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ABSTRACT 

Voltage gated Kv7.4 channels have been implicated in vascular smooth muscle cells (VSMCs) 

activity as they modulate basal arterial contractility, mediate responses to endogenous 

vasorelaxants, and are down-regulated in several arterial beds in different models of 

hypertension. Angiotensin II (Ang II) is a key player in hypertension that affects the expression 

of several classes of ion channels. In this study we evaluated the effects of Ang II on the 

expression and function of vascular Kv7.4. Western blot and quantitative PCR revealed that in 

whole rat mesenteric artery Ang II incubation for 1-7h decreased Kv7.4 protein expression 

without reducing transcript levels. Moreover, Ang II decreased XE991 (Kv7) –sensitive 

currents, and attenuated membrane potential hyperpolarization and relaxation induced by the 

Kv7 activator ML213. Ang II also reduced Kv7.4 staining at the plasma membrane of VSMCs. 

Proteasome inhibition with MG132 prevented Ang II-induced decrease of Kv7.4 levels, and 

counteracted the functional impairment of ML213-induced relaxation in myography 

experiments. Proximity Ligation Assays showed that Ang II impaired the interaction of Kv7.4 

with the molecular chaperone HSP90, enhanced the interaction of Kv7.4 with the E3 ubiquitin 

ligase CHIP, and increased Kv7.4 ubiquitination. Similar alterations were found in mesenteric 

VSMCs isolated from Ang II-infused mice. The effect of Ang II was emulated by 17-AAG that 

inhibits HSP90 interactions with client proteins. These results show that Ang II downregulates 

Kv7.4 by altering protein stability through a decrease of its interaction with HSP90. This leads 

to the recruitment of CHIP and Kv7.4 ubiquitination and degradation via the proteasome. 

Keywords: Angiotensin II/Heat shock protein/KCNQ/Kv7.4/Proteasome
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INTRODUCTION 

Hypertension is associated with increased arterial contractility and resistance to receptor-

mediated vasodilators. Kv7 channels (Kv7.1 – Kv7.5) are voltage-gated potassium (K+) 

channels encoded by KCNQ genes that regulate the contractile state of vascular smooth muscle 

at rest and contribute markedly to receptor-mediated vasorelaxations1, 2. Arterial smooth 

muscle cells express Kv7.1, Kv7.4 and Kv7.5, with negligible Kv7.2 and Kv7.3 levels3, and 

blockers of these channels such as XE991 or linopirdine can contract most arteries or enhance 

vasoconstrictor responses4-6. Conversely, agents that enhance Kv7 activity are effective 

vasorelaxants4-7. In addition, Kv7 blockers, as well as knockdown of Kv7.4 impairs 

vasorelaxations produced by receptor agonists in various arteries2, 8, 9. Notably, many receptor-

mediated vasorelaxations are impaired in arteries from hypertensive animals, and any 

remaining relaxation is no longer sensitive to Kv7 blockade8, 10. The functional impairment is 

linked to a reduction of Kv7.4 protein abundance in renal, mesenteric and coronary arteries 

from hypertensive animals, which is not correlated with a reduction in gene transcript 

(KCNQ4), suggesting the involvement of post transcriptional mechanisms. Whilst some 

molecular determinants of the pathological changes in Kv7 channel expression occurring in the 

vasculature during hypertension have started to be unveiled11, the mechanisms that dictate the 

membrane abundance of Kv7.4 channels in smooth muscle are yet to be fully elucidated. K+ 

channel trafficking can be regulated by several processes, such as the protein 

internalization/endosomal recycling pathway12, and altered protein folding via changes in the 

interaction with molecular chaperones such as Heat Shock Proteins (HSPs)13. Here, we aim to 

uncover the processes governing the handling of Kv7.4 in vascular smooth muscle following 

treatment with Angiotensin II (Ang II), a molecule strongly associated with cardiovascular 
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dysfunction, to gain insight into the processes that control Kv7.4 membrane abundance during 

hypertension.  

METHODS   

Detailed methods are available in the Online Supplement (http://hyper.ahajournals.org). The 

authors declare that all supporting data are available within the article (and its online 

supplementary files). 

Animals 

All experiments were performed in accordance with the UK Animals (Scientific Procedures) 

Act (1986) and were approved by the local ethics committees (St George’s Animal Welfare 

Committee, Barts and The London School of Medicine, University of Reading Animal Welfare 

and Ethical Review Board). 10-12 weeks-old male Wistar rats (Charles River, U.K.) and 

C57BL/6J mice (12-18 weeks of age) were killed by cervical dislocation. Animals were housed 

in a climatically controlled environment, on a 12h light/dark cycle, with free access to water 

and standard food ad libitum.  

Statistical analysis 

All data are expressed as mean ± s.e.m. One- or two-way ANOVA test followed by a Dunnett’s 

or Tukey’s multiple comparisons test, and Student’s t-test (paired or unpaired) were used to 

determine statistical significance between groups, according to the different experiments. 

Differences were considered statistically significant when p<0.05.  

RESULTS 

Effects of Ang II on Kv7.4 levels and function 

http://hyper.ahajournals.org/
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We first investigated the effects of Ang II on gross Kv7.4 levels in protein lysates from whole 

mesenteric arteries. Western blot experiments showed that 100nmol/L Ang II reduced Kv7.4 

protein levels by ∼50% after 1h compared to control vessels, by ~70% after 3h, and by ∼80% 

after 7h treatment (Fig 1A). Incubation with Ang II did not reduce KCNQ4 mRNA levels even 

after 7h (Fig 1B), suggesting a post-transcriptional mechanism. Similar results were also 

observed in rat aorta (Fig S1A-B, http://hyper.ahajournals.org). To circumvent any possible 

non-specific binding of the Kv7.4 antibody we investigated the effects of Ang II treatment on 

a human smooth muscle cell line (SGVSM-9) transfected with EGFP-tagged Kv7.4, using an 

anti-GFP antibody. In SGVSM-9 cells transfected with EGFP-Kv7.4, in-cell western blot 

experiments showed that treatment for 1h with 100nmol/L Ang II induced a ~20% decrease in 

EGFP-Kv7.4 with respect to control cells (Fig 1C). Moreover, in CHO cells expressing the 

angiotensin II receptor type 1 (AT1R) and EGFP-Kv7.4, incubation of 100nmol/L Ang II for 

1h decreased EGFP-Kv7.4 protein expression by ~30%, as measured by Western blot  (Fig 

S1C, http://hyper.ahajournals.org).  

We then evaluated the effects of Ang II on Kv7 function. Whole cell K+ currents were recorded 

from isolated mesenteric artery myocytes and the Kv7 current was identified as the component 

sensitive to the selective blocker XE991 (1µmol/L) (Fig S2A, http://hyper.ahajournals.org). 

Incubation of 100nmol/L Ang II for 3h decreased the amplitude of XE991-sensitive current by 

about 60% (Fig 1D). ML213 is an activator of Kv7.2, Kv7.4 and Kv7.5 channels that has been 

characterized in several smooth muscles, including VSMCs from mesenteric arteries14. In sharp 

microelectrode studies on whole mesenteric arteries ML213 hyperpolarized the membrane 

potential by approximately 17mV; a subsequent application of the KATP channel activator 

levcromakalin (10µmol/L) further increased membrane resting potential (Fig 1E and Fig S2B, 

http://hyper.ahajournals.org, control). Treatment with Ang II for 2h blunted ML213-induced 

hyperpolarization (increase of membrane potential by ~2mV) but did not affect the membrane 

http://hyper.ahajournals.org/
http://hyper.ahajournals.org/
http://hyper.ahajournals.org/
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hyperpolarization caused by levcromakalin (Fig 1E and Fig S2B, http://hyper.ahajournals.org, 

Ang II). ML213-induced relaxation of pre-contracted mesenteric arteries is abolished by the 

Kv7 blockers XE991 (Fig S3, http://hyper.ahajournals.org) and linopirdine14. Incubation of 

mesenteric arteries with Ang II impaired the relaxation of pre-contracted mesenteric arteries 

produced by ML213 (Fig 1F and S2D, Fig S3, http://hyper.ahajournals.org), consistent with 

the loss of Kv7.4 function.  

Effects on Ang II on Kv7.4 subcellular distribution 

Kv7.4 subunits consistently show a clear and abundant peripheral distribution, following the 

shape of the cell membrane of the VSMC, whilst Kv7.1 was mainly intracellular and Kv7.5 

signal was altogether less apparent and only occasionally localized at the plasma membrane 

(Fig S3, http://hyper.ahajournals.org). The Kv7.4 staining overlapped with the signal of the 

plasma membrane marker wheat germ agglutinin in control conditions (WGA, Fig. 2A). 

Treatment with 100nmol/L Ang II (3h) reduced the membrane localization of Kv7.4 

concomitant with a decrease in the global level of Kv7.4 (Fig 2A). Fluorescence-intensity 

profiles along cross-sections of VSMCs showed that in control cells the Kv7.4 signal was higher 

in the membrane than cytosol (membrane:cytoplasm ratio 1.57±0.12), while in Ang II treated 

cells Kv7.4 fluorescence was similar between the two regions (membrane:cytoplasm ratio 

0.88±0.10) (Fig 2B).  

Role of endosomal and proteasomal pathways in Ang II-mediated Kv7.4 degradation 

To gain insight about the cellular mechanisms that mediated the shift in Kv7.4 localization and 

reduction in total protein levels, mesenteric arteries were incubated with the endosome inhibitor 

dynasore or the proteasome inhibitor MG132 in presence or absence of Ang II. In Western blot 

experiments co-incubation of dynasore (DYN), used at concentrations (100μmol/L) shown to 

http://hyper.ahajournals.org/
http://hyper.ahajournals.org/
http://hyper.ahajournals.org/


6 
 

be effective in previous studies15, did not fully prevent the reduction of Kv7.4 produced by 3h 

incubation with Ang II (Fig. 2C). Conversely, MG132 (20 µmol/L) fully prevented the Ang II-

induced reduction of Kv7.4 (Fig. 2C). MG132 also counteracted the impairment of ML213-

induced relaxation of mesenteric arteries by Ang II in myography experiments (Fig 2D).  

Role of oxidative stress in Ang II-induced Kv7.4 degradation 

Ang II is known to increase oxidative stress16 which induces proteasome-mediated protein 

degradation17. We therefore evaluated whether the observed increase of Kv7.4 protein 

degradation induced by Ang II was mediated by oxidative stress. In VSMCs, treatment with 

Ang II for 30min increased the production of reactive oxygen species (ROS) measured by the 

fluorescence dye ROS Deep Red (by ~50% compared to time-matched control), similarly to 

that caused by 1mmol/L H2O2 (increase by ~70%, Fig 3A). In contrast, longer incubation (3h) 

with Ang II did not significantly enhance ROS levels with respect to time-matched control, 

whereas H2O2 was still able to increase ROS levels (by ~40%, (Fig 3A). The ROS scavenger 

N-Acetyl-L-Cysteine (NAC, 1mmol/L) counteracted Ang II-induced ROS production (Fig S5, 

http://hyper.ahajournals.org), but did not prevent either Kv7.4 protein down-regulation (Fig 3B) 

or the impairment of ML213-induced relaxation in mesenteric arteries when co-incubated with 

Ang II (Fig 3C).  

Role of HSPs in Ang II-mediated Kv7.4 degradation 

HSP70/90 machinery is abundantly expressed in eukaryotic cells, and is a key regulator of 

protein homeostasis in both physiologic and pathologic conditions18. Moreover, HSP70/90 

interact with Kv7.4 in heterologous-expression systems19. Neither HSP70 nor HSP90 

transcript/protein levels changed in Ang II-treated mesenteric arteries compared to control 

vessels (Fig S6, http://hyper.ahajournals.org). Therefore, we investigated whether Ang II-

http://hyper.ahajournals.org/
http://hyper.ahajournals.org/
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induced downregulation of Kv7.4 was mediated by an altered interaction with HSPs using 

Proximity Ligation Assay (PLA). No significant differences in the number of interactions 

between Kv7.4 and HSP70 were observed in isolated VSMCs treated with Ang II when 

compared to controls (Fig 4A). In contrast, a significant reduction (by ~40%) in Kv7.4:HSP90 

interactions was detected in VSMCs upon incubation with Ang II (Fig 4B). HSP70/90 

machinery is linked to the proteasome system via the co-chaperone and E3 ubiquitin-ligase 

CHIP (C-terminus of Hsp70-Interacting Protein). Incubation of VSMCs with Ang II enhanced 

the interaction of Kv7.4 with CHIP by ~30% (Fig 4C), and increased the number of ubiquitin 

molecules interacting with Kv7.4 by ~65% when compared to control (Fig 4D). These data 

suggested that Ang II reduced Kv7.4:HSP90 interactions thus enhancing protein ubiquitination 

via an increased interaction of Kv7.4:HSP70 complex with CHIP. To corroborate this, we 

studied the effect of 17-AAG (17-Demethoxy-17-(2-propenylamino) geldanamycin), a 

geldanamycin-analog which inhibits HSP90 function, on total Kv7.4 protein levels. Incubation 

of mesenteric arteries with 1µmol/L 17-AAG caused a reduction of Kv7.4 protein by ∼60% 

(Fig 5A), increased the number of interactions between Kv7.4 and CHIP (Fig 5B), and the 

number of ubiquitin molecules interacting with Kv7.4 (Fig 5C).  

Role of HSPs-CHIP-ubiquitin system in Kv7.4 degradation in vivo 

Since Kv7.4 protein is down-regulated in Ang II-infused mice7, we investigated whether the 

observed alterations of HSPs-CHIP-ubiquitin system could be detected in the same in vivo 

model of prolonged exposure to Ang II. PLAs showed that the number of interactions of Kv7.4 

with HSP70 in VSMCs isolated from mesenteric arteries of Ang II-infused mice was not 

significantly different from those isolated from saline-infused mice (Fig 6A), whereas a 

significant decrease in the number of Kv7.4:HSP90 interactions was observed in VSMCs from 

Ang II- with respect to saline-infused mice (Fig 6B). Moreover, an increased interaction of 



8 
 

Kv7.4 with CHIP (Fig 6C) and ubiquitin (Fig 6D) was detected in VSMCs from Ang II-mice 

when compared to control groups.  

DISCUSSION 

Ang II reduces Kv7 expression and function via increased proteasome-mediated degradation 

In this study, we present novel and detailed mechanistic information showing how Ang II, a 

key mediator of the pathological changes occurring in vascular disease16, modulates Kv7.4 

channel expression, which is down-regulated in hypertension7. Ang II has been demonstrated 

to acutely (up to 25 min) suppress the XE991-sensitive Kv current in mesenteric VSMCs20, but 

no insight regarding the molecular mechanisms involved was provided, and the effects of 

longer exposure of Ang II on Kv7 expression and function were not studied. Our data show that 

treatment with Ang II (1-7h) reduced the expression of Kv7.4 protein, decreased the amplitude 

of voltage-dependent currents sensitive to the pan-Kv7 channels blocker XE991 in VSMCs, 

blunted the hyperpolarization of the VSMCs membrane induced by the Kv7 activator ML213, 

and impaired the vasorelaxant effects induced by the same drug in whole mesenteric arteries. 

In contrast, Ang II did not affect the ability of the KATP channel activator levcromakalin to 

hyperpolarize VSMCs. ML213 effects in smooth muscle are abolished by Kv7 blockers like 

XE991 (Fig S3, http://hyper.ahajournals.org) or linopirdine14, strongly suggesting the 

involvement of Kv7 channels in ML213-induced arterial relaxation. ML213 has been reported 

to be more specific for channels formed by Kv7.2 (whose expression in VSMCs in negligible3) 

or Kv7.4 subunits21, but one study suggested that it also enhances the current mediated by 

Kv7.522, which contributes with Kv7.4 to the formation of the mature channel in the 

vasculature1, 23. Due to the lack of Kv7 subunit-specific blockers, we could not rule out the 

involvement of Kv7.5 in ML213-induced relaxation. However, our immunofluorescence data 

(Fig S4, http://hyper.ahajournals.org) together with previous evidence2, 8, 9, 23 infer that the 
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reduction of vasorelaxant effects of ML213 prompted by Ang II was mediated by decreased 

Kv7.4 levels in VSMCs. Interestingly, ML213 still produced some relaxation in Ang II-treated 

arteries even though its ability to hyperpolarize was largely (but not entirely) lost by incubation 

with Ang II. A previous study revealed that 1µM ML213 produced considerable relaxation of 

pre-contracted arteries without marked membrane hyperpolarization14. This apparent 

discrepancy in electro-mechanical coupling probably reflects the differences in experimental 

conditions, as isometric tension studies involved a pre-contracted and therefore depolarized 

artery compared to the microelectrode recordings performed on unstimulated arteries. Like 

other Kv7.2-7.5 activators ML213 works through stabilization of the open configuration that 

will be more apparent under depolarized conditions. However, further investigation regarding 

the role of Kv7 channels in regulating the electro-mechanical coupling in VSMCs is required.  

Kv7.4 down-regulation was also confirmed in clonal cells expressing heterologous Kv7.4 

channels, and was not accompanied by a reduction in mRNA levels, indicating that Ang II 

reduced Kv7.4 by post-transcriptional mechanisms. Modulation of protein trafficking, 

recycling and degradation has a considerable impact on K+ channels expression and function24 

and dysregulation of recycling/degradation pathways has been linked to channelopathies such 

as hereditary arrhythmias or cystic fibrosis24. Our findings reveal that degradation of Kv7.4 

protein by Ang II treatment and the subsequent functional impairment of Kv7-dependant 

vasorelaxation was prevented by proteasome inhibition. Ang II has been shown to induce 

proteasome degradation of large conductance calcium activated BK channels via increased 

endosome-mediated internalization in VSMCs, and Kv11.1 (ERG) channels in over-expression 

systems15, 25. Interestingly, in contrast to the above studies where Ang II effects were noticeable 

after prolonged treatment (7-24h), we observed downregulation and altered subcellular 

distribution of Kv7.4 after as little as 1h. Moreover, the lack of effect of dynasore in fully 

restoring Kv7.4 protein levels suggest that the endosomal pathway does not play a primary role 
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in Ang II-induced Kv7.4 down-regulation in contrast to BKCa channels15. Previous studies have 

established that Ang II causes oxidative stress in target cells16, and that the increased ROS 

levels activate the ubiquitin-proteasome system, as a protective mechanism to prevent the 

accumulation/aggregation of oxidized proteins17. In our experiments, Ang II caused a rapid 

increase in ROS levels (30min) which did not persist with longer exposure (3h), and the ROS 

scavenger N-Acetyl-L-Cysteine did not prevent the down-regulation of Kv7.4 levels and 

function prompted by Ang II. Although we cannot exclude the possibility that sustained 

oxidative stress reduces Kv7.4 levels, our data suggest that the early burst of ROS production 

induced by Ang II was not sufficient to alter Kv7.4 abundance, and that the activation of the 

proteasome system triggered by oxidative stress was not the main mechanisms involved in Ang 

II-induced downregulation of Kv7.4.  

Ang II-induced decrease of Kv7.4:HSP90 interaction promotes the ubiquitination of Kv7.4 

Ang II affects protein folding in hypertensive mice26, regulates the activity of HSPs, which 

mediate some maladaptive responses occurring in hypertension27, and also regulate ion channel 

folding. HSP90 in particular, plays a pivotal role in the folding of the cystic fibrosis 

transmembrane conductance regulator (CFTR), the ClC-2 chloride channel28, HERG channel13 

and the KATP potassium channel29. Moreover, enhancement of the HERG:HSP90 interaction is 

responsible for the increased membrane trafficking induced by estradiol30. Reduced binding of 

HSP90 decreases the interaction of client proteins with the HSP40-HSP70-HOP chaperone 

pathway that promotes forward trafficking, and increases interaction with HSP70-ubiquitin 

ligase CHIP complexes, which lead to proteasome-mediated degradation31. Our data reveal that 

the molecular chaperones HSP70/90 interact with Kv7.4 in native VSMCs, and that Ang II 

treatment selectively reduced the interaction of Kv7.4 with HSP90 in this physiological 

environment. In heterologous expression systems, modulating HSP90 isoforms levels either by 

overexpression or silencing strategies revealed a differential role in Kv7.4 maturation of the 
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two major HSP90 isoforms, namely α and β, with β-isoform promoting protein folding, and α-

isoform enhancing CHIP-mediated proteasomal degradation32. Although some distinctive 

features exist, HSP90 isoforms exert similar actions, with many functions being characteristic 

of both isoforms and only associated more frequently to one of them33. Moreover, their 

expression is differentially regulated, with a constitutive form (HSP90β) and an inducible one 

(HSP90α). Although we did not investigate the contribution of α- or β-isoform, in our 

experiments we did not observe any change in HSP90 levels, suggesting that HSP90 expression 

was not modified by Ang II incubation, and that a different mechanism was responsible for the 

alteration in Kv7.4:HSP90 binding. Covalent modifications, including phosphorylation, 

acetylation and nitrosylation, influence the activity of HSP90 and consequently the maturation 

of selected clients. Phosphorylation and acetylation slow down HSP90 activity, resulting in a 

reduced maturation of client proteins34, 35. Therefore, Ang II might activate different pathways 

ultimately altering HSP90 and/or Kv7.4, modifying their ability to interact. Irrespective of the 

molecular mechanism, the ultimate effect was an increased interaction of Kv7.4 with CHIP and 

an enhanced ubiquitination of Kv7.4 as determined by PLA. This hypothesis was corroborated 

by studies with 17-AAG, a pharmacological inhibitor of HSP90, that in our experiments 

reproduced the effects of Ang II in terms of Kv7.4 down-regulation, interaction with CHIP and 

ubiquitination. Our results are in line with previous evidence showing that pharmacological 

inhibition of HSP90 induces rapid degradation of client proteins through the ubiquitin-

proteasome pathway13, 36.  

PERSPECTIVES 

We show for the first time in vascular smooth muscle that Ang II enhances Kv7.4 degradation 

via the ubiquitin-proteasome system, through a reduced interaction with HSP90. The specific 

pathway(s) activated by Ang II, as well as the possible molecular modifications occurring in 

all the interactors (including additional co-chaperones) will need to be further investigated. 
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Indeed, Ang II can activate diverse intracellular pathways, including non G-protein signaling, 

and modulate several processes, such as inflammation16, which might in turn regulate HSPs 

activity and therefore protein stability and degradation. However, the present study has 

identified a novel and dynamic regulation of Kv7.4 that impacts considerably on vascular 

physiology.  Noticeably, we showed that these alterations also occur in vivo after chronic 

exposure to Ang II, a well-known model of hypertension where Kv7.4 expression and function 

is reduced7, suggesting that the observed reduction of Kv7.4 protein stability and enhanced 

degradation play a role also in the pathological changes occurring in hypertension. Since 

modulators of HSP90 function are being developed therapeutically37-39, these data provide a 

possible new therapeutic strategy for the treatment of hypertension. 
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NOVELTY AND SIGNIFICANCE 

What is new. We showed that Ang II decreases the expression and function of Kv7.4 

potassium channels in vascular smooth muscle cells by reducing its interaction with chaperone 

protein HSP90 and altering protein stability.  

What is relevant. Kv7.4 is an important mediator of arterial relaxation and is down-regulated 

in hypertension, a condition where Ang II is dysregulated. Increasing HSP90 activity might 

represent a new strategy to treat hypertension.        

Summary. Ang II down-regulates Kv7.4 by disrupting its interaction with HSP90, which lead 

to the recruitment of the ubiquitin-ligase CHIP and the subsequent protein degradation via the 

proteasome.
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FIGURE LEGENDS 

Fig. 1. Effects of Ang II on Kv7.4 expression and function. (A) Top: representative western 

blot showing Kv7.4 (detected with an anti-Kv7.4 antibody) and β-actin in mesenteric arteries 

after incubation with 100nmol/L Ang II for 1, 3 or 7 hours. Bottom: Quantification of western 

blot experiments. n=4-6. *=p<0.05: **=p<0.01 (Student’s t-test). (B) Quantitative PCR 

showing kcnq4 mRNA levels after incubation with 100nmol/L Ang II for 7h. Data are 

expressed using the 2-ΔCt formula. (C) In cell western blot showing the levels of EGFP-Kv7.4 

(detected with an anti-GFP antibody) in transfected SGVSM-9 after incubation with 

100nmol/L Ang II for 1h. Data are expressed as percentage of the average of the controls for 

each experimental session. n=12-14 wells per experimental point from 3-4 sessions. 

***=p<0.001 (Student’s t-test). The inset shows a SGVSM9 cell transfected with EGFP-Kv7.4, 

with GFP fluorescence (green pseudocolor) and DAPI staining (blue pseudocolor), proving the 

effective expression of EGFP-Kv7.4 protein. Scale bar: 5µm. (D) Mean current-voltage 

relationship (I-V) of the XE991-sensitive current in mesenteric VSMCs after 3 hours 

incubation in absence (control, black) or in presence (Ang II, grey) of 100nmol/L Ang II. n=5 

cells per experimental point from 5 rats. **=p<0.01: ****=p<0.0001 (two-way ANOVA). (E) 

Changes in resting membrane potential (ΔEm) of VSMCs in whole mesenteric artery induced 

by 10µmol/L ML213 (black columns) and 10µmol/L levcromakalim (grey columns) after 2 

hours incubation in absence (control) or in presence (Ang II) of 100nmol/L. (F) Isometric 

tension recordings in mesenteric arteries incubated for 3 hours in absence (CTL, black) or 

presence (Ang II, grey) of 100nmol/L Ang II. The graph shows the relaxation induced by 

increasing concentration of ML213 in arteries pre-contracted with 1μmol/L U46619. Data are 

expressed as percentage of the maximum contraction to U46619. n=4-5. **=p<0.01; 

***=p<0.001 (two-way ANOVA). 
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Fig. 2. Effects of Ang II on Kv7.4 subcellular distribution in mesenteric artery myocytes 

and role of endocytosis and proteasome in Ang II-induced down-regulation of Kv7.4. (A) 

Immunofluorescence experiments showing Kv7.4 (red pseudocolor) in absence (CTL) or in 

presence (Ang II) of 100nmol/L Ang II. Staining of the plasma membrane marker wheat germ 

agglutinin (WGA, green pseudocolor) and nuclear marker DAPI (blue presudocolor) are also 

shown. Scale bar: 5µm. (B) Top: fluorescence intensity profiles for Kv7.4 (red) and WGA 

(green) along the yellow line drawn in the pictures, expressed as Arbitrary Units (AU), in 

control (CTL) or Ang II-treated VSMCs. Regions where WGA intensity was <5AU were 

considered as cytosol (C), while portions where intensity was above the threshold were 

identified as plasma membrane (M). Bottom: bar graph showing the ratio between the average 

fluorescence intensities in the plasma-membrane and cytosol in VSMCs. For each cell, the 

mean of the ratios obtained along three random lines was calculated. n=15 cells per 

experimental point, obtained from 3-4 rats in 3-4 sessions. ***=p<0.001 (Student’s t-test). (C) 

Top: representative western blot showing Kv7.4 and β-actin proteins in mesenteric arteries after 

incubation for 3h with different combinations of 100nmol/L Ang II, 100μmol/L dynasore 

(DYN), and 20μmol/L MG132, as indicated. Bottom: quantification of western blot 

experiments. Normalized Kv7.4 intensities are expressed as percentage of control. n=6: 

**=p<0.01, ns=non significant (one-way ANOVA). (D) Isometric tension recordings in 

mesenteric arteries incubated for 3 hours in control conditions or with 100nmol/L Ang II in 

absence of presence of 20μmol/L MG132. The graph shows the relaxation to ML213 in arteries 

pre-contracted with 300nmol/L U46619. Data are expressed as percentage of the maximum 

contraction to U46619. n=4-6. *=p<0.05: **=p<0.01: ****=p<0.0001 (two-way ANOVA). 

Fig. 3. Role of oxidative stress in the downregulation of Kv7.4 induced by Ang II. (A) Left: 

representative images showing the fluorescence of the ROS-sensitive dye ROS Deep Red in 

mesenteric VSMCs after incubation for 30 min (upper panels) or 3 hours (lower panels) in 
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control medium (CTL) or in presence of 100nmol/L Ang II or 1mmol/L H2O2. Right: 

quantification of ROS Deep Red fluorescence intensity in VSMCs, expressed as Arbitrary 

Units (AU). n=35-48 cells obtained from 4-5 rats per experimental point in 4-5 sessions. 

*=p<0.05, ns=not significant (one-way ANOVA). (B) The inset shows a representative western 

blot of Kv7.4 and β-actin proteins in mesenteric arteries after incubation for 3 hours with 

different combination of 100nmol/L Ang II and 1mmol/L of N-Acetyl-L-Cysteine (NAC), as 

indicated. The bar graph shows the quantification of western blot experiments. n=6. *=p<0.05 

(one-way ANOVA). (C) Isometric tension recordings in mesenteric arteries incubated for 3 

hours in control condition or with 100nmol/L Ang II in absence of presence of 1mmol/L NAC. 

The graph shows the relaxation to ML213 in arteries pre-contracted with 1μmol/L U46619. 

Data are expressed as percentage of the maximum contraction to U46619. n=6. **=p<0.01, 

***=p<0.001 ****=p<0.0001 (two-way ANOVA). 

Fig. 4. Effects of Ang II on Kv7.4 interaction with Heat Shock Proteins and ubiquitin. 

Proximity Ligation Assay showing the interaction of Kv7.4 with HSP70 (A), HSP90 (B), CHIP 

(C), and ubiquitin (D) in mesenteric artery myocytes. Representative fluorescence and bright 

field (insets) confocal mid-cell xy sections of mesenteric VSMCs in absence (CTL) or presence 

(Ang II) of 100nmol/L Ang II are shown for each panel. Red puncta indicate target proteins 

are in close proximity (<40 nm). Bar graphs show the quantification of the mean number of 

PLA signals per mid-cell xy section. n=17-40 cells from 3-4 rats per experimental point in 3-4 

sessions. *=p<0.05, ***=p<0.001, ****=p<0.0001 (Student’s t-test). Nuclei (DAPI staining, 

blue) are also shown. Scale bar: 5µm.  

Fig. 5. Effects of HSP90 inhibition on Kv7.4 levels, interaction with CHIP, and 

ubiquitination. (A) Left: representative western blot showing Kv7.4 and β-actin in mesenteric 

arteries incubated with DMSO (CTL) or 1μmol/L 17-AAG. Right: quantification of western 

blot experiments. n=5. *=p<0.05 (Student’s t-test). (B-C) Proximity Ligation Assay showing 
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the interaction of Kv7.4 with CHIP (B) and ubiquitin (C) in mesenteric artery myocytes. 

Representative fluorescence and bright field (insets) confocal mid-cell xy sections of 

mesenteric artery myocytes incubated with DMSO (CTL) or 1μmol/L 17-AAG are shown for 

both panels. Red puncta indicate target proteins are in close proximity (<40nm). Nuclei (DAPI 

staining) are shown in blue pseudocolor. Scale bar: 5µm. Bar graphs show the quantification 

of the mean number of PLA signals per mid-cell xy section. n=24-44 cells from 3-4 rats per 

experimental point in 3-4 sessions. *=p<0.05, ****=p<0.0001 (Student’s t-test). 

Fig. 6. Kv7.4 interaction with Heat Shock Proteins, CHIP and ubiquitin in Ang II-infused 

mice. Proximity Ligation Assay showing the interaction of Kv7.4 with HSP70 (A), HSP90 (B), 

CHIP (C), and ubiquitin (D) in mesenteric artery myocytes obtained from mice infused for 28 

days with saline solution or Ang II. Representative fluorescence and bright field (insets) 

confocal mid-cell xy sections of mesenteric VSMCs from saline- or Ang II- infused mice are 

shown for each panel. Red puncta indicate target proteins are in close proximity (<40 nm). Bar 

graphs show the quantification of the mean number of PLA signals per mid-cell xy section. 

n=35-40 cells from 4 mice per experimental group. *=p<0.05, **=p<0.01, ****=p<0.0001 

(Student’s t-test). Nuclei (DAPI staining, blue) are also shown. Scale bar: 5µm.  
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