Increased importance of methane reduction for a 1.5 degree target


It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.
Published version at: http://iopscience.iop.org/article/10.1088/1748-9326/aab89c
To link to this article DOI: http://dx.doi.org/10.1088/1748-9326/aab89c

Publisher: Institute of Physics

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading

Reading’s research outputs online
Increased importance of methane reduction for a 1.5 degree target

William J. Collins¹, Christopher P. Webber¹, Peter M. Cox², Chris Huntingford³, Jason Lowe⁴, Stephen Sitch², Sarah E. Chadburn², Edward Comyn-Platt³, Anna B. Harper², Garry Hayman³, Tom Powell²

¹University of Reading, Reading, RG6 6BB
²University of Exeter, Exeter EX4 4QF, U.K.
³Centre for Ecology and Hydrology, Wallingford, Oxfordshire, OX10 8BB, U.K.
⁴Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, U.K.
⁵University of Leeds, Leeds LS2 9JT, U.K.

Corresponding author: William Collins (w.collins@reading.ac.uk)

Abstract

To understand the importance of methane on the levels of carbon emission reductions required to achieve temperature goals, a processed-based approach is necessary rather than reliance on the Transient Climate Response to Emissions. We show that plausible levels of methane (CH₄) mitigation can make a substantial difference to the feasibility of achieving the Paris climate targets through increasing the allowable carbon emissions. This benefit is enhanced by the indirect effects of CH₄ on ozone (O₃). Here the differing effects of CH₄ and CO₂ on land carbon storage, including the effects of surface O₃, lead to an additional increase in the allowable carbon emissions with CH₄ mitigation. We find a simple robust relationship between the change in the 2100 CH₄ concentration and the extra allowable cumulative carbon emissions between now and 2100 (0.27 ± 0.05 GtC per ppb CH₄). This relationship is independent of modelled climate sensitivity and precise temperature target, although later mitigation of CH₄ reduces its value and thus methane reduction effectiveness. Up to 12% of this increase in allowable emissions is due to the effect of surface ozone. We conclude early mitigation of CH₄ emissions would significantly increase the feasibility of stabilising global warming below 1.5°C, alongside having co-benefits for human and ecosystem health.

1 Introduction

Meeting the Paris temperature targets by reducing CO₂ emissions alone represents a huge challenge, even for the more optimistic assessments of the allowable carbon budgets (Millar et al., 2017). Most existing scenarios that avoid 2 °C of global warming, and almost all of those that avoid 1.5 °C, assume periods of negative global CO₂ emissions in order to stay within the implied cumulative carbon budgets (Rogelj et al., 2015a). This is via the widespread deployment of Carbon Dioxide Removal (CDR) (Smith, 2016) which might not be as effective as assumed (Harper et al., 2017). Any additional options for mitigating greenhouse gases can therefore increase the feasibility of this challenge.

The transient climate response to emissions (TCRE) has proved useful in illustrating the dependence of temperature on the cumulative emissions of CO₂. However care needs to be taken as the scenarios used in the IPCC 5th Assessment Report (AR5) (Pachauri et al., 2014) assumed specific changes in non-CO₂ agents such as aerosols and CH₄. These calculations...
also did not include biogeochemical feedbacks that might affect the concentrations of the greenhouse gases such as changes in permafrost and wetlands (Comyn-Platt et al., 2018). The relationship between cumulative carbon emissions and global temperature target will therefore depend crucially on the future mix of CO$_2$ and non-CO$_2$ agents which may differ significantly from that assumed in AR5. As a consequence cumulative carbon budgets are very sensitive to assumptions in scenarios for non-CO$_2$ greenhouse gases (Rogelj et al., 2015b).

Mitigation of anthropogenic CH$_4$ emissions leads to rapid decreases in its concentration, with an approximately 12 year response time. CH$_4$ mitigation therefore offers potential for rapidly reducing climate warming, either in the near-term to prevent a temporary exceedance of the 1.5 or 2.0°C peak warming threshold, or later in the century to bring down temperatures after an overshoot of temperature to higher levels. A recent study (Stohl et al., 2015) found that inexpensive or even cost negative CH$_4$ mitigation options could reduce 2050 temperatures by 0.25°C.

Methane has a direct radiative forcing of climate. It is the second largest contributor to anthropogenic forcing over the historical period, and its atmospheric chemistry leads to O$_3$ and water vapour, themselves GHGs, adding to the forcing (Myhre et al., 2013). Changes to atmospheric CH$_4$, O$_3$ and CO$_2$ will also affect the ocean and land carbon cycles, through direct warming effects (climate-carbon feedbacks), increasing the rates of plant respiration and decomposition of soil organic carbon. There are also indirect physiological effects of O$_3$, decreasing, and CO$_2$, increasing, plant productivity and hence carbon uptake (Sitch et al., 2007; Collins et al., 2010; Sitch et al., 2008). These carbon-cycle effects are typically included in calculations of the effects of CO$_2$ emissions, but are currently ignored when calculating the CO$_2$-equivalence of non-CO$_2$ gases such as CH$_4$ (MacDougall et al., 2013). Recent studies (Collins et al., 2013; Gasser et al., 2017) estimated that the climate-carbon cycle feedbacks increase the temperature impacts of CH$_4$ by around 20% on 100-year timescales

As a result of these typically-neglected effects, it has been argued that the total carbon budget for stabilization of the climate at about 2°C might be much more sensitive to the atmospheric concentration of CH$_4$ than hereto expected (Cox and Jeffery, 2010). This is likely to be even more so for a 1.5 °C target. This is because the impact on land carbon storage arising from a change in radiative forcing due to mitigation of CO$_2$ differs significantly from the impact of a similar non-CO$_2$ radiative forcing mitigation (Huntingford et al., 2011). When including the damaging effects of surface O$_3$, reductions in the emissions of CH$_4$ have the potential to significantly increase land carbon storage.

2 Methods

2.1 IMOGEN-JULES

To understand the potential additional benefits of CH$_4$ reductions on allowable cumulative carbon emissions consistent with the Paris targets, we use the Joint UK Land-Environment Simulator (JULES) (Clark et al., 2011) coupled with the intermediate complexity climate model IMOGEN “Integrated Model Of Global Effects of climatic aNomalies” (Huntingford et al., 2010). The combined IMOGEN-JULES framework thus provides an intermediate complexity climate-carbon modelling system. IMOGEN utilises “pattern-scaling” to capture the main features of expected local and monthly meteorological changes interpolated to alternative future levels of global warming. This is connected to a gridded version of the land
surface model JULES (version 4.8) (Clark et al., 2011) to understand the impacts of any transition to different stable warming levels.

IMOGEN comprises a global energy balance model (EBM) whose global climate response characteristics (climate sensitivity for land and ocean, ocean diffusivity etc.) can be chosen to represent any global climate model (GCM). It is driven by time-series of CO₂ concentrations and non-CO₂ radiative forcing. IMOGEN generates gridded outputs of monthly anomaly fields of surface temperature, precipitation, humidity, wind-speed, surface shortwave and longwave radiation and pressure. These anomalies are derived by scaling the patterns from the output from each GCM, assuming these are linear in global surface temperature change. Here the data from the 34 CMIP5 GCMs running the RCP8.5 scenario (Taylor et al., 2013) are used to derive both the global climate characteristics and climate patterns. Although the greenhouse gas forcings used in this study will be closer to the RCP2.6 scenario, the RCP8.5 scenario was used to get the clearest signal to determine the climate patterns.

The JULES configuration also includes modelled O₃ damage to photosynthesis, affecting land-atmosphere CO₂ exchange (Sitch et al., 2007). This O₃ damage parameterisation can be set to “low” or “high” sensitivity to span the uncertainty in our knowledge of the sensitivity of plants globally. We also include a “no” sensitivity to allow the separation of the ozone effect. In this study we use the low sensitivity parameterisation as the standard configuration, with separate tests of effects of using the “no” and “high” sensitivities. Surface O₃ concentrations are parameterised as two-dimensional fields as a function of the global average CH₄ concentration. These are previously derived from global chemistry-climate simulations using the HadGEM3 model for global mean atmospheric CH₄ mixing ratios of 1285 ppb and 2062 ppb (Stohl et al., 2015). Within IMOGEN-JULES, the O₃ concentration is calculated at each grid point as a function of CH₄ using a linear interpolation between O₃ concentrations at the above mixing ratios.

To set the initial (2015) conditions for the land carbon stores, the IMOGEN-JULES model is spun up for 1000 years at 1850 conditions and then run to 2015 with prescribed historical CO₂ mixing ratios, land use, and global surface temperatures from Morice et al. (2012) (reaching 0.89°C by 2015). The spin up and historical simulation are carried out for each climate model realisation. For this study we invert the IMOGEN-JULES configuration, running forward from 2015 with specified global temperature profiles, and specified non-CO₂ radiative forcing changes from 2015. IMOGEN-JULES derives the CO₂ concentrations in each year from the EBM calculations and thence the uptake by the land biosphere; the global carbon cycle is closed with a simple description of global oceanic draw-down of CO₂ (Joos et al., 1996). A control simulation is also run maintaining 1850 forcings and temperatures until 2100. Further details of the IMOGEN-JULES setup and the inversion procedure can be found in Comyn-Platt et al. (2018).

2.2 Temperature and methane scenarios
We determine the carbon budgets consistent with three specified temperature trajectories that stabilise at 1.5°C (with and without overshoot) and 2.0°C above pre-industrial levels as shown in figure 1(a). These profiles are generated according to the algorithm in Huntingford et al. (2017) as in Comyn-Platt et al. (2018). The results are found not to be sensitive to the exact form of the temperature trajectories.
The future non-CO₂, non-CH₄ radiative forcings are taken from one of the Shared Socio-economic Pathways (SSPs) SSP2-2.6 (O’Neill et al., 2017; Riahi et al., 2017) by subtracting the CO₂ and CH₄ (and associated O₃ and stratospheric water vapour) contributions from the total SSP2-2.6 radiative forcing. We follow the prescription of these terms in the MAGICC climate model (Meinshausen et al., 2011). After 2015, land-use is fixed at 2015 levels. Here, the IMOGEN physical parameters are varied to represent the climate characteristics, such as the different climate sensitivities, of 34 CMIP5 models.

There is a wide range in the CH₄ emissions in the SSPs that achieve a forcing of 2.6 W m⁻² in 2100, suggesting that the options for mitigation are not exhausted (Gernaat et al., 2015). We construct four different anthropogenic CH₄ mitigation scenarios (figure 1 (b)). The first three are ‘High’ CH₄ and ‘Medium’ CH₄ which span the highest and lowest of the SSP2-2.6, and ‘Low’ CH₄ which we parameterise as following the Medium scenario to 2020 then decaying faster to 62 Tg CH₄ yr⁻¹ by 2100. For the High CH₄ scenario, CH₄ concentrations increase following the an upper bound of SSP4-2.6 and SSP5-2.6 CH₄ concentration projections from the GCAM integrated assessment model (IAM) (Calvin et al., 2017). For the Medium CH₄ scenario, concentrations follow SSP2-2.6 as generated by the IMAGE 3.0 IAM (van Vuuren et al., 2017). For the Low CH₄ scenario, we assume extra reductions are possible by removing the restriction on cost minimisation. To generate a smooth curve we parameterise emissions (in Tg CH₄ yr⁻¹) as \[55 + \frac{337.25}{x^{0.337}},\] where \(x\) is the number of years after 2020. This projects a lower CH₄ projection curve than the strongest mitigation SSP storyline (SSP1-2.6 variants). The High, Medium and Low scenarios lead to year 2100 atmospheric CH₄ concentrations of 1839, 1275 and 1008 ppb, respectively. We also consider a fourth scenario ‘Late’, to test whether the timing of the CH₄ mitigation matters, where emissions are maintained at current (2015) levels until 2050 and then apply the same rate of mitigation for the Low CH₄ profile post-2015, but extended to ensure that the 2100 concentration matches Low CH₄. Note that we are not assuming specific methane mitigation measures in these scenarios, or possible effects on co-emitted species such as N₂O.

Emissions are converted into concentrations using the formulation of the MAGICC model (which includes natural emissions of 250 Tg CH₄ yr⁻¹). Radiative forcings for the CH₄ scenarios are calculated using formulae including the short-wave absorption (Etminan et al., 2016), and the overlap with N₂O using the N₂O concentrations in SSP2-2.6. The contributions from O₃ and stratospheric water vapour are added in as linear functions of CH₄ mixing ratio. From IPCC AR5 (Myhre et al., 2013) these amount to 2.36×10⁻⁴ ±1.09 Wm⁻² per ppb CH₄ (0.65±0.3 times the CH₄ radiative efficiency).

This spread in possible CH₄ trajectories is wider than typically projected in integrated assessment models (IAMS) (Rogelj et al., 2015a). However, the IAM outputs are unlikely to span the full range of CH₄ measures that are available. This is partly due to their cost minimisation approaches which exclude the more expensive measures and neglect the social costs of methane (Shindell et al., 2017), and their lack of diversity in treatment of non-CO₂ mitigation measures. These IAMs also have limited representation of the specific processes responsible for methane production and of the technologies available for methane mitigation. It is therefore difficult to estimate how deep (or not) reductions can go. Achieving our most stringent scenario would be expected to draw on specific sectoral measures to address CH₄. These could include increasing agricultural efficiency, decreased food waste and decreased
beef consumption (van Vuuren et al., 2017). The Low and Late scenarios should therefore be seen as illustrative examples.
3.1 Carbon budgets

For the High CH$_4$ scenario (no CH$_4$ mitigation) the allowable carbon emissions from 2015 to 2100 span from 149±51 GtC for 1.5°C (no overshoot), 143±56 GtC for 1.5°C with overshoot, to 403±94 GtC for the 2°C temperature pathway. The uncertainty is due to the range of climate sensitivities of the CMIP5 models emulated by the IMOGEN framework. Rather than these
absolute budgets we focus on the differences in the cumulative carbon emissions from the
inversions for the different CH$_4$ scenarios. These show almost no dependence on the climate
model realisation and little dependence on the temperature profile. The benefit of the Medium
vs the High CH$_4$ scenario is approximately 155 GtC over the period 2015 to 2100 (figure 2(a)). Stronger CH$_4$ mitigation down to the Low scenario gains another 80 GtC if it is done
early. The loss in benefit from delaying CH$_4$ mitigation according to the Late CH$_4$ scenario is
40 GtC. These values are similar to a study comparing no mitigation with stringent mitigation
(Rogelj et al., 2015b) which calculated an increase of 130 GtC in the carbon budget, with a
30 GtC penalty for late mitigation.
Figure 2. Impact of CH$_4$ mitigation on the carbon budget for the three temperature profiles (a) Increase in allowable carbon emissions compared to the High CH$_4$ scenario. Data are shown for the three temperature profiles. The widths of the lines cover the range of the CMIP5 models. (b) Difference in allowable carbon emissions between pairs of CH$_4$ scenarios, as a function of difference in CH$_4$ concentration for each year 2015-2100. The widths of the lines cover the range of the CMIP5 models. The dashed lines connect the differences in 2100 carbon budget against 2100 CH$_4$ concentrations for the Low, Medium and High CH$_4$ scenarios. For the Late vs High CH$_4$ scenario only the 1.5º temperature profile is shown.
The relationship between the allowable carbon emissions from 2015 to 2100 and CH₄ concentrations at 2100 is almost linear (excluding the Late CH₄ scenario) with very little difference between the climate model realisations (figure 2(b)). The slopes are \(-0.269\pm0.001\) GtC ppb\(^{-1}\) for the 1.5° and 1.5° overshoot profile and \(-0.277\pm0.002\) GtC ppb\(^{-1}\) for the 2°C profile. Compared to the CH₄ forcing at 2100 (including the O₃ and stratospheric water vapour effects), this is equivalent to 350 or 360 GtC \((\text{Wm}^{-2})^{-1}\). There are uncertainties in these relationships due to the uncertainty in the total radiative efficiency of methane. As these relationships are based on the methane concentrations, rather than emissions, uncertainties in the methane lifetime do not affect the result. The uncertainty in the direct methane radiative efficiency is taken to be 9% of the total (Etminan et al., 2016). When combined with the 16% uncertainty from the ozone and water vapour contributions this leads to an overall uncertainty of 18%, \((0.048\ \text{GtC ppb}^{-1})\). This uncertainty includes within its span the relationship \((-0.236\ \text{GtC ppb}^{-1})\) expected using the Myhre et al. (1998) forcing instead of Etminan et al. (2016).

The change in carbon budgets (high methane vs low methane) can be broken down into the different carbon stores: atmosphere, land (soil and vegetation) and ocean (figure 3(a)). We define the airborne fraction \(\alpha_F = \Delta\text{CO}_2/\Delta E_{\text{CO}_2}\), where \(\Delta\text{CO}_2\) is the change in the atmospheric CO\(_2\) burden and \(\Delta E_{\text{CO}_2}\) is the change in cumulative CO\(_2\) emissions, both in GtC. We find that the \(\alpha_F\) of the extra carbon allowed through CH\(_4\) mitigation is independent of the climate sensitivity of each climate model. \(\alpha_F\) is also the same when comparing Low-High and Medium-High CH\(_4\) mitigation (not shown). There is a slight dependence of \(\alpha_F\) on temperature profile with the 1.5°C profiles having an \(\alpha_F\) of 0.44 vs 0.49 for the 2°C profile. The Late CH\(_4\) mitigation does not follow the same linear relationship as the Low or Medium scenarios, falling well below the line of proportionality in figure 2(b). With late CH\(_4\) mitigation, the comparative increase in allowable atmospheric CO\(_2\) concentrations (compared to High CH\(_4\)) does not occur until late in the century. The increase in the atmospheric carbon is the same as for the early mitigation, but the ocean and the land have not had time to take up this extra carbon and the \(\alpha_F\) of the extra CO\(_2\) is thus higher (0.53).

Figure 3. Difference in carbon stores in the atmosphere, ocean and land at 2100 compared to the High CH\(_4\) scenario. (a) Low CH\(_4\) scenario for the three temperature profiles, and the Late CH\(_4\) scenario for the 1.5° temperature profile. Values shown are percentages of the total
carbon stores (equal to allowable carbon emissions). Error bars are very small and show the inter-model standard deviation. (b) As (a), but for high O₃ sensitivity, showing the contributions of low and high O₃ sensitivity to the increased soil carbon. Diagonal hatch is low damage, total hatch is high damage, cross hatch is extra effect of high vs low damage. Since surface O₃ decreases vegetation productivity, mitigation of CH₄ leads to additional climate benefits than might be expected simply through the radiative forcing. Decreasing atmospheric CH₄ concentrations reduces O₃ levels and increases the uptake of carbon into vegetation and soils. In terms of equation (1), reducing O₃ reduces \( \alpha_F \). We test this through further inversions assuming no and high sensitivity of vegetation to O₃, compared with the baseline parameterisation in the previous results of lower plant-O₃ sensitivity. We find that by increasing the impacts on the land carbon uptake, O₃ damage adds 9-28 GtC (4%-12%) to the benefit of the Low vs High CH₄ scenarios depending on the assumed sensitivity of vegetation to O₃ (figure 3(b)).

3.2 Linearity of carbon budgets

To maintain the radiative balance in the inverse model the change in atmospheric CO₂ is entirely determined by the change in the non-CO₂ forcing. Since we invert IMOGEN to derive the radiation balance consistent with the specified temperature profiles, the greenhouse gas forcing must be the same at any given time, such as at 2100, (assuming the climate sensitivities to radiative forcing from CH₄ and CO₂ are equal). So \( \Delta F_{CO₂} + \Delta F_{CH₄} = 0 \), or \( \Delta CO₂ \times \tilde{A}_{CO₂} + \Delta CH₄ \times \tilde{A}_{CH₄} = 0 \); where \( \Delta CO₂ \) and \( \Delta CH₄ \) are the CO₂ and CH₄ burdens in GtC and GtCH₄, and \( \tilde{A}_{CH₄} \) and \( \tilde{A}_{CO₂} \) are the average radiative efficiencies for increases in CH₄ (including its indirect effects) and CO₂ in Wm⁻² GtCH₄⁻¹ or Wm⁻² GtC⁻¹. So combining these with the airborne fraction \( \alpha_F \) defined previously gives the ratio of extra cumulative carbon emissions (\( \Delta E_{CO₂} \)) to change in CH₄ abundance:

\[
\frac{\Delta E_{CO₂}}{\Delta CH₄} = -\frac{\tilde{A}_{CH₄}}{\alpha_F \tilde{A}_{CO₂}} \tag{1}
\]

This equation is exact and simply follows from the way we have defined \( \tilde{A}_{CH₄}, \tilde{A}_{CO₂} \) and \( \alpha_F \). The linear relationship between the change in the allowable emissions and the change in 2100 forcing therefore implies a constant ratio between the cumulative emissions to 2100 and the 2100 atmospheric CO₂ burden, i.e. a constant airborne fraction for the extra allowable emissions as found in figure 3(a). Although \( \tilde{A}_{CH₄} \) and \( \tilde{A}_{CO₂} \) are not constant, but functions of the atmospheric CO₂ levels and the magnitudes of the changes \( \Delta CO₂ \) and \( \Delta CH₄ \), the deviations from linearity are small for the methane mitigation scenarios used here. The slightly higher \( \alpha_F \) for the 2.0° temperature profile is due to the lower radiative efficiency (\( \tilde{A}_{CO₂} \)) at higher absolute CO₂ levels.

The equation also holds in the more realistic case where the extra allowed CO₂ is not emitted with the time profile required to precisely follow the prescribed temperature curve, although in this case the \( \alpha_F \) may be slightly different from found in this study. The energy balance has little dependence on the shape of the temperature curve before 2100 (or any specific time), and is dominated by the absolute temperature and its time derivative at 2100. This relationship has no dependence on climate sensitivity. However the \( \alpha_F \) will be affected by the sensitivity of the carbon cycle to changes in atmospheric CO₂, surface temperature and precipitation (Arora et al., 2013).
Allen et al. (2017) have derived a variant of the Global Warming Potential metric (GWP*) that relates the change in cumulative emissions of CO$_2$ to the change in instantaneous emissions of a short-lived species (here CH$_4$).

\[
GWP^* = \frac{\Delta E_{CO_2}}{\Delta e_{CH_4}} = \frac{AGWP^H_{CH_4}}{AGWP^H_{CO_2} / H} ,
\]

where $\Delta e_{CH_4}$ is the change in the instantaneous CH$_4$ emission rate (in GtCH$_4$ yr$^{-1}$), $H$ is a chosen timeframe, and AGWP$^H_X$ are the absolute GWPs for CH$_4$ and CO$_2$. The absolute GWPs can be expanded to give:

\[
\frac{\Delta E_{CO_2}}{\Delta e_{CH_4}} = \frac{\tilde{\lambda}_{CH_4} \times \tau_{CH_4} \left( 1 - e^{-H / \tau_{CH_4}} \right)}{\tilde{\lambda}_{CO_2} \times a_F(H)} ,
\]

where $a_F(H)$ is the airborne fraction of a pulse of CO$_2$ averaged over $H$ years. This is similar to equation (1), but only equal to it if the CH$_4$ has reached equilibrium (i.e. $\Delta CH_4$ can be replaced by $\Delta e_{CH_4} \times \tau_{CH_4}$) and the airborne fraction of CO$_2$ in the $AGWP^H_{CO_2}$ ($a_F(H)$) is equal to the $\alpha_F$ of the extra allowed CO$_2$.

In terms of GWP*, the results from our experiments give a ratio $\frac{\Delta E_{CO_2}}{\Delta e_{CH_4}}$ at the end of the century of 2900 (low-medium mitigation) to 3300 (low-high mitigation) in GtCO$_2$ GtCH$_4^{-1}$ yr$^{-1}$, which compares well with a GWP* (100 years) of 2800 yr, given that implicit in the GWP* approximation are the assumptions that the CH$_4$ concentrations have equilibrated and that the CO$_2$ airborne fraction is constant.

### 3.3 Air quality and productivity benefits

We find that CH$_4$ mitigation has non-climate benefits in terms of air quality and vegetation productivity (by allowing greater atmospheric CO$_2$ levels, and by reducing the damage from O$_3$). West et al. (2012) found that a strong methane mitigation scenario (emission decrease of 180 Tg CH$_4$ yr$^{-1}$) resulted in a decrease in global ozone concentrations of around 2 ppb and avoided mortalities of around 90,000 per year. In this study mitigation by 260 TgCH$_4$ yr$^{-1}$ (Low vs High scenario) achieves a decrease in surface O$_3$ concentration of 3 ppb as a global average, with the largest impact in the tropics (see figure 4(a)). Therefore a rough scaling of West et al. (2012) would suggest a benefit of around 130,000 avoided mortalities per year.

The increased allowable CO$_2$ levels lead to increased net primary plant productivity (NPP) in JULES by 4% as a global average (figure 4(b)). If we assume the high sensitivity of plants to ozone the effects of O$_3$ reduction add up to another 2% increase in NPP globally. In places where the changes in ozone overlap with areas of high productivity (Eastern US, northern Europe) the reductions in ozone could increase total NPP by 4-6% in the high sensitivity case (figure 4(c)).
Figure 4. (a) Effect of CH$_4$ mitigation (Low-High) on surface ozone levels (b) Effect of CH$_4$ mitigation (Low-High) on global NPP where vegetation has no sensitivity to O$_3$, low sensitivity (as standard setup) and high sensitivity to ozone. The widths of the lines cover the range of the CMIP5 models. (c) Map of the regions of increased NPP attributable to reducing surface O$_3$ (Low CH$_4$ vs High CH$_4$ scenarios) using the high sensitivity to O$_3$, as a percentage of the total NPP.

4 Conclusions

We conclude that mitigating CH$_4$ can lead to substantial benefits in the allowable carbon emissions consistent with either a 1.5° or 2.0° temperature target. We find a robust
 relationship between decreased CH₄ concentrations at the end of the century and increased budget of allowable carbon emissions to 2100. This relationship is independent of climate sensitivity or temperature pathway. These changes come from the direct radiative effects of CH₄ and its atmospheric oxidation products, from the carbon uptake by the land and ocean, and from the effects of O₃ on plant productivity. Budget calculations based simply on TCRE will therefore underestimate allowed emissions. As well as making carbon targets more feasible, CH₄ mitigation leads to substantial land ecosystem benefits through increased productivity, and to improved air quality. The variation in CH₄ emissions between the IAMs in the SSP scenarios shows that there is substantial opportunity for CH₄ mitigation even using the cost optimisation assumptions in these models. Very large cuts in CO₂ emissions will certainly be needed to achieve the climate goals, but our study shows that the benefits of CH₄ mitigation could be substantially larger than the IAMs assume, making the exploration and costing of more ambitious reduction potentials and their co-benefits a priority.

Acknowledgments

The work was undertaken as part of the UK Natural Environment Research Council’s programme “Understanding the Pathways to and Impacts of a 1.5°C Rise in Global Temperature” through grants NE/P014909/1, MOC1.5 (WC, CW, CH, PC, SS, JL), NE/P015050/1 CLIFFTOP (EC-P, GH, SC), and NE/P014941/1 CLUES (PC, TP). AH acknowledges support from the EPSRC Fellowship "Negative Emissions and the Food-Energy-Water Nexus” (EP/N030141/1). WC also acknowledges support under Research Council of Norway, project no. 235548

References


Cox P and Jeffery H 2010 Methane radiative forcing controls the allowable CO2 emissions for climate stabilization Current Opinion in Environmental Sustainability 2 404-8


Meinshausen M, Wigley T and Raper S 2011 Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6-Part 2: Applications Atmospheric Chemistry and Physics 11 1457-71


Smith P 2016 Soil carbon sequestration and biochar as negative emission technologies Global Change Biology 22 1315-24


Taylor K E, Balaji V, Hankin S, Juckes M, Lawrence B and Pascoe S 2013 CMIP5 data reference syntax (DRS) and controlled vocabularies
