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Approximate inference of gene regulatory
networkmodels from RNA-Seq time series data
Thomas Thorne

Abstract

Background: Inference of gene regulatory network structures from RNA-Seq data is challenging due to the nature
of the data, as measurements take the form of counts of reads mapped to a given gene. Here we present a model for
RNA-Seq time series data that applies a negative binomial distribution for the observations, and uses sparse regression
with a horseshoe prior to learn a dynamic Bayesian network of interactions between genes. We use a variational
inference scheme to learn approximate posterior distributions for the model parameters.

Results: The methodology is benchmarked on synthetic data designed to replicate the distribution of real world
RNA-Seq data. We compare our method to other sparse regression approaches and find improved performance in
learning directed networks. We demonstrate an application of our method to a publicly available human neuronal
stem cell differentiation RNA-Seq time series data set to infer the underlying network structure.

Conclusions: Our method is able to improve performance on synthetic data by explicitly modelling the statistical
distribution of the data when learning networks from RNA-Seq time series. Applying approximate inference
techniques we can learn network structures quickly with only moderate computing resources.

Background
Methods for the inference of gene regulatory networks
from RNA-Seq data are currently not as mature as those
developed for microarray datasets. Normalised microar-
ray data posses the desirable property of being approx-
imately normally distributed so that they are readily
amenable to various forms of inference, and in the lit-
erature many graphical modelling schemes have been
explored that exploit the normality of the data [1–9].
The data generated by RNA-Seq studies on the other

hand present amore challenging inference problem, as the
data are no longer approximately normally distributed,
and before normalisation take the form of non-negative
integers. In the detection of differential expression in
RNA-Seq data, negative binomial distributions have
been applied [10–13], providing a good fit to the over-
dispersion typically seen in the data relative to a Poisson
distribution. Following similar graphical modelling
approaches as applied in the analysis of microarray data, it
is natural to consider Poisson and negative binomially dis-
tributed graphical models. Unfortunately in many cases

Correspondence: t.thorne@reading.ac.uk
Department of Computer Science, University of Reading, Reading, UK

when applying graphical modelling approaches with Pois-
son distributed observations, only models that represent
negative conditional dependencies are available, or infer-
ence is significantly complicated due to lack of conjugacy
between distributions [14]. Poisson graphical models have
been applied successfully in the analysis of miRNA regula-
tory interactions [15, 16], but we might expect to improve
on these by modelling the overdispersion seen in typical
RNA-Seq data sets with a negative binomial model.
One specific case of interest in the analysis of RNA-

Seq data is the study of time series in a manner that
takes into account the temporal relationships between
data points. Previous work in the literature has devel-
oped sophisticated models for the inference of networks
from microarray time series data [4, 5], but whilst meth-
ods have been developed for the analysis of differential
behaviour in RNA-Seq time series [17, 18], little attention
has been given to the task of learning networks from such
data. Although existing nonparametric methods applica-
ble to time series may be applied [19, 20], these were not
specifically designed for application to RNA-Seq data, and
also require time consuming approaches such as Markov
ChainMonte Carlo schemes. There are also existing infor-
mation theoretic methods, for example those of [21], but
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again these were designed for application to microar-
ray data, and are not designed for time series data and
learning of directed networks.
Here we present a method for the inference of networks

from RNA-Seq time series data through the application
of a Dynamic Bayesian Network (DBN) approach, that
models the RNA-Seq count data as being negative bino-
mially distributed conditional on the expression levels of
a set of predictors. Whilst there has been work apply-
ing negative binomial regularised regression approaches
in the literature [22], here we specifically consider the
problem of learning networks from RNA-Seq data, and
apply the horseshoe prior [23, 24], that has been shown to
have advantages in robustness and adaptivity over other
regularisation methods.

Methods
Dynamic Bayesian Networks
In a DBN framework [25], considering only edges between
time points, we can model a sequence of observations
using a first order Markov model, where the value of a
variable at time t is dependent only on the values of a set
of parent variables at time t−1. This is illustrated in Fig. 1
and can be written as

p
(
Xi
t|Xt−1

) = p
(
Xi
t|XPa(i)

t−1

)
(1)

where Pa(i) is the set of parents of variable i in the net-
work. In our case we wish to model the expression level
of a gene conditional on a set of parent genes that have
some influence on it. To learn the set of parent vari-
ables of a given gene, it is possible to perform variable
selection in a Markov Chain Monte Carlo framework,
proposing to add or remove genes to the parent set in a
Metropolis-Hastings sampler. Another option is to con-
sider all possible sets of parent genes as suggested in [20].

Fig. 1 DBN of five random variables X1, . . . , X5 over T time steps.
Variables are conditionally independent when conditioned on their
parent variables (incoming arrows)

However for even modestly sized sets of genes (e.g. 50)
this can be computationally expensive, and so instead we
consider applying a sparse regression approach to learn a
set of parents for each gene. This approach considers the
contribution of all possible parent genes in a regression
framework but encourages sparsity in the coefficients so
that only a small set are non-zero.

Sparse negative binomial regression
Given data D consisting of M columns and L rows, with
columns corresponding to genes and rows to time points,
we seek to learn a parent set for each gene. To do so we can
employ a regularised regression approach that enforces
sparsity of the regression coefficients, and only take pre-
dictors (genes) whose coefficients are significantly larger
than zero as parents. To simplify the presentation, below
we consider the regression of the counts for a single gene
i, y = D2:L,i, conditional on the counts of the remaining
W = M−1 genesX = D1:(L−1),−i. Thematrix X is supple-
mented with a column vector 1 to include a constant term
in the regression. Where there are multiple replicates for
each time point these can be adjusted appropriately.
The counts yt are then modelled as following a negative

binomial distribution with mean exp (Xβ)t and dispersion
ω, where β is a vector of regression coefficients βw and a
constant term βc. The model for a gene i is then

yt ∼ NB (st exp (Xt−1β)t ,ω) , (2)

where we have applied the NB2 formulation of the neg-
ative binomial distribution, and st is a scaling factor for
each sample to account for sequencing depth. The st can
be estimated from the data by considering the sum of
counts for each sample, or by the more robust approach
of [11] where the median of ratios is used. We place a
straightforward normal prior on βc and to enforce sparsity
of the βw we apply a horseshoe prior [23, 24], assuming
that βw ∼ N (0, ζ 2

w), and placing a half-Cauchy prior on
the ζ 2

w,

βw ∼ N
(
0, ζ 2

w
)

(3)

ζw ∼ C+(0, τ). (4)

Then as in [24] we set a prior on τ that allows the degree
of shrinkage to be learnt from the data

τ ∼ C+(0, σ) (5)

p
(
σ 2) ∝ 1

σ 2 . (6)

An example of the sparsity induced in the βw can be
seen in figure 8 in Appendix 2. Finally we place a gamma
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prior on the dispersion parameter ω. This gives a joint
probability (subsuming the model parameters into θ ) of

p(y, θ |X) =
∏

i
p(yi|X,β ,ω)p(ω)

∏

w
p

(
βw|ζ 2

w
)
p

(
ζ 2
w|τ)

p(τ |σ)p
(
σ 2)

(7)

Variational Inference
We now apply a variational inference [26–30] scheme to
learn approximate posterior distributions over the model
parameters. In a Bayesian setting variational inference
aims to approximate the posterior p(θ |x) with a distrub-
tion q(θ). To do so we attempt to minimise the Kullback-
Leibler (KL) divergence between the two, defined as

KL(q(θ)||p(θ |x)) =
∫

q(θ) log
q(θ)

p(θ |x)dθ (8)

= Eq
[
log q(θ)

] − Eq
[
log p(θ , x)

]

+ log p(x). (9)

As the KL divergence is bounded below by zero, it
follows from 9 that

log p(x) = KL(q(θ)||p(θ |x)) − Eq
[
log q(θ)

]
(10)

+Eq
[
log p(θ , x)

]

log p(x) ≥ Eq
[
log p(θ , x)

] − Eq
[
log q(θ)

]
, (11)

and so we can define a lower bound on the logarithm of
the model evidence as

L(q) = Eq
[
log p(θ , x)

] − Eq
[
log q(θ)

]
. (12)

To make the problem of minimising the KL diver-
gence tractable we can consider a mean field approxima-
tion where the posterior is approximated by a series of
independent distributions q(θi) on some partition of the
parameters,

p(θ |x) ≈ q(θ) =
∏

i
q(θi). (13)

Under themean field assumption it can be shown that to
minimise the KL divergence between p(θ |x) and q(θ), or
equivalently to maximise the model evidence lower bound
(or ELBO) L(q), the optimal form for each q(θi) is

log q̂(θi) = Eqj �=i

[
log p(θ , x)

] + const. (14)

where the expectation is over the remaining q(θj �=i). In
many cases this formalism is sufficient to derive a coor-
diante ascent algorithm to maximise the ELBO where the
variational parameters of the q̂(θi) are updated iteratively.
Unfortunately in our model the optimal distribution

q̂ for the regression coefficients βw does not have a
tractable solution. However following [31] we can sidestep
this problem by applying non-conjugate variational mes-
sage passing [32], and we can then derive approximate
posterior distributions for each of the model parameters

following a straightforward parameter update scheme.
The full set of variational updates are given in Appendix 1.
Considering our model as a graphical model as in Fig. 2,

we can decompose the terms of Eqj �=i

[
log p(θ , x)

]
in Eq. 14

into those dependent on θi by considering the neighbours
of θi. Then we can rewrite Eq. 14 as

log q̂(θi) = Eq
[
log p(θi|θPai)

] +
∑

k∈Chi
Eq

[
log p(θk|θPak �=i)

]

(15)

where Chi denotes the children of node i in the graphical
model. Considering each term on the right hand side of
Eq. 15 as a message from another variable in the graphical
model it is possible to derive q̂ in the conjugate expo-
nential family as in [33]. In the non-conjugate case, the
messages can be approximated as in [32], derived for the
negative binomial model in [31].

Results
Synthetic data
We apply our method to the task of inferring directed
networks from simulated gene expression time
series. The time series were generated by utilising
the GeneNetWeaver [34] software to first generate
subnetworks representative of the structure of the

Fig. 2 Graphical model representation of our statistical model.
Applying variational message passing, the approximating distribution
q̂ of a random variable can be updated based on messages passed
from connected nodes
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Saccharomyces cerevisiae gene regulatory network, and
then simulating the dynamics of the networks under our
DBNmodel. Subnetworks of 25 and 50 nodes were gener-
ated and used to simulate 20 time points with 3 replicates.
Synthetic count data were generated by constructing a

negative binomial DBNmodel as in Eq. 2 corresponding to
the generated subnetworks with randomised parameters
β sampled from a mixture of equally weightedN (0.3, 0.1)
andN (−0.3, 0.1) distributions. The initial conditions and
mean and dispersion parameters were randomly sam-
pled from the empirically estimated means and disper-
sions of each gene from a publicly available RNA-seq
count data set from the recount2 database [35] (accession
ERP003613) consisting of 171 samples from 25 tissues in
humans [36]. This was done so as to simulate the observed
distributions of RNA-Seq counts in a real world data set.
We compare our approach against the Lasso as imple-

mented in the lars R package [37], and the Gaus-
sian regularised regression method in the glmnet R
package [38]. For these methods the count data was first
normalised, either by transforming the counts by the

empirical cumulative distribution function of the data and
subsequently mapping these to the quantiles of a N (0, 1)
distribution, or by applying the rlog function of the
DESeq2 R package [13] to normalise the counts. We also
applied the regularised Poisson regression method imple-
mented of the glmnet R package to the count data,
and the mpath R package [22] that performs penalised
negative binomial regression. Finally we also applied a
multinomial regularised regression from the glmnet R
package to discretised data that were binned into 4 dis-
tinct levels by quantiles, to give a discrete DBNmodel. The
degree of regularisation was in each case selected using
cross validation as implemented in the respective software
packages.
In Figs. 3 and 4 we show the partial area under the

receiver operating curve (AUC-ROC) with a cutoff of 0.95
and corrected to fit the range 0 to 1, and area under
the precision recall curve (AUC-PR), as calculated by the
PRROC R package [39], and Matthews Correlation Coeffi-
cient (MCC), for the various methods to be benchmarked.
For the MCC, edges were predicted as those where zero

Fig. 3 Boxplots of partial AUC-ROC, AUC-PR, and MCC for our method (Nb) and the competing methods benchmarked when learning directed
networks of 25 nodes from synthetic data, for 5 subnetworks sampled from the S. cerevisiae gene regulatory network
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Fig. 4 Boxplots of partial AUC-ROC, AUC-PR, and MCC for our method (Nb) and the methods benchmarked when learning directed networks of 50
nodes from synthetic data, for 5 subnetworks sampled from the S. cerevisiae gene regulatory network

was not contained in the 95% credible interval of the
corresponding regression coefficients, and for the Lasso
and glmnet methods, non-zero coefficients were taken
as predicted edges. As the count data were generated by
a stochastic model, we repeated benchmarking on each
network 5 times with resampled negative binomial means
and dispersions and simulated count data. Running time
for our algorithm was under 10 minutes for the 50 node
networks considered.
For networks of 25 nodes in Fig. 3, our method shows

an improved performance over the competing methods
in terms of the AUC-PR, and also in terms of the MCC.
Although the distinction between the approaches is less
marked for the AUC-ROC, this is to be expected as the
simulated biological network structures have far fewer
(< 10%) true positives than true negatives, a situation in
which the AUC-ROC does not distinguish performance as
well as AUC-PR [39, 40].
As can be seen in Fig. 4 performance for larger networks

of 50 nodes is also improved over competing methods in
terms of AUC-PR and MCC. For the competing methods,

quantile normalisation for the Lasso and glmnet appear
to outperform normalisation using the rlog function of
DESeq2. As the only other method applying a negative
binomial distribution, mpath is the closest method to
our approach, but it appears that the application of
the horseshoe shrinkage prior delivers improved perfor-
mance. It is clear that, as might be expected, taking
into account the distributional properties observed in
RNA-Seq data improves on the performance of meth-
ods based on assumptions that do not hold for RNA-Seq
count data.

Neural progenitor cell differentiation
To illustrate an application of our model to a real world
RNA-Seq data set, we consider a publicly available RNA-
Seq time course data set available from the recount2
database [35], accession SRP041159. The data consist of
RNA-Seq counts from neuronal stem cells for 3 replicates
over 7 time points after the induction of neuronal differen-
tiation [41]. To select a subset of genes to analyse we per-
formed a differential expression test between time points
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using the DESeq2 R package [13], and selected the 25
genes with the largest median fold-change between time
points that were also differentially expressed between all
time points.
Applying our method and selecting edges with a pos-

terior probability > 0.95 produced the network shown
in Fig. 5, where it can be seen that there are four genes
(MCUR1, PARP12, COL17A1, CDON) acting as hubs,
suggesting these genes may be important in neuronal
differentiation. Within the network MCUR1 appears to
influence the transcription of a large number of genes with
many outgoing edges, whilst PARTP12, COL17A1 and
CDON have both incoming and outgoing edges. This may
suggest a more fundamental role ofMCUR1 in controlling
neuronal differentiation.
For each node we also calculate the betweenness cen-

trality, which is the fraction of the total number of shortest
paths between nodes in the network that pass through a
given node. This gives a measure of the importance of
a node in the network, as nodes with a larger betwee-
ness centrality will disrupt more paths within the network
if deleted, and act as bottlenecks that connect modules
within the network. Looking at the betweenness central-
ity of each node it appears that PARP12 and CDON, and
to a lesser extent COL17A1, are important carriers of
information within the network. Of these genes playing
a central role in the network, CDON has been shown to

be promote neuronal differentiation through the activa-
tion of p38MAPK pathway [42, 43] and inhibition of Wnt
signalling [44], whilst MCUR1 is known to bind to MCU
[45], that in turn has been shown to influence neuronal
differentiation [46].

Discussion and conclusions
We have developed a fast and robust methodology
for the inference of gene regulatory networks from
RNA-Seq data that specifically models the observed
count data as being negative binomially distributed.
Our approach outperforms other sparse regression
based methods in learning directed networks from time
series data.
Another approach to network inference from RNA-Seq

data could be to further develop mutual information
based methodologies with this specific problem in mind.
Mutual information based methods have the benefit
of being independent of any specific model of the dis-
tribution of the data, and so could help sidestep issues
in parametric modelling of RNA-Seq data. However
this comes at the cost of abandoning the simplifying
assumptions that are made by applying a paramet-
ric model that provides a reasonable fit to the data,
and presents challenges of its own in the reliable esti-
mation of the mutual information between random
variables.

Fig. 5 DBN inferred from the human neuronal differentiation time series data set. Edges were selected using a posterior probability cut-off of 0.95
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Appendix 1: Variational inference
From the results in [31] the model can be written as a
Poisson-Gamma mixture, so that

p(yt|λt) ∼ Pois(λt) (16)
p(λt|xt ,β ,ω) ∼ Gamma (ω,ω exp [−Xβ]) (17)

and the horseshoe prior on β represented using a mixture
of inverse gamma distributions,

p
(
βw|ζ 2

w
) ∼ N

(
0, ζ 2

w
)

(18)

p
(
ζ 2
w|aw

) ∼ InvGamma
(
1
2
,
1
aw

)
(19)

p
(
aw|τ 2) ∼ InvGamma

(
1
2
,
1
τ 2

)
(20)

p
(
τ 2|b) ∼ InvGamma

(
1
2
,
1
b

)
(21)

p
(
b|σ 2) ∼ InvGamma

(
1
2
,
1
σ 2

)
. (22)

Mean field approximation
The mean field approximation of the posterior is then
∏

i
p(yi|λi)p(λi|Xi,β ,ω)p(ω)

∏

w
p

(
βw|ζ 2

w
)
p

(
ζ 2
w
)
p

(
ζ 2
w|τ)

p
(
τ |σ 2) p

(
σ 2)

≈
∏

i

[
q(λi)

]
q(β)q(ω)

∏

w

[
q(ζ 2

w)q(aw)
]
q

(
τ 2

)
q(b).

(23)

The variational updates for λt can be derived as

log q̂(λt) = Eq
[
log p(yt |λt)p(λt |Xt ,β ,ω)

] + const.

= Eq

[

log
λ
yt
t e−λt

yt !
(ω exp(−Xtβ))ωλω−1

t e−λtω exp(−Xtβ)

	(ω)

]

+ const.

= Eq
[
yt log λt−λt+(ω−1) log λt − λtω exp(−Xtβ)

]+const.

(24)
q̂(λt) ∼ Gamma

(
yt + Eq [ω] , 1 + Eq [ω]Eq

[
exp(−Xtβ)

]) (25)

and due to the properties of the log-normal distribution

Eq
[
exp(−Xtβ)

] = exp
(

−XtE [β] + 1
2
Xt
XT

t

)
, (26)

where 
 is the covariance matrix of β under q̂.
As derived in [31], applying non-conjugate variational

message passing, q̂(β) ∼ N (μ,
) and the variational
update for β is

w = exp
(

− Xμ + 1
2
diagonal

(
X
XT

) )
(27)


 =
[
ωXTdiag(E [λ] · w)X + M

]−1
(28)

M = diag
(
E

[
1
σ 2
w

])
(29)

μ = μ + 

[
ωXT (E [λ] · w − 1) − Mμ

]
, (30)

and for the dispersion ω we apply numerical integration as
described in [31].
Then for the horseshoe prior on β , the variational

updates are

log q̂
(
ζ 2
w
) = Eq

[
log p

(
βw|ζ 2

w
)
p

(
ζ 2
w
)] + const.

= Eq

[
−1
2
log ζ 2

w − β2
w

2ζ 2
w

+ (−α − 1) log ζ 2
w − γ

ζ 2
w

]

+ const. (31)

q̂
(
ζ 2
w
) ∼ InvGamma

(
1,

1
2
E

[
β2
w
] + Eq [aw]

)
(32)

log q̂(aw) = Eq
[
log p

(
ζ 2
w|aw

)
p

(
aw|τ 2)] + const.

= Eq

[
− 1
awζ 2

w
− 1

2
log aw − 3

2
log aw − 1

τ 2aw

]

+const. (33)

q̂(aw) ∼ InvGamma
(
1,Eq

[
1
ζ 2
w

]
+ Eq

[
1
τ 2

])
(34)

log q̂
(
τ 2

) = Eq

[
∑

w
log p

(
aw|τ 2) + log p

(
τ 2|b)

]

+ const.

= Eq

[

−
∑

w

(
1
2
log τ 2 + 1

awτ 2

)
− 3

2
log τ 2 − 1

bτ 2

]

+ const. (35)

q̂
(
τ 2

) ∼ InvGamma
(
1
2

+ W
2
,Eq

[
1
b

]
+

∑

w
Eq

[
1
aw

])

(36)

log q̂(b) = Eq
[
log p

(
τ 2|b) p (

b|σ 2)] + const.

= Eq

[
−1
2
log b − 1

τ 2b
− 3

2
log b − 1

σ 2b

]

+ const. (37)

q̂(b) ∼ InvGamma
(
1,Eq

[
1
τ 2

]
+ Eq

[
1
σ 2

])
(38)

log q̂
(
σ 2) = Eq

[
log p

(
b|σ 2) p

(
σ 2)] + const.

= Eq

[
−1
2
log σ 2 − 1

bσ 2 − log σ 2
]

+ const. (39)

q̂
(
σ 2) ∼ InvGamma

(
1
2
,Eq

[
1
b

])
. (40)

Appendix 2: Supplemental Figures
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Fig. 6Metrics calculated for networks of 25 nodes separated by individual network structure for the 5 different networks considered. Each bar plot
corresponds to 5 simulated data sets from a single network structure
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Fig. 7Metrics calculated for networks of 50 nodes separated by individual network structure for the 5 different networks considered. Each bar plot
corresponds to 5 simulated data sets from a single network structure
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Fig. 8 Posterior means and standard deviations for the regression coefficients β for a single node when applied to the NPC data considered in
“Neural progenitor cell differentiation” section
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