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Growing Land-Sea Temperature Contrast
and the Intensification of Arctic Cyclones
Jonathan J. Day1,2 and Kevin I. Hodges1

1Department of Meteorology, University of Reading, Reading, UK, 2Now at European Centre for Medium-Range Weather
Forecasts, Reading, UK

Abstract Cyclones play an important role in the coupled dynamics of the Arctic climate system on a range
of time scales. Modeling studies suggest that storminess will increase in Arctic summer due to enhanced
land-sea thermal contrast along the Arctic coastline, in a region known as the Arctic Frontal Zone (AFZ).
However, the climate models used in these studies are poor at reproducing the present-day Arctic summer
cyclone climatology and so their projections of Arctic cyclones and related quantities, such as sea ice, may not
be reliable. In this study we perform composite analysis of Arctic cyclone statistics using AFZ variability as
an analog for climate change. High AFZ years are characterized both by increased cyclone frequency and
dynamical intensity, compared to low years. Importantly, the size of the response in this analog suggests that
General Circulation Models may underestimate the response of Arctic cyclones to climate change, given a
similar change in baroclinicity.

Plain Language Summary The dramatic reduction in Arctic summer sea ice has led to an increase
in human activity and hence exposure to extreme events in the Arctic. Unlike the midlatitude storm tracks,
which are most active in winter, the Arctic storm track is most active in summer, exactly during the time when
shipping and tourism are on the rise, leading to the obvious question of how climate change is affecting and
will affect the storms themselves. Unfortunately, according to previous research by ourselves and others,
climate models perform poorly in representing even the basic features, such as the summer maximum in
Arctic cyclone frequency. As a result their projections for how Arctic cyclones will change in the future cannot
be considered reliable. In this paper we use a new analog approach to assess the impact of a warming Arctic,
using the observed record. By comparing statistics for years with high land-sea thermal contrast against
years with low, we demonstrate that storms over the Arctic Ocean will likely becomemore frequent andmore
dynamically intense as the climate warms, increasing the risk to shipping and other human activities.

1. Introduction

As the seasonal progression into spring and summer months sees sunlight return to the Arctic, the high-
latitude continents warm much faster than the Arctic Ocean, due to their lower heat capacity (Reed &
Kunkel, 1960). This leads to large land-sea temperature contrasts and high levels of baroclinicity along the
Arctic coastline (Figure 1a). As a result of vertical mixing of warm air over land, this band of strong tempera-
ture gradients extends through the troposphere (Crawford & Serreze, 2014; Serreze, Lynch, & Clark, 2001), see
Figure 4a. This semi-permanent baroclinic region, known as the Arctic Frontal Zone (AFZ; 65–77°N, 50–260°E;
Figure 1a), plays an important role in maintaining high levels of Arctic cyclone activity in summer (Crawford &
Serreze, 2016; Serreze, 1995; Serreze & Barrett, 2008). As a result, the Arctic storm track is most active in sum-
mer unlike the midlatitude storm tracks of the North Atlantic and North Pacific, which are more active in
winter months.

This seasonal peak in Arctic storm activity occurs exactly during the months in which human activity is
increasingmost rapidly, as melting sea ice opens shortened shipping routes between Europe and Asia as well
as opportunities for tourism and industry (Eguíluz et al., 2016; Goessling et al., 2016). This is also the time of
year when the sea ice is most vulnerable to fracture and decay, and cyclones have been linked to a number of
recent rapid sea ice loss events (Kriegsmann & Brümmer, 2014; Simmonds & Rudeva, 2012), as well as extreme
outgassing events of CO2 from the Arctic Ocean (Mathis et al., 2012). Therefore, developing an understanding
of the response of Arctic summer cyclones to climate change is an important step toward both mitigating the
risks associated with human activity in the far north and understanding the Arctic’s physical response to
climate change.
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Previous observational studies have provided conflicting results for the question of whether Arctic summer
storminess is increasing, with some finding that both frequency and intensity have significantly increased
(Simmonds & Keay, 2009) and others find that they have not (Koyama et al., 2017), although these studies
use different storm-tracking methodologies and deferent reanalyses. Evidence from climate model projec-
tions is more coherent, with models showing some significant increases in storminess, measured in various
ways, by the end of the 21st century, which these studies argue is due to increasing baroclinicity in the
AFZ (Crawford & Serreze, 2017; Day et al., 2018; Nishii, Nakamura, & Orsolini, 2014; Orsolini & Sorteberg,
2009). However, climate models perform poorly in reproducing even the basic characteristics of the
present-day Arctic summer cyclone climatology (Day et al., 2018; Nishii et al., 2014), and so their projections
of future change may not be reliable.

In this study an analog method is applied to bridge the gap between these observation and modeling-based
studies. We perform a composite analysis of cyclone characteristics, of years with high and low temperature
gradients, which we argue is a useful analog to climate change. This approach is not subject to some of the
issues in previous work on this topic. A small signal-to-noise ratio is avoided by compositing over many years,
in contrast to the analysis of trends. Further, the issue of model bias is minimized by using the ERA-Interim
reanalysis (Dee et al., 2011), which is constrained by observations, in contrast to free-running Coupled
Model Intercomparison Project (CMIP)-type projection studies.

2. Data and Methods

We performed a composite analysis on both seasonal mean fields and statistics of tracked cyclones using the
ERA-Interim reanalysis. Composites were made for the highest and lowest quartile years (see Table S1 in
the supporting information) of the AFZ index, defined as the mean equatorward 2 m temperature gradient
in the AFZ (purple box in Figure 1a). This is similar to the index used in Day et al. (2018) and Nishii et al.
(2014), although the northern boundary is defined slightly farther north than in these studies to better cap-
ture the full latitudinal extent of the AFZ in Siberia. Defining this index using 2 m temperatures, rather than
upper level fields, also allows for direct comparison with observations (see supporting information).

Cyclones were tracked using the Hodges (1994, 1996, 1999) algorithm, which has been used extensively to
study extratropical, and more recently Arctic cyclones, in both climate models and atmospheric reanalyses

Figure 1. (a) Map of JJA mean equatorward 2 m temperature (SAT) gradients (with box illustrating the region referred to as
the Arctic Frontal Zone, AFZ) . (b) Time series of area mean dSAT/dy within the AFZ (purple) and mean 300 hPa zonal
wind over the Arctic (70 N–90 N) and (c) time series of 2 m temperature in the land and ocean sections of the AFZ. Dots
indicate years in the highest and lowest quartiles of dSAT/dywithin the AFZ. The linear trend in each time series is shown in
each subfigure.
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(e.g., Bengtsson, Hodges, & Keenlyside, 2009; Day et al., 2018; Hodges, Lee, & Bengtsson, 2011; Zappa,
Shaffrey, & Hodges, 2013).

In this algorithm, 850 hPa vorticity is computed from the 6-hourly zonal and meridional wind fields. The
resulting vorticity field is then subjected to a number of preprocessing steps. First, it is spectrally filtered,
retaining only wave numbers 5 < n ≤ 42, which removes small-scale and background features leaving only
synoptic-scale phenomena. Spectral tapering is applied to the resultant field to suppress Gibbs phenomena,
following Sardeshmukh and Hoskins (1984). Second, the filtered vorticity field is transformed onto a regular
grid of similar resolution to the filtered data, in this case a polar stereographic projection. This prevents biases
in cyclone identification at higher latitudes, caused by the converging of meridians when using, for example,
a cylindrical projection (Sinclair, 1997). Grid point vorticity maxima in the filtered and projected vorticity that
exceed a vorticity of 10�5 s�1 are those identified as cyclones. Their locations are then refined using a
B-spline interpolation and steepest ascent method to compute the off-model-grid locations, which helps
to produce smoother tracks (Hodges, 1994). Once the cyclone is identified, they are transformed back onto
the spherical coordinate system for computing the actual tracks. A first-guess at the track is made by applying
a nearest neighbor method to the vorticity maxima in adjacent time steps of the data, this is then refined
iteratively by minimizing a cost function for the track smoothness, measured by changes in direction and
speed, subject to adaptive constraints on track smoothness and displacement distance (Hodges, 1999), sui-
tably chosen for the extra-tropics.

In a further step, tracks are filtered so that only the cyclone tracks that have a lifetime greater than 2 days and
displacement distance of 1,000 km or more are retained for the final analysis. This avoids the inclusion of sta-
tionary and short-lived features, so that only well-defined cyclones are included. These filtering conditions
have typically been used for midlatitude cyclones (e.g., Hodges et al., 2011). However, published case studies
of Arctic synoptic scale cyclones indicate that these lifetime and propagation thresholds are suitable choices,
since Arctic cyclones are typically longer lived than extratropical cyclones, and propagate similar distances
(e.g., Aizawa & Tanaka, 2016; Simmonds & Rudeva, 2012; Tanaka, Yamagami, & Takahashi, 2012; Yamagami,
Matsueda, & Tanaka, 2017).

Spatial statistics for the storm tracks, such as track density and propagation speeds are calculated using
spherical kernel functions, as described in Hodges (1996). During our composite analysis, the statistical signif-
icance of anomalies in the spatial fields, between the highest and lowest AFZ index quartiles, employs the
permutation track resampling method described in Hodges (2008). This is a Monte Carlo approach that
randomly resamples the tracks repeatedly without replacement. In this case statistics were calculated from
2,000 replicates of the tracks to estimate the p = 0.05 level.

In order to investigate cyclone intensity, a number of additional fields are referenced to the storm tracks
already described. The full resolution wind speed and vorticity are obtained for each track position by finding
the maximum within a 6° radius. In the case of mean sea level pressure (MSLP), the minimum is determined
within a 5° radius. Intensity histograms use the maximum/minimum value achieved by each track within the
region of interest.

For all other analyses of the background state, monthly mean fields from ERA-Interim were used. The one
exception being the Seasonally Varying-Northern Annular Mode (SV-NAM) index of Ogi et al. (2004),
which was obtained from them directly, and calculated from the NCEP-NCAR reanalysis. The maximum
Eady growth rate, shown in Figure 3, is calculated using monthly means, following the Hoskins and

Valdes (1990) form: σ ¼ 0:31f ∂u∂z

�
�
�

�
�
�N�1, where f is the Coriolis force, and N is the Brunt-Vaisala frequency.

The vertical gradient in zonal wind is calculated from differences between adjacent vertical levels and
interpolated to 850 hPa.

3. Results
3.1. Increasing Land-Sea Thermal Contrast

The magnitude of the area-mean 2 m temperature gradients in the AFZ (indicated by the purple box in
Figure 1a) varies significantly from year to year, between 0.74–0.94 K/100 km, and has increased over time
(Figure 1b), according to the ERA-Interim reanalysis. This year-to-year variability is significantly correlated
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with 2 m temperature over the land surface (r = 0.31, p = 0.05), but not over the ocean (r = �0.13, p = 0.44).
This indicates that although the ocean and land surface as well as atmospheric processes play a role in main-
taining the climatology of surface temperature gradients, in this region, it is the processes affecting the land
surface temperature that are the most important in driving the year-to-year variability. Variability in the AFZ
strength is also highly correlated with the Arctic (70–90°N) zonal wind speed at 250 hPa (Figure 1b; r = 0.73,
p = 0.00), as one would expect due to thermal wind balance arguments, indicating a strong relationship
between surface properties and the large scale atmospheric circulation.

The upward trend in the strength of the AFZ temperature gradients occurs because the 2 m temperature
trends over land are almost twice those over the ocean, in ERA-Interim (Figure 1c). This picture, from
ERA-Interim, is consistent with in situ 2-m-land temperature and observed SST analyses for the region
(Figure S1), giving independent confirmation that these trends are realistic. However, there is significant
disagreement between the reanalyses: ERA-Interim (Dee et al., 2011), JRA-55 (Ebita et al., 2011) and
MERRA2 (Gelaro et al., 2017) as to the magnitude of trends in the AFZ strength (See Figures S2 and S3).
Nevertheless, enhanced land-sea temperature contrasts are a robust feature of both past and expected
future climate change and ongoing warming of the Arctic is expected to lead to a further strengthening
of temperature gradients in the AFZ.

Conveniently, the difference in the AFZ gradients between the highest and lowest years is within the range of
the change expected by the end of the next century under business as usual emissions, �0.5–0.2 K/100 km,
according to CMIP3 and 5 models (Day et al., 2018; Nishii et al., 2014). Therefore, comparing Arctic cyclone
indices for high versus low-AFZ strength years will also provide direct observational evidence for how the
Arctic summer storm track will respond to the more baroclinic coastal environment expected under climate
change. A similar analog approach has been used to test hypotheses of the role of moist processes in the
response of the North Atlantic storm track to climate change (Li et al., 2014).

3.2. Composite Analysis: Differences in Cyclone Statistics

With this in mind this study conducts a composite analysis of the circulation by comparing the JJA circulation
for high and low strength AFZ years. These years are chosen by picking the highest and lowest quartiles
based on the dT2m/dy AFZ index shown in Figure 1b. Although the various reanalyses disagree over the trend
in this index, they broadly agree over which years belong to each quartile (Table S1).

Years with strong gradients in the AFZ are characterized by significantly increased storm track densities in the
Arctic (Figure 2c). This is particularly true in the Pacific Sector of the Arctic, including the Chukchi and Beaufort
Sea, where track densities are almost double those in weak years.

Because there is no significant change in cyclone lifetime, we can attribute this change in density partly to an
increase in the number of cyclones in the region, with increases of 11% from 16.3/month to 18.1/month (over
the Arctic Ocean), but also to an increase in the coherence of trajectories, which tend to follow the Arctic
coastline (see Figure S4). This suggests that the AFZ and associated jet acts as a wave guide for the cyclones
during positive AFZ phases. In contrast, during years with a weak AFZ and jet the cyclones in the Arctic tend
to meander and travel shorter distances (Figures S4b, S4d, and S4g).

One of the reasons for the increase in track density is a significant increase in cyclogenesis within the Arctic,
particularly over the Pacific-side of the Arctic Ocean, where genesis events increase from 4.2/month to
5.6/month, and in the Greenland Sea (from 2.0/month to 2.7/month, Figure 2f). This increase in cyclogenesis
goes hand in hand with an increase in baroclinic instability, as measured by the maximum Eady growth rate
(Figure 2e; see section 2), which closely matches the zonal wind anomaly. This, suggests that an increase in
shear instability is acting to increase storminess across the Arctic. However, increased static stability on the
Pacific-side of the Arctic and reduced stability in the Atlantic-Arctic sector are acting to reduce and increase
storminess, respectively (Figure S7b). An open question remains over the role of tropopause polar vortices, as
precursors for Arctic cyclogenesis, in these year-to-year variations (Cavallo & Hakim, 2013).

Cyclogenesis has been observed in other studies, based on reanalyses, in this region, and these conclusions
are slightly at odds with those of Crawford and Serreze (2016), who found that the AFZ was not an important
zone for cyclogeneses. This may be because they defined the AFZ as a narrow band along the coastline,
although they also use a different reanalysis and tracking scheme. Such a narrow band is likely not the best
measure for investigating the interaction with the large scale, since the latitudinal position of the AFZ (whose
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variability is shown by the black contour in Figure 3b), while closely tied to the Arctic coastline at the surface,
varies significantly from year to year in the middle and upper troposphere and may have a dynamical
influence at significant distances from the Arctic coastline.

The largest differences in both track density and cyclone intensity occur in the Pacific-side of the Arctic
Ocean, with cyclone frequency increasing from 12.8/month to 14.3/month in this region (see Figure 2c). A
consistent increase in dynamical intensity is also present here, with significant shifts (according to a
Kolmogorov-Smirnov test), in the intensity histograms of maximum vorticity, minimum pressure, and maxi-
mum winds, toward higher intensities during high AFZ index years compared to low (Figure 3.). The changes
in the MSLP histograms are particularly prominent, although a significant part of this change, ~5 hPa, can be
explained by changes in the seasonal mean MSLP in the Arctic (see Figure S7).

Figure 2. Differences between composites for high-low AFZ quartiles for (a) 850 hPa zonal wind, (b) 850 hPa geopotential
(and wind vectors), (c) storm track density, (d) storm propagation speed (and vectors), (e) maximum Eady growth rate,
and (f) genesis density. Stippling indicates regions where the differences are significant at the 5% level.
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The propagation speed and velocity of the cyclones also increases significantly (Figure 2d) in a direction per-
pendicular to the coast, which is matched by the anomaly in the mean wind speeds, which are significantly
higher in high AFZ conditions. This indicates that when a strong coastal temperature gradient exists, the
Arctic Front Jet acts as a wave guide for cyclones along the Arctic coastline. Because the Arctic coastline clo-
sely matches the 70th parallel, the increased propagation is in a zonal direction along most longitudes.
However, the North American coastline slopes southward from West to East; therefore, the acceleration of
the flow leads to propagation of cyclones into lower latitudes over Eastern Canada and Baffin Bay toward
the North Atlantic, increasing the flux of cyclones from high to lower latitudes, although the numbers of
cyclones exiting the Arctic into the North Atlantic are in single figures.

The changes in storminess suggested by this climate change analog are much larger than previous published
estimates of the 21st century climate change from climate models, such as Day et al. (2018), who found no
significant increase in track density in Arctic summer in the CESM1model. Further, although the CMIP5 multi-
model mean response is positive in the Arctic, it is an order of magnitude smaller than the response in this
analog (Figure S6). However, a detailed investigation into the deficiencies in climate models will be needed
to understand these issues.

4. Discussion: How Good Is this Analog?

Because significant differences exist in the large scale mean circulation between the high and low quartiles of
the AFZ index, and these changes are clearly impacting the cyclone statistics, it is important to understand
their origins and whether they play a role in the year-to-year variations in the strength of AFZ index itself.

The most positive quartile years are characterized by warm anomalies over land and cold anomalies over the
Arctic Ocean, compared to the most negative quartile. These anomalies extend throughout the troposphere
and correspond with a strengthening of the meridional temperature gradients on the oceanward side of the
Arctic coastline (Figure 2b). As one would expect from the thermal wind relationship, they correspond with a
strengthened jet, which is as much as 5 m/s faster, with positive zonal wind anomalies extending through the
Arctic troposphere around the Arctic basin (Figures 2 and 4a). A meridional overturning cell, north of the
Arctic Front and similar to that described by Shapiro, Hampel, and Krueger (1987), is present in the climatol-
ogy (Figure 2a), and the composite anomalies show a clear strengthening of this circulation with increased
upwelling on the poleward flank of the Arctic Front Jet and downwelling on the equatorward side in years
with a strong AFZ. As well as a strengthening of the Arctic Jet, the jet center is also shifted northward in

Figure 3. Histograms of cyclone intensity measures for the eastern Arctic Ocean (90–290°E, 72.5–90°N). In the case of
maximum vorticity and winds the values correspond to the maximum value achieved by a storm within the region, for
mslp it is the minimum value.
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positive years. This goes hand in hand with a northward expansion of the baroclinic zone, in the mid-upper
troposphere, from the Arctic coastline over the central Arctic Ocean (Figure 4b).

The geopotential height anomaly is highly reminiscent of the summer NAM and the correlation between the
AFZ index and the SV-NAM index of Ogi et al. (2004) is highly significant at 0.54. Further, the Arctic (70–90°N)
zonal mean wind at 300 hPa is highly correlated with the AFZ index (r = 0.70), indicating a strong link between
the AFZ index and the zonal mean circulation. This is a clear indication that the storm track and thermally dri-
ven jet, associated with the AFZ, are really dominant over external influences in this region. Therefore, it
seems likely that changes in the AFZ and local baroclinicity will dominate over lower-latitude influences in
determining the response of Arctic cyclones to climate change.

A mechanism to explain this link between the upper tropospheric winds and surface baroclinicity is
found through analysis of radiative fluxes at the surface. Anomalous zonal winds above the Arctic during high
AFZ years occur concurrently with negative anomalies in vertical velocity in a band 60–70°N (see Figure S5).
Reduced adiabatic cooling in this situation and anomalously low cloud cover results in an increase of down-
welling shortwave radiation and increased temperatures over land. The opposite pattern is seen over the
Arctic Ocean, where anomalously large vertical velocities lead to increased cloud cover, a reduction in down-
welling shortwave, which results in anomalously cold temperatures and increased sea ice concentration.
Note that a 4 W/m2 difference in shortwave radiation corresponds to approximately 17 cm of sea ice melt.
In this way NAM-related variations in circulation patterns can influence near-surface baroclinicity.

As the NAM is a largely internal mode of atmospheric variability, it is likely that much of the year-to-year varia-
bility in the AFZ index is also internally generated. However, external forcing from volcanoes and solar varia-
bility play a significant role in driving year-to-year temperature variability in high latitudes (Smith et al., 2012),
and therefore also likely play a role in variability of the AFZ index. Nevertheless, the fact that year-to-year
variations in the AFZ index are linked to the NAM should not be seen as a weakness of these composites
as an analog for climate change since climate models broadly agree that the response of Northern
Hemisphere circulation to climate change will be positive-NAM-like with reduced zonal winds at low latitudes
and increased zonal winds at high latitudes (Coumou et al., 2015; Day et al., 2018; Mann et al., 2017).

Figure 4. Cross sections of zonal mean zonal wind (contours), meridional and vertical wind components (vectors), and meridional temperature gradients (contour
labels are in K/100 km) for JJA mean (a) and difference between the composite means of highest and lowest Arctic Frontal Zone quartiles (b). Stippling shows
regions where the anomaly is significant at the p = 0.05 level.
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5. Conclusions

In this study we have investigated near-surface air temperature gradients along the Arctic coastline in a num-
ber of reanalysis products and observations and constructed an index for coastal baroclinicity (the AFZ index).
We have used this to construct an analog for future climate change using the highest and lowest quartile
years of this index as an analog for climate change and performed composite analysis of atmospheric fields,
to infer the response of Arctic cylones to climate change.

In summary, we observed

1. that 2 m land temperatures near the Arctic coastline are warming at approximately twice the rate of sea
surface temperatures in adjacent regions;

2. that significantly increased Arctic cyclone frequency and intensity, particularly in the Eastern part of the
Arctic Ocean, are characteristic of years with high Arctic coastal temperature gradients, compared to
low years; and

3. that the sign of this response is consistent with climate model projections, but the magnitude of change
in cyclone numbers is higher, suggesting that CMIP models underestimate the sensitivity of the summer
storm track to increasing land-sea contrast in the Arctic.

Further, because climate change is increasing land-sea contrasts in the Arctic, it seems highly likely that the
circulation patterns typical of years with strong AFZ will become more common as the climate warms.
Indeed, strengthening of the mean temperature gradients in the AFZ is a robust feature of future climate pro-
jections as is an increase in the strength of the Arctic Front Jet (Mann et al., 2017; Nishii et al., 2014). This study
shows that this linkage between surface temperature gradients and atmospheric circulation is important for
Arctic cyclones, adding weight to previous studies.

The discrepancy between different reanalysis products in terms of 2 m temperature trends in the AFZ
(Figures 1, S1, and S2) indicates significant shortcomings in the performance of some reanalyses in the
Arctic. Therefore, understanding the thermodynamic processes involved in maintaining the AFZ and improv-
ing their representation in numerical models, and reanalysis, should be seen as an important step in improv-
ing simulations of the atmosphere both in the Arctic and beyond.
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