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ABSTRACT

The contribution of cloud to the radiation budget of southernWest Africa (SWA) is poorly understood and yet

it is important for understanding regional monsoon evolution and for evaluating and improving climate models,

which have large biases in this region. Radiative transfer calculations applied to atmospheric profiles obtained

from the CERES–CloudSat–CALIPSO–MODIS (CCCM) dataset are used to investigate the effects of 12 dif-

ferent cloud types (defined by their vertical structure) on the regional energy budget of SWA (58–108N,

88W–88E) during June–September.We show that the large regionalmean cloud radiative effect in SWA is due to

nonnegligible contributions from many different cloud types; eight cloud types have a cloud fraction larger than

5%and contribute at least 5%of the regionalmean shortwave cloud radiative effect at the top of the atmosphere.

Low clouds, which are poorly observed by passive satellite measurements, were found to cause net radiative

cooling of the atmosphere, which reduces the heating from other cloud types by approximately 10%. The

sensitivity of the radiation budget to underestimating low-cloud cover is also investigated. The radiative effect

of missing low cloud is found to be up to approximately225Wm22 for upwelling shortwave irradiance at the

top of the atmosphere and 35Wm22 for downwelling shortwave irradiance at the surface.

1. Introduction

The West African monsoon (WAM) is an important

climatological system globally that plays a key role in the

climate of sub-SaharanWest Africa where many countries

rely on theWAM for most of their rainfall (e.g., Nicholson

and Grist 2003). Despite its importance, WAM pre-

cipitation is not well represented in climate models, which

are unable to reproduce the observed intermittence and

intraseasonal variability of precipitation in West Africa

(Roehrig et al. 2013). Moreover, large differences exist

between the accumulated WAM precipitation simulated

by differentmodels (Hourdin et al. 2010). These errors lead

to a large spread and low confidence in projections of fu-

ture precipitation in West Africa in climate models (e.g.,

Cook and Vizy 2006; Paeth et al. 2011).

WAM precipitation is difficult to model because it

depends on a number of complex factors, including, butCorresponding author: Peter G. Hill, p.g.hill@reading.ac.uk
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not limited to, the regional energy budget. Numerous

modeling studies have shown the sensitivity of the WAM

circulation to changes in themodeled shortwave (SW) and

longwave (LW) radiation. Tompkins (2005) and Rodwell

and Jung (2008) showed circulation and precipitation dif-

ferences overWest Africa arising from the direct radiative

effect of aerosol climatology changes in the European

Centre for Medium-RangeWeather Forecasts (ECMWF)

model. The strength of the WAM in the Met Office Uni-

fiedModel (UM) is also affected by changes to clouds and

hence radiation (Marsham et al. 2013; Birch et al. 2014).

More recently, Li et al. (2015) highlighted a strong sensi-

tivity of theWAM circulation and associated precipitation

to the radiation schemes used in their simulations.

Given this sensitivity of the WAM circulation and

precipitation to radiation budget changes, it is important

to ensure that simulated radiative properties in models

are realistic. Unfortunately, climate models have large

cloud and hence radiation errors in this region (Roehrig

et al. 2013). These model errors are persistent in higher-

resolution simulations (Stein et al. 2015), and particu-

larly large in southern West Africa (SWA) during the

summer (Hannak et al. 2017). Reducing these model

errors requires an improved understanding of how

clouds affect the radiation budget of West Africa, but

the complex cloud climatology with frequent multilayer

clouds in this region (Stein et al. 2011) makes it difficult

to identify cloud types and to attribute model errors to

different cloud regimes. A lack of surface-based cloud

observations (e.g., Knippertz et al. 2015b) and uncertain

aerosol–cloud interactions (e.g., Knippertz et al. 2015a)

further limit understanding of clouds in this region.

The main objective of this article is to quantify the

occurrence and radiative effects of different cloud types

in the SWA region during the monsoon season. Previous

studies have quantified cloud radiative effects for differ-

ent cloud types on global scales (e.g., Hartmann et al.

1992; Futyan et al. 2005; Oreopoulos et al. 2017). InWest

Africa, detailed analyses of cloud radiative effects have

been limited to a single location (Niamey, Niger) north of

SWA (Bouniol et al. 2012; Miller et al. 2012; Collow et al.

2016). Consequently, the radiative effects of different

cloud types have yet to be quantified and remain highly

uncertain in SWA. Low clouds are prevalent in SWA

during the summer (e.g., Schrage et al. 2007; Schuster

et al. 2013; van der Linden et al. 2015; Adler et al. 2017)

but poorly represented in climate models (Knippertz

et al. 2011). Low clouds are also difficult to observe with

satellites as they are often obscured by higher clouds (van

der Linden et al. 2015; Hill et al. 2016) and as a result

remain poorly understood in this region. Consequently,

we place a particular emphasis on low clouds in this study.

To capitalize on the profiling capability of active remote

sensing, we use the CERES–CloudSat–CALIPSO–

MODIS (CCCM) dataset (Kato et al. 2010, 2011; Ham

et al. 2017), which combines observations from active and

passive instruments. Using CCCM data as input to radi-

ative transfer calculations, we can investigate radiative

effects of different cloud types at the top of the atmo-

sphere (TOA), at the surface, and on heating and cooling

in the atmosphere.

2. Methods

a. CCCM dataset and radiative transfer calculations

In this study, we calculate and analyze cloud radiative

effects for June–September in the region bounded by

58–108N, 88W–88E. This time period and region was

chosen to coincide with previous and ongoing research

within the Dynamics–Aerosol–Chemistry–Cloud Interac-

tions inWestAfrica (DACCIWA) project (e.g., Knippertz

et al. 2015b; Hill et al. 2016; Hannak et al. 2017).

Moreover, this domain strikes a balance between being

sufficiently large to minimize statistical sampling errors

and being sufficiently homogeneous for domain mean

values to remain meaningful. We use release B1 of the

CCCM dataset (Kato et al. 2010, 2011; Loeb 2008),

which is available from July 2006 to April 2011 in-

clusive. As this study focuses on the monsoon season

(defined as June–September) over SWA, the resulting

data length is 19 months. The satellites used to gen-

erate the CCCM product are polar orbiting, crossing the

equator at approximately 0130 and 1330 local time.

The CCCM dataset contains those CERES and

MODIS footprints that correspond to the CloudSat–

CALIPSO ground track (Fig. 1). Clouds and the Earth’s

Radiant Energy System (CERES) and Moderate Res-

olution Imaging Spectroradiometer (MODIS) are pas-

sive instruments providing information on the radiative

properties at the TOA, while the CloudSat radar and

Cloud–Aerosol Lidar and Infrared Pathfinder Satellite

(CALIPSO) lidar are active instruments that provide

detailed vertical structure. The CERES optical footprint

is 20 km; adding the time response results in a point-

spread function of approximately 35 km. Consequently,

each CERES footprint contains approximately 30

CloudSat profiles and 100 CALIPSO profiles.

To reduce data volumes, the CloudSat–CALIPSO

profiles within each footprint are grouped based on

their vertical structure. First CloudSat and CALIPSO

observations are merged on to a common 1km 3 1km

horizontal grid. Within each profile, cloud-top and

cloud-base height for up to six cloud layers are estimated

from the CloudSat cloud classification product and the

CALIPSO vertical feature mask. Profiles with the same
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cloud-top and cloud-base height are combined to form up

to 16 cloud groups. For further details on the grouping

process, see Kato et al. (2010). For each cloud group, cloud

properties are derived from a combination of CloudSat,

CALIPSO, and MODIS measurements, as described by

Bodas-Salcedo et al. (2016), with a vertical resolution of

approximately 240m. For simplicity, we shall refer to these

groups as ‘‘CCCM group profiles’’ hereinafter.

The CCCM dataset is used as input to radiative trans-

fer calculations using the Suite of Community Radia-

tive Transfer Codes (SOCRATES) two-stream radiation

scheme (Edwards and Slingo 1996) to obtain radiative fluxes

and heating rates for each profile. TheCCCMgroup profiles

provide cloud water content and liquid droplet effective

radius. Temperature, water vapor, and surface and aerosol

properties are also obtained from the CCCM dataset, as

described below, but do not vary within CERES footprints.

The CCCM dataset includes calculated profiles of irradi-

ances and heating rates for each CERES footprint; our new

calculations are necessary to provide irradiances andheating

rates for the individual cloud groups within each CERES

footprint, which are not available in the CCCM product.

The treatment of cloud in our radiative transfer calcu-

lations followsBodas-Salcedo et al. (2016), except for two

changes. First, we changed the cloud phase when the

combination of cloud temperature [based on Goddard

Earth Observing System Model (GEOS) reanalyses] and

cloud phase (based on the CloudSat phase) reported by

CCCM was unphysical (i.e., water cloud at temperatures

below 233K and ice cloud at temperatures above 273K).

Our second change relates to the parameterization used

within the radiative transfer model to calculate the single

scattering properties of clouds from the cloud bulk mi-

crophysical properties. We use a different parameteriza-

tion of ice single scattering properties (Baran et al. 2013)

because it results in better agreement between our cal-

culations and the CERES measurements at the TOA.

Our radiative transfer calculations were quite sensitive to

the choice of parameterization of ice single scattering

properties. For example, using a different parameteriza-

tion of ice single scattering properties (Baran et al. 2016)

in our calculations increases the mean TOA cloud radi-

ative effects for all high cloud types, by 27–78Wm22 for

SW and by 5–21Wm22 for LW radiation.

The CCCM dataset provides a profile of aerosol type

and mean aerosol extinction for each CERES foot-

print. Seven common aerosol species are represented,

including soluble and insoluble particles, small and large

dust particles, sulfuric acid, sea salt, and soot. The spec-

trally varying extinction, single scattering albedo, and

FIG. 1. Schematic illustrating how measurements from different instruments are combined to form CCCM group

profiles (also known as cloud groups) in the CCCM dataset. Based on Kato et al. (2011).
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asymmetry of these aerosol species are parameterized

in SOCRATES as a function of aerosol mass mixing

ratio, as described in Cusack et al. (1998). For each

aerosol type, we use the inverse of the SOCRATES

parameterization of extinction to derive profiles of

aerosol mass mixing ratios from the aerosol extinction

profiles. These aerosol mass mixing profiles are used as

input to the SOCRATES calculations, ensuring that

the aerosol extinction profiles in our calculations and

the CCCM dataset match.

Our radiative transfer calculations require knowl-

edge of surface albedo in the SW spectral region and

surface emissivity in the LW region. When available,

we take MODIS narrowband surface albedo mea-

surements from the CCCM product, which are con-

verted to average albedo values for the SOCRATES

spectral bands through linear interpolation with

weighting by the solar spectrum. When the MODIS

surface spectral albedo is not available, the broadband

surface albedo from CERES is applied over land, and a

broadband surface albedo as a function of solar ze-

nith angle (Taylor et al. 1996) is applied over ocean. In

the LW spectral region, the surface emissivity from

CERES products is applied for all cases.

b. Validation of calculations

To evaluate the reliability of these calculations, we

perform a point-to-point comparison between calcu-

lated irradiances at the TOA and coincident CERES

observations, as shown in Fig. 2. SOCRATES irradi-

ances corresponding to different CCCM groups are

weighted by the fraction of the corresponding CERES

footprint they occupy. Because of differences in swath

and pixel sizes between the different instruments (e.g.,

Fig. 1), the CCCM group profiles used for our radiative

transfer calculations correspond to a narrow swath

within the coincident CERES footprint, rather than the

entire footprint. This representativeness difference may

lead to nonnegligible discrepancies between calculated

and CERES-observed irradiances. However, we expect

these discrepancies to be random rather than systematic;

therefore, this intercomparison provides a fair evalua-

tion of our calculations. In general, the calculations

show good agreement with the CERES measurements.

The calculated outgoing SW radiation (OSR) flux has

a bias of 24.65Wm22 and a Pearson correlation co-

efficient of 0.92 with the CERES observations. For the

outgoing LW radiation (OLR) fluxes there are notable

FIG. 2. Comparison of SOCRATES-calculated (a) SW and (b),(c) LW outgoing irradiances

at the TOA with collocated CERES observations that are taken from the integrated CCCM

product. SOCRATES values are weighted means of the calculations for each CCCM cloud

group within the corresponding CERES footprint, where the weighting is determined by the

fraction of the CERES footprint occupied by each cloud group. Shading represents joint fre-

quency of occurrence. Correlation coefficient and bias (Wm22) with respect to CERES ob-

servations are listed in each panel.
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day–night differences: at night the bias is 21.13Wm22

and the correlation is 0.91, whereas during the day the

bias is larger (220.50Wm22) and the correlation is

smaller (0.85). The large daytime bias in OLR flux is

evident in Fig. 2b, as a significant proportion of the

calculated irradiances are much lower than the co-

incident CERES observations.

The potential causes of the large bias in the calcu-

lated daytime OLR flux include the input CCCM

group profiles and the approximations made in the

SOCRATES scheme. The representativeness differ-

ence, highlighted above, is not expected to cause

systematic differences between the calculations and

the CERES observations. For each CERES footprint,

the CCCM dataset includes radiative fluxes computed

using various different treatments of clouds and

aerosol. Interestingly, the CCCM irradiance calcula-

tions suffer from a similar magnitude daytime OLR

bias in the DACCIWA region (Ham et al. 2017). The

large bias also persists when we reran SOCRATES

with the temperature-dependent parameterization of

ice optical properties described by Baran et al. (2016).

These findings help rule out the possibility that the

OLR bias is due to the radiative transfer models

themselves.

Cloud extinction within each CCCM group profile is

normalized so that the total cloud optical depth matches

that retrieved fromMODIS. As different algorithms are

used to retrieve cloud optical depth from MODIS

measurements during the day and at night (Minnis et al.

2011), differing biases between day and night may be

expected. However, one would expect the MODIS op-

tical depth retrieval to be more reliable during the day

when the SW radiation measurements provide addi-

tional information. The OSR bias is relatively small,

which suggests that the daytime total cloud optical depth

is reasonable. Consequently, the error in the CCCM

group profiles is most likely in the vertical distribution of

cloud extinction, which has a large effect on the OLR

but little effect on OSR.

One possible bias in the input CCCM group profile is

the misattribution of low-cloud extinction detected by

MODIS to higher-altitude cloud in the CCCM dataset,

because of undetected low-cloud layers. The combined

active measurements from CALIPSO and CloudSat

provide the best satellite-based estimate of low cloud,

but detection of low cloud remains challenging in some

scenarios. For example,CloudSat is unable to detect all

boundary layer clouds as a result of ground clutter, and

CALIPSO is unable to detect lower clouds when high

clouds with optical depth greater than 2–3 exist and

completely attenuate the lidar signal (Mace et al.

2009). Low cloud is more common during the day as

discussed in section 3, so this problem is likely to be

more significant during the day. If low cloud is missing

in the CloudSat and CALIPSO profiles, then the nor-

malization of optical depth by MODIS may lead to an

attribution of low-cloud extinction to higher-level

clouds. This would lead to a reduction in OLR, while

having little impact on the OSR, which is consistent

with the daytime SOCRATES calculations. We shall

refer to this as the ‘‘low-cloud misattribution’’ hy-

pothesis throughout this article.

c. Diurnal mean approximation

Surface-based synoptic and geostationary satellite

observations show maximum low cloud occurrence in

SWA at approximately 1000 UTC and minimum at 1800

UTC (van der Linden et al. 2015). Moreover, like much

of the tropics, SWA has a diurnal cycle in high cloud

linked to the occurrence of convection, with more high

cloud at night than during the day (e.g., Hill et al. 2016).

As the CCCM product is based on polar-orbiting satel-

lite measurements, it overpasses SWAat only two points

in the diurnal cycle and clearly will not capture this

complex cloud diurnal variability. However, estimates

of the diurnal mean irradiances are required to analyze

the contribution of different cloud types to the mean

radiation budget.

We use different methods to approximate the di-

urnal mean radiative effect of different cloud types

in the SW and LW regions. For a SW diurnal mean

approximation, we conducted further calculations

with solar zenith angles corresponding to each hour

of the diurnal cycle. The hourly calculations based

on 1330 LT profiles were averaged together to ap-

proximate the diurnal mean, as we assume 1330 LT

cloud properties are more representative of mean

daylight conditions than 0130 LT cloud properties.

The hourly calculations based on 0130 LT profiles

are averaged together to obtain a second estimate,

which we use to derive the uncertainty resulting from

diurnal changes in cloud, as described in section 2e. For

the LW diurnal mean approximation, we simply av-

erage the mean irradiances at 1330 and 0130 LT,

which is consistent with several previous studies (e.g.,

Hong et al. 2016).

To evaluate our diurnal mean approximations, we

compare our results to Geostationary Earth Radiation

Budget (GERB) measurements of TOA irradiances

(Harries et al. 2005; Dewitte et al. 2008) for the same time

period and region as CCCM. With a temporal resolution

of 15min theGERBhigh-resolution (HR)measurements

resolve the diurnal cycle of TOA irradiances. The GERB

product does not reportOSRfluxes for solar zenith angles

larger than 808. For zenith angles between 86.58 and
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104.58, we use mean twilight values from CERES (Kato

2003). For zenith angles between 80.08 and 86.58, where
CERES twilight values are not reported, we use linear

interpolation in time between the GERB measurements

and the CERES twilight values.

For OSR, GERB has a regional diurnal mean of

149Wm22. Applying our SW diurnal mean approx-

imation to our SOCRATES calculations results in a

regional mean OSR of 144Wm22 when we use the

1330 LT CCCM data, and 125Wm22 when we use the

0130 LT CCCMdata. Estimating the OSR using the LW

diurnal mean approximation [i.e., by averaging the mean

OSR at 1330 LT (376Wm22) and the mean OSR at

0130 LT (0Wm22)] gives an OSR of 188Wm22. For

OLR, GERB has a regional mean of 230Wm22.

Applying our LW diurnal mean approximation to our

SOCRATES calculations results in a regional mean of

220Wm22. We can separate the calculation bias and the

LW diurnal mean approximation bias by applying our

LW diurnal mean approximation to the CERES OLR

measurements in the CCCM product, as these measure-

ments represent the OLR we would obtain if the cal-

culations were unbiased. Applying the LW diurnal

mean approximation to the CERES measurements

results in the same value as averaging the GERB di-

urnal mean: 230Wm22. This shows that the bias in the

LW diurnal mean approximation when applied to our

LW calculations is due to the bias in the calculated

OLR at 1330 LT.

d. Definition of cloud types and cloud radiative effects

Based on the classification scheme described in

Tselioudis et al. (2013), we assign a cloud type to each

CCCM group profile, based on cloud vertical structure.

Pressure thresholds of 680 and 440 hPa are used to

classify each CCCM group profile according to whether

it contains one or more of low- (L), mid- (M), or high-

level (H) cloud and whether cloud in different layers is

connected or not. As illustrated in Fig. 3, this classifi-

cation results in 13 different cloud scene types: clear

sky and 12 cloud types. Cloud occurring in multiple

layers is denoted by a letter for each layer it occurs in,

while the letter x is used to denote when cloud extends

across the pressure boundaries. For convenience, we

use ‘‘isolated low cloud’’ to refer to CCCM group

profiles that contain only low cloud (i.e., 1L), ‘‘dis-

contiguous low cloud’’ to refer to low cloud that occurs

beneath distinct higher clouds (i.e., ML, HL, HxML,

and HML), and ‘‘contiguous low cloud’’ to refer to

scenes where the cloud extends vertically from the low

layer to higher layers (i.e., MxL, HMxL, and HxMxL).

Note that passive sensors can only identify isolated low

clouds, since high clouds in the other two categories

will obscure low clouds.

FIG. 3. Illustrative schematic of the 12 cloud types used in this study. Low-, mid-, and high-

level clouds are separated using pressure levels of 680 and 440 hPa. The letter x between two

layers indicates they are contiguous in the vertical extent.
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In this article we calculate the cloud radiative effect

(CRE) by

CRE5 (IallY 2 Iall[ )2 (IclrY 2 Iclr[ ) , (1)

where Iall denotes the all-sky irradiance calculated by

SOCRATES, I clr is the clear-sky irradiance, calculated

by repeating the SOCRATES calculations without

cloud, IY denotes a downwelling irradiance, and I[ de-

notes an upwelling irradiance. This method is applied to

calculate both TOA and surface CREs; in-atmosphere

CREs are calculated by subtracting the surface CRE

from the TOA CRE.

Let fi,j be the fraction of the ith CERES footprint

occupied by the jth CCCM group profile, and CREi,j be

the corresponding CRE (Fig. 3). Then the regionalmean

CRE can be calculated by

CRE5

�
i

 
�
ni

j51

f
i,j
CRE

i,j

!

�
i

 
�
ni

j51

f
i,j

! , (2)

whereni is the number ofCCCMgroupprofiles (atmost 16)

in the ith CERES footprint.

After classification, each CCCM group profile corre-

sponds to one of 13 cloud scene types. The contribution

from each scene type to the regional mean CRE (CREk)

can be calculated by

CREk 5

�
i

 
�
ni

j51

d
t(i,j)k

f
i,j
CRE

i,j

!

�
i

 
�
ni

j51

f
i,j

! , (3)

where t(i, j) is the cloud scene type of the jth CCCM

group profile in the ith CERES footprint and dt(i, j)k is

the Kronecker delta function, which equals one if

t(i, j) 5 k and zero otherwise. This dt(i, j)k term ensures

that only cloud scenes of type k are included in the con-

tribution of scene type k to the regional mean CRE.

Using these 13 cloud scene types, since each CCCM

group profile is assigned to a single scene type, we can

rewrite the CRE as

CRE5 �
13

k51

CREk . (4)

Since the CRE for the clear-sky scene is zero, in practice

we only need to sum over the 12 cloud types.

To provide further insight into how different

cloud types affect the regional energy budget, the

contribution to the total cloud radiative effect from

each cloud type CREk [Eq. (3)] can be further de-

composed into its frequency of occurrence Fk and

mean coincident cloud radiative effect CCREk (the

mean radiative effect calculated using only the

CCCM group profiles that correspond to that cloud

type). The term Fk is calculated by summing the

fraction of each CERES footprint assigned to that

cloud type k and dividing by the total number of

CERES footprints:

Fk 5

�
i

 
�
ni

j51

d
t(i,j)k

f
i,j

!

�
i

 
�
ni

j51

f
i,j

! . (5)

CCREk is calculated by averaging the CREs for all the

CCCM group profiles assigned to cloud type k, weighted

by the fraction of a CERES footprint assigned to each

CCCM group profile:

CCREk 5

�
i

 
�
ni

j51

d
t(i,j)k

f
i,j
CRE

i,j

!

�
i

 
�
ni

j51

d
t(i,j)k

f
i,j

! . (6)

Then the contribution from each cloud type to the CREk

can be calculated by

CREk 5FkCCREk . (7)

This decomposition can also reveal hidden biases in at-

mospheric models, where compensating errors in cloud

frequency of occurrence and cloud radiative properties

can lead to reasonable regional mean irradiances (e.g.,

Nam et al. 2012).

e. Treatment of uncertainty in cloud radiative effects

We account for three distinct sources of uncertainty in

the CREs calculated in this article: sampling, the diurnal

approximations, and the radiative transfer calculations.

We estimate the uncertainty from each of these sources

independently and then derive the total uncertainty by

combining them in quadrature.

We perform radiative transfer calculations for a large

number of CERES footprints (approximately 9600 day-

time and 9100 nighttime footprints). However, as we are

not continuously sampling the entire domain, any

quantity we derive from these calculations will be sub-

ject to a statistical sampling error. We estimate sampling

errors by bootstrap sampling of the CERES footprints.

The bootstrapping is performed separately for day and
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night, and 200 bootstrap samples are used. Uncertainty

for each cloud type is then calculated as the standard

deviation of the mean CREk in each of the bootstrap

samples. The magnitude of this uncertainty is quite

small; for each of the contributions of the different cloud

types to the regional mean CRE, it is less than 1.5Wm22

for both SW and LW radiation.

Given that they are based on only two points in the

diurnal cycle, our approximations for the diurnal mean

irradiance represent an additional source of uncertainty.

The SW diurnal approximation uncertainty is estimated

by the absolute value of the difference between the SW

diurnal mean approximation (i.e., based on calculations

using the 1330 LT CCCM data) and the SW diurnal

mean calculations using the 0130 LT CCCM data. For

LW radiation, the diurnal approximation uncertainty is

estimated by the difference between the LW diurnal

mean approximation and the LW radiation calculations

at either 1330 or 0130 LT (since the LW diurnal mean is

approximated by the average of the 1330 and 0130 LT

LW radiation calculations, it does not matter which time

we use). The magnitude of the diurnal approximation

uncertainty is very variable for different cloud types.

The SW diurnal approximation uncertainty is smallest

(less than 0.25Wm22) for the contribution of HxMxL to

the regional mean CRE. The SW diurnal approximation

uncertainty is largest (almost 7Wm22) for the contri-

bution of 1L to the regional mean CRE. The SW diurnal

approximation uncertainty for 1L is large because of

large changes in its frequency at 0130 LT compared to

1330 LT (cf. Fig. 4). The diurnal mean approximation

uncertainty in the LW radiation is smaller; the largest

LW uncertainty is approximately 2.5Wm22 for the

contribution of HL to the TOA CRE.

To account for uncertainty related to our radiative

transfer calculations, we produce a second estimate of the

CRE, where we use the comparison with CERES de-

scribed in section 2b to exclude CCCM group profiles

corresponding to large TOA irradiance errors, as ex-

plained below. This is referred to as ‘‘the constrained

dataset’’ hereinafter. Using the constrained dataset, a

second estimate of the coincident cloud radiative effect

(CCRE) is calculated for each cloud type. The difference

between the CCRE from the full dataset and the con-

strained dataset is used as an estimate of uncertainty.

However, we have no direct evidence that the cloud type

frequencies are incorrect (or a justifiable alternative es-

timate of the cloud type frequencies), sowe do not use the

constrained dataset to calculate the frequency of occur-

rence of the cloud types. Thus CREk for each cloud type k

from the constrained dataset is calculated as the product

of the CCREk from the constrained dataset and Fk from

the full dataset.

To exclude CCCMgroup profiles with large errors, we

need to determine error thresholds for both the SW and

LW radiation calculations. Moreover, we do not want to

exclude CCCM group profiles where the difference be-

tween the calculated irradiance and CERES measure-

ments may be due to the representativeness differences

between CERES and CloudSat–CALIPSO. As a result,

we determine these thresholds based on the mean spa-

tial variability between CERES measurements. We first

calculate mean absolute differences in the irradiance for

adjacent CERES pixels along the CloudSat–CALIPSO

flight track. The thresholds are set as the 90th percentile

of these differences, with independent thresholds for the

SW and LW radiation.

The resulting error thresholds in SW and LW radia-

tion are 132.6 and 28.3Wm22, respectively. The differ-

ence between our calculations and the corresponding

CERES measurements exceeds one of these thresholds

for approximately 32.4% of CERES footprints during

the day and 21.6% at night. Unsurprisingly, once we

exclude these points, the remaining points have im-

proved correlations with CERES observations in-

creasing from 0.92 to 0.95 for the OSR, from 0.85 to 0.97

for the daytime OLR, and from 0.91 to 0.97 for the

nighttime OLR. The OLR biases are reduced both for

day and night from220.5 to28.9Wm22 and from21.1

to20.2Wm22, respectively. However, themagnitude of

the OSR bias increases from 24.7 to 212.4Wm22. The

majority (approximately 56%) of the daytime points

that are excluded from this refined dataset are 1H and

HL cloud types. This is consistent with the low-cloud

misattribution hypothesis, because these are the cloud

types for which the extinction from any missing low

cloud will be attributed to high cloud and thus have a

particularly large effect on the OLR. Generally, the

magnitude of the calculation uncertainty is quite small

(less than 1.5Wm22), with the exceptions being the

calculation uncertainty for the contribution of 1H

(;2Wm22) and HL (;6Wm22) to the 1330 LT LW

TOA CRE.

As highlighted previously, these three sources of un-

certainty are calculated independently and combined in

quadrature. For the instantaneous irradiances, we only

have sampling and calculation uncertainty and the cal-

culation uncertainty is generally the larger of the two.

For diurnal mean irradiances, the SW uncertainty

resulting from sampling and the calculations is much

smaller than the instantaneous uncertainty at 1330 LT

because the diurnal mean SW irradiances are much

smaller than the 1330 LT values. For both SW and LW

diurnal mean irradiances, the dominant source of un-

certainty depends on the cloud type. The largest com-

bined (SW1 LW) uncertainty is for 1L as a result of SW
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diurnal approximation uncertainty and for HL as a re-

sult of calculation uncertainty in the LW radiation.

3. The radiative effects of different cloud types

The frequency of occurrence of the different cloud

types is shown in Fig. 4. Cloud frequency of occurrence at

1330 and 0130 LT are calculated and shown separately.

SWA is very cloudy, and has infrequent clear sky (less

than 10%), in agreement with existing cloud climatol-

ogies (e.g., Hill et al. 2016). The most common cloud

types are 1L, 1H, and HL, but 8 of the 12 cloud types

occur at least 5% of the time in this region, indicating a

much more diverse set of cloud types than those found in

many other parts of the globe (e.g., Tselioudis et al. 2013;

Bodas-Salcedo et al. 2016). Multilayer clouds (i.e., where

distinct clouds occur simultaneously in multiple layers)

occur frequently (42%during the day and 46%during the

night), representing a further source of complexity for

understanding cloud radiative effects.

Isolated low cloud (1L) is one of the most common

cloud types with a daytime frequency of 17% and a

nighttime frequency of 7%. Low cloud occurs evenmore

frequently beneath other cloud layers; the combined

isolated and discontiguous low-cloud frequencies are

48% and 36% for daytime and nighttime, respectively.

Including contiguous low cloud increases frequencies to

67% during the day and 56% at night, consistent with

the value of 60% reported in Knippertz et al. (2011)

based on surface observations at Kumasi, Ghana. The

CCCM product may also miss some low cloud beneath

high cloud, as explained in the previous section.

The increase in high cloud at night is in agreement with

previous analyses of cloud cover in this region from both

CloudSat–CALIPSO and MODIS (e.g., Stein et al. 2011;

Hill et al. 2016), as is the increase in low-cloud cover

during the day. However, the Kumasi observations in

Knippertz et al. (2011) show similar low-cloud cover at

0130 and 1330 local time. The domain mean increase in

low-cloud cover in the CCCM dataset during the day is

driven by a larger daytime increase in low-cloud cover to

the north of the domain as previously detailed by van der

Linden et al. (2015). Including only CCCM data between

68 and 78N (Kumasi is at 6.78N), gives smaller day–night

differences with total discontiguous low-cloud cover of

50% during the day, and 47% at night.

Figure 5a shows that the mean SW TOA CCRE of

each cloud type is strongly linked to the number of

layers it extends through, which is an indication of the

cloud physical thickness. Physical thickness is in turn

correlated with water path and optical depth (Wang

et al. 2000). The HxMxL cloud type, which extends into

three layers and is likely to be deep convection, has the

largest mean SWCCRE (476Wm22 at 1330 LT). Those

cloud types that extend between two layers have the

next largest mean SW CCRE with values ranging from

FIG. 4. June–September 2006–10 mean frequency of occurrence of each cloud type in the

CCCM product over SWA. Cloud frequency of occurrence at 1330 and 0130 LT are nor-

malized separately. Uncertainty resulting from sampling is illustrated by the error bars, which

show the 95% confidence interval based on bootstrapping.
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275 to 297Wm22 at 1330 LT. Clouds that occur sepa-

rately in one or more layers have 1330 LT values ranging

from 150 to 187Wm22.

The diurnal mean downwelling SW irradiance at TOA

is approximately 36% of the mean value for the 1330 LT

overpasses (not shown). However, for upwelling SW ra-

diation at the TOA, the SW diurnal approximation (in-

dicated by the dashed lines on the bars in Fig. 5a) gives

CCRE values between 36% and 40% as large as the in-

stantaneous 1330 LT calculations, depending on cloud

type. These ratios differ between cloud types because of

the increased atmospheric path length as the solar zenith

angle increases. This leads to an increase in the extinction

of the direct solar beam resulting from cloud, which has a

bigger impact on the SW CCRE of clouds that are less

optically thick. Consequently, for the diurnal mean, the

relative difference between CCREs for different cloud

types is less than for the 1330 LT calculations.

The TOALWCCRE, shown in Fig. 5b, is of a smaller

magnitude than the diurnal mean TOA SW CCRE for

almost all cloud types, with isolated high cloud being the

exception. As expected the magnitude of LW TOA

CCRE is determined by cloud-top temperature, and

thus closely linked to the presence of high cloud.

For all cloud types, the LW TOA CCRE is larger

during the day than at night. Since TOA downwelling

LW irradiances are zero, the LW TOA CCRE is cal-

culated by subtracting the all-sky OLR from the clear-

sky OLR. As a result, the LW TOA CCRE can be

increased by either increasing the clear-sky OLR or

decreasing the all-sky OLR. In the SOCRATES calcu-

lations, both these effects occur. A warmer surface

temperature during the day leads to a larger value for

the clear-sky OLR. Larger ice mass mixing ratios during

the day lead to smaller values for the all-sky OLR. The

daytime increase in the LW TOA CCRE for isolated

low clouds is driven by the increase in the clear-sky

OLR. The daytime increase in the LW TOA CCRE for

high clouds is driven by larger daytime ice mass mixing

ratios. Note that the daytime all-sky OLR is under-

estimated compared to CERES (Fig. 2b). Moreover,

these larger daytime ice mass mixing ratios may not be

realistic, and are consistent with the low-cloud mis-

attribution hypothesis.

Using the constrained dataset (i.e., excluding CCCM

group profiles where there is a large discrepancy be-

tween the calculated and observed irradiances in either

the SW or LW), Fig. 5 shows that the exclusion has a

FIG. 5. June–September 2006–10 SOCRATES calculated mean (a) SW and (b) LW mean

CCRE at the TOA over SWA. Bars labeled 0130 and 1330 LT correspond to calculations

based on the nighttime and daytime satellite overpasses, respectively. The diurnal approxi-

mation shown in (a) is based on averaging calculations that use the daytime CCCM data and

a range of solar zenith angles, as explained in section 2c. Uncertainty resulting from errors in

our calculations is illustrated by the constrained calculations, which exclude CCCM group

profiles where the SOCRATES–CERES TOA differences are large, as explained in section 2e.

Error bars show the 95% confidence interval based on bootstrapping.
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relatively small effect on the mean daytime SW or

nighttime LW CCRE, but has a larger effect on the

mean LW daytime CCRE. The biggest effect is for the

HL cloud type, where the mean CCRE reduces in

magnitude from 61 to 31Wm22. The H, HM, HML, and

HMxL cloud types also have a reduction in magnitude

of the mean daytime LWCCRE of 10–20Wm22. Errors

in these cloud types suggest that high clouds are too

optically thick, which is consistent with the low-cloud

misattribution hypothesis. Intriguingly, the day–night

differences in themean LWCCRE at TOA are reduced,

compared to the full dataset. This provides further evi-

dence that the diurnal differences found in the mean

TOA LW CCRE in the full dataset may be artificial,

because of errors in cloud properties.

Figure 6 shows the contribution to the regional mean

SW CRE at TOA, at the surface, and within the atmo-

sphere from each cloud type. The regional mean CRE is

simply the sum of the CRE values for each cloud type. At

the TOA, three cloud types stand out: vertically deep

cloud (HxMxL), high cloud above low cloud (HL), and

isolated low cloud (1L). HxMxL has the largest SW CRE

resulting from its largemeanCCREas shown in Fig. 5a. In

contrast, 1L and HL have large SW CRE resulting from

their relatively high frequency of occurrence as shown in

Fig. 4. However, we emphasize that these three cloud

types together account for only approximately 50% of the

regionalmean SWCREat the TOA; the other cloud types

have nonnegligible radiative effects. Indeed, explaining

75%of the regionalmean SWCRE requires 6 cloud types,

and explaining 90% requires 9 of the 12 cloud types.

The contribution of the 12 different cloud types to the

surface CRE (Fig. 6b) is similar to the TOAboth in total

magnitude and relative contribution of the different

cloud types (Fig. 6a). This is because SW atmospheric

absorption is small and most of the SW extinction is due

to scattering.

As SW atmospheric absorption is small, the surface

and TOA CREs are of a similar magnitude, and the in-

atmosphere CRE is small. The small in-atmosphere

CRE that does occur (Fig. 6c) is due to a combina-

tion of increased atmospheric path length for radiation

reflected by low cloud and absorption of near-infrared ra-

diation by cloud. With an in-cloud CRE of approximately

FIG. 6. Contribution to the regional mean SW CRE from each cloud type for June–

September, 2006–10 over SWA at (a) TOA, (b) surface, and (c) in the atmosphere, based on

SOCRATES calculations. The 1330 LT calculations use the 1330 LT CCCM data with the

corresponding solar zenith angle. The SW diurnal approximation is based on averaging cal-

culations that use the 1330 LT CCCM data and a range of solar zenith angles, as explained in

section 2c. Uncertainty resulting from errors in our calculations is illustrated by the con-

strained calculations, which exclude CCCM group profiles where the SOCRATES–CERES

TOA differences are large, as explained in section 2e. Error bars show the 95% confidence

interval based on bootstrapping.
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5Wm22, HxMxL, HL, and 1L once again have the

largest CREs.

Compared to the SWCRE, the LW CRE shows more

complex behavior. For the TOA (Fig. 7a), since the LW

CCRE largely depends on the cloud-top temperature

(as shown in Fig. 5b), the standout cloud types become

HxMxL, HL, and 1H. In contrast to the SW TOA CRE

isolated low cloud (1L) has a rather small impact on the

LW CRE at the TOA, as it has a small CCRE (Fig. 5b).

The three dominant cloud types account for approxi-

mately 60% of the regional mean LW CRE at the TOA

so, as with the SW CRE, other cloud types make a

nonnegligible contribution to the regional mean CRE.

At the surface, the LW CCRE is strongly dependent

on cloud-base height. Consequently, the contributions

of the different cloud types to the regional mean LW

CRE are quite different from those for the LW CRE at

the TOA. The three dominant cloud types for the LW

CRE at the surface are 1L, HL, and HxMxL. Co-

incidentally, thesematch the three dominant cloud types

in the SW CRE. As for the SW CRE at all heights, and

the LW CRE at the TOA, other cloud types make

nonnegligible contributions to the regional mean LW

CRE at the surface.

As the TOA and surface LW CREs are quite differ-

ent, the in-atmosphere CREs show a large range be-

tween cloud types. In the presence of isolated low

clouds, the net LW irradiance increases at the surface

and decreases at the TOA. Since the magnitude of the

former is greater than the latter, isolated low clouds

cause LW radiative cooling of the atmosphere, as shown

in Fig. 7c. For high-top clouds, the decrease in CRE at

the TOA is larger in magnitude than the increase in

CRE at the surface, so high cloud causes LW radiative

heating of the atmosphere. Adding low cloud beneath

high cloud leads to a larger magnitude LW irradiance

increase at the surface, so that the LW radiative heating

of the atmosphere is less than it would be in the absence

of the low clouds (e.g., during the day, HL occurs

more frequently than 1H and has a larger CRE at the

TOA but a smaller effect on the in-atmosphere CRE).

Midlevel-top clouds lead to cooling above the cloud and

heating beneath the cloud; this affects the vertical tem-

perature gradient of the atmosphere but has little effect

on the vertically integrated atmospheric heating.

At the TOA and surface, the difference between cal-

culations for day and night are generally less than

5Wm22, and of varying sign depending on cloud type

(larger surface LW CRE in the day for 1L but smaller

TOA LW CRE in the day for 1H). These day–night dif-

ferences are primarily due to the contrasting frequencies

of occurrence between day and night (Fig. 4), except for

the HL cloud type, where the day–night differences are

primarily due to differences in the CCRE (Fig. 5).

Uncertainty in LW contributions to the CRE is es-

timated from the constrained dataset (star symbols in

FIG. 7. As in Fig. 6, but for LW CRE.
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Figs. 5–7). The low-cloud misattribution hypothesis

posits that the CCCM dataset overestimates extinction

by high cloud because of missing low cloud. However,

we have no objective estimate of how this missing low

cloud will affect the frequencies of the different cloud

types. Consequently, we use the original cloud type

frequencies to calculate CRE contributions in the

constrained dataset; only the mean CCRE is changed.

As a result, TOA differences between the full and

constrained datasets follow the pattern described for

the mean CCRE. At the surface the differences are

much smaller. However, the constrained dataset

results in a larger contribution from HL during the day

to the surface LW CRE. This results in a difference of

6Wm22 between the two calculations for flux into the

atmosphere.

Figure 8 shows the approximate diurnal mean total

(i.e., SW 1 LW) cloud radiative effects. This is the sum

of the SW and LW diurnal mean approximations. The

error bars show the combined uncertainty resulting from

the SW and LW diurnal mean approximations, differ-

ences between the full and refined datasets, and sam-

pling errors. These three sources of uncertainty are

estimated separately for the SW and LW radiation, re-

sulting in a total of six values that are combined by

summing in quadrature.

The diurnal mean total irradiances tend to be small

because of cancellation between LW and SWCREs. For

some cloud types, uncertainty is quite large (up to

67Wm22) at the TOA and surface, but the uncertainty

is generally much smaller for fluxes into the atmosphere.

At the TOA, the 1L cloud type has the largest magni-

tude net CRE, as the decrease in net downwelling SW

TOA irradiance resulting from low clouds is much larger

than the increase in net downwelling LW TOA irradi-

ance. Most other cloud types also have a negative effect

on the TOA net downwelling irradiance, although for

many cloud types this is not certain. Isolated high cloud

(1H) is the only cloud type that definitely leads to an

increase in the net TOA irradiance. All cloud types re-

duce the net downwelling irradiance at the surface, be-

cause of the reduction in SW radiation reaching the

surface being larger than the increase in downwelling

LW radiation. 1L leads to a small reduction in the flux

into the atmosphere, but all other cloud types increase

the flux into the atmosphere.

4. Sensitivity of radiative fluxes to low-cloud cover
errors

As noted in the introduction and our analysis of the

CCCM cloud types, low cloud is common in SWA. Yet

FIG. 8. Contribution to the diurnal mean total (i.e., SW1 LW) CRE from each cloud type

for June–September 2006–10 over SWA, based on SOCRATES calculations. Error bars show

the combined uncertainty resulting from the diurnal mean approximation, the constrained

calculation (which exclude CCCM group profiles where the SOCRATES–CERES TOA

differences are large, as explained in section 2e), and the limited sampling. These un-

certainties are calculated separately for the SW and LW and are combined in quadrature.
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low-cloud cover is generally underestimated in cli-

mate models, which is thought to be responsible for

large surface SW radiation biases in these models

(e.g., Knippertz et al. 2011; Hannak et al. 2017). In this

section we assess the potential role of low-altitude

cloud cover errors in contributing to radiation bud-

get biases through sensitivity studies. To this end,

we estimate irradiance sensitivity to low-cloud cover

errors by comparing the existing SOCRATES calcu-

lations with further calculations that mimic the low-

cloud bias in models by removing cloud water content

beneath 680 hPa. The bias resulting from removing all

low clouds, which we denote DCRE2low, is calculated

by subtracting the CRE based on the original calcu-

lations from the CRE based on the new calculations

where low cloud is removed. Like the CRE, this can be

separated into contributions from the different cloud

types DCREk
2low.

Figure 9 shows the cumulative change in approximate

diurnal mean irradiances from DCREk
2low for all cloud

types that include low cloud. Note that for ease of

comparison to the Hannak et al. (2017) study, we show

downwelling surface irradiances rather than net (down

minus up) downwelling surface irradiance as in all other

figures. First, DCREk
2low shows large variation between

cloud types. The irradiances are most sensitive to

changes in low-cloud cover for 1L, while the irradiances

are least sensitive to changes in low-cloud cover for

HxMxL. This is because DCREk
2low strongly depends on

the presence of other cloud in the profile. For example,

for the 1L cloud type, removing the low cloud results in

clear sky, somuchmore SW radiation reaches the surface.

On the contrary, for HxMxL, removing the low cloud

has a much smaller impact on the downwelling surface

SW radiation, as the remaining cloud above 680hPa

reflects a large amount of SW radiation (Fig. 9d).

FIG. 9. Cumulative change in diurnal mean irradiance as a result of removing low cloud for different cloud types

for June–September 2006–10. Calculated as the difference between the original calculations and further cal-

culations where all cloud water content beneath 680 hPa is removed. Each labeled line shows the change in low-

cloud cover (horizontal extent of the line) and irradiance (vertical extent of the line) caused by removing low

cloud for the cloud type indicated on the label. The cloud types are plotted according to the magnitude of the

change in irradiance per unit change in cloud cover. Both increasing and decreasing order are plotted, which

show the lower and upper bounds for the irradiance change for a given change in low-cloud cover, respectively.

The gray dash-dotted lines show the range of low-cloud cover errors required to produce the modeled irradiance

bias of 30Wm22 identified by Knippertz et al. (2011). The low-cloud cover increments (x axis) for each cloud

type match the frequency of occurrence shown in Fig. 4 As we show changes in diurnal mean irradiance, the SW

values are based on cloud cover at 1330 LT and the LW values are based on the average of the 0130 and 1330 LT

low-cloud cover.
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So that Fig. 9 can be used to estimate the likely irra-

diance error for a given low-cloud cover error, the

changes in both low-cloud cover and irradiances asso-

ciated with each cloud type are plotted cumulatively.

Clearly, as DCREk
2low depends on cloud type, there is a

range of possible irradiances for a given low-cloud cover

error. To capture this, we plot the cumulative irradiance

errors in order of both increasing and decreasing mag-

nitude of DCREk
2low per unit change in low-cloud cover,

which correspond to the minimum and maximum irra-

diance error for a given change in low-cloud cover re-

spectively. The relative importance of low cloud to

different cloud types is similar for both SW and LW ir-

radiances at both TOA and the surface. However, the

relative importance of low cloud to HL compared to

other cloud types for the downwelling surface LW

irradiance is larger than for the SW and surface LW

irradiances, because of high cloud having little effect on

the downwelling LW irradiance at the surface.

The net (SW 1 LW) error resulting from low-cloud

cover errors may be as large as 24Wm22 for the

downwelling surface irradiance and 23Wm22 for the

outgoing irradiance at the TOA. Errors of this magni-

tude in an atmospheric model are likely to impact on the

regional circulation and precipitation. For example, Li

et al. (2015) linked radiative perturbations of a similar

magnitude to monthly mean precipitation changes of up

to 60mm month21 in simulations of the WAM.

Coming back to the issue with large surface SW radia-

tion biases found in models, Knippertz et al. (2011)

showed a multimodel mean bias of approximately

30Wm22 in downwelling surface SW irradiances over

SWA during June–September using simulations from

phase 3 of the Coupled Model Intercomparison Project

(CMIP3). A similar analysis of simulations from the Year

of Tropical Convection (YOTC) revealed a multimodel

mean bias of about 25Wm22. Based on Fig. 9d, the

CMIP3 bias is equivalent to a low-cloud cover error of

between20.48 and20.61, as illustrated by the thin broken

gray lines. Similarly, the YOTC bias (not shown) is

equivalent to a low-cloud cover error of between 20.37

and 20.55. Since such large low-cloud cover biases are

required to produce the SW irradiance biases seen in

models, we conclude that models must also underestimate

the occurrence of other cloud types in this region.

In summary, low-cloud cover errors are expected to

lead to large errors in diurnal mean SW irradiances, up

to 35Wm22 for the downwelling surface irradiance and

up to 25Wm22 for the OSR. These are offset somewhat

by smaller changes in LW irradiances of up to 11Wm22

at the surface and 2Wm22 at the TOA. Errors of this

magnitude are sufficient to affect the WAM circulation

in atmospheric models. However, the 30Wm22 mean

bias in the downwelling surface SW irradiance simulated

by CMIP3 climate models is unlikely to be solely as a

result of low cloud errors.

5. Summary

SouthernWest Africa (SWA) is a region where clouds

are poorly understood, and the large-scale circulation is

sensitive to radiative perturbations. To better un-

derstand cloud–radiation interactions in this region, we

have classified clouds into 12 distinct types based on

vertical structure and quantified the radiative effect of

these cloud types at the surface, TOA, and on heating

and cooling of the atmosphere. We have focused in

particular on low clouds, which are poorly understood

since they are often obscured in satellite imagery and

there is currently a lack of surface observations in

the region.

SWA experiences many different cloud types; no

single cloud type dominates in terms of either frequency

of occurrence or radiative effect. The most frequent

cloud types are 1L, 1H, HL, and HxMxL (see Fig. 3 for

definitions), which have frequencies of 12%, 14%, 19%,

and 10%, respectively. Contributions from different

cloud types to the regional mean cloud radiative effect

depend not only on their frequencies, but also on their

mean coincident cloud radiative effects (CCREs), which

are linked to cloud thickness in the SW and cloud-top

and cloud-base height in the LW.

The regional energy budget links cloud radiative ef-

fects to precipitation and circulation (e.g., Hill et al.

2016). As a summary of the contribution of different

cloud types to the regional diurnal mean energy budget,

Fig. 10 shows how the net effect on atmospheric heating

for each cloud type can be explained by contrasting SW

and LW radiation effects at the surface and TOA. Un-

certainty is denoted by the plus and minus values,

rounded to the nearest integer, and shows the combined

uncertainty resulting from uncertainty in the diurnal

mean approximation, differences between the full and

refined datasets, and sampling errors. To reduce the

number of panels, we show the four most frequent cloud

types independently and divide the remaining cloud

types into two categories, midlevel top and high top. All

cloud types lead to a net cooling of the surface, ranging

from approximately 2Wm22 for ML to 13Wm22 for

HxMxL. 1H results in an increase in the net downwelling

irradiance at the TOA (4Wm22), but all other cloud

types have the opposite effect. The 1L type leads to

small cloud radiative cooling of the atmosphere, but all

other cloud types lead to heating.

Uncertainty in the cloud radiative effects remains a

result of the limited diurnal sampling and differences
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between the calculations and CERES measurements.

The frequency of low clouds may also be under-

estimated in the CCCM data product. Our calculations

have been evaluated by comparison of the TOA irra-

diances with coincident CERESmeasurements. We find

good agreement for SW and nighttime LW irradiances,

but our calculations underestimate the OLR during

the daytime. This is thought to be due to problems

identifying low cloud from satellites, which may lead to

the misattribution of low-cloud extinction to higher

clouds in the CCCM dataset.

Focusing on low cloud, we have shown that it occurs

much more frequently below other clouds (30%) than

by itself (12%). As a result, passive satellites, which are

unable to detect low cloud beneath other clouds, will

miss much of the low cloud in SWA. Isolated low cloud

FIG. 10. Schematic illustrating the contribution of different cloud types to the diurnal mean radiation budget of

the atmosphere of SWA for June–September 2006–10. The direction each arrows point in indicates the direction of

the CRE for that cloud type and the area of each arrow is proportional to the magnitude of the CRE. The plus and

minus values indicate uncertainty, as explained in the text. To reduce the number of panels in the schematic, we

show the four most frequent cloud types (1L, 1H, HL, and HxMxL) and the remaining cloud types are split into

midlevel top and high top and the combined radiative effects are shown. Note that all values are rounded to the

nearest integer.

5288 JOURNAL OF CL IMATE VOLUME 31



(1L) is the only cloud type that contributes a net cooling

to the atmosphere. This is due to LW radiative cooling of

the atmosphere, which predominantly occurs within the

cloud, and is due to an increase in the downwelling LW

irradiance. This is offset by relatively large (compared to

the other cloud types) SW radiative heating of the at-

mosphere, because of gaseous absorption of the in-

creased upwelling SW radiation that is reflected by

the cloud.

Discontiguous low cloud plays a less obvious role in

reducing cloud radiative heating of the atmosphere.

When low cloud co-occurs with higher cloud, the ra-

diative heating of the atmosphere resulting from the

higher cloud tends to be larger than the cooling effect

of the low cloud. However, the radiative heating of

the atmosphere is less than it would be in the absence

of the low cloud. For example, Fig. 10 shows that

cloud radiative heating of the atmosphere is less for

HL than for 1H, even though HL occurs more often

(19% compared to 14%). Further calculations where

low cloud is removed as described in the previous

section show that the presence of low cloud in HL

reduces the cloud radiative heating of the atmosphere

by 2Wm22. The presence of low cloud also reduces

the cloud radiative heating of the atmosphere for the

other cloud types where discontiguous low cloud is

present (i.e., ML, HML, and HxML, in addition to

HL). The total cloud radiative heating of the atmo-

sphere is 37Wm22, with the cooling from low cloud

being approximately 24Wm22.

Sensitivity to underestimating low-cloud cover was

examined by comparing calculations with and with-

out low cloud; underestimating low-cloud cover led

to a downwelling SW irradiance error of up to

33Wm22 and an OSR error of up to 24Wm22. Thus,

low cloud errors are unlikely to be solely responsible

for the 25–30Wm22 multimodel mean surface

downwelling SW errors in SWA identified in climate

models (Knippertz et al. 2011; Hannak et al. 2017).

However, the effect of underestimating low cloud is

undoubtedly significant. Errors of a similar magni-

tude have been linked to large changes in monsoon

circulation and monsoon precipitation in regional

climate simulations (Li et al. 2015).

We anticipate that these calculations will provide a

useful tool for evaluating cloud–radiation interactions in

this region in atmospheric models, and the method can

be extended to other regions, or even globally. This will

require model diagnostics that assign cloud types to

model columns in the same manner as this study. Many

climate models already include the Cloud Feedback

Model Intercomparison Project (CFMIP) Observation

Simulator Package (COSP; Bodas-Salcedo et al. 2011),

which could be used to diagnose the frequency of dif-

ferent cloud profiles within the model and thereby

generate the diagnostics required. Such diagnostics

would provide a useful tool for evaluating the cloud in

models. We see two key advantages to this method for

evaluating models. First, separating different cloud

types will help to reveal compensating errors between

different cloud types; similarly, separating frequency of

occurrence and CCRE for each cloud type will reveal

compensating error for individual cloud types, such as

the ‘‘too few, too bright’’ problem in climate models

(Nam and Quaas 2012). Second, as the formation and

dissipation of different cloud types are linked to differ-

ent physical processes, attributing model errors to dif-

ferent cloud types will aid identification of problematic

cloud processes in the model.

Cloud and radiation measurements taken during the

DACCIWA field campaign (Flamant et al. 2017)

provide a complementary dataset to the calculations

described here, with better identification of low cloud

and diurnal sampling, but with a limited time period

(June–July 2016) and worse spatial sampling. The

DACCIWA project is also working with weather ser-

vices in SWA to extend the availability of existing sur-

face measurements and provide further cloud data.

Future work will exploit these surface-based datasets

alongside satellite observations to refine our un-

derstanding of low cloud and its influence on the re-

gional energy budget.
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