaptation for  

D-alanylation reactions, catalysed by the dltABCD operon. Interestingly, the 

upregulation of D-alanine-D-ligase gene and other genes involved in peptidoglycan 

biosynthesis were also previously reported in L. casei strain Zhang during acid stress at 

pH 3.5 (Wu et al., 2012). In order to synthesize peptidoglycan, not only D-alanine is 

required but other amino acids are also needed, such as glutamic acid, lysine and 

ornithine (Chapot-Chartier and Kulakauskas, 2014). More specifically, the sugar 

component of bacterial peptidoglycan consists of alternating residues of GlcNAc and 

MurNAc linked by β-(1,4) glycosidic bonds, while the amino acid component, a peptide 

chain containing 3 to 5 amino acids, is attached to MurNAc. Typically, L-alanine is 

bound to MurNAc, followed by D-glutamic acid, which is linked by an interpeptide 

cross-bridge using lysine, ornithine or DAP, depending on the bacterial species. Finally, 

the D-alanyl-D-alanine dipeptide is attached to this bridge (Chapot-Chartier and 

Kulakauskas, 2014). However, in contrast to alanine, in the case of glutamic acid and 
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lysine an increase in their intracellular content (expressed as % of total amino acids) 

was observed for acid adapted cells compared to control cells (Table 4.1), which 

contradicts the above hypothesis. This might be explained by the higher ratio of alanine 

used typically for peptidoglycan biosynthesis and binding to teichoic acid, the likely 

rerouting of GABA by GAD system as discussed in section 4.3.2, the likelihood that the 

interpeptide cross-bridge was replaced by other amino acids such as DAP, and the 

possibility that lysine and glutamic acid were accumulated as a result of the hydrolytic 

activity of aminopeptidase C, which was upregulated as discussed previously. In 

summary, the observed changes in the proteome and the amino acid composition taking 

place during acid adaptation of L. plantarum NCIMB 8826 cells suggest that the 

enhanced survival of acid adapted cells in fruit juices was associated with the 

modification of the peptidoglycan matrix during acid adaptation, and highlighted the 

key role of D-alanine in this change.  

4.4. Conclusion 

The results from the analysis of amino acid and GABA after acid stress indicated 

that the response of L. plantarum cells to acid adaptation did not involve the ADI 

pathway as indicated by the fact that aspartic acid and arginine did not accumulate 

inside the cells. Moreover GAD, which has been reported to be active in LAB under 

growth conditions at pH between 4.2 and 5.0, most likely was not involved during acid 

adaptation as GABA was not produced. Proteomics analysis of acid adapted and control 

cells demonstrated that: i) the overexpression of molecular chaperone GroEL, which 

plays an important role in the folding and/or assembly of proteins, most likely has an 

active role toward acid tolerance which helps to improve the survival of L. plantarum 

NCIMB 8826 in fruit juices although the exact mechanism cannot be elucidated without 
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further investigation; ii) the upregulation of D-alanine D-ligase and the considerable 

reduction in intracellular and extracellular alanine indicate that structural and 

compositional modifications of the peptidoglycan took place during acid adaptation. 

These most likely resulted to the formation of a thicker and rougher cell wall, as 

observed by SEM, potentially through increased bonding of alanine and cell wall 

teichoic acid, thus protecting the cells from the influx of hydrogen protons and 

enhancing their survival during subsequent storage in the fruit juices. 
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CHAPTER 5 

General discussion 

 

5.1. General discussion 

The extensive demand for new probiotic products encourages the development of 

novel non-dairy products containing probiotics, particularly fruit juices because they are 

perceived by consumers as being healthy and refreshing foods; have sensory profiles 

which are acceptable to all age groups; and are suitable for people with lactose 

intolerance (Luckow and Delahunty, 2004). However, from a new product development 

point of view, it is necessary that the probiotic strain has to survive well during storage, 

in order to ensure that at the time of consumption a high concentration of viable cells is 

present in the food product; this is required for its efficacy in the GIT. Previous research 

studies have shown that cell survival during storage is significantly affected by the type 

of juice, in particular, some very acidic juices (Champagne et al., 2005, Sheehan et al., 

2007, Mousavi et al., 2011, Nualkaekul and Charalampopoulos, 2011). The aim of this 

work was to evaluate whether exposing early stationary phase L. plantarum NCMIB 

8826 cells (a potential probiotic strain) to acid for a short period of time would improve 

their subsequent survival during refrigerated storage in fruit juices. Although using the 

probiotic strains that are able to maintain their viability and activity during production 

(fermentation) and selecting the suitable secondary processing (e.g. drying, dried 

storage, food processing and storage) are very important parts of probiotic product 

development, implementing an acid adaptation step at some point in the manufacturing 

process (e.g. after harvesting of the probiotic cells from the fermenter before subsequent 
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drying or incorporation into fruit juices) could potentially increase the robustness of the 

strains and lead to the development of a range of low pH fruit juice products containing 

probiotics. The rationale for this work was that such a strategy, if successful, could be 

relatively easy to transfer to a commercial process without a need for extensive capital 

investment. It can also be used in combination with other technologies, such as 

encapsulation in order to increase probiotic survival during processing and storage. A 

considerable number of foods containing probiotic bacteria are acidic foods, and 

therefore if developed, such technology could find significant applications within the 

food industry and possibly other sectors as well, such as industrial and environmental 

biotechnology.  

The results of the present study demonstrated that when L. plantarum NCMIB 

8826 cells were adapted for a short period of time in acidic solutions (HCl or citric acid) 

at various pH, particularly pH 3 and 4, their subsequent survival during refrigerated 

storage in three fruit juices including cranberry (pH 2.7), pomegranate (pH 3.5), and 

lemon & lime juices (pH 2.8) were improved. However, even under the best acid 

adaptation conditions, (i.e. incubation of up to 3 h at 25 °C in MRS pH 3 and 4 °C in 

citrate pH 3), the survival of L. plantarum NCMIB 8826 cells in cranberry juice 

increased by only 1 to 2 days compared to control cells. Whilst, in pomegranate and 

lemon & lime juices, the rate of cell death was significantly decreased for weeks; 

however, after prolonged storage no significant differences were observed between acid 

adapted and control cells indicating that the alteration process by acid adaptation was 

not permanent. These findings indicate that acid adaptation is most likely not a suitable 

commercialisation strategy to be used on its own for ensuring that a sufficient number 

of viable probiotic cells (more specifically for L. plantarum NCMIB 8826 cells), 
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necessary to exert their beneficial health effects in vivo (> 107 CFU/ml) (Corcoran et al., 

2007), is maintained during refrigerated storage of fruit juices for 6 weeks. However, 

given the positive effects that were observed on cell survival, it is possible that this 

strategy can be used in conjunction with other technologies, such as encapsulation. 

Moreover, in order to improve the cell survival of L. plantarum NCMIB 8826 in these 

particular fruit juices, it would be possible to investigate whether increasing the pH of 

the fruit juices could have a positive effect. A previous study using this approach 

showed that the cell viability of L. paracasei NFBC43338 (measured after 9 days of 

storage) was significantly improved (by about 8 logs) when the pH of cranberry juice 

was increased from 2.5 to 5.5 (Sheehan et al., 2007). Serial sub-culturing of                  

L. plantarum NCMIB 8826 cells in acidic growth media (e.g. MRS supplemented with 

fruit juices) might be another approach to develop an appropriately adapted which has 

the ability to withstand the harsh environment of these fruit juices as shown in the study 

by Wu et al. (2012). Serial sub-culturing of L. casei strain Zhang in MRS at pH of 4.3 

for 70 days led to cells that had increased in acid tolerance. It is important to note that a 

mutant strain obtained by such a method is not considered a genetically modified 

microorganism because it is a phenotypic change which can occur naturally while other 

genetic engineering techniques, in particular gene cloning, are unacceptable to be 

recently used for food-grade microorganisms. The investigation into the mechanisms for 

enhancing acid tolerance of L. plantarum NCMIB 8826 cells, revealed three potential 

mechanisms likely to be involved: i) modification of the membrane fatty acid 

composition, particularly that of CFA (lactobacillic acid) which increased significantly 

during acid adaptation leading to decreased membrane fluidity; ii) modification of the 

peptidoglycan by either D-alanylation or EPS production leading to a thicker/denser cell 
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wall which was able to inhibit the influx of protons; and iii) upregulation of molecular 

chaperone GroEL leading to the prevention of protein denaturation from low pH 

environment. A key finding of this study was the observation that the intracellular 

alanine, which represented the most abundant amino acid (> 45%), was significantly 

reduced in the case of acid adapted cells (by ∼20%) compared with control cells, which 

coincided with a significant decrease in the extracellular alanine (~10%). The extensive 

utilization of intracellular and extracellular alanine seems to support the hypothesis of a 

denser and thicker peptidoglycan cell wall in the case of acid adapted cells, which could 

possibly be due to the binding between D-alanine and wall teichoic acid; this process is 

called D-alanylation and has been shown previously to reduce the negative charge of the 

cell envelope and the influx of positively-charged molecules into the cells (Neuhaus and 

Baddiley, 2003, Giaouris et al., 2008, Weidenmaier and Peschel, 2008, Swoboda et al., 

2010). It seems likely ,therefore, that acid adaptation leads to cells utilising the available 

alanine to increase the D-alanylation of the wall teichoic acid, resulting in a cell wall 

with enhanced ability to reduce the influx of hydrogen protons during subsequent 

storage in fruit juices; and hence to better cell survival. Biochemical analysis of the cell 

wall composition or other type of analysis such as fluorescence imaging was not 

conducted in this study to confirm the above hypothesis. However, the work of Ellwood 

and Tempest (1972) has shown that the degree of D-alanylation in Bacillus subtilis was 

increased when the pH of the growth medium was decreased from pH 7 to pH 5. To our 

knowledge there is no information on such aspects for lactobacilli. An understanding on 

the potential mechanisms utilized by the cells to increase their acid resistance is 

important for identifying new probiotic strains which have the ability to survive in harsh 

acidic conditions. For instance, a probiotic strain which has a high content of 
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cyclopropane or the ability to produce EPS could be selected specifically for 

incorporation in selected low pH food products. Moreover, the information generated 

from this research contributes considerably to the growing body of knowledge on the 

possible acid adaptation mechanisms employed by lactobacilli, in particular                  

L. plantarum NCMIB 8826.  

One limitation of this work was that the cells used for the adaptation 

experiments were already pre-exposed to acidic pH as they were grown with MRS in 

flasks, with no pH control. As a result, the pH of the medium, when the early stationary 

phase cells were harvested, was ~4.6. One way to partly circumvent this would be to 

grow the cells in a bioreactor under controlled pH conditions, although even in that case 

the cells would be stressed due to the high amounts of lactate being produced. For 

future work, in an effort to obtain non-stressed cells as control cells, it is recommended 

to use steady state cells from continuous culture at pH ∼6 which is (optimal pH for 

culturing L. plantarum NCMIB 8826). This approach has not been explored for these 

types of experiments and could potentially provide more accurate information on the 

physiology of non-stressed cells.  

Finally, comparative analysis of L. plantarum NCMIB 8826 genes and proteins 

of acid adapted and control cells should be further investigated by DNA microarray and 

2D-liquid chromatography-mass spectrometry to complement the results generated from 

this work. Such techniques are more powerful than the techniques used in this study and 

will help to clearly elucidate the genes and proteins involved in acid adaptation of        

L. plantarum NCMIB 8826.  
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