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Abstract 

Autism is a neurodevelopment disorder characterised by problems in communication and 

social interaction skills. In addition to psychological comorbidities, autistic individuals 

might suffer of GI problems that have been previously associated with gut bacteria, 

altered dietary intake and barrier function problems. In order to improve these aspects, 

exclusion diets, such as gluten and casein free diets (GFCF), and/or use of food 

supplements have been suggested in ASD, but little is known about their impact on gut 

microbiota composition and metabolic activity, especially for prebiotics. The aim of this 

work was to investigate the effect of a prebiotic B-GOS on different aspects of autism, in 

in vitro and in in vivo. B-GOS (65%GOS content) was tested in dose response batch 

culture experiments inoculated with faecal samples from healthy donors, compared to the 

commercial B-GOS (50%GOS content). It showed an increase in bifidobacteria and 

modulation of SCFAs production. 65% B-GOS was then tested on faecal samples from 

autistic and non-autistic children using a three-stage continuous fermentation system that 

mimicked various anatomical regions of the colon. Results showed that B-GOS 

administration significantly increased bifidobacterial populations in the models 

inoculated with both autistic and non-autistic samples and influences changes in other 

bacterial groups, such as Clostridium, Roseburia, Bacteroides, Atopobium, 

Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. In addition, B-GOS 

modulated SCFA production in both groups, and increased ethanol and lactate inocula 

from autistic children. Next, a parallel, double blind, randomised study was designed in 

order to confirm these results in in vivo. Baseline samples from 30 autistic children aged 

4-11 years old, were analysed to understand the effect of the exclusion diets on the gut 

microbiota and metabolome. In addition, parents were asked to fill in GI symptoms and 

food diaries. Results showed ASD children following GFCF diet had significant 

reduction in abdominal pain and bowel movement, compared to the un-restricted dietary 

group, and reduced abundance of Bifidobacterium spp. and Veillonellaceae family, with 

increased F. prausnitzii and Bacteroides spp. In both groups, no significant differences 

were found in urine metabolome, but significant correlations were found between 

bacterial populations and amino acids in faeces. After 6 weeks B-GOS intervention, no 

effect was reported on GI issues, but there were improvements in sleep habits and anti-

social behaviour. B-GOS significantly modulated bifidobacteria and Lachnospiraceae 

family, as well as the metabolome in children whose diet was not restricted. Butyrate and 

valerate were the main SFCAs produced and reduced amino acid excretion was detected 



in faecal samples of the intervention group. Urine samples were dominated by citrate, 

creatine, creatinine, DMA (dimethylamine), DMG (dimethylglycine), malonate, 

carnitine, TMAO (trimethylamine-N-oxide), and α-hydroxybutyrate, comparing to the 

control group, where PAG (phenylacetiyglycine), phenylalanine and β-hydroxybutyrate 

were detected. Overall, the results presented in this study demonstrated, for the first time, 

that a prebiotic B-GOS is able to modulate different aspects of autism and be considered 

as potential dietary therapeutic approach for ASD individuals. 
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CHAPTER 1 
 

1.1 Gut microbiota 

1.1.1 Health and disease 

The human gut is an extremely complex ecosystem whereby microbiota, nutrients, and 

host cells interact. The relationship between microorganisms and the host involves important 

aspects such as metabolism, barrier effect, and trophic functions. Consequently, dysbiosis, or 

bacterial imbalance, can be considered a cause or consequence of several gastrointestinal 

disorders (Butel et al. 2014). Microorganisms colonise the gastrointestinal tract from the 

mouth to the large intestine, where they reach a maximum estimated concentration of 10
12 

bacteria per gram of gut contents (Sender et al. 2016). Therein, fermentative metabolism of 

undigested food and host-derived products creates a microbial metabolome that impacts on 

the host. The major end products of carbohydrate fermentation are short chain fatty acids 

(SCFAs) such as acetate, propionate and butyrate (Cummings 1981). They are produced in 

particular via glycolytic and pentose phosphate pathways that are briefly summarised in Figure 

1.1. 

 

 

Figure 1.1. Diagram of non-digestible carbohydrate breakdown in the colon 
and main pathways. PEP: posphonenolpyruvate (adapted from Macfarlane & 
Macfarlane 2003). 
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SCFAs are sources of energy for the host tissues but may also have anti-apoptotic and anti-

inflammatory effects. In addition, it seems that they may have effects on lipogenesis and their 

interaction with host receptors seems linked to the regulation of hormones affecting the satiety. 

In addition, SCFAs have an important role in keeping the gut environment stable, influencing 

pH, gut transit, nutrient uptake and microbial composition (Macfarlane and Macfarlane 2011) 

(Table 1.1). 

 
Table1.1: Role of SCFAs in gut environment (Saulnier et al. 2009) 

End Product Bacterial group involved Metabolic Fate 
Acetate bacteroides, bifidobacteria, lactobacilli, clostridia, 

ruminococci, peptococci, veillonella, 
peptostreptococci, fusobacteria, butyrivibrio 

 

Metabolised in muscle, kidney, 
heart and brain 

Propionate bacteroides, propionibacteria, veillonella Cleared by the liver, possible 
gluconeogenesis precursor, 

suppresses cholesterol synthesis 
 

Butyrate clostridia, fusobacteria, bityrivibrio, eubacteria, 
peptostreptococci 

Metabolised by the colonic 
ephitelium, regulator of cell 
growth and differentiation 

 
Ethanol, 

succinate, 
lactate, pyruvate 

bateroides, bifidobacteria, lactobacilli, eubacteria, 
peptostreptococci, clostridia, ruminococci, 
actinomycetes, enterococci, fusobacteria 

 

Absorbed, electron sink products, 
further fermented to SCFA 

Hydrogen clostridia, ruminococci, fusobacteria Partially excreted in breath, 
metabolised by hydrogenotrophic 

bacteria 
 

SCFAs are transported from the large intestine to the blood stream via three main transporters: 

MCTs, monocarboxylate transporters; mOATs, multispecific organic anion transporters; and 

SLC5A8, a sodium-coupled monocarboxylate transporter. 

The most well–studied trasporter is SLC5A8, expressed in the apical membranes of 

the colon, which leads to SCFA absoption in association with increased Na+ intake (ratio 1:3). 

The other two transporters are considered as potential candidates. MCT1 is associated with 

lactate and butyrate absoption, but there is still conflicting evidence in the literature so its role 

needs to be fully elucidated (Natarajan et al. 2014). 

Recent studies have shown how G protein-coupled receptors (GPCRs) may play a role 

in microbial communication with the host. Four SCFAs receptors have been identified: Gpr41, 

Gpr43, Gpr109a and Olfr78. Gpr41 and Gpr43 mainly respond to propionate but they can be 

stimulated also by formate, acetate, butyrate, iso-butyrate and acetate, butyrate, respectively. 
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Gpr41 is expressed in different tissues and cell types and it seems to be involved in inhibition 

of cell proliferation and apoptosis via the activation of p53 and MAPK. Gpr43 is expressed on 

lymphocytes, neurotrophils, monocytes and peripheral blood mononuclear cells, and its 

functionally regulates inflammatory responses, activating cytokines and chemokines (Brown 

et al. 2003; Samuel et al. 2008). Gpr109a responds only to butyrate and it is located on 

epithelial cells. Its activation has been associated with carcinogenesis suppression (Singh et 

al. 2014). Olfr78 (human ortholog OR51E2) responds to propionate and acetate and is located 

on enteroendocrine cells in the murine colon, but not in small intestine, and it seems to be 

involved in the regulation of PYY hormone (Fleischer et al. 2015).  

Composition of the human gut microbiota is very complex and studies using 16S RNA 

sequencing have shown Firmicutes, Bacteroidetes and Actinobacteria as dominant phyla in 

healthy adult, with Bacteroides, Faecalibacterium, Bifidobacterium, Roseburia, Alistipes, 

Collinsella, Ruminococcus, Prevotella and Akkermansia as main genera (Arumugam et al. 

2011). In addition, Arumugam and colleagues were able to identify three main enterotypes, 

persistent in all samples from European individuals, based on variations in genus level and 

activity, such as Bacteroides (carbohydrates and proteins fermenters); Prevotella and 

Desulfovibrio (respectively mucin-degraders and involved in mucin desulphation); 

Ruminococcus and Akkermansia (able to degrade mucin and sugars; Arumugam et al. 2011). 

Beneficial bacteria in the human gut include bifidobateria and lactobacilli. They are 

therefore main targets for the modulation of the gut microbiota through diet. Bifidobacteria 

have several positive effects such as inhibition of pathogens (Tejero-Sariñena et al. 2012), 

modulation of the immune system (Dong et al. 2010) and restoration of the intestinal 

microflora after antibiotic therapy (Madden et al. 2005). Beneficial effects of lactobacilli 

involve in particular the production of antimicrobial compounds that help in controlling 

proliferation of potential harmful microorganisms (Saulnier et al. 2009). An imbalance in 

composition of the gut microbiota can lead to changes in interactions between the intestinal 

microflora and host, which are related to different gastrointestinal diseases such as infectious 

and non-infectious disorders.  

Infectious disorders include pathogens such as Salmonella or Escherichia coli, 

principal microorganisms responsible for Traveller’s diarrhoea and Clostridium difficile that 

can lead to complications associated with mortality. The success of recent protocols for faecal 

transpantation as potential therapy for C. difficile infection have shown an important role of 
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the gut microbiota (Fischer et al. 2015). 

Non-infectious disorders may be caused by factors such as genetics, environment and 

lifestyle and they involve obesity, Inflammatory Bowel Disease (IBD) or Irritable Bowel 

Syndrome (IBS). Obesity is a physiological state in which the ratio between the two main 

dominant phyla in the gut seems to be shifted in favour of Firmicutes instead of Bacteroidetes. 

The microbiota, may regulate appetite, producing hormones like PYY and GPL-1 that 

stimulate satiety, reduce permeability of the gastrointestinal trait and reduce inflammatory 

markers (Rastall and Gibson 2015). Inflammatory Bowel Diseases such as Crohn’s Disease, 

Ulcerative colitis and pouchitis are a range of recurrent inflammatory disorders of the colon 

with a complex undefined aetiology. Environmental factors may play a role and genetically 

susceptible hosts seem to be more affected, but the possibility that microbes could be involved 

has been suggested. In CD patients, there is an increase in Proteobacteria and Bacteroidetes, 

in comparison to UC patients who no displayed significant differences compared to healthy 

volunteers (Gophna et al. 2006). This similarity could be explained by the fact that the cause 

of UC symptoms may be an increase of bacterial activity, especially Desulfovibrio spp. 

Metabolomic studies, indeed, confirm this hypothesis showing different production of 

metabolic compounds between remission and active phase of disease pathology 

(Balasubramanian et al. 2009, Bjerrum et al. 2010).  

IBS is a disorder that affects 10-20% of the population in developed countries and it is 

characterised by abdominal pain, bloating and changes in stool frequency and consistency. 

The pathogenesis is multifactorial and includes the intestinal microbiota, with a higher risk of 

gastroenteritis and gas production (Blatchford et al. 2013).  

 

1.1.2 Infant microbiota 

Colonisation of the gastrointestinal (GI) tract starts immediately following delivery 

(natural or caesarean birth). Several research groups have recently started questioning this 

dogma focusing on the hyphothesis that gut microbial colonisation might initiate in utero.  

Collado and collegues analysed amniotic fluid, placenta, colostrum, maternal and 

infant faeces and they showed unique microbial communities characterised by low abundance, 

low richness and low diversity (Collado et al. 2016). Proteobacteria was the most predominant 

phylum in amniotic fluid and placenta with Enterobacter, E. coli and Shigella as main types 

also in colostrum, meconium and infant faeces, but in lower numbers. The second predominant 
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genus was Propionibacterium, found in placenta parenchyma during the second trimester of 

pregnancy and meconium, confirming data previously published (Onderdonk 2008). Since 

meconium is formed during foetal life, their findings support the hypothesis that meconium 

and colostrum microbiota share a common maternal source and that the foetus might not be 

sterile but colonised by microbes in the placenta and amniotic fluid (Collado 2016). These 

results match findings from two pioneer studies by Ardissone et al.  (2014) and Jimenez et al. 

(2008) who showed, respectively, correlation between bacterial populations in meconium and 

amniotic fluid in a human study (Ardissone 2014) and in a mouse trial (Jimenez 2008). 

Labelling Enterococcus faecium and orally inoculating pregnant mice, this strain was detected 

in the meconium of inoculated mice but not in the control group (Jimenez 2008). 

After birth, several factors might alter bacterial composition, such as mode of delivery, 

diet, environment, genetics and antibiotic treatment from early life to adulthood (Figure 1.2).  

 

 
Figure 1.2: Factors influence gut microbiota during early life (Tamburini 2016). 

 

Vaginally delivered infants are initially enriched in Lactobacillus spp. which resembles the 

maternal vaginal microbiota. In contrast children delivered by C-section were instead 

colonised by common skin and environmental microbes, such as Staphylococcus, 

Streptococcus or Propionibacterium spp. (Tamburini 2016). 



 6 

Due to its unique composition, human milk modulates the gut bacterial population of 

breast fed infants by promoting the growth of beneficial bacterial, such as bifidobacteria and 

lactobacilli. Rich in oligosaccharides (human milk oligosaccharides, HMO), other nutrients 

and characterised by a specific microbial ecosystem, human milk has a strong impact on the 

immune system and gut function (Gomez-Gallego 2016). Breast and formula-fed infants have 

different gut microbiota composition with the latter one characterised by high diversity and 

dominated by Clostridium spp., Bacteroides and E. coli (Hascoet et al. 2011). 

Antibiotic treatments in early life are another important factor with a strong impact on 

diversity and stability. Recent studies have shown that their effects are more pronounced 

during the first year of life, causing delays in gut microbiota maturation and gene resistance 

(Bokulich 2016, Yassour 2016). Alterations of gut microbial ecology may have a long-term 

impact on adult phenotype, modulating susceptibility to allergy, infection, obesity or diabetes 

(Kirjavainen 2002, Sjögren 2009, Abrahamsson 2012).  

The infant GI microbiota is more variable in composition and less stable over time, 

compared to the adult one. The first 3 years of life are the most critical in terms of dietary 

intervention and introduction of solid food, but between 3 and 5 years of age, the microbiota 

of infants resembles that of the adult. 

 

1.2 Gut-Brain axis 

 In the last 20 years, the gut microbiota and its interaction with neurological disorders 

has had a raised profile. The field of microbial endocrinology is expressly devoted to 

understanding the mechanisms by which the microbiota (bacteria within the microbiome) 

interact with the host. Microbial endocrinology was founded by Lyte in 1993 who focused on 

neuro-active compounds produced by the microbiota that can modulate the brain and 

behaviour within the microbiota-gut-brain axis (Lyte 1993). 

Psychobiotics is a new definition of gut bacteria involved in the production of active 

compounds associated with mammalian neurotransmission. They have been defined by Dinan 

et al. 2013 as an “emerging class of probiotics that, when ingested in adequate amounts, 

produces a health benefit in patients suffering from psychiatric illness” (Dinan 2013).  

It is well-known that certain bacteria are able to produce molecules that may act as 

neurotransmitters and directly affect the brain. Wall and colleagues reported some of the main 

neurochemicals that have been isolated from gut bacteria and the impact that they have on the 
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central nervous system, brain function and behaviour (Wall 2014) (Table 1.2). 

 
Table 1.2. List of neurochemicals isolated from gut bacteria. BBB=blood-brain barrier (adapted from Wall 2014) 

Bacterial genus Neurochemicals Functions 
Lactobacillus, Bifidobacterium GABA Inhibitor of different physiological and 

psychological processes 
Streptococcus, Escherichia, 
Enterococcus, Lactococcus, 
Lactobacillus 

Serotonin Metabolite from tryptophan and it has an 
important role in mood regulation 

Escherichia, Bacillus Norepinephrine Major neurotransmitters that mediate 
motor control, cognition, memory 
processing, emotion and endocrine 

regulation 

Streptococcus, Escherichia, 
Bacillus, Lactococcus, 
Lactobacillus 

Dopamine 

Lactobacillus, Bacillus Acetylcholine Neurotransmitter important in memory 
and learning 

Lactobacillus, Lactococcus, 
Streptococcus, Enterococcus 

Histamine Important role in the maintenance of 
wakefulness 

Gut microbiota SCFAs They can cross BBB and work as energy 
source during early brain development; 

play a role in cell signaling and 
neurotransmitter synthesis and release 

 

Interaction between intestinal microbiota and the brain includes the central nervous 

system (CNS), neuroendocrine and neuroimmune systems, sympathetic and parasympathetic 

arms of the autonomic nervous system (ANS) and enteric nervous system (ENS). The vagus 

nerve is the major nerve of ANS and mouse studies showed the impact of probiotics such as 

L. rhamnosus and Bifidobacterium spp. on stress, depression and anxiety via this path and 

alteration in GABA receptors (Bercik 2011, Bravo 2011).  

In addition to SCFAs and neurotransmitter production, other routes where the gut 

microbiota is involved include tryptophan metabolism and kynurenine pathway, previously 

shown to be altered in autism (Boccuto 2013), the hypothalamic-pituitary-adrenal axis (HPA) 

and cytokine production.  

Tryptophan is an essential amino acid and once in the bloodstream, it can cross the 

blood-brain barrier (BBB) and participate in serotonin synthesis in the CNS. However, 

serotonin, mainly located in the gut, is synthesised from tryptophan in enterochromaffin cells 

(ECs) of the gastrointestinal tract and from certain bacterial strains that produce indole from 

tryptophan (O’Mahony 2015). Yano and colleagues showed that spore-forming bacteria had 

an effect on serotonin in mice, by producing metabolites directly involved in signalling 

between gut microbiota and ECs (Yano 2015).  
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The HPA is a major neuroendocrine system that regulates different processes, 

including stress response. Cortisol is an important biomarker of stress and both excessive and 

deficient cortisol responses have been associated with dysregulation of the HPA axis. Acute 

stress seems to be involved in mast cell activation and can cause increases in GI barrier 

permeability allowing gut bacterial metabolites, toxins and lipopolysaccharides (LPS) to enter 

the bloodstream and reach the CNS (Santos 2001). Mouse experiments showed how 

Bacteroides spp. and Clostridium spp. respectively decrease and increase after chronic stress 

exposure, and this led to immune system activation (Bailey 2011). 

There is bi-directional communication between the HPA axis and the immune system. 

A number of cytokines, such as IL-1, IL-6, IL-10 and TNF-α can activate the HPA axis. During 

an immune response, pro-inflammatory cytokines are released into the peripheral circulation 

system and can pass through the BBB where they can interact with the brain and activate the 

HPA axis. Interactions between pro-inflammatory cytokines and the brain can alter the 

metabolic activity of neurotransmitters and cause symptoms such as fatigue, depression, and 

mood changes (Padgett and Glaser 2003). 

Interaction with gut bacterial populations has a strong impact in health and well being 

of the host from early life, including brain development and function. Changes in early life 

nutrition influence gut microbiota composition and metabolism, resulting in depressive-like 

behaviour and metabolic phenotype in non-weaned rats (Farshim 2016).  

Psychiatric co-morbidities, such as anxiety and depression are common in patients 

with chronic bowel disorders, including IBS and IBD. Typical symptoms in IBS such as sleep 

difficulties, anxiety, depression, headache, fatigue, in particular abdominal pain, seem to get 

worse during periods of stress (Lacker 2010). Stress has a big impact on the gastrointestinal 

tract, altering intestinal motility, barrier function, and mucosal transport (Hyland 2014). 

Consequently, behavioural changes have been noticed in relation to modification of gut 

microbiota composition and it has been postulated that stress might have a long-term effect on 

gut bacterial populations (Collins 2012).  

The GI symptoms associated with IBS seem to be similar to those of autism spectrum 

disorders (ASD) and to date there are no biological biomarkers for both conditions. Based on 

this, it may be relevant to note the potential therapeutic effects of pre- and probiotics in the 

treatment of certain neurological conditions (O’Mahony 2005, Whorwell 2006). Recent rodent 

studies have also shown increased expression of neurotransmitters and neuromodulators in the 
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hippocampus, after FOS and GOS supplementation (Savignac 2016, De Vadder 2014, 

Williams 2016). 

 

1.2.1 Autism spectrum disorders (ASD) 

“Autism typically develops early in childhood, and is considered as a systemic 

spectrum disorder with multiple development trajectories with an incidence four times higher 

in males than in females” (Grossi 2014).  

Around 700,000 people may be autistic, or more than 1 in 100 of the population. The 

latest prevalence studies of autism indicate that 1.1% of the population in the UK may have 

autism. This prevalence rate is based on two relatively recent studies, one on children in the 

South Thames area (Baird 2006) and the other on adults (Brugha 2011). 

Autism is currently diagnosed using behavioural criteria from the Diagnostic and 

Statistical Manual of Mental Disorders (DSM). ASDs is a term used to include and replace all 

subtypes of autism, including autistic disorder, Aspergers syndrome, childhood disintegrative 

disorder, and pervasive developmental disorder (not otherwise specified). The DSM-V (fifth 

edition), published in May 2013, eliminated the four sub-types listed above, by dissolving 

them into one diagnosis called Autism Spectrum Disorders (American Phychiatric Association 

2013). 

In this new edition ASD is defined as: 

1. Persistent deficits in social communication and social interaction across contexts, not 

accounted for by general developmental delays 

2. Restricted, repetitive patterns of behavior, interests, or activities 

3. Symptoms must be present in early childhood (but may not become fully manifest until 

social demands exceed limited capacities) 

4. Symptoms together limit and impair everyday functioning. 

 

Autism was first considered as a distinct clinical disorder by Kanner (1943) but its exact cause 

is still unknown. It is a complex condition and may occur as a result of genetic predisposition 

and/or environmental factors. 

There is clearly a genetic component and this has been established through twin and 

family studies (Ronald and Hoekstra 2011, Robinson 2016). Genetic aspects have involved 

parental age, male sex (gender bias with a ratio of 4:1), autism in the family, deficiency in 
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gene transcription and it is known that autism disorder is commonly found in genetic 

syndromes such as Fragile X and tuberous sclerosis (Liu 2001). 

Despite evidence of a genetic component, genetics does not explain the whole picture. 

Environmental factors, such as dysbiosis in gut microbiota, diet or antibiotic therapy in early 

age, seem to have a huge impact on several aspects of autism. Correlation between medical 

history, GI symptoms and antibiotic treatments in 99 children with and without ASD has been 

investigated (Niehus and Lord 2006). ASD children seem to have significantly more ear 

infections than typically developing children, with consequently signficant higher use of 

antibiotics before the age of 2 years. As mention above, early life history of antibiotic use have 

a big impact on gut microbiota composition and dysbiosis seen in ASD might be due to such 

therapy (Niehus and Lord 2006). 

 

1.2.2 Gut microbiota in ASD 

Apart from the cognitive aspects, a significant majority of ASD sufferers also have 

associated GI issues. A recent detailed survey compared children with ASD to their non-ASD 

siblings and ASD was associated with diarrhoea, constipation, smelling stools, gaseousness, 

abdominal bloating and discomfort and food regurgitation. Moreover, 76% of children with 

ASD had at least one GI symptom compared to only 30% of a non-ASD siblings (Horvath 

2002); with most children with ASD having two or more GI symptoms (64%). Several studies 

reported a prevalence of GI symptoms as high as 70% in children with ASD, although it was 

recently suggested that prospective studies be performed to determine the actual prevalence 

of GI disorders in ASD and their biological basis (Buie 2010). 

Bolte hypothesized that autistic symptoms may be based on colonisation of 

Clostridium tetani. It was thought that the toxin produced from this spore-forming species, 

tetanus neurotoxin (TeNT), could impact on autistic symptomatology in different ways. In 

fact, autistic children do not show typical effects of tetanus infection, such as spasms, due to 

the presence of proteolytic enzymes in the human digestive tract. Basically these enzymes 

break down the toxin in fragments, reducing its effect but, unfortunately, they can still exert 

an influence (Bolte 1998). 

To date, more recent studies have confirmed the role of Clostridium spp. in the gut of 

autistic children and how antimicrobial and antifungal therapies could help in relieving the 

symptoms. Finegold et al. (2002) found nine unique species of clostridia in autistic children 
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compared to healthy controls (Finegold 2002). Song et al. (2004), using qPCR analysis, found 

higher levels of C. boltea and Clostridium cluster I and XI (Song 2004). Furthermore, Parracho 

and co-authors, using FISH analysis, found greater number of those species derived from the 

Clostridium histolyticum group (Clostridium clusters I and II) (Parracho 2005). Comparing 

the microbiota of autistic and non-autistic children, Kang and colleagues, using recent 

pyrosequencing techniques, demonstrated that autistic children suffering GI problems have a 

distinct and less diverse gut bacterial population, characterised by lower levels of Prevotella, 

Coprococcus, and unclassified Veillonellaceae; and higher presence of Akkermansia genus 

(Kang 2013).  

The genus Sutterella has been identified in intestinal biopsy and faecal samples from 

individuals with gastrointestinal disorders such as Crohn’s disease and ulcerative colitis. On 

this basis, Williams and colleagues investigated its presence in biopsy samples from autistic 

children with gastrointestinal problems and non-autistic controls with only gastrointestinal 

dysfunction. In these results, they showed higher presence of this bacterial group only in 

autistic individuals but not in the control (Williams 2012). These data were confirmed by 

Wang et al. who analysed faecal samples of autistic children and showed increase number of 

Sutterella spp. and Ruminococcus torque (Wang 2013). 

Shaw et al. found high levels of tartaric acid in the urine of two autistic siblings which 

was suggested to be due to overgrowth of Candida albicans. Potential toxins released may 

cause an effect on the central nervous system and subsequently affect behaviour (Shaw 1995). 

Antifungal treatments seem to be a potential strategy to reduce presence of the yeast (Shaw 

2000). In another study, antibiotic Vancomycin therapy, in an uncontrolled trial (n=11) with 

regressive autistic children, showed a short-term improvement in behavioural parameters, 

which waned following discontinuation of antibiotic treatment (Sandler 2000). 

Another interesting aspect of the effect of Clostridium spp. involves tryptophan 

metabolism. Normally, this amino acid is catabolised with indole pyruvate and indole acetate 

being detected in the urine of healthy people as well the end product of their metabolic 

pathway, IAG (indolyl-acryuloyl-glycine). IAG seems to be a detoxified version of an acidic 

precursor that affects permeability of membranes. It has been shown that in autistic children, 

higher amounts of indole derivates are present in the blood and higher levels of IAG have been 

identified in urine. Increased numbers in Clostridium spp. can be, again, an explanation. 

Clostridium can metabolise tryptophan and contribute to an abnormal metabolic state 
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(Bingham 2003). 

Recently, a model of the autism pathology has been proposed based on three main 

pathways: oxidative stress, gut bacterial dysbiosis and “leaky gut” syndrome. Taking into 

account different studies on autism pathogenesis, Heberling and colleagues suggested that 

overgrowth of some bacterial populations, in particular Clostridium spp. and Desulfovibrio 

spp., can lead to an inflammatory state that might cause increased gut permeability. This can 

cause inappropriate passage of molecules to the bloodstream and BBB affecting the central 

nervous system (Heberling 2013). Gram-negative bacteria, that possess LPS on the cell wall 

surface, may be involved in ASD. LPS activates the innate immune system (Trent 2006), is 

involved in tissue damage and it has been suggested to induce the nitric oxide (iNOS) gene, 

causing release of nitric oxide, which is a neurotransmitter (Berdeaux 1993). It also damages 

the BBB, making it porous and allowing LPS to cross (Gaillard 2001, Xaio 2001). Moreover, 

LPS seems to work with other toxins, notably heavy metal ions, to increase the extent of 

cellular damage (Rumbeiha 2000). In addition, oxidative stress seems to have an impact on 

sulphate metabolism in cysteine and methionine pathways and consequences related to that, 

alteration in DNA, RNA, protein, lipids methylation and gene expression (Heberling 2013). 

James et al. in an in vivo human intervention study, involving 20 ASD children and 33 

controls, showed imbalances in the methionine cycle mainly due to a “bottle-neck” at S-

adenosylhomocysteine (SAH) and adenosine. Supplement of folinic acid, betaine and 

methylcobalamin have shown stabilisation in metabolite concentrations within the methionine 

cycle into the normal range (James 2004). 

Based on Heberling hypothesis and taking into account the main bacterial populations 

involved in autism dysbiosis, Weston and his research group developed a model which 

simulates direct and indirect effects of the interaction between bifidobacteria, clostridia and 

Desulfovibrio spp. (Figure 1.3) (Weston 2015).  

 



 13 

 
                        Figure 1.3: Model of bifidobacteria, clostridia and Desulfovibrio interaction. Arrows 

represent positive interaction; Flat head negative interaction (adapted from Weston et al. 
2015). 

  

In addition the authors proposed a new quantitative measure in order to valuate the risk to 

develop autism based on bacterial shift from a steady state:  

Gut Bacteria Index (GBI) = (B / Bss) / [(C + D) / (Css + Dss)] -1 

where B, C and D are bifidobacteria, clostridia and desulfovibrio respectively and SS is the 

steady state, before any treatments. If GBI is 0, this means that gut bacteria are similar to the 

control, if it is positive or negative it means that there is lower or higher risk to develop autism, 

respectively. Basically in their computational model, the authors introduced step-by-step 

variables that have been seen in previous studies to affect gut bacterial populations and 

improvement of ASD symptoms, in order to see how GBI changes. Variables involve use of 

pre- or probiotics, since they can enhance bifidobacterial growth; or use of antibiotics as 

treatments for ear infection; or use of lysozyme since it is present in breast milk (Weston 

2015). Even though it is an intriguing model, the Gut Bacteria Index has not been validated 

and it has limitations. Autism is a wide spectrum disorder and three variables are not enough 

to explain the all picture. 

Autism is a wide-ranging disorder and complex pathogenesis, involving both 

environmental and genetic factors. Differences in data between studies suggest that there may 
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be more than one possible cause. Potential treatments may need to be personalised according 

to individual needs and, perhaps, a combination of treatments would result in a greater 

improvement of symptoms. 

 

1.2.3 Potential treatments and their influence on gut microbiota activity 

Symptoms reported in ASD people can be considered individual and heterogeneous, 

but many research groups are looking at dietary intervention as potential therapy for GI issues 

in autism in order to modulate the intestinal microbiota and alleviate gut symptoms.   

The term nutraceuticals is defined ‘‘any substance that is food or a part of food and 

provides medical or health benefits, including the prevention and treatment of disease’’ and 

was introduced for the first time in 1989 by the US Foundation for Innovation in Medicine 

(FIS) (Alanazi 2013). This approach is interesting and promising in autistic disorders since 

food selectivity is a common characteristic in children with ASD (Schreck and Williams 2006) 

and might be associated with nutrient inadequacies (Bandini 2010) (Cermak 2010).  Kral et 

al. in recent review paper reported some of the main studies involving food supplements and 

their impact on different aspects of autism. Omega-3, multivitamins, minerals, L-carnitine, 

ascorbic acid, vitamin B12 and B6, folinic acid, dietary fatty acid, folate, creatine and 

probiotics are some examples of nutraceticals that have been investigated so far, with 

interesting results in improving ASD behavioural symptoms and gut dysfunction, but there are 

still limitations in the trial designs and lack of strong evidence to support efficacy (Kral 2013). 

Gluten and casein-free (GFCF) diets are common as individuals with ASD have been 

shown to have an impaired epithelial barrier function. Gliadin (glycoprotein present in wheat) 

activates zonulin signalling, a protein that modulates the permeability of tight junctions 

between cells wall of the digestive tract, leading to increased intestinal permeability to 

macromolecules (Fasano 2011, Lammers 2008). Opioid peptides released from gluten and 

casein can pass through the BBB and have an impact on the CNS (Lázaro 2016). Studies have 

been conducted to evaluate the efficacy of gluten and casein-free diets (Mulloy 2010). Some 

results suggested positive effects on behaviour and GI symptoms (Pennesi and Klein 2012, 

Harris and Card 2012); other findings did not show any improvement in the intervention group 

(Hyman 2015, Elder et al. 2006), suggesting that more studies are required in order to assess 

efficacy of the GFCF diet.  

Unfortunately none of those studies took into account the impact of these particular 
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diets on gut microbiota composition and its correlation with potential amelioration in GI 

problems. A recent metagenomic study aimed to compare the gut bacterial populations of 

samples from healthy adults after 4 weeks gluten-free diet (GFD) to those collected during 

normal diet. They noticed, in GFD, significant changes in alpha diversity and reduction of 

Veillonellaceae family, Ruminococcus bromii and Roseburia faecis. While families 

Victivallaceae, Clostridiaceae and Coriobacteriaceae, and genus Slackia significant increase 

in abundance. No significant modifications have been seen in normal dietary groups (Bonder 

2016). Veillonellaceae is considered to be a pro-inflammatory family of bacteria and its high 

abundance was consistently found in IBD or IBS (Gevers 2014, Shukla 2015). Decrease in 

this bacterial family might be correlated to the beneficial effects of GF diets observed in 

patients with gluten-related disorders, including potentially autism. 

Prebiotics and probiotics have been widely investigated and have been shown to 

modulate the intestinal microflora. Therefore, they could be a useful novel therapeutic 

approach in order to potentially ameliorate behavioural symptoms and GI discomforts 

associated with some children with ASD (Critchfield 2011). 

A recent survey conducted on ASD children taking Delpro® (Lactobacillus 

acidophilus, Lactobacillus casei, Lactobacillus delbruecki, Bifidobacterium longum and 

Bifidobacterium bifidum) for 6 months, showed improvements in GI symptoms (diarrhoea or 

constipation), stool frequency and ASD symptoms. These data, even lacking of a controlled 

clinical trial, suggest that probiotics have an impact on GI distress and ATEC signs and 

symptoms among autistic population (West 2013). 

Parracho et al. reported in children with ASD a significant behavioural improvement 

when administered Lactobacillus plantarum WCSF1 compared to ASD treated with placebo 

(Parracho 2010). Adams et al. compared gut microbiota composition and inflammatory 

markers from stool samples of 58 children with ASD and 39 healthy typical children of similar 

ages, and found reduced levels of total SCFAs in the ASD group with a higher difference in 

children with autism taking probiotics. In addition, they showed a strong correlation between 

GI symptoms and severity of autism (Adams 2011). Kaluzna-Czaplinska administered oral 

supplementation of Lactobacillus acidophilus twice a day for 2 months to a group of ASD 

children and found significant modifications in the level of D-arabinitol (DA) and the ratio of 

D-/L-arabinitol (DA/LA), and an improvement in the ability to carry out instructions and 

concentration (Kaluzna-Czaplińska 2012). Recently, Tomova and colleagues confirmed the 
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results from Adams et al., revealing a strong positive correlation of autism severity with 

severity of GI dysfunction. In their study, 4 months of probiotic mixture diet supplementation 

normalised gut bacterial populations of ASD children. However, no behavioural traits were 

investigated (Tomova 2015). Furthermore, probiotic supplement has been demonstrated to 

reduce the concentration of myeloperoxidase, a marker for inflammation and oxidation, in 

autistic children compared to non-autistic controls (Russo 2015). 

Considering previous study limitations, Santocchi and colleagues suggested a protocol 

in order to improve probiotic study outcomes. A six month parallel, randomised, probiotic 

feeding study will aim to assess changes GI symptoms, autism severity, affective and 

behavioural comorbid symptoms, plasmatic, urinary and faecal biomarkers related to 

abnormal intestinal function and neurophysiological patterns. However, potential limitations 

might include the length of the study and kind of samples requested (blood, urine and faecal 

samples) and lack of control group (non-ASD children) in order to compare biomarkers levels 

(Santocchi 2016).  

Little is known about prebiotic supplementation and its impact on autism. The 

prebiotic FOS (fructo-oligosaccharides) has been tested in order to determine effects on end 

products of trytophan metabolism, known to be altered in ASD individuals, from gut 

microbiota using a mixed bacterial population from the large intestines of pigs. The results 

showed indole-3 acetic acid (a microbial precursor of IAG) decreased with the addition of 

FOS (Xu 2002).  

The positive effects of pre- and probiotics on wellbeing of the host are known and 

confirmed in healthy people and different clinical conditions.  Even if the causes of the GI 

symptoms in the autism are still unknown, further studies are necessary to better understand 

correlation with dysbiosis in the gut microbiota and the potential of pre- and probiotics in this 

neurological disorder. 

 

1.3 Probiotics 

One definition of probiotic has been proposed by the World Health Organization as 

“live microorganisms which, when administrated in adequate amounts, confer a health benefit 

to the host” (FAO/WHO 2002). They are usually strains of lactic acid producing bacteria 

(LAB), in particular members of Lactobacillus and Bifidobacterium genera. Probiotic bacteria, 
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in order to exert their activity, have to survive the gastrointestinal transit (Gibson 2005). Their 

positive effects on the human health may include: 

1) Improvement of tolerance to lactose, thanks to the presence of enzymatic lactase 

activity 

2) Competition with pathogens for colonisation and nutrients 

3) Vitamin synthesis and improvement of mineral absorption 

4) Stimulation of the immune system 

5) Improvement digestion and gut function 

To be known as a probiotic, a candidate microorganism has to be regarded as GRAS 

(Generally Recognized As Safe). This means it should not be pathogenic and should not be 

able to transfer antibiotic resistance genes, as well as be able to maintain genetic stability.  

  Although the beneficial effect of probiotics have been widely tested, these food 

supplements do have limitations. In order to be effective, probiotics must remain viable and 

stable along the gastrointestinal tract, and the host should gain beneficial impacts. However, 

such live microorganisms may reach the lower gut in a compromised state due to bile and 

stomach acid secretions. For the microorganisms to be fully effective, they will then have to 

compete with an established colonic microbiota for nutritional sources (Walton 2013).  

 

1.4 Prebiotics 

Prebiotics are defined as “substrates that are selectively utilized by host micro- 

organisms conferring a health benefit” (Gibson 2017). 

All prebiotics are dietary carbohydrates but not all of them can be considered prebiotics. In 

order to be classified as prebiotic, there are certain criteria: 

1) Resistance to the low gastric pH, hydrolysis by intestinal enzymes and gastrointestinal 

absorption 

2) Be selective substrates for certain bacteria 

3) Stimulate the growth and the activity of the beneficial bacteria that contribute to the well 

being of the host 

Gibson et al. (2004) in a review paper revisited the concept of prebiotic and updated the list 

of the candidate prebiotic according to criteria mentioned above (Gibson 2004). 
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Inulin and Fructo-oligosaccharides (FOS), are non-digestible oligosaccharides present 

in plants, fruits and vegetables such as bananas, onions, chicory root, garlic, asparagus, 

artichoke, and leeks. FOS can be obtained by partial enzymatic hydrolysis of inulin using an 

endo-inulinase, and by enzymatic synthesis using E-fructosidase from Aspergillus niger, but 

the end products have different degree of polymerisation (DP). Orafti NV, have developed an 

inulin, known as Synergy1, which consists of 1:1 inulin and oligosaccharide. The chicory-

derived inulin has a DP of 10 to 60 (average DP of 25). The oligofructose is produced by 

partial enzymatic hydrolysis of chicory derived inulin and has a DP ranging between 3 and 7 

(average DP of 4; Gibson 2004). 

Several in vitro and in vivo studies have been carried out using both inulin and FOS. 

Kaplan and Hutkins demonstrated the selectivity properties of FOS for bifidobacteria and 

lactobacilli. Studying 28 strains, their results showed L. acidophilus, L. casei, L. plantarum, 

B. adolescentis, B. infantis, B. breve and B. longum as FOS-fermentors and L. lactis, L. 

bulgaricus, L. rhamnosus GG, Streptococcus thermophilus and B. bifidum as non FOS-

fermentors (Hutkins 2000). Batch fermentation experiments, inoculated with human faecal 

samples, showed fructans were consumed accordingly to their DP and that different gut 

bacteria were also able to grow on these carbon sources. In particular, Rossi and colleagues 

demonstrated that bifidobacteria grew by cross-feeding on mono- and oligosaccharides 

produced by primary inulin intestinal degraders (Rossi 2005). According to the different 

human intervention studies reported by Kolida & Gibson, 5–8 g/d of inulin intake is an 

adequate dose in order to modulate the gut microbiota. One potential side effect is gas 

production that might be explained by bacteria other than the target organisms being involved 

in the fermentation, since bifidobacteria and lactobacilli do not produce gas, or high doses of 

prebiotic (Kolida and Gibson 2007). 

These criteria have been fulfilled also for lactulose. It is produced by isomerisation of 

lactose to generate the disaccharide galactosyl E-(1-4) fructose and different human studies 

show how it can be selective fermented by bifidobacteria and lactobacilli and reduce the 

growth of potential harmful bacteria (Tuohy 2002, Bouhnik 2004). 

Galacto-oligosaccharides (GOS) are defined as “a mixture of those substances 

produced from lactose which comprise between two and eight saccharide units, with one of 

these units being a terminal glucose and the remaining saccharide units being galactose, and 

disaccharides comprising two units of galactose” (Tzortzis 2011) (Table 1.3). 

http://en.wikipedia.org/wiki/Banana
http://en.wikipedia.org/wiki/Onion
http://en.wikipedia.org/wiki/Chicory
http://en.wikipedia.org/wiki/Garlic
http://en.wikipedia.org/wiki/Asparagus
http://en.wikipedia.org/wiki/J%C3%ADcama
http://en.wikipedia.org/wiki/Leek
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Table 1.3: Different definitions of GOS (Roberfroid 2010) 

GALACTANS  

Mixture of β(1-6); β(1-3); β(1-4) galactosyl-galactose 

GOS 

Galn-Gal and/or Galn-Glc; DP 2-8 

Galacto-oligosaccharides, 

trans-galacto-oligosaccharides 

(enzymatic transgalactosylsation of lactose) 
 

The structural size of GOS plays a role in targeting the bifidobacterial genus, however this 

relationship has not been extensively determined at species level (Matsuki 2004, Rodriguez-

Colinas 2013). 

Differently from FOS, GOS is not a food component but it is a synthetic product and 

to date, the main companies involved in the GOS market include Yakult Honsha (Oligomate 

55N and 55NP and TOS-100), Nissin Sugar Manufacturing (Cup-Oligo P and H-70) and 

Purimmune from Japan; Floraid GOS from the United States; Friesland Food Domo (Vivinal 

GOS), Nestle GOS and Clasado (B-GOS) from Europe. They produce usually GOS in syrup 

or powder format that, in both cases, contain oligosaccharides of different DP, non-reacted 

lactose, glucose and galactose. Table 1.4 summarises characteristics of commercially GOS 

available (Torres et al. 2010). 
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Table 1.4: Characteristics of commercially GOS (adapted from Torres et al. 2010) 

                                                     GOS   

 Glucose Galactose Lactose DP2 DP3 DP4 DP>4 Total GOS 
content 

Enzyme source 

CUP-oligo  25 to 30  - - - - 70 Cryptococcus laurentii 

Oligomate55 18 to 39 10 to 22 15 to 17 18 to 24 10 to 16 2 to 5.4 50 to 60 A.oryzae and S. 
thermophilus 

TOS-100 0 0 to 1 0 55 33 to 35 12 to 14 99 to 100 Bacillus circulans 

Vivinal GOS 19 to 22 0.8 to 1.3 10 to 23 19 to 27 22 to 23 11 6 to 7.6 57 to 59 Bacillus circulans 

B-GOS 18 12 22 25 to 29 12 to 14 6.7 to 7.7 3.8 to 4.4 48 to 55 Bifidobacterium bifidum 

Purimune 
 

0 to 1 0 to 0.5 7 to 10 16 to 21 38 to 51 25 to 29 90 to 92 Bacillus circulans 
 

Floraid GOS 21 8.5 18 - - - - 20-28 A.oryzae 
 

Nestle GOS 10 5 20 to 40 - - - - 46 A.oryzae 

DP: degree of polymerisation;  
DP and total GOS content expressed in %;  
- :  data not available 
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1.4.1 Galacto-oligosaccharides as prebiotics   

GOS is thought to remain largely undigested through the human gut making it is a  

prebiotic. Not only is it suitable for administration, its functional properties enable it to be easily 

manufactured. A low pH tolerance enables GOS to withstand acidic conditions in the stomach 

but also offers potential for use in fruit juices (Sangwan 2011). At present, GOS has been 

associated with numerous health benefits. In fact, the two main mechanisms by which this is 

achieved are through the production of SCFAs from its fermentation and the selective 

enhancement of beneficial gut organisms, thus modulating the microbiota (Sangwan 2011).  

Acetate, butyrate and propionate are the most common SCFA in the colon. SCFAs 

reduce the luminal pH increasing mineral absorption, suppressing the growth of pathogens and 

influencing intestinal motility. In addition, they may be absorbed by the colonic mucosa and 

provide an energy supply (mainly butyrate). Acetate can be metabolised in human muscle, 

kidney, heart and brain. Propionate is metabolised by the liver and as a glucogenic substrate 

affects the hepatic control of lipids, cholesterol production and adipose tissue deposition. 

Butyrate is an energy substrate for cell growth and differentiation, it also reduces the risk of 

colon cancer stimulating apoptosis (Roberfroid 2010). There has been a range of studies 

demonstrating the efficacy of GOS. It should be noted that bifidobacteria mainly generate 

acetate and lactate, but not propionate or butyrate. 

Another important factor could be the ability of prebiotics to act as anti-adhesive agents 

against pathogens. Studies have revealed that GOS was more effective than inulin and FOS at 

preventing the attachment of EPEC to gut a cell line in vitro (Tzortzis 2005, Shoaf 2006). GOS 

has also been seen to reduce the severity of pathogen infection and prevent colonization in mice 

e.g. of S. typhimurium (Searle 2009).  

In most cases, GOS has been proven to elicit a bifidogenic effect increasing levels of these 

potentially beneficial organisms. This positive ability is supported by the presence of specific 

membrane mechanisms of transport like diffusion, cation symport and proton symport, and the 

presence of extracellular β-galactosidases that hydrolyse GOS, internalise the products and 

degrade them in the cell, avoiding competition with other bacteria (Boehm 2005, Fanaro 2009). 

Recently, GOS and inulin has become a standard component in infant formulae, attempting to 

generate similar compositions of the gut microbiota between breast fed infants and 

supplemented formula fed infants i.e. higher concentrations of bifidobacteria (Scholtens 2008, 

Ben 2008). 

Another important factor is immune-modulatory activities related to the GALT system (Gut 

Associated Lymphoid Tissue) that contain 60% of lymphocytes and sIgA that play a role 
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against pathogenic invasion. These effects are due to direct interaction with the immune, 

mucosal and epithelial cells or indirect by selective modulation of the microbiota.  

 

1.4.2 B-GOS 

B-GOS as manufactured by Clasado Biosciences Ltd., is synthesised from food grade 

lactose using the transgalactosidic activity of a microbial derived β-galactosidase enzyme 

preparation which catalyses lactose to form a mixture of β-linked disaccharide, trisaccharide, 

tetrasaccharide and pentasaccharide chains in configurations depicted in Table 1.5.  
 

Table 1.5: Dimeric and oligomeric saccharides present in B-GOS. Gal= Galactose; Glc = 
glucose. (Clasado Inc.) 

 
 

The β-galactosidase activity of Bifidobacterium bifidum NCIMB 41171 has been used to 

produce the B-GOS mixture (Table 1.6): 
 

Table 1.6: B-GOS composition-in dry matter. DP, degree of 
polymerisation (Tzortzis 2009) 

Ingredient g/100 g 
Monosaccharide <15.3 

Lactose <28 
GOS <50 
DP2 52% 
DP3 26% 
DP4 14% 
DP5 8% 

Minerals <5 
Protein <1 

Fat 0.5 
 

 

Tzortzis et al. (2005) showed that B. bifidum, isolated from faecal samples of a healthy human 

volunteer could convert 55% of lactose to a novel mixture of GOS at the optimum activity 

condition (pH: 6.9 and temperature: 40°C). The bifidogenic activity of B-GOS was higher than 

inulin and a GOS mixture generated from enzymes of a Bacillus strain. The prebiotic potential 

of this mixture has been tested also in vivo in a pig-feeding trial  (Tzortzis 2005b). Four β-
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galactosidase enzymes, three β- and one α-galactosidase, involved in the reaction have been 

cloned, sequenced and characterised by Goulas et al. to better understand their physiological 

and biotechnological properties, including selectivity, interaction with pathogens and immune 

system (Goulas 2009). 

B-GOS has been tested further in human studies. Depeint et al. showed the bifidogenic 

effects of B-GOS in healthy volunteers comparing to a GOS mixture produced by an industrial 

β-galactosidase from Bacillus circulans ATCC 4516 (V-GOS). Using a B-GOS mixture in three 

different doses (0 g, 3.6 g, 7 g), each for 7 days, with an equivalent washout period between 

each treatment, there was a positive effect in a dose-response relation in terms of increasing 

Bifidobacterium group. There was a significant increase in B. bifidum and B. longum compared 

to V-GOS (Depeint 2008).  

Furthermore, the positive effects of B-GOS have been also assessed by Vulevic et al., 

in elderly healthy volunteers. To date, several studies have shown negative modifications of 

elderly intestinal microflora composition compared to younger persons. One possible 

explanation is related to the aging process that is associated with a reduced activity of the 

immune system and an increase of pro-inflammatory cytokines. Forty-four volunteers were 

randomly assigned into 2 groups: one consuming placebo and B-GOS (both powder form, 5.5g) 

for 2 treatment periods of 10 weeks each, separating by a 4 weeks washout period. The results 

showed how, after 5 weeks, the microbiota was similar to younger counterparts, reducing the 

presence of putrefactive bacteria. The study highlighted significant changes, enhanced at 10 

weeks, in production of IL-10, reduced production of pro-inflammatory cytokines like IL-1 β, 

TNF-α and IL-6 and increased NK cell activity. This is a key point that shows how B-GOS can 

influence immune senescence, decline of immune functions, which promotes hypo 

responsiveness to vaccination and predisposition to infectious and non-infectious diseases 

(Vulevic 2008). These potential immune modulatory properties of B-GOS have been shown 

also in vitro by Dubert-Ferrandon et al. (2008) using adult human colonic NCM 460 cells 

showing a positive effect on TNF-α mediated inflammation in human intestinal epithelial cells. 

Another interesting area, in which the B-GOS mixture has been tested, was related to 

functional GI disorders, in particular IBS. Silk et al. investigated the efficacy of B-GOS in 

changing the colonic microflora and improving symptoms in IBS sufferers. In this clinical trial, 

patients were randomised to receive either 3.5 g⁄d B-GOS, 7 g⁄d B-GOS or 7 g⁄d equivalent 

placebo. Both doses were well tolerated and no adverse side effects were reported by any of the 

patients. Moreover, this study highlighted that B-GOS has potential as a therapeutic agent 

effective in alleviating symptoms and in increasing bifidobacteria numbers (Silk 2009). 
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The efficacy of B-GOS against pathogens has been shown by Searle et al. using in vitro 

and in vivo models where 2mM of B-GOS significantly reduced colonisation and pathology 

associated with Salmonella enterica typhimurium, but the mechanism of action is still to be 

elucidated (Searle 2009). Drakoularakou et al. focused on the severity and/or incidence of 

travellers’ diarrhoea, in healthy volunteers who travel and stay in a high-risk destination (Asia, 

Middle East, Africa, Mexico, Central and South America). The volunteers were consuming B-

GOS (5.5g/d) for 1 week before the holiday and for the 2 weeks holiday. Results showed 

reduced diarrhoeal episodes and decreased symptoms such as abdominal pain, vomiting, fever, 

anorexia, headache and dizziness (Drakoularakou 2009). 

Another study on the potential activity of B-GOS focused on its effect in reducing risk 

factors of metabolic syndrome. Two groups of volunteers started the treatment respectively 

with placebo and B-GOS (powder 5.5g/d) for 12 weeks, followed by 4 weeks washout before 

swapping the treatment for other 12 weeks. The results showed that B-GOS had a significant 

prebiotic effect on aspects of insulin resistance (Vulevic 2013).  

B-GOS was also shown to reduce cortisol secretion and anxiety in healthy volunteers. 

Schmidt and colleagues, in their human intervention study, showed that B-GOS 

supplementation lowered cortisol reactivity and modulate attention to emotional stimuli 

compared to a placebo group and FOS (Schmidt 2015). 
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Aims and Objectives 

 To date, studies focussing on the interactions between gut microbiota dysbiosis and 

ASD show common and consistent results. Some bacterial groups, such as Clostridium spp., 

Desulfovibrio spp. and Sutterella spp. seem to be present in higher numbers in autistic children 

compared to non-autistic ones, and beneficial bacteria such as bifidobacteria and lactobacilli 

have been found to be in lower amounts in ASD individuals. In addition, strong alterations in 

some metabolic pathways have also been seen. Modifications in gut microbiota composition 

might be associated to GI discomforts observed in ASD and have an impact on CNS and 

consequently on mood and behaviour. Therefore, dietary intervention therapies have been 

postulated to improve these aspects. The potential of prebiotics to alleviate gut symptoms and 

modulate the GI microbiota has been widely investigated in healthy individuals and different 

bowel disorders but there is a lack of knowledge about their impact on autism and gut-brain 

axis. 

The aims and objectives of this research project were therefore (Figure 1.4): 

• To investigate the impact of a purified prebiotic B-GOS (65%GOS content) on overall 

diversity of the anaerobic faecal bacterial population using in vitro batch culture 

fermentation systems; 

• To determine the effect of B-GOS (65%GOS content) on the gut microbiota composition 

and metabolites production using a three-stage continuous system models inoculated with 

faecal samples from autistic and non-autistic children; 

• To design and perform a human intervention study investigating the effects of B-GOS 

(83%GOS content) on different aspects of autism: 

➢ The first aim was to investigate the effect of a 6-weeks prebiotic supplementation on 

gut microbiota and its metabolic by-products in children with ASD.  

➢ The second aim was to assess the impact of this treatment period on GI symptoms 

(including adequate relief of symptoms, severity and incidence of symptoms, stool 

consistency and frequency), sleep, mood and behaviour. 
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Figure 1.4: Summary of the research strategies used to achive principal aims of the study 
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Abstract 

Prebiotic oligosaccharides have the ability to generate important changes in the gut 

microbiota composition that may confer health benefits to the host. Reducing impurities 

in prebiotic mixtures could expand their application in food industries and improve 

selectivity and prebiotic effects on potential beneficial bacteria such as bifidobacteria and 

lactobacilli. This study aimed to determine the in vitro potential fermentation properties 

of a 65 % galacto-oligosaccharide (GOS) content, Bimuno® GOS (B-GOS), on gut 

microbiota composition and metabolites. Fermentation of 65 % B-GOS was compared 

with 52 % B-GOS in pH- and volume-controlled dose–response anaerobic batch culture 

experiments. In total, three different doses (1, 0·5 and 0·33 g equivalent to 0·1, 0·05 and 

0·033 active GOS g/l) were tested. Changes in the gut microbiota during a time course 

were identified by fluorescence in situ hybridisation, whereas small molecular weight 

metabolomics profiles and SCFA were determined by 1H-NMR analysis and GC, 

respectively. The 65% B-GOS showed positive modulation of the microbiota 

composition during the first 8 h of fermentation with all doses. Administration of the 

specific doses of B-GOS induced a significant increase in acetate as the major SCFA 

synthesised compared with propionate and butyrate concentrations, but there were no 

significant differences between substrates. The 65% B-GOS in syrup format seems to 

have, in all the analysis, an efficient prebiotic effect. However, the applicability of such 

changes remains to be shown in an in vivo trial. 
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2.1 Introduction 
In vitro and in vivo studies involving prebiotic oligosaccharides have been carried 

out using inulin and its fructo-oligosaccharide (FOS) derivatives, as well as various 

galacto-oligosaccharides (GOS). It has been shown that these food ingredients have the 

ability to selectively improve the growth of bifidobacteria, and consequently lead to 

important changes in the gut microbiota composition that may confer health benefits to 

the host. To date, GOS has been associated with numerous health benefits such as low 

energy content, insulin-independent metabolism and stimulation of growth and 

metabolism of specific colonic microbiota. The two main mechanisms by which this is 

achieved are through the production of SCFA from its fermentation and selective 

enhancement of beneficial gut microorganisms (Sangwan 2011).  

GOS can be defined as a mixture of the end products of lactose breakdown by β-

galactosidases, containing two to eight saccharide units, with a terminal glucose unit 

(Tzortzis 2009). These mixtures can be complex and their structures are often 

imperfectly characterised. They tend to be mixtures of β-1,3, β-1,4 and β-1,6 linkages 

with degrees of polymerisation ranging from two to five. A characteristic of GOS is that 

the set of structures present depends on source of the enzyme used to bring about 

synthesis. Structural and functional relationships of GOS play a role in targeting the 

Bifidobacterium genus (Matsuki 2004). Another important aspect is the presence of 

impurities such as monosaccharides, disaccharides or metabolic products from 

purification steps. Removing these compounds can lead to a mixture with a GOS content 

as high as possible that can be better used to study fermentation and structural properties 

of novel prebiotics in in vitro experiments.  

In addition, purified Bimuno® GOS (B-GOS) mixture might have significantly 

increased interest in production and application in various food and pharmaceutical 

processes, especially if the prebiotic is incorporated directly into food such as diabetic or 

low-energy foods. Reducing monosaccharides and disaccharides such as glucose, 

galactose and lactose from the mixture might help minimise their impact on consumers, 

particularly by taking into account lactose intolerance. Several techniques have been 

suggested in order to obtain high recovery of GOS, but all of them have some limitations 

(Hernandez 2009). B-GOS (Bimuno® 52% GOS content; Clasado Biosciences Ltd) 

refers to prebiotic GOS compounds that have multiple biological health activities within 

the colonic environment. It is produced from the activity of galactosidase enzymes 

isolated from Bifidobacterium bifidum NCIMB 41171 (Tzortzis 2009). The method for 
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B-GOS purification has been studied by Goulas et al. (2007) in order to reduce the 

amount of free glucose and galactose produced during its synthesis, and it led to the 

removal of 92% of glucose by fermentation with Saccharomyces cerevisiae.  

The bifidogenic properties of B-GOS have been investigated in vitro and in vivo. 

Tzortzis et al. (2005) showed in vitro and in a pig trial the prebiotic potential of GOS. In 

this study, it was established that B-GOS prebiotic activity was relevant in terms of 

increase in bifidobacteria numbers, SCFA production and decreased pH, compared with 

other prebiotics such as inulin and other GOS types (Tzortzis 2005). B-GOS has also 

been tested in healthy volunteers, clinical conditions that have a purported microbial 

aetiology such as Irritable Bowel Syndrome, traveller’s diarrhoea and obesity, and on 

cognitive functions (Schmidt 2015; Depeint 2008; Drakoularakou 2009; Silk 2009; 

Vulevic 2008; Vulevic 2013).  

This study aimed to determine the potential prebiotic activity of a purified 65% 

GOS content B-GOS, compared with 52% GOS content B-GOS, used as positive control 

in in vitro dose–response batch cultures. 

 

2.2 Methods 
2.2.1 Substrates 

The two B-GOS products, supplied by Clasado BioSciences Ltd, used in this 

study were produced from the activity of galactosyltransferases from B. bifidum NCIMB 

41171 on lactose (Tzortzis 2005). Both were used in syrup form. The B-GOS mixtures 

consisted of (w/w) 52 % GOS, 8 % lactose, 22 % glucose, 16·5 % galactose; and 65% 

GOS, 10·1% lactose, 22% glucose, 1·8% galactose, respectively. 

 

2.2.2 Faecal inoculation 

Experiments were carried out using fresh faecal samples from three healthy 

donors (one female aged 26 years and two males aged 25 and 31 years, respectively) who 

were free of any metabolic and gastrointestinal diseases, were not taking probiotic or 

prebiotic supplements and had not taken antibiotics for 6 months before faecal sample 

donation. All donors then provided written informed consent, and filled in a standard 

questionnaire to collect information regarding health status, drug use, clinical anamnesis 

and lifestyle factors. This study was approved by The University of Reading Research 

Ethics Committee (UREC 15/20). Faecal samples were placed in an anaerobic jar 

(AnaeroJarTM 2.5L; Oxoid Ltd) including a gas- generating kit (AnaeroGenTM; Oxoid). 
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Samples were diluted 1/10 w/w in anaerobic PBS (0·1 mol/l phosphate buffer solution, 

pH 7·4) and homogenised (Stomacher 400; Seward) for 2min at 240 paddle beats/min. 

Samples were added to anaerobic fermenters within 15 min of voiding. 

 

2.2.3 In vitro batch culture fermentation 

This method was previously described by Rodriguez-Colinas et al. (2013). B-

GOS were added at concentrations shown in Table 2.1 before adding faecal slurry.  

 
Table 2.1: Doses of the B-GOS syrups tested (equivalent to 0.1, 0.05 and 0.033 g/L) in 100mL working 
volume vessels during 24 hours fermentation in pH and volume controlled batch fermentation experiments.  

Vessel 
 

Treatment Syrup (g) DM (g)  GOS (g) in 
100mL 

1 B-GOS (52% GOS content) 2.66 2  1 
2 B-GOS (52% GOS content) 1.33 1  0.5 
3 B-GOS (52% GOS content) 0.88 0.66  0.33 
4 B-GOS (65% GOS content) 2.05 1.54  1 
5 B-GOS (65% GOS content) 1.02 0.77  0.5 
6 B-GOS (65% GOS content) 0.68 0.51  0.33 
7 Negative control (only 

faeces) 
    

DM: dry matter. 
 

An extra vessel with no added carbohydrate source was also included as a negative 

control. Culture pH was maintained in the range of 6·7–6·9 via automatic controllers 

(Fermac 260; Electrolab) and adjusted by adding 0·5mM-NaOH and HCl to the vessels 

when required. The pH and temperature mimicked the conditions of the distal region of 

the human large intestine. Batch culture fermentations were run for 24 h, and samples 

(3·5 ml from each vessel) were collected at 0, 4, 8 and 24 h for analysis of bacterial 

populations and metabolite production. Fermentation experiments were performed in 

triplicate. 

 

2.2.4 Bacterial enumerations by fluorescence in situ hybridisation 

Differences in bacterial populations were assessed by fluorescence in situ 

hybridisation (FISH) with oligonucleotide probes designed to target specific diagnostic 

regions of 16S rRNA, as previously described (Costabile 2010). The probes were 

commercially synthesised and labelled at the 5′ end with the fluorescent dye Cy3 

(Sigma-Aldrich) as reported in Table 2.2 (Langendijk 1995; Manz 1996; Harmsen 1999; 

Franks 1998; Daims 1999; Walker 2005).  
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Table 2.2: Oligonucleotide probes used in the study for FISH analysis of bacterial populations 
Probe name and Sequence (5’ to 3’) Target species Hybridization-

Washing 
Temperature (C) 

References 

Bif164  
CATCCGGCATTACCACCC 

Most Bifidobacterium spp. and Parascardovia denticolens 50-50 Langendijk 
1995 

Bac303  
CCAATGTGGGGGACCTT 

Most Bacteroides sensu stricto and Prevotella spp.; all 
Parabacteroides;Barnesiella viscericola and Odoribacter splanchnicus 

46-48 Manz 1996 

Lab158 
GGTATTAGCAYCTGTTTCCA 

Most Lactobacillus, Leuconostoc and Weissella spp.; Lactococcus lactis; 
all Vagococcus, Enterococcus, Melisococcus, Tetragenococcus, 
Catellicoccus, Pediococcus and Paralactobacillus spp. 

50-50 Harmsen 
1999 

Chris150 
TTATGCGGTATTAATCTYCCTTT 

Most members of Clostridium cluster I; all members of Clostridium 
cluster II;Clostridium tyrobutyricum; Adhaeribacter aquaticus and 
Flexibactercanadensis (family Flexibacteriaceae); [Eubacterium] 
combesii (family Propionibacteriaceae) 

50-50 Franks 
1998 

Erec 482 
GCTTCTTAGTCARGTACCG 

Most members of Clostridium cluster XIVa; Syntrophococcus 
sucromutans, [Bacteroides] galacturonicus and [Bacteroides] 
xylanolyticus, Lachnospira pectinschiza and Clostridium saccharolyticum 

50-50 Franks 
1998 

EUB338 I 
GCTGCCTCCCGTAGGAGT 

Total bacteria 46-48 Daims 
1999 

EUB338 II 
GCAGCCACCCGTAGGTGT 

Total bacteria 46-48 Daims 
1999 

EUB338 III 
GCTGCCACCCGTAGGTGT 

Total bacteria 46-48 Daims 
1999 

Rrec584 
TCAGACTTGCCGYACCGC 

Roseburia - Eubacterium rectale (a component of cluster XIVa) 50-50 Walker 
2005 

Prop853 
ATTGCGTTAACTCCGGCAC 

Clostridium cluster IX 50-50 Walker 
2005 
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Numbers of specific and total bacteria were determined using the following equation: 

DF×ACC×6732·42×50×DF sample, where DF is the dilution factor (300/375 = 0·8), 

ACC is the average cell count of fifteen fields of view and DF sample refers to the 

dilution of sample used with a particular probe or stain. The figure 6732·42 refers to the 

area of the well divided by the area of the field of view and the factor 50 takes the cell 

count back to per millilitre of sample. 

 

2.2.5 SCFA analysis 

Production of SCFA was determined using GC as previously described (Massot-

Cladera 2015). Peaks were integrated using Agilent ChemStation software (Agilent 

Technologies), and SCFA content was quantified by single-point internal standard 

method. Peak identity and internal response factors were determined using a 20 mM 

calibration cocktail including acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, 

caproic and caprylic acids. 

 

2.2.6 Metabolite analysis by 1H-NMR 

Fermentation supernatants from all time points were defrosted, vortexed and 

centrifuged at 599 xg for 5 min. Supernatants were filtered using 0·22-μm low protein 

binding durapore polyvinylidene fluoride membrane (Millex; EMD Millipore) and 400μl 

was transferred into fresh eppendorf tubes. Filtered samples were then combined with 

200 μl of phosphate buffer (0·2M (pH 7·4) in D2O plus 0·001% (w/v) trimethylsilyl 

propionate (TSP)). The mixture was vortexed and centrifuged at 1136 x g for 10 min and 

then 550 μl was transferred into 5-mm NMR tubes for analysis. All NMR spectra were 

acquired on Bruker Avance DRX 500MHz NMR Spectrometer (Bruker BioSpin) 

operating at 500 MHz. They were acquired using a standard 1-dimensional (1D) pulse 

sequence (recycle delay (RD)−90°−t1−90°−tm− 90°−acquire free induction decay (FID)) 

with water suppression applied during RD of 2 s, a mixing time tm of 100 ms and a 90 

pulse set at 7·70 μs. For each spectrum, a total of 128 scans were accumulated into 64 k 

data points with a spectral width of 12·001 parts per million. The FID were multiplied by 

an exponential function corresponding to 0·3 Hz line broadening. All spectra were 

manually phased, baseline corrected and calibrated to the chemical shift of TSP (δ 0·00). 

Spectra were digitised using an in-house MATLAB (version R2014a; The Mathworks 

Inc.) script. The spectral region containing the water resonance was removed to minimise 

distortions in the baseline arising from imperfect water saturation. Principal component 
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analysis (PCA) was performed with Pareto scaling using scripts provided by Korrigan 

Sciences Ltd. 

 

2.2.7 Statistical analysis 

All statistical tests were performed using GraphPad Prism (version 5.0; Graph-

Pad Software). A two-way ANOVA test was used to compare dose, substrates and time-

dependent effects. When there was no significant effect, one-way ANOVA tests and 

paired T-tests, including post hoc tests appropriate for the individual data sets 

(Bonferroni post-test with significance set at P<0·05), were used for bacterial counts and 

organic acid concentrations. 

 

2.3 Results 
2.3.1 SCFA analysis 

Results showed acetate as the dominant SCFA produced for both substrates with 

significant differences between 4 and 8 h of fermentation using 65 % B-GOS at 0·033 g/l 

(P<0·01) (Table 2.3). In particular, there was a clear dose–response effect during the first 

4h of fermentation. However, no significant differences were observed between the two 

substrates at the same dose. The dose–response effect was also confirmed by 1H-NMR 

data. PCA revealed a clear trajectory over time, showing a clear separation between 0 

and 4 h with acetate as main component influencing variation through time (Figure 2.1). 

Significant decreases in propionate concentration throughout fermentation were 

observed, mainly between 8 and 24h of fermentation (P<0·01). None of the substrates 

generated major changes in butyrate production (Table 2.3). Two-way ANOVA data 

analyses did not show significant differences on SCFA production between the two 

substrates. 
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Table 2.3: SCFAs production measured by Gas Chromatography (GC) in the pH controlled and volume controlled batch cultures at 0, 4, 8 and 24 hour fermentation. 
Results reported as average (AV) of the data expressed in millimolar (mM) ± standard deviation (SD). Branched SCFAs: Iso-butyric acid and iso-valeric acid. 

SUBSTATE Time ACETATE PROPIONATE BUTYRATE BRANCHED TOTAL  
  [h] [AV (mM) ± SD] [AV (mM) ± SD] [AV (mM) ± SD] [AV (mM) ± SD] [AV (mM) ± SD] 

 
0 26.77 ± 22.13 6.50 ± 7.25 4.63 ± 5.11 15.60 ± 17.26 53.49 ± 51.53 

52%B-GOS 1g 4 30.96 ± 18.64 6.43 ± 8.32 4.44 ± 6.92 16.08 ± 11.36 57.92 ± 56.63 

 
8 28.39 ± 6.91 2.59  ± 0.76 0.95 ± 0.47 3.13 ± 1.42 35.06 ± 6.89 

  24 17.14 ± 0.1 1.06± 0.1 0.55± 0.1 0.22± 0.1 18.98± 0.1 

 
0 17.27 ± 8.37 3.63 ± 3.42 2.57 ± 2.61 8.81 ± 9.28 32.28 ± 23.49 

52%B-GOS 0.5g 4 28.33 ± 19.27 4.67 ± 6.09 2.29 ± 3.41 7.71 ± 11.36 43.01 ± 40.13 

 
8 31.25 ± 15.30 2.11 ± 1.65 0.80 ± 0.51 1.37 ± 0.98 35.52 ± 18.34 

  24 20.3 ± 0.1 0.91± 0.1 0.39± 0.1 0.23± 0.1 21.84± 0.1 

 
0 11.41 ± 8.94 2.26 ± 1.92 1.63 ± 1.52 5.74 ± 5.89 21.04 ± 16.22 

52%B-GOS 0.33g 4 17.43 ± 19.16 4.56 ± 6.62 1.75 ± 2. 63 4.62 ± 7.01 28.36 ± 35.33 

 
8 26.54 ± 26.11 4.47 ± 5.63 1.24 ± 1.57 1.13 ± 0.92 33.37 ± 35.22 

  24 26.24± 0.1 0.75± 0.1 0.24± 0.1 0.17± 0.1 27.39± 0.1 

 
0 18.29 ± 10.59 2.33 ± 2.31 1.32 ± 1.39 4.69 ± 4.87 26.63 ± 19.12 

65%B-GOS 1g 4 38.42 ± 2217 4.65 ± 4.45 1.42 ± 1.91 4.47 ± 5.65 48.97 ± 34.11 

 
8 43.37 ± 28.55 6.81 ± 5.19 1.21 ± 0.99 1.47 ± 1.15 52.82 ± 33.81 

  24 6.78± 0.1 0.73± 0.1** 0.4± 0.1 0.39± 0.1 8.31± 0.1 

 
0 17.94 ± 7.95 2.01 ± 1.94 0.92 ± 0.97 3.42 ± 3.61 24.29 ± 14.33 

65%B-GOS 0.5g 4 30.61 ± 20.92 3.97 ± 3.69 1.27 ± 1.59 3.19 ± 3.95 39.03 ± 30.10 

 
8 24.43 ± 11.06 3.32 ± 2.47 0.72 ± 0.56 1.18 ± 0.81 29.65 ± 13.96 

  24 21.51± 0.1 0.61± 0.1** 0.50± 0.1 0.28± 0.1 22.89± 0.1 

 
0 12.29 ± 5.37 1.33 ± 1.14 0.58 ± 0.6 2.1 ± 2.31 16.3 ± 9.21 

65%B-GOS 0.33g 4 24.68 ± 15.65 3.39 ± 3.19 0.84 ± 1.03 2.14 ± 2.65 31.05 ± 22.49 

 
8 27.18 ± 12.41** 3.98 ± 2.72 0.71 ± 0.48 1.25 ± 1.02 33.12 ± 15.48 

  24 20.88± 0.1 1.18± 0.1* 0.97± 0.1 0.77± 0.1 23.79± 0.1 

 
0 5.28 ± 5.69 0.71 ± 0.51 0.36 ± 0.32 1.15 ± 1.25 7.5 ± 5.34 

NEG.CONTROL 4 8.68 ± 5.25 1.68 ± 0.97 0.61 ± 0.47 1.3 ± 1.66 12.31 ± 8.28 

 
8 18.82 ± 8.74 2.71 ± 1.47 0.67± 0.12 0.97 ± 0.84 23.17 ± 10.64 

  24 18.43± 0.1 2.37± 0.1 1.47± 0.1 0.49± 0.1 22.76± 0.1 
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Figure 2.1: 1H-NMR data analysis. (A-C) PCA score plot B-GOS 65% - T4 and PCA score plot B-GOS 
52% - T4, respectively, show a clear separation during the first 4 hours fermentation due to dose response 
effect.  (B-D) PCA score plot B-GOS 65% - T8 and PCA score plot B-GOS 52% - T8, respectively, show 
how dose effect is lost after for 4 h fermentation. (E) Colour plot illustrates the main compound, acetate, 
influencing the separation. The 65%B-GOS and 52%B-GOS were tested at 1g, 0.5g and 0.33 g equivalent 
to 0.1g/L, 0.05 g/L and 0.033 g/L.  
 

 

2.3.2 Changes in bacterial populations 

A significant increase in bifidobacteria was observed with 52 %B-GOS 0·5 and 

0·33 g (equivalent to 0·05 and 0·033 g/l) at same time 0 and 24 h and with 65 % B-GOS 

doses at all time points tested (P < 0·05; Table 2.4). Lactobacilli significantly increased 

after addition of 52 % B-GOS and 65 % B-GOS 1 and 0·33 g (equivalent to 0·1 and 

0·033 g/l) (P < 0·01) and 52 % B-GOS 0·5 g (equivalent to 0·05 g/l) (P < 0·05) between 

8 and 24 h. An overall decrease in the Bacteroides–Provotella group with 52% B-GOS at 

doses of 1 and 0·33 g (equivalent to 0·1 and 0·033 g/l) was observed between 0 and 24h 

(P<0·05). With 65% B-GOS at 1 and 0·5g (equivalent to 0·1 and 0·05 g/l), there was a 

significant decrease between 4 and 24 and 0 and 4 h, respectively (P < 0·05). Two- way 

ANOVA data analyses did not show significant differences in microbiota composition 

between the two substrates. 
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.  
Table 2.4: Bacterial groups detected by FISH in the pH controlled and volume controlled batch cultures at 0, 4, 8 and 24 hours fermentation Results are reported as mean of the data of three 
experiments (n=3) and expressed as Log10 cells/mL ± standard deviation (SD). The 65%B-GOS and 52%B-GOS were tested at 1g, 0.5g and 0.33 g (equivalent to 0.1g/L, 0.05 g/L and 0.033 g/L). a Significant 
difference from 0 h with P<0.05; b Significant difference from 4 h with P<0.05; c Significant difference from 8 h with P<0.05; In italics type: significant differences with P<0.01; In bold type: significant 
differences with P<0.001  (T-test). 

Probes Time point (h) Bacterial population (log10 cells/ml) 
   52%B-GOS 1g 52%B-GOS 0.5g 52%B-GOS 0.33g 65%B-GOS 1g 65%B-GOS 0.5g 65%B-GOS 0.33g NC 

Eub338 I-II-III 0 9.24 ± 0.09 9.13 ± 0.11 9.22± 0.11 9.24 ±0.11 9.27 ±0.12 9.23 ±0.1 9.19 ±0.08 
 4 9.11 ± 0.17 9.15 ± 0.18 9.14 ± 0.44 9.39 ±0.14 8.9 ± 0.14 9.35 ±0.07 9.04 ±0.31 
 8 9.16 ± 0.13 9.49 ± 0.23 9.05 ± 0.41 9.52 ± 0.1 8.92 ± 0.1 9.46 ±0.04 9.2 ± 0.59 
 24 9.14 ± 0.01 9.33 ± 0.03 9.1 ± 0.05 8.94 ±0.07a,c 9.21 ±0.01 9.56 ±0.04a 8.95 ±0.02a 

Lab158 0 7.63 ± 0.09 7.48 ± 0.11 7.55 ± 0.05 7.52 ±0.07 7.54 ±0.15 7.47 ±0.06 7.48 ±0.06 
 4 7.57 ± 0.05 7.64 ± 0.16 7.77 ± 0.27 7.78 ±0.14 7.73 ±0.12 7.31 ±0.29 7.54 ± 0.2 
 8 7.74 ± 0.1 8.05 ± 0.11 7.6 ± 0.36 7.98 ±0.27 8.21 ±0.56 7.66 ±0.12 7.55 ± 0.4 
 24 8.39 ±0.02a,b,c 7.7 ± 0.01c 7.94 ± 0.07a 7.94 ±0.09a 7.68 ±0.06 7.85 ±0.05a 7.29±0.08a 

Bif164 0 8.61 ± 0.28 8.7 ± 0.17 8.58 ± 0.26 8.45 ±0.35 8.63 ±0.21 8.47 ± 0.3 8.68 ±0.21 
 4 8.73 ± 0.33 9.1 ± 0.22 8.79 ± 0.67 8.86 ± 0.2b 8.75 ±0.19 8.47 ± 0.4 8.45 ±0.31 
 8 8.93 ± 0.29 8.87 ± 0.61 8.95 ± 0.63 9.12 ±0.21 9.25 ±0.04a,b 9.31 ± 0.1a,b 8.53 ±0.13 
 24 9.2 ± 0.06 9.31 ± 0.03a 9.19 ± 0.08a 9.12 ±0.21 9.2 ± 0.07a,b 9.24 ±0.04a 8.25 ±0.07 

Bac303 0 8.26 ± 0.16 8.23 ± 0.35 8.27 ± 0.33 8.33 ±0.25 8.33 ± 0.3 8.2 ± 0.19 8.26 ±0.29 
 4 8.07 ± 0.55 8.41 ± 0.53 8.09 ± 0.86 8.49 ±0.15 7.94 ±0.26a 8.39 ±0.12 7.75 ±0.83 
 8 7.33 ± 064 7.83 ± 0.82 8.11 ± 0.66 8.31 ±0.46 7.88 ±0.32 8.63 ±0.19 6.71 ±0.37a 

 24 7.78 ± 0.05a 8.39 ± 0.15 7.06 ± 0.2a 7.94 ±0.03b 8.41 ±0.06 8.29 ±0.04 8.39±0.2a,c 

Erec482 0 8.35 ± 0.16 8.34 ± 0.13 8.42 ± 0.03 8.34 ±0.06 8.38 ±0.09 8.3 ± 0.04 8.32 ±0.05 
 4 8.29 ± 0.12 8.39 ± 0.15 8.17 ± 0.31 8.4 ± 0.21 8.36 ± 0.2 8.24 ±0.34 8.08 ±0.43 
 8 7.85 ± 1.21 7.92 ± 1.42 7.88 ± 1.22 7.91 ±1.36 8.45 ±0.08 8.38 ±0.38 7.98 ±0.76 
 24 8.85 ± 0.37a,b 8.65 ± 0.06a 7.94 ± 0.04a 8.58 ±0.01a 8.59 ±0.01a 8.56 ±0.04a 8.06±0.05a 

Rrec584 0 8.34 ± 0.25 8.24 ± 0.08 8.06 ± 0.54 8.15 ± 0.3 8.17 ±0.17 8.28 ±0.09 8.34 ±0.04 
 4 7.54 ± 1.04 8.13 ± 0.3 7.85 ± 0.59 8.2 ± 0.41 7.29 ±0.86 7.77 ±0.62 7.78 ±0.69 
 8 7.06 ± 0.87 7.47 ± 0.74 7.37 ± 0.78a 7.71 ±0.98 7.21 ±0.78 7.6 ± 0. 56 7.66±0.21a 

 24 7.2 ± 0.02 7.14 ± 0.05a,b 6.92 ± 0.01 7.78 ±0.14 7.23 ±0.06a 8.51 ±0.03a 7.54 ± 0.2a 

Chis150 0 5.83 ± 0.2 5.73 ± 1.1 5,83 ± 0.2 5,73 ± 1.1 5.93 ± 0.3 5.73 ± 1.1 5.73 ± 1.1 
 4 5.86 ±0.04 6.34 ± 0.5 5.79 ± 0.1 6.56 ± 0.6 6.11± 0.2 6.2 ± 0.3 5.9 ± 0.1 
 8 6.03 ± 0.1 6.74 ± 1 6.53 ± 1 6.80 ± 1.1 6.92 ± 1.3 7.24 ± 0.8 5.87 ± 0.2 
 24 5.73 ± 0.02 5.73 ± 0.05 7.45 ± 0.01 5.73 ± 0.2 6.43 ± 0.03 5.73 ± 0.01 5.73 ±0.01 

Prop853 0 7.98 ± 0.18 7.97 ± 0.27 8.05 ± 0.22 8.18 ±0.26 8.16 ±0.22 8.08 ±0.22 8.04 ±0.06 
 4 8.04 ± 0.28 7.97 ± 0.02 7.81 ± 0.47 8.02 ±0.09 8.02 ±0.05 8.11 ±0.09 7.99 ±0.19 
 8 7.84 ± 0.37 7.74 ± 0.48 7.83 ± 0.37 7.85 ±0.68a 7.67 ±1.03a 8.16 ± 0.3a 7.76±0.08a 

 24 8.19 ± 0.01b,c 7.99 ± 0.01 7.95 ± 0.04a,b 6.53 ± 0.02b 6.15 ± 0.06b 8.72 ± 0.01b, c 8.1 ±0.07c 
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2.4 Discussion 
The present study was carried out in order to evaluate the in vitro fermentation 

properties of B-GOS (65 % GOS content) in pH- and volume-controlled batch culture 

fermentation. The fermentability and selectivity of GOS have been previously evaluated 

in vitro by several comparative studies. Rycroft et al. (2001) compared the efficacy of 

different prebiotics including FOS and GOS in 24-h batch culture experiments, and the 

results showed how GOS induced the largest significant increases in bifidobacteria, 

lactobacilli and total bacterial numbers during fermentation (Rycroft 2001). In our study, 

administration of B-GOS showed the same trend, especially considering bifidobacteria 

and lactobacilli populations. There was also a significant decrease in Bacteroidetes 

numbers, except for 52 % B-GOS at 0·05 g/l and 65 % B-GOS at 0·033 g/l. The 65 % B-

GOS also had a strong influence in the production of SCFA, compared with B-GOS that 

is commercially available (52% GOS content). Our results showed a double increase in 

acetate production at all doses using 65 % B-GOS, but were not significant, except for 65 

% B-GOS at 0·033 g/l, probably due to the high standard deviation. 

The fermentation of all different doses induced the production of acetate, which 

correlated with an increase in Bifidobacterium populations (Macfarlane 2008). Palframan 

et al. (2002) in a study comparing the effect of the pH and dose on batch culture 
fermentation of five commercial prebiotics have shown similar results. FISH analysis 

showed how highest bacterial numbers were obtained with GOS at pH 6 and 1% (w/v) 

(Palframan 2002). The global effect on the bacterial population of 52% B-GOS has been 

tested in a previous fermentation study where the commercial B-GOS mixture was 

compared with different purified GOS. Using Selectivity Index (SI) as an estimate for the 

growth of beneficial bacteria, Rodriguez-Colinas et al. (2013) have shown that 52 % B-

GOS had the highest SI, and consequently a strong degree of selectivity for 

Bifidobacterium population. 

Our results highlighted that 65 % GOS had an effective prebiotic activity, in 

terms of increasing numbers of bifidobacteria and metabolite production. This was 

especially seen for acetate, probably due to the lower content of monosaccharides and 

disaccharides in the mixture that might have affected in vitro fermentation experiments 

overall. However, a previous study of Costabile et al. (2014) demonstrated that the 

carbohydrates that remained following in vitro pre-digestion processes did not have any 

selective properties to invoke a bifidogenic effect, which perhaps would not persist in 

vivo (Costabile 2015). 
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In our study, major changes in other bacterial populations were seen, which might be due 

to the presence of these sugars. Different concentrations of SCFA have been identified at 

time 0, but it may be explained by the high inter-individual variability among each 

individual. Significant differences were observed between the time points in all analyses 

but not between the two substrates. 

The effects of B-GOS 52 % as a potential modulator of the gut microflora and the 

immune system have been extensively investigated in several human intervention 

studies. The 65% B-GOS has shown a significant modulation of health-promoting 

beneficial bacteria, and our findings proved that reducing impurities in the prebiotic 

mixture might improve the selectivity of prebiotics in in vitro experiments. However, the 

comparison between the effect of 65 % B-GOS and 52 % B-GOS has shown similar 

bifidogenic effects (data not published). The applicability of such changes remains to be 

investigated in in vivo human intervention studies. 
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Abstract 

Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems 

consistent with imbalances in the gut microbial population. Treatment with antibiotics or 

pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but 

there is a lack of evidence for such approaches, especially for prebiotics. This study assessed 

the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and 

metabolic function using faecal samples from autistic and non-autistic children in an in vitro 

gut model system. Bacteriology was analysed using flow cytometry combined with 

fluorescence in situ hybridisation and metabolic activity by HPLC and 1H-NMR. Consistent 

with previous studies, the microbiota of ASD children contained a higher number of 

Clostridium spp. and a lower number of bifidobacteria compared to non-autistic children. B-

GOS administration significantly increased bifidobacterial populations in each compartment 

of the models, both with autistic and non-autistic derived samples, and lactobacilli in the 

final vessel of non-autistic models. In addition, changes in other bacteria were seen in 

particular for Clostridium, Roseburia, Bacteroides, Atopobium, F. prausnitzii, Sutterella spp. 

and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered 

short chain fatty acid production in both groups, and increased ethanol and lactate in autistic 

children inocula. 
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3.1 Introduction 
Autism typically develops in childhood, and is considered as “a systemic spectrum 

disorder with multiple development trajectories with an incidence four times higher in males 

than in females” (Grossi 2014). In addition to behavioural traits, GI abnormalities such as 

diarrhoea, constipation, bloating, and abdominal pain are common in autism and they seem 

to contribute to, and exacerbate, overall behaviour of children (irritability, sleeplessness, 

posturing) (Van De Sande 2014). A cross talk exists between the gut microbiota and central 

nervous system (CNS) mediated via a range of different chemical, immunological and 

signalling interactions that form part of the gut-brain axis. Several studies have demonstrated 

the role of the gut microbiota in neurodevelopment and mental health (Foster 2013) and 

there is increasing evidence associating gut microbial dysbiosis with GI problems that might 

affect autistic children.  

Bacteria such as Clostridium spp., Desulfovibrio spp. and Streptococcus spp. are 

dominant in the guts of ASD children. Finegold et al. found nine unique species of clostridia 

in autistic children compared to controls (Finegold 2002). Song et al., using qPCR analysis, 

found higher levels of C. boltea and Clostridium cluster I and XI (Song 2004). Furthermore, 

Parracho and co-authors, using FISH analysis, found greater number of species derived from 

the C. histolyticum group (Clostridium clusters I and II) (Parracho 2005). Desulfovibrio 

group was found to be ten times higher in the gut microbiota of autistic children compared to 

controls (Finegold 2010; Finegold 2011).  

High-throughput sequencing has been used in more recent studies to determine 

bacterial composition of faecal samples from autistic children. The genera Prevotella, 

Coprococcus, and unclassified Veillonellaceae have been found in lower abundance in 

autistic individuals (Kang 2013) with high genus Sutterella spp. (Wang 2013; William 

2012). In addition, Bifidobacterium species decreased in ASD, comparing to non-autistic 

control (De Angelis 2013).  

 Metabolic associations have also been identified with ASD and may be attributed to 

gut dysbiosis in autistic individuals. Abnormalities have been reported in tryptophan 

metabolism where higher amount of indole derivates in the blood and higher levels of IAG 

(indolyl-acryuloyl-glycine) in the urine of autistic children have been identified. Increased 

abundance of Clostridium spp. in the ASD-associated microbiota may contribute to these 

metabolic alterations as these microorganisms can metabolise tryptophan (Bingham 2003). 
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Metabonomic studies also identified alterations in nicotinic acid metabolism (Yap 2010) and 
amino acid deficiencies in autism with restricted diets, modified gut microbial population 

and GI symptoms being suggested as potential contributors (Ming 2012).  

Modulation of the gut microbiota is an interesting potential strategy to reduce the 

presence of harmful microorganisms and their metabolites that might be involved in negative 

stimulation of CNS and affect behaviour (Shaw 1995; Sandler 2000 ). Treating GI disorders 

in ASD with antibiotics or pro/prebiotics has been postulated to regulate microbiota and 

improve gut symptoms, but the evidence is scarce, especially for prebiotics.  

The bifidogenic properties of B-GOS (Bimuno®, Clasado Biosciences Ltd., 

Buckinghamshire, UK) have been investigated in vitro and in human intervention studies 

involving healthy volunteers, and conditions that have a purported microbial input such as 

IBS, travellers’ diarrhoea and obesity (Tzortzis 2005;  Depeint 2008;  Vulevic 2008; Silk 

2009;  Drakoularakou 2009;  Vulevic 2013). Recently, B-GOS was also shown to reduce 

cortisol secretion and anxiety in healthy volunteers (Schmidt 2015). Cortisol is a reliable 

marker of stress and hypothalamic pituitary adrenal (HPA) axis activity. B-GOS 

supplementation lowered cortisol reactivity and modulated attention to emotional stimuli 

compared to a placebo group, supporting the hypothesis that the gut microbiota might have a 

role in behavioural traits (Schmidt 2015). 

Our study aimed to assess the effects of B-GOS (65% GOS content) on gut microbial 

ecology and metabolic end products of microbial fermentation. We used in vitro, three-stage, 

continuous gut model systems, inoculated with faecal samples of autistic and non-autistic 

children, that simulated different physicochemical characteristics of the proximal, transverse 

and distal colons.  

 

3.2 Materials and methods 
3.2.1 Substrate 

The B-GOS product was supplied by Clasado Biosciences Ltd. The mixture was in 

syrup format consisting of 65% (w/v) GOS, 10.1% (w/v) lactose, 22% (w/v) glucose, 1.8% 

(w/v) galactose.  
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3.2.2 Faecal inoculation 

Faecal samples were obtained from three non-autistic children and three autistic child 

donors (male, aged 5-10 years-old) who were free of any metabolic and gastrointestinal 

diseases, were not taking probiotic or prebiotic supplements, and had not taken antibiotics 6 

months before faecal sample donation. Autistic children had formal diagnosis of mild 

autism. None of the children followed any specific or restricted diet. 

All parents then provided written informed consent for use of their children’s faeces in the 

study. This study was approved by The University of Reading research Ethics Committee 

(UREC 15/20). Faecal samples were placed in an anaerobic jar (AnaeroJarTM 2.5 L, Oxoid 

Ltd) including a gas-generating kit (AnaeroGenTM, Oxoid). Aliquots of 20 g of samples 

were diluted in 100 ml anaerobic PBS (0.1 mol/L phosphate buffer solution, pH 7.4, w/w) 

and homogenised (Stomacher 400, Seward, West Sussex, UK) for 2 minutes at 240 paddle 

beats per minute. Samples were added to anaerobic fermenters within 15 minutes of voiding. 

 

3.2.3 Three stage continuous culture gut model system 

Physicochemical conditions in the colon were replicated in a continuous culture 

system, comprised of a cascade of three glass fermenters of increasing working volume 

connected in series. A small scale version of the validated system described by Macfarlane et 

al. (1998) was used in this study, with vessels (V) representing the proximal (V1, 80ml, 

pH=5.5), transverse (V2, 100ml, pH=6.2), and distal colon (V3, 120ml, pH=6.8). The 

systems were inoculated with 20% (w/v) faecal homogenate from either non-autistic and 

autistic children volunteers in a growth medium (Macfarlane 1998). Following inoculation, 

the colonic model was run as a batch culture for 24 h in order to stabilise bacterial 

populations prior to the initiation of medium flow. After 24 h (T0), the medium flow was 

initiated and the system ran for at least 8 full volume turnovers to allow for steady state to be 

achieved (SS1). SCFA profiles (+/-5%) were assessed before starting B-GOS administration. 

Taking into account the operating volume (300 mL) and retention time (48 h, flow rate 6.25 

mL/h) of the colonic model system, a syrup containing GOS (2g/daily, equivalent to 1g of 

GOS) was added daily into V1. The syrup was added to the system for at least a further 8 

volume turnovers upon which steady state 2 (SS2) was achieved. Aliquots of 4.5 mL were 

removed at SS1 and SS2. 
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3.2.4 Short chain fatty acids (SCFAs) analysis by HPLC 

The production of SCFAs in the fermentations was determined by HPLC (Merck, 

NJ) as previously described by Rodriguez-Colina et al. 2013. Twenty µL of each sample was 

injected with a run time of 45 min. Peaks were integrated using Atlas Lab managing 

software (Thermo Lab Systems, Mainz, Germany). Quantification of the samples was 

obtained through calibration curves of lactic, acetic, propionic, butyric and formic acids in 

concentrations of 12.5, 25, 50, 75 and 100 mM. 

 

3.2.5 In vitro enumeration of bacterial population by FISH-FCM 

Bacterial composition in the gut models was analysed for using fluorescence in situ 

hybridisation combined with flow cytometry (FISH-FCM). 750 µl of samples were 

centrifuged at 1136 x g for 5 min. Pellets were re-suspended in 375 µL of filtered PBS 

(using a 0.22 µm PVDF membrane) and fixed in 1125 µL of 4% (v/v) paraformaldehyde. 

After 4 hours incubation at 4 °C, samples were washed twice using 1 mL of PBS, re-

suspended in 600 µL PBS-ethanol (1:1, v/v) and stored at -20 °C. Permeabilisation steps 

were performed using 30 µL of the fixed samples added to 500 µL PBS and centrifuged at 

1136 x g for 3 min. Pellets were re-suspended using 100 µL of filtered TE-FISH (Tris/HCl 1 

M pH 8, EDTA 0.5 M pH 8, distilled H2O, 0.22 µm PVDF membrane) containing lysozyme 

(1 mg/mL of 50,000 U/mg protein) and incubated for 10 min at room temperature. Solutions 

containing the samples were then vortexed and centrifuged at 1136 x g for 3 min. Pellets 

were washed with 500 µL PBS and centrifuged (1136 x g, 3 min). Hybridisations were 

performed by re-suspending the pellets in 150 µL of hybridisation buffer (5M NaCl, 1M 

Tris/HCl pH8, 30% formamide, ddH2O, 10% SDS), vortexed and centrifuged (1136 x g, 3 

min). Pellets were then re-suspended in 1 mL of hybridisation buffer and 50 µL aliquoted 

into Eppendorf tubes. The probes used (Sigma Aldrich Ltd., Poole, Dorset, UK) are reported 

in Table 3.1 (Wallner 1993;  Daims 1999;  Langendijk 1995;  Harmsen 1999;  Manz 1996;  
Franks 1998;  Walker 2005;  Harmsen 2000;  Hold 2003;  Devereux 1992;  Poulsen 1995;  
Harmsen 2002;  Lay 2005; Stoffels 1998; Kong 2012). NON EUB338 and EUB338 I-II-III 

linked at their 5’ end either to Alexa488 and Alexa647. Group specific probes were linked 

with Alexa647 at their 5’ end. 4µL of each probe and 4 µL of Eub338 I-II-III (linked to 

Alexa488) were added to the working solution and incubated overnight at 35°C in a heating 

block. After 12 hours incubation, an aliquot of 150 µL hybridisation buffer was added to the 
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working solution, vortexed and centrifuged (1136 x g, 3 min). 150 µL of supernatant was 

removed from each sample and the remaining volume centrifuged (1136 x g, 3 min).  The 

pellets were washed with 200 µL of washing buffer (5M NaCl, 1M Tris/HCl pH8, 0.5 M 

EDTA pH8, ddH2O, 10% SDS), homogenised by vortexing and incubated for 20 min at 37 

°C in a heating block. Afterwards the samples were centrifuged (1136 x g, 3 min) and 

supernatants removed. Negative control samples (no probes added) were screened by flow 

cytometry to detect background before the probe samples were re-suspended in an 

appropriate amount of PBS. Samples were stored at 4 °C until determinations. Numbers of 

specific and total bacteria were determined taking into account dilution factor (DF), calculate 

from different volumes used in samples preparation steps, and events/µl obtained from NON 

EUB338 and EUB338 I-II-III probes analysed by flow cytomotry. 
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Table 3.1. Oligonucleotide probes used in this study for FISH-FCM analysis of bacterial populations. +: These probes are used together in equimolar concetration of 
50 ng/μl. 
PROBE NAME SEQUENCE (5’ TO 3’) TARGET GROUP REFERENCE 

Non Eub ACTCCTACGGGAGGCAGC  Wallner 1993 

Eub338 I + GCT GCC TCC CGT AGG AGT Most Bacteria Daims 1999 

Eub338 II + GCA GCC ACC CGT AGG TGT Planctomycetales Daims 1999 

Eub338 III + GCT GCC ACC CGT AGG TGT Verrucomicrobiales Daims 1999 

Bif164 CAT CCG GCA TTA CCA CCC Most Bifidobacterium spp. and Parascardovia denticolens Langendijk 

1995 

Lab158 GGTATTAGCAYCTGTTTCCA Most Lactobacillus, Leuconostoc and Weissella spp.; Lactococcus lactis; all Vagococcus, 
Enterococcus, Melisococcus, Tetragenococcus, Catellicoccus, Pediococcus and Paralactobacillus 
spp 

Harmsen 1999 

Bac303 CCA ATG TGG GGG ACC TT Most Bacteroidaceae and Prevotellaceae, some Porphyromonadaceae Manz 1996 

Clit135 GTTATCCGTGTGTACAGGG  Some of the Clostridium lituseburense group (Clostridium cluster XI) Manz 1996 

Erec482 GCT TCT TAG TCA RGT ACCG Most of the Clostridium coccoides-Eubacterium rectale group 
(Clostridium cluster XIVa and XIVb) 

Manz 1996 

Chis150 TTATGCGGTATTAATCTYCCTTT Most of the Clostridium histolyticum group (Clostridium cluster I and II) Franks 1998 

Rrec584 TCA GAC TTG CCG YAC CGC Roseburia sub cluster Franks 1998 

Prop853 ATT GCG TTA ACT CCG GCAC Clostridial Cluster IX Walker 2005 

Ato291 GGT CGG TCT CTC AAC CC Atopobium, Colinsella, Olsenella and Eggerthella spp.; Cryptobacterium curtum; Mycoplasma 
equigenitalium and Mycoplasma elephantis 

Harmsen 2000 

Fprau655 CGCCTACCTCTGCACTAC Faecalibacterium prausnitzii and related sequences Hold 2003 

DSV687 TAC GGA TTT CAC TCC T Most Desulfovibrionales (excluding Lawsonia) and many Desulfuromonales Devereux 1992 

EC1531 CACCGTAGTGCCTCGTCATCA  Escherichia coli BJ4 Poulsen 1995 

Rbro730 + TAAAGCCCAGYAGGCCGC  Clostridium sporosphaeroides, Ruminococcus bromii, Clostridium leptum Harmsen 2002;  

Lay 2005 

Rfla729 + AAA GCC CAG TAA GCC GCC Ruminococcus albus, R. flavefaciens Harmsen 2002;  

Lay 2005 

SUBU1237 CCC TCT GTT CCG ACC ATT Burkholderia spp., Sutterella spp. Stoffels 1998 

Vei723 ACA CAG TCC AGA AAG GCG Veillonellaceae Kong 2012 
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3.2.6 Metabolic analysis by 1H-NMR 

Three consecutive days of the three biological replicates for each group (autistic and 

non-autistic) of all time points (before and after treatment) were analysed by 1H-NMR 

(n=27, each group). Fermentation supernatants were defrosted, vortexed and centrifuged at 

599 x g for 5 minutes. The supernatants were filtered using 0.22µm low protein binding 

Durapore polyvianylidene fluoride (PVDF) membranes (Millex; EMD Millipore, Billerica, 

MA, USA) and 400 µL transferred into fresh Eppendorf tubes. Filtered samples were 

combined with 200 µL of phosphate buffer (0.2 M (pH 7.4) in D2O plus 0.001% TSP), 

mixed by vortexing, centrifuged at 1136 x g for 10 minutes and then 550 µL was transferred 

into 5 mm NMR tubes for analysis. All NMR spectra were acquired on a Bruker Avance 

DRX 500 MHz NMR spectrometer (Bruker Biopsin, Rheinstetten, Germany) operating at 

500 MHz. They were acquired using a standard one-dimensional (1D) pulse sequence 

[recycle delay (RD)-90°-t1-90°-tm-90°-acquire free induction decay (FID)] with water 

suppression applied during RD of 2 s, a mixing time Tm of 100 ms and a 90 pulse set at 7.70 

μs. For each spectrum, a total of 128 scans were accumulated into 64 k data points with a 

spectral width of 12.001 ppm. The FIDs were multiplied by an exponential function 

corresponding to 0.3 Hz line broadening.  

 

3.2.7 Data Preprocessing and Analysis 

All spectra were manually phased, baseline corrected and calibrated to the chemical 

shift of TSP (3-(trimethylsilyl)-[2,2,3,3,-2H4]-propionic acid, δ 0.00). Spectra were digitised 

using an in-house MATLAB (version R2014a, The Mathworks, Inc.; Natwick, MA) script. 

The spectral region containing the water resonance was removed to minimise distortions in 

the baseline arising from imperfect water saturation. Median fold normalisation was 

performed for both groups, non-autistic and autistic children. Before and after administration 

of B-GOS, principal components analysis (PCA) using mean-centred data was applied. 

Orthogonal projection to latent structure discriminant analysis (OPLS-DA) models were 

constructed using unit variance scaling for pairwise comparisons of the different 

experimental groups and time points. Correlation coefficients plots were generated from the 

model outputs by back-scaling transformation to display the contribution of each variable 

(metabolites) to sample classification (e.g. before and after treatment). Colour represents the 



 62 

significance of correlation (R2) for each metabolite to class membership. Predictive strength 

(Q2Y) of the models was obtained using a seven-fold cross validation method and these were 

validated using permutation testing (number of permutations=10,000). 

 

3.2.8 Statistical analysis 

Data from HPLC and FMC-FISH analyses were analysed using paired T-test in order 

to assess significance of results, comparing the two time points SS1 and SS2, before and 

after treatment respectively. Statistical significance was at P<0.05 for all analyses. Analyses 

were performed using GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, USA). 

 

3.3 Results 
3.3.1 Bacterial enumeration 

  Changes in bacterial compositions in gut model systems are reported in Figure 3.1. 

The data showed lower numbers of bifidobacteria in ASD models compared to non-autistic. 

Significant increases in Bifidobacterium spp, following addition of B-GOS to models 

containing both autistic and non-autistic samples were seen. In autistic models, a significant 

increase of bifidobacteria occurred from 5.32 to 7.27 log10 cells/ml (P<0.01), from 4.81 to 

6.79 log10 CFU/ml (P<0.001) and from 5.57 to 6.83 log log10 cells/ml (P<0.05), in V1, V2 

and V3 respectively. A slight but significant increase in Clostridium cluster XI in V2 for 

autistic children was also found, as well as significant decrease in V2 in Veillonellaceae 

group from 6.06 to 5 log10 CFU/ml (P<0.05). In non- autistic models, there was a significant 

increase in numbers of bifidobacteria in V1, from 5.83 to 7.16 log log10 cells/ml (P<0.01), 

and in V3, from 4.97 to 6.73 log10 cells/ml (P<0.001) and in lactic acid bacteria (Lab158) in 

V3 from 5.13 to 6.01 log10 cells/ml (P<0.05). Additionally, B-GOS slightly increased 

Roseburia spp. in V1 and 3 (P<0.05) and reduced Atopobium spp. from 6.06 to 5.28 log10 

cells/ml and F. prausnitzii from 6.78 to 5.27 log10 cells/ml (P<0.05 for both) in the second 

vessel, while increasing Atopobium spp. from 5 to 5.92 log10 cells/ml (P<0.05) in the third 

vessel of non-autistic models. In these models, numbers of Clostridium coccoides - 

Eubacterium rectale were also increased from 6.76 to 7.08 log10 cells/ml (P<0.01) in V1 and 

Sutterella spp. significantly decreased in V1 from 7.05 to 6.49 (P<0.01) and V2 from 7.02 to 

6.37 log10 CFU/ml (P<0.05) after B-GOS administration. There was a general trend to 

increase all other bacterial groups analysed in all vessels but this was not significant. 
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Exceptions were seen for Bacteroides (V1), Clostridial Cluster IX (V1), F. prausnitzii (V1), 

E. coli (V3), Ruminococcus spp., Clostridium leptum (V2), Sutterella spp. and 

Veillonellaceae (all vessels) in autistic models, and for Clostridium coccoides - Eubacterium 

rectale (V2), Atopobium spp. (V1), Clostridial Cluster IX (V2), Clostridium cluster XI (V1, 

V2), E. coli (V2), Sutterella spp. and Veillonellaceae (all vessels) in non-autistic models that 

slightly decreased.  

 

3.3.2 Short chain fatty acids production 

SCFAs concentrations are presented in Figure 3.2. Data show a lower concentration 

of butyrate and propionate in autistic models, compared to non-autistic models, but no 

differences in acetate before adding B-GOS into the system. After administration of B-GOS, 

acetate and butyrate were the main end products of microbial fermentation. Supplementation 

of B-GOS to gut models inoculated with faecal samples from autistic children, led to a 

significant increase of acetate and butyrate in V1 and V2, simulating the proximal and 

transverse colons (P<0.05) respectively, while concentration of propionate was decreased 

(P<0.05) in V3 mimicking distal colon. In models simulating the colon of non-autistic 

children, fermentation of B-GOS mediated significant production of acetate (P<0.05) and 

butyrate (P<0.001) in V2 and V3, simulating the transverse and distal colons respectively. 

There was no effect on propionate.  
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Figure 3.1: Bacterial groups detected by FISH-FCM (Log10 CFU/ml) in culture broth recovered from each vessel (V1, V2 
and V3) of a colonic model before (SS1) and after (SS2) the daily administration of B-GOS (2g/d, equivalent to 1g GOS). 
Significant difference after the treatment: * P<0.05; **P<0.01; ***P<0.001. Probes: Total bacteria (Eub338I-II-III), 
Bifidobacterium spp. (Bif164), Lactobacillus spp. (Lab158), Most Bacteroidaceae and Prevotellaceae (Bac303), 
Clostridium coccoides-Eubacterium rectale group (Erec482), Roseburia sub cluster (Rrec584), F. prausnitzii (Fprau655), 
Atopobium spp. (Ato291), Clostridium cluster XI (Clit135), Sutterella spp. (SUBU1237), Veillonellaceae (VEI732). (A) 
autistic children; (B) non-autistic children. 
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Figure 3.2: HPLC analysis. Acetate, propionate and butyrate concentrations in culture broths 
recovered from vessels (V1, V2 and V3) of in vitro gut model systems before (SS1) and after 
(SS2) administration of B-GOS (1g/daily GOS). Results are reported as means (mM) of the data 
(n=3): A) autistic children and B) non-autistic children. Significant difference after the treatment: 
* P<0.05; ***P<0.001. 
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3.3.3 1H-NMR Spectroscopic Profiles 

PCA analysis was performed on mean-centred data to summarise variance with the 

dataset. The scores plot (PC1 versus PC2) shown in Figure 3.3A, showed separation between 

autistic and non-autistic models after treatment, indicating that B-GOS supplementation 

contributed to the largest source of variance in the metabolic data. Comparison of the spectra 

profiles from gut models before and after treatment identified that a number of metabolites 

changed following B-GOS supplementation to characterise the metabolic variation 

associated with ASD, B-GOS supplementation and differences in microbial response to B-

GOS between the ASD and non-ASD microbiota. The results of these analysis are 

summarised in Figure 3.3B. A significant OPLS-DA model was obtained comparing 

metabolic profiles of autistic and non-autistic models at baseline (Q2Y = 0.07; P < 0.05; 

Figure 3.4C-I). Supernatants from the autistic models contained greater amounts of ethanol, 

glycine, tyrosine, tyramine, 5-aminopentoanate, acetate, 4-aminobutyrate and betaine, 

compared to the non-autistic models and lower amounts of butyrate. B-GOS 

supplementation was found to modulate metabolic profile of the autistic models (Q2Y = 

0.08; P < 0.05) increasing ethanol, lactate, acetate and butyrate and decreasing propionate 

and trimethylamine (Figure 3.4B-I). Increased butyrate and acetate production was also 

observed in the non-autistic models following the addition of B-GOS (Q2Y = 0.12; P < 0.01; 

Figure 3.4B-II). Comparing metabolic profiles of the autistic and non-autistic models after 

B-GOS feeding (Q2Y = 0.17; P < 0.01) revealed that metabolic variation was reduced 

(Figure 3.4C-II). There was no longer variation in 4-aminobutyrate between the models, 

however the difference in ethanol and acetate between autistic and non-autistic models was 

increased being higher in the autistic models.  
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Figure 3.3: 1H-NMR data analysis. (A) PCA score plot show a separation between models inoculated with stool samples of non-ASD and ASD children after administration 
of B-GOS. Dark and light blue dots represent replicates of samples from gut models inoculated with faecal samples of autistic children, before (SS1) and after (SS2) treatment 
respectively. Yellow and red dots represent replicates of samples from gut models inoculated with faecal samples of non-autistic children, before (SS1) and after (SS2) 
treatment respectively. (B) Correlation coefficients indicating the associations of identified metabolites with autism and their alteration upon B-GOS administration. SS1: before 
treatment; SS2: after treatment. White cells represent no significant correlations. 
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Figure 3.4: (B-C) OPLS-DA model constructed from NMR spectra of the culture broth recovered from each 
vessel (V1, V2 and V3) of the colonic model discriminating between before (SS1) and after (SS2) the daily 
administration of B-GOS (1g/daily GOS) in autistic and non-autistic model models. B shows the comparison 
between before and after treatment in autistic (I) and non-autistic children (II). C shows the comparison 
between the combined data of autistic and non-autistic models before (I) and after (II) B-GOS supplementation. 
Compounds identified: Acetate, butyrate, propionate, lactate, ethanol, glycine, betaine, 5-aminopentoanate, 4-
aminobutyrate, tyrosine, tyramine, trimethylamine (TMA). 
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3.4 Discussion 
Recent studies have focused on influences of pre/probiotics on the gut-brain axis (Liu 

2015). This study investigated B-GOS on a small scale, in vitro, gut model system 

inoculated with faeces from autistic and non-autistic children. The results showed a positive 

modulation of bacterial populations, using an automated FISH method combined with flow 

cytometry. We also assessed metabolic profiles and key metabolites in both test groups.  

Lower concentrations of SCFAs have previously been found in ASD children by 

Adams et al. suggesting reduced fermentation capacity by the ASD microbiota. It was 

hypothesised that this was due to a compromised microbiota characterised by lower numbers 

of bifidobacteria, consistent with microbial signatures observed here (Adams 2011). 

Concomitant with these population changes, functional alterations were also observed in 

both autistic and non-autistic models with acetate and butyrate being increased.  

Recent studies have focused on SCFAs and their effect on the CNS. These 

fermentation products can cross the blood-brain barrier and might influence early brain 

development. Synthesis of neuroactive compounds such as dopamine and serotonin can be 

modulated by SCFA and they are able to produce reversible psychological and physiological 

changes in rats similar to those found in ASDs (Wang 2011). Experimental evidence using 

intraventricular infusion in rats indicates that propionic acid can produce brain and 

behavioural changes similar to ASD (MacFabe 2008).  

Recent ASD studies have shown increase in numbers of Sutterella spp. and decrease 

in Veillonellaceae group. In this study, results did not show any significant differences 

between ASD and non-ASD group. However, a general decrease in those bacterial groups 

after treatment was highlighted, suggesting that B-GOS administration might have an impact 

on the growth of ASD-associated bacteria.  

Following B-GOS feeding, the microbiota of autistic children produced greater 

amounts of ethanol and lactate while the amount of amino acids and the SCFA propionate, 

present in the model, was reduced. These metabolic alterations were not observed when the 

faecal microbiota of non-autistic individuals were fed B-GOS. In a healthy colon, lactate 

production is generally low due to its conversion to other organic acids by many bacteria and 

because lactate can be used as a substrate for dissimilation of sulphate (e.g. by Desulfovibrio 

spp.) (Flint 2014;  Marquet 2009;  Fite 2004). In ASD children, presence of lactate is 

interesting because its accumulation has been associated with neurological problems, in 
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particular studies show the effect of lactate infusion on anxiety and panic disorders (Dillon 

1987;  Cowley 1987). Cowley and colleagues, in their findings, showed that lactate infusion 

in patients suffering from panic disorder, provoked higher panic symptom reactions 

compared to controls (Dillon 1987). Dillon et al. have showed similar results in in vivo, 

where panic and anxiety reaction has been measured using Acute Panic Inventory (API) 

scores. After lactate infusions scores were much higher in patients with panic and anxiety 

disorders compared to normal controls (Cowley 1987). 

The lysine degradation product, 5-aminopentanoic acid, was also higher in the 

autistic compared to the non-autistic models. This metabolite can be produced both 

endogenously or through the bacterial catabolism of lysine. It is believed to act as a 

methylene homologue of γ-aminobutyric acid (GABA) and functions as a weak GABA 

agonist (Callery 1985). Interestingly, GABA was also higher in the autistic models 

compared to the non-autistic models pre-treatment, but these differences were not evident 

following B-GOS treatment. Certain bacteria, such as lactobacilli, are able to produce 

molecules that acts as neurotransmitters and directly affect the brain (Wall 2014). Here, its 

reduction might be due to changes in gut microbiota composition.  

Ethanol was found in higher amount in ASD children comparing to non-ASD. The 

vast majority of bacteria form ethanol from acetyl-CoA and the glycolytic pathway 

(Macfarlane 2003). Microorganisms are able to oxidase ethanol and the impact of bacterial 

overgrowth on ethanol production has previously been studied (Baraona 1986). Metabolism 

of ethanol can lead to the production of toxic end-products such as acetaldehyde, which may 

affect the gastrointestinal mucosa. The role of acetaldehyde in ASD has been recently 

evaluated in particular in oxidative stress and DNA damage. Under healthy conditions, 

ethanol is converted into acetic acid in the liver by a two-step process involving alcohol 

dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Mutation of the ALDH gene 

has been shown to increase the accumulation of acetaldehyde and result in cancers within 

different regions of the gastrointestinal tract and Alzheimer’s disease (Jurnak 2015). The 

potential role of this toxic compound in neurological disorders, including autism, warrants 

further exploration.  
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3.5 Conclusions 
This in vitro study showed promising and positive results in that supplementing the 

microbiota of ASD children with 65%B-GOS may manipulate gut bacterial populations and 

alter metabolic activity towards a configuration that might represent a health benefit to the 

host. However, further work will be required to assess such changes in an in vivo human 

intervention study. 

 

Author’s contribution 

RG carried out the experiments and drafted the manuscript. DC helped in experimental 

work. JRS assisted with NMR analyses. GRG and AC were involved in designing and 

coordination of the study and revising the manuscript critically for important intellectual 

content. JV and GT are employed by Clasado Biosciences Ltd, who provided the B-GOS 

product, marketed as Bimuno®, used within this research. 



 73 

References  

Adams JB, Johansen LJ, Powell LD, et al. Gastrointestinal flora and gastrointestinal status in 
children with autism-comparisons to typical children and correlation with autism 
severity. BMC Gastroenterol 2011;11:22. 

Baraona E, Julkunen R, Tannenbaum L, et al. Role of intestinal bacterial overgrowth in 
ethanol production and metabolism in rats. Gastroenterol 1986;90:103-110. 

Bingham M. Functional food: dietary intervention strategies in Autistic Spectrum Disorders. 
In: Glenn R Gibson (ed.). Food Sci Technol Bull. Reading: IFIS, 2003, 1-11. 

Callery PS, Geelhaar LA. 1-Piperideine as an in vivo precursor of the gamma  aminobutyric 
acid homologue 5-aminopentanoic acid. J Neurochem 1985;45:946-948. 

Costabile A, Santarelli S, Claus SP, et al. Effect of breadmaking process on in vitro gut 
microbiota parameters in Irritable Bowel Syndrome. PLoS One 2014;9:e111225. 

Costabile A, Walton GE, Tzortzis G, et al. Effects of orange juice formulation on prebiotic 
functionality using an in vitro colonic model system. PLoS One 2015;10:e0121955. 

Cowley DS, Hyde TS, Dager SR, et al. Lactate infusions: The role of baseline anxiety. 
Psychiat Res 1987;21:169–179. 

Daims H, Brühl A, Amann R, et al. The domain-specific probe EUB338 is insufficient for the 
detection of all Bacteria: development and evaluation of a more comprehensive probe 
set. Syst Appl Microbiol 1999;22:434–44. 

De Angelis M, Piccolo M, Vannini L, et al. Fecal microbiota and metabolome of children 
with autism and pervasive developmental disorder not otherwise specified. PLoS One 
2013;8: e76993. 

Depeint F, Tzortzis G, Vulevic J, et al. Prebiotic evaluation of a novel galactooligosaccharide 
mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 
41171, in healthy humans : a randomized, double-blind, crossover, placebo-controlled 
intervention study. Am J Clin Nutr 2008;87:785–791. 

Devereux R, Kane MD, Winfrey J, et al. Genus- and group-specific hybridisation probes for 
determinative and environmental studies of sulphate-reducing bacteria. Syst Appl 
Microbiol 1992;15:601–609. 

Dillon D, Gorman D, Liebowitz M, et al. Measurement of lactate-induced panic and anxiety. 
Psychiat Res 1987;20:97–105. 

Drakoularakou A, Tzortzis G, Rastall RA, et al. A double-blind, placebo-controlled, 
randomized human study assessing the capacity of a novel galacto-oligosaccharide 
mixture in reducing travellers’ diarrhoea. Eur J Clin Nutr 2009;64:146–152. 

Finegold SM, Dowd SE, Gontcharova V, et al. Pyrosequencing study of fecal microflora of 



 74 

autistic and control children. Anaerobe 2010;16:444–453. 

Finegold SM, Molitoris D, Song Y, et al. Gastrointestinal microflora studies in late-onset 
autism. Clin Infect Dis 2002;35:S6–S16. 

Finegold SM. Desulfovibrio species are potentially important in regressive autism. Med 
Hypotheses 2011;77:270–274. 

Finegold SM. State of the art; microbiology in health and disease. Intestinal bacterial flora in 
autism. Anaerobe 2011;17:367–368. 

Fite A, Macfarlane GT, Cummings JH, et al. Identification and quantitation of mucosal and 
faecal desulfovibrios using real time polymerase chain reaction. Gut 2004;53: 523-
529. 

Flint HJ, Duncan SH, Scott KP, et al. Links between diet, gut microbiota composition and 
gut metabolism. P Nutr Soc 2014;74:13–22. 

Foster JA, McVey Neufeld KA. Gut-brain axis: How the microbiome influences anxiety and 
depression. Trends Neurosci 2013;36:305–312. 

Franks AH, Harmsen HJM, Gerwin C, et al. Variations of bacterial populations in human 
feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-
targeted oligonucleotide probes. Appl Environ Microbiol 1998;64:3336–3345. 

Gibson GR. Fibre and effects on probiotics (the prebiotic concept). Clin Nutr Suppl 
2004;1:25–31. 

Grimaldi R, Swann JR, Vulevic J, et al. Fermentation properties and potential prebiotic 
activity of B-GOS (65% GOS content) on in vitro gut microbiota parameters. Br J 
Nutr 2016;116:480-486. 

Grossi E, Terruzzi V. The role of intestinal dysbiosis in the pathogenesis of autism : 
Minireview. Int J Microbiol Adv Immunol 2014;2:41–44. 

Harmsen HJM, Elfferich P, Schut F, et al. A 16S rRNA-targeted probe for detection of 
lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. 
Microb Ecol Health Dis 1999;11:3–12. 

Harmsen HJM, Raangs GC, He T, et al. Extensive set of 16S rRNA-based probes for 
detection of bacteria in human feces. Appl Environ Microbiol 2002;68:2982–2990. 

Harmsen HJM, Wildeboer-Veloo AM, Grijpstra J, et al. Development of 16S rRNA-based 
probes for the Coriobacterium group and the Atopobium cluster and their application 
for enumeration of Coriobacteriaceae in human feces from volunteers of different age 
groups. Appl Environ Microbiol 2000;66:4523–4527. 

Hold GL, Schwiertz A, Aminov RI, et al. Oligonucleotide probes that detect quantitatively 
significant groups of butyrate-producing bacteria in human feces. Appl Environ 



 75 

Microbiol 2003;69:4320–4324. 

Jurnak F. The pivotal role of aldehyde toxicity in autism spectrum disorder: the therapeutic 
potential of micronutrient supplementation. Nutr Metab Insights 2015;8:57-77. 

Kang DW, Park JG, Ilhan ZE, et al. Reduced incidence of Prevotella and other fermenters in 
intestinal microflora of autistic children. PLoS One 2013;8: e68322. 

Kong Y, Xia Y, Seviour R, He M, et al. 2012. In situ identification of carboxymethyl 
cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale. FEMS 
Microbiol Ecol 2012;80: 159-167 

Langendijk PS, Schut F, Jansen GJ, et al. Quantitative fluorescence in situ hybridization of 
Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its 
application in fecal samples. Appl Environ Microbiol 1995;61:3069–3075. 

Lay C, Sutren M, Rochet V, et al. Design and validation of 16S rRNA probes to enumerate 
members of the Clostridium leptum subgroup in human faecal microbiota. Environ 
Microbiol 2005;7:933–946. 

Liu X, Cao S, Zhang X. Modulation of gut microbiota–brain axis by probiotics, prebiotics, 
and diet. J Agric Food Chem 2015;63:7885–95. 

MacFabe DF, Rodríguez-Capote K, Hoffman JE, et al. A novel rodent model of autism: 
Intraventricular infusions of propionic acid increase locomotor activity and induce 
neuroinflammation and oxidative stress in discrete regions of adult rat brain. Am J 
Biochem Biotechnol 2008;4:146–166. 

Macfarlane GT, Macfarlane S, Gibson GR. Validation of a three-stage compound continuous 
culture system for investigating the effect of retention time on the ecology and 
metabolism of bacteria in the human colon. Microb Ecol 1998;35:180–187. 

Manz W, Amann R, Ludwig W, et al. Application of a suite of 16S rRNA-specific 
oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-
flavobacter-bacteroides in the natural environment. Microbiology 1996;142:1097–
1106. 

Marquet P, Duncan SH, Chassard C, et al. Lactate has the potential to promote hydrogen 
sulphide formation in the human colon. FEMS Microbiol Lett 2009;299:128–134. 

Ming X, Stein TP, Barnes V, et al. Metabolic perturbance in autism spectrum disorders: A 
metabolomics study. J Proteome Res 2012;11:5856–5862. 

Parracho HMRT, Bingham MO, Gibson GR, et al. Differences between the gut microflora of 
children with autistic spectrum disorders and that of healthy children. J Med 
Microbiol 2005;54:987–991. 

Poulsen LK, Licht TR, Rang C, et al. Physiological state of Escherichia coli BJ4 growing in 
the large intestines of streptomycin-treated mice. J Bacteriol 1995;177:5840–5845. 



 76 

Sandler RH, Finegold SM, Bolte ER, et al. Short-term benefit from oral vancomycin 
treatment of regressive-onset autism. J Child Neurol 2000;15:429–435. 

Schmidt K, Cowen PJ, Harmer CJ, et al. Prebiotic intake reduces the waking cortisol 
response and alters emotional bias in healthy volunteers. Psychopharmacol 
2015;232:1793–1801. 

Shaw W, Kassen E, Chaves E. Increased urinary excretion of analogs of Krebs cycle 
metabolites and arabinose in two brothers with autistic features. Clin Chem 
1995;41:1094–1104. 

Silk DBA, Davist A, Vulevic J, et al. Clinical trial: the effects of a trans-
galactooligosaccharide prebiotic on faecal microbiota and symptoms in Irritable 
Bowel Syndrome. Aliment Pharmacol Ther 2009;29:508–518. 

Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic 
children. Appl Environ Microbiol 2004;70:6459–6465. 

Stoffels M, Amann R, Ludwig W, et al. Bacterial community dynamics during start-up of a 
trickle-bed bioreactor degrading aromatic compounds. Appl Environ Microbiol 
1998;64:930-939. 

Tzortzis G, Goulas AK, Gee JM, et al. A novel galactooligosaccharide mixture increases the 
bifidobacterial population numbers in a continuous in vitro fermentation system and 
in the proximal colonic contents of pigs in vivo. J Nutr 2005;135:1726–1731. 

Van De Sande MMH, Van Buul VJ, Brouns FJPH. Autism and nutrition: the role of the gut-
brain axis. Nutr Res Rev 2014;27:199–214. 

Vulevic J, Drakoularakou A, Yaqoob P, et al. Modulation of the fecal microflora profile and 
immune function by a novel trans-galactooligosaccharide mixture ( B-GOS ) in 
healthy elderly volunteers. Am J Clin Nutr 2008;88:1438–1446. 

Vulevic J, Juric A, Tzortzis G, et al. A mixture of trans-galactooligosaccharides reduces 
markers of metabolic syndrome and modulates the fecal microbiota and immune 
function of overweight adults. J Nutr 2013;143:324–331. 

Walker AW, Duncan SH, Mcwilliam EC, et al. pH and peptide supply can radically alter 
bacterial populations and short-chain fatty acid ratios within microbial communities 
from the human colon. Appl Environ Microbiol 2005;71:3692–3700. 

Wall R, Cryan JF, Ross RP, et al. Bacterial neuroactive compounds produced by 
psychobiotics. In: Mark Lyte (ed.). Microbial endocrynology: the microbiota-gut-
brain axis in health and disease. New York: Springer, 2014, 221–239. 

Wallner G, Amann R, Beisker W. Optimizing fluorescent in situ hybridization with rRNA-
targeted oligonucleotide probes for flow cytometric identification of microorganisms. 
Cytometry 1993;14:136–143. 



 77 

Wang L, Christophersen CT, Sorich MJ, et al. Low relative abundances of the mucolytic 
bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children 
with autism. Appl Environ Microbiol 2011;77:6718–6721. 

Wang L, Christophersen CT, Sorich MJ, et al. Increased abundance of Sutterella spp. and 
Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism 
2013;4:1-4. 

Williams BL, Hornig M, Parekh T, et al. Application of novel PCR-based methods for 
detection, quantitation and phylogenetic characterization of Sutterella species in 
intestinal biopsy samples from children with autism and gastrointestinal disturbances. 
mBio 2012;3: e00261-11. 

Yap IKS, Angley M, Veselkov KA, et al. Urinary metabolic phenotyping differentiates 
children with autism from their unaffected siblings and age-matched controls. J 
Proteome Res 2010;9:2996–3004. 



 78 

CHAPTER 4 

 

Impact of exclusion diet on gut microbiota composition and metabolite 

production in autistic children 
 

Roberta Grimaldi1, Jessica Baldini2, Ilenia Todisco3, Natasa Giallourou6, Jonathan R 

Swann6, Josue LC Mejia4, Dennis S Nielsen4, Jelena Vulevic5, Glenn R Gibson1, Adele 

Costabile3 

 

 

 

 
1Department of Food and Nutritional Sciences, University of Reading, RG66AP, 

Reading, UK 
2Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, 

Italy 
3Health Sciences Research Centre, Life Sciences Department, Whitelands College, 

University of Roehampton, London, UK 
4Department of Food Science, Faculty of Science, Food Microbiology, University of 

Copenhagen, DK 
5Clasado Research Services Ltd., Science & Technology Centre, University of Reading, 

RG66BZ, Reading, UK 
6Division of Computational and Systems Medicine, Imperial College London, London, 
SW7 2AZ, UK 
 

 

 

 

 

 

 

 

 

 

 



 79 

Abstract 

Evidence suggests that diet has a strong impact on the gut microbiota and its metabolic 

activity. Gluten- and casein-free diets are the most common dietary approaches in autism 

but, to date, it is not clear how and whether they can actually modulate autistic features, 

such as behavioural traits and/or GI problems. In this study, we recruited 30 autistic 

children, with formal diagnosis of ASD, who were following different diets: gluten-, 

casein- and dairy-free diet or un-restricted diet. We assessed the effect of these dietary 

habits on gut microbiota composition and metabolic profiles. In addition, we asked 

parents to fill in GI symptom diaries and 4-days food diaries in order to investigate 

nutrient intake and potential differences in GI issues. Results showed ASD children 

under gluten and casein-free diet to have significant reduction in abdominal pain and 

bowel movement and higher fibre intake, compared to the un-restricted dietary group. In 

addition, the exclusion diet group had reduced abundance of Bifidobacterium spp. and 

Veillonellaceae family, and increased F. prausnitzii and Bacteroides spp. In both groups, 

no significant differences were found in the urine metabolome, but significant 

correlations were found between bacterial populations and amino acids in faeces. Taken 

together, our findings indicate that exclusion diets impact gut microbiota composition 

and GI symptoms in ASD children but not enough to support their validity as treatment. 
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4.1 Introduction 

 Autism is a neurodevelopmental disorder characterized by impaired social 

interaction, verbal and non-verbal communication, and repetitive behaviour. In addition 

to cognitive aspects, ASD individuals might suffer from gastrointestinal (GI) problems 

(Kral et al. 2013).  

 Dietary interventions, including use of supplements, or exclusion diets have been 

suggested in ASD in order to reduce these issues. Gluten and casein-free (GFCF) diets 

are common within autistic individuals even though there is a lack of strong empirical 

evidence. Alterations in intestinal function have been often attributed to children who are 

on the autism spectrum (White 2003). It has been reported that autistic individuals might 

have increased gut permeability that could lead the passage of molecules, such as 

peptides from metabolism of gluten and/or casein, that could interact with central 

nervous system (CNS) and cause typical autistic traits (De Magistris et al. 2010). 

Observational studies reported how GFCF diets seem to alleviate GI problems and/or 

improve behavioural traits, according to parents/guardians reports, but association 

between the restricted diet and symptoms was not always apparent (Harris & Card 2012; 

Patel & Curtis 2007; Pennesi & Klein 2012). Some confounding outcomes have been 

seen in intervention studies, where only mood and behavioural aspects were evaluated. 

Some showed significant improvements in behavioural traits (Nazni 2008; Whiteley et 

al. 2010), while others reported no differences after treatment (Elder et al. 2006; Seung 

2007; Johnson 2011). More recent randomised trials, showed that ASD individuals 

tolerated gluten and casein introduction in their diet but limitations in these studies, such 

as participant number and/or short treatment period, lead to careful consideration of these 

findings (Pusponegoro et al. 2015; Hyman 2016).  

 It is well known that the diet influences bacterial community and its role in health 

and well being of the host (Salonen & De Vos 2014). Differences in food intake have 

been reported to modify the gut microbiota since early life, depending on breast or 

formula feeding (Liu et al. 2016), and later on in life according to food intake, lifestyle 

(De Filippis et al. 2014), allergies and diseases (Girbovan 2017).  

   To date, little is understood about the relationship between the exclusion diets 

and the gut microbiome in the context of autism. Many of these diets focus on 

carbohydrate, because ASD individuals appear to be defective in intestinal digestive 

enzymes responsible for carbohydrate digestion (Williams et al. 2011), but evidence is 

still relatively weak and sometimes inconsistent, as in the case with GFCF diets. Further 
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studies on modified diets and food supplementation are needed not only to assess the 

efficacy of these diets, but also their impact on the gut microbiome and how its 

manipulation might influence autistic traits. 

Therefore the aim of this study was to investigate the impact of gluten, casein and 

dairy-free diets on gut bacterial composition and metabolite production in autistic 

children who were following these restricted diets and in comparison to those on un-

restricted diet.  

 

4.2 Materials and Methods 

4.2.1 Subjects 

Thirty volunteers (8 female and 22 male; mean age 7.7 years-old; range 4-11 

years) were included in the study. All participants had a formal diagnosis of ASD (Table 

4.1) and previous history of antibiotic treatment in early life. None of the volunteers had 

been treated with antibiotics, prebiotics or probiotics within 4 weeks before sample 

collection. The study was approved by the University of Reading Research Ethics 

Committee (UREC15/41; Registration number: NCT02720900) prior to the start of the 

study and informed consent was obtained from the volunteers’ parents. 

 
Table 4.1: Diagnosis reported from parents by medical assessment (*). ASD: Autism Spectrum 
Disorders; ADHD: Attention Deficit Hyperactivity Disorder; PDD: Pervasive Development Disorder 
Diagnosis* ASD ADHD Asperger PDD 

Volunteers (n) 30/30 5/30 2/30 1/30 

 

4.2.2 Dietary intervention and assessments 

Food diary records were kept for 4 consecutive days (Appendix 4.1) and subjects 

were divided in 2 groups according to the diet they were following: 12 children were on 

an exclusion diet (gluten, casein and dairy free diet) and 18 children were on an un-

restricted diet. At the front of the diary, detailed information on how to record food and 

beverages consumed using common household measures were provided. Food diaries 

were analysed using Diet-plan7 software (Forestfield Software Ltd.) 

 

4.2.3 GI symptoms 

Parents/guardians of child volunteers were asked to fill in daily questionnaires for 

GI function and symptoms (Appendix 4.2). The Bristol stool chart was used to assess 

faecal samples’ type and consistency, together with the number of bowel movements, 
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abdominal pain, intestinal bloating and flatulence (none, present but well tolerated, 

present and interfering with but not preventing normal daily activities, preventing normal 

daily activities; Lewis & Heaton 1997). Concomitant medication, adverse events, 

changes in diet and behaviour were also recorded throughout the study, on a separate 

sample submission forms (Appendix 4.3). 

 

4.2.4 Faecal sample collection and preparation 

Faecal samples were collected once a week for 3 weeks using faecal collection kit 

(FC2040, Laboratories Ltd, UK), and volunteers were asked to keep them at -20°C until 

the visit day, when they were transferred to the laboratory and processed. Samples for 

DNA extraction and 1H-NMR were weighed (~ 250 mg) and stored at -80°C until needed 

for analysis. 

 

4.2.5 Urine sample collection and preparation 

 Urine samples were collected using sterile tubes (Mid-Stream Urine Specimen 

Collector; Pennine Healthcare, UK) or sterile pads (Sterisets Urine Collection Kit; 

MediBargains, UK) and stored at -20°C until a visit day when they were processed. 

Samples were transferred to 15 ml falcon tubes, centrifuged for 10 min at 1136 x g, 

supernatant transferred to 1.5ml Eppendorf tube (duplicate) and stored at -80°C. 

 

4.2.6 DNA extraction and PCR 

Total microbial DNA was extracted from faeces using the DNA stool mini kit 

(Qiagen, UK) by introducing three 1-min steps at 50 movements/s using TyssueLyser LT 

(Qiagen, UK) with 5-min incubation in ice between treatments as previously described 

by Candela et al. 2016. Briefly thermal disruption of the samples was performed by 

incubation at 95°C for 15 min, then centrifuged for 5 min at 4°C to pellet stool particles. 

260 μl of 10 M ammonium acetate was added to the supernatant, incubated in ice for 5 

min and centrifuged at full speed for 10 min at 4°C. Supernatants were collected and one 

volume of isopropanol added and samples incubated in ice for 30 min. The samples were 

centrifuged for 15 min at 4°C and the pellet washed with 70% (v/v) ethanol. They were 

re-suspended in 100 μl of TE buffer (10 mM Tris-Cl, pH 7.5; 1 mM EDTA, pH 8.0) and 

treated with 2 μl of DNase-free RNase (10 mg/ml, Sigma-Aldrich) at 37°C for 15 min. 

Proteins were removed by adding 15 μl of proteinase K (DNA stool mini kit; Qiagen, 

UK) and DNA was subsequently purified following the manufacturer’s instructions. 
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DNA recovery was evaluated using a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies). 

 

4.2.7 16S rRNA gene amplification via next generation sequencing (NGS) and 

bioinformatics analysis 

For each sample, the V3–V4 region of the 16S rRNA gene was PCR-amplified in 

25 μl volumes containing 12.5 ng of microbial DNA, 2× KAPA HiFi HotStart ReadyMix 

(Kapa Biosystems, USA) and 200 nmol/l of S-D-Bact-0341-b-192 S-17/ S-D-Bact-0785-

a-A-21 primers carrying Illumina overhang adapter sequences (Bio-Fab Research). 

Thermal cycling consisted of an initial denaturation at 95°C for 3 min, 25 cycles of 

denaturation at 95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 30 s and 

a final extension step at 72°C for 5 min. Amplicons of 440 bp were purified with a 

magnetic bead-based clean-up system (Agencourt AMPure XP; Beckman Coulter) and 

sequenced on Illumina MiSeq platform using a 2×300 bp paired end protocol, according 

to the manufacturer’s instructions (Illumina, San Diego, CA). Libraries were pooled at 

equimolar concentrations, denatured and diluted to 4 nmol/l. Pair-ended amplicon reads 

(with corresponding quality scores) were trimmed, merged, clustered (operational 

taxonomic units [OTU] with 97% similarity), filtered from chimeric sequences using 

UPARSE (Edgar 2013), and taxonomically assigned using the GreenGenes database 

(version 12.10; McDonald et al. 2012). For downstream analysis, the OTU-table was 

normalised with cumulative sum scaling (CSS; Paulson et al. 2013) using the Qiime 

toolbox (v1.9; Caporaso et al. 2010). Beta-diversity was assessed through Bray-Curtis 

and Soresen distance and the factor-treatment analysed with redundancy analysis (RDA; 

Oksanen et al. 2015). 

 

4.2.8 Metabolic analysis by 1H-NMR 

400 μL of urine samples were combined with 200 μL of phosphate buffer [0.2 M 

(pH 7.4) in D2O plus 0.001% TSP (3-(trimethylsilyl)-[2,2,3,3,−2H4]-propionic acid, δ 

0.00)], mixed by vortexing, centrifuged at 1136 x g for 10 minutes, and then 550 μL was 

transferred into 5 mm NMR tubes for analysis. Faecal samples were pre-weighed (250 

mg) and 700 μL of phosphate buffer and 2 glass beads were added in order to perform a 

bead-beating 5 min step at 25 movements/s using TyssueLyser LT (Qiagen, UK). Then, 

500 μL was transferred into 5 mm NMR tubes for analysis. 
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All NMR spectra were acquired on a Bruker Avance DRX 500 MHz NMR 

spectrometer (Bruker Biopsin, Rheinstetten, Germany) operating at 500 MHz. They were 

acquired using a standard one-dimensional (1D) pulse sequence [recycle delay (RD)-90°-

t1-90°-tm-90°-acquire free induction decay (FID)] with water suppression applied during 

RD of 2 s, a mixing time Tm of 100 ms and a 90 pulse set at 7.70 μs. For each spectrum, 

a total of 128 scans were accumulated into 64 k data points with a spectral width of 

12.001 ppm. The FIDs were multiplied by an exponential function corresponding to 0.5 

Hz line broadening. 

 

4.2.9 Data Preprocessing and Analysis  

All spectra were manually phased, baseline corrected and calibrated to the 

chemical shift of TSP using TopSpin (Bruker Biopsin, Rheinstetten, Germany). Spectra 

were digitised using an in-house MATLAB (version R2014a, The Mathworks, Inc.; 

Natwick, MA) and median fold normalisation was performed. The spectral region 

containing the water resonance was removed to minimise distortions in the baseline 

arising from imperfect water saturation. Principal components analysis (PCA) using 

mean-centred data was applied and orthogonal projection to latent structure discriminant 

analysis (OPLS-DA) models were constructed using for pairwise comparisons of the 

different experimental groups and time points. Colour represents the significance of 

correlation (r) for each metabolite to class membership. Predictive strength (Q2Y) of the 

models was obtained using a 7-fold cross-validation method, and these were validated 

using permutation testing (number of permutations = 1000). 

 

4.2.10 Statistical analysis 

 Statistical tests for food intake and GI symptoms were performed using Graphad 

Prism (version 5.0; Graph-Pad Software, 188 LaJolla, CA, USA). Normality test was 

used to assess whether the data were parametric or not parametric and unpaired Student’s 

t test and Mann-Whitney tests were performed respectively on the data set.  

 

4.3 Results  

4.3.1 Dietary intake and bowel habit  

Food diaries were analysed by comparing daily macronutrient and micronutrient 

intake according to different diets that the children were following (exclusion and un-

restricted diet) and significant differences were seen only in Vitamin D intake (Table 



 85 

4.2). ASD children who were not on the exclusion diet had significantly lower Vitamin D 

intake compared to ASD children on exclusion diet (P<0.01). In addition, Vitamin D 

intake seemed to be much lower, for both groups, than daily UK government 

recommendations (10 μg/day). 

Vitamin C and B12, total sugar and protein intake was higher in both ASD groups 

compared to the nutrient intake requirements for typically developing children.  

 
Table 4.2: Energy and nutrient intake in children on exclusion and un-restricted diets and 
comparison with the UK government recommendations for typically developing children. Mean: 
average of 4 consecutive days; SD: standard deviation. **: P<0.01 

Exclusion diet            Un-restricted Diet Typically developing 
children 

Daily dietary composition             Mean        SD             Mean SD                Adequate intake    
Energy Intake Kcal 1579.18 394.19 1478 578.70 1430-1920 

Protein Intake g 56.93 17.30 55.01 15.68 19.7-42.1 

Carbohydrate g 183.58 35.20 187.26 74.99 191-333 

Total sugars g 63.32 27.58 81.46 36.44 19-33 

Fibres g 17.19 5.60 15.36 9.26 17.5-25 

Saturated fatty 

acid 
g 

22.22 12.26 22.28 12.25 

 

17.5-31 

PUFA g 12.41 6.39 9.88 7.97 10.5-18 

MUFA g 22.88 18.19 19.39 16.76 20.5-36 

Vitamin C mg 73.64 44.46 70.94 68.00 30-35 

Vitamin D μg 2.72 1.40 1.21** 1.18 10 

Vitamin B1 mg 1.38 0.49 1.38 0.66 0.6-1 

Vitamin B2 mg 1.44 0.56 1.41 0.64 0.8-1.2 

Vitamin B6 mg 1.15 0.33 1.13 0.53 0.9-1.2 

Vitamin B12 μg 3.04 1.84 3.82 2.56 0.8-1.2 

Iron mg 10.37 4.30 8.04 2.99 6.1-11.3 

Calcium mg 536.00 247.89 697.17 357.52 450-1000 

 

 

Scores extracted from GI symptoms diaries showed that exclusion diet had a significant 

impact on gastrointestinal problems (Figure 4.1). Significant reduction in abdominal pain 

(P<0.05) and bowel movement (P<0.001) has been reported in children following gluten, 

casein and dairy free diet. 
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Figure 4.1: GI symptom assessment during 3 weeks data collection.   
S: exclusion diets; N: un-restricted diet; *: P<0.05; ***: P<0.001.  

 

4.3.2 Bacterial analysis 

 Beta-diversity was analysed in faecal samples of ASD children during the 3-

weeks of sample collection. Soresen principal coordinate analysis (PCoA, Figure 4.2A) 

showed good separation between volunteers on exclusion diet (red dots) and un-restricted 

diet (green dots) considering presence or absence of particular bacterial species; 

separation that is lost in Bray-curtis PCoA (Figure 4.2B) when abundances were 

analysed. 

A)           B)  
Figure 4.2: Comparison of the gut microbiota composition between ASD children following 
exclusion diet and ASD children following un-restricted diet. A) Sorensen PCoA; B) Bray-Curtis 
PCoA. Red dots: exclusion diet; green dots: un-restricted diet. 
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In order to assess the impact of the diets on the total gut microbiota composition, 

a RDA model was built. A 3% variance in the dataset was significant (P<0.004) and 

different bacterial groups were associated with the separation (Figure 4.3). 

 
Figure 4.3: Microbial genera involved in the separation in the RDA plot. Blue dots: exclusion 
diet; pink dots: un-restricted diet. 

 

Bacteroides spp. (Bacteroidaceae), Rikenellaceae, Roseburia spp. 

(Lachnospiraceae), F. prausnitzii (Ruminococcaceae) and Clostridiaceae were associated 

with the exclusion diet group, whereas Eggerthella lenta, Bifidobacterium spp. 

(Coriobaceriaceae), B. fragilis (Bacteroidaceae), Akkermansia muciphila 

(Verrucomicrobiacea), Streptococcus anginosus, Lactococcus spp. (Streptococcaceae), 

Dehalobacterium spp. (Dehalobacteriaceae) were associated with the un-restricted diet. 

In addition, our results showed bifidobacteria in lower abundances (3.5%) in the 

exclusion diet group compared to the un-restricted diet group (4.5%) and a reduction in 

the Veillonellaceae family.  
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4.3.3 1H-NMR analysis 

  Comparison of spectra profiles from urine samples did not show any significant 

differences in the general metabolism of ASD children when considering the different 

diets (Q2Y= -0.0199). A significant OPLS-DA model was obtained by analysing faecal 

samples (Q2Y=0.185, P <0.001), where changes in metabolic profile were driven by the 

diet. The PCA (Principal component analysis) score plot showed partial separation 

between the two groups; in particular for the exclusion diet, indicating its influences 

upon variation in data sets (Figure 4.4). 

 

 
Figure 4.4: PCA score plot. PCA plot shows partial separation between children following exclusion 
diets and those whose diet was not restricted. Blue dots: exclusion diet; green dots: un-restricted diet. 
 

Figure 4.5A and B summarises correlations between bacterial changes and 

metabolic variation in faecal samples of children following an exclusion diet and those 

on an un-restricted diet, respectively. During the exclusion diet (Figure 4.5A), 

Bacteroides spp. (OTU005 and OTU007) had a strong correlation with glycerol and 

propionate (black arrows), whereas Clostridiaceae (OTU013) were positively correlated 

with valine, 2-hydroxy-2-methilbutyrate, glucose and lactate (green arrows). The latter 

(red arrow) was also positively associated with Roseburia spp. (OTU015). In faecal 
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samples from children on the un-restricted diet (Figure 4.5B) positive correlations were 

identified for Eggerthella lenta (OTU004) and Streptococcus anginosus (OTU011) with 

lactate, tyrosine, 2-hydroxy-2-methilbutyrate, isoleucine, leucine, alanine and valine 

(black arrows); for Clostridiaceae (OTU012) and bifidobacteria (OTU001 and OTU002) 

with valine (orange arrow) and alanine (red arrow), respectively; and for Lactococcus 

spp. (OTU010) and Coprobacillus spp. (OTU017) with 2-hydroxy-2-methilbutyrate and 

propionate (green arrows). 

 

A)  
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B)  
Figure 4.5: Summary of the correlation between bacterial changes and metabolic variation in faecal 
samples of children following exclusion diet (A) and those in un-restricted diet (B). OUTs: bacterial 
groups. Arrows: metabolites identified; Squares: bacteria involved in the metabolic pathway. 
OTU001: Bifidobacterium spp.; OUT002: Bifidobacterium longum; OTU003: Coriobacteriaceae; OTU004: 
Eggerthella lenta; OTU005: Bacteroides spp.; OTU006: B. fragilis; OTU007: B. ovatus; OTU008: B. 
uniformis; OTU009: Rikenellaceae spp.; OTU010: Lactococcus spp.; OTU011: Streptococcus arginosus; 
OTU012: Clostridiales; OUT013: Clostridiaceae; OTU014: Dehalobacterium spp.; OTU015: Roseburia 
spp., OTU016: F. prausnitzii; OTU017: Coprobacillus spp.; OTU018: Akkermansia muciphila.  

 
 

4.4 Discussion 

The effect of restricted diet in ASD children was investigated in this study. Diet 

has been previously seen to have a strong impact on the gut environment (De Angelis 

2017), therefore we aimed to understand if and how it could impact on composition of gut 

microbiota and metabolic profile. The results showed significant differences in gut 

bacterial populations and faecal metabolome between the 2 diet groups (children 

following gluten and casein free diet and those whose diet was not restricted), but not in 

urine samples, indicating that diet has a strong effect on gut ecosystem but not on the 

general metabolism of ASD individuals. 

Previous studies in ASD have mainly focused on the GFCF diet and the impact 

on GI symptoms or behaviour, showing inconsistent results (Mulloy et al. 2010). In our 

study, ASD children following gluten, casein and dairy-free diets had significant 
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reductions in abdominal pain and bowel movements, supporting the hypothesis that 

exclusion diets might alleviate these GI issues. 

Lower abundances of bifidobacteria and Veillonellaceae were found in healthy 

volunteers following a gluten-free diet in a recent human intervention study by Bonder 

and colleagues (Bonder et al. 2016). These findings are reflected in our results, 

suggesting that dietary restriction might have bigger impact on the growth of these 

bacterial groups, than the type of disorder (eg autistic features). Veillonellaceae is 

considered to be a pro-inflammatory family of bacteria and reduction in its abundance 

could be considered a beneficial effect of this restricted diet. Reduction in 

Bifidobacterium spp. abundance was also confirmed by De Palma et al., who associated 

the decrease of this bacterial group to the lower fibre intake in healthy participants during 

a one month gluten-free diet (De Palma et al. 2009). Our results are contrary to this 

suggestion since dietary records of ASD children in our study showed that those 

following GFCF diet had higher fibre intakes compared with autistic ones who were on 

un-restricted diet.  

Similar outcomes were reported in a recent study conducted in Spain where 

researchers enrolled 105 ASD volunteers and 495 typically developing peers. Even 

though the autistic group consumed fewer carbohydrates (reported also in our study) they 

ate more legumes and vegetables. This could be an explanation for the higher fibre intake 

potentially derived from different sources (Marí-Bauset et al. 2016). The same research 

group obtained similar results, focusing only on the nutritional impact of GFCF in ASD 

individuals; their results showed higher fibre intake and, in addition, deficiency in 

Vitamin D intake, also supporting our findings (Marí-Bauset et al. 2015). Vitamin D is 

considered a neurosteroid that is active during brain development and its deficiency has 

been taken into consideration as potential environmental risk factor for ASD (Kocovska 

et al. 2012, Vinkhuyzen et al. 2017, Cannell  et al. 2017). Our results reinforced this 

hypothesis, therefore the association between ASD and Vitamin D deficiency is worth to 

be further investigated. 

Our metabolomic analysis showed amino acid (AA) and glucose as main 

metabolites present in the faecal samples in both dietary groups, as previously reported 

by De Angelis and colleagues (De Angelis 2015). It could be due to malassimilation of 

nutrients since results obtained from the food diaries showed increase in protein and total 

sugar intake. These results support the hypothesis that exclusion diet alone might not  be 

enough to improve gut health. 



 92 

Bacterial groups such Clostridium spp., Bacillus spp., Lactobacillus spp., 

Streptococcus spp., and proteobacteria have been associated with AA metabolism (Neis 

2015) and this was confirmed by our results. Clostridiaceae and Streptococcus anginosus 

were positively correlated to alanine, tyrosine, isoleucine, leucine and phenylalanine. It is 

known that amino acids are precursors for neurotransmitters, such as tryptophan for 

serotonin or tyrosine for catecholamines, but little is known on the impact of the gut 

microbiota in these pathways and how the diet might modulate them (Tuohy et al. 2015). 

Alteration in AA metabolism has been seen in the urine of ASD children (Ming et al. 

2012) and in vitro studies investigating the AA transporters in fibroblasts from skin 

biopsies of autistic individuals. Alterations were found for tryptophan, alanine and 

tyrosine that might lead to modifications in the neurotransmitter pathway (Fernell et al. 

2007; Johansson et al. 2011).  

Since AA are important for brain development and cognitive functions, Fernell 

and colleagues focused on the hypothesis that autistic individuals might have altered 

tyrosine and alanine transport mechanisms (L- and A-systems). They demonstrated that 

ASD children have aberrant AA transport systems and this might cause changes in levels 

of tyrosine in the brain, and therefore in dopamine synthesis (Fernell et al. 2007). 

Johansson et al., focused not only on the tyrosine and tryptophan transporters, but also 

investigated the competition between alanine and tyrosine for transport across the brain-

blood barrier (BBB). Their results showed a decrease in tryptophan transport into the 

brain, which might lead to a reduction of serotonin synthesis and a higher level of 

alanine. Synthesis of neurotransmitters do not require the presence of alanine, but the 

authors speculated that the high level might cause a reduction in essential amino acids 

important for brain activity (Johansson et al. 2011). 

SCFAs have also been proven to have an effect on the CNS. In particular, 

injection of propionate in mice has been seen to cause autistic like behaviour (MacFabe 

et al. 2008). Our results showed strong correlations between Bacteroides spp. and 

propionate in faecal samples of ASD children on exclusion diets, confirming the role of 

the gut microbiota in metabolite production that might be associated with autistic traits. 

However, recently this hypothesis has been questioned since children with inborn 

propionic acidemia do not show typical autistic behaviour (Goof 2014). Also, the 

presence of lactate has been previously associated with psychological comorbidities 

(Dillon et al. 1987; Cowley et al. 1987) and its detection in both groups confirms in vitro 

results (Chapter 3, Grimaldi et al. 2017) and its potential role in ASD.  
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4.5 Conclusion 

 In summary, the results of this study give an insight on the impact of exclusion 

diets on gut microbiota composition and metabolic activity in ASD.  

Apart from the improvement in GI symptoms in children following exclusion diets, our 

results suggested that dietary approach overall does not alter the general metabolism in 

ASD children, as reported by urine metabolome analysis. 

We confirmed that gluten and casein-free diets modulated the gut microbiota 

revealing different bacterial populations associated with the two respective groups. In 

addition, faecal metabolic profiles showed amino acids as main metabolites identified, 

suggesting potential gut inflammation that might lead to malabsoption. 

 In conclusion, our results showed not only that exclusion diet might not be 

enough to improve gut health, but also that it is able to manipulate the gut environment 

and potentially be a factor that might interfere with other therapeutical approaches. 
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Abstract 

The main hypothesis of this study was to investigate the effect of B-GOS (83% GOS 

content) after 6 weeks treatment period on the gut microbiota composition and metabolic 

signature in autistic children. Furthermore, we also aimed to evaluate effect of B-GOS 

administration on GI dysfunction, mood, behaviour and sleep. We did not observe strong 

impact on GI issues after B-GOS intervention, but there were improvements in sleep 

habits. Our results also showed that anti-social behaviour varied over time depending on 

both exclusion diet (gluten and casein free diet) and treatment. 16S rRNA sequencing 

showed that B-GOS had a bifidogenic effect, confirming its prebiotic effect, as well as 

modulation of Lachnospiraceae family, in ASD children following un-restricted diets. 

The effect of B-GOS was significant also on the metabolome of this group. Butyrate and 

valerate were the main SFCAs produced and reduced amino acid excretion was detected 

in faecal samples of the intervention group. Urine samples were dominated by citrate, 

creatine, creatinine, DMA, DMG, malonate, carnitine, TMAO, and α-hydroxybutyrate in 

ASD children taking B-GOS, whereas PAG, phenylalanine and β-hydroxybutyrate were 

detected in the control group. To our knowledge, this is the first study where a prebiotic 

intervention has been evaluated in autism and the results are promising. Administration 

of B-GOS to autistic children may be useful in positively affecting the microbiota, 

metabolic profile and some traits associated with autism. 
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5.1 Introduction 

 Autism is a spectrum of disorders diagnosed in early life and interferes with the 

normal course of social, communicative, and cognitive development. Autistic Spectrum 

Disoder (ASD) individuals might also sufferer GI problems. The causes are still 

unknown but there are hypotheses behind these issues such as (1) dysbiosis in gut 

microbiota composition, in particular reduced number of bifidobacteria and increased 

Clostridium spp., Desulfovibrio spp., Sutterella spp. and/or Veillonellaceae; (2) altered 

dietary intake and (3) increased gut permeability. Dysfunction of the intestinal barrier 

might lead to the translocation of bacteria and/or metabolites that may have an impact on 

systemic metabolome, immune and nervous systems (Ding et al. 2016).  

Previous studies have reported alterations in gut barrier function in ASD 

individuals (White 2003) and in order to reduce these problems, exclusion diets are often 

suggested. It was previously shown (as reported in chapter 4) that exclusion diet was able 

to modulate gut bacterial populations and reduce GI discomfort, but partial changes in 

the metabolomics analysis, such as the presence of amino acids in faecal samples, lead us 

to think that diet alone does not have an effect on problems with nutrient absorption, and 

potentially, on gut inflammation. Patel and Curtis (2007) reported improvement in 10 

ASD children after 6 months of multiple behavioural, language and nutritional therapies 

in a controlled environment, speculating that multiple interventions might have greater 

potential in improving ASD symptoms.  

Manipulation of the gut microbiota using pre- and probiotics has shown 

beneficial effects on human health (Holmes et al. 2012) but, to date, there are only a few 

studies that have focused on the impact of these food supplements in autism. Parracho et 

al. reported improvement behavioural changes after Lactobacillus plantarum WCSF1 

administration in ASD children (Parracho et al. 2010). Adam and colleagues noticed a 

strong correlation between GI symptoms and severity of autism (Adams et al. 2011). 

Furthermore, they showed significant differences in SCFA levels in ASD individuals 

taking probiotics. Kaluzna-Czaplinska, after 2 months of oral supplementation with 

Lactobacillus acidophilus, found significant modifications in the level of D-arabinitol 

(DA) and the ratio of D-/L-arabinitol (DA/LA) in ASD children, and an improvement in 

concentration (Kaluzna-Czaplińska and Błaszczyk 2012). Recently, Tomova and 

colleagues confirmed the correlation of autism severity with GI dysfunction and showed 

that 4 months of mixed probiotic administration was able to modulate gut microbiota 

populations in ASD children (Tomova et al. 2015). Furthermore, probiotic therapy has 



 101 

been demonstrated to reduce inflammation, as assessed by myeloperoxidase-MPO and 

copper in autistic children compared to non-autistic controls (Russo 2015). 

To date, data on the effect of prebiotics in ASD are scarce. B-GOS is a galacto-

oligosaccharide mixture that has been widely tested in vitro and in vivo studies, showing 

improvements in several aspects of human physiology (Vulevic et al. 2008) (Depeint et 

al. 2008) (Silk et al. 2009) (Vulevic et al. 2015) (Drakoularakou et al. 2009). It was 

previously shown that B-GOS has an impact on the faecal gut microbiota composition 

and metabolic profile of autistic children using an in vitro fermentation system 

mimicking conditions of the colon (Chapter 3). 

 Considering these promising results, the main hypothesis of this study was to 

investigate the effect of B-GOS after 6-weeks treatment period on gut microbiota 

composition and metabolic signature in autistic children. Furthermore, we also aimed to 

evaluate the effect of B-GOS administration on GI dysfunction, mood, behaviour and 

sleep. 
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5.2 Materials and Methods 

5.2.1 Study design 

A randomised, double-blind, placebo-controlled (Maltodextrin), parallel-

designed prebiotic GOS mixture (B-GOS; Bimuno®) feeding study was conducted in 

children diagnosed with ASD (Figure 5.1). Both treatments were provided in powder 

form and supplied by Clasado Biosciences Ltd. (Reading, United Kingdom).  

 

 
Figure 5.1: Study design and nutritional information on the treatments administrated 
throughout the study. Each treatment was pre-weighed and delivered in individual containers. 
Volunteers’ parents were asked to mix the powder with drinks that children usually consume. 
 

The study was conducted according to the guidelines of the Declaration of 

Helsinki, and the University of Reading Research Ethics Committee (UREC15/41; 

Registration number: NCT02720900) approved all procedures involving human 

subjects (questionnaires, volunteer forms, diaries and advertising documents 

Appendices 5.1 - 5.9). 

Recruited subjects were divided into two groups A and B, according to dietary 

habits assessed by 4-day food diaries (as previously discussed in Chapter 4), children 

whose diet was not restricted and on restricted diet (mainly gluten, casein and dairy 

free) respectively. Within these two groups, children were randomly assigned to two 

feeding groups using a random number system. Group-I received placebo and Group-

II received B-GOS during the 6 weeks feeding period. Volunteers were required to 

visit the University of Reading or the researcher visited the volunteers at home on five 

separate occasions during the study period in order to provide faecal (weekly 

collection) and urine samples.  

Screening Run-in  Treatment  
B-GOS or Placebo Follow-up 

-2                        0                    2                            5                        8              10 weeks 

                       Visit 1                  Visit 2                   Visit 3                Visit 4                      Visit 5  

Treatments:  - 1.8 g B-GOS (83.7% w/w galacto-oligosaccharide, 10.7% lactose, 4.2% glucose and 0.46% galactose 
    - 1.8 g Maltodextrin   
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5.2.2 Subjects  

The study was powered using Hedwig Harvard Software and the calculation was 

based on changes in bifidobacterial number from a previous intervention study in human 

volunteers using B-GOS (Vulevic et al. 2008). A total of 41 autistic children (31 male 

and 10 female) with formal diagnosis of ASD were enrolled in the study in order to have 

a 95% probability that the study would detect, at a two-sided 5% significance level, an 

effect on the colonic bifidobacterial population.  

Of these 41, 11 subjects withdrew from the study during the baseline period, 

largely due to difficulties and/or inconveniences associated with collecting samples. The 

remaining 30 volunteers were divided into group A (un-restricted diet; n=18) and B 

(exclusion diet; n=12) and each group randomly distributed between groups I and II (A-I: 

n=9, A-II: n= 9 and B-I: n=6, B-II: n=6). However, 4 subjects subsequently dropped out 

before the end of the first feeding arm. One left the study without giving a reason, two 

were withdrawn due to protocol violation, and one withdrew due to an adverse event 

(strong diarrhoea and abdominal pain observed after 2 days of treatment feeding).  

In total, 26 volunteers completed the 10 weeks study (A-I: n=7, A-II: n= 7 and B-

I: n=6, B-II: n=6; Table 5.1) providing 80% statistical power to the study. 

 
Table 5.1: Diagnosis reported from parents by medical assessment (*). 
ASD: Autism Spectrum Disorders; ADHD: Attention Deficit Hyperactivity 
Disorder; PDD: Pervasive Development Disorder 

Diagnosis* ASD ADHD Asperger PDD 

Volunteers (n) 26/26 5/26 1/26 1/26 

Exclusion diet  
B-GOS (B-II) 

6/6   1/6 

Exclusion diet  
Placebo (B-I) 

6/6 3/6 1/6  

Un-restricted 
diet B-GOS (A-

II) 

7/7 1/7   

Un-restricted 
diet Placebo 

(A-I) 

7/7 1/7   

 

Volunteers were assessed before the start of the trial and were selected according to 

certain exclusion and inclusion criteria. Inclusion criteria for participation in the study 

were signed consent form from volunteers’ parents or guardians, age of 4-11 y inclusive, 

formal diagnosis of ASD. Volunteers taking probiotics, prebiotics, antibiotics or other 
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dietary supplement drugs that could affect the luminal microenvironment of the intestine 

within 4 weeks before the study were also excluded. Volunteers were instructed not to 

consume such products during the study and not to alter their usual diet or fluid intake.  

 

5.2.3 Faecal sample collection and preparation 

Faecal samples were collected weekly using faecal collection kit (FC2040, 

Laboratories Ltd, UK) and volunteers were asked to keep them at -20°C until the visit 

day when they were transferred to the laboratory for all the analysis. Samples for 

fluorescence in situ hybridisation (FISH) were stored in glycerol until the visit day and 

diluted 1 in 10 (wt:wt) in phosphate-buffered saline (1X PBS, 0.1 mol/L, pH 7.0; Oxoid, 

UK) and homogenised in a Stomacher 400 (Seward, Norfolk, United Kingdom) for 2 min 

at normal speed. Samples for DNA extraction and 1H-NMR were weighed (250 mg) and 

stored at-80°C. 

 

5.2.4 Urine sample collection and preparation 

 Urine samples were collected using sterile tubes (Mid-Stream Urine Specimen 

Collector; Pennine Healthcare, UK) or sterile pad (Sterisets Urine Collection Kit; 

MediBargains, UK) and stored at -20°C until visit day when they were processed. 

Samples were transferred to 15ml falcon tubes and centrifuged for 10 min at 1136 x g. 

The supernatants were transferred to 1.5ml Eppendorf tube (in duplicate) and stored at -

80°C. 

 

5.2.5 Fluorescence in situ hybridisation (FISH) 

Synthetic oligonucleotide probes targeting specific regions of the 16S rRNA 

labelled with the fluorescent dye Cy3, as previously described in Chapter 2 were used for 

bacterial enumeration assessed by FISH analysis. Briefly, faecal homogenate samples 

were fixed for at least 4 hours (4 °C) in 4% (wt:vol) paraformaldehyde. Fixed cells were 

centrifuged at 1136 x g for 5 min at 25 °C and washed twice in 1 mL filtered PBS (0.1 

mol/L, pH 7.0; Oxoid, UK). The washed cells were resuspended in 150 μL PBS/EtOH 

(1:1) and stored at -20 °C. The probes used (Eurofins Genomics, UK) were Bif164 for 

Bifidobacterium genus (Langendijk et al. 1995) and EUB 338 I-II-II for total bacteria 

(Daims et al. 1999).  
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5.2.6 DNA extraction and PCR 

Total microbial DNA was extracted from faeces using the DNA stool mini kit 

(Qiagen, UK) by introducing three 1-min steps at 50 movements/s using TyssueLyser LT 

(Qiagen, UK) with 5-min incubation in ice between treatments as previously described 

by Candela et al. 2016. Thermal disruption of the samples was performed by incubation 

at 95°C for 15 min, then centrifuged for 5 min (1136 x g) at 4°C to pellet stool particles. 

Two hundred-sixty μl of 10 M ammonium acetate was added to the supernatant, 

incubated in ice for 5 min and centrifuged at full speed for 10 min at 4°C. The 

supernatants were collected, one volume of isopropanol added and the samples incubated 

on ice for 30 min. Samples were centrifuged (1136 x g) for 15 min at 4°C and the pellet 

washed with 70% (v/v) ethanol. They were resuspended in 100 μl of TE buffer (10 mM 

Tris-Cl, pH 7.5; 1 mM EDTA, pH 8.0) and treated with 2 μl of DNase-free RNase (10 

mg/ml, Sigma-Aldrich) at 37°C for 15 min. Proteins were removed by adding 15 μl of 

proteinase K (DNA stool mini kit; Qiagen, UK) and DNA was subsequently purified 

following the manufacturer’s instructions. DNA recovery was evaluated using the 

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies). 

 

5.2.7 16S rRNA gene amplification via next generation sequencing (NGS) and 

bioinformatics analysis 

For each sample, the V3–V4 region of the 16S rRNA gene was PCR-amplified in 

25-μl volumes containing 12·5 ng of microbial DNA, 2× KAPA HiFi HotStart 

ReadyMix (Kapa Biosystems, USA) and 200 nmol/l of S-D-Bact-0341-b-192 S-17/ S-D-

Bact-0785-a-A-21 primers carrying Illumina overhang adapter sequences (Bio-Fab 

Research). Thermal cycle consisted of an initial denaturation at 95°C for 3 min, twenty-

five cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C 

for 30 s and a final extension step at 72°C for 5 min. Amplicons of about 440 bp were 

purified with a magnetic bead-based clean-up system (Agencourt AMPure XP; Beckman 

Coulter) and sequenced on Illumina MiSeq platform using a 2×300 bp paired end 

protocol, according to the manufacturer’s instructions (Illumina, San Diego, CA). 

Libraries were pooled at equimolar concentrations, denatured and diluted to 4 nmol/l. 

Pair-ended amplicon reads (with corresponding quality scores) were trimmed, merged 

clustered (operational taxonomic units [OTU] with 97% similarity), filtered from 

chimeric sequences using UPARSE (Edgar 2013), and taxonomically assigned using the 

GreenGenes database (version 12.10; McDonald et al. 2012). For downstream analysis, 
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the OTU-table was normalised with cumulative sum scaling (CSS; Paulson et al. 2013) 

using the Qiime toolbox (v1.9; Caporaso et al. 2010). Beta-diversity was assessed 

through Bray-Curtis and Soresen distance and the factor-treatment analysed with 

redundancy analysis (RDA; Oksanen et al. 2015). Alpha-diversity was measured and 

expressed as observed species (97% similarity OTUs) and computed with 10 rarefied 

OTU tables. Comparison of Alpha-diversities was made through nonparametric 𝑡-test 

method (Monte Carlo, 999 permutations). 

 

5.2.8 Metabolic analysis by 1H-NMR 

Four hundred μL of urine samples were combined with 200 μL of phosphate 

buffer [0.2 M (pH 7.4) in D2O plus 0.001% TSP), mixed by vortexing, centrifuged at 

1136 x g for 10 minutes and then 550 μL was transferred into 5 mm NMR tubes for 

analysis. Faecal samples were pre-weight (250 mg) and 700 μL of phosphate buffer and 

2 glass beads were added in order to perform a bead-beating 5-min step at 25 

movements/s using TyssueLyser LT (Qiagen, UK). Then, 500 μL was transferred into 5 

mm NMR tubes for analysis. All NMR spectra were acquired on a Bruker Avance DRX 

500 MHz NMR spectrometer (Bruker Biopsin, Rheinstetten, Germany) operating at 500 

MHz. They were acquired using a standard one-dimensional (1D) pulse sequence 

[recycle delay (RD)-90°-t1-90°-tm-90°-acquire free induction decay (FID)] with water 

suppression applied during RD of 2 s, a mixing time Tm of 100 ms and a 90 pulse set at 

7.70 μs. For each spectrum, a total of 128 scans was accumulated into 64 k data points 

with a spectral width of 12.001 ppm. The FIDs were multiplied by an exponential 

function corresponding to 0.5 Hz line broadening. 

 

5.2.9 Data Preprocessing and Analysis 

All spectra were manually phased, baseline corrected and calibrated to the 

chemical shift of TSP using TopSpin (Bruker Biopsin, Rheinstetten, Germany). Spectral 

features were picked using in-house MATLAB (version R2014a, The Mathworks, Inc.; 

Natwick, MA) script and median fold normalization was performed. The spectral region, 

containing the water resonance, was removed to minimise distortions in the baseline 

arising from imperfect water saturation. Principal components analysis (PCA) using 

mean-centred data was applied and orthogonal projection to latent structure discriminant 

analysis (OPLS-DA) models were constructed for pairwise comparisons of the different 

experimental groups and time points. Colour represents the significance of correlation 
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(R2) for each metabolite to class membership. Predictive strength (Q2Y) of the models 

was obtained using a 7-fold cross-validation method and these were validated using 

permutation testing (number of permutations =1000). 

 

5.2.10 GI symptom diaries 

Parents/guardians of children volunteers were asked to fill in daily questionnaires 

for GI function and symptoms. The Bristol stool chart was used to assess faecal sample 

type and consistency, together with number of bowel movements, abdominal pain, 

intestinal bloating and flatulence (i.e. low, present but well tolerated, present and 

interfering with but not preventing normal daily activities, preventing normal daily 

activities; Lewis & Heaton 1997). Concomitant medication, adverse events, changes in 

diet and behaviour were also recorded throughout the study, on a separate sample 

submission forms. 

 

5.2.11 Behavioural and sleep assessment 

Autism Treatment Evaluation Checklist (ATEC) was used to evaluate the 

effectiveness of treatment. In addition, parents/guardians were asked to complete 5-day 

sleep diaries before and after interventions in order to understand the qualitative impact 

of B-GOS supplementation on sleep disorder, if present. 

 

5.2.12 Statistical analysis 

 Behavioural assessments and GI symptoms were analysed using SPSS software 

(SPSS Inc., Chicago, IL, USA). Mood and behavioural questionnaire analysis were 

performed considering the 4 ATEC scale scores (Communication, anti-sociability, 

Sensory and Behaviour) and the total ATEC score, for each time point (before T1, after 

treatment T2 and follow-up T3). One-way ANCOVA was used in order to test whether 

T2 scores differed between treatment groups, adjusting for baseline T1 scores as 

covariate. GLM 2x3 RMANOVAs were used to test whether there were any treatments 

by time interaction across time points. Each of those RMANOVAs was followed by a 

2x2 RMANCOVA to test for any treatment by time interactions across T2 and T3 

adjusting for baseline (T1) differences.  This test was used in order to assess whether any 

treatment effect was consistent to follow-up.  
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GI symptoms were analysed using a linear mixed model. The fixed terms 

assessed in this model were diet, treatment, time (pre-treatment, during treatment, 

follow-up), weeks, diet x time, treatment x time and volunteer scores as a random effect. 

 Statistical test for bacterial composition results was performed using Graphad 

Prism (version 5.0; Graph-Pad Software, 188 La Jolla, CA, USA). One-way ANOVA 

tests and unpaired Student’s t tests, including post hoc tests appropriate for individual 

data sets (Tukey post-test with significance set at P< 0·05), were used. 

 

5.3 Results 

5.3.1 GI symptoms and sleep diaries 

 GI symptoms were quantitatively evaluated each day, by recording abdominal 

pain, intestinal bloating and flatulence, stool form and bowel movement. A general trend 

of reduction in GI symptoms was reported, but differences between treatments were not 

significant.  The significant effect was observed for the interaction between the diet and 

time, for bowel movements (P<0.01) and flatulence (P<0.05).  

Qualitative analysis was performed on sleep habits and 3 volunteers (23% of 

participants) benefited from B-GOS intervention. Parents reported that their children 

slept one hour longer than usual and one of them also noticed that the child had less 

problems falling asleep. 

 

5.3.2 Mood and behaviour questionnaires 

 Mood and behaviour questionnaires were analysed taking into account age, diet 

and intervention. ASD children following exclusion diet, showed a significant reduction 

in the “anti-social behaviour” score after B-GOS intervention. The results from the 

ATEC questionnaire showed that anti-sociability varied over time depending on both 

exclusion diet and treatment (P<0.05; Figure 5.2). 
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Figure 5.2: ATEC questionnaire. Results showed consistent reduction in anti-sociability score 
in children on exclusion diet and B-GOS intervention. Results were reported in mean ± standard 
error. Placebo: Maltodextrin. *: P <0.05. 

 
 

5.3.3 Bacterial composition by FISH analysis 

 FISH analysis was performed on total bacteria and bifidobacteria of the faecal 

samples collected at baseline, after 6 weeks intervention and follow-up (Figure 5.3A and 

B). Despite an increase in number of Bifidobacterium spp. after B-GOS intervention 

(Figure 5.3A), FISH results did not show any significance considering treatment and the 

interaction between treatments versus diet. 
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B) 

 
Figure 5.3: FISH analysis. Bifidobacteria (A) and total bacteria (B) numbers measured as Log10 CFU/g 
faeces before, after treatment and follow up in ASD children. Data were analysed considering treatment and 
interaction treatment/diet. B-GOS (n=13); Placebo (n=13); B-GOS_Exclusion Diet (n=6); 
Placebo_Exclusion Diet (n=6); B-GOS_Un-restricted Diet (n=7); Pacebo_Un-restricted Diet (n=7). 
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5.3.4 Metagenomics analysis 

 Beta-diversity of faecal samples collected at baseline (W0-W1-W2), last 3 weeks 

of treatment period (W6-W7-W8) and follow-up (W9-W10) were analysed. The only 

significant model was identified comparing bacterial populations in faecal samples from 

ASD children under un-restricted diet, before (baseline) and after B-GOS administration. 

Soresen and Bray-curtis principal coordinate analysis (PCoA) did not show any 

separation between the 2 groups (Figure 5.4A and B). Introducing the treatment as 

variable in RDA model, a 4% variance was significant (P<0.038). Figure 5.5 shows PCA 

(principal component analysis) score plot reporting bacterial populations positively 

associated with the separation after B-GOS supplementation in ASD children under un-

restricted.  

 

A)   B)  
Figure 5.4: Comparison of the gut microbiota composition between baseline and after B-GOS 
administration in ASD children under un-restricted diet. A) Sorensen PCoA B) Bray-Curtis PCoA. 
Red dots: samples before B-GOS treatment; green dots: samples after B-GOS intervention 
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Figure 5.5: Microbial genera involved in the separation in the RDA plot after B-GOS 
treatment. Blue dots: after B-GOS intervention; pink dots: before B-GOS intervention. 

 

B-GOS supplementation positively modulated some bacterial groups such as 

Bifidobacterium spp., Ruminococcus spp., Lachnospiraceae family (Coprococcus spp., 

Dorea formicigenerans, Oribacterium spp.), Eubacterium dolchum, TM7-3 family and 

Mogibacteriaceae.  

In addition, rarefaction curves showed that B-GOS supplementation increased the 

diversity in gut microbial composition of ASD children in un-restricted diet, but the 

increase was not significant (Figure 5.6). 
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Figure 5.6: Comparison of bacterial richness and diversity before and after B-GOS treatment in 
ASD children following un-restricted diet. Rarefaction curves and box plots showed that B-GOS 
supplementation increased the diversity in gut microbial composition of ASD children in un-restricted diet. 
 

 

5.3.5 1H-NMR analysis 

Comparison of the spectra profiles from urine samples did not show any 

significant differences at baseline. Significance was identified in ASD children following 

un-restricted diet after B-GOS intervention, indicating that B-GOS supplementation 

contributed to the metabolic variation. A significant OPLS-DA model was obtained 

comparing metabolic profiles of ASD children taking placebo and those taking B-GOS, 

after 6 weeks intervention (Q2Y=0.065; P<0.01; Figure 5.7). Urine spectra of autistic 

volunteers receiving B-GOS treatment contained greater amounts of creatinine, creatine, 

dimethylglycine (DMG), dimethylalanine (DMA), carnitine, malonate, citrate, adipate, 

trimethylamine-N-oxide (TMAO) and α-hydroxybutyrate compared to the autistic one 

taking maltodextrin. In addition, B-GOS supplementation seemed to reduce amount of 

phenylacetylglycine (PAG), phenylalanine and β-hydroxybutyrate in the intervention 

group. 

Before B-GOS intervention 
After B-GOS intervention 

After B-
GOS 
intervention 

Before B-GOS 
intervention 
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Figure 5.7: OPLS-DA obtained comparing the metabolic profile in urine samples of ASD children in 
un-restricted diet taking B-GOS to those taking placebo (control group). Compounds identified: 
Dimethylglycine (DMG); Dimenthylalanine (DMA); Creatinine; Creatine; PAG (Phenylacetilglycine); 
Cartine; Malonate; TMAO (Trimethylamine-N-oxide); Citrate; Adipate; Alpha-hydroxybutyrate; Beta-
hydroxybutyrate; Phenylalanine. 
 

Changes in metabolic profile were also seen after B-GOS intervention in faecal 

samples. At the baseline, a negative Q2Y was associated with ASD children in un-

restricted diet (Q2Y= -0.3632), but after B-GOS supplementation, a significant OPLS-

DA model was obtained (Q2Y=0.2997, P <0.001). Ethanol, DMG and SCFAs were 

positively correlated with B-GOS intake, in particular butyrate and valerate. In addition, 

lower levels of amino acids and lactate were detected in the B-GOS group, compared to 

the control (Figure 5.8). 
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Figure 5.8: OPLS-DA obtained comparing the metabolic profile in faecal samples of ASD children in 
un-restricted diet taking B-GOS to those taking placebo (control group). Compounds identified: 
Dimethylglycine (DMG); glutamate; butyrate; valerate; ethanol; alanine; lactate; isoleucine; leucine; 
valine; uracil; phenylalanine; tyrosine. 
 

 

5.4 Discussion 

It has been suggested that pre- and probiotics have potential effects on the gut-

brain axis (Li et al. 2017), therefore they have been considered a potential novel 

therapeutic approach for improvement of behavioural traits and GI discomforts 

associated with some ASD children. This study was designed to understand if a well-

known prebiotic B-GOS was able to modulate the gut bacterial population and metabolic 

profile of ASD individuals and if it was able to impact other autistic traits, such as mood, 

behaviour and sleep.   

Overall, our data did not show a strong impact on GI symptoms, sleep, mood and 

behaviour. The reason for this might in part be due to various difficulties reported by the 

parents in evaluating these aspects and related to impediments in communication skills 

typical of ASD children. Slight improvements were recorded on sleep diaries and, 
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combining B-GOS treatment with the restriction diet showed a significant reduction in 

anti-sociability scores, supporting the hypothesis that multiple intervention therapies 

might have a better impact on such psychological traits. 

To date, metagenomic analyses in autism mainly focused on identifying potential 

biomarker in the gut bacterial composition, usually comparing faecal samples from 

autistic individuals with siblings and non-autistic controls. Finegold and colleagues 

found significant differences in Firmicutes and Bacteroidetes phyla, with the latter more 

abundant in the ASD individuals, and they identified some genera present in all the 

autistic participants, such as Bacteroides, Clostridium, Faecalibacterium, Eubacterium, 

Ruminococcus, Roseburia, Dorea, Hespellia, Tucibacter (Finegold et al. 2010). These 

genera have been also detected in our analysis but unfortunately we did not have a non-

autistic control for comparison. Other studies showed reduced Prevotella, that may be 

explained by a low carbohydrate intake (Kang et al. 2013, Strati et al. 2017), whereas 

others focused on lower bifidobacterial numbers in ASD groups, compared to the 

typically developing children and significant effects of probiotics on lactobacilli (Adams 

et al. 2011b). All these results support the hypothesis that other bacterial populations 

might be involved in autism rather than only the clostridial group (Toh and Allen-Vercoe 

2015), as it was initially suggested (Bolte 1998).   

To our knowledge, this is the first study where 16S rRNA next generation 

sequencing has been used to better understand the impact of prebiotic intervention on gut 

microbiota in autism. Our results showed that B-GOS was able to modulate the gut 

microbiota composition in autistic children under un-restricted diets, exhibiting 

bifidogenic effects as well as changes in other bacterial groups, such as Lachnospiraceae 

family, known to be butyrate-producing bacteria. Mego and colleagues reported the same 

results in a recent human intervention study where regular consumption of GOS 

treatment induced changes in microbiota, and its modulation was correlated with 

reduction of gas production (Mego et al. 2017).  

We supported our metagenomics results by 1H-NMR, detecting butyrate and 

valerate as main SCFAs produced and matching previous in vitro data, where B-GOS 

supplementation modulated bacterial and metabolic changes in ASD (Grimaldi et al. 

2017; chapter 3). It has been shown, in cell culture studies, that butyrate seems to 

regulate tyrosine hydroxylase (TH) mRNA levels and consequently it might regulate 

catecholamine pathway in the brain (DeCastro 2005; Shah 2006; Parab 2007; Nankova 

2003; Patel 2005) thus, potentially positively impacting ASD (Nankova et al. 2014). 
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Therefore, showing that B-GOS was able to stimulate butyrate production in ASD in 

vitro and in vivo, suggests that it could have an effect indirectly on the CNS through the 

modulation of the gut bacterial populations. 

B-GOS seemed able to modulate presence of glutamate in the intervention group. 

Glutamate is the precursor of GABA, neurotransmitters in the brain, and its alteration 

might influence the CNS of autistic individuals (Mazzoli and Pessione 2016). 

Intestinally, reduction of amino acids in faecal samples of ASD children taking B-GOS 

occurred. A presence of these compounds in stool samples has been associated with 

disorders related to gut inflammation, such as Inflammatory Bowel Disease (Marchesi et 

al. 2007), therefore our results suggest that B-GOS supplementation could help to 

improve gut health. In addition, our results could be associated with butyrate production, 

detected after B-GOS intervention, since improvements in barrier functions have been 

previously detected in vitro with sodium butyrate (Wang et al. 2012c). 

Some confounding factors might impact on the analysis of urine samples, such as 

medication, diet and lifestyle. They are difficult to control especially when the sample 

size is small; this might explain our results, even though diet and medication intake were 

recorded during the trial. Strong correlations were identified in ASD children under un-

restricted diets between citrate, creatine, creatinine and B-GOS. These metabolites were 

previously identified by Yap and colleagues who did not find any significant correlation 

with autism (Yap et al. 2010); in other studies, inconsistent levels of creatinine have been 

detected in ASD individuals and considered potential biomarkers for creatine deficiency 

syndrome (CDS), a metabolic disorder with similar features to autism (Wang et al. 

2011a). In addition, they have been considered as biomarkers for other brain disorders 

such as Alzheimer’s disease (Fukuhara et al. 2013) and schizophrenia (Cai et al. 2012), 

so it would be interesting to have a deeper understanding of their implications for ASD. 

Malonate, α- and β-hydroxybutyrate were also previously correlated to other mental 

diseases (An and Gao 2016) but there is not much evidence on how the same metabolic 

pathways may be altered in different psychological disorders. 

Urinary NMR spectra were also dominated by dietary and microbial-derived 

metabolites such as dimethylamine (DMA), trimethylamine N-oxide (TMAO) in the B-

GOS group and phenylacetylglutamine (PAG) in the control group. Elevated levels of 

DMA have been identified in urine of ASD children (Yap et al. 2010), however the data 

could not be correlated with our findings due to the absence of a non-autistic control. 

TMAO and PAG were reduced after antibiotic treatment (Wang et al. 2011b) (Yap et al. 
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2008) proving an impact of the gut microbiota on metabolic pathways. B-GOS was able 

to modulate the gut bacterial populations; therefore it might have an effect their 

production. 

 

5.5 Conclusion 

 In the present study, we demonstrated that B-GOS intervention might have an 

effect on the microbiome and metabolome in ASD children. Interestingly, we showed 

that 6 weeks supplementation had a significant effect, in particular, in children on un-

restricted diets. These results strengthen our previous assumption that exclusion diet, 

such as gluten- and casein-free diets, have modulatory effects on the gut environment, 

therefore further studies testing longer treatment administration should be carried out in 

order to show functionality effect also in children already following different therapeutic 

approaches. Other limitations such as lack of typically developing children as a control 

group, dose of the treatment and small sample size should also be considered. Regardless 

of all these issues, to date this is the first study that attempted to understand if and how 

prebiotic supplementation might impact various aspects of autism.  
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CHAPTER 6 
 

6.1 General discussion  

In the last few years, prevalence rates of autism have increased, partly due to 

improvements in medical assessment and public awareness. Generally, it is considered as 

a childhood condition, but it does have influences throughout life (Lyall 2017). Studies 

that focus on more intervention to improve life course outcomes are required. The results 

presented in this thesis have highlighted the potential for B-GOS to be considered as a 

dietary approach in Autistic Spectrum Disorders (ASDs). 

Recently, B-GOS has been seen to have an effect on cognitive function, via the 

gut-brain axis, in mice and healthy human studies (Williams et al. 2016) (Savignac et al. 

2016) (Savignac et al. 2013) (Schmidt et al. 2015), supporting the hypothesis that 

modulation of the intestinal microbiota might help not only to improve GI symptoms 

associated with ASD, but potentially also impact on the central nervous system and 

typical autistic traits. Despite studies focusing on the impact of different food 

supplements in ASD individuals, there is not much information on the effect of 

prebiotics in autism. 

Initially, prebiotic activity of purified B-GOS (65%GOS content) was investigated 

in faecal samples of healthy volunteers, compared to commercial B-GOS (52%GOS 

content), using a batch culture fermentation system. FISH was used to assess faecal 

microbiota composition and metabolic activities were analysed by GC and 1H-NMR. 

65%B-GOS was shown to selectivity enhance beneficial bacteria, confirming that 

reduction in impurities, such as sugars, is important to study activity and functional 

properties of prebiotics in in vitro systems (Chapter 2). In addition, reducing the presence 

of sugars, such as lactose, in prebiotic products is an important goal to achieve for in vivo 

application; in particular considering lactose intolerance, previously correlated with 

gastrointestinal and behavioural problems in ASD (Lucarelli et al. 1995). 

Although batch cultures are considered acceptable models for preliminary studies 

of gut microbial fermentations, they have several limitations compared to in vivo 

conditions. These systems do not enable long fermentation periods since it is not possible 

to add extra nutrients or remove waste from the culture; therefore, bacteria will enter the 

stationary phase, terminating the fermentation. Furthermore, batch cultures only 

modelling one area of the colon.  
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It was therefore investigated whether purified B-GOS could modulate faecal 

microbiome and metabolome of autistic and non-autistic children using a more complex 

fermentation model. A three-stage continuous system was used in order to better simulate 

different conditions in the entire colon, through gradients of pH, substrate concentration 

and residence time (Chapter 3). B-GOS was able to significantly increase bifidobacteria 

in all vessels, representing different regions of the colon; and modulate other bacterial 

groups such as Clostridium spp., Roseburia spp., Bacteroides spp., Atopobium spp., 

Sutterella spp., F. prausnitzii and Veillonellaceae. Furthermore, in parallel with these 

population changes, functional alterations were also observed in both autistic and non-

autistic models with the organic acids acetate and butyrate being increased, as well as 

ethanol.  

Results from the in vitro work showed positive effects of B-GOS on faecal 

bacterial populations and metabolic activity; for this reason a parallel, double-blind, 

randomised human intervention study was designed in order to assess the effect of B-

GOS in vivo. Exclusion diets, such as gluten, casein and dairy free diets, are often 

suggested for ASD individuals in order to reduce GI problems, but to date there are no 

studies investigating the impact of these restriction diets on gut microbiota and 

metabolism in autism. Diet has a huge impact on the gut microbiota and it provides the 

main substrates for bacterial composition and metabolism (Steegenga 2016, Proctor 

2017). 

Therefore, in Chapter 4 the effect of restricted diets was investigated in order to 

understand whether they could influence GI issues and if they impact on the general 

physiology of ASD children. Results highlighted that children following exclusion diets 

had significant reductions in abdominal pain and bowel movement, but presence of amino 

acids in faecal samples, previously associated with nutrient absorption and gut 

inflammation (Marchesi et al. 2007), proved that restricted diets might not be able to 

impact gut health.  

In addition, significant differences in gut bacterial populations were reported at 

baseline. The gut microbiota of ASD children following special diets showed reduced 

bifidobacteria and Veillonellaceae, confirming previous studies in healthy volunteers 

(Bonder 2016) and reiterating the key research hypothesis that diet has a strong impact on 

the gut microbiota. 

This was an important outcome that underlines diet as a potential confounding 

factor that might indirectly “compete” with other intervention approaches, such as 



 126 

prebiotics; concept that was also confirmed in Chapter 5. Results showed that 6 weeks B-

GOS administration had a significant impact on children whose diet was not restricted, 

increasing bifidobacteria, stimulating other bacterial groups such as Lachnospira family 

and modulating the metabolome. In this group, metabolic differences were detected in 

urine with increased DMA, DMG, creatine, creatinine, TMAO, citrate and alpha-

hydroxybutyrate after prebiotic intervention, compared to the control group, showing that 

B-GOS was driving changes in the general metabolism. In addition, B-GOS was also able 

to modulate faecal metabolome, after 6 weeks intervention, stimulating butyrate 

production and reducing amino acids in faecal samples of ASD children taking the 

prebiotic, supporting the assumption that B-GOS intervention might help to improve gut 

health modulating the gut microbiome and metabolome. The in vitro (Chapter 3) in in 

vivo (Chapter 5) sections of this thesis back up cellular studies where a positive impact of 

butyrate was reported on gut barrier function (Wang et al. 2012, Miao et al. 2016). 

Even though no big changes were detected in microbiome and metabolome in 

children following exclusion diets and taking B-GOS, significant improvements were 

seen in social behaviour, confirming the hypothesis that multiple therapies could have a 

stronger impact on psychological aspects. 

Overall, the results from this project showed that B-GOS could be considered as 

potentially useful approach for ASD individuals but improvements in the study protocol 

could help to obtain stronger impacts, perhaps in combination with other dietary 

interventions. 

6.2 Limitations 

Despite relevant findings, the study protocol has limitations that should be taken 

into consideration for future studies.  

The length of time was one example. Results supported the idea that a longer 

prebiotic intervention period is probably required in order to see a stronger effect, 

especially in individuals that are already following different therapeutic approaches, such 

as exclusion diets. 

Lack of normally developing children as control group was another limitation. 

This was from the viewpoint of not only understanding differences between the ASD and 

non-ASD groups at baseline, but also to identify potential pathways through which 

prebiotics could impact in these groups.  

Other limitations are the sample size and diagnosis confirmation through updated 

questionnaires.  
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6.3 Future work 

Future work should focus on the importance of study protocol in relation to the 

specific considerations of this subject population, with a high dropout rate 

(predominantly during the baseline period) and relatively high inter-individual 

variability.  

A parallel study is suitable for this subject population but additional logistics 

involved might have affected the completion rate, such as weekly sample collection and 

daily completion of detailed questionnaires and diaries across the whole study. Key 

questionnaires and diaries should be used in order to help a more direct interpretation of 

the impact of the prebiotic intervention on behaviour and sleep. In addition, identification 

of key time points for sample collection is also crucial in order to reduce stress in 

children that already suffer routine changes.  

In addition to the human intervention study, a deeper insight into the mechanistic 

effect of butyrate in ASD is worth investigating. Recent mouse studies suggested 

potential correlation between altered gut barrier functions in ASD and IBD and how 

probiotics may impact on systemic immunity (Hsiao et al. 2013) (Lim et al. 2017), 

therefore it would be interesting to better understand how prebiotic modulates gut health 

in ASD. An animal study, using an autistic mouse model, could be carried out in order to 

understand how alteration of the gut microbiota by B-GOS influences butyrate 

production; and to understand the mechanistic effect of this SCFA on gut inflammation, 

permeability and catecholamine pathway.  
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APPENDIX 4.1 

 

 

 

PLEASE READ THROUGH THESE PAGES BEFORE STARTING YOUR DIARY 

WE WOULD LIKE YOU TO KEEP THIS DIARY AND RECORD EVERYTHING THE CHILD 
EATS AND DRINKS OVER 4 DAYS (including one day during the weekend). Please include all 
food and drinks consumed at home and outside the home e.g. school, restaurants. It is very 
important that the child does not change what he/she normally eats and drinks just because you are 
keeping this record. Food diaries are very important part of the study because they help us to 
interpret the information we get from the child’s study visits. The more details you add to the 
descriptions the more accurate our analysis will be and the better the feedback we can give you.  

PLEASE KEEP THE CHILD’S USUAL FOOD HABITS 

Please return the completed diary at your next visit at the University 

We have given you 2 pages for each of the 4 days; please see below the empty sheets after 
some important guidelines and a useful example. Please write down the date, and indicate the 
next study visit. Use as many pages as you need for each day.  

 

 

 

 

 

 

 

  

                                                
School of Food Biosciences 

Food Microbial Sciences Unit 

 

VOLUNTEER 4 DAYS FOOD AND DRINK DIARY  

Issued on: 

   day      month             year 
  (in letters) 

Date of next visit: 

   day      month             year 
  (in letters) 

Bi2muno®   Screening No. 
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When should I complete the diary? 

• You can choose which days to complete, but ideally it must be 4 consecutive days (one of 
the days must be during the weekend, the other three must be during Monday-Friday). 
You will need to record on the same days of the week for each diet diary.  

• Do not record on the day before the intervention visits (i.e. the day when the child eats a 
standard evening meal and fast).  

• Try to write down what the child eats at the time the child eats it rather than from 
memory at a later date. Each diary day covers a 24 hours period, so please include any food 
or drinks that the child may have had during the night. Remember to include foods and 
drinks between meals (snacks or nibbles, no matter how small the amount) including water. 

 

How should I complete it?  

• A portion size guide has been included to help you (please write down which photo you 
are referring to by each portion of food) but you may also weigh child’s food portion if you 
prefer. 

• Take a notebook with you if you eat out and try to include as much detail as possible (you 
could use the labels on food to help you or any details provided in the menu).  

• Keep the labels of ready meals or unusual foods if they are clean and put in the back of 
the record book. 

• Be as specific as possible, for example, Kellogg’s cornflakes is better than cornflakes, 
Tesco’s value baked beans etc. Use brand names and include details about food types such 
as semi-skimmed or full-fat milk. 

• For items that are rehydrated, e.g. pasta, rice, noodles and couscous, it is important to 
state whether you are recording dry or cooked weight, if you do choose to weigh it out. The 
same applies to foods such as meat, and vegetables (i.e. raw or cooked weight). 

• Record any supplements taken during diary recording days. 
• For items that are eaten and drunk on a very regular basis such as tea, record as much detail 

as possible the first time i.e. amount of water, amount of milk, type of milk, the amount of 
sugar or sweetener, brand of tea bag and then record ‘as usual’ for these items in future. 

• For any meals cooked from a recipe (home made dishes), complete the recipe sheet 
provided (please also see the example below). State how much the child ate as a proportion, 
e.g. one quarter, or half and remember to add this item to the main food diary too, e.g. 
‘Recipe 1:’. 

• Record how you cooked the child’s food (boiled, steamed, fried, grilled, etc.). If you 
fried the food, don’t forget to record what you fried it in (olive oil; butter; lard, beef 
dripping, etc.). 

• Remember to include any fats/oils (butter, spread, oils etc.), condiments/sauces (ketchup, 
mayonnaise, gravy salad dressing etc) added to food.  

• If the child spills anything or doesn’t finish a plate of food, add this to the remarks section 
and include how much was spilt or left uneaten.  

• State whether the food was fresh, frozen, dried, canned, etc.  
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• For takeaway dishes from a restaurant or a friend’s house, please record as much detail 
about the ingredients (and the portion size) as you can e.g. vegetable curry containing 
chickpeas, aubergine, onion and tomato. Also record any other food or drink when the 
child eats away from home (e.g. egg and cress sandwich from Marks and Spencer). Brand 
name or name of the restaurant will be very helpful.  

• Break down foods like salads, sandwiches and pasta dishes into individual ingredients and 
add each on a separate line in the diary. Include the amount of each ingredient (weight or 
size).  

• For butter, please specify whether it is spreadable or block, salted or unsalted.  
• Please specify if the child is having a heaped or level tablespoon/teaspoon. 
• If the weight is on the packaging of the food item, record that, noting down the individual 

ingredients and amounts. Write the weight of the portion that the child actually ate on your 
food recording sheets.  

• An example of a record sheet is shown below. 
• A table with some useful words to describe items is also included. 

 

REMEMBER TO ALWAYS SPECIFY THE BRAND, INCLUDING SUPERMARKET BRANDS 
(E.G. SAINBURY’S BASIC OR SAINSBURY’S TASTE THE DIFFERENCE) 

 

The table below lists common foods and drinks and gives examples of the words that you can use to 
describe these items.  (Note: You may wish to use other relevant words that are not on this list) 

Food / Drink Examples of Descriptions 
Soft drinks No added sugar, diet, diluted / undiluted volume. 

If measured in a pub: pint / half-pint. 

Biscuits Varieties: shortbread / digestive / rich tea / custard cream / etc. 
With / without chocolate / cream-filled.  

Bread 
Wholemeal / brown / white / 50:50 / seeded / granary / fruit.  
Not pre-sliced, medium / thick slice, small loaf, toasted.  
Crusty / soft, baguette / French stick, bagel, pitta.  

Breakfast Cereals Include details about milk and sugar (type & quantity). 
Porridge: instant / homemade, quantity of raw oats, toppings. 

Butter Hard / spreadable, salted / unsalted  
Check butter & not buttery spreads like I Can’t Believe It’s Not Butter 

Cakes & Buns Type: Victoria / chocolate / fruit / carrot, muffin / sponge / etc. 
Filling: frosting / royal icing / marzipan / buttercream / jam. 

Cheese 
Variety: Cheddar (extra mature / mature / mild) / parmesan / brie / etc. 
Hard / soft / cream / cottage / processed / triangle. 
Half-fat / light. 

Cream Double / clotted / single / sour / long-life / spray / crème fraiche. 
Half-fat / light. 

Tea 
Include details about milk and sugar / sweetener (type & quantity). 
Cup / mug. 
Fruit / herbal / green. 
Filter / instant / decaffeinated / cappuccino / espresso. 
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Eggs 
Medium / large. 
Scrambled (include details for milk & butter) / boiled / fried (include details for 
oil). 

Fish & Shellfish 
Type: salmon, cod, sardines, king prawns, etc. 
Fresh / canned (oil, brine or water) / frozen. 
Breadcrumbs / batter / cakes / fingers.  

Fruit, Vegetables & 
Fruit Juice 

Varieties: e.g. apples - brae burn, cox, gala, etc. 
State If peeled and add the weight of the peeled item, e.g. apples, potatoes, 
kiwi, banana. 
Canned (juice or syrup) / fresh / stewed / dried / frozen. 
Fruit juice: freshly squeezed / fresh (e.g. from chilled section) / from 
concentrate (e.g. long-life). 

Gravies & Sauces Instant / sachet / jar / fresh. 
With meat juices / milk (type & amount), thick / thin. 

Meat & Poultry 
Type: pork, chicken, beef, lamb, etc. 
With / without fat or skin, well-done / medium / rare. 
Cut: chop / steak / leg / drumstick / mince (lean) / sausages (pork or beef, thick 
or thin, low-fat) / bacon (streaky or back). 

Milk Skimmed / 1% fat / semi-skimmed / whole (or full-fat). 
UHT / soya / rice / flavoured / condensed. 

Nuts & Seeds Salted / unsalted / honey roasted / dry. 
Please state type of nuts & seeds, e.g. walnuts, peanuts, sesame seeds. 

Oils Varieties: olive oil / extra-virgin olive oil / vegetable oil / sunflower oil / 
rapeseed oil / sesame oil. 

Pasta, Rice, 
Noodles & 
Couscous 

Wholemeal / brown / white / pilaf / egg-fried. 
It is important to state whether weight is for the dried or cooked ingredient. 

Pies & Quiches 
Short crust / puff pastry / suet. 
Individual / family-sized / party-sized. 
Provide details on filling, e.g. steak and kidney. 

Pizza Size: 8” / 10” / 12”.  Takeaway / chilled / frozen.   
Thick / thin / stuffed crust.  List toppings. 

Potatoes 
Chips: frozen / fresh, oven-baked / fried, thick-cut / crinkle cut / French fries. 
Mash: remember to include butter, milk, cheese, etc. 
Roast: remember to include type & amount of fat used.  
New & Baked: with / without skin, butter. 

Sandwiches Spread / no spread / mayonnaise. 
List all fillings.  

Spreads 
Varieties: buttery (e.g. I can’t believe it’s not butter, Clover), olive oil-spread 
(e.g. Bertolli), vegetable oil spread (e.g. Flora), sunflower spread, soya spread. 
Low fat / full-fat. 

Yoghurts Creamy / full-fat / low fat / fat-free. 
Natural / Greek / fruit / toffee / fromage frais 
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Recipes 
What to do if you make a dish containing more than one portion, e.g. lasagne, casserole, meat pie, stir fry, 
(please see the attached example). 
In the Recipe sheet: 

o Date of when the meal was cooked and then eaten 
o Name of dish 
o Cooking method 
o Ingredients  

▪ List all ingredients – using brand names and amounts (if you are able to weigh things, 
that would be very useful) 

▪ It is important to include cooking oils/fats to your ingredients 
In the main diary (Food intake sheet): 

o Record the recipe name, e.g. Lasagne – recipe and served portion. 

 

Figure: Food portion sizes 
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Figure: Food portion sizes 
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Common used spoons, cups and glasses sizes 
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Food intake sheet - EXAMPLE Page 1 out of 2 

Volunteer Code:          Day: Mo    Tu    We    Th    Fr    Sa    Su   (please circle)       Date: __/__/20_ 

 

TIME 
 

BRAND NAME 
FOOD/DRINK 

(description; how cooked; where bought; 
brand and any comments) 

AMOUNT SERVED  LEFT OVER  

08.00 Alpen Original Muesli  Small bowl (A)  
 Tesco Milk (semi-skimmed) ~100mL  
 Tesco White toast (fresh baked large) bloomer 1 thick slice  
 Anchor Butter, spreadable, unsalted 1 teaspoon  
 Robertson’s Marmalade orange (thick cut) 1 tablespoon  

10.30  Coffee (from machine), milk (semi-
skimmed), no sugar small cup (190ml) teaspoon 

13.00 Allison’s Bread: Wholemeal thick 2 slices   
 Cathedral city Extra mature cheddar cheese match box sized (B)   
 Utterly Butterly Spread, original 1 tablespoon  
  Orange large Peel & pips  
 Tesco Diet Coca Cola 1 can (330ml)  

15.30 PG Tips Tea - see recipe sheets medium mug (220ml)  
  Twix bar 1 regular   

18.00  Chilli con carne – see recipe, page 2 medium portion 
300g (B - stew)  

  Cauliflower, boiled in salted water small portion (about 
70g) (A – boiled potatoes)  

  Potatoes, roasted in vegetable oil small portion (about 
70g) (A)  

 Ski Low fat Strawberry yoghurt  1 small yoghurt  
20.00 Blossom hill Red Wine – Italian Shiraz 1 small glass (175ml)  
22.15  Tap water Half pint  
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Recipe sheet – EXAMPLE Page 2 out of 2 

Please use this sheet for any recipes that you use whilst recording the child’s intake for us. In the “portion 
served” box tell us how much of the recipe the child actually ate. Use this sheet also to tell us how the child 
would usually take tea on a regular basis. 
INTERVENTION DIARY         
Volunteer Code:                      Day: Mo   Tu   We    Th    Fr    Sa    Su (please circle)          Date: __/__/20_ 

 

NAME of RECIPE AND 

INGREDIENTS 

(description, cooking method etc) 

BRAND NAME AMOUNT IN RECIPE (g) PROPORTION 

SERVED 

Tea (medium cup)   220mL 
water  200mL  
semi skimmed milk Tesco 30mL  
Tea bag  PG Tips strong infusion  
    
Chilli con carne   ¼ of the recipe 
Lean minced beef  Tesco 440 g  
1 large onion, diced   Large white onion  
6 cloves of garlic, finely chopped   6 fat cloves  
tin of tomato puree  Tesco small tin  
tin chopped tomatoes  Napoli Large can (440g)  
tin red kidney beans, drained and 
washed  

Tesco Large can (440g)  

Plain flour  ASDA’s smart price Heaped tablespoon  
beef stock  cube OXO  1 cube  
1 large red pepper, deseeded and 
chopped  

 1 large pepper  

MILD CHILLI POWDER – ASDA smart price 1 heaped teaspoon   
Salt and pepper to season   Pinch of  
Dried mixed herbs  Schwartz’s 1 level teaspoon  
A little vegetable oil -  
(enough to cover the bottom of 
the casserole dish) 

Waitrose 2 tablespoons  
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General questions about the child’s food/ drink in the last 4 days 

Special diet 

1. Does the child follow a special diet e.g. gluten free, casein free, vegetarian, cholesterol 
lowering, weight reducing? 

 
No 
 
Yes           

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

If yes, please give details? 
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INTERVENTION DIARY                                                                                       (Page 1 of the 1st day of completion) 
                                                                    FOOD INTAKE SHEET 
 

Volunteer Code: .............Day: Mo    Tu    We    Th    Fr    Sa    Su   (please circle) Date: __/__/20_   Visit.....  

 

TIME 
 

BRAND NAME 
FOOD/DRINK 

(description; how cooked; where bought; brand 
and any comments) 

AMOUNT SERVED  LEFT OVER  
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Recipe Sheet                                                                                             (Page 2 of the 1st day of completion) 

Use this page only for recipes and then state the amount the child consumed on the previous page 

       
Volunteer Code:                      Day: Mo   Tu   We    Th    Fr    Sa    Su (please circle)          Date: __/__/1_ 

 

NAME of RECIPE AND INGREDIENTS 

(description, brand etc) 

BRAND NAME AMOUNT IN 

RECIPE (g) 

PORTION SERVED 
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Issued on: 

   Randomisation No. 

   day      month             year 
  (in letters) 

 
 
 
 
 
 

APPENDIX 4.2 
 
 

GI SYMPTOMS DIARY CARD 

Bi2muno® 

                                                
School of Food Biosciences 

Food Microbial Sciences Unit 
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The Bristol Stool Form Scale: to be used for the evaluation 
of patient stools! 

 

 

 

77Watery, no solid pieces. Result of veryWatery, no solid pieces. Result of very
fast transitfast transit

66Fluffy pieces with ragged edges, aFluffy pieces with ragged edges, a
mushy stoolmushy stool

55Soft blobs with clear cut edgesSoft blobs with clear cut edges
(easy to pass)(easy to pass)

44Like a sausage or snake-smooth andLike a sausage or snake-smooth and
softsoft

33Like a sausage but with cracks on itsLike a sausage but with cracks on its
surfacesurface

22Sausage-shaped but lumpySausage-shaped but lumpy

11Separate hard lumps, like nuts (hard toSeparate hard lumps, like nuts (hard to
pass). Result of slow transitpass). Result of slow transit

TypeTypeAppearanceAppearanceStool formStool form
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                                                                                                                                                             Week … 

                                        
                                                                                 Date of first day of the week: 
 
Please complete one row each day.  
Day No. of bowel 

movements 
Stool form 

(average daily score) 
Abdominal pain Bloating Flatulence Product 

intake 
 
0=None 
1=One 
2=Two 
3=Three 
>3=More than 
three 

 
1=Separate hard lumps, like nuts 
2=Sausage-shaped but lumpy 
3=Like a sausage or snake but with cracks on its 
surface 
4=Like a sausage or snake, smooth and soft 
5=Soft blobs with clear cut edges 
6=Fluffy pieces with ragged edges, a mushy stool 
7=Watery, no solid pieces 

 
0=None 
1=Present but well tolerated 
2=Present and interfering with but not preventing normal daily activities 

(like work or sleep) 
3=Preventing normal daily activities 
 

 

E
xa

m
pl

e       

 
1 
 

      

 
2 
 

      

 
3 
 

      

 
4 
 

      

 
5 
 

      

 
6 
 

      

 
7 
 

      

   day      month             year 
  Randomisation No. 

 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 

0 1 2 3 
 0 1 2 3 

 x x x x x 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 0 1 2 3 

 
0 1 2 3 

 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 0 1 2 3 

 
0 1 2 3 

 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 0 1 2 3 

 
0 1 2 3 

 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 0 1 2 3 

 
0 1 2 3 

 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

5 6 7 0 1 2 3 
 0 1 2 3 

 
0 1 2 3 

 

yes no 

yes no 

yes no 

yes no 

yes no 

yes no 

yes no 

yes no 

x 

Bi2muno® 
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At the end of Week … please answer: 
 

Over the past week, do you consider that your child has felt better than in the previous week?                                                   
�yes� no�

 
 

Over the past week, do you consider that your child has slept better than in the previous week?                                                     
�yes� no�

   
 

Over the past week, do you consider that your child was less stressed than in the previous week?                                           
�yes� no�

 
 

Over the past week, do you consider that your child was more alert than in the previous week?                                                 
�yes� no�
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APPENDIX 4.3 
 

Sample submission form 
Screening No…….……………………………  
Date………….………………………………… 
All participants  
It is important that this section is filled out for all participants of the study when 
samples are submitted. The aims of this section are to understand the symptoms, 
health, treatments and diet of the participant at the time at which the samples were 
taken. 
1. Symptoms, health and treatments 
a) Please tick any of the following symptoms or state any other bowel symptoms that 
have occurred in the week prior to sample collection. 
 
 
Bi2muno® 

 
 
 
 
 
 

 
 

Week … 

Please complete the row if there are any changes in GI 
symptoms 

 

Day No. of bowel 
movements 

Stool 
consistency 

Abdominal 
pain 

Bloating Flatulence Product 
intake 

. 
  

 
1=Hard 
2=Formed 
3=Loose 
4=Watery 
 

 
0=None 
1=Present but well tolerated 
2=Present and interfering with but not preventing 

normal daily activities (like work or sleep) 
3=Preventing normal daily activities 
 

 
 

E
xa

m
pl

e 

      

 
1 
 

     

 
 
2 
 

     

 
 
3 
 

     

 
 

 
4 
 

     

 
5 
 
 

     

 
6 
 
 

     

 
7 
 
 

     

 

Randomisation No. 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 >3 1 2 3 4 
 

0 1 2 3 
 

0 1 2 3 
 

0 1 2 3 
 x x x x x 

yes no 

yes no 

yes no 

yes no 

yes no 

yes no 

yes no 

yes no 
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2. DIET 
 

1. Has the child changed the diet during sample collection in the week …?  
 
 
No                 Yes                  
 
If yes, please give more details below 

 
 

          
 
 
 
 
 
 
 
 
 
 
 
 
 

DAY 
 

DIET KIND OF 
SAMPLE 

COLLECTED 
 

REASON FOR THE CHANGE 

Urine Saliva Stool 

 
1 
 

 
   

 

 
2 
 

 
   

 

 
3 
 

     

 
4 
 

     

 
5 
 

     

 
6 
 

     

 
7 
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3. Behaviour  
 
a) If bowel symptoms (section 1) and/or diet issues (section 2) were evident during 

the week … when the samples were taken, were these associated with worsened 
behaviour that is associated with ASD: 

 
 bowel symptoms?  Yes   ☐  No   ☐ 
 
 diet issues?   Yes   ☐  No   ☐ 
 
 
b) If yes to either or both, please provide details: 
 

When did it happen?  
Please specify the which day of the week and which sample you were 
collecting 

 
…………………………………………………………………………………. 
 
How long ago did this occur? 

 
 ………………………………………………………………………………….. 
  
 How long did this last? 
 
 …………………………………………………………….................................. 
  
 What aspects of behaviour changed? 
 
 ………………………………………………………………………………….. 
 
 ………………………………………………………………………………….. 
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 4. Concomitant medications 

 
 
 
 

 
Is the child taking any concomitant medication, 
 including dietary supplement?         

 
If YES, please fill in the concomitant medication section below 

Concomitant medication log  

Enter all medications taken during the week ... 
MEDICATION 

NAME 
TYPE 

(capsule, tablet, 
suppository, enema, 

syrup, etc.) 

DOSAGE FREQUENCY 
(once only, once a day, 

twice a day, once 
weekly, etc.) 

START DATE 
(day, month, year) 

END DATE 
(day, month, year) 

REASON FOR 
MEDICATION 
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Thank you very much for completing the sample submission form as part of the study. 
If you have any questions or comments regarding the study, please do not hesitate to 
contact the study investigators.  
 
Thank you very much for your time and effort. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



If#so,#would#you#and#your#child#be#willing#to#
par7cipate#in#our#prebio7c#feeding#study?#

For$further$informa.on$please$contact$
$Roberta#Grimaldi#

on$r.grimaldi@pgr.reading.ac.uk$or$
07538209801$

$
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APPENDIX 5.2 

 
Volunteer Information Leaflet  

 
 

Title: Effect of a prebiotic (B-GOS) supplementation on microbiota and 
gastrointestinal (GI) symptoms in children with autism spectrum disorders 
(ASD) 
 
My name is Roberta Grimaldi, I am a research student working at the University of Reading 
studying the role of the gut bacteria in children with autism spectrum disorders (ASD), 
especially in relation to gut symptoms. My supervisors are Prof. Glenn R Gibson and Dr. 
Adele Costabile, who specialise in gut microbiology.  
 
You and your child have been invited to take part in a volunteer research study at the 
University of Reading. 
 
Before you decide, it is important that you understand why the research is being done and 
what it will involve.  Please take time to read the following information carefully and discuss 
it with others if you wish (friends, relatives or your GP, for example).  Ask if there is anything 
that is not clear or if you would like more information.  Take time to decide whether or not 
you wish to take part.  Thank you for reading this. 
 
What is the purpose of the study? 
 

 
Please read the following inclusion/exclusion criteria to identify if your child is able to 
participate in the trial. 
 
Exclusion Criteria - If the following applies to him/her, he/she will not be able to 
participate in the trial: 

 

                                               
School of Chemistry, Food 
Biosciences and Pharmacy 

Food Microbial Sciences Unit 
 

The aim of this study is to investigate the effect of a dietary prebiotic food supplement (B-
GOS, Bimuno - Clasado UK) on composition of the gut bacteria and their products in the 
gut of children with autism. We aim to recruit 42 children with autism into this study.  
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• Use of antibiotics, prebiotics or probiotics (in food products or as supplements) in the 

last 4 weeks prior to, or during the study period. 

• Regular use of certain medications (see section 3.4). 

• Children who have received bowel preparation for investigative procedures in the 4 

weeks prior to the study. 

• Children who have undergone surgical resection of any part of the bowel. 

 

Inclusion Criteria – If the following applies to your child, he/she is suitable for the trial: 

 

• Children aged 5-10 years with formal ASD diagnosis.  

• Children’s parent or guardian has given written informed consent to participate and is 

willing to participate in the entire study. 

 
Why is this study being carried out? 
 
It has been known for a long time that bacteria in the lower gut (bowel) can influence health. 
Some bad bacteria produce unhealthy substances that harm the gut. However, not all bacteria 
are harmful and most in the gut are actually positive. These produce beneficial substances 
that the human body can use.  
 
In individuals with ASD, parents and health professionals have commonly recognised a 
higher incidence of dietary and/or bowel problems. It has been postulated that imbalances in 
the gut bacteria and/or metabolites present in the gut may be a contributing factor to these 
symptoms, with potentially bad (toxin-producing) bacteria colonising the gut. Studies to 
investigate such possibilities have led to inconsistent results and no studies have yet linked 
imbalances in the gut microbiota with imbalances of gut microbiota products.  
 
Certain carbohydrates (so-called ‘prebiotics’) are not digested by the human gut and they 
provide food for beneficial bacteria and thus they improve the composition by preventing the 
growth of bad bacteria. Individuals could therefore benefit from these safe and effective 
dietary interventions to maintain the healthy gut bacteria and overall health. 
 
This study is being carried out to establish the effect of one such prebiotic, called 
galactooligosaccharide (B-GOS) on the relative balance of gut bacteria and metabolites.  
 
What will I be asked to do? 
 
As the parent or guardian, we would like for you to discuss with your child (where 
appropriate), the potential participant, the purpose of the research study and what would be 
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involved for them. Where appropriate, it is important that you decide together whether you 
would like to participate.  
 
The study will last 10 weeks and it will include 2 weeks baseline (before the treatment), 6 
weeks treatment and 2 weeks fellow up. 
 
Screening: If you decide to participate, we will ask you to give a brief medical history of 
your child, to fill in a 4-days food diary and to provide few personal details in order to 
determine his/her inclusion in this study. This is to provide some background information 
such as age and gender and will also provide some information on the recent diet and gut 
health of the participant to the study investigators.  
Samples: If your child meets the inclusion criteria, you will be asked to provide your child’s 
following samples: 20g of stool sample (weekly), 10ml of urine sample and 2ml of saliva 
sample (daily – or as often as possible). These will be used to screen some parameters that 
we are interested in (composition of gut bacteria and metabolites).  
 
Treatment: We would like to form a group of volunteers that meet all the inclusion criteria 
that will then be randomly assigned a volunteer number and placed in one of two groups 
(one of which will start with B-GOS and the other Placebo). A placebo is a dummy 
treatment, which looks like the real thing but is not. It contains no active ingredient. To 
minimise any outside influence, neither you nor the investigator will know whether you are 
taking GOS or Placebo. Details about each stage of the research are provided in a table at the 
end of this document. 
These products will be supplied to you in sachets of powder (1.8g - app. 1 teaspoon) and you 
will be asked to reconstitute them with water or other drinks or sprinkle them over your 
child’s bowl of cereal. You will be provided with enough sachets to last until your next visit. 
You will be asked to give to your child one sachet each day. It may be easier to remember if 
you do that at the same time each day, e.g. in the morning, with their normal breakfast.  
 
Gut symptoms and concomitant medication: During the 10 weeks you will be required to 
fill in a diary recording the number of faecal samples and gut symptoms your child 
experiences each day. The diary system works using a scale of severity requiring a tick in the 
appropriate box or a yes/no answer. In addition, any medication your child is taking or has 
during the study will also have to be recorded, including the type and dosage of the 
medication and the start and end date. 
 
Behavioural assessment: Before and after the treatment period you will be asked to 
complete four mood and behaviour questionnaires (AQ, ATEC, EQ-SQ and SCAS-P) and 5-
days sleep diary. They will give us additional information about the effect of the treatment 
related to social and communication difficulties. 
 
Your child and/or you will either be asked to visit the Department of Food and Nutritional 
Sciences, University of Reading or the investigator will visit your home on 5 different 
occasions over the course of the 10 weeks study. At each visit, you will be asked to provide 
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your child’s stool, saliva and urine sample. Specific containers and all relevant instructions 
will be provided for sample collection. Additionally, you will also be asked to fill in some 
questionnaires related to your child’s sleep, mood and behaviour.  
 
Are there any risks? 
 
B-GOS has been widely used in a number of different feeding trials with various groups of 
volunteers and was well tolerated by all. Participation in this study does not pose any 
significant risk.  
 
However, some people who have taken other similar prebiotics have reported an increase in 
gas production, with slight bloating feelings, some flatulence and mild diarrhoea. Cases of 
this are very rare. Occasionally, people have experienced gut cramping. 
 
 
Confidentiality 
 
Children’s records will be kept strictly confidential. Children’s study results will be recorded 
in a case record form for the study investigator but their name will not appear in this or on 
any report/publication of the results. Children’s records will be kept by the investigators for 
five years. However, these records will only contain an identification code while information 
matching volunteer names with identification codes will be kept separately from these files 
by a departmental secretary. The only time data will be matched with volunteer names is for 
those volunteers that request to have their personal results discussed with them.  
 
General  
 

• This study has been subject to ethical review by the Southampton Research Ethics 
Committee and has been given a favourable ethical opinion for conduct. 

• The travel expenses (with maximum £15 per visit) to the University will be covered 
upon receipt of train or bus tickets or at the rate of £0.45 per mile.  

• The participation in this study is purely voluntary. Your children may leave the study 
at any time without giving a reason. You are free to ask the investigator for more 
information about this study before you give consent for your child to take part or 
once you have agreed to take part in the study. 

• The general results from the study and those relating to children’s individual samples 
may be obtained from Miss Roberta Grimaldi once the study is finished and all 
statistical analysis has been completed. No information relating to any other 
volunteer will be given. The information collected during this study and the overall 
results are still only experimental and although they will give us new information 
about how the bacteria in the human gut work and what they do, the results can not 
be used to tell the difference between health and ill-health. 
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What happens next? 
 
If you would like to take part in this study, or have any questions then please contact the 
principal investigator Roberta Grimaldi, using the details below. Alternatively, if you are 
satisfied and happy to participate, then sign the consent forms and fill pre-trial 
questionnaires and send back to Roberta using the stamped/addressed envelope. Following 
Roberta will contact you and make arrangement for a visit. 
 
 
 
 
 
 
 
Investigator 
Miss Roberta Grimaldi  
  

Department of Food and Nutritional 
Sciences 

Telephone: +44 7538209801 

University of Reading, P.O. Box 226,  
Reading RG6 6AP 

E-mail: r.grimaldi@pgr.reading.ac.uk  

  
 
 
Sponsor 
Clasado Biosciences Ltd.  
2-6 Church Street,  
St Helier,  
Jersey,  
JE2 3NN 
Telephone: 01534 715 100  
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Trial Day Stage of the study Procedures 

 
-2 weeks 

 
Screening period 

Contact the Department of Food and Nutritional Sciences or arrange for an induction session 
during which you will be asked questions to determine inclusion criteria and you will get the 
chance to find out details on the study from the investigator.  
Once you consent to your child’s participation in the study, you will be asked to fill in 4-day 
food diary during this period.  

 
2weeks 

 
Run-in Period 

 

• You will be asked to fill in daily GI symptom diary, 5-day sleep diary and 4 
questionnaires related to mood and behaviour of your child.  

• You will also be asked to collect daily (or as often as possible) urine (10ml) and saliva 
(2ml) samples and weekly stool samples (20g).  You will be provided with instructions 
and home kits. You will have a choice of either storing samples and bringing them to the 
University at arranged visits or telephoning the study investigator and requesting 
collection of the samples.  

• Weekly telephone calls from the member of the research team will allow you to clarify 
any questions or concerns and for the research team to assess the compliance with sample 
collection, storage (where applicable), diary and questionnaires. 

 
   

6 weeks 

 
 

Intervention study 
 

• The child will be requested to take 1 sachet of 1.8g prebiotic or placebo food supplement 
daily. Please reconstitute it with water and make your child take the sachet at the same 
time each day.  

• You will be asked to fill in daily GI symptom diary  
• You will be asked to collect daily (or as often as possible) urine (10ml) and saliva (2ml) 

samples and weekly stool samples (20g).  You will be provided with instructions and 
home kits. You will have a choice of either storing samples and bringing them to the 
University at arranged visits or telephoning the study investigator and requesting 
collection of the samples.  

• Weekly telephone calls from the member of the research team will allow you to clarify 
any questions or concerns and for the research team to assess the compliance with sample 
collection, storage (where applicable), diary and questionnaires.  

• At the end of the treatment period, you will be asked to fill in 5-day sleep diary and 4 



 157 

questionnaires related to your child’ behaviour and mood. 
 
 

2weeks  

 
 

Follow-up Period 

• You will be asked to fill in daily GI symptom diary  
• You will be asked to collect daily (or as often as possible) urine (10ml) and saliva (2ml) 

samples and weekly stool samples (20g).  You will be provided with instructions and 
home kits. You will have a choice of either storing samples and bringing them to the 
University at arranged visits or telephoning the study investigator and requesting 
collection of the samples.  

• Weekly telephone calls from the member of the research team will allow you to clarify 
any questions or concerns and for the research team to assess the compliance with sample 
collection, storage (where applicable), diary and questionnaires.  

• At the end of the follow-up period, you will be asked to fill in 4 questionnaires related to 
your child’s behaviour and mood. 

Trial Day Stage of the study Procedures 
Visit 1  2 weeks before the 

start of the 
treatment period 

At visit 1 (this could either be investigator visiting your home or you visiting the University 
of Reading), you will be provided with: 

• Home kits for collection of stool, urine and saliva samples and given instructions on 
how to use these kits and store samples.  

• You will also be provided with GI symptom and sleep diaries.  
• The regularity of sample collection, storage or any other concerns that you may have 

with trial procedures will be discussed. 
• Height and weight measurements will be taken either by the investigator or by you. 
• You will be asked to provide your child’s stool sample on this visit from either that 

day or any 3 days after visit 1.  
• Visit will not take longer than an hour. 

 
Visit 2 

 
Start of the 

intervention period 
(2weeks) 

At visit 2 (this could either be investigator visiting your home or you visiting the University 
of Reading) all remaining samples and diaries from the run-in period will be collected. You 
will be asked: 

• To fill in 4 questionnaires related to your child’s behaviour and mood during this 
visit.  
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• You will be provided with correct number of sachets for the first 3 weeks of 
treatment, home kits for collection of stool, urine and saliva samples, GI symptom 
diary and given all relevant instructions. 

• Weight of the child will be recorded either by the investigator or by you.  
• Concomitant medication will be checked and any changes to child’s diet, GI 

symptoms or behaviour will be discussed with you. Any other concerns that you may 
have in relation to the study procedures will also be discussed (it will take about 30 
minutes). 

• You will also be asked to provide your child’s stool sample on this visit from either 
that day or any 3 days prior or after visit 2.  

• Weekly telephone calls from the member of the research team will be maintained 
during this period too.  

• Visit will take about 1 and half hours. 
 

Visit 3  
 

3 weeks after the 
start of the 

intervention period 

At visit 3 (this could either be investigator visiting your home or you visiting the University 
of Reading) all remaining samples and diary from the first 3 weeks of the intervention 
period will be collected. You will be provided with: 

• Correct number of sachets for the remaining 3 weeks of treatment, home kits for 
collection of stool, urine and saliva samples, GI symptom and sleep diaries and given 
all relevant instructions. 

• Concomitant medication will be checked and any changes to the child’s diet, GI 
symptoms or behaviour will be discussed with you. Any other concerns that you may 
have in relation to the study procedures will also be discussed (it will take about 30 
minutes). 

• You will also be asked to provide your child’s stool sample on this visit from either 
that day or any 3 days prior or after visit 3.  

• Weekly telephone calls from the member of the research team will be maintained 
during this period too.  

• Visit will take about 30-45 minutes. 
  At visit 4 (this could either be investigator visiting your home or you visiting the University 
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Visit 4 End of the 
intervention period 

(3weeks) 

of Reading) all remaining samples and diaries from the intervention period will be collected. 
• You will be asked to fill in 4 questionnaires related to your child’s mood and 

behaviour during this visit.  
• You will be provided with home kits for collection of stool, urine and saliva samples, 

GI symptom diary and given all relevant instructions (it will take about 30 minutes). 
• Weight of your child will be recorded either by the investigator or by you.  
• Concomitant medication will be checked and any changes to your child’s diet, GI 

symptoms or behaviour will be discussed with you. Any other concerns that you may 
have in relation to the study procedures will also be discussed (it will take about 30 
minutes). 

• You will also be asked to provide your child’s stool sample on this visit from either 
that day or any 3 days prior or after visit 4.  

• Weekly telephone calls from the member of the research team will be maintained 
during this period too.  

• Visit will take about 1 and half hours. 
 

Visit 5 
 

End of the trial 
(2weeks) 

At visit 5 (this could either be investigator visiting your home or you visiting the University 
of Reading) all remaining samples and diary from the follow-up period will be collected.  

• You will be asked to fill in 4 questionnaires related to your child’s behaviour and mod 
during this visit.  

• Weight of your child will be recorded either by the investigator or by you.  
• Concomitant medication will be checked and any changes to the child’s diet, GI 

symptoms or behaviour will be discussed with you. 
• You will be asked to provide your child’s stool sample on this visit from either that 

day or any 3 days prior or after visit 5.  
• Visit will take about 1 and half hours. 
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APPENDIX 5.3 
 

Volunteer Information Leaflet (Primary aged School children) 
 

 
Would you like to help me answer  

a tricky question? 

 

                 
 

Please read the sheet carefully and talk to your mum and dad to  
see if you can take part. If you have any questions please ask me. 

 
 

 

                                               
School of Chemistry, Food 
Biosciences and Pharmacy 

Food Microbial Sciences Unit 
 

Hello my name is Roberta and I need your help!  
I would like to understand is whether  

eating a sugar can help  
to stop your tummy problems. 
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These ‘unfriendly’ bacteria may cause the tummy problems.  
Eating this sugar could help to stop your tummy pain increasing  

the ‘friendly’ bacteria and reducing the ‘unfriendly’ bacteria. 
 

                                
 

What will I have to do? 
 

You will need to do: 
                                                                     

 
 
 
 

 

 

What is the research about? 
 

Some children have tummy problems, 
for example pain and toilet problems. 

Lots and lots of bacteria live in the tummy. 
Some of them are ‘friendly’ and  

some are ‘unfriendly’. 
 

 
1) Take a prebiotic powder every day for 6 

weeks with your Breakfast 
(It does not have any smell or taste) 

2) Give Roberta 10 poo samples, 
so she can analyse your tummy bacteria 
and urine and saliva samples as often  
as possible. Your mum and dad will help you 
in using the kit to collect the sample. 
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Talk to your mum and dad, they will help you decide.  
You can also talk to me and ask me as many questions as you want.  

 
 
 
Miss Roberta Grimaldi 

 

  
Department of Food and 
Nutritional Sciences 

Telephone: +44 7538209801 

University of Reading, P.O. Box 
226,  
Reading RG6 6AP 

E-mail: r.grimaldi@pgr.reading.ac.uk  

 

3) Help your mum in completing 
diaries after the sample collection  
and how your tummy feels 
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APPENDIX 5.4 
 
Consent Form – Parent/Guardian consent 

 
 
If the individual who will be providing the samples for the study are under 16 years of 
age and do not wish to consent for themselves or if they are unable to understand fully 
the study outlined in the information sheet, the parent/guardian is asked to provide 
consent for their children in the study. 

 
 

1. I confirm that I am the parent/guardian of……………………….. (Please 
initial) 

 
 
 
2. I have read and had explained to me by ………………….. the accompanying 

information sheet relating to the project entitled “Effect of a prebiotic (B-GOS) 
supplementation on microbiota and gastrointestinal (GI) symptoms in children 
with autism spectrum disorders (ASD)”. (Please initial) 

 
 
3. As the parent/guardian of the child involved in the study, I have had explained 

to me the purposes of the project and what will be required of my child and 
any questions I had, have been answered to my satisfaction. I agree to the 
arrangements described in the information sheet in so far as they relate to my 
participation. (Please initial) 

 
 
4. As the parent/guardian of the child involved in the study, I understand that 

participation is entirely voluntary and that my child has the right to withdraw 
from the study at any time without giving reason, and that this will be without 
detriment to any care or services they may be receiving or may receive in the 
future. (Please initial) 

 
 
5. As the parent/guardian of the child involved in the study, I authorise the 

Investigator to consult the General Practitioner of my child and I authorise 
their General Practitioner to disclose any information which may be relevant to 
my proposed participation in the project. (Please initial) 
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6. This project has been subjected to ethical review, according to the procedures 
specified by the University Research Ethics Committee, and has been given a 
favourable ethical opinion for conduct. (Please initial) 

 
 
7. As the parent/guardian of the child involved in the study, I have received a 

copy of this consent form and of the accompanying information sheet.  
(Please initial) 

 
 
8. As the parent/guardian of the child involved in the study, I consent to my child 

providing urine and saliva sample daily and one faecal sample weekly. (Please 
initial) 

 
 
9. As the parent/guardian of the child involved in the study, I wish to receive a 

summary of the results once the study is complete and analysed statistically. 
(Please initial as appropriate) 

 
 
            Yes                           No 
 
 
 
10. As the parent/guardian of the child involved in the study, I have had explained 

to me that my child and my contact details and personal information are kept 
strictly confidential and only the investigator can have access to them. My 
child and me will be matched to an identification code and my child and my 
personal details will be kept separately from this file. (Please initial)  

 
                             
 
 

11. As the parent/guardian of the child involved in the study, I have had 
explained to me that consent for my contact details and personal information to 
be added to the Nutrition Unit Volunteer Database is entirely voluntary. 
Accordingly I consent as indicated below: 
 
I consent to my contact details being stored on the Nutrition Unit Volunteer 
Database. (Please initial as appropriate) 
 

Yes                            No  
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I consent to the information that I provided in the pre-study questionnaire 
being stored on the Nutrition Unit Volunteer Database. (Please initial as 
appropriate) 
 

Yes                            No  
 

 
 
 
Name  ………………………………… 
 
Signed  ………………………………… 
 
Date             ………………………………… 
 
 
I consent to the GP of my child being informed of their participation in the study 
and of my screening results and give his/her contact details below. 
 
 
Name  ………………………………… 
 
Address    ……………………………………………...………………………… 
 
………………………………………………………………………….………… 
 
Telephone …………………………………. 
 
 
 
Witnessed by 
 
Name  ………………………………………. 
 
Signed  ………………………………………. 
 
Date  …………………………………….…
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APPENDIX 5.5 
 

Assent Form – Children 
 

WOULD YOU LIKE TO HELP ROBERTA? 
 

 
 

 
 

1. My name is……………………… 
(Please colour the box) 

 
 
 
2. I talked to my mum and dad about Roberta’s study 

(Please colour the box) 
 
 
 
 
3. I am happy to help Roberta in her study                                       

(Please colour the box) 
 
 

 
 
 

 
SIGNATURE ……………………………….. 

 
DATE……………………. 
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Head of Department 
Professor Bob Rastall 

Department of Food and Nutritional Sciences 
Food Microbial Sciences Unit 
 
Whiteknights 
Reading RG6 6AP 
 
Phone +44 7538209801 
Email r.grimaldi@pgr.reading.ac.uk 
Web www.food.rdg.ac.uk/ 
 

  - 

APPENDIX 5.6 
 

Dear Dr. 

Your patient [name] has been enrolled into a trial conducted by the University of 
Reading, on behalf of Clasado Biosciences Ltd., St Helier, Jersey. 
Details of the trial procedure can be obtained from the Department of Food and 
Nutritional Sciences at the University of Reading, at the address given above. Briefly, 
your patient was asked to take a new food supplement, Bi2muno®, which is a prebiotic. 
 
GI bacteria secrete detrimental as well as beneficial compounds and overgrowth of 
certain species or imbalances (i.e. increases in less beneficial and decreases in beneficial 
bacteria) in the gut microbiota have been associated with ASD. Certain carbohydrates 
(so-called ‘prebiotics’) are not digested by the human gut and they provide food for 
beneficial bacteria and thus they improve the composition by preventing the growth of 
bad bacteria. Individuals could therefore benefit from these safe and effective dietary 
interventions. 
 
We have provided the parents of your patient with an information leaflet, giving details 
about Bi2muno® and the trial procedures. The parents of your patient were asked to sign 
an informed consent and the patient has undergone screening before his/her inclusion 
into the study. Your patient is now receiving daily dose of either Bi2muno® or placebo 
and will continue to receive the treatment, in this parallel study, for the duration of 10 
weeks. No other change to diet or lifestyle is required. At the end of the study, it will be 
possible for the parents of your patient to find out when the patient was receiving active 
or placebo product.  
 
Should you require any further information, please do not hesitate to contact me. 
 
Yours sincerely, 
 
 
 
Roberta Grimaldi 

 date 

 



Randomisation number: 
Date: 

APPENDIX 5.7 
 

ATEC Questionnaire 
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APPENDIX 5.8 
 

 
 

You can choose which days to complete, but it must be 5 consecutive days. 
 

 

Please return the completed diary at your next visit at the University 

We have given you 1 page for each of the 5 days; please see below the empty sheets. 
Please write down the date, and indicate the next study visit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

                                                
School of Food Biosciences 

Food Microbial Sciences Unit 

 

Bi2muno®   Screening No. 

VOLUNTEER 5 DAYS SLEEP DIARY  

Issued on: 

   day      month             year 
  (in letters) 

Date of next visit: 

   day      month             year 
  (in letters) 
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Starting Day: Mo    Tu    We    Th    Fr    Sa    Su   (please circle) Date: __/__/20__ 

 
DAY 1 
 
Morning questions 
 
Answer the following questions about your child’s sleep last night 
 
1.     What time did your child go to bed last night? ___________________ 
2.     What time did your child fall asleep last night? ___________________ 
3.     Did your child wake up during the night last night?  
 
YES NO (circle one) 
 
a)    If YES, how many times ____________________ 
b)   If YES, how much time were they awake__________________ 
 
4.     Last night, did your child take anything to help them sleep? 
 
YES NO (circle one) 
 
a)    If YES, what did they take ____________________ 
b)   If YES, what time did they take it__________________ 
  
5.     What time did your child get up for the day today? __________________ 
6.     About how many hours did your child sleep last night? __________________ 
  
  
Bedtime question: 
 
Answer this question about your child’s day before they go to bed 
 
7.     Did your child take any naps during the day or evening today?  
 
YES NO (circle one) 
 
a)    If YES, how much time total did your child sleep during the day and evening today 
____________________ 
 
 

 

 

 

 

 



 
 

 

  

171 

School of Chemistry, Food and 
Pharmacy               
University of Reading 
Whiteknights 
PO Box 266, Reading RG6 6AP, UK 
phone +44 7538209801 
email r.grimaldi@pgr.reading.ac.uk 

 

 
APPENDIX 5.9 

 
Instructions to collect stool and urine samples 

 
 
Stool and urine samples are biologically active and hence, safe handling is essential. 
Please read these instructions before you collect a stool or urine sample from your child. 
These guidelines are to aid you in sample collection as easily and safely as possible 
using the sample collection kit provided for collecting stool and urine samples.  
 
The sample collection kit comprises of the following: 
 

• two stool collection pots 
• a paper loop to fit over the toilet seat 
• a urine collection container (specimen jar) 
• two polythene bags to insert the sampling tubes for freezing (one for stools and 

one for urine) 
• 2 larger protective plastic tubes 

 
 
Step-by-step instructions for stool sample collection (Pictures below)  
 

 
 

1. Open the envelope and insert the paper loop over the toilet seat (step 1-2).  
2. Ask your child to provide a stool sample onto the paper loop. 
3. Use the spatula inside the inner (smaller) sampling pot to scoop a portion 

(approximately four peas worth) of stool sample from the middle of the stool 
sample. Please try to minimise the urine getting into the stool sampling tube (step 
5). 
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 Stool sample pot 
 

4. Insert the spatula with the stool sample into the inner (smaller) sampling pot and 
tightly seal. 

5. Repeat this with the second tube, so that we have a replicate sample. 
6. Place both tubes with the samples into the larger protective plastic tubes provided 

and ensure that the protective tube is tightly sealed. 
7. Place the protective tubes into the polythene bag provided and seal the bag, 

folding twice around the strap fixed and then folding the side straps into the bag.  
8. Freeze the samples immediately. It is essential that this is performed within ten 

minutes of the sample being collected. 
9. Dispose of the rest of the sample and the paper loop down the toilet. 
10. Please contact the study investigators as soon as possible once the sample has 

been collected from the child and stored in the freezer and they will arrange for 
the sample to be collected within two weeks. 

 
 
Step-by-step instructions for urine sample collection  
 

1. Ask your child the parents to provide a urine sample from their child into the 
urine collection container (specimen jar). 
 

  
 

2. Wash your hands 
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3. Peel open the pack 
4. A) help the child to pass a SMALL QUANTITY of urine into the toilet and stop 

B) help the child to pass a FURTHER QUANTITY of urine directly into the 
container and stop 
C) Finish helping the child to pass urine directly into the toilet 

            D) detach the funnel from the container 
            E) discard the funnel 
            F) FASTEN THE LID SECURELY 

5. Wash your hands and write your child’s ID number on the label provided. 
6. Place the protective tubes into the polythene bag provided and seal the bag, 

folding   twice around the strap fixed and then folding the side straps into the bag.  
7. Freeze the samples immediately. It is essential that this is performed within ten 

minutes of the sample being collected. 
8. Please contact the study investigators as soon as possible once the sample has 

been collected and stored in the freezer and they will arrange for the sample to be 
collected within two weeks. 

 
 
 
If you have any questions regarding these guide lines please do not hesitate to contact 
the study investigators.  
 


