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Abstract

An atomic absorption spectrometer unit fitted with a graphite furnace

module is used to perform high temperature treatment on three carbonized

polymers: polyvinyl chloride (PVC), polyvinylidene chloride (PVDC) and
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polyacrylonitrile (PAN). Using short pulses up to 45 seconds, we heat small

samples to a maximum of 3000 ◦C. High-resolution transmission electron mi-

croscopy and X-ray diffractometry are used to track the growth of crystallites

in the materials as a function of the heating temperature. We observe the

well-known behavior of large crystalline graphite growth in PVC-derived sam-

ples and the formation of curved graphitic layers in PVDC- and PAN-derived

samples. This graphite furnace atomic absorption spectrometer approach is

an attractive alternative to conventional laboratory-scale graphite furnaces

in research of high temperature treatment of carbon and other refractory

materials.

1. Introduction

Graphitization of carbonaceous materials involves heating to very high

temperatures in a two-step process [1]. The first step, known as carboniza-

tion, is achieved by heating material to approximately 1000 ◦C to drive off

volatiles and increase the fraction of carbon in the sample. These tempera-

tures can be easily achieved using standard furnaces, typically using a quartz

tube and flowing argon. In the second step, known as high-temperature

treatment (HTT), the sample is heated as high as 3000 ◦C, during which

the carbon material structurally evolves and develops increasing graphitic

order. The HTT process is important HTT, being used to synthesize indus-

trially useful materials such as glassy carbon and highly-oriented pyrolytic

graphite [2]. HTT of carbonaceous materials is also key to understanding

basic questions in carbon science about the graphitization mechanism.

There are a number of ways of heating materials to 3000 ◦C, including
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xenon flash lamps, pulsed laser heating and conventional graphite furnaces.

The first two methods provide extremely rapid rates of heating (1011 K/s in

the case of pulsed laser heating [3]), and the temperature of the system is

not explicitly controlled. In contrast, graphite furnaces are dedicated instru-

ments for controlled heating and use resistive heating to achieve ultra-high

temperatures. Typical heating rates with laboratory graphite furnaces are of

the order of tens of degrees per minute (e.g. [4, 5]), and hence it takes some

hours to reach desired maximum temperatures.

There is a substantial literature using graphite furnaces for the HTT of

carbon materials [1, 4, 5, 6, 7, 8], but one of the disadvantages is the high

cost of this equipment. For research purposes it is attractive to find an alter-

native HTT method when a laboratory graphite furnace is not available. As

it happens, many universities and research laboratories may already have a

small graphite furnace inside certain Atomic Absorption Spectrometer (AAS)

units. There are two types of AAS; flame AAS where heating up to 2600 ◦C

is achieved using an acetylene flame, and graphite-furnace AAS (GF-AAS)

where temperatures of 3000 ◦C are achieved by resistive heating. In this arti-

cle we explore the use of a GF-AAS as an alternative to standalone graphite

furnaces for the HTT of carbonaceous materials.

The GF-AAS approach differs from the traditional graphite furnace in

several ways. Firstly, the GF-AAS sample heating rates are much higher,

circa thousands of degrees per second. Secondly, the sample volumes are

much smaller due to the geometry of the instrument. Finally, the time for

each thermal cycle is restricted to less than one minute as the GF-AAS

machine is not designed for continuous operation. Despite these restrictions,
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we found that the GF-AAS approach is an attractive route for the study of

the fundamentals of graphitization. In particular, the small sample volume

is not an insurmountable problem, since many characterization techniques

only require milligram amounts of material.

To demonstrate the utility of the GF-AAS approach, we study three poly-

mers whose evolution under thermal treatment is well known: polyvinyl chlo-

ride (PVC) which graphitizes, and polyvinylidene chloride (PVDC) and poly-

acrylonitrile (PAN) which resist graphitization. We characterize the struc-

tures using X-ray diffraction (XRD) and transmission electron microscopy

(TEM), and study the effect of temperature and residence time on the de-

gree of graphitization. We find that all of the expected trends are observed,

in particular the distinction between graphitizing behaviour with PVC, and

non-graphitizing behaviour with PVDC and PAN. We describe step-by-step

the methodology of using a GF-AAS to perform HTT, with the expectation

that other researchers can use this approach.

2. Methodology

The workflow for carbonization and subsequent HTT is summarized by

the sequence of images in Figure 1 and the temperature profile in Figure 2.

Raw samples (PVC, PVDC and PAN) are placed in an alumina crucible

[panel (a)] and carbonized in an argon atmosphere using an STF1200 Tube

Furnace. In all cases, the heating rate is 4 ◦C/min, and once at 1000 ◦C,

the temperature is held constant for an hour. After this time, the heating

element is turned off and the system cools to room temperature over a period

of approximately four hours. The carbonized product varies significantly be-

tween the materials: PVC produces a soft, flakey material with a shiny, black
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appearance; PVDC produces a black, shiny material with a hard, foamed tex-

ture and a much larger volume than the initial sample [compare panels (a)

and (b) in Figure 1]; PAN produces a hard granular material with a matte

black appearance. All carbonized samples are milled into powder form using

a mortar and pestle [panel (c)], with PAN being the most difficult to mill

due to its hard granular texture.

To perform the HTT, a small quantity of the milled powder (milligram

amounts) is transferred into a graphite tube [panel (d)] 25 mm long with an

inner diameter of 3.6 mm. Samples are loaded into the tube using a small

spatula, leaving a channel above the sample to permit flow of argon. The

graphite tube is loaded into the GF-AAS; in our case, an Agilent GTA120

as shown in panel (e). The green box highlights the graphite tube atomizer

module and the red box indicates the programmable sample dispenser which

under normal operation conditions contains the solutions to be analyzed.

The AAS will not operate without the liquid dispenser engaged, and so the

dispenser ensemble cannot be removed. Instead, we place it on top of the

instrument and allow the dispenser to operate in a dummy mode, with no

samples loaded. The equipment is still supplied with a rinsing liquid which,

when expelled, is captured by a waste container.

The heating regime of the furnace is controlled by software and while it

allows the user to set any heating rate, the apparatus cannot operate at high

temperatures for an extended time without overheating and shutting down.

The GF has a supply of cooling water to remove heat from the furnace work-

head. However, the AAS is not intended to maintain elevated temperatures

for long period of times, and the longest time the furnace was able to be
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operated at the maximum temperature of 3000 ◦C without triggering the

thermal cutout was 45 seconds. Longer heating times were performed by

consecutive pulses of 45 seconds. The heating regime is shown in red in Fig-

ure 2 and consists of 5 seconds at 100 ◦C, another 5 seconds at 1200 ◦C and

then 30–45 seconds at the desired temperature. After running a few pulses,

the workhead becomes noticeably hot, and at this point the unit was allowed

to cool for 5-10 minutes before continuuing. In our experiments we use an

Agilent instrument, but equipment from other GF-AAS manufacturers (e.g.

Perkin Elmer), should be equally capable of performing in the same manner.

[9]

Characterization of the samples is performed using high-resolution TEM

and XRD. Specimens are prepared for TEM by grinding in an agate mortar

under isopropanol, mixing in an ultrasonic bath and depositing onto lacey

carbon TEM grids. Although much of the carbon deposited in this way is

too thick for detailed imaging, sufficiently thin regions around the edges of

particles can readily be found. The microscope is a JEOL 2010, with a point

resolution of 0.19 nm, operated at an accelerating voltage of 200 kV. The

current density is typically 15 pA/cm2. To avoid beam damage, care is taken

not to expose the sample to the electron beam for longer than approximately

2 minutes.

XRD is performed using a Bruker D8 Advance Diffractometer with Bragg-

Brentano geometry and a Cu K-α source. XRD specimens are prepared by

first placing 6 mg of powdered sample onto a low-background holder and then

pressing the sample flat with a glass slide. Samples are analysed over the 2θ

range from 10–90◦ in increments of 0.03◦ and a step time of 1.5 s. Patterns
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are collected using a constant equatorial divergence of 0.3◦ with Soller slits

of 2.3◦ in the incident and diffracted beams. Fitting is performed using

fundamental parameters with instrumental broadening, Lorentz-polarisation

and absorption corrected as part of the peak analysis procedure implemented

in the TOPAS software [10].

A model containing the expected graphite peaks is fitted to the data,

and an example fit for PVDC is shown in Figure 3. Panel (a) shows the

raw data, the background model and the complete fit, while panel (b) shows

the individual graphite reflections. Due to the small amount of sample, the

background becomes an important part of the model for materials which are

not highly graphitized. The background model was the sum of the measured

background and a straight line. In some cases, including the example shown

in Figure 3, large portions of the sample holder are visible to the beam,

producing a small peak near 65◦. When this peak is present, an additional

component is added to the fitting model. The PVC samples heated to the

highest two temperatures develop significant crystallinity; for these samples

additional peaks appear in the data and hence the fitting model includes 101,

013, 112 and 006 reflections.

The individual peaks within the model are first fit in a symmetric manner,

using a pseudo Voigt function. Some peaks showed significant asymmetry and

in these cases more complex functions are used such as split-pseudo-Voigt and

split-Pearson VII. The crystallite size in the c-direction (Lc) is determined

using the position (θ) and full-width half-maximum (β) of the (002) and (004)

peak with size in a-direction (La) using the (100) and (110). The cystallite

sizes are calculated in the standard way via the Scherrer equation:
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L =
K λ

β cos θ
(1)

where λ is the wavelength of the incident X-ray beam and K is a shape

factor.

In the literature it is commonplace to see Lc values calculated using K =

0.89, and La values calculated using K = 1.84. However, these values are

largely historical. For example, the use of K = 1.84 for calculating La

originates from a 1941 paper by Warren [11] and is specific to an idealized

two-dimensional parallelogram. In a later 1966 paper considering a circular

two-dimensional crystal, Warren and Bodenstein [12] suggest using K = 1.77

for La calculations and K = 0.94 for Lc calculations. Further complicating

the choice, they also suggest a size-dependant shape factor for La varying

monatomically from 1.1 to 2.0 (see Fig. 4 in Ref. [12]).

In 2004, Iwashita et al. [13] released a standard procedure for analysing

XRD of carbon materials based on international round robin tests. Their

recommendation is to assume a shape factor of unity for all crystallite shapes

and sizes. This choice mitigates the problem of making assumptions about

the system. In this manuscript we follow this approach and use a shape factor

of K = 1 throughout. When comparing with literature values we rescale the

reported numbers to K = 1.

3. Results and Discussion

One of the restrictions of using a GF-AAS is the short duration of the

heating pulse. Operating the GF-AAS for too long trips a thermal cut-out

and so we restrict our pulses to a maximum of 45 seconds. It is only practical
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to perform a handful of pulses and hence the total heating time is significantly

shorter than conventional graphite furnaces where residence times of circa 15

minutes to hours are used. To quantify the impact of using a short heating

time, we perform XRD analysis on PVDC samples heated at 3000 ◦C for

several different HTT times. Results are shown in Figure 4 where data at

t=0 corresponds to the carbonized sample, while all other data corresponds

to samples which undergo HTT using multiple pulses. A residence time of

one minute is achieved by two pulses of 30 s, while all others are multiples

of 45 s. For this material, even the shortest residence time of one minute is

sufficient to achieve converged values of La and Lc. Were this not the case,

the GF-AAS approach would not be a suitable alternative for HTT of carbon

materials. As a general comment, we recommend that a similar analysis of

the residence time be performed when using the GF-AAS approach. This is

particularly important given that it is very difficult to assess the heat transfer

path between the graphite tube and the sample. Finally, we note that for

operational reasons, all TEM analysis use samples treated for 60 s, while

XRD analysis use samples treated for 90 s.

The three materials studied (PVC, PVDC and PAN) were carbonized

at 1000 ◦C, followed by HTT at three different temperatures: 2000, 2500

and 3000 ◦C. XRD patterns for all samples are shown in Figure 5. For all

materials, the peaks become narrower and taller with temperature, indicating

increasing crystallinity as temperature increases. The effect is particularly

pronounced for the (002) and (004) peaks in PVC, which is expected since

PVC is well-known as a graphitizing carbon, forming graphitic structures

between 1700 and 3000 ◦C [6]. On the other hand, PVDC and PAN are non-

9
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graphitizing carbons which do not develop a homogenous graphitic structure

even at 3000 ◦C. While these non-graphitizing carbons do not exhibit large

degrees of stacking, the presence of the basal (100) and (110) reflections

indicates some level of graphenization.

Crystallite dimensions are extracted from the XRD data using equation

(1) and are summarised in Table 1. For both the La and Lc directions,

multiple peaks can be used. La can be determined using basal reflections

such as the (100) and (110) peak. In this case, the (100) peak is more reliable

than the (110) as it has a greater intensity and suffers less interference from

surrounding peaks. While Lc can in-principle be determined using the (002)

or (004) reflections, the (002) peak is preferred as it has a much higher

intensity. Consequently, the interlayer distance, d, is extracted from the

(002) peak position. Inspection of the Lc values in Table 1 also show that

the values inferred from the (004) peak are typically lower, sometimes by

almost a factor of two. This observation is consistent with variations in the

d-spacing across the sample as noted by Houska and Warren, [14] in which

broadening increases at higher angle reflections.

The crystallite size and interlayer spacing are plotted as a function of

temperature in Figure 6. Following carbonization, there is little difference in

La and Lc between the three materials; however, PVC exhibits the smallest

d spacing. As temperature increases, the two non-graphitizing carbons show

a small amount of graphitic growth, while PVC shows a dramatic increase

in both La and Lc which is characteristic of graphitizing carbons [6, 15].

The interlayer spacing reduces with increasing temperatures for all materials,

approaching the ultimate limit of graphite of 3.35 Å for PVC at 3000 ◦C.

10
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TEM images of the three polymers are shown in Figure 7. The left col-

umn shows the samples after carbonization at 1000 ◦C and the right column

shows the samples after HTT at 3000 ◦C. The images for PVC [Figure 7a) and

b)] show the classic behaviour expected for a graphitizing carbon in which

small oriented platelets are visible after carbonization, coalescing into large

graphitic regions after HTT. Also indicated in the Figure are the values of La

and Lc determined from XRD and these are visually consistent with the mi-

croscopy images. The images for PVDC [Figure 7c) and d)] are strikingly dif-

ferent, highlighting the contrast between a graphitizing and non-graphitizing

carbon. Carbonized PVDC shows small, randomly oriented, platelets while

the sample heated to higher temperatures contains large pores and only a few

stacked layers. This appearance in TEM is consistent with our visual obser-

vations that PVDC increases its volume substantially during carbonization.

This large internal porosity is hard to appreciate in Figure 7c) due to the

projection nature of TEM images but it is clearly evident in Figure 7d) once

graphenization has occurred. The images for PAN [Figure 7e) and f)] show

another non-graphitizing carbon. The platelets are again randomly oriented

in the carbonized structure and some stacking is visible after HTT.

It is interesting to note that the three carbonized materials [Figure 7a),

c) and e)] have very similar values of La and Lc and yet the microstructure

is wildly different. The platelets in the carbonized PVC sample show a

clear preferential stacking, while carbonized PVDC and PAN exhibit different

degrees of random orientation. This illustrates the complementary nature of

the XRD and TEM techniques. Another example of the merits of combining

both techniques is seen by comparing the PVDC and the PAN images. Even
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though both polymers are non-graphitizing and have similar La and Lc values

for both the higher and lower treatment temperatures the microstructure

are quite different. In the case of PVDC, the porous structure seen in the

TEM has a fullerenic nature [16], while the PAN structure contains twisted

graphite ribbons not unlike those proposed for glassy carbons by Jenkins and

Kawamura [17].

The XRD data and TEM images shows that the heating conditions achieved

with the GF-AAS easily differentiate between graphitizing and non-graphitizing

carbons. This is an important result, proving that the GF-AAS is a valu-

able technique to study graphitization. As noted in the introduction, the

GF-AAS differs from conventional furnaces in several ways (heating rate,

residence time and sample volume) and hence it is useful to discuss some of

these differences. The effect of rapid heating on graphitizing carbons was

previously studied by Okada et al. [18] using a conventional furnace and

they observed no difference between samples heated rapidly (≈1000 ◦C/min,

achieved by dropping the sample into the furnace) and samples additionally

annealed at a slow rate (1000 ◦C/hr). Fair and Collins [19] studied graphitiza-

tion as a function of temperature, varying the residence time from 8 minutes

to 20 hours. Although the residence time had a small effect on the degree of

graphitization, they concluded that graphitization was predominantly con-

trolled by the maximum heat treating temperature. Based on this result,

one would expect that our GF-AAS approach would achieve a slightly lower

degree of graphitization compared to conventional furnaces.

Comparison of our data with literature values shows that for non-graphitizing

carbons the GF-AAS method produces La and Lc values similar to those
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heated using conventional furnaces. For the purpose of this discussion all

literature values quoted have been scaled so that the shape factor K is 1 for

all cases. Taking PVDC treated at ∼2000 ◦C as an example, our value of

2 nm for La compares to the 1.2 nm reported by Franklin [6], while our value

for Lc of 1 nm compares to 0.9 nm from Franklin and 1 nm from Ban [20].

This agreement extends into higher temperatures. At 3000 ◦C, Franklin re-

ports La and Lc values of 3 and 3.5 nm for PVDC, while we find 3 and 2 nm

respectively. For PVC (i.e. a graphitizing carbon), we also find reasonable

agreement for low HTT temperatures; Franklin reports 3 and 12 nm for La

and Lc at 1720 ◦C, in comparison with our values of 5 and 6 nm at 2000 ◦C.

At high temperatures the GF-AAS method achieves much smaller Lc values

than conventional furnaces; Tanaike et al. [21] observed Lc of 180 nm for

PVC at 3000 ◦C, while our value is just 37 nm. This lower value of Lc is

entirely consistent with the time-dependent nature of the graphitization.

4. Conclusion

We demonstrate a novel approach to the high-temperature treatment of

carbon materials using a Graphite Furnace Atomic Absorption Spectrome-

ter (GF-AAS), a piece of equipment that many research institutions have.

The GF-AAS is used to thermally treat three polymers up to 3000 ◦C for

which the graphitization properties are known. We consider one graphi-

tizing carbon (polyvinyl chloride, PVC)) and two non-graphitizing carbons

(polyvinylidene chloride, PVDC, and poly-acrylonitrile, PAN). Samples are

characterized using high-resolution transmission electron microscopy and X-

ray diffractometry to demonstrate that the GF-AAS reproduces the same

trends as a conventional graphite furnace.
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Even though the amount of treated material is small (milligram quan-

tities), and the residence times are short (circa one minute), the GF-AAS

approach reproduces the expected trends and is qualitatively consistent with

literature values obtained using conventional furnaces. The quantity of ma-

terial produced is suitable for other common characterization techniques

such as small-angle X-ray scattering, Raman and X-ray photoelectron spec-

troscopy. Consequently, the GF-AAS approach should be useful for any re-

search group facing the logistical problem of heating samples to temperatures

up to 3000 ◦C. While in this work the focus is on carbon, the methodology

can equally be used to study other refractory materials where ultra-high

temperatures are required.
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[2] E. Fitzer, K.-H. Köchling, H. P. Boehm, H. Marsh, Recommended Ter-

minology for the Description of Carbon as a Solid, Pure and Applied

Chemistry 67 (3) (1995) 473–506.

[3] R. L. Vander Wal, M. Y. Choi, Pulsed laser heating of soot: morpho-

logical changes, Carbon 37 (2) (1999) 231–239.

14



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

[4] K. Kobayashi, S. Sugawara, S. Toyoda, H. Honda, An X-ray diffraction

study of phenol-formaldehyde resin carbons, Carbon 6 (3) (1968) 359–

363.

[5] M. B. V. Vazquez-Santos, A. Mart́ınez-Alonso, J. M. D. Tascón, J.-

N. Rouzaud, E. Geissler, K. László, Complementary X-ray scattering
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Figure 1: a) Raw PVDC in an Al2O3 crucible. b) PVDC after carbonization at 1000◦C for
an hour. (c) Mortar and pestle with ground carbonized PVDC. (d) Graphite tube, units
in the ruler are cm. (e) Atomic Absorption Spectrometer with a graphite tube atomiser.
The furnace assembly is indicated in green box. Red box indicates the programmable
sample dispenser which has been set aside.
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Figure 2: Heating regime for carbonization (blue lines; performed in a tube furnace) and
subsequent HTT (red lines; performed in the GF-AAS). The carbonization process takes
many hours, while the HTT takes around a minute. Typically, two HTT pulses are used
as depicted. Dotted lines indicate cooling to ambient once the heating element is switched
off.

Sample Temp Lc (nm) La (nm) d
(◦C) (002) (004) (100) (110) (Å)
1000 2.0 1.5 1.5 1.8 3.44

PVC 2000 6.0 3.1 4.7 3.7 3.43
2500 20.5 10.1 5.7 3.8 3.40
3000 37.8 17.5 22.2 31.3 3.38
1000 0.9 0.6 1.9 1.6 3.67

PVDC 2000 1.1 1.3 1.6 1.6 3.63
2500 1.4 1.0 2.5 2.5 3.54
3000 2.1 1.6 3.4 2.3 3.46
1000 1.3 0.6 2.1 1.7 3.50

PAN 2000 1.8 0.8 2.7 2.4 3.49
2500 2.4 1.0 3.6 2.1 3.46
3000 2.9 1.6 3.8 3.2 3.43

Table 1: Crystallite size and interlayer spacing obtained from XRD analysis as a function
of heat-treatment temperature for the three polymers. Values for La are derived from
(100) and (110) peaks, while values for Lc are derived from (002) as well as from (004).
The value of d is obtained from the position of the (002) peak.
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Figure 3: Example of the fitting procedure for the XRD data, using data from both PVC
and PVDC, heated for 90 s at 3000 ◦C. Raw data is shown by circles for the PVC a) and
PVDC b) with background is shown by dotted line and the complete fit is shown by a
solid line; individual graphite reflections within the fitting model are seen in c) PVC and
d) PVDC.
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Figure 4: Variation of La and Lc in PVDC as measured using XRD as a function of the
HTT residence time. Heating is performed at 3000 ◦C using multiple pulses as indicated
in the figure.
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Figure 5: X-ray diffraction patterns for a) PVC, b) PVDC, and c) PAN, carbonized
at 1000 ◦C with subsequent HTT at the temperatures indicated. Data is shown on a
logarithmic scale and successive temperatures are offset vertically for clarity. All data is
shown with the background removed.

21



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 3.4

 3.5

 3.6

 3.7

 1000  1500  2000  2500  3000

c)

d
 (

Å
)

Temperature (°C)

PVC

PVDC

PAN

 0

 5

 10

 15

 20

 25

 30

 35

 40b)

L
c
 (

0
0
2
) 

(n
m

)

PVC

PVDC

PAN

 0

 5

 10

 15

 20

 25a)

L
a
 (

1
0
0
) 

(n
m

)

PVC

PVDC

PAN

Figure 6: Plots showing the crystallite size and interlayer spacing as a function of temper-
ature for the materials. a) La is reported from the (110) peak, b) Lc is reported from the
(002) peak and c) interlayer spacing as differ from the position of the (002) peak.
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Figure 7: Transmission electron microscopy images of the three materials after carboniza-
tion at 1000 ◦C and HTT at 3000 ◦C. La is reported from the (100) peak and Lc is reported
from the (002) peak.
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