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Abstract 

Following recent interest in the maintenance of health and wellbeing through dietary intervention, 

the acute cognitive benefits of wild blueberries were investigated in healthy young adults. 

Blueberries have shown promise in their ability to mediate postprandial cognition and mood; 

however the effects of dose, and potential mechanisms of action, are yet to be fully elucidated. My 

thesis, therefore, aimed to determine whether cognition and mood effects following wild blueberry 

supplementation were dose dependent, and whether modulation of postprandial glucose response 

was a likely mechanism of action, through increased availability of glucose to the brain. 

The cognitive and physiological effects of wild blueberry doses, containing 129mg-724mg 

anthocyanins, were investigated across three placebo controlled, crossover experiments. Data were 

analysed using linear mixed-effects modeling, and key findings were identified through pairwise 

comparisons. Observed dose-dependent cognitive benefits included the maintenance of immediate 

recall on a single-trial word list learning task, the improvement of working memory on a serial 

subtraction task, and the attenuation of negative affect using a self-report questionnaire. In 

addition, dose-dependent attenuation of postprandial heart rate decline was suggestive of increased 

glucose availability.  Further investigation revealed dose-dependent effects on postprandial blood 

glucose regulation, including attenuation of postprandial glucose peak, and extended availability of 

blood glucose. In all cases, the strongest effects were observed following blueberry doses containing 

517mg anthocyanins or higher. Few significant effects were observed following lower doses.  

With some statistical caveats, this programme of research is the first to demonstrate a dose-

dependent effect of anthocyanin-rich wild blueberries on episodic memory, working memory and 

mood. The research also indicates a dose-dependent glucoregulatory effect that may provide a 

plausible mechanism of action for observed cognitive benefits. Future research should consider the 

potential application of wild blueberries as a treatment or preventative intervention for metabolic 

disorders such as type 2 diabetes, where both cognition and glucoregulation are typically impaired. 
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Chapter 1  

Introduction 

An abridged version of this chapter has been published as Bell, L., Lamport, D. J., Butler, L. T., & 

Williams, C. M. (2015). A review of the cognitive effects observed in humans following acute 

supplementation with flavonoids, and their associated mechanisms of action. Nutrients, 7, 10290–

10306. 

1.1 General introduction 

Due to the rising cost of healthcare provision in the UK, there is increasing interest in the health 

benefits of natural foods. Government campaigns such as ‘5 A Day’ and ‘Change 4 Life’ have focused 

on the promotion of healthy eating throughout life, with a view to stemming observed rises in rates 

of obesity, type 2 diabetes, cardiovascular disease, stroke, and mental health problems including 

depression and dementia. As cognitive deficits have been associated with all of these health 

conditions, my research sought to investigate the cognitive, mood, and physiological health benefits 

of supplementation with anthocyanin-rich blueberries. Specifically, this thesis investigated the acute 

effects of blueberries, in the immediate postprandial period between 0-2 hours after consumption, 

in a young adult population. Effects were investigated across a range of doses as is recommended in 

clinical trials in order to gain insights into likely mechanisms of action. The longer term chronic 

effects of blueberries have already been the subject of much previous research and are not 

considered here. The thesis starts with a review of recent literature relating to acute intervention 

with flavonoid-rich food sources. Based on this review, specific research aims were identified and 

are reported at the end of this introductory chapter. Subsequent chapters report the methods and 

findings of a series of experiments designed to address each of these research questions. A final 

general discussion consolidates the findings of this programme of research and considers its impact. 

1.2 Introduction to flavonoids 

Flavonoids are a class of organic polyphenolic compounds found in varying concentrations in plant-

based whole foods such as berries, tea, cocoa, soybeans, and grains. Herbal extracts are also 

commonly prepared from the leaves, bark, or berries of these plants to provide a more concentrated 

flavonoid source. There are several subclasses of flavonoid, including flavanols, flavonols, 

anthocyanidins, flavones, flavanones and isoflavones. Flavonoids often naturally occur in polymer or 

conjugate form depending on the food type. A detailed overview of flavonoid structure is provided 
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by Beecher (Beecher, 2003), however a brief description of the main flavonoid forms relevant to this 

review are contained in Table 1.1. 

Table 1.1 Flavonoid subclasses and their naturally occurring forms 

Flavonoid subclass Food source Additional naturally occurring forms 

Anthocyanidins 
e.g. cyanidin, 
delphinidin 

 

Berries Anthocyanidins may occur in methylated form, e.g. malvidin. All 
anthocyanidins conjugate with saccharide (sugar) groups to form 
anthocyanins, e.g. chrysanthemin 

Flavanols 
e.g. catechin 

 

Tea, cocoa All flavanols are isomers, polymers or gallated conjugates of catechin, 
e.g. epicatechin, epigallocatechin gallate (EGCG) 

Flavonols 
e.g. kaempferol, 
quercetin 

 

Fruits, 
vegetables 

Flavonols may occur in methylated form, e.g. isorhamnetin and/or 
conjugate with saccharides 

Flavones 
e.g. apigenin, 
luteolin 

 

Cereals, herbs Flavones conjugate with saccharides 

Flavanones 
e.g. naringenin 

 

Citrus fruits Flavanones  may occur in methylated form e.g. hesperetin, and/ or 
conjugate with saccharides, e.g. hesperidin, narirutin 

 

Isoflavones 
e.g. daidzein, 
genistein 

Soya beans, 
peanuts 

Isoflavones may occur in methylated form and/or conjugate with 
saccharides 

 

Flavonoid-rich foods have been well documented to elicit health benefits by reducing the risk factors 

associated with cardiovascular disease, diabetes and stroke (Basu et al., 2010; Novotny, Baer, Khoo, 

Gebauer, & Charron, 2015). Over recent years interest has also grown in their ability to elicit 

cognitive benefits. As such, long term chronic supplementation with flavonoid-rich foods has been 

investigated extensively, particularly with respect to cognitive ageing and related neurodegenerative 

disorders, (Blumberg, Ding, Dixon, Pasinetti, & Villarreal, 2014; Cherniack, 2012; Lamport, Dye, 

Wightman, & Lawton, 2012; Lamport, Saunders, Butler, & Spencer, 2014; Lau, Shukitt-hale, & 

Joseph, 2006; Macready et al., 2009; Mecocci, Tinarelli, Schulz, & Polidori, 2014; Miller & Shukitt-

Hale, 2012; Poulose, Carey, & Shukitt-Hale, 2012; Rendeiro, Guerreiro, Williams, & Spencer, 2012; 

Scholey & Owen, 2013; Shukitt-Hale, 2012; Solanki, Parihar, Mansuri, & Parihar, 2015; Spencer, 

2008, 2010; Vauzour, 2014; R. J. Williams & Spencer, 2012). Less attention has been given to the 

acute effect of flavonoid-rich interventions on cognitive outcomes i.e. within the immediate 0-6 
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hours post ingestion. This review focuses on the limited, but increasing body of evidence for the 

cognitive benefits of acute flavonoid-rich supplementation. Immediate cognitive enhancement is 

often desirable in academic and work environments, such as during an exam or assessment. 

Flavonoid-rich foods may, therefore, be useful alternatives to stimulants such as caffeine in these 

situations. In addition to these potential practical benefits, acute studies are important in 

understanding the full range of effects that flavonoid-rich foods may elicit, and their mechanisms of 

action. A number of recent acute supplementation studies in humans are reviewed here. 

1.3 Method 

A search of Google Scholar, Pubmed, Web of Science and PsychInfo was performed using the 

keywords flavonoid, polyphenol, memory, and cognition (including truncated forms). The studies 

selected for inclusion have all been subject to peer and/or editorial review, or form part of a 

published doctoral thesis. For this reason, conference abstracts have been omitted. 

 Flavonoids are typically administered in food form rather than as pure compounds, therefore the 

studies reviewed here have been categorised according to the food source. As shown in Table 1.1 

and Table 1.2, the flavonoid subclass or subclasses present often differ according to the food source. 

This suggests the potential for differences in cognitive effect between food groups, and further 

supports this method of categorisation.  The subclass and dose of flavonoids administered, the 

cognitive domains affected, and the effect size of the response are discussed, along with associated 

physiological mechanisms of action. Where possible, Cohen’s d effect sizes have been calculated 

using the method described in Chapter 2.  In the majority of studies reviewed, post-intervention 

scores, or gain scores, have been compared with those obtained for a placebo or control (d), or if 

this information was not available then post-intervention scores were compared with baseline 

values (db). A summary of all cognitive effects reported in the literature review, including details of 

participants, intervention type, dose, cognitive domain, and effect size, is shown at the end of the 

review in Table 1.3. 
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Table 1.2 Average flavonoid compositions for different food types 

Food type Flavonoid composition (mg/100g) 

 Anthocyanidins Flavanols Flavanones Flavones Flavonols 

Apples (whole) 1.59 9.29 0.00 0.12 4.15 

Blackcurrants (whole) 157.78 1.17 - 0.00 11.46 

Blueberries (whole, 
cultivated) 

163.30 6.69 0.00 0.20 10.63 

Cherries (whole, red) 33.44 4.13 - 0.00 2.43 

Cocoa (powdered) - 52.73 - - 2.03 

Ginkgo biloba (EGb 761)* - - - - -  

Grapes (whole, Concord) 120.10 2.14 - - 3.11 

Green tea (brewed) - 132.81 - 0.30 4.82 

Oranges(whole) - 0.00 42.57 0.19 0.73 

Data were obtained from the USDA database for the flavonoid content of selected foods (Bhagwat, Haytowitz, 
& Holden, 2014).*Ginkgo biloba EGb 761 is a standardised extract that contains 24% flavonols in saccharide 
conjugate form (Clostre, 1999). 

 

1.4 Cognitive effects following acute flavonoid-rich food 

supplementation  

1.4.1 Fruit supplementation   

1.4.1.1 Berry anthocyanins (Blackcurrant, Blueberry, Cherry, Cranberry, Grape) 

As shown in Table 1.2, berries contain a range of different flavonoid subclasses, but they are typically 

richest in anthocyanins. Initial berry studies predominantly investigated the cognitive effects of 

whole fruit. For example, Dodd (2012) demonstrated improved accuracy on a letter memory task 

(measuring working memory) following freeze dried whole blueberries (200g fresh equivalent, 

631mg anthocyanidins), in 19 young adults at a postprandial time point of 5 hours  (d=0.57). The 

study employed a double blind, crossover design with an energy matched control condition. No 

effects were observed at an earlier time of 2 hours or for other measures of executive function, 

memory, or mood. For a subset of participants, blood samples taken 1 hour postprandially revealed 

a trend towards increased plasma levels of brain-derived neurotrophic factor (BDNF) in the 

blueberry condition. Unfortunately, cognition was not measured at this time point so it is impossible 

to say whether the neurochemical changes are related to the cognitive outcome. In the same study, 

older adults’ BDNF values decreased from baseline for both blueberry and placebo conditions, but 

the decrease at the 1 hour time point was attenuated in the blueberry condition. These older adults 
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(n=18) showed improved performance on an immediate word recognition task at both 2 hours 

(d=0.44) and 5 hours (d=0.69) postprandially, but no improvements in executive function or mood 

were observed. 

A later study by Whyte & Williams (2015), using fresh whole blueberries (200g, 143mg 

anthocyanins), investigated cognitive effects in children. They found no effects at 2 hours for a range 

of executive function tasks, but did observe a significant improvement in delayed word recall using 

the Rey auditory verbal learning task (RAVLT) (d=0.74). This was a small, crossover study with only 14 

participants. As no baseline measures were taken, variations in performance across test days may 

have reduced the statistical power. Nevertheless, the medium effect size for the RAVLT provides 

good evidence for positive effects of blueberry flavonoids in children. Whyte, Schafer & Williams 

(2016) conducted a larger (n=21) double-blind, placebo-controlled, crossover study investigating the 

cognitive effects of two separate blueberry doses (127mg & 253mg anthocyanins), again in children. 

The highest dose resulted in significant improvements in immediate word recall after 1.25 hours 

(d=0.80), and in delayed word recognition after 6 hours (d=0.78). Improved accuracy was observed 

during a flanker interference task after 3 hours, although only for cognitively demanding 

incongruent trials (d=0.78). However, reaction times for a Go-NoGo measure of inhibition revealed 

significantly faster performance following the placebo compared with the blueberry interventions. In 

a further blueberry study by Khalid et al. (2017) significant effects for mood were observed in similar 

aged children (7-10) and in young adults (18-21) following a drink made from freeze dried whole 

blueberry powder (253mg anthocyanins). Mood was measured 2 hours post-intervention using the 

Positive and Negative Affect Schedule (PANAS). In both age groups positive affect was significantly 

elevated following the blueberry intervention when compared with a control condition (d=0.28 and 

d= 0.61 for the children and young adults, respectively), while negative affect remained unchanged. 

The positive blueberry effects in older adults and children appear to be focussed on episodic 

memory, whereas improvements in executive function are more consistent in young adults. The 

differences in cognitive domains may be an artefact of the small sample sizes, but could also be 

indicative of age related differences in underlying neuronal structures that affect the capacity for 

improvement. For example, hippocampal function may be more receptive during development in 

childhood and decline in old age, whilst frontal regions associated with executive function may be 

more sensitive in young adulthood. It is noteworthy that neurochemical changes in BDNF were 

apparent after 1 hour, yet distinct time points for memory effects emerged at 1.25-2 hours and 5 

hours, but not at an intervening 3 hour time point. At this stage only BDNF trends have been 

observed, and not directly in association with cognitive changes. Although it is perhaps premature to 
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comment on the relationship between acute changes in cognition and BDNF, it has nevertheless 

been posited that flavonoid induced increases in BDNF may facilitate stronger memory encoding ( 

Whyte et al., 2016). Possible mechanisms of action are discussed later in this chapter. Overall, the 

timings of cognitive effects are likely to be related to the digestion, absorption and metabolism of 

flavonoids, but further mapping of cognitive and physiological observations is required in order to 

resolve inconsistencies within the current observations. 

The flavonoid content of blueberries is known to vary widely depending on growing, processing and 

storage conditions (Rodriguez-Mateos, Cifuentes-Gomez, Tabatabaee, Lecras, & Spencer, 2012; 

Rodriguez-Mateos, George, Heiss, & Spencer, 2014). The same 200g quantity of whole blueberries 

used in the first two studies described above (Dodd, 2012; Whyte & Williams, 2015) showed clear 

differences in flavonoid content (631mg anthocyanidins & 143mg anthocyanins respectively). This 

highlights the importance of analysing fresh fruits for their flavonoid content when conducting an 

intervention. It is also important to note that compositional analysis of anthocyanins typically (but 

not exclusively) involves the removal of saccharide conjugates prior to quantification; therefore 

anthocyanin content is often reported as anthocyanidin equivalent. This difference is critical when 

comparing doses between studies. For example, a berry intervention reported to contain 100mg 

cyanidin may actually contain 156mg chrysanthemin (a saccharide of cyanidin). Some studies 

reviewed here appear to use the terms anthocyanins and anthocyanidins interchangeably without 

acknowledging this distinction, making it unclear whether a reported anthocyanin dose is actually 

referring to an equivalent anthocyanidin dose. 

As with blueberries, blackcurrants are a rich source of anthocyanins. Watson et al. (2015) conducted 

a double-blind, controlled crossover trial of two blackcurrant extracts (cold-pressed juice or freeze-

dried powder). Improved attention compared with an energy-matched control was observed in 36 

young adults during a 70-minute-long, cognitively fatiguing battery, beginning 1 hour postprandially. 

Specifically, declining accuracy on a rapid visual information processing (RVIP) task was attenuated 

after taking the powdered extract (d=0.10, d=0.47, d=0.47, d=0.49, d=0.49, d=0.59, d=0.56, 

measured for seven task repetitions; once every 10 minutes). Similarly, a slowing of reaction time on 

a digit vigilance task was attenuated, relative to the control, after taking the juiced extract (d=0.60, 

d=0.73 & d=0.60 for the 1st, 4th and 7th repetitions of the task, respectively). No effects were 

observed for the Stroop task (a measure of inhibition and attention), or for subjective measures of 

mood and mental fatigue. The total polyphenol content of the two extracts were matched at 

525mg/60kg bodyweight. However, the anthocyanin content differed slightly; 483mg/60kg 

bodyweight for the powder and 467 mg/60 kg for the juice. This difference was also reflected in the 



 

7 
 

analysis of plasma anthocyanin levels, which were observed to be higher following consumption of 

the powdered extract compared with levels recorded following the juice. Interestingly, the juice but 

not the powder was observed to inhibit platelet monoamine oxidase (MAO) and to attenuate blood 

glucose decline over the duration of the 70-minute task battery. This study suggests that the way an 

extract is prepared may influence cognitive and physiological outcomes, however as different 

blackcurrant cultivars were used for each extract, the contrasting observations may simply represent 

compositional differences such as the ratio of flavonoid subclasses present. For the juiced 

blackcurrant extract, MAO inhibition and blood glucose regulation were observed providing 

evidence for additional mechanisms of action further to the neurochemical changes observed for 

blueberries. The significant cognitive effects were observed for tests of executive function (RVIP and 

to some extent vigilance) which is consistent with the executive function benefits reported in 

healthy young adults following blueberry anthocyanins. 

In a double-blind crossover intervention study, Hendrickson & Mattes (2008) investigated whether 

an acute dose of grape juice would mitigate deficits in mood and cognition that commonly occur 

following a large meal.  Approximately 600ml (10ml/kg), containing around 580mg anthocyanins, 

was administered to young adult smokers along with a standardised lunch. Smokers were selected 

on the rationale that this population have an increased propensity to oxidative stress, and because 

smoking abstinence can exaggerate the post-meal dip in cognitive or affective state, thus this 

population may be more sensitive to the effects of flavonoid-rich intervention than healthy non-

smokers. This was a large study (n=35) with considerable statistical power, yet no significant effects 

of grape juice were observed 1 hour postprandially when compared to an energy matched placebo 

condition. Mood ratings for positive mood states (pleasure, arousal & vigour) were observed to 

decline under both grape and placebo conditions, similarly ratings of negative mood states 

(confusion & fatigue) increased under both conditions. Although mood generally declined, word 

fragment completion task performance did not significantly change over time in either condition. It 

is unfortunate that performance was examined on only one cognitive domain (implicit memory), 

which is an area that has not previously been considered with respect to flavonoid-rich intervention. 

Studies have observed effects on traditional measures of explicit memory and executive function 

that were not measured here. Indeed, a more recent study by Haskell-Ramsay, Stuart, Okello, & 

Watson (2017) observed significant cognitive and mood effects following purple grape juice 

intervention in young adults (n=20), when compared to a sugar-matched white grape juice control. 

The purple grape juice contained only 27mg anthocyanins, but elicited a significant reduction in a 

composite measure of speed of attention (d=0.50) at 20 minutes postprandially. The same dose 
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concurrently increased composite ratings of calmness (d=0.57). Therefore improvements following 

flavonoid-rich interventions may be both temporally and cognitive-domain sensitive. 

Caldwell, Charlton, Roodenrys, & Jenner (2016) published their investigations into the effects of 

flavonoid-rich cherry. Following administration of 300ml cherry juice (55mg anthocyanins) to 

younger adults (n=6), older adults (n=5) and older adults with mild cognitive impairment (n=5), tests 

of executive function, speed of processing, and verbal learning and memory were performed at 

baseline and 6 hours postprandially. At 6 hours, the older adults displayed improved task switching 

performance compared to baseline (db=0.75). No other cognitive effects were observed. The authors 

attribute this single effect to type 1 error, citing attrition of participants in that group as a likely 

cause. However the small sample size in all groups suggests that the whole study is likely to be 

severely underpowered. The lack of an energy matched, low flavonoid control condition is also cause 

for concern; a second crossover condition only administered the same juice in three separate 100ml 

aliquots each consumed 1 hour apart. No cognitive effects were observed relative to baseline 

following consumption of the juice in these consecutive smaller doses. A further problem may be the 

intervention itself; the anthocyanin content of the cherry juice appears very low compared to some 

of the above studies. A considerably larger, controlled study is therefore needed to determine if 

anthocyanin-rich cherries elicit acute cognitive effects similar to those of other anthocyanin-rich 

fruits. Indeed more recently, Keane, George, et al. (2016) investigated the effects of 60ml cherry 

juice concentrate, containing 68mg anthocyanins, on 27 middle aged adults. No effects were 

observed on any of the cognitive or mood measures deployed at baseline, 1, 2, 3, or 5 hours 

postprandially, when compared to an energy matched control. Measures included digit vigilance, 

RVIP, Stroop, and mood scales. Cerebral blood flow (CBF) was measured concurrently using 

transcranial Doppler imaging. No changes in CBF were evident, although near-infrared spectroscopy 

(NIRS) revealed a significant increase in oxygenated haemoglobin at the 1 hour time point following 

the cherry intervention. Significant reductions in systolic blood pressure (SBP) were also observed at 

1 hour when compared with the control. It appears, then, that cherries are less effective than other 

fruits at impacting cognitive function despite evidence for cardiovascular effects. 

1.4.1.2 Citrus hesperidin (Orange) 

As with berries, citrus fruits contain several different flavonoids, but they are richest in the flavanone 

hesperidin. In a crossover intervention study, Lamport et al. (2016) supplemented 24 young adults 

with a commercially available flavanone-rich orange juice (70.5mg total flavonoids; 42.15mg 

hesperidin, 17.25mg naringin, 6.75mg narirutin) or an energy matched control. An extensive battery 

of tasks including measures of vision, episodic memory, processing speed, working memory, and 
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other executive functions were performed 2 hours postprandially. Significant improvements when 

compared to both control and baseline were observed only for the digit symbol substitution task 

(DSST), a measure of psychomotor processing speed (d=0.30). An additional group of participants 

underwent fMRI assessment using arterial spin labelling (ASL). Increased CBF was observed at 2 

hours but not 5 hours postprandially. However, as cognition was not measured directly in 

conjunction with CBF (and not at all at 5 hours) it remains unclear whether the observed 

improvements in processing speed are causally related to the CBF changes. The flavonoid dose used 

in this study was low, particularly when compared with the typical doses of other flavonoid 

subclasses reviewed here. If flavonoid effects are dose-dependent then a higher dose may have 

elicited increased cognitive benefit. Indeed, a subsequent study by Alharbi et al. (2016) used orange 

juice fortified with additional flavanone-rich orange pulp, to achieve a greater total flavonoid 

content (272mg; 220.46mg hesperidin, 34.54mg narirutin). Middle aged adults (n=24, 30-65 years) 

showed improved psychomotor performance on a finger tapping task at both 2 hours (d=0.87) and 6 

hours (d=0.62). Improvements in attention and general executive function, as measured by a 

continuous performance task (CPT), were observed at 6 hours (d=0.58). The orange juice was 

observed to attenuate a decline in subjective alertness throughout the testing period compared to a 

sugar-matched control. 

From this limited research, orange juice appears to benefit psychomotor performance across age 

groups at a time point also associated with increased CBF. Higher doses appear to elicit greater 

effect sizes for psychomotor performance and provide additional benefits in executive function, 

tentatively suggesting that flavanone effects may be dose-dependent. 

1.4.1.3 Quercetin & Epicatechin (Apple) 

Bondonno et al. (2014) conducted a crossover intervention study investigating the cognitive effects 

of whole fresh apple (184mg quercetin & 180mg epicatechin), spinach or a combination of the two. 

It was hypothesised that the nitrate content of spinach and the flavonoids in apple would both 

augment plasma nitric oxide (NO), although through distinct mechanisms. Increased NO status has 

been previously associated with vasodilatory related increases in blood flow, which the authors 

predicted would lead to a beneficial cognitive outcome following all three intervention conditions. 

Cognition and mood were measured 2.5 hours postprandially, using the Cognitive Drug Research 

(CDR) assessment battery and Bond-Lader mood scales. Even though significant increases in plasma 

NO were observed for the apple, spinach and combined conditions when compared with a control 

condition, all cognitive outcomes remained non-significant. This included factors for working 

memory and attention derived from the CDR results. This was a reasonably well powered study with 
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30 middle aged participants (mean age 47 years), so the lack of cognitive findings suggests that 

augmented NO status may not affect cognition. If alternative mechanisms are responsible for the 

previously observed cognitive effects of flavonoid-rich foods, then it may be that the flavonoids 

present in apple are not particularly effective, or that the peak time for observing apple flavonoid 

effects was missed by the study. The rationale for testing 2.5 hours postprandially is not given in the 

paper, but may relate to previous NO observations rather than the absorption and metabolism of 

flavonoid subclasses present in apples. 

1.4.2 Cocoa supplementation (Epicatechin)  

To date, much of the flavonoid-related literature has focussed on the effects of cocoa. Cocoa is a rich 

source of the flavanol epicatechin; however it also contains caffeine and theobromine that have 

known psychoactive properties. Not all of the cocoa studies reviewed here have matched for these 

potential confounds across experimental conditions. Scholey et al. (2010) carried out a double-blind 

crossover study of 30 young adults (age 18-35), comparing two acute doses of chocolate milk with a 

fully matched control. Beginning 90minutes postprandially, participants performed 6 consecutive 

repetitions of a 10minute task battery, designed to be cognitively fatiguing. A 520mg dose of cocoa 

flavanol resulted in significant improvements in working memory on a serial threes (3s) subtraction 

task at all six time points (d=0.57, d=0.71, d=0.50, d=0.64, d=0.50 and d=0.41 respectively) relative to 

the control.  A 994mg dose resulted in significant improvements for the first four repetitions on the 

same serial 3s task (d=0.44, d=0.52, d=0.41 and d=0.67 respectively). However, no improvements 

were observed whilst performing the more difficult serial sevens (7s) task. Only the high dose was 

reported to improve reaction time on an RVIP attention task, with significant improvements 

observed during the 3rd and 4th repetitions (d=0.35 for each repetition). Conversely, only the low 

dose improved self-reported levels of mental fatigue, with significant attenuation of fatigue across 

all but the 3rd repetition (d=0.39, d=0.37, d=0.30, d=0.27 and d=0.30 respectively). Overall the low 

dose was observed to be effective over more time points than the high dose for serial 3s and 

conveyed greater benefits in terms of counteracting mental fatigue. The high dose resulted in some 

additional reaction time benefits but also incurred cognitive costs with an increased error rate 

observed during the serial 7s task. The authors conclude that lower doses of cocoa flavanol may be 

more effective but do not offer an explanation as to why this might be the case. 

In contrast, a similar study of older adults by Pase et al. (2013) failed to observe any acute effects of 

a water based chocolate drink on cognition or mood. Doses containing 250mg and 500mg cocoa 

flavanol were compared with a fully matched control. The study used a broad spectrum of tasks 

from the CDR assessment battery and a range of Bond-Lader mood visual analogue scales. Testing 
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was performed at 1 hour, 2.5 hour, and 4 hour time points. The inconsistencies between the two 

studies in population, testing time point, and dose make it difficult to draw conclusions from the 

opposing outcomes. However, a notable methodological difference was that Pase et al. (2013) 

provided a light lunch 1.5 hours after the intervention. The effects of flavonoids may have been 

masked by stronger macronutrient effects, such as the neuronal energy provided by carbohydrate 

ingestion.  

In support of Scholey et al. (2010), Field, Williams, & Butler (2011) observed improved performance 

in visual spatial working memory (VSWM) (d=0.35) and choice reaction time (CRT) (d=0.16) in 30 

young adults (age 18-30), following a 773mg high dose of cocoa flavanols relative to a low flavanol 

white chocolate control. Testing was performed 2 hours postprandially. Visual function also 

benefited; significant improvements in visual contrast sensitivity and time to detect motion direction 

were observed following the high dose. However, caffeine and theobromine were not matched 

across the two conditions and baseline measurements were not recorded before administering 

either of the interventions. These methodological limitations are reflected in the lower effect sizes 

obtained relative to the previously reviewed flavanol-rich cocoa studies. Massee et al. (2015) 

investigated the effects of a cocoa extract containing 250mg cocoa flavanol in a between-subjects 

study of 40 young adults. At a postprandial time point of 2 hours, mental fatigue was observed to be 

significantly lower following the cocoa intervention when compared to a control (d=0.80). 

Improvement from baseline on a serial 7s subtraction task was also observed to be significantly 

improved at 2 hours for the cocoa condition when compared to the control (d=0.52). Again however, 

the control was not matched for caffeine so it is unclear whether the outcome was confounded by 

the small amounts of caffeine (5.56mg) also present.  

Most recently, Boolani, Lindheimer, Loy, Crozier, & O’Connor (2017) investigated the effects of 

cocoa and caffeine on mood and cognition in 23 young adults. Compared to placebo, fewer 

commission errors were observed on the Bakan task (similar to RVIP) at a postprandial time point of 

98 minutes (d=0.76), however the large effect size observed here may be due to the confounding 

influence of caffeine and theobromine that were not matched in the placebo. A significant lowering 

of anxiety was observed at the same time point when cocoa was compared with a caffeine-matched 

control (d=0.84). However no other cognitive effects were reported. The authors comment that an 

absence of calories compared with other cocoa research may have influenced the outcome; the 

cocoa interventions were sweetened using artificial sweetener in this case. 
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Findings following cocoa intervention appear mixed. However, when combined, these studies 

suggest that moderately high doses of cocoa flavanol provide benefits for cognition and mood up to 

two hours after ingestion in young adult populations. Enhanced visual functioning accompanied 

some of the cognitive improvements and as the majority of cognitive tasks are visual, it is possible 

that this concurrent effect may also play a role in the facilitation of cognitive improvement. Further 

cocoa flavanol studies are required to clarify the effects of dose, the effects on different populations, 

and the role of vision as a potential mechanism of action. 

1.4.3 Green tea supplementation (Epigallocatechin gallate)  

The main flavonoid constituent of green tea is the flavanol epigallocatechin gallate (EGCG). Dietz, 

Dekker, & Piqueras-Fiszman (2017) investigated the acute cognitive and mood effects of green tea 

using a tea powder intervention containing 280mg EGCG. Twenty-three young adults consumed the 

tea in drink and snack bar form. At a postprandial time point of 1 hour no significant changes in 

mood were observed compared with the drink or bar control conditions. Cognitive measures 

included immediate and delayed recall, simple and choice reaction tasks, digit vigilance, and spatial 

and numeric working memory tasks.  Choice reaction time was observed to be significantly faster 

following green tea when compared with performance following control conditions, irrespective of 

the delivery form of the intervention (drink or bar) (d=0.59). However, the authors attribute the 

finding to other active constituents in the intervention, including L-theanine (67mg), and caffeine 

(136mg) that were not matched in the control conditions. No other cognitive effects were observed. 

To avoid stimulant confounds, green tea is more typically administered in caffeine-free extract form. 

In a double-blind, placebo controlled crossover study, Wightman, Haskell, Forster, Veasey, & 

Kennedy (2012) administered 135mg and 270mg doses of EGCG extract, but observed no cognitive 

or mood effects for either dose. Cognitive tests included simple reaction time (SRT), serial 

subtraction, RVIP and Stroop, and were measured at baseline and 45 minutes after 

supplementation. Near-infrared spectroscopy (NIRS) revealed a lowering of CBF during cognitive 

testing following the lower dose. The authors attribute this CBF effect to previously observed 

vasoconstrictor properties of EGCG seen at low doses. This vasoconstrictor effect appears to 

contrast with vasodilatory properties previously observed for higher doses. In support of the latter, a 

study by Scholey et al. (2012) observed increased alpha, beta and theta electroencephalography 

(EEG) activity in the frontal gyrus 2 hours after a high dose of 300mg EGCG extract. This change in 

brain activity was accompanied by increased feelings of calm (d=0.55) and a reduction in ratings of 

stress (d=0.64). Scholey et al. (2012) reported that similar EEG activity has been observed in studies 

of meditation and mindfulness, suggesting a correlational link with mood. However, attention 
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outcomes measured using the RVIP task were reported as non-significant (in a separate publication; 

Camfield, Stough, Farrimond, & Scholey, 2014). The acute effects of EGCG therefore appear 

restricted to mood at this stage, and then only for higher doses. Some modulation of brain activity is 

apparent, but further investigation is needed to understand dose-related differences in 

vasoreactivity, and whether or not these are likely to lead to behavioural benefits on cognitive tasks. 

1.4.4 Ginkgo biloba supplementation (Quercetin, Kaempferol & Isorhamnetin)  

Ginkgo biloba is a flavonol-rich leaf extract that is typically standardised to contain 24% flavonols 

and 6% terpenoids (a group of bioactive plant lipids). A popular herbal supplement, it is reported 

anecdotally to improve blood circulation, relieve anxiety and enhance memory e.g. (Mahadevan & 

Park, 2008). Despite these claims, in a double-blind crossover trial, Warot et al. (1991) failed to 

observe any cognitive improvements in 12 young adults 1 hour after an acute dose of 600mg 

(containing approx. 144mg flavonols). The task battery included choice reaction time (CRT), picture 

recognition, the Sternberg memory scanning task, and critical flicker fusion frequency (CFF) – a 

measure of vigilance. However, the small sample size may have impacted the statistical power of the 

study. Similarly, Subhan & Hindmarch (1984) found no effect on either CFF or CRT at the same time 

point for doses of 120, 240 or 600mg (containing approx. 29, 58 & 144mg flavonols respectively). 

Significant improvements were however observed for the Sternberg task, with a decrease in reaction 

time observed after the 600mg dose, and decreases in memory scanning rates observed after the 

120mg and 600mg doses. These observations were in comparison with a placebo in a double-blind 

crossover design; however baseline measurements were not recorded prior to administering each 

intervention and only 8 participants were tested. Unfortunately there was insufficient data reported 

in the paper to allow calculation of effect size. Again, the small sample size may have impacted the 

statistical power of the study. 

Nathan et al. (2002) tested at the slightly later postprandial time of 90 minutes but found no 

significant improvements in older adults following 120mg supplementation (containing approx. 

29mg flavonols) using the CDR battery and RAVLT. Yet again this was a small study (n=11) with a 

small dose size and as such the conclusions may be statistically unreliable. A larger double-blind 

crossover study of young adults (n=20) conducted by Kennedy, Scholey, & Wesnes (2000) observed 

dose- and time-related improvements, in a ‘speed of attention’ factor derived from the CDR task 

battery. Effects were not apparent at 1 hour postprandially but became evident at 2.5, 4 and 6 

hours. Cohen’s d values were d=0.45, d=0.45 & d=0.50, respectively for a 240mg dose (containing 

approx. 58mg flavonols), and d=1.29, d=0.86 & d=0.80 for a 360mg dose (approx. 86mg flavonols) 

across the time period. No effect was observed for a lower 120mg dose (approx, 29mg flavonols).  
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The higher effect sizes for the 360mg dose compared with the 240mg dose, and the lack of any 

significant effect for the lowest 120mg dose, are indicative of a dose-related response for attention. 

This was not the case for memory; improvements in a ‘quality of memory’ factor were observed at 1 

hour and 4 hours for the 120mg dose only (d=0.57 & d=0.52), although trends were evident for the 

higher doses. A follow up study by the same authors (Kennedy, Scholey, & Wesnes, 2002) comparing 

ginkgo effects with panax ginseng (a plant extract rich in bioactive saponins) failed to replicate the 

‘speed of attention’ finding for an identical 360mg ginkgo biloba dose. This inconsistency was 

attributed to a procedural change in the second study. They did however observe serial 7s 

improvements at 4 hours (d=0.65) and 6 hours (d=0.28). Immediate recall (d=0.83) and delayed 

recall (d=0.67) were also observed to improve at 6 hours, as did a ‘Quality of memory’ factor 

(d=0.59).  

Elsabagh, Hartley, Ali, Williamson, & File (2005) administered a low dose of 120mg ginkgo biloba 

extract (containing approx. 29mg flavonols)  and after 4 hours observed improved attention relative 

to a placebo condition, using a paced auditory serial addition test (PASAT) (d=0.58). Improved 

pattern recognition (d=0.55) and a trend towards improved delayed recall were also observed. This 

was a well powered between-subjects study (n=52) but with only a single post-ingestion time point 

and no baseline. The two participant groups did not differ significantly in terms of age, gender, BMI, 

verbal IQ, or habitual caffeine and alcohol intake, however without cognitive baseline measures, the 

possibility remains that group differences in cognition may simply be due to differences in the 

participants. 

In order to consolidate the ginkgo biloba data from three smaller studies, Kennedy, Jackson, Haskell, 

& Scholey (2007) combined their data into a meta-analysis.  In young adults (combined n=78), a 

general decline in ‘quality of memory’ observed following the placebo was attenuated at 1 hour and 

4 hours following 120mg ginkgo biloba supplementation. However ‘speed of attention’ performance 

slowed at 1 hour and 6 hours relative to both baseline and placebo. The authors were unable to 

explain this unexpected outcome, particularly as higher doses have been shown to improve speed of 

attention relative to placebo. Such inconsistencies in the data highlight the need for further 

investigation. Overall, memory findings following ginkgo biloba supplementation appear to be 

relatively consistent across the larger, well powered crossover studies and mimic the timings of 

memory effects observed in the blueberry supplementation studies, occurring at 1 hour and 4-6 

hours postprandially. Attention effects following ginkgo biloba appear dose-dependent and seem to 

occur at later time points than some other flavonoid subclasses (from 2.5-6 hours). The effects of 

ginkgo biloba also appear to span several cognitive domains including attention, working memory, 
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and episodic memory. Some of the largest cognitive effect sizes, as summarised in Table 1.3, are 

observed following ginkgo biloba. This may reflect the additional effects of terpenoids also present 

in the extract. 

Table 1.3 Statistically significant cognitive outcomes in decreasing order of effect size 

Table 1.3 continued 

Study Age 
(years)

n 
Flavonoid dose 

(mg) 
Cognitive 
measure 

Postprandial 
time point 

Effect size (d) 

Kennedy et al. 
(2000) 

19-24
20 

ginkgo
360 

Speed of 
attention 

2.5-6h 
(Average)

0.98 

Boolani et al. 
(2017) 

20.3(2.2)
23 

cocoa
499 Mood 1.6h 0.84 

Kennedy et al. 
(2002) 

21.2(3.9)
20 

ginkgo
360 IR 6h 0.83 

Massee et al. 
(2015) 

24.1(4.5)
40 

cocoa
250 Mental fatigue 2h 0.80 

Whyte et al. (2016) 
7-10

21 
berry

253 IR 1.25h 0.80 

Whyte et al. (2016) 
7-10

21 
berry

253 Flanker 3h 0.78 

Whyte et al. (2016) 
7-10

21 
berry

253 
Word 

recognition 
6h 0.78 

Boolani et al. 
(2017) 

20.3(2.2)
23 

cocoa
499 Bakan 1.6h 0.76 

Alharbi et al. 
(2016) 

30-65
24 

citrus
272 Finger tapping 2-6h 

(Average)
0.75 

#Caldwell et al. 
(2016) 

74.1(7.9)
5 

berry
55 Task switching 6h (db)0.75 

*Whyte & Williams 
(2015) 

8-10
14 

berry
143 RAVLT 2h 0.74 

Kennedy et al. 
(2002) 

21.2(3.9)
20 

ginkgo
360 DR 6h 0.67 

Watson et al. 
(2015) 

18-34
36 

berry
467 Digit vigilance 1-2.5h 

(Average)
0.64 

Scholey et al. 
(2012) 

27.7(9.3)
31 

tea
300 Mood 2h 0.64 

Khalid et al. (2017) 
18-21

21 berry
253 Mood 2h 0.61 

Dietz et al. (2017) 
20-35

23 
tea

280 CRT 1h 0.59 

Kennedy et al. 
(2002) 

21.2(3.9)
20 

ginkgo
360 

Quality of 
memory 

6h 0.59 

Alharbi et al. 
(2016) 

30-65
24 

citrus
272 CPT 6h 0.58 

*Elsabagh et al. 
(2005) 

18-26
52 

ginkgo
120 PASAT 4h 0.58 

Dodd (2012) 
18-25

19 
berry

631 Letter memory 5h 0.57 
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Table 1.3 continued 

Study Age 
(years)

n 
Flavonoid dose 

(mg) 
Cognitive 
measure 

Postprandial 
time point 

Effect size (d) 

Dodd (2012) 
62-73

18 
berry

631 
Word 

recognition 
2-5h 

(Average)
0.57 

Haskell-Ramsay 
et al. (2017) 

18-35
20 

berry
27 Mood 0.3h 0.57 

Scholey et al. 
(2010) 

18-35
30 

cocoa
520 Serial 3s 1.5-2.5h 

(Average)
0.56 

Kennedy et al. 
(2000) 

19-24
20 

ginkgo
120 

Quality of 
memory 

1-4h 
(Average)

0.55 

Scholey et al. 
(2012) 

27.7(9.3)
31 

tea
300 Mood 2h 0.55 

*Elsabagh et al. 
(2005) 

18-26
52 

ginkgo
120 

Pattern 
recognition 

4h 0.55 

Massee et al. 
(2015) 

24.1(4.5)
40 

cocoa
250 Serial 7s 2h 0.52 

Scholey et al. 
(2010) 

18-35
30 

cocoa
994 Serial 3s 1.5-2.5h 

(Average)
0.51 

Haskell-Ramsay 
et al. (2017) 

18-35
20 

berry
27 

Speed of 
attention 

0.3h 0.50 

Kennedy et al. 
(2000) 

19-24
20 

ginkgo
240 

Speed of 
attention 

2.5-6h 
(Average)

0.47 

Kennedy et al. 
(2002) 

21.2(3.9)
20 

ginkgo
360 Serial 7s 4-6h 

(Average)
0.47 

Watson et al. 
(2015) 

18-34
36 

berry
483 RVIP 1-2.5h 

(Average)
0.45 

Scholey et al. 
(2010) 

18-35
30 

cocoa
994 RVIP 1.5-2.5h 

(Average)
0.35 

*Field et al. (2011) 
18-25

30 
cocoa

773 VSWM 2h 0.35 

Scholey et al. 
(2010) 

18-35
30 

cocoa
520 Mental fatigue 1.5-2.5h 

(Average)
0.33 

Lamport et al. 
(2016) 

18-30
24 

citrus
71 DSST 2h 0.30 

Khalid et al. (2017) 
7-10

52 berry
253 Mood 2h 0.28 

*Field et al. (2011) 
18-25

30 
cocoa

773 CRT 2h 0.16 

*Studies with no baseline measurements. 
#
Studies with no control condition. 

(Average)
Average of effect sizes for 

the same dose & cognitive measure recorded across multiple time points. 
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1.5 Mechanisms of action  

1.5.1 Absorption and metabolism  

In vitro and in vivo evidence suggests that flavonoids and their metabolites are readily absorbed into 

the blood stream and are able to cross the blood brain barrier (Jäger & Saaby, 2011; Youdim, 

Shukitt-Hale, & Joseph, 2004). Although it is not possible to directly measure flavonoid 

concentrations in the human brain, the timings of peak levels in blood plasma have been observed 

to correspond with the timings of cognitive effects. For example, whole anthocyanins are observed 

in plasma 1-4 hours postprandially (Mazza, Kay, Cottrell, & Holub, 2002), and their metabolites are 

observed to peak at 1-2 hours and 6 hours following berry supplementation (Kay, Mazza, Holub, & 

Wang, 2004; Rodriguez-Mateos et al., 2013), which seems to correspond with the two distinct 

timings of cognitive benefits observed for blueberry. Plasma flavanols following cocoa ingestion peak 

at 2 hours only (Holt et al., 2002; Rein et al., 2000; Schroeter et al., 2006; Wang et al., 2000), and this 

is reflected by a number of positive cognitive effects at 2 hours but an absence of cognitive effects at 

later time points. Conversely, the cognitive findings for ginkgo biloba are mainly observed between 

4-6 hours postprandially (Elsabagh et al., 2005; Kennedy et al., 2000, 2002). Bioavailability studies for 

ginkgo were not apparent in the literature, however bioavailability of some conjugates of quercetin, 

the main flavonoid present in ginkgo, have been observed to peak at 4-6 hours postprandially 

(Graefe et al., 2001). This may also explain the lack of cognitive findings for quercetin-rich apple 

where cognitive testing was carried out at 2.5 hours (Bondonno et al., 2014).  Similarly, late peak 

plasma timings have also been observed for the citrus flavonoid hesperidin (Manach, Williamson, 

Morand, Scalbet, & Remesy, 2005). The reviewed cognitive effects following orange juice 

consumption support this, but also show an earlier effect on psychomotor performance that may 

relate to mechanisms of action such as improved blood glucose regulation or increased 

cerebral/peripheral blood flow. In general however, the timings of cognitive effects appear closely 

related to the absorption and metabolism rates of the supplemented flavonoid compounds. 

Broad individual differences have been noted in the absorption profiles of a range of flavonoids and 

their associated metabolites (Bresciani et al., 2017; Mennen et al., 2008; Rodriguez-Mateos et al., 

2015); not only in the quantities of metabolites present, but also in the timings of their appearance 

(Bresciani et al., 2017). Intact flavonoids are generally only absorbed in very small quantities via the 

stomach and small intestine, large quantities therefore enter the colon where they are metabolised 

by gut microbiota before being absorbed into the blood stream. Specific bacteria have been 

identified that act on different flavonoids (Braune & Blaut, 2016), for example Bifidobacterium and 

Lactobacillus−Enterococcus catalyse the metabolism of anthocyanins (Aura et al., 2005; Hidalgo et 
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al., 2012) and Eggerthella lenta and Flavonifractor plautii catalyse the metabolism of catechins (Jin & 

Hattori, 2012; Kutschera, Engst, Blaut, & Braune, 2011). Individuals have varying polyphenol 

metabolising phenotypes, largely dependent on their gut microbiota profile (Tomás-Barberán, 

Selma, & Espín, 2016). The effectiveness of a flavonoid intervention is therefore dependent on the 

phenotype of the subject which is typically unclear at the onset of testing. Interestingly, a diet 

habitually rich in flavonoids can have a positive impact on the profile of gut microbiota (Cardona, 

Andrés-Lacueva, Tulipani, Tinahones, & Queipo-Ortuño, 2013; M. Hidalgo et al., 2012; Valdés et al., 

2015), and so subjects who regularly consume flavonoids are likely to propagate a gut microbiota 

profile specifically suited to the metabolism of flavonoids. If cognitive health benefits observed 

following a single acute dose of flavonoids are dependent upon the metabolism of the flavonoid 

compounds by such gut microbiota, individuals who habitually consume greater quantities of 

flavonoids might therefore be expected to experience greater acute cognitive health benefits in the 

immediate postprandial period, particularly at later time points, due to the presence of greater 

quantities of flavonoid metabolising bacteria in the intestinal tract (Laparra & Sanz, 2010). This idea 

is contrary to the commonly posited theory that interventions are more effective in those with a low 

habitual intake of flavonoid-rich foods and requires further investigation. 

1.5.2 Endothelial function  

1.5.2.1 Vasodilation 

The vasoactive properties of flavonoid-rich foods as demonstrated by flow-mediated dilation of the 

brachial artery following ischemia (FMD) (Alexopoulos et al., 2008; Alqurashi, Galante, Rowland, 

Spencer, & Commane, 2016; Dohadwala et al., 2011; Monahan et al., 2011; Rendeiro et al., 2017; 

Rodriguez-Mateos et al., 2013; Schroeter et al., 2006; Widlansky et al., 2007), peripheral arterial 

tonometry (PAT)(Dohadwala et al., 2011), and Laser Doppler Flowmetry (LDF)(Morand et al., 2011), 

are known to result in increased peripheral blood flow. Peak vasodilatory effects have been 

observed at 1-2 hours and 6 hours postprandially for blueberry (Rodriguez-Mateos et al., 2013) and 

acai berry supplementation (Alqurashi et al., 2016), at 2 hours for cocoa (Monahan et al., 2011; 

Schroeter et al., 2006), at 30 minutes (Alexopoulos et al., 2008) and 2 hours (Widlansky et al., 2007) 

for green tea,  at 4 hours for cranberry (Dohadwala et al., 2011) and at 6 hours for orange juice 

(Morand et al., 2011), thereby covering the full range of time points at which cognitive effects have 

been observed. Meta-analysis of these FMD effects has revealed that they may be non-linearly dose-

dependent, following an inverted U shaped curve (Kay, Hooper, Kroon, Rimm, & Cassidy, 2012; 

Rodriguez-Mateos et al., 2013). Blood pressure reductions have also been associated with the 

consumption of flavonoid-rich foods, which may again be related to their vasoactive properties. 
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Although more commonly observed in chronic intervention studies (Kay et al., 2012), the effects 

have also been observed following acute supplementation. For example, acute reductions in systolic 

blood pressure (SBP) have been observed 1-3 hours following cherry juice concentrate (Keane, 

George, et al., 2016; Keane, Haskell-Ramsay, Veasey, & Howatson, 2016). 

These endothelial effects are not restricted to peripheral systems; flavonoids have also been 

observed to result in increased CBF 1 hour after acute blueberry supplementation (Dodd, 2012), and 

2 hours after cocoa (Francis, Head, Morris, & Macdonals, 2006) and orange juice supplementation 

(Lamport et al., 2016). Selective increases have been observed in the dorsolateral prefrontal cortex 

(DLPFC) following green tea supplementation (Borgwardt et al., 2012), however time of testing and 

exact dose of EGCG were not stated in the paper which makes interpretation of the observation 

difficult. It is likely that CBF increases will occur across the range of time points observed in 

peripheral blood flow studies, but currently there are insufficient published findings to support this 

fully. In particular, little work appears to have been reported regarding CBF modulation following 

acute ginkgo biloba supplementation in humans. However, CBF has been shown to be positively 

correlated with cognitive performance, particularly in epidemiological assessment of dementia risk, 

where CBF is reduced in patients with dementia, and greater CBF velocity is associated with a lower 

rate of cognitive decline and lower risk of dementia in healthy ageing  (Ruitenberg et al., 2005; 

Spencer, 2010). Cognitive training during healthy ageing has also been observed to increase both 

CBF and cognitive performance (Mozolic, Hayasaka, & Laurienti, 2010). Therefore, vasodilatory 

mechanisms of action may account for at least some of the cognitive improvements observed in 

acute supplementation studies. Similarly, increased CBF has been posited to account for cognitive 

benefits observed following acute exercise, although findings are not equivocal (McMorris, 2015). 

Cognitive improvements following flavonoid ingestion have yet to be directly matched with acute 

increases in CBF, making this an important area for further research. 

1.5.2.2 Nitric oxide synthesis 

There are a number of different chemical mediators for vasodilation including nitric oxide (NO). 

Flavonoids have been associated with acute augmentation of NO status. Bondonno et al. (2014) 

demonstrated a significant increase in plasma NO in response to flavonoid-rich apple, although no 

cognitive benefits were observed for a battery of tasks performed immediately after the blood 

samples were taken (2.5 hours postprandially). Similar enhancement of NO status has been 

observed at 1 hour for cocoa supplementation (Schroeter et al., 2006), and at 2 hours following pure 

epicatechin and quercetin (Loke et al., 2008).  In addition to its role in endothelial function, NO has 

also been implicated in the regulation of the transcription factor CREB; an important factor in 
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neuron survival and synaptic plasticity (Ciani, Guidi, Bartesaghi, & Contestabile, 2002). A proposed 

mechanism for flavonoid induced augmentation of NO status is through enhancing the expression or 

activity of endothelial nitric oxide synthase (eNOS) (Stoclet et al., 2004). eNOS itself has been 

implicated in the regulation of BDNF expression (Chen et al., 2005). This may account for the 

increased plasma BDNF levels observed after acute blueberry supplementation (Dodd, 2012), 

although this connection is speculative at this stage. Depending on the isoform present, NOS  has 

also been implicated as a causal agent in neurodegenerative disease (Cárdenas, Moro, Hurtado, 

Leza, & Lizasoain, 2005; Chung & David, 2010). Although eNOS is considered to be neuroprotective, 

neuronal and inducible isoforms (nNOS and iNOS) are thought to be neurotoxic through mechanisms 

of oxidative stress. So flavonoid regulatory effects on NO systems may be beneficial over long term 

supplementation, in addition to the acute mechanisms considered here. 

1.5.3 Blood glucose regulation  

Attenuation of peak postprandial plasma glucose followed by a more gradual post-peak decline 

observed following blackcurrant (Törrönen et al., 2010; Watson et al., 2015) and cranberry (Wilson 

et al., 2008) suggests that altered blood glucose regulation may provide an additional mechanism of 

action for the executive function effects observed in young adults. Irrespective of the presence of 

flavonoids, a postprandial glucose profile characterised by a low peak and gradual decline is 

associated with better cognitive function than a poor glucose profile with a high peak and rapid 

decline (Benton & Nabb, 2003; Sunram-Lea & Owen, 2017), thus this mechanism could account for 

cognitive benefits following consumption of flavonoid-rich foods. In particular, Watson et al. (2015) 

observed both higher blood glucose levels and improved attention 1 hour following blackcurrant 

supplementation relative to  a sugar matched control. There is some evidence to suggest that the 

absorption of sugar may be slowed when consumed in conjunction with flavonoids (Hanhineva et al., 

2010; Sancho & Pastore, 2012; Williamson, 2013); mechanisms of action are discussed in more detail 

in Chapter 5. Therefore a flavonoid-rich intervention may result in greater availability of glucose over 

a longer period relative to a low-flavonoid sugar-matched control. As glucose is necessary for all 

human cell function, and glucose supplementation has been directly linked to cognitive 

improvement (Benton, Owens, & Parker, 1994; Jones, Sünram-Lea, & Wesnes, 2012; Kennedy & 

Scholey, 2000), this mechanism offers a plausible explanation for the observed cognitive benefits of 

flavonoid-rich interventions (relative to sugar matched controls) in the immediate postprandial 

period. Here, reported effects are for sweet berry interventions. Similar effects may be observed 

following consumption of carbohydrate rich foods such as dark chocolate, or for low carbohydrate 
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drinks such as green tea if consumed alongside carbohydrate based foods, however further research 

is needed.   

1.5.4 Neuronal enhancement  

1.5.4.1 Monoamine oxidase inhibition 

Monoamines comprise a class of neurotransmitters that are responsible for the regulation of many 

cognitive processes. Monoamine levels, particularly for dopamine, have been observed to increase 

during working memory and attention tasks, correlating positively with task performance (Cox, 

Pipingas, & Scholey, 2015). Therefore inhibition of monoamine oxidase (MAO) ), an enzyme 

responsible for the breakdown of monoamines,  may be beneficial to monoaminergic 

neurotransmission during cognitive performance, through increased concentrations of monoamine 

neurotransmitters. Watson et al. (2015) observed MAO inhibition in association with improved 

attention after blackcurrant supplementation. None of the other studies reviewed here have 

measured MAO levels, but in vitro studies and animal studies using chronic supplementation have 

demonstrated MAO inhibitory effects for all flavonoid subclasses (Jäger & Saaby, 2011). 

Consideration should be given to the inclusion of such measures in future research. 

1.5.4.2 BDNF synthesis 

BDNF is a complex protein that has been implicated in the regulation of multiple neuronal processes 

including synaptic plasticity and neurogenesis.  Expression of BDNF is regulated by the transcription 

factor CREB. Trends towards increased plasma BDNF observed after 1 hour (Dodd, 2012) are a 

slightly unexpected finding in an acute study. BDNF regulated protein synthesis mechanisms of 

flavonoid action have been more consistently associated with chronic supplementation (Spencer, 

Vauzour, & Rendeiro, 2009). However as mentioned above, eNOS has been implicated in the 

regulation of BDNF expression (Chen et al., 2005). Acute exercise has been observed to result in 

rapid increase in BDNF (Szuhany, Bugatti, & Otto, 2015). Therefore, vasodilation following flavonoid 

ingestion might reasonably have a similarly rapid effect on BDNF availability. Assuming BDNF levels 

can increase over such short time periods following flavonoid ingestion, it seems unlikely that 

subsequent facilitation of neuronal functioning would occur in time to explain cognitive effects 

apparent at only 1-2 hours postprandially, but may provide a possible mechanism for the cognitive 

improvements observed at later time points. BDNF has been implicated in both short term memory 

formation and long term memory formation (Bekinschtein, Cammarota, Izquierdo, & Medina, 2008) 

through a permissive role in the facilitation of early long term potentiation (LTP) (Bramham & 
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Messaoudi, 2005), and so increases in BDNF might be responsible for acute enhancement of episodic 

memory. 

1.5.5 Visual function  

Flavonoids have been extensively associated with improvements in visual function both in vitro and 

in vivo (for a review see Kalt, Hanneken, Milbury, & Tremblay, 2010). Improvements in visual 

contrast sensitivity and detection of motion direction after acute cocoa flavanol supplementation in 

young adults have been described above (Field et al., 2011). Additionally, similar contrast sensitivity 

improvements have also been seen in older adults (Field, Bell, Mount, Willliams, & Butler, 2014). 

Flavonoids have also been shown to influence the focussing ability of the eyes; improvements in 

accommodative facility have been observed in young adults following acute cocoa, and 

improvements in convergence facility have been observed after acute blueberry supplementation 

(Field et al., 2014). Of the studies reviewed here only three have reported significant findings for 

non-visual tasks: RAVLT (Whyte & Williams, 2015), PASAT (Elsabagh et al., 2005), Simple & complex 

finger tapping (Alharbi et al., 2016). All other significant findings have been for visually presented 

tasks; therefore improved vision may account for at least some of these findings. The link between 

enhanced vision and improved cognitive performance following flavonoid supplementation is only 

speculative at this stage. However, epidemiological research has identified clear associations 

between visual acuity and cognitive performance across multiple age groups (Baltes & Lindenberger, 

1997). This is likely to reflect a common underlying variable such as general health. But as a possible 

mechanism, enhanced visual function warrants further investigation. 

1.6 Literature summary and Conclusions 

Table 1.3 summarises the cognitive effects observed across all reviewed studies. Acute flavonoid-

induced cognitive effects have been found across multiple cognitive domains. In particular, a 

number of studies report improvements for attention tasks and factors. Therefore, it is possible that 

improvements over a range of cognitive domains may be facilitated by general improvements in 

attention. The evidence suggests that the effects of flavonoids on cognitive outcomes are mediated 

by age. For example, executive function, working memory and psychomotor processing speed 

effects are apparent in young and middle aged adults. Episodic memory effects appear more 

prevalent in children and older adults, particularly following blueberry supplementation. This may 

reflect the relatively lower episodic memory performance generally observed in the very young or 

old when compared with adults in their cognitive prime. While the hippocampus has been shown to 

have the potential for improved neuronal connectivity and even neuronal growth throughout life, 
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those at critical developmental stages may simply have greater potential for episodic memory 

improvement. Conversely, developmental differences in the structure and functioning of the 

prefrontal cortex may mean that the potential for improvement in executive function is more limited 

in these extreme age groups.  

The studies reviewed have been primarily concerned with young adults and therefore more work is 

needed to determine true differences between age groups, ideally using mixed designs that allow 

direct comparison of different participant groups within the same study. Whatever the age group, 

cognitive effects are likely to be dose-dependent, as evidenced by the increasing cognitive effect 

sizes observed with increasing doses of ginkgo biloba (Kennedy et al., 2000) and the similar dose-

dependent vascular effects of blueberry (Rodriguez-Mateos et al., 2013).These potential effects of 

dose clearly need further investigation across all flavonoid subclasses and using a wider range of 

doses than those currently investigated.  

The timings of cognitive effects vary depending on the flavonoid-rich food source, which may reflect 

differences in rates of absorption and metabolism for individual flavonoid types, or simply for 

different food types. The majority of observed cognitive improvements match peaks in plasma 

metabolite concentrations and also peaks in peripheral and cerebral blood flow. Although 

vasodilation is often cited as the most likely mechanism for acute flavonoid induced improvements 

in cognition, cognitive improvements have not yet been observed directly in conjunction with 

vascular-related effects. This suggests a need for studies incorporating concomitant cognitive and 

vascular measurements. Cognitive improvements have been observed alongside other physiological 

changes such as altered rates of glucose absorption (Watson et al., 2015), inhibition of MOA 

(Watson et al., 2015), and improved vision (Field et al., 2011), suggesting that these factors may also 

be influential. 

Observed physiological responses to flavonoid-rich supplementation such as vasodilation have been 

consistently replicated, but cognitive findings are not as robust despite the number of moderate to 

large effect sizes apparent in Table 1.3. As discussed, methodological differences between studies 

are likely to partially explain the inconsistencies in cognitive observations. Comparisons between 

studies are often difficult due to differences in dose and flavonoid source. The design of a study may 

also impact on the size of any observed cognitive effects. For example, from Table 1.3 it can be seen 

that effect sizes in studies without a control (Caldwell et al., 2016) tend to be large, whereas those 

with no baseline measurements (Elsabagh et al., 2005; Field et al., 2011; Whyte & Williams, 2015) 

tend to exhibit small or moderate effect sizes or even no effects at all (Bondonno et al., 2014). From 
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Table 1.3 it can also be observed that studies with very small numbers of participants tend to exhibit 

greater effect sizes. This may be indicative of a type 1 error (false positive outcome) as such studies 

have a lower statistical power to determine a true cognitive effect, and other larger studies reviewed 

here have generally not observed similarly large effect sizes. In crossover studies, it is also important 

to reduce the impact of practice-related improvements in cognitive performance that is often 

associated with repeated testing. It is not always clear whether this has been adequately addressed 

in some of the studies reviewed here (Caldwell et al., 2016; Whyte & Williams, 2015). Additionally, 

extensive batteries of tasks are often deployed at several different time points, but often only one or 

two measures prove significant. This increases the potential for type 1 error considerably. Future 

studies therefore also need to address these methodological issues, to improve their statistical 

power to reliably observe small changes in cognition. Finally, it should be noted that many of these 

studies rely on whole foods as their source of flavonoids. While the flavonoid subclasses typically 

associated with each food type are the most abundant flavonoid forms within that food type, other 

flavonoids, and indeed other polyphenols may be present in varying concentrations. Therefore, any 

observed effects cannot be fully attributed to a single subclass. 

In conclusion, the evidence so far suggests that research into the cognitive benefits of flavonoid-rich 

foods is a promising area that demands further investigation. However, in terms of design, current 

studies are a long way from the large scale randomised controlled trials (RCTs) that are required to 

build a strong and robust evidence base supporting beneficial effects of flavonoid ingestion for 

cognitive outcomes in the immediate postprandial period. 

1.7 Thesis objective & research questions 

1.7.1 Objective 

From the literature review it is apparent that flavonoid-rich foods have the potential to elicit 

cognitive benefits following acute supplementation, however the findings of human studies remain 

mixed. There is some evidence to suggest that both cognitive and physiological effects may be dose-

dependent, and therefore differences in dose may be responsible for many of the inconsistencies 

between studies. Following this observation, the objective of my PhD thesis was to determine 

whether acute, dose-dependent cognitive effects were evident following anthocyanin-rich blueberry 

consumption. 

1.7.2 Research questions 

Specific research questions addressed in this thesis are: 
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 In crossover intervention studies, what is the best strategy for minimising the impact of 

repetition on cognitive task performance (addressed by Experiment 1, reported in 

Chapter 3)? 

Rationale & Hypotheses: In studies with repeated cognitive testing, practice-related 

improvements in performance may confound effects attributed to an intervention. Indeed it 

is unclear from the literature whether such practice effects have been taken into account in 

a number of flavonoid-rich intervention studies reporting significant effects. It is clearly 

important to minimise practice effects where possible in order to validate intervention 

research findings. Following a review of cognitive practice effects and strategies for their 

minimisation, a pilot study investigated practice effects for the cognitive tasks to be used in 

this thesis. It was hypothesised that practice effects would be evident for all cognitive tasks 

investigated, but that their impact would be attenuated through the provision of 

appropriate methodology, to be determined from the data collected in this study. 

 

 Following acute blueberry intervention in a young adult population, are cognitive or mood 

changes evident and, if so, are they dose-dependent (addressed by Experiments 2 & 4, 

reported in Chapters 4 & 6, respectively)? 

Rationale & Hypotheses: Evidence from the literature review suggested that acute blueberry 

intervention might elicit cognitive and mood benefits; however some of the flavonoid 

literature findings were mixed. Published studies typically varied in their choice of dose or 

population, making comparison between studies difficult. The evidence from Rodriguez-

Mateos et al. (2013) suggested that the metabolism and vasodilatory response to 

anthocyanin-rich blueberry may be dose-dependent in a young adult population. In a series 

of experiments, this thesis explored whether cognitive and mood outcomes followed a 

similar dose-dependent trajectory. It was hypothesised that the strongest cognition and 

mood effects would coincide with doses that elicited the greatest vasodilatory response in 

the previous work, through a mechanism of increased CBF. As with the Rodriguez-Mateos et 

al. (2013) study, these effects were investigated in a young adult population. 

A final research question addressed observations from Experiment 2: 

 Do blueberries impact postprandial blood glucose response in a young adult population, 

and is this a plausible mechanism of action for observed cognition or mood changes 

(addressed by Experiments 3 & 4, reported in Chapters 5 & 6, respectively)? 

Rationale & Hypotheses: Findings from the literature review, further supported by the 
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outcome of Experiment 2, suggested that blood glucose regulatory effects may play a 

significant role in cognitive outcome in blueberry intervention studies. The final two 

experiments of the thesis investigated changes in postprandial glucose response and 

cognition following varying doses of blueberry. The aim was to determine whether there 

was a dose-dependent effect of blueberry on postprandial glucose response, and whether 

there was a relationship between blood glucose level and cognitive outcome. It was 

hypothesised that dose-dependent changes to postprandial blood glucose regulation would 

be associated with similarly dose-dependent cognition and mood outcomes, through 

mechanisms of increased availability of glucose to the brain combined with vasodilatory 

increases in CBF. 

1.7.3 Methodological considerations 

Anthocyanin-rich blueberry was selected for investigation due to the strong evidence that the 

immediate postprandial vasodilatory response following blueberry is dose-dependent (Rodriguez-

Mateos et al., 2013). As data for metabolism and FMD response have already been reported for 

fixed doses of freeze-dried blueberry in previous work, identical doses were used here, after 

sourcing the same blueberry powder. In order to control for individual differences, a within-subjects 

design was used, whereby each participant took part in all experimental conditions, effectively 

acting as their own control. Within-subjects designs increase the statistical power of a study by 

eliminating between-subjects variance between conditions. This was considered particularly 

important in light of recent research indicating that individual responses to flavonoid-rich 

interventions may vary according to gut microbiota. The thesis also aimed to address some of the 

methodological issues previously identified in the literature review. Therefore, the design of all 

intervention experiments incorporated measures to improve statistical power such as testing 

sufficiently large numbers of participants, minimising the effects of repeated cognitive testing, 

incorporating baseline measurements, including a suitable control condition, and using appropriate 

statistical analyses. 



 

27 
 

Chapter 2  

Materials & methods 

 As highlighted in Chapter 1, a number of critical research questions were identified and used as the 

focus for my thesis. Firstly, what is the most effective methodology for investigating cognitive 

changes in response to multiple doses, whilst minimising practice-effects? Subsequently, are 

cognition and mood changes evident following acute blueberry supplementation, and are such 

effects dose-dependent? Finally, in relation to possible mechanisms of action, do blueberries 

influence postprandial glycaemic response, and might such glucoregulatory effects underlie 

observed changes to cognition and mood?  

2.1 Experimental design 

In order to answer these research questions a series of experiments were designed: 

 Experiment 1: Piloting of cognitive tasks and an examination of the effects of repeated 

cognitive testing on task performance (Chapter 3). 

 Experiment 2: A dose-response study of cognitive and blood pressure changes following 

acute anthocyanin-rich blueberry supplementation in healthy young adults (Chapter 4). 

 Experiment 3: A dose-response study of glycaemic response following acute anthocyanin-

rich blueberry supplementation in healthy young adults (Chapter 5). 

 Experiment 4: A dose-response study of cognitive and blood glucose changes following acute 

anthocyanin-rich blueberry supplementation in healthy young adults (Chapter 6). 

The majority of intervention studies reviewed in the previous chapter opted for a crossover design. 

In this type of design, a single group of participants take part in each experimental condition of the 

study. Participants effectively act as their own controls, thereby minimising the impact of between-

subjects variance and so improving statistical power. Similarly here, a crossover design was 

implemented for each blueberry intervention study. As cognitive practice effects are known to be an 

issue in experimental designs with a repeated testing component, the magnitude of these effects 

was fully investigated during the piloting of the cognitive tasks and appropriate methodology was 

implemented for reducing their impact (discussed in detail in Chapter 3). Methodological limitations, 

identified in several of the reviewed intervention studies, were their lack of an appropriate control 

condition or an omission of baseline testing. In each of the three intervention studies described in 

this thesis (Chapters 4, 5 & 6), appropriate matched control conditions were included alongside the 
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blueberry interventions. Baseline measurements were recorded at each test visit before 

interventions were administered in order to control for random variations in performance across 

multiple test visits. In accordance with a further standard of good practice in intervention studies, all 

testing was performed double-blind in order to prevent potential experimenter effects or demand 

characteristics from influencing participant performance. 

2.1.1 Power analysis 

A priori power analysis was performed using GPower 3.1 to determine the minimum number of 

participants required for each experiment in order to achieve a statistical power of 0.8 with an alpha 

level of 0.05 (Cohen, 1992). For Experiment 1, assuming an effect size of d=0.47 (Bartels, Wegrzyn, 

Wiedl, Ackermann, & Ehrenreich, 2010; Donovan & Radosevich, 1999), 30 participants were 

determined as sufficient to detect an increase in cognitive performance between repeat test 

sessions. For Experiments 2 & 4, assuming an effect size of d=0.45 (Bell, Lamport, Butler, & Williams, 

2015), 32 participants were sufficient to detect an increase in cognitive performance between the 

control and blueberry conditions. For Experiment 3, assuming an effect size of d=0.71 (Törrönen et 

al., 2010), 14 participants were deemed sufficient to detect a reduction in peak glycaemic response 

between the control and blueberry conditions. Extra participants were recruited where possible to 

allow for attrition/drop outs throughout the course of testing. 

2.2 Ethical approval 

All studies were approved for ethical conduct by either the School of Psychology Research Ethics 

Committee (SREC), or the University of Reading Research Ethics Committee (UREC), in accordance 

with University of Reading guidelines. Evidence of ethical approval for all studies can be found in 

Appendix A. 

2.3 Participants 

2.3.1 Recruitment 

Participants were healthy young adults, aged 18 to 40, recruited from staff and student populations 

at the University of Reading. This population was selected as data outlining bioavailability 

(Rodriguez-Mateos, Feliciano, Cifuentes-Gomez, & Spencer, 2016) and vasoreactivity (Rodriguez-

Mateos et al., 2013) following acute doses of blueberry anthocyanins have already been published 

for this age group. Similarly, the literature review in Chapter 1, identified cognitive and mood effects 

in young adults following blueberry intervention. Recruitment was carried out via postings to group 
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email listings, campus notice boards, and the Psychology Department Undergraduate Research 

Panel. 

2.3.2 Screening 

Aside from smoking status, no screening restrictions were in place for Experiment 1. However, all 

participants were screened for suitability before inclusion in any of the blueberry intervention 

studies. Participants were required to be non-smokers, free from pregnancy, food allergies, diabetes 

mellitus (Type 1 & Type 2), and any conditions requiring hypotensive or anticoagulant medication. 

Full eligibility criteria are reported in Appendix B. A copy of the health questionnaire used for 

screening can be found in Appendix C. 

2.3.3 Participant demographic data 

Health and lifestyle demographic data comparing participants for all experiments are shown in Table 

2.1. The participant profile remained consistent between all experiments. 

2.3.4 Informed consent 

Before participation in any of the experiments reported here, prospective participants were emailed 

an information sheet providing detailed information about the study. If after reading the information 

participants were happy to continue, then they were required to sign a consent form at the 

beginning of their first test visit. Information sheets for all experiments can be found in Appendix D. 

Consent forms for all experiments can be found in Appendix E. 
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Table 2.1 Participant demographic data 

Demographic     Experiment 

    

 

1.1 

 

1.2 

 

2 

 

3 

 

4 

N 

  

29 

 

33 

 

45 

 

17 

 

41 

            Gender male 

 

9 

 

3 

 

12 

 

4 

 

11 

 

female 

 

20 

 

30 

 

33 

 

13 

 

30 

            Age(years) Mean  

 

25.6 

 

20.8 

 

20.9 

 

24.1 

 

23.5 

 

SD 

 

7.7 

 

4.9 

 

3.6 

 

4.9 

 

5.1 

            BMI (kg/m2) Mean 

 

N/R 

 

N/R 

 

N/R 

 

23.8 

 

23.4 

 

SD 

       

3.6 

 

5.0 

            Fruit & veg (daily portions) Mean 

 

N/R 

 

N/R 

 

4.1 

 

5.3 

 

4.4 

 

SD 

     

1.4 

 

2.3 

 

1.9 

            Tea & coffee (daily cups) Mean 

 

N/R 

 

N/R 

 

1.7 

 

2.2 

 

1.3 

 

SD 

     

1.8 

 

1.5 

 

1.2 

            Alcohol (weekly units) Mean 

 

N/R 

 

N/R 

 

5.1 

 

3.6 

 

3.3 

 

SD 

     

6.8 

 

5.0 

 

5.0 

            Exercise (weekly hours) Mean 

 

N/R 

 

N/R 

 

2.9 

 

3.0 

 

3.3 

 

SD 

     

3.3 

 

2.3 

 

3.5 

                        

N/R Not recorded 

 

2.3.5 Low polyphenol diet 

Before participation in any of the blueberry intervention experiments reported here, participants 

were required to follow a low polyphenol diet for the 24 hours prior to each test visit. Similar 

methodology has been employed by studies investigating  bioavailability (Rodriguez-Mateos et al., 

2016),  vasodilatory response (Rodriguez-Mateos et al., 2013), cognition (Dodd, 2012), and mood 

(Khalid et al., 2017) following acute wild blueberry intervention. In addition to food and supplement 

restrictions, participants were asked to abstain from alcohol, fruit juices, and caffeine containing 

beverages such as energy drinks, cola, tea, coffee or cocoa. Participants were also asked to fast (no 

food or drink) for 2 hours immediately prior to attending each test visit. Participants were asked to 



 

31 
 

eat the same breakfast before each test visit and to ensure that breakfast was consumed before the 

2 hour fast, with baseline cognitive testing commencing at 9am. This methodology was introduced in 

order to minimise the interfering effects of habitual dietary polyphenols on each of the measured 

outcomes following blueberry intervention, and to minimise the impact of dietary changes on test 

performance between visits. The 2 hour fast ensured that participants were thirsty enough to 

consume the intervention beverage, whilst minimising the confounding effects of any breakfast food 

intake. A copy of the dietary requirements can be found in Appendix F. At each test visit participants 

retrospectively documented their 24 hour food intake using the record sheet found in Appendix G. 

Minor transgressions were noted and, where necessary, participants were asked to modify their pre-

test diet. 

2.3.6 Payment 

Participant payments were standardised in line with current University of Reading guidelines. 

Psychology undergraduates received 1 course credit per hour of testing completed. All other 

participants received expenses payments of £5 per visit. 

2.4 Blueberry interventions 

2.4.1 Freeze dried blueberry powder 

Rather than use fresh berries, which may vary in their composition according to growing and storage 

conditions, freeze dried wild blueberry powder derived from the Vaccinium angustifolium cultivar 

was used in all intervention experiments. This cultivar has been shown to have a high total 

polyphenol content and is a rich source of anthocyanins (Rodriguez-Mateos et al., 2012). 

Bioavailabilty data has similarly been published for this cultivar (Rodriguez-Mateos et al., 2013, 

2016). In freeze-dried form each batch of blueberry powder is homogenous; the anthocyanin 

content remains constant throughout the batch, and is reportedly stable when stored at -20 degrees 

Celsius (Lohachoompol, Srzednicki, & Craske, 2004). The powder was provided free of charge by the 

Wild Blueberry Association of North America (WBANA). Due to limited availability, two separate 

harvest batches were used during the course of this research. The second batch was derived from a 

harvest that had experienced more favourable ripening conditions and subsequently was found to 

contain higher anthocyanins levels than the initial batch. Adjustments were made to the quantities 

used in each experiment in order to match the anthocyanins content of the interventions. The 

composition of each batch can be found in Table 2.2. 
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Table 2.2 Wild blueberry powder composition 

Compound Batch 1
a
 

(Experiments 2 & 3)  
Batch 2

b
 

(Experiment 4)  
 

Total polyphenols (mg/100g) 2239 2900  

          Anthocyanins (mg/100g) 905 1900  

          Procyanidins (mg/100g) 400 Not quantified  

Vitamin C (mg/100g) 12 335  

Total sugars (g/100g) 50 70  

          Fructose (g/100g) 26 36  

          Glucose (g/100g) 24 34  

Dietary fibre (g/100g) Not quantified 16  

 
a
Polyphenol, vitamin and sugar analyses conducted by Food & Nutritional Sciences Department, University of 

Reading, UK 
b
Polyphenol analyses conducted by FutureCeuticals, Illinois, USA and vitamin, sugar and dietary fibre analyses 

conducted by RSSL, Reading, UK 

 

2.4.2 Drink preparation 

All blueberry intervention doses were administered in drink form by mixing appropriate quantities of 

blueberry powder with water. The exact doses are specified in each separate experimental chapter. 

Within each experiment, all blueberry doses, including a blueberry-free control, were matched for 

sugars and Vitamin C by the addition of food grade fructose, glucose, and Vitamin C powders (Sports 

Supplements Ltd, UK). All drink doses were blind-coded and prepared by a third party not involved 

with the testing component of the study. Drinks were served in opaque, lidded cups, and consumed 

through black straws. The participants and the researcher therefore remained blind to the 

intervention dose at any given test visit.  

2.4.3 Drink palatability 

In order to determine how well the different dose conditions were matched for taste, participants 

were asked to judge the palatability of each drink. Using the questionnaire found in Appendix H, 

participants rated their general liking for each drink as well as specific taste dimensions such as 

sweet or sour. Likert scale anchor points for each rating dimension were 1 ‘Not at all’ and 9 

‘Extremely.’ 
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2.4.4 Counterbalancing 

To reduce the confounding influence of order effects, the control and all blueberry doses were 

administered in counterbalanced order, determined using Williams matrices (Williams, 1949). 

2.4.5 Washout 

During each intervention study participants were required to attend multiple visits due to the 

crossover nature of the study design. The majority of participants attended regular weekly sessions 

with a 7 day washout period between visits. However in some instances adjustments to the testing 

schedule were required in order to accommodate participant availability. In previous research, after 

an acute blueberry anthocyanins dose of 348mg, anthocyanins were no longer detectable in plasma 

after a period of 24 hours (Del Bo’ et al., 2013). Similarly, metabolites of anthocyanins from 

elderberries showed no evidence of accumulation in plasma when comparing chronic daily 

supplementation with acute supplementation (de Ferrars, Cassidy, Curtis, & Kay, 2014). However, 

anthocyanin metabolites have been reported in urine after a five day anthocyanin-free diet 

preceded only by habitual consumption of anthocyanin-rich foods (Kalt, Liu, Mcdonald, Vinqvist-

tymchuk, & Fillmore, 2014). This observation suggests that baseline metabolite levels may persist for 

extended periods of time. Therefore any washout period following acute consumption will, at best, 

only minimise acutely elevated circulating metabolites. Metabolites may not be completely 

eliminated unless participants are restricted from following their habitual diet for the entire duration 

of a study. In light of the combined evidence, on the rare occasions that a 7 day washout was not 

possible, a minimum washout period of 3 days between test visits was considered sufficient for the 

minimisation of significantly elevated levels of anthocyanins or metabolites following an acute dose. 

It was acknowledged that circulating metabolites were likely to remain throughout the testing 

period; however these baseline levels were considered unlikely to significantly impact cognitive 

data. 

2.5 Cognitive measures 

2.5.1 Task selection & piloting 

The cognitive tests selected for inclusion in this thesis have all shown positive results in previous 

flavonoid or similar nutrition intervention studies. All tasks were programmed using E-Prime 2.0 

(Psychology Software Tools, Inc.). All tasks were piloted in Experiment 1 before being used in the 

later blueberry intervention studies. Piloting of the tasks served a multiple purpose; to identify any 

potential running problems with the tasks, to determine alternate form reliability, and to investigate 
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the occurrence of practice effects resulting from repeated cognitive testing. Issues with the tasks 

were rectified as they arose, and appropriate methodology was subsequently adopted in order to 

minimise the influence of cognitive practice effects in the later blueberry intervention experiments. 

Full descriptions of each task are given below. 

2.5.2 Neural correlates 

The selected cognitive tasks (described below) each contain an attention, working memory or 

episodic memory retrieval component, or a combination of the three. Neural correlates have been 

described individually for each of the cognitive tasks, and it is apparent from these descriptions that 

there is large degree of overlap between the neural correlates for each of these cognitive functions; 

an observation also confirmed by a previous review study (Naghavi & Nyberg, 2005). 

2.5.3 Sternberg memory scanning task  

This was a modified, computerised version of the original task developed by Sternberg (Sternberg, 

1966, 1969). This short term memory task is a measure of working memory and serial attention 

(Corbin & Marquer, 2013; Garavan, 1998). Successful performance on the task has been associated 

with activation in the dorsolateral prefrontal cortex (dPFC) (D’Esposito, Postle, & Rypma, 2000). The 

task measures how fast participants can scan through a list of items held in their short term 

memory. Previous research has shown this is a fixed time per item, therefore the task has been 

described as resistant to practice (Kristofferson, 1972, 1977; Sternberg, 1975); although underlying 

reaction times from which this measure is derived are still subject to practice related improvements.  

During the Sternberg task, participants were presented with a sequential series of one to six digits, 

the order of which they were required to memorise.  A new set of digits was randomly generated on 

each trial. The appearance of a fixation point indicated the end of the sequence. The digits and 

fixation were each presented for 1200ms at a rate of one every 1200ms. Participants were required 

to indicate as quickly as possible, with a labelled yes/no key press (‘b’ &’n’ respectively), whether or 

not a final digit, presented 2000ms after the fixation point, was present in the original memory set. 

Participants completed 12 familiarisation trials and 96 test trials at each test session. The dependent 

variables (DVs) were accuracy, scanning rate, and extrapolated RT. These latter variables were, 

respectively, the slope and intercept from the regression model for predicting RT from memory set 

size (Böcker et al., 2010; D’Esposito et al., 2000; Grattan-Miscio & Vogel-Sprott, 2005; Subhan & 

Hindmarch, 1984; Vinkhuyzen, van der Sluis, Boomsma, de Geus, & Posthuma, 2010). Accuracy rates 
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were important in order to provide sufficient power for the regression analysis, therefore 

performance feedback was given after each trial. 

2.5.4 Stroop task 

This was a modified, computerised version of the original executive function task (Stroop, 1935) and 

is a measure of inhibition, or selective attention . The words “Purple”, “Green”, “Blue”, and “Red” 

were displayed individually in randomised, counterbalanced order on a computer screen, with each 

word being displayed in either a congruent or an incongruent ink colour. The words were presented 

at a rate of one every 2000ms and each word remained on screen for 1250ms. Participants were 

instructed to respond to the ink colour as quickly as possible by pressing the corresponding coloured 

button on the keyboard (coloured stickers were placed over the keys ‘1’,’2’,’3’,&’4’ on the main 

keyboard). An equal number of congruent and incongruent trials were presented. Twelve 

familiarisation trials and 96 test trials were presented at each sitting of the task. DVs included 

accuracy and the interference effect of the semantic meaning of the word; calculated by subtracting 

the mean reaction times (for correct responses only) for congruent trials from incongruent trials. 

Neural correlates for this interference effect include the left posterior parietal cortex (PPC) (Galer et 

al., 2015). 

2.5.5 Serial 3s and 7s subtraction task 

Using a previously published method for this working memory task (Scholey et al., 2010, 2013; 

Scholey, Harper, & Kennedy, 2001), a random number between 800 and 999 was presented on 

screen and participants counted backwards, at first in 3s, entering their answers via the computer 

number pad as quickly as possible for a total of two minutes. The task was then repeated subtracting 

7s instead of 3s. A 20 second familiarisation trial was completed immediately before each 2 minute 

test. The DVs in both cases were the total number of correct responses, the total number of errors, 

and the mean reaction time for correct responses (ms). The accuracy of the response was 

determined relative to the previous response, irrespective of whether or not the previous response 

was correct. No studies have reported neural correlates for this task directly, but a meta-analysis of 

similar working memory tasks revealed the involvement of an extensive fronto-parietal network 

(Rottschy et al., 2012). 

2.5.6 Immediate & delayed word recall task 

This episodic memory task was a modified, computerised version of a single-trial word list learning 

task originally developed by Édouard Claparède (Boake, 2000; Lezak, Howieson, Bigler, & Tranel, 
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2012). For the immediate recall, 15 words were visually presented in sequence on a computer 

screen at a rate of one word every 2500ms. Each word remained on screen for 2000ms. Participants 

were instructed to read and remember each word. At the end of the presentation participants were 

asked to recall as many of the words as possible, writing them on a piece of paper. Participants were 

allowed as much time as they required to perform the recall. This task was the first task 

administered during each test session. After all other tasks had been completed, participants were 

again asked to recall the words. Delayed recall occurred approximately 30 minutes after the initial 

presentation of the word lists. Different word lists, matched for concreteness and familiarity, were 

used at each testing time point (Whyte et al., 2016). The full lists can be found in Appendix I. The 

DVs for each recall task were the total number of correct words and the total number of 

interference words recalled. Due to the crossover nature of the study design, multiple word lists 

were presented across different test sessions. Interference words were considered to be any words 

previously presented at an earlier test session. Neural correlates of episodic memory function 

involve complex interaction between the hippocampus and PFC areas during encoding and retrieval 

(Ranganath, Heller, Cohen, Brozinsky, & Rissman, 2005), and a large degree of overlap has been 

observed between the PFC correlates of working memory and long term memory (Ranganath, 

Cohen, & Brozinsky, 2005; Ranganath, Johnson, & D’Esposito, 2003). 

2.5.7 Rapid visual information processing task (RVIP) 

This working memory and sustained attention task correlates with both right and left fronto-parietal  

activation networks (Coull, Frith, Frackowiak, & Grasby, 1996; Lawrence, Ross, Hoffmann, Garavan, 

& Stein, 2003; Neale, Johnston, Hughes, & Scholey, 2015). Using a previously published method 

(Watson et al., 2015), participants were shown a continuous string of single digits, presented at a 

rate of 100 digits per minute in the centre of a computer screen. Participants were required to 

continuously monitor the digits for specific target strings of three consecutive odd or three 

consecutive even digits, pressing the space bar as quickly as possible when a target string was 

observed. A short familiarisation phase consisting of 30 single digits, including four target strings, 

was performed at each presentation of the task. The main test phase of the task lasted for 5 minutes 

with 501 single digits presented, including a total of 40 target strings. The dependant variables were 

accuracy score (correct out of 40), mean reaction time (ms) (for correct responses), and commission 

error score.  
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2.5.8 Digit vigilance task 

This task is a measure of sustained attention, a cognitive function which is reported to correlate with 

neural activation in right fronto-parietal brain regions (Sarter, Givens, & Bruno, 2001). Using a 

previously published method (Watson et al., 2015), a continuous string of single digits were 

displayed in the centre of a computer screen at a rate of 80 digits per minute. Participants were 

required to press the spacebar as quickly as possible when the digit matched a randomly selected, 

static, target digit, displayed to the right of the screen. A short familiarisation phase consisting of 25 

single digits, including 5 targets, was performed at each presentation of the task. The main test 

phase of the task lasted for 3 minutes, with 240 digits presented, including 45 target matches. The 

dependant variables were accuracy score (correct out of 45), mean reaction time (ms) (for correct 

responses), and commission error score.  

2.5.9 Positive & negative affect schedule (PANAS) & subjective mental fatigue 

The PANAS-Now (Watson, Clark, & Tellegen, 1988) mood questionnaire and a subjective Likert scale 

measure of mental fatigue (Scholey et al., 2010) were administered at the end of each cognitive test 

session. The PANAS questionnaire asked participants to rate their current mood in relation to a 

series of 20 mood related adjectives (10 positive & 10 negative items). The instrument was scored 

according to published criteria (Watson et al., 1988) by summing the Likert scale ratings (out of 5) for 

positive questionnaire items to create a Positive Affect score (out of 50). Similarly, ratings for 

negative questionnaire items were summed to create a Negative Affect score. The wording of the 

questionnaire asked participants to ‘Indicate to what extent you are feeling this way right now.’ 

Anchor points were 1 ‘Very slightly/Not at all’ and 5 ‘Extremely’. Therefore, high scores indicated a 

high level of positive or negative affect, respectively. The mental fatigue questionnaire asked 

participants ‘How mentally fatigued do you feel at this moment?’ Anchor points were 1 ’Not at all’ 

and 9 ‘Extremely.’ Therefore a high rating indicated a high level of mental fatigue. 

2.5.10 Subjective motivation & subjective perception of task difficulty 

During the piloting of the cognitive tasks in Experiment 1, measures of task difficulty and motivation 

were recorded using a nine point Likert scale questionnaire immediately after completing each 

cognitive task. The wording on each scale was as follows: ‘How difficult did you find the <task name> 

task?’ and ‘How motivated were you to do well during the <task name> task?’ Anchor points were 1 

‘Not at all’ and 9 ‘Extremely’. Therefore, high scores indicated a high level of difficulty or a high level 

of motivation respectively. These measures were repeated each time a particular task was 

performed. Example questionnaires can be found in Appendix J. 
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2.5.11 Alternate forms & counterbalancing 

All cognitive tasks used alternate forms for multiple presentations of the same task in order to 

minimise learning. In the case of the Sternberg, Stroop, serial subtraction, and digit vigilance tasks, 

new forms were randomly generated within E-Prime each time the task was run. For RVIP and word 

recall, separate versions of the tasks were created and presented in counterbalanced order. Within 

each cognitive test battery, the order of presentation of the different cognitive tasks was also 

counterbalanced, such that different participants experienced the cognitive battery in a different 

order. This was deemed appropriate as order effects have previously been reported within a 

cognitive test battery (Collie, Maruff, Darby, & McStephen, 2003). Williams matrices (Williams, 1949) 

were used for all counterbalancing. 

2.6 Other measures 

2.6.1 Fruit & vegetable consumption 

For Experiments 2, 3 & 4, participants were each asked to estimate their average daily consumption 

of fruits and vegetables. The measure was recorded using a questionnaire that gave portion size 

definitions for a range of different fruit and vegetable types, in an effort to standardise the 

responses between participants. A copy of the questionnaire can be found in Appendix K. 

2.6.2 Body mass index (BMI) 

For each participant in Experiments 3 & 4, weight (kg) and height (m) was measured. Body mass 

index was calculated using the formula:     
           

             
 

2.6.3 Blood pressure (BP) 

Blood pressure measurements were recorded in Experiment 2, using a clinically validated Omron M6 

Comfort automatic digital upper-arm blood pressure monitor (Omron Healthcare UK Ltd). Three 

repeat readings were taken at 2 minute intervals and average values recorded, in accordance with 

the manufacturer’s instructions.  To maintain consistency between repeat test sessions, blood 

pressure measurements were recorded in a seated position, with the cuff placed on the left arm, 

and with the arm resting on an adjacent desk throughout the measurement. 
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2.6.4 Blood glucose 

Blood glucose levels were recorded in Experiments 3 & 4 by capillary sampling using the clinically 

validated Accu-Chek Aviva Blood Glucose Meter System (Roche Diagnostics UK). The units of 

measurement were millimoles per litre (mmol/l). World Health Organisation guidelines on capillary 

sampling (World Health Organisation, 2010) were strictly adhered to. Blood was sampled from the 

edge of the finger pad. Prior to sampling, the area was cleansed using an alcohol wipe. Disposable 

lancets were used for each finger prick. For comfort, a different finger tip was used for successive 

sampling time points. All waste including alcohol wipes, lancets and test strips, were disposed of in 

appropriate contaminated waste containers.  

2.7 Testing procedure 

All testing was carried out at the Nutritional Psychology Unit at the University of Reading. On arrival 

at the unit, all baseline cognitive and physiological measures were recorded. Cognitive testing was 

performed in individual testing cubicles in order to minimise distraction; however cubicles were 

found not to be completely sound proof. In Experiment 4 participants were additionally required to 

wear noise cancelling headphones in order to reduce noise from adjacent offices; a problem that 

had been identified during Experiment 2. When baseline tests were complete, the appropriate 

intervention drink was administered (Experiments 2, 3, & 4). Participants were required to fully 

consume the drink within 10 minutes (Rodriguez-Mateos et al., 2013).  In order to maintain precise 

timings between interventions and testing time points, digital timers were used. Repeat 

physiological and cognitive testing occurred at fixed postprandial time points. These timings are 

specified in each separate experimental chapter. At the end of each visit, with the exception of the 

final visit, a return appointment date was confirmed. 

2.8 Data analysis 

All data cleaning and analysis procedures were performed using Microsoft Excel 2007 and IBM SPSS 

Statistics 21. 

2.8.1 Outlier procedures 

All raw data were systematically screened for outliers prior to statistical analysis using a published 

data cleaning protocol (Tabachnick & Fidell, 2013). For raw RT data collected across multiple test 

trials at each test session, only RT values for correct responses were included in subsequent 

analyses.  RTs less than 200 milliseconds were immediately removed. Z scores were calculated for all 
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remaining data points for each participant, and RTs with a corresponding z score of greater than 3.29 

were removed. This procedure was then repeated before calculating mean RTs for each participant 

at each test session. It was necessary to repeat the procedure due to the presence of some 

extremely slow RTs which biased the initial z distribution and prevented appropriate removal of all 

outliers. A similar procedure was followed to remove outlier means (RTs or test scores) across 

participants; Z scores were calculated according to session (Experiment 1) or dose (Experiments 2, 3, 

& 4), and mean values with a corresponding |z score| of greater than 3.29 were removed from the 

dataset. 

2.8.2 Sternberg regression analysis 

As described in the cognitive task section above, linear regression analysis of the Sternberg data was 

performed in order to obtain two of the DVs for the task. For each participant, and each repetition of 

the task, coefficients were determined for the regression line predicting RT from memory set size. 

The regression analysis was performed using data points for all correct responses, rather than using 

mean RTs obtained by averaging multiple trials with the same memory set size. A simulation of the 

analysis performed by Dr Kou Murayama (personal communication, February 13, 2015) at the 

University of Reading revealed that this method would better preserve statistical power. 

2.8.3 Repeated measures data 

On the recommendation of an independent statistician (University of Reading Statistical Services) all 

repeated measures data were analysed using Linear Mixed-effects Models (LMMs) in place of 

repeated-measures Analysis of Variance (repeated ANOVA). LMM analysis is based on a complex 

linear regression procedure. The technique  can be used to model variance relating to both fixed 

parameters such as experimental doses, and random parameters such as individual differences 

between subjects, within multiple layers of the same model (Hoffman & Rovine, 2007). LMM has a 

number of advantages over repeated ANOVA (Field, 2009; Hoffman & Rovine, 2007; Magezi, 2015; 

Shek & Ma, 2011). Repeated ANOVA requires the assumption that all data observations are 

independent, however in repeated designs this is generally not the case. In LMM the true covariance 

structure of the data can be more accurately modelled, increasing the power of the analysis. 

Additionally, LMM does not require balanced data, thereby further increasing the power of the 

analysis as subjects with missing data points need not be excluded. As with all regression analysis, 

there is no requirement for dependent variables to be normally distributed. In general, regression 

analysis does assume that regression residuals are normally distributed; however the distribution of 

residuals has been reported not to influence the outcome of LMM, making it a robust method 



 

41 
 

(Gelman & Hill, 2007). The method also permits the inclusion of repeated covariates within the 

model, not possible in repeated ANOVA. 

Throughout this thesis LMMs have been applied in a systematic way to retain consistency between 

analyses. In all analyses, subjects have been included as a random factor as a way of controlling for 

non-independence of data within subjects (Sweet & Grace-Martin, 2011). Additionally, a repeated 

factor has been included to control the covariance structure for each subject.  In LMM the 

covariance structure is modelled using a covariance matrix of all repeated data observations, with 

variances defined along the diagonal and covariances in off-diagonal positions. A selected structure 

can be imposed on relative positions within the matrix. In an unstructured matrix, as suggested by 

the name, the covariances are assumed to be unpredictable and not have any fixed underlying 

structure. This general matrix suits all data; however it has some practical limitations. In analyses 

with many repeated time points and a relatively small number of participants there can be 

insufficient degrees of freedom available to determine a solution for the model. In these 

circumstances alternative covariance structures that make some assumptions can be specified.  The 

most appropriate alternatives in respect of this doctoral research data were a heterogeneous, 

autoregressive structure (ARH1) or a diagonal structure. The ARH1 matrix assumes that variances are 

heterogeneous, and that covariances increase with greater proximity within the matrix i.e. repeated 

measurements are more closely correlated with an adjacent measurement than one recorded much 

earlier or later in the sequence of repeats. The diagonal matrix is a simpler model that assumes 

heterogeneous variances but a covariance of zero. This is the matrix assumed in repeated ANOVA. 

Where possible, an unstructured covariance matrix has been specified. LMM reports a measure 

proportional to the level of any variance not accounted for by the model. These ‘-2 log linear’ (-2LL) 

values may be compared across related models, with the smallest value indicating the best fit. 

Taking these values into consideration, the best available model has been used in all analyses and 

the exact model is clearly described in each set of reported results. 

2.8.4 Reporting of statistical results 

When reporting LMM outcomes a similar convention to the reporting of ANOVA has been used, with 

degrees of freedom, F value, and p value reported. However some of the terminology used is slightly 

different. In ANOVA outcomes are reported as significant (or non-significant) main effects and 

interactions of factors. LMM is a more complex regression procedure, therefore factors are 

described as significant (or non-significant) predictors of the dependent variable (Field, 2009). 

Where significant covariates have been identified, the LMM model has been extended to include 

covariate interactions. Regression coefficients have been reported for all significant covariates and 
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covariate interactions. These beta values describe the slope of the regression line. Therefore 

participants displaying a single unit difference in their covariate measurement are predicted to 

display a difference in the dependant variable equal to the value of beta. 

Where significant fixed factors have been identified, and for all intervention interactions, pairwise 

comparisons have been used to further interpret the findings. Convention proscribes that pairwise 

comparisons should only be performed following a significant F-test outcome. However, if multiple 

pairwise comparisons are appropriately corrected for the increased likelihood of type 1 error (false 

positives) then a prior F test, significant or otherwise, is not required (Howell, 2010; Huck, 2015; 

Wilcox, 1987). The F-test is methodologically conservative, particularly in designs akin to those used 

in this thesis comparing multiple, highly similar means. Under such circumstances, non-significant 

interactions may still yield significant pairwise comparisons, therefore it is statistically appropriate to 

investigate these regardless of the F-test outcome (Huck, 2015). Pairwise comparisons, with 

correction for multiple comparisons, have therefore been applied in the interpretation of all 

intervention interactions throughout this thesis. Bonferroni correction was selected as the most 

appropriate correction method as it guarantees the greatest control over type 1 error (Field, 2009).  

For clarity, only significant findings have been reported in full in each experimental chapter. All other 

LMM results for each experiment have been tabulated in Appendix L. 

2.8.5 Cohen’s d effect sizes 

Cohen’s d effect sizes were calculated for literature findings reviewed in Chapter 1, and for 

significant effects observed in each of the experimental chapters. Cohen’s d is a standardised 

measure that describes effect size in terms of the number of standard deviations between group 

means.  Values of d equal to 0.2, 0.5 and 0.8 correspond to small, medium and large effect sizes, 

respectively (Cohen, 1988). A published meta-analysis method was used for all effect size 

calculations (Lipsey & Wilson, 2001). 
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Chapter 3  

Experiment 1: Piloting of cognitive tasks and an 

examination of the effects of repeated cognitive testing on 

task performance 

3.1 Introduction 

As an initial step, the cognitive tasks described in Chapter 2 were piloted before inclusion in any 

blueberry intervention work. Piloting was carried out in order to identify and rectify any technical 

problems with the tasks themselves, to determine alternate form reliability for each of the cognitive 

tasks deployed, and importantly to determine the most appropriate methodology for minimising the 

impact of cognitive practice effects, which are a known problem in studies involving repeated 

cognitive testing. Previous research on practice effects (described below) was not found to reflect 

the designs typically used in nutrition intervention studies, and so a new investigation was carried 

out. The findings are presented in this chapter. 

Repeated cognitive testing is often necessary in order to determine the efficacy of a nutrition 

intervention over time, particularly when determining a dose response curve. Equally this situation 

may arise in clinical drug trials or with other intervention types where repeated cognitive testing 

occurs over time. In such studies, multiple time points are used for comparing test values with 

baseline values and, in both acute and chronic crossover studies, testing may be performed multiple 

times by the same participant over a period of many weeks or months. However, the effects of 

repeatedly practising cognitive tasks are known to be problematic for studies using a repeated-

measures design (Bartels et al., 2010; Basso, Bornstein, & Lang, 1999; Collie et al., 2003; Falleti, 

Maruff, Collie, & Darby, 2006; Hausknecht, Halpert, Paolo, & Gerrard, 2007; Lamport et al., 2012; 

McCaffrey, Ortega, & Haase, 1993; McClelland, 1987). Each time a participant is asked to perform a 

task they become more familiar with both the procedure and stimuli presented, and a process of 

learning takes place, often leading to enhanced performance. This becomes increasingly problematic 

if performance approaches or reaches a ceiling. Additionally, practice may result in a change in the 

participant’s strategy for performing the task (Lowe & Rabbitt, 1998), which may in turn modify the 

brain network being utilised e.g. (Iaria, Petrides, Dagher, Pike, & Bohbot, 2003; Petersen, van Mier, 

Fiez, & Raichle, 1998), calling into question the validity of the result. Practice effects also add 

additional error variance that may impact on the statistical power of the study (McCaffrey, 2001). In 

order to ensure the validity of cognitive research, the European Food Safety Authority (EFSA) 
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guidelines on psychological health claims currently specify that practice effects must be addressed in 

behavioural intervention studies with a repeated testing component (EFSA, 2012). At least one 

methodological review paper (de Jager et al., 2014) has identified practice to be a problem for 

cognitive tasks across a number of cognitive domains. Many research groups adopt a range of 

strategies for dealing with practice; however there is no current consensus on the best methodology 

to address this issue.  

Conceptually, very few cognitive tasks were developed with repeated-measures testing specifically 

in mind. Instead of seeking practice-resistant tasks, which are likely to be difficult or even impossible 

to create due to human adaptive behaviour, it has become almost standard practice for studies 

using multiple testing points to adopt the use of alternative forms of a task. Using this method, the 

same task is used but different equivalent forms of stimuli are presented across the multiple testing 

points. However although this strategy has previously been shown to be effective at attenuating 

practice effects, for some tasks significant residual practice effects may still be evident (Beglinger et 

al., 2005); it is thought that for many tasks participants are able to develop strategies to enhance 

their performance over time irrespective of the specific stimuli presented. The use of alternate 

forms cannot fully counteract this procedural learning process (Roebuck-Spencer, Sun, Cernich, 

Farmer, & Bleiberg, 2007). A number of studies attempt to reduce practice effects by incorporating 

an additional task familiarisation session before the test sessions, where participants familiarise 

themselves with the tasks, either on a prior visit or immediately before data collection, with a view 

to raising performance to a more stable level before beginning data collection. Indeed, this 

technique was historically advocated by McClelland (McClelland, 1987), who recommended a 

minimum of four familiarisation sessions prior to data collection for some tasks, although it is 

unclear from the paper whether these four sessions should be spread across one or more visits. The 

addition of this number of sessions has significant time and cost implications and has not been 

adopted due to its impracticality. Typically, many studies include upwards of one familiarisation 

session e.g. (Alharbi et al., 2016; Cox et al., 2015; Kennedy et al., 2002; Rigney, Kimber, & 

Hindmarch, 1999; Wightman et al., 2012), but it has been acknowledged that others entirely forgo 

adequate training (Wesnes & Pincock, 2002). The effectiveness of different strategies, including the 

most appropriate time for conducting familiarisation sessions (separate visit or immediately before 

testing) have not been fully investigated. 

The effect of practice on performance has previously been investigated for short term repeated 

testing on a single visit e.g. (Collie et al., 2003; Falleti et al., 2006), where participants performed 

four repetitions of a battery of tasks at 10 minute intervals, and for repeated testing over a longer 
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term with single performances of a task across multiple visits e.g. (Bartels et al., 2010; Basso et al., 

1999; Beglinger et al., 2005; Lemay, Bedard, Rouleau, & Tremblay, 2004; McCaffrey, 2001; McCaffrey 

et al., 1993). A few studies have combined within visit and multiple visit sessions of testing e.g. 

(McClelland, 1987); however in this example the majority of tasks were conducted using pencil and 

paper and were observed to be relatively unaffected by practice. Subsequent studies suggest that 

significant practice effects are observed for most modern computerised tasks, with the strongest 

practice effects typically observed between the first and second testing time points (Bartels et al., 

2010; Collie et al., 2003; Falleti et al., 2006), although significant practice related improvements have 

been observed beyond a second session of testing (Bartels et al., 2010; Beglinger et al., 2005; Lemay 

et al., 2004). Practice effects have also been observed both within individual tasks, and within a test 

battery depending on the temporal positioning of individual tasks (Collie et al., 2003). Overall there 

is some suggestion that the rate of practice-related improvement may slow after two or more 

sessions irrespective of the testing interval. However, the timing of the repeated sessions used by 

these studies generally do not reflect those typically used in crossover nutrition studies or similar 

clinical intervention trials, where it is common to measure performance at baseline and again at one 

or more post- intervention time points at each visit, over a number of weekly visits e.g. (Alharbi et 

al., 2016; Cox et al., 2015; Kennedy et al., 2002; Nathan et al., 2002; Rigney et al., 1999; Watson et 

al., 2015; Wightman et al., 2012). This is important as practice effects have been observed to differ 

depending on the testing interval (Dikmen, Heaton, Grant, & Temkin, 1999). Similarly, in the parallel 

field of learning and memory, the timing of practice sessions is known to be important, as 

distributed practice spread across days, weeks or months has been observed to facilitate differential 

learning compared with massed practice performed multiple times on a single occasion (Anderson, 

1992). 

This experiment aimed to investigate practice effects for the cognitive tasks to be used in later 

blueberry crossover intervention work; such crossover designs incorporate a larger repeated testing 

component than parallel designs as participants are actively involved in all control and intervention 

arms of the study. Practice effects were examined within this crossover design framework; in 

Experiment 1.1 the design included three test days and two testing points within each day (a 3x2, 

Visit x Session design); in Experiment 1.2 the design included three test days and three testing points 

within each day (a 3x3, Visit x Session design). In line with current standard practice, alternate forms 

of all cognitive tasks were used, and familiarisation trials immediately prior to data collection were 

also incorporated in the study design. The intention was to identify the extent of practice effects 

within the cognitive batteries used in this thesis. This data was used to elucidate an effective 
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strategy for minimising the impact of practice effects in the later blueberry intervention 

experiments, as required by EFSA. 

3.2 Methods 

Methodological detail common to all experiments in this thesis can be found in Chapter 2. 

Methodology specific to the piloting of the cognitive tasks is reported here. 

3.2.1 Participants 

The participants in Experiment 1.1 were 29 young adults, aged 18-42 years (M 25.6, SD 7.7, 9 male). 

Thirty participants were recruited, however one participant failed to attend any test visits. The 

participants in Experiment 1.2 were 33 young adults aged 19-44 years (M 20.8, SD 4.9, 3 male). One 

participant attended only the first test visit. All participants were apparently healthy, non-smokers. 

3.2.2 Design 

The study design is illustrated in Figure 3.1. In Experiment 1.1, each participant completed the 

cognitive test battery six times following a crossover design. The six test sessions were split over 

three visits, with each visit separated by approximately one week (M 7.02, SD 1.12, Range 3-11 

days). Within each visit there were two test sessions which were separated by 1 hour. The cognitive 

battery lasted 40 minutes. In Experiment 1.2, each participant completed a shorter 15 minute 

cognitive battery a total of nine times. Within each of the three visits there were three test sessions 

which were all separated by 1 hour breaks. Again, each visit was approximately one week apart (M 

7.09, SD 0.39, Range 6-8 days). In both experiments participants were tested at the same time of day 

on each visit to minimise diurnal effects. Exceptions were two participants (one participant in each 

experiment) who attended both morning and afternoon sessions as their circumstances changed 

after testing had begun.  
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Experiment 1.1 Experiment 1.2 

 

 

Figure 3.1 Study design for Experiments 1.1 & 1.2 

Each pilot experiment was structured to mimic a shortened version of the design used in later blueberry 
experiments. 

 

3.2.3 Procedure 

In both experiments, participants attended the lab for a total of three visits. On arrival they 

immediately completed the battery of cognitive tasks and subjective measures of mood outlined 

below. Participants then waited in the lab for 1 hour before repeating the testing. In Experiment 1.2 

a further repeat of the test battery was performed after another hour.  During all breaks participants 

were supplied with magazines to read. Participants tested in the morning were asked to record their 

breakfast intake on the first visit, and were asked to eat the same breakfast prior to all subsequent 

visits. Participants tested in the afternoon were asked to eat the same lunch before all visits. The 

two participants who attended both morning and afternoon sessions ate the same meal before 

attending each visit, regardless of time of day. During all visits only consumption of water was 

permitted. After testing had been completed a return appointment was arranged for the following 

week. Participants spent a total of 2 ½ hours in the lab at each visit. All were informed from the 

outset that the aim of the study was to investigate the effects of repeated practice on cognitive task 

performance. 

3.2.4 Cognitive & subjective measures 

The cognitive tasks used in Experiment 1.1 were broadly representative of three main cognitive 

domains: working memory (serial 3s & 7s subtraction; Sternberg memory scanning), executive 

function (Stroop) and episodic memory (immediate & delayed recall), all tasks also required varying 
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degrees of attentional processing. The cognitive tasks used in Experiment 1.2 focussed on working 

memory (serial 3s & 7s subtraction; RVIP) and sustained attention (RVIP & digit vigilance).  Full task 

descriptions can be found in Chapter 2. In Experiment 1.1, with the exception of the immediate and 

delayed recall tasks, which were respectively presented first and last, the order of the remaining 

three cognitive tasks was counterbalanced between participants. In Experiment 1.2 the order of all 

cognitive tasks was similarly counterbalanced. Short practice trials were incorporated at the 

beginning of each of the executive function, working memory and sustained attention tasks, for 

which data was not collected. This was to ensure that participants had fully familiarised themselves 

with the task directly before each administration. Alternate forms were used at each repeat 

presentation of any given task. 

Subjective measures of task difficulty and motivation were recorded each time a particular task was 

performed (Chapter 2). In addition, the PANAS-Now (Watson et al., 1988) mood questionnaire and a 

measure of mental fatigue (Scholey et al., 2010) were administered at the end of each session of 

cognitive tasks. 

3.3 Data analysis 

3.3.1 Sternberg regression analysis 

Regression analysis was performed on all raw Sternberg data in accordance with the procedure 

outlined in Chapter 2. Coefficient of determination values were low (R2<0.380), but were similar to 

those observed in previous studies e.g. (Corbin & Marquer, 2009), and were typical of behavioural 

data. 

3.3.2 Linear mixed models 

LMM using a first-order autoregressive heterogeneous covariance structure (ARH1) to model 

successive repeat test sessions was used to analyse data for all cognitive tasks. Visit, Session and the 

Visit x Session interaction were included as fixed factors in the model, and subjects were included as 

random effects (Model 1.1). Motivation was subsequently included in the model as a repeated 

covariate (Model 1.2). In order to confirm the validity of motivation as a covariate -2 Log Likelihood 

(-2LL) values for Model 1.2 were compared with corresponding values for Model 1.1. The addition of 

motivation improved the fit of the model as evidenced by a reduction in -2LL (Shek & Ma, 2011). The 

analysis aim was to determine whether practice related improvements in cognitive performance 

were evident following the use of same day familiarisation trials and alternate forms of cognitive 

tasks, whilst accounting for potentially confounding changes in motivation. Pairwise comparisons 
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were used to investigate any significant effects of Visit, Session, or any Visit x Session interaction. A 

Bonferroni correction was applied to all multiple comparisons. The same LMM procedure (Model 

1.1) was used to determine the effects of repeated testing on mood and mental fatigue.  

For the analysis of the interference errors DV for the immediate and delayed recall tasks, the 

random effects component was removed from the LMM procedure (Model 1.3). This modification 

was necessary in order to counter the large number of zero scores present in the data set. Some 

participants showed no variation at all in their scores, causing an error in the modelling of the 

covariance matrix when including random effects (West, Welch, & Galecki, 2015). Motivation was 

also excluded as a covariate. It was judged impossible for motivation to consistently influence the 

number of interference errors across all test sessions. By definition, the possibility of making such an 

error increases with increasing presentations of the task. 

Difficulty ratings recorded at each time point and for each cognitive task were analysed using a 

separate LMM (Model 1.4). ARH1 covariance structure was used to model successive repeat test 

sessions. Visit, Session, Cognitive Task, and Task x Visit, Task x Session, Visit x Session, and Task x 

Visit x Session interactions were included as fixed factors in the model. Subjects were included as 

random effects. The same model was also applied to the motivation ratings recorded at each time 

point for each cognitive task. 

Serial 3s & 7s, positive & negative affect, and mental fatigue data obtained during Experiments 1 & 2 

were subsequently combined. This larger dataset was analysed to determine whether time of testing 

(am or pm) played a significant role in predicting performance. The same LMM procedure was used 

as for the individual experiment analyses, but with the addition of a Time of Day factor, and all 

interactions between Time of Day, Visit and Session (Model 1.5). Motivation was again included as a 

repeated covariate for cognitive outcomes (Model 1.6). 

3.3.3 Cohen’s d effect sizes 

Cohen’s d values were calculated to compare cognitive practice effect sizes between all visits and 

sessions, with a view to determining whether the introduction of a familiarisation visit on a separate 

day prior to data collection would reduce practice effects in a typical nutrition intervention study 

design. 
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3.3.4 Intraclass correlation coefficients 

Alternate-form reliability was determined for each of the cognitive tasks through the calculation of 

Intraclass Correlation Coefficients (ICCs). ICC scores for consistency between alternate test forms 

were calculated using a two-way mixed effects model. Scores between 0.4-0.75 were judged to be 

adequate and scores greater than 0.75 were considered good, according to published criteria 

(Cicchetti, 1994; Weintraub et al., 2014). 

3.4 Results 

All raw data collected during these experiments are included in the supplementary Excel files 

‘Experiment 1.1.xls’ and ‘Experiment 1.2.xls’ on the accompanying CD. Means and standard 

deviations for all recorded variables are tabulated under the relevant sections of the chapter. The 

findings of Experiments 1.1 and 1.2 are reported individually under each section heading. All LMM 

results are presented in full in Appendix L. For clarity, only statistically significant effects are 

reported in the text. 

3.4.1 LMM analysis of the changes in cognitive performance across all task 

repetitions 

3.4.1.1 Experiment 1.1 

Means and standard deviations for all cognitive variables recorded in Experiment 1.1 are shown in 

Table 3.1. 

Table 3.1 Cognitive data for Experiment 1.1 (n=29) 

Table 3.1 continued 

            Testing time point 

Cognitive variable 

 

Visit 

 

Session 1 

 

Session 2 

  

 

  

 

Mean SD 

 

Mean SD 

    
  

 
  

Immediate recall score (correct/15) 

 

Visit 1 

 

7.52 2.01 
 

8.00 2.27 

  

Visit 2 

 

9.03 1.97 
 

8.59 2.11 

  

Visit 3 

 

10.21 2.51 
 

9.24 2.61 

         Immediate recall interference errors 

 

Visit 1 

 

0.03 0.19 

 

0.07 0.26 

  

Visit 2 

 

0.07 0.26 

 

0.03 0.19 

  

Visit 3 

 

0.10 0.41 

 

0.03 0.19 
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Table 3.1 continued 

            Testing time point 

Cognitive variable 

 

Visit 

 

Session 1 

 

Session 2 

  

 

  

 

Mean SD 

 

Mean SD 

Delayed recall score (correct/15) 

 

Visit 1 

 

6.00 2.38 
 

5.45 2.64 

  

Visit 2 

 

6.69 2.38 
 

5.41 2.95 

  

Visit 3 

 

7.90 2.94 
 

5.79 4.14 

         Delayed recall interference errors 

 

Visit 1 

 

0.03 0.19 

 

0.31 0.66 

  

Visit 2 

 

0.14 0.44 

 

1.41 1.50 

  

Visit 3 

 

0.07 0.26 

 

1.45 1.74 

         Serial 3s score (correct in 2 minutes) 

 

Visit 1 

 

32.79 14.37 
 

40.07 16.23 

  

Visit 2 

 

41.62 18.45 
 

46.72 16.78 

  

Visit 3 

 

49.59 19.31 
 

51.21 18.80 

         Serial 3s RT (ms) 

 

Visit 1 

 

3515.13 1457.62 
 

3094.01 1412.59 

  

Visit 2 

 

2935.73 1165.08 
 

2512.30 997.39 

  

Visit 3 

 

2621.67 1229.22 
 

2446.37 1120.99 

         Serial 3s errors (incorrect in 2 minutes) 

 

Visit 1 

 

2.24 2.44 

 

2.36 2.33 

  

Visit 2 

 

2.62 2.01 

 

2.33 1.98 

  

Visit 3 

 

2.10 1.45 

 

2.86 2.50 

         Serial 7s score (correct in 2 minutes) 

 

Visit 1 

 

20.28 11.59 
 

22.45 10.56 

  

Visit 2 

 

23.97 13.68 
 

25.10 12.66 

  

Visit 3 

 

26.72 13.76 
 

28.10 13.89 

         Serial 7s RT (ms) 

 

Visit 1 

 

5644.86 2609.60 
 

5086.12 2157.89 

  

Visit 2 

 

4910.95 2413.92 
 

4484.32 1670.49 

  

Visit 3 

 

4601.17 2085.15 
 

4505.79 2017.93 

    
  

 
  

Serial 7s errors (incorrect in 2 minutes) 

 

Visit 1 

 

3.14 2.47 

 

3.34 3.14 

  

Visit 2 

 

2.57 2.39 

 

3.17 2.90 

  

Visit 3 

 

2.86 2.31 

 

2.69 2.59 

         

         Sternberg accuracy (correct/96) 

 

Visit 1 

 

91.38 3.52 

 

91.24 3.57 

  

Visit 2 

 

91.50 3.39 

 

89.66 4.70 
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Table 3.1 continued 

            Testing time point 

Cognitive variable 

 

Visit 

 

Session 1 

 

Session 2 

  

 

  

 

Mean SD 

 

Mean SD 

  

Visit 3 

 

89.90 5.23 

 

90.68 4.42 

         Sternberg scanning rate (ms/item) 

 

Visit 1 

 

37.67 15.17 
 

35.59 26.13 

  

Visit 2 

 

26.98 18.15 
 

28.42 14.62 

  

Visit 3 

 

27.05 21.30 
 

25.55 21.65 

         Sternberg extrapolated RT (ms) 

 

Visit 1 

 

668.81 189.31 
 

595.49 180.10 

  

Visit 2 

 

616.15 169.75 
 

583.18 153.24 

  

Visit 3 

 

538.86 147.41 
 

561.33 162.40 

    
  

 
  

Stroop accuracy (correct/96) 

 

Visit 1 

 

90.82 3.27 

 

90.55 4.64 

  

Visit 2 

 

91.52 4.08 

 

91.14 3.85 

  

Visit 3 

 

89.86 4.47 

 

90.90 3.30 

    
  

 
  

Stroop incongruent RT (ms) 

 

Visit 1 

 

783.37 90.70 
 

729.09 93.62 

  

Visit 2 

 

743.47 93.88 
 

734.31 97.31 

  

Visit 3 

 

725.15 109.73 
 

715.61 89.13 

    
  

 
  

Stroop congruent RT (ms) 

 

Visit 1 

 

714.54 97.83 
 

661.10 101.75 

  

Visit 2 

 

681.62 99.68 
 

663.20 109.07 

  

Visit 3 

 

673.58 119.38 
 

640.12 96.09 

         Stroop interference effect (ms) 

 

Visit 1 

 

68.84 46.16 
 

62.39 38.26 

  

Visit 2 

 

61.85 51.41 
 

71.11 44.20 

  

Visit 3 

 

51.56 47.76 
 

75.48 44.19 

                  

 

3.4.1.1.1 Motivation 

As a repeated covariate in the model, Motivation significantly predicted IR score [F(1,136.77)=13.56, 

p<0.001, beta=0.400], DR score [F(1,127.22)=7.64, p=0.007, beta=0.364], serial 7s score 

[F(1,135.85)=19.05, p<0.001, beta=1.186], serial 7s errors [F(1,82.72)=16.49, p<0.001, beta=-0.433], 

Sternberg accuracy [F(1,131.06)=44.25, p<0.001, beta=0.949], Stroop accuracy [F(1,102.34)=6.35, 

p=0.013, beta=0.477], and Stroop RT for congruent trials [F(1,140.24)=5.82, p=0.017, beta=-6.734], 
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such that higher motivation was associated with better performance in all cases. Means and 

standard deviations for all motivation ratings collected during Experiment 1.1 are shown in Table 

3.2. 

3.4.1.1.2 Visit 

Fixed effects of Visit were significant for IR score [F(2,54.20)=16.82, p<0.001], serial 3s score 

[F(2,49.95)=70.48, p<0.001], serial 3s RT [F(2,53.89)=35.30, p<0.001], serial 7s score 

[F(2,46.26)=32.86, p<0.001], serial 7s RT [F(2,66.14)=11.43, p<0.001], Sternberg scanning 

rate[F(2,60.89)=6.87, p=0.002], and both incongruent [F(2,52.41)=13.62, p<0.001] and congruent 

RTs on the Stroop task. 

Pairwise comparisons showed performance improvements between Visits 1 & 2 for IR score 

[p=0.004], serial 3s score [p<0.001], serial 3s RT [p=0.001], serial 7s score [p<0.001], Sternberg 

scanning rate [p=0.010], and Stroop incongruent RT [p=0.018]. Continued improvements between 

Visits 2 & 3 were observed for IR score [p=0.010], serial 3s score [p<0.001], serial 7s score [p=0.020], 

and Stroop incongruent RT [p=0.029]. Therefore, 8 of 15 DVs were predicted by the Visit factor, with 

6 DVs showing significant improvements between Visits 1 & 2 but only 4 showing significant 

improvements between Visits 2 & 3. Accuracy and error scores were observed to remain stable 

across repeated visits, irrespective of the type of cognitive task. 
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Table 3.2 Motivation data for Experiment 1.1 (n=29) 

 

        Testing time point 

Motivation rating (out of 9) 

 

Visit 

 

Session 1 

 

Session 2 

  

 

  

 

Mean SD 

 

Mean SD 

    
  

 
  

Immediate recall rating 

 

Visit 1 

 

6.76 1.57 

 

5.72 2.05 

  

Visit 2 

 

6.62 1.63 

 

6.03 2.18 

  

Visit 3 

 

6.55 1.94 

 

6.10 2.09 

         Delayed recall rating 

 

Visit 1 

 

6.24 1.77 

 

5.97 2.13 

  

Visit 2 

 

6.00 2.00 

 

5.83 2.05 

  

Visit 3 

 

6.31 2.09 

 

6.14 2.33 

         Serial 3s rating 

 

Visit 1 

 

6.10 1.95 

 

6.31 1.91 

  

Visit 2 

 

5.69 2.16 

 

5.69 2.38 

  

Visit 3 

 

6.38 1.90 

 

5.97 2.11 

         Serial 7s rating 

 

Visit 1 

 

6.03 2.13 

 

5.76 2.12 

  

Visit 2 

 

5.38 2.23 

 

5.45 2.35 

  

Visit 3 

 

5.86 2.13 

 

5.79 2.38 

         Sternberg rating 

 

Visit 1 

 

5.45 1.97 

 

5.45 2.16 

  

Visit 2 

 

5.14 2.00 

 

5.05 2.10 

  

Visit 3 

 

5.72 2.25 

 

5.48 2.15 

         Stroop rating 

 

Visit 1 

 

6.34 1.74 

 

6.14 1.68 

  

Visit 2 

 

6.14 1.85 

 

5.97 1.90 

  

Visit 3 

 

6.24 1.94 

 

6.07 2.17 

                  

 

3.4.1.1.3 Session 

Fixed effects of Session were significant for DR score, serial 3s score, serial 3s RT, serial 7s score, 

serial 7s RT, Sternberg extrapolated RT, Stroop incongruent RT, Stroop congruent RT, and Stroop 

interference effect. Significant improvements between Sessions 1 & 2 were observed for serial 3s 

score [F(1,76.87)=42.98, p<0.001], serial 3s RT F(1,86.05)=16.59, p<0.001], serial 7s score 

[F(1,69.02)=10.74, p=0.002], serial 7s RT [F(1,67.33)=17.04, p<0.001], Sternberg extrapolated RT 



 

55 
 

[F(1,55.60)=9.37, p=0.003], Stroop incongruent RT [F(1,57.19)=24.57, p<0.001], and Stroop 

congruent RT [F(1,42.89)=50.08, p<0.001]. Conversely, significant decreases in performance 

between Sessions 1 & 2 were observed for DR [F(1,71.43)=17.08, p<0.001], and Stroop interference 

effect [F(1,61.19)=6.50, p=0.013]. Therefore, 9 of 15 DVs were predicted by the Session factor, with 

7 DVs showing improvement, and 2 DVs showing a decline in performance. Accuracy and error 

scores were observed to remain stable across repeated sessions, irrespective of the type of cognitive 

task. 

3.4.1.1.4 Visit x Session interactions 

A significant Visit x Session interaction observed for IR score [F(2,81.91)=4.36, p=0.016] was 

explained by a significant increase in performance between Sessions 1 & 2 at Visit 1 [p=0.041], but 

not at any other visits. For Serial 3s score [F(2,76.20)=3.87, p=0.025] improvements were observed 

between Sessions 1 & 2 on Visit 1 [p<0.001] and Visit 2 [p<0.001], but not on Visit 3 [p=0.179]. 

Similarly for Serial 7s RT [F(2,73.47)=4.39, p=0.016] the significant interaction was explained by 

improvement in performance between Sessions 1 & 2 at Visit 1 [p=0.001] and Visit 2 [p=0.029], but 

not at Visit 3 [p=0.503]. A significant interaction for Stroop incongruent RT [F(2,74.68)=8.70, 

p<0.001] was explained by improvements between Sessions 1 & 2 on Visit 1 only [p<0.001]. For 

Stroop congruent RT [F(2,83.05)=3.52, p=0.034], larger improvements were observed between 

Sessions 1 & 2 on Visit 1 [p<0.001], although moderate improvements remained evident between 

Sessions on Visit 2 [p=0.016] and Visit 3 [p=0.001]. In all interaction cases, therefore, practice effects 

between Sessions 1 & 2 were attenuated or eliminated altogether at later visits. 

3.4.1.2 Experiment 1.2 

Means and standard deviations for all cognitive variables recorded in Experiment 1.2 are shown in 

Table 3.3. 
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Table 3.3 Cognitive data for Experiment 1.2 (n=33) 

 

Table 3.3 continued 

          Testing time point 

Cognitive 
variable 

 

Visit 

 

Session 1 

 

Session 2 

 

Session 3 

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

 

           Digit vigilance 
score 
(correct/45)  

 

Visit 1 

 

43.52 1.68 

 

42.91 2.79 

 

43.25 2.71 

 

Visit 2 

 

43.29 2.72 

 

42.22 4.12 

 

41.97 3.50 

 

Visit 3 

 

43.03 3.35 

 

42.35 3.33 

 

42.40 4.01 

            Digit vigilance 
RT (ms) 

 

Visit 1 

 

425.65 36.69 

 

436.72 39.38 

 

434.76 39.11 

 

Visit 2 

 

429.53 39.19 

 

430.89 36.03 

 

440.81 40.71 

 

Visit 3 

 

433.35 39.38 

 

438.05 38.57 

 

441.21 43.72 

            Digit vigilance 
commission 
errors 

 

Visit 1 

 

1.48 1.68 

 

1.56 1.32 

 

1.64 1.90 

 

Visit 2 

 

1.48 1.75 

 

1.75 1.59 

 

2.16 1.92 

 

Visit 3 

 

2.23 1.89 

 

2.34 1.84 

 

2.00 1.60 

            RVIP score 
(correct/40) 

 

Visit 1 

 

17.91 7.65 

 

19.64 6.61 

 

20.18 7.09 

 

Visit 2 

 

21.59 7.49 

 

24.34 7.04 

 

22.97 7.25 

 

Visit 3 

 

24.45 7.47 

 

24.13 7.64 

 

24.50 7.56 

            RVIP RT (ms) 

 

Visit 1 

 

395.26 39.03 

 

384.65 46.28 

 

375.48 35.28 

  

Visit 2 

 

377.91 44.34 

 

378.06 46.89 

 

372.67 44.82 

  

Visit 3 

 

386.77 47.20 

 

381.23 41.81 

 

379.42 45.54 

    
        

RVIP 
commission 
errors 

 

Visit 1 

 

23.39 17.09 

 

19.27 17.56 

 

17.91 17.59 

 

Visit 2 

 

18.25 18.14 

 

17.94 18.88 

 

19.50 20.04 

 

Visit 3 

 

19.81 21.60 

 

18.69 19.18 

 

20.22 22.47 

            Serial 3s score 
(correct in 2 
minutes) 

 

Visit 1 

 

26.12 12.62 

 

31.39 12.35 

 

35.03 14.82 

 

Visit 2 

 

39.32 14.22 

 

40.35 16.83 

 

42.32 16.92 

 

Visit 3 

 

43.72 16.35 

 

45.19 19.09 

 

46.41 17.69 

            
Serial 3s RT (ms) 

 

Visit 1 

 

3935.75 1490.55 

 

3612.64 1393.70 

 

3444.88 1505.46 

  

Visit 2 

 

3031.82 1119.44 

 

3045.28 1248.74 

 

2766.70 1056.58 

  

Visit 3 

 

2900.23 1285.32 

 

2771.11 1174.39 

 

2709.68 1202.84 
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Table 3.3 continued 

          Testing time point 

Cognitive 
variable 

 

Visit 

 

Session 1 

 

Session 2 

 

Session 3 

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

Serial 3s errors 
(incorrect in 2 
minutes) 

 

Visit 1 

 

2.97 2.38 

 

2.97 2.35 

 

2.48 2.43 

 

Visit 2 

 

2.35 2.46 

 

2.29 2.33 

 

2.90 2.26 

 

Visit 3 

 

1.66 2.74 

 

2.31 2.12 

 

2.06 2.23 

            Serial 7s score 
(correct in 2 
minutes) 

 

Visit 1 

 

15.38 7.25 

 

17.79 6.41 

 

19.44 7.49 

 

Visit 2 

 

21.38 9.54 

 

23.28 9.85 

 

23.74 9.91 

 

Visit 3 

 

23.74 10.63 

 

24.56 11.05 

 

24.39 8.85 

            
Serial 7s RT (ms) 

 

Visit 1 

 

6844.93 2861.18 

 

6170.24 2859.86 

 

5428.16 2394.88 

  

Visit 2 

 

5637.11 2751.33 

 

5376.46 2555.78 

 

5156.44 2277.00 

  

Visit 3 

 

5339.91 2348.87 

 

4852.81 2305.07 

 

4864.63 2005.26 

            Serial 7s errors 
(incorrect in 2 
minutes) 

 

Visit 1 

 

2.03 1.45 

 

2.31 1.86 

 

2.69 2.35 

 

Visit 2 

 

1.72 1.46 

 

2.42 2.39 

 

2.23 2.05 

 

Visit 3 

 

1.33 1.71 

 

2.69 1.96 

 

2.19 2.06 

                        

 

3.4.1.2.1 Motivation 

As a repeated covariate in the model, Motivation significantly predicted RVIP score 

[F(1,243.60)=9.49, p=0.002, beta=0.584], digit vigilance score [F(1,172.34)=6.54, p=0.011, 

beta=0.236], digit vigilance RT [F(1,237.80)=8.14, p=0.005, beta=-2.736], digit vigilance commission 

errors [F(1,224.24)=10.48, p=0.001, beta=-0.186], serial 3s score [F(1,197.14)=17.64, p<0.001, 

beta=1.311], serial 7s score [F(1,209.03)=11.28, p=0.001, beta=0.705], and serial 7s RT 

[F(1,219.22)=4.45, p=0.036, beta=-92.460], such that higher motivation was associated with better 

performance. Means and standard deviations for all motivation ratings collected during Experiment 

1.2 are shown in Table 3.4.  
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Table 3.4 Motivation data for Experiment 1.2 (n=33) 

 

        Testing time point 

Motivation 

 

Visit 

 

Session 1 

 

Session 2 

 

Session 3 

rating (out of 9) 

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

Digit vigilance rating 

 

Visit 1 

 

5.58 2.02 

 

5.03 1.93 

 

4.52 2.22 

  

Visit 2 

 

5.38 2.01 

 

4.88 2.25 

 

4.53 2.29 

  

Visit 3 

 

4.70 2.14 

 

4.41 2.01 

 

4.34 1.68 

            RVIP rating 

 

Visit 1 

 

5.03 2.02 

 

4.94 1.84 

 

4.38 2.15 

  

Visit 2 

 

4.87 2.00 

 

4.47 2.16 

 

4.26 2.32 

  

Visit 3 

 

4.84 2.03 

 

3.94 2.03 

 

3.91 1.94 

            
Serial 3s rating 

 

Visit 1 

 

5.67 1.73 

 

5.39 1.85 

 

5.36 1.78 

  

Visit 2 

 

5.69 1.58 

 

5.47 2.06 

 

5.41 2.11 

  

Visit 3 

 

5.97 1.96 

 

5.50 2.02 

 

5.50 1.97 

            
Serial 7s rating 

 

Visit 1 

 

5.97 1.79 

 

5.64 1.60 

 

5.27 1.84 

  

Visit 2 

 

5.53 1.57 

 

5.06 1.81 

 

5.00 2.21 

  

Visit 3 

 

5.58 1.71 

 

5.03 2.01 

 

5.06 1.81 

                        

 

3.4.1.2.2 Visit 

The Visit factor was a significant predictor of RVIP score [F(2,71.74)=26.88, p<0.001], RVIP RT 

[F(2,82.56)=3.59, p=0.032], digit vigilance commission errors [F(2,93.92)=4.94, p=0.009], serial 3s 

score [F(2,35.86)=49.65, p<0.001] and serial 3s RT [F(2,64.06)=30.25, p<0.001], serial 7s score 

[F(2,63.84)=32.34, p<0.001], and serial 7s RT [F(2,79.61)=44.95, p<0.001]. 

Pairwise comparisons showed performance improvements between Visits 1 & 2 for RVIP score 

[p<0.001], RVIP RT [p=0.026], serial 3s score [p<0.001], serial 3s RT [p<0.001], serial 7s score 

[p<0.001], and serial 7s RT [p<0.001]. Significant improvements between Visits 2 & 3 were only 

observed for serial 3s score [p=0.002], serial 3s RT [p=0.012], and serial 7s RT [p=0.002]. Therefore, 6 

of 12 DVs showed practice effects across test visits with 6 DVs showing significant changes between 

Visits 1 & 2 but only 3 showing significant changes between Visits 2 & 3. Error scores were generally 
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observed to remain stable across visits, irrespective of the type of cognitive task. The only exception 

was for commission errors produced during the digit vigilance task, where an increase in errors was 

observed between Visits 1 & 3 [p=0.007]. 

3.4.1.2.3 Session 

The Session factor was a significant predictor of performance for the majority of DVs. Performance 

improvements across sessions were observed for RVIP score [F(2,138.85)=5.51, p=0.005], RVIP RT 

F(2,133.46)=5.38, p=0.006], RVIP commission errors [F(2,116.65)=3.06, p=0.050], serial 3s score 

[F(2,105.34)=22.49, p<0.001], serial 3s RT [F(2,104.83)=12.12, p<0.001], serial 7s score 

[F(2,114.35)=16.54, p<0.001], and serial 7s RT [F(2,110.43)=28.16, p<0.001]. Conversely, significant 

decreases in performance across sessions were observed for digit vigilance score [F(2,117.55)=5.87, 

p=0.004], digit vigilance RT [F(2,127.82)=4.21, p=0.017], and serial 7s errors [F(2,133.11)=8.63, 

p<0.001]. 

Pairwise comparisons showed performance improvements between Sessions 1 & 2 for RVIP score 

[p=0.009], serial 3s score [p<0.001], serial 3s RT [p=0.008], serial 7s score [p=0.001], and serial 7s RT 

[p<0.001]. Significant improvements between Sessions 2 & 3 were only observed for serial 3s score 

[p=0.019], serial 3s RT [p=0.037], and serial 7s RT [p=0.020]. Therefore, 7 of 12 DVs showed practice 

effects across test sessions with 5 DVs showing significant performance improvements between 

Sessions 1 & 2 but only 3 showing continued improvements between Sessions 2 & 3. Decreases in 

performance between Sessions 1 & 2 were evident for digit vigilance score [p=0.019], and serial 7s 

errors [p=0.001], however this decline did not persist between Sessions 2 & 3 [p=0.996 & p>0.999 

respectively].  With the exception of serial 7s then, error scores were observed to remain stable 

across repeat sessions, irrespective of the type of cognitive task. Practice effects were more likely to 

persist across all repeat test sessions for the serial subtraction tasks, compared with RVIP and digit 

vigilance. 

3.4.1.2.4 Visit  x Session interactions 

A significant Visit x Session interaction observed for RVIP commission errors [F(4,86.94)=3.22, 

p=0.016] was explained by a significant increase in the number of errors between Sessions 1 & 3 at 

Visit 2 [p=0.012], but not at any other visits. For serial 3s score [F(4,82.51)=2.87, p=0.028] 

improvements were observed between Sessions 1 & 3 on Visit 1 [p<0.001] but not at any other 

visits, suggesting an attenuation of practice related improvement. 
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3.4.2 LMM analysis of the incidence of interference errors in the immediate & 

delayed recall tasks (Experiment 1.1 only) 

Mean interference errors with standard deviations, recorded at each time point, are presented in 

Table 3.1. IR interference errors were not predicted by any of the factors included in the model: Visit 

[F(2,73.11)=0.07, p=0.934]; Session [F(1,61.39)=0.38, p=0.538]; Visit x Session [F(2,71.07)=0.67, 

p=0.517], indeed the incidence of interference errors remained consistently low for the IR task 

throughout repeated testing. Conversely, DR interference errors were significantly predicted by all 

factors: Visit [F(2,54.91)=11.31, p<0.001]; Session [F(1,67.05)=44.29, p<0.001]; Visit x Session 

[F(2,71.07)=9.16, p<0.001]. Pairwise comparisons revealed a significant increase in the number of 

errors between Visits 1 & 2 [p=0.001] and Visits 1 & 3 [p=0.005], but not between Visits 2 & 3 

[p>0.999]. Increases in the number of errors at Session 2 relative to Session 1 were marginally 

significant at Visit 1 [p=0.032] and highly significant at Visits 2 & 3 [both p<0.001]. As expected by 

their nature, interference errors for the DR task were less prevalent at Visit 1 compared with later 

visits and occurred more often at the second session of testing on any given visit.  

3.4.3 Comparison of Cohen’s d effect sizes between visits and sessions for all 

cognitive tasks 

3.4.3.1 Experiment 1.1 

Cohen’s d effect sizes for cognitive changes observed in Experiment 1.1 are presented in Table 3.5. 

By comparing Cohen’s d effect sizes between visits, it can be seen that practice effect sizes between 

Visits 2 & 3 were reduced for 11 of 15 DVs when compared with effect sizes between Visits 1 & 2. 

The only exceptions were DR score, Serial 3s errors, Sternberg accuracy, and Stroop interference, 

where slight increases in practice effect sizes were observed. Between visit effect sizes for accuracy 

and error rates were typically lower than for other DVs reflecting overall stability in these measures. 

Practice effect sizes between same-day Sessions 1 & 2 were reduced when comparing Visits 2 & 3 

with Visit 1. For IR score, DR score and Stroop interference, where overall performance decreases 

were observed between same-day sessions, the magnitude of these negative Cohen’s d values 

increased at subsequent visits. 

3.4.3.2 Experiment 1.2 

Cohen’s d effect sizes for cognitive changes observed in Experiment 1.2 are presented in Table 3.6. 

By comparing Cohen’s d effect sizes between visits, it can be seen that practice effect sizes between 

Visits 2 & 3 were reduced for 8 of 12 DVs when compared with effect sizes between Visits 1 & 2. The 



 

61 
 

only exceptions were Serial 3s errors, where a slight increase in practice effect size was observed; 

and all of the digit vigilance DVs, where consistent decreases in performance were observed across 

visits. Between-visit effect sizes for error rates were typically lower than for other DVs reflecting 

overall stability in these measures. Practice effect sizes between same-day test sessions were 

typically reduced when comparing performance increases between Sessions 2 & 3 with increases 

between Sessions 1 & 2. Similarly, practice effect sizes between sessions were typically attenuated 

at Visits 2 & 3 relative to Visit 1. For RVIP, serial 3s, and serial 7s error scores, overall performance 

decreases were observed between same-day sessions. Similarly, consistent decreases in 

performance were observed between test sessions for all of the digit vigilance DVs. 
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Table 3.5 Cohen's d effect sizes for cognitive changes in Experiment 1.1 

 

    Mean practice effect size between Visits 

 

Mean practice effect size between Sessions 

Cognitive Measure 

       

Visit1 

 

Visit2 

 

Visit3 

  

 

Visit1-Visit2 

 

Visit2-Visit3 

 

Visit1-Visit3 

 

Session1-Session2 

 

Session1-Session2 

 

Session1-Session2 

Immediate recall score 

 

0.368 

 

0.333 

 

0.686 

 

0.395 

 

-0.104 

 

-0.354 

Delayed recall score 

 

0.117 

 

0.188 

 

0.304 

 

-0.173 

 

-0.440 

 

-0.650 

Serial 3s score 

 

0.351 

 

0.258 

 

0.608 

 

0.434 

 

0.311 

 

0.113 

Serial 3s RT 

 

0.273 

 

0.149 

 

0.450 

 

0.324 

 

0.150 

 

0.167 

Serial 3s errors 

 

-0.051 

 

-0.013 

 

-0.063 

 

-0.091 

 

0.116 

 

-0.238 

Serial 7s score 

 

0.250 

 

0.157 

 

0.409 

 

0.236 

 

0.097 

 

0.133 

Serial 7s RT 

 

0.198 

 

0.100 

 

0.321 

 

0.371 

 

0.305 

 

0.048 

Serial 7s errors 

 

0.183 

 

-0.018 

 

0.166 

 

-0.034 

 

-0.246 

 

0.087 

Sternberg accuracy 

 

-0.160 

 

-0.133 

 

-0.322 

 

-0.046 

 

-0.153 

 

0.043 

Sternberg scanning rate 

 

0.382 

 

0.081 

 

0.438 

 

0.100 

 

-0.088 

 

0.069 

Sternberg extrapolated RT 

 

0.159 

 

0.117 

 

0.259 

 

0.395 

 

0.221 

 

0.091 

Stroop accuracy 

 

0.053 

 

-0.036 

 

0.020 

 

0.131 

 

-0.269 

 

0.250 

Stroop incongruent RT 

 

0.148 

 

0.146 

 

0.293 

 

0.619 

 

0.112 

 

0.114 

Stroop congruent RT 

 

0.125 

 

0.112 

 

0.235 

 

0.557 

 

0.208 

 

0.356 

Stroop interference effect 

 

0.022 

 

0.058 

 

0.080 

 

0.002 

 

-0.217 

 

-0.528 

                          

Decreases in performance are prefixed with a minus sign 
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Table 3.6 Cohen's d effect sizes for cognitive changes in Experiment 1.2 

 

    
Mean practice effect size 

between Visits   Mean practice effect size between Sessions 

Cognitive measure 

     

Visit1 

 

Visit2 

 

Visit3 

  

 

Visit1-Visit2 

 

Visit2-Visit3  

 

S1-S2 

 

S2-S3 

 

S1-S2 

 

S2-S3 

 

S1-S2 

 

S2-S3 

RVIP score 

 

0.346 

 

0.136 

 

0.226 

 

0.106 

 

0.380 

 

0.183 

 

0.006 

 

0.054 

RVIP RT 

 

0.160 

 

0.069 

 

0.243 

 

0.239 

 

0.040 

 

0.114 

 

0.124 

 

0.047 

RVIP commission errors 

 

0.045 

 

-0.009 

 

0.213 

 

0.032 

 

-0.019 

 

-0.226 

 

0.012 

 

-0.086 

Digit vigilance score 

 

-0.097 

 

-0.045 

 

-0.136 

 

-0.086 

 

-0.239 

 

-0.049 

 

-0.305 

 

-0.128 

Digit vigilance RT 

 

-0.059 

 

-0.030 

 

-0.255 

 

-0.035 

 

0.012 

 

-0.249 

 

-0.132 

 

-0.032 

Digit vigilance commission errors 

 

-0.141 

 

-0.141 

 

0.037 

 

-0.011 

 

-0.077 

 

-0.218 

 

-0.022 

 

0.141 

Serial 3s score 

 

0.389 

 

0.190 

 

0.408 

 

0.260 

 

0.133 

 

0.076 

 

0.139 

 

0.08 

Serial 3s RT 

 

0.317 

 

0.091 

 

0.297 

 

0.129 

 

0.018 

 

0.128 

 

0.119 

 

0.052 

Serial 3s errors 

 

0.078 

 

0.177 

 

0.017 

 

0.186 

 

0.061 

 

-0.359 

 

-0.254 

 

0.11 

Serial 7s score 

 

0.370 

 

0.092 

 

0.274 

 

0.173 

 

0.250 

 

0.139 

 

0.116 

 

0.039 

Serial 7s RT 

 

0.196 

 

0.109 

 

0.361 

 

0.233 

 

0.201 

 

0.120 

 

0.210 

 

0.023 

Serial 7s errors 

 

0.123 

 

0.040 

 

-0.188 

 

-0.130 

 

-0.349 

 

0.103 

 

-0.859 

 

0.266 

                                  

Decreases in performance are prefixed with a minus sign 
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3.4.4 LMM analysis of the changes in subjective mood across all test sessions 

3.4.4.1 Experiment 1.1 

Mental fatigue was significantly predicted by the factor Visit [F(2,58.82)=5.18, p=0.008] with 

pairwise comparisons revealing decreased ratings of fatigue at Visit 3 compared with both Visit 1 

[p=0.077] and Visit 2 [p=0.008]. Session number was also a significant predictor of mental fatigue 

[F(1,69.09)=7.24, p=0.009], with increased mental fatigue observed at Session 2 relative to Session 1. 

Positive affect was significantly predicted by Visit [F(2,53.70)=5.18, p=0.009], with pairwise 

comparisons revealing decreased positive affect at Visit 2 compared with Visit 1 [p=0.006]. 

Significant decreases in positive affect across same-day sessions were also evident 

[F(1,61.90)=13.24, p=0.001]. Moreover, the interaction between Visit x Session was also marginally 

significant [F(2,71.46)=3.13, p=0.050]. Significant decreases in positive affect between sessions were 

found at Visit 1 [p=0.001] and Visit 2 [p<0.001] only. Expected decreases in positive affect at the 

second session of testing on the final visit were likely to have been negated by positive feelings 

associated with completing the study. Reassuringly, no significant changes in negative affect were 

observed throughout testing.  

Means and standard deviations for all mood ratings recorded during Experiment 1.1 are shown in 

Table 3.7. 
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Table 3.7 Mood data for Experiment 1.1 (n=29) 

 

        Testing time point 

Mood variable 

 

Visit 

 

Session 1 

 

Session 2 

  

 

  

 

Mean SD 

 

Mean SD 

    

    

 

    

Mental fatigue (rating/9) 

 

Visit 1 

 

5.31 1.91 

 

6.10 1.74 

  

Visit 2  

 

5.48 1.70 

 

6.00 2.04 

  

Visit 3 

 

4.79 2.19 

 

5.03 2.04 

         
Positive affect (score/50) 

 

Visit 1 

 

24.66 7.59 

 

21.97 8.35 

  

Visit 2  

 

23.24 9.28 

 

19.55 7.55 

  

Visit 3 

 

22.76 7.86 

 

23.00 8.50 

Negative affect (score/50) 

 

Visit 1 

 

13.34 3.87 

 

12.72 4.10 

  

Visit 2  

 

12.86 4.56 

 

12.76 5.12 

  

Visit 3 

 

12.72 5.65 

 

12.38 2.88 

                  

 

3.4.4.2 Experiment 1.2 

Mental fatigue was not significantly predicted by any of the factors. Positive affect was significantly 

predicted by the Visit factor [F(2,73.67)=3.48, p=0.036], with pairwise comparisons revealing 

decreased positive affect at Visit 2 compared with Visit 1 [p=0.039]. Significant decreases in positive 

affect across same day test sessions were predicted by the Session factor [F(2,126.73)=8.93, 

p<0.001]. Significant decreases in positive affect were found between Sessions 1 & 2 only [p<0.001]. 

Unexpectedly, negative affect was also significantly predicted by Session [F(2,136.12)=6.35, 

p=0.002]. Post hoc comparisons revealed a reduction in negative affect between Sessions 1 & 2 

[p=0.012].  

Means and standard deviations for all mood ratings recorded during Experiment 1.2 are shown in 

Table.3.8. 
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Table 3.8 Mood data for Experiment 1.2 (n=33) 

 

        Testing time point 

Mood variable 

 

Visit 

 

Session 1 

 

Session 2 

 

Session 3 

  

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

    

    

 

    

   Mental fatigue 
(rating/9) 

 

Visit 1 

 

5.00 1.94 

 

4.55 1.87 

 

5.10 2.04 

 

Visit 2  

 

5.00 2.05 

 

4.28 2.23 

 

4.81 2.26 

 

Visit 3 

 

4.56 2.26 

 

4.81 2.26 

 

4.91 2.32 

            Positive affect 
(score/50) 

 

Visit 1 

 

24.76 7.07 
 

22.30 7.92 
 

22.13 9.27 

 

Visit 2  

 

22.59 7.25 
 

20.34 7.29 
 

20.77 6.85 

 

Visit 3 

 

22.06 7.11 
 

20.47 6.69 
 

21.09 7.71 

 

           Negative affect 
(score/50) 

 

Visit 1 

 

13.38 3.97 

 

12.31 3.82 

 

12.27 3.23 

 

Visit 2  

 

13.59 4.17 

 

12.31 3.24 

 

11.74 2.44 

 

Visit 3 

 

13.26 3.69 

 

13.03 3.61 

 

13.09 3.97 

                        

 

3.4.5 LMM analysis of the changes in perception of task difficulty for all cognitive 

tasks across all task repetitions 

3.4.5.1 Experiment 1.1 

Cognitive task type was a significant factor in predicting difficulty ratings [F(5,186.29)=20.12, 

p<0.001]. In task order, serial 7s was rated the most difficult (M 6.49, SD 1.89), followed by DR (M 

6.24, SD 1.79), IR (M 5.61, SD 1.64), serial 3s (M 5.17, SD 2.12), Sternberg (M 4.76, SD 2.06) and 

Stroop (M 4.26, SD 1.62). Difficulty ratings were also predicted by the Visit factor [F(2,595.30)=7.38, 

p=0.001], although not by Session [F(1,602.72)<0.01, p=0.947]. Tasks were perceived to become 

significantly easier between Visits 1 & 2 [p=0.030] and Visits 1 & 3 [p<0.001], but not between Visits 

2 & 3 [p=0.069]. Variations in ratings of difficulty were indicated by significant interactions: Session x 

Cognitive Task [F(5,602.72)=7.22, p<0.001]; Visit x Session [F(2,54.08)=6.54, p=0.002]; Visit x Session 

x Cognitive Task [F(10,544.08)=1.87, p=0.047]. The Visit x Cognitive Task interaction was not 

significant [F(10,595.30)=1.07, p=0.387]. Due to their complex nature, these interactions have not 

been fully interpreted here but are shown in Figure 3.2. 
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3.4.5.2 Experiment 1.2 

Cognitive task type was a significant factor in predicting difficulty ratings [F(3,204.29)=142.51, 

p<0.001]. In task order, RVIP was rated the most difficult (M 5.77, SD 2.03), followed by serial 7s (M 

5.72, SD 1.89), serial 3s (M 4.22, SD 1.86), and digit vigilance (M 2.84, SD 1.73). Difficulty ratings 

were also predicted by Visit [F(2,452.45)=22.98, p<0.001], and by Session [F(2,586.29)=37.75, 

p<0.001]. Tasks were perceived to become significantly easier between Visits 1 & 2 [p<0.001], and 

continued to do so between Visits 2 & 3 [p=0.003]. Similarly, tasks were perceived to become 

significantly easier between Sessions 1 & 2 [p<0.001], and this trend continued between Sessions 2 

& 3 [p=0.001]. Variations in difficulty rating patterns across cognitive tasks were indicated by 

significant interactions: Visit x Cognitive Task [F(6,585.91)=2.83, p=0.010]; Session x Cognitive Task 

[F(6,449.48)=2.72, p=0.013], and Visit x Session x Cognitive Task [F(16,447.23)=3.11, p<0.001]. Due 

to their complex nature, these interactions have not been fully reported here but are evident in 

Figure 3.2. 
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Figure 3.2 Subjective ratings of task difficulty for each cognitive task in Experiments 1.1 & 1.2 

Reported values are estimated marginal means. Error bars represent standard error of the mean 

3 

4 

5 

6 

7 

8 

9 

D
if

fi
cu

lt
y 

R
at

in
g 

(o
u

t 
o

f 
9

) 

Testing Time Point 

Experiment 1.1 (n=29) 

IR DR Serial 3s Serial 7s Stroop Sternberg 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

D
if

fi
cu

lt
y 

R
at

in
g 

(o
u

t 
o

f 
9

) 

Testing Time Point 

Experiment 1.2 (n=33) 

Serial 3s Serial 7s Digit vigilance RVIP 



 

69 
 

3.4.6 LMM analysis of the changes in motivation for all cognitive tasks across all 

task repetitions 

Mean motivation ratings for all cognitive tasks used in Experiments 1.1 & 1.2 can be found in Table 

3.3 and Table3.4, respectively. 

3.4.6.1 Experiment 1.1 

Cognitive task type was a significant factor in predicting motivation ratings [F(5,262.17)=10.42, 

p<0.001]. In task order, motivation was rated highest for IR (M 6.30, SD 1.93), followed by Stroop (M 

6.15, SD 1.86), DR (M 6.08, SD 2.04), serial 3s (M 6.02, SD 2.06), serial 7s (M 5.71, SD2.21) and finally 

Sternberg (M 5.38, SD 2.09). Motivation ratings were also predicted by Visit [F(2,537.87)=8.03, 

p<0.001], and by Session [F(1,481.32)=15.14, p<0.001]. Motivation dropped significantly between 

Visits 1 & 2 [p=0.007], but increased again between Visits 2 & 3 [p=0.001]. Motivation also dropped 

between Sessions 1 & 2 [p<0.001]. Variations in motivation patterns across cognitive tasks were 

indicated by a significant interaction between Session x Cognitive Task [F(5,481.32)=2.72, p=0.019]; 

motivational differences apparent between cognitive tasks at Session 1 were less apparent at 

Session 2.  No other significant interactions were evident. 

3.4.6.2 Experiment 1.2 

Cognitive task type was a significant factor in predicting motivation ratings [F(3,225.84)=21.04, 

p<0.001]. In task order, motivation was rated highest for serial 3s (M 5.55, SD 1.88), followed by 

serial 7s (M 5.35, SD 1.83), digit vigilance (M 4.82, SD 2.08), and RVIP (M 4.52, SD 2.07). Motivation 

ratings were also predicted by Visit [F(2,414.59)=5.28, p=0.005], and by Session [F(2,558.39)=27.76, 

p<0.001]. Motivation significantly decreased between Visits 1 & 3 [p=0.004]. Similarly, motivation 

decreased between Sessions 1 & 2 [p<0.001], and this trend continued between Sessions 2 & 3 

[p=0.048]. There were no significant interactions between Cognitive task, Visit or Session. 

3.4.7 LMM analysis of time of day effects 

After combining serial subtraction and mood data from Experiments 1.1 & 1.2 in order to increase 

statistical power, LMM analysis revealed that Time of Day was a significant predictor of serial 3s 

errors [F(1,71.49)=6.66, p=0.012]. More errors were made in the morning (M 2.92, SE 0.24) 

compared with the afternoon (M 2.07, SE 0.23). For serial 7s score, the Time of Day x Visit 

interaction was significant [F(2,111.67)=5.80, p=0.004]; at Visit 2 participants scored higher in the 

morning (M 25.92, SE 1.64) compared with the afternoon (M22.47, SE 1.60), however statistical 

significance of this pairwise comparison was not maintained following Bonferroni correction 
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[p=0.087]. For positive affect, the Time of Day x Visit interaction was similarly significant 

[F(2,107.87)=4.32, p=0.016]. At Visit 1 [p=0.053] & Visit 2 [p=0.056] participants rated positive affect 

higher in the mornings (MV1 24.79 SEV1 1.15; MV2 22.66, SEV2 1.13) than in the afternoons (MV1 21.93 

SEV1 1.12; MV2 19.89, SEV2 1.10). Time of day was not a significant predictor of performance for any 

other DV included in the analysis. 

3.4.8 Intraclass correlation coefficients for the determination of alternate-form 

reliability 

ICCs for all cognitive tasks are reported in Table 3.9. 

Alternate-form reliability was acceptable for all cognitive DVs with the exception of error scores for 

the serial 3s & 7s and digit vigilance tasks, and the accuracy score for the Stroop task. However, in 

light of the good scores for the other DVs determined for each of these tasks, the poor ICC scores 

were more likely due to low between-subjects variability in the data rather than an indication that 

alternate forms were not suitably equivalent (Weir, 2005). 
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Table 3.9 ICC values for all cognitive tasks in Experiment 1.1 & Experiment 1.2 

 

      

Cognitive Measure 

 

ICC 

  

 

  

Experiment 1.1: 

  Immediate recall score 

 

0.44 

Delayed recall score 

 

0.42 

Serial 3s score 

 

0.90 

Serial 3s RT 

 

0.83 

Serial 3s errors 

 

0.25 

Serial 7s score 

 

0.90 

Serial 7s RT 

 

0.77 

Serial 7s errors 

 

0.38 

Sternberg accuracy 

 

0.53 

Sternberg scanning rate 

 

0.41 

Sternberg extrapolated RT 

 

0.67 

Stroop accuracy 

 

0.27 

Stroop incongruent RT 

 

0.86 

Stroop congruent RT 

 

0.86 

Stroop interference effect 

 

0.54 

   Experiment 1.2: 

  Serial 3s score 

 

0.83 

Serial 3s RT 

 

0.88 

Serial 3s errors 

 

0.05 

Serial 7s score 

 

0.77 

Serial 7s RT 

 

0.89 

Serial 7s errors 

 

0.35 

Digit Vigilance correct 

 

0.56 

Digit Vigilance RT 

 

0.60 

Digit Vigilance commission errors 0.31 

RVIP correct 

 

0.67 

RVIP RT 

 

0.61 

RVIP commission errors   0.82 
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3.5 Discussion 

The purpose of this experimental chapter was to pilot the selected cognitive tasks before including 

them in subsequent blueberry intervention work; in particular, the aim was to investigate the effects 

of repeated exposure to a task on cognitive performance, within and between multiple test days. By 

gaining a better understanding of the patterns of cognitive practice effects it was hoped to reduce 

this confound by adopting appropriate methodology. Practice effects were evident for all cognitive 

tasks investigated in Experiment 1.1 and Experiment 1.2, either across weekly visits or between 

same-day sessions despite the use of alternate forms of each task and familiarisation trials 

immediately before the start of each test performance. However, in accordance with previous 

findings (Bartels et al., 2010; Collie et al., 2003; Falleti et al., 2006) the strongest practice effects 

appeared between Visits 1 & 2, such that Cohen’s d effect sizes would be attenuated in all cases by 

discarding data from the first visit. Specifically, significant practice effects remained evident between 

visits 2 & 3 for IR score, serial 3s score, serial 7s score and Stroop incongruent RT in Experiment 1.1; 

and for serial 3s score and RT, and serial 7s RT in Experiment 1.2. But effect sizes were attenuated in 

all cases when compared with performance increases observed between Visits 1 & 2. Therefore a 

separate familiarisation visit followed by a period of consolidation before data collection, is likely to 

aid in addressing the impact of practice related improvements on test performance between visits. 

In both experiments, practice effect sizes between same day sessions were similarly reduced at Visits 

2 & 3 compared with Visit 1. In Experiment 1.1 significant improvements evident between Sessions 1 

& 2 at Visit 1 for IR score, serial 3s score, serial 7s RT, and Stroop congruent & incongruent RT, were 

greatly attenuated by Visit 3. Interestingly in Experiment 1.2, where three test sessions were 

performed per visit, it was evident that performance increases were also attenuated between 

Sessions 2 & 3, when compared with increases observed between Sessions 1 & 2. However 

significant increases in performance across Sessions 2 & 3 still remained evident for serial 3s score & 

RT, and serial 7s RT. The results suggest that familiarisation trials, whether on a separate visit or 

immediately prior to data collection, are likely to be ineffective at actually eliminating practice 

effects between same day test sessions. A similar observation was made by Lemay et al (Lemay et 

al., 2004). Indeed, the lack of a Visit x Session interaction for the majority of the DVs reported here 

suggests that performance increases across multiple testing points on a single day remain relatively 

constant between visits, with only slight attenuation of effect sizes at subsequent visits. After 

excluding Visit 1, residual between-session practice effects were evident only as small Cohen’s d 

effect sizes (d=0.01-0.35). Nevertheless in nutrition intervention studies, nutrient effect sizes 

typically range from small to moderate. For example, effect sizes following acute flavonoid 
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intervention have been reported to range upwards from d=0.16 (Bell et al., 2015). Therefore even 

small practice effect sizes may impact statistical power in a nutrition intervention study. Future 

consideration of how to take practice effects into account in a priori power calculations may provide 

a solution to the problem of underpowered nutrition intervention studies. 

The statistically significant improvements in task performance between test days shown here 

remained apparent when the variance accounted for by motivation was included in the model. By 

including motivation, this supports the notion that the observed effects are likely related to practice, 

although other variables such as mood or fatigue cannot be ruled out. As a covariate, motivation 

was found to significantly predict episodic memory (IR and DR) recall, Stroop, RVIP, digit vigilance 

and serial 7s task performance. With the exceptions of Stroop and digit vigilance, these tasks were 

also rated to be the most difficult tasks overall. Therefore, when tasks were particularly difficult 

motivation was a strong predictor of performance, independently of practice effects. Motivation was 

reported retrospectively and so it is possible that participants reported high motivation when they 

felt they had performed well during the task, even though direct feedback was not given. However if 

this was the case, motivation might be expected to have been a significant predictor of performance 

for all of the cognitive tasks investigated. Fatigue is also likely to be a major contributing factor to 

task performance. As expected following an extended period of cognitive testing, mental fatigue was 

observed to increase at session 2 relative to session 1 and may also have impacted on subjective 

ratings of motivation. Perceptions of task difficulty were observed to decrease over time for all 

cognitive tasks, suggestive of a general practice effect. After repetition, the tasks were rated as 

becoming easier and performance on the tasks improved. Minor fluctuations in this downward trend 

in perceived difficulty are again likely to result from the impact of fatigue on participants’ 

retrospective, subjective ratings. Interestingly, accuracy or error scores were observed to remain 

relatively unaffected by repeat performance for the Stroop, Sternberg, RVIP, digit vigilance and serial 

subtraction tasks. With the exception of the RVIP task, participants were performing near ceiling 

levels on each of these measures. Although appearing resistant to practice, these measures may 

have little practical application in nutrition intervention work as high accuracy scores leave little 

room for cognitive improvement following an intervention. Nevertheless, task parameters were not 

altered at this stage as the tasks were designed to replicate those used in previous research (Chapter 

2) and RT measures are more commonly reported for these tasks. 

Depending on the cognitive task, different performance related effects of repeated exposure were 

observed. It has been demonstrated that practice related effects are evident across separate visits 

and same day sessions of testing, particularly for tasks measuring working memory (RVIP, serial 
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subtraction). For attention based DVs including Stroop interference effect and digit vigilance score & 

RT, and episodic memory DVs such as immediate and delayed recall score, practice-related 

improvements observed across visits were slight or not present at all, but apparent decreases in 

performance were observed between same day test sessions. For the IR & DR episodic memory tasks 

there is some suggestion of interference at the second session of each visit, that counters practice 

related improvements. The LMM analysis revealed that motivation significantly predicted memory 

performance and so motivational decreases are likely to account for some of the observed decreases 

in performance between these same day sessions, although as discussed above, motivation may be 

confounded with mental fatigue. Word list interference from the previous session is also likely to be 

a major contributing factor here (Greenberg & Underwood, 1950; Underwood, 1957). Indeed, 

analysis of the interference error scores revealed the stable presence of low level interference for 

the IR task, and significant increases in interference across Visits and Sessions for the DR task. 

Performance decreases on the Stroop interference measure are more complex. In fact, overall 

reaction times decreased between sessions, but more so for the congruent trials, resulting in an 

increased interference effect. This is a potentially interesting observation that warrants further 

investigation, particularly as previous research has often, though not always, shown the Stroop 

interference effect to be reduced by practice (Macleod, 1991).Therefore, it is important to interpret 

Stroop interference effect changes with reference to the underlying reaction times. For the digit 

vigilance task, where sustained attention was required for a sustained period on a relatively simple 

task, decreases in performance appear simply to reflect increased fatigue. Interestingly, where 

interference related performance decreases were observed between same day sessions (Stroop, IR, 

DR), Cohen’s d effect sizes increased at all subsequent visits. This appears consistent with the notion 

that practice related improvements had been attenuated and therefore interfering effects now 

demonstrated greater magnitude in the opposing direction. 

The Sternberg task appears relatively robust to practice compared to the other cognitive tasks 

investigated here; an observation shared by previous research (Kristofferson, 1972, 1977; Sternberg, 

1975). Overall, extrapolated RT performance did speed up slightly due to practice, which may be 

explained by faster visual processing, decision making or motor output. However the main DV for 

the task measures how fast participants can scan items in their STM, and the above cited research 

shows this to be a fixed time per item that cannot be changed by practice, reflecting a fundamental 

cognitive process. Despite this, the observational data here suggest some practice related 

improvement between visits 1 & 2 but performance appeared to stabilise after this. Similarly, task 

performance appeared to stabilise after Visit 1 for the RVIP task, although this is likely to reflect the 
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attainment of a ceiling level of performance imposed by task parameters rather than a cognitive 

process. 

For the subjectively reported mood measures, as might reasonably be expected after an extended 

period of cognitive testing, higher ratings of mental fatigue were observed at Session 2 relative to 

Session 1, within visits. However this effect was observed in Experiment 1.1 only, possibly due to the 

longer duration of the cognitive battery in this experiment. A decrease in positive mood was also 

observed at Session 2, this time in both experiments. However it was evident from Experiment 1.2 

that no further decreases in positive mood occurred between Sessions 2 & 3. In general, positive 

affect scores remained just below mid-range. No corresponding increases in negative affect were 

observed, in fact negative affect actually decreased between Sessions 1 & 2 in Experiment 1.2. This 

may reflect a reduction in anxiety initially present when facing the prospect of an extended period of 

cognitive testing. Together, these measures imply no serious negative consequences for participants 

in terms of fatigue, or mood over prolonged periods of repeated testing. 

Times of day effects were limited to serial 3s errors, serial 7s score, and positive affect. With the 

exception of serial 3s errors, performance was generally better in the mornings. However, any 

observed differences were minimal and no longer reached statistical significance following 

corrections for multiple comparisons. This suggests that diurnal effects may have little impact on 

cognition or mood. However, the cognitive findings were based on serial subtraction data only and 

may not generalise to other cognitive domains. Regardless of time of day or cognitive domain, 

alternate-forms reliability analysis revealed acceptable consistency between the different forms of 

each task used at successive time points. 

There are some shortcomings to this study. The effects of practice have not been investigated 

beyond a period of three weeks; the findings are exclusive to the tests examined; and the effects of 

including dual baselines (McCaffrey, Ortega, Orsillo, Nelles, & Haase, 1992), such as those used by 

Scholey et al. (Scholey et al., 2010), have not been investigated.  Dual baseline designs discard the 

first session of data collected on each visit. The findings of Experiment 1.2 support the theory that 

between session practice effects may be attenuated, but not eliminated by this method. The findings 

of the study demonstrate that practice cannot be assumed to have been adequately addressed 

through the use of alternate forms of stimuli or familiarisation trials immediately prior to data 

collection, and suggest that dual baseline designs may be an effective addition to crossover study 

methodology in their ability to attenuate practice effects. But the method is likely to be better suited 
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to short cognitive test batteries, and the optimal length of time between the first and second 

performance of the test battery needs further investigation. 

Contrary to previous findings (Bartels et al., 2010; Falleti et al., 2006) but consistent with theories of 

learning and memory, within a nutrition intervention design framework the effects of practice have 

been observed to persist well past the first two repeat sessions of cognitive testing on the majority 

of tasks investigated here. The only exceptions were the Sternberg memory scanning task and RVIP 

task that appeared to become relatively resistant to practice-related improvements after an initial 

test visit. Practice can interact with a nutrition intervention such that more learning takes place in 

the active condition and then what is learned is retained and causes elevated performance in the 

control condition, masking intervention effects for half the participants in a typical counterbalanced 

crossover design. Conversely, care must be taken to ensure that improvements in performance 

arising from repeated practice of the task when the control condition is performed first are not 

confused with those associated with the intervention. Therefore the use of practice resistant tasks 

or appropriate methodology, as outlined below, for minimising the influence of practice effects is 

paramount. Motivation and fatigue clearly also contribute to cognitive performance, particularly for 

more difficult cognitive tasks. The relationship between motivation, fatigue and practice requires 

further investigation. 

The findings of this experiment are likely to generalise as similar memory, reaction time and 

accuracy components are inherent in all commonly used cognitive tasks. In future intervention 

studies, whether that be nutritional or pharmacological, it is recommended that methodologies take 

practice effects into account; a summary of recommendations is included in the final paragraph. For 

studies which have already reported effects of nutrition interventions, care should be taken when 

retrospectively calculating effect sizes. For example in the absence of an appropriate control 

condition, effect size may be inflated by practice. On the other hand, a study may be underpowered 

as a result of the additional variance introduced by practice (McCaffrey, 2001). In the absence of 

good design and/or replication, effect sizes for nutrition interventions should be accepted with 

caution (Bell et al., 2015). 

3.5.1 Conclusion 

Methodological recommendations emerging from the experiment include the importance of an 

initial familiarisation visit which is on a separate day to subsequent testing. Indeed, further 

investigation is required to determine the impact of the length of time between familiarisation and 

test days. The inclusion of at least one baseline at each visit within a counterbalanced framework 
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including the control, and the use of tasks with a reduced susceptibility to practice such as RVIP and 

Sternberg is also recommended. Alternate forms and familiarisation trials are also recommended at 

each task performance, along with a between participants counterbalanced order of tasks within a 

battery. As these measures will only minimise, not eliminate practice effects, residual practice 

effects should always be taken into account in the design stage when selecting the number of 

participants required to adequately power a crossover intervention study. Additionally practice 

effects may be taken into account in the data analysis stage. For example, using LMM analysis it is 

possible to include testing order as a factor within the analysis model. Parallel designs, with a 

separate control group of participants, may be used to mitigate practice effects, but will add 

between-subjects error variance and increase the number of participants needed. An active 

intervention may also interact with practice, for example through improved strategy selection. 

Therefore it is still recommended to address practice effects in a parallel design if there is a repeated 

testing component, such as with longitudinal designs.  In combination, these measures will aid in 

improving the reliability and validity of repeated cognitive testing in nutritional intervention designs 

and, as such, have been included in the methodology of all blueberry experiments in this thesis. 
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Chapter 4  

Experiment 2: A dose-response study of cognitive and 

blood pressure effects following acute anthocyanin-rich 

blueberry supplementation in healthy young adults 

4.1 Introduction 

In order to fully understand the acute effects of anthocyanin-rich blueberries on human cognition, it 

is critical to determine the most effective doses and their mode of action. Preclinical trials carried 

out in animal models have clearly demonstrated cognitive benefits from berry flavonoids e.g. (Carey, 

Gomes, & Shukitt-hale, 2014; Kumar, Arora, Kuhad, & Chopra, 2012; Rendeiro et al., 2013; Shukitt-

Hale et al., 2015). However, human data is more mixed. Indeed, as shown in Chapter 1, acute studies 

are often not consistent in their choice of flavonoid-rich food type, population, cognitive outcome or 

dose, making direct comparison between studies difficult. 

Some studies have sought to directly link cognitive outcomes following flavonoid-rich intervention 

with concurrently measured physiological changes in order to determine a likely mode of action. 

Francis et al. (2006) observed increased cerebral blood flow (CBF) in healthy females one to two 

hours after acute supplementation with 450mg cocoa flavanol. However, no corresponding 

behavioural improvements were observed using a cognitive switching task paradigm. The study 

tested only four participants, so it may have been lacking the statistical power necessary to observe 

such behavioural effects. A larger, more recent study by Brickman et al. (2014) developed a pattern 

recognition task that demonstrated functional localisation to the dentate gyrus region of the 

hippocampus. After a 3 month period of daily supplementation with 900mg cocoa flavanol, 19 older 

adults showed significant improvements in both task performance and regional BOLD activation 

compared to a control group of 18 participants that consumed a lower daily dose of 10mg cocoa 

flavanol. However, although the study provides strong, domain-specific evidence for a connection 

between increased CBF and cognitive task performance, the study did not investigate acute 

intervention and it is also unclear from the paper whether cognitive performance and CBF were 

measured concurrently.  

The above studies relate only to flavanol-rich cocoa. Dodd (2012) reported an acute effect of 

blueberries on human cognitive performance in young adults in a task measuring executive function 

after administering a freeze-dried blueberry powder containing 631mg anthocyanins. The observed 
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improvement in cognitive performance was also accompanied by a trend towards increased plasma 

BDNF levels. And the same dose of anthocyanin-rich blueberry was also found to increase cerebral 

blood flow to the precentral and middle frontal gyrus in the frontal lobe, and the angular gyrus in the 

parietal lobe, 1 hour post-consumption, when compared to a control. The study provides evidence 

that anthocyanin-rich blueberries are associated with acute changes in cognition and CBF, although 

again these were not observed concurrently. The study also suggests that acute supplementation 

may result in chemical changes in the brain normally associated with longer term supplementation. 

A similar acute intervention study (Watson et al., 2015) observed  cognitive improvements following 

acute blackcurrant supplementation that were accompanied by significant inhibition of monoamine 

oxidase (MAO) activity and sustained elevation of plasma glucose levels. 

It is likely, then, that increases in cognitive performance after acute supplementation with 

blueberries are, at least in part, due to cerebral blood flow increases, although this has only been 

demonstrated indirectly, but other mechanisms including BDNF synthesis, MAO inhibition and blood 

glucose regulation may play a role. However, the limited aforementioned evidence demonstrates 

that it is difficult to directly match behavioural effects with physiological changes such as increases in 

cerebral blood flow; these measures often involve expensive, complex or lengthy procedures that 

cannot be easily combined with cognitive testing at the same time points, or for a large sample of 

participants.  

With regard to the effects of dose, as identified in Chapter 1, few studies have investigated the 

impact of dose on cognition and those that do typically investigate only two or three doses e.g. 

(Kennedy et al., 2000; Pase et al., 2013; Scholey et al., 2010; Whyte et al., 2016; Wightman et al., 

2012). The majority of these studies investigated cocoa and ginkgo biloba effects. The cognitive 

effects of dose are therefore yet to be fully elucidated, particularly following anthocyanin-rich berry 

intervention. However, dose-dependent vascular effects following acute blueberry supplementation 

have been observed; Rodriguez-Mateos et al (2013) measured changes in flow mediated dilation 

(FMD) of the brachial artery over time and in response to five doses of blueberry and a control. FMD 

measures the level of naturally occurring dilation by an artery in response to shear stress, and is a 

measure of cardiovascular health. Maximum increases in FMD were observed 1-2 hours after 

ingestion. Significant dose-dependent increases in FMD response were observed across doses 

ranging from 319-766mg of total polyphenols (129-310mg anthocyanins). Peak FMD response was 

observed following a polyphenol dose of 766mg (310mg anthocyanins). At higher doses, up to 

1791mg total polyphenols (724mg anthocyanins) the FMD response was observed to plateaux. FMD 

and CBF responses are likely to be synonymous as evidenced by a correlation found between FMD 
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and coronary blood flow (Teragawa et al., 2005), and a correlation found between FMD and BOLD 

response for a working memory task (Gonzales et al., 2010). As reported in Chapter 1, the timings of 

observed FMD, CBF and cognitive effects following acute supplementation with flavonoid-rich foods 

appear similar. Timings, of course, vary according to the flavonoid subclasses present in the food 

source; however following anthocyanin-rich berry interventions FMD, CBF and cognitive effects have 

each been independently observed around 1-2 hours postprandially. As FMD effects have been 

shown to be dose-dependent (Rodriguez-Mateos et al., 2013), beneficial cognitive effects may also 

be dose-related. 

The current experiment aimed to determine a dose-response for the cognitive effects of blueberry 

flavonoids, using doses matched exactly to those used by Rodriguez-Mateos et al. (2013) for which 

vascular changes have already been documented. In this way, it was hoped to link dose-related 

cognitive effects with known dose-related vascular effects whilst avoiding the inherent difficulty of 

measuring the two concurrently. Blood pressure measurements were included in the design as an 

alternative indicator of vasoreactivity. As described in Chapter 1, a lowering of blood pressure has 

been observed following both acute and chronic flavonoid supplementation, likely due to their 

vasodilatory properties. Blood pressure measurements and cognitive testing were performed pre- 

and 1 hour post-intervention in order to coincide with the maximum increases in FMD observed by 

Rodriguez-Mateos et al. (2013). The tasks incorporated into this study were those previously 

identified in the literature review as sensitive to flavonoid-rich intervention, and that were 

subsequently investigated for practice effects in the previous chapter. The methodology used here 

reflected the findings of that study, in order to comply with EFSA guidelines on addressing practice 

effects in studies utilising repeated cognitive testing. 

4.2 Methods 

Methodological detail common to all experiments in this thesis can be found in Chapter 2. 

Methodology specific to this intervention study is reported here. 

4.2.1 Participants 

The participants were 45 healthy adults, aged 18-36 years (M 20.87, SD 3.63 years). All participants 

were screened according to criteria outlined in Chapter 2. 



 

81 
 

4.2.2 Design 

A double-blind crossover intervention study design was used. Independent variables were blueberry 

dose (6 levels; 5 doses and a matched control) and test session (2 levels; pre- and 1 hour post-

intervention). All testing took place in the morning. Participants attended a total of 7 regularly 

spaced visits. The mean number of days between visits was 7, but ranged from a minimum of 3 days 

to a maximum of 14 days where occasional rescheduling was required to compensate for missed 

appointments.  In order to minimise the impact of practice on cognitive task performance, in 

accordance with the findings of Chapter 3, the first visit was treated as a familiarisation visit. 

Cognitive and physiological data collected during this visit were not included in subsequent analyses. 

Participants were not made aware of this and followed the same procedure as for all other visits, 

with the exception that participants were permitted as much practice as they required in order to 

feel comfortable with the cognitive tasks. The cognitive battery lasted 40 minutes. The different 

blueberry doses were administered in drink form. The drink consumed at the familiarisation visit was 

identical to the control. At subsequent visits, the control and all blueberry doses were administered 

in counterbalanced order, determined using Williams matrices (Williams, 1949).  

4.2.3 Procedure 

At each visit participants arrived 2 hours fasted having previously followed the prescribed 24 hour 

low polyphenol diet (Chapter 2). They completed a pre-intervention battery of cognitive tasks and 

blood pressure measurements. Participants then consumed a blueberry or control drink. Participants 

were required to finish the drink within a ten minute time period (Rodriguez-Mateos et al., 2013), 

after which they were asked to remain in the lab waiting room. During this time participants 

completed a 24 hour retrospective food diary to check for compliance with the low polyphenol diet. 

A post-drink palatability questionnaire was also completed to determine opinions on the drinks and 

to establish whether participants were remaining blind to the intervention. Participants resumed 

testing, repeating the cognitive task battery and blood pressure measurements, at the post-

intervention time point of 1 hour. A return appointment was then booked for the following week, at 

the same start time. Participants were asked to eat the same breakfast prior to fasting before each 

attendance. 

4.2.4 Blueberry intervention drinks 

The blueberry doses were aligned with those used in the previous vascular study (Rodriguez-Mateos 

et al., 2013). In the vascular study the drinks were not matched for sugars or vitamin C. In the 

current study they were matched to the highest dose on these constituents to avoid potential 
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confounding effects on cognition. As the same source/batch of freeze-dried wild blueberry powder 

was used for both studies, the compositional analysis of the drinks was taken from the previous 

study and is shown in Table 4.1. The drinks were prepared immediately prior to consumption by 

adding the appropriate amounts of freeze-dried blueberry powder, sugars and vitamin C to 500ml of 

water. These were mixed until smooth using opaque coloured protein shaker cups commonly used 

in sports nutrition. Participants consumed the drinks through a black straw, before completing a 

palatability questionnaire. 

Table 4.1. Compositional analysis of the control and blueberry drinks in Experiment 2 

   

  Freeze-dried wild blueberry powder (g) 

Composition Control 14 28 34 57 80 

Anthocyanins (mg) 0 129 258 310 517 724 

Procyanidins (mg) 0 57 114 137 228 320 

Total polyphenols (mg) 0 319 639 766 1278 1791 

Vitamin C (mg) 9.5 9.5 9.5 9.5 9.5 9.5 

Fructose (g) 21 21 21 21 21 21 

Glucose (g) 19 19 19 19 19 19 

 

4.2.5 Cognitive & subjective measures 

Full details of the selected cognitive tasks are given in Chapter 2. The order of the tasks was: 

immediate word recall (IR);  Stroop task, Sternberg memory scanning task, and serial 3s & 7s 

subtraction tasks, in between-subjects counterbalanced order; delayed word recall (DR); PANAS Now 

mood questionnaire. 

4.2.6 Physiological measures 

Blood pressure and resting heart rate were measured after all cognitive tasks had been completed. 

Participants had therefore been seated for a minimum of 30 minutes prior to the measurements. 

Equipment details and measuring procedure are reported in Chapter 2. 

4.3 Data analysis 

Data collected during Visit 1 were discarded prior to analysis and any outliers were removed from 

the remaining data for Visits 2-7 according to criteria previously described in Chapter 2. 
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4.3.1 Linear mixed models 

All cognitive and mood data were analysed by LMM using an unstructured covariance matrix to 

model successive repeat measurements. Visit, Session, Dose, and Session x Dose interaction were 

included as fixed factors in the model. The factor Visit was included in the LMM model for each 

dependent variable in order to identify and account for the presence of any order effects. Subjects 

were included as random effects (Model 2.1). The analysis aim was to determine whether blueberry 

dose was a significant predictor of cognition or mood performance. However, for the analysis of the 

interference errors DV for the immediate and delayed recall tasks, the random effects component 

was removed from the LMM procedure (Model 2.2). This modification was necessary in order to 

counter the large number of zero scores present in the data set. Some participants showed no 

variation at all in their scores, causing an error in the modelling of the covariance matrix when 

including random effects (West et al., 2015). Pairwise comparisons were used to investigate 

significant effects and all interactions (see Chapter 2 for rationale). A Bonferroni correction was 

applied to all multiple comparisons. 

Blood pressure measurements were analysed using the same model as above (Model 2.1). The 

analysis aim was to determine whether blueberry dose had a mediating effect on postprandial blood 

pressure and heart rate. Palatability ratings for the intervention drinks were analysed by LMM using 

an unstructured covariance matrix to model successive ratings. Dose was the only fixed factor in the 

model (Model 2.3). The analysis aim was to determine whether the intervention drinks were 

adequately matched for flavour across a number of different taste dimensions. 

4.3.2 Cohen’s d effect sizes 

Cohen’s d effect sizes (see Chapter 2 for calculation method) were determined where pairwise 

comparisons revealed significant changes from baseline at 1 hour postprandially following blueberry 

intervention, but not following the control intervention (or vice versa). 

4.4 Results 

Raw data for all measured variables can be found in the supplementary data accompanying this 

thesis. Means and standard deviations for all recorded variables are tabulated under the relevant 

sections of the chapter. Tabulated LMM results can be found in Appendix L. For clarity, only 

significant F-statistics are reported in full in the text. 
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4.4.1 Cognitive analysis 

4.4.1.1 Order effects and baseline differences 

For the episodic memory tasks, Visit was a significant predictor of delayed recall score 

[F(5,219.14)=2.98, p=0.013] and a trend was evident for immediate recall score [F(5,219.21)=1.88, 

p=0.098]. Pairwise comparisons revealed a significant improvement in delayed recall score between 

Visit 2 (M 5.91, SE 0.43) and Visit 7 (M 6.93, SE 0.44) [p=0.006]. Slight improvements in immediate 

recall score were found not to be statistically significant [p>0.1]. 

For the serial subtraction tasks, Visit was a significant predictor of 3s score [F(5,219.20)=80.02, 

p<0.001], 3s RT [F(5,218.15)=109.92, p<0.001], 7s score [F(5,218.11)=27.62, p<0.001], and 7s RT 

[F(5,192.26)=20.45, p<0.001]. Pairwise comparisons revealed a significant increase in 3s score 

between Visit 2 (M 38.74, SE 2.74) and Visit 7 (M 55.90, SE 2.74) [p<0.001]. Significant 3s score 

improvements were maintained between consecutive Visits 2 & 3, 4 & 5, and 5 & 6 [p<0.05]. 

Similarly, for 3s RT, a significant improvement was observed between Visit 2 (M 2878.72, SE 102.52) 

and Visit 7 (M 2050.25, SE 102.77) [p<0.001]. Significant improvements were observed between all 

consecutive, intermediate test visits up to Visit 6 [p<0.05].  Pairwise comparisons for 7s score 

revealed a significant increase between Visit 2 (M 21.97, SE 1.70) and Visit 7 (M 29.78, SE 1.71) 

[p<0.001]. However, consecutive improvements were observed between Visits 6 & 7 only [p=0.002]. 

For 7s RT, a significant improvement was again observed between Visit 2 (M 5226.32, SE 245.47) and 

Visit 7 (M 4164.13, SE 246.60) [p<0.001]. Marginally significant gains were observed between Visits 2 

& 3 [p=0.065], however no further significant gains were observed between later consecutive test 

visits. 

For the Sternberg task, Visit was a significant predictor of accuracy [F(5,206.40)=5.67, p<0.001], 

scanning rate [F(5,219.80)=7.69, p<0.001], and extrapolated RT [F(5,219.23)=3.79, p=0.003]. Again, 

significant differences were apparent between Visit 2 and Visit 7 for all DVs. Specifically, Sternberg 

accuracy decreased between Visit 2 (M 90.68, SE 0.82) and Visit 7 (M 88.36, SE 0.83) [p<0.001], 

although significant decreases were not evident between consecutive intermediate visits. Sternberg 

scanning rate improved between the Visit 2 (M 33.25, SE 2.05) and Visit 7 (M 23.80, SE 2.08) 

[p<0.001], however significant gains were only evident between consecutive Visits 2 & 3 [p=0.003]. 

Sternberg RT improved between Visit 2 (M 574.93, SE 17.30) and Visit 7 (M 541.39, SE 17.39) 

[p=0.026], although significant improvements were not evident between consecutive, intermediate 

visits. 
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Finally, for the Stroop task, Visit predicted interference effect [F(5,219.28)=4.24, p=0.001] and a 

trend was evident for incongruent RT [F(5,218.94)=1.97, p=0.083]. Pairwise comparisons revealed a 

decrease in interference effect between Visit 2 (M 60.34, SE 4.68) and Visit 7 (M 42.03, SE 4.73) 

[p=0.007], however significant improvements were not evident between consecutive, intermediate 

visits. Marginally significant improvements in incongruent RT were observed between Visit 2 (M 

716.61, SE 13.54) and Visit 7 (M 694.93, SE 13.60) [p=0.055] but again significant improvements 

were not evident between consecutive, intermediate visits. 

Order effects, therefore, remained apparent for the majority of cognitive tasks. However, although 

significant differences were evident between measurements recorded at the beginning and end of 

the experiment, there were few significant differences between consecutive, intermediate test 

visits. This suggests that the methodological measures identified in Chapter 3 were moderately 

successful at minimising order effects. Following the counterbalancing of the order in which all doses 

were presented to participants, pairwise comparisons revealed no significant baseline differences 

for any of the cognitive tasks, under any of the individual dose conditions [p>0.1]. 

4.4.1.2 Immediate & delayed recall 

Tabulated means for the immediate and delayed recall tasks can be found in Table 4.2. 

For the immediate recall task, Session was a significant predictor of score F(1,264.00)=30.95, 

p<0.001] and interference errors F(1,264.01)=11.24, p=0.001]. Pairwise comparisons revealed a 

significant decrease in score between baseline and 1 hour [p<0.001], accompanied by an increase in 

interference errors [p=0.001]. Similarly, for the delayed recall task, Session was a significant 

predictor of score F(1,264.00)=100.36, p<0.001] and interference errors F(1,263.06)=58.79, 

p<0.001]. Again pairwise comparisons revealed a significant decrease in score between baseline and 

1 hour [p<0.001], accompanied by an increase in interference errors [p<0.001]. 
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Table 4.2 Episodic memory data for Experiment 2 (n=45) 

             Test session 

Recall 

 

Dose 

 

Baseline 

 

1 hr 

variable 

 

  

 

Mean SD 

 

Mean SD 

IR score 
(correct/15) 

 

0mg 

 

9.31 2.70 

 

8.16 2.72 

 

129mg 

 

9.02 2.97 

 

8.48 3.41 

  

258mg 

 

9.28 2.69 

 

7.86 2.90 

  

310mg 

 

9.02 2.72 

 

8.29 3.25 

  

517mg 

 

8.82 2.60 

 

8.34 3.07 

  

724mg 

 

9.12 2.32 

 

8.63 2.92 

         IR interference 
errors 

 

0mg 

 

0.02 0.15 

 

0.04 0.21 

 

129mg 

 

0.00 0.00 

 

0.07 0.33 

  

258mg 

 

0.00 0.00 

 

0.05 0.21 

  

310mg 

 

0.00 0.00 

 

0.09 0.36 

  

517mg 

 

0.00 0.00 

 

0.05 0.21 

  

724mg 

 

0.00 0.00 

 

0.07 0.26 

         DR score 
(correct/15) 

 

0mg 

 

7.38 2.76 

 

5.62 3.26 

 

129mg 

 

7.34 3.37 

 

6.00 3.65 

  

258mg 

 

7.56 3.45 

 

5.40 3.30 

  

310mg 

 

6.87 2.87 

 

5.40 3.34 

  

517mg 

 

6.86 2.83 

 

6.00 3.72 

  

724mg 

 

7.07 3.01 

 

5.67 3.16 

         DR interference 
errors 

 

0mg 

 

0.02 0.15 

 

0.60 1.07 

 

129mg 

 

0.00 0.00 

 

0.53 1.32 

  

258mg 

 

0.02 0.15 

 

0.37 0.87 

  

310mg 

 

0.00 0.00 

 

0.44 0.92 

  

517mg 

 

0.00 0.00 

 

0.27 0.66 

  

724mg 

 

0.00 0.00 

 

0.70 1.26 
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Neither Dose, nor Session x Dose interaction were found to be significant factors in predicting any of 

the recall DVs. However, more detailed interpretation of pairwise comparisons for the interaction 

revealed a significant decline in immediate recall score between baseline and 1 hour for the control 

[p=0.001], 258mg [p<0.001] and 310mg [p=0.037] doses, but not for the 129mg [p=0.124], 517mg 

[p=0.178], and 724mg [p=0.173] doses. This interaction is shown in Figure 4.1. Immediate recall 

interference errors increased between baseline and 1 hour for the 310mg dose only [0.031], 

although a non-significant trend was observed for the 724mg dose [p=0.098]. For delayed recall 

score and delayed recall interference, pairwise comparisons for the interaction simply revealed a 

significant decrease in performance over time regardless of dose [p<0.1]. 

 

Figure 4.1 The interaction between session and dose for immediate recall score 

Values are estimated marginal means. Error bars represent standard error of the mean. Difference from 
baseline is indicated above the column, ** (p<0.01), * (p<0.05), † (p<0.1). 
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Table 4.3 Serial 3s data for Experiment 2 (n=45) 

             Test session 

Serial 3s 

 

Dose 

 

Baseline 

 

1 hr 

variable 

 

  

 

Mean SD 

 

Mean SD 

Score 
(correct in 2 mins) 

 

0mg 

 

47.20 19.93 

 

49.29 23.07 

 

129mg 

 

47.45 20.54 

 

49.93 19.63 

  

258mg 

 

46.79 16.91 

 

49.60 19.07 

  

310mg 

 

49.13 22.02 

 

51.27 23.97 

  

517mg 

 

47.32 17.93 

 

48.98 20.75 

  

724mg 

 

46.58 18.29 

 

50.12 19.15 

         Errors 
(incorrect in 2 mins) 

 

0mg 

 

2.09 1.71 

 

2.44 1.84 

 

129mg 

 

1.82 2.22 

 

2.02 2.18 

  

258mg 

 

1.93 2.44 

 

2.07 1.88 

  

310mg 

 

1.96 1.94 

 

2.50 2.10 

  

517mg 

 

2.14 2.58 

 

2.16 2.43 

  

724mg 

 

1.62 1.89 

 

1.95 1.80 

         RT (ms) 

 

0mg 

 

2464.88 848.23 

 

2330.63 779.69 

  

129mg 

 

2489.71 867.89 

 

2323.42 748.16 

  

258mg 

 

2402.68 702.03 

 

2292.59 715.97 

  

310mg 

 

2443.99 929.38 

 

2277.70 851.01 

  

517mg 

 

2406.99 691.37 

 

2316.97 715.66 

  

724mg 

 

2390.97 694.71 

 

2252.78 666.62 
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Table 4.4 Serial 7s data for Experiment 2 (n=45) 

             Test session 

Serial 7s 

 

Dose 

 

Baseline 

 

1 hr 

variable 

 

  

 

Mean SD 

 

Mean SD 

Score 
(correct in 2 mins) 

 

0mg 

 

25.62 11.64 

 

26.24 12.71 

 

129mg 

 

25.61 12.77 

 

25.65 11.01 

  

258mg 

 

24.91 10.89 

 

25.56 12.06 

  

310mg 

 

24.82 13.11 

 

25.20 10.97 

  

517mg 

 

25.50 11.67 

 

27.23 12.95 

  

724mg 

 

24.30 11.91 

 

27.14 12.55 

         Errors 
(incorrect in 2 mins) 

 

0mg 

 

2.13 1.82 

 

2.02 1.63 

 

129mg 

 

1.89 1.69 

 

1.86 1.64 

  

258mg 

 

1.95 1.94 

 

2.56 1.68 

  

310mg 

 

2.27 1.71 

 

2.23 1.51 

  

517mg 

 

1.98 1.77 

 

2.20 1.72 

  

724mg 

 

2.05 1.83 

 

2.37 2.32 

         RT (ms) 

 

0mg 

 

4641.95 1595.72 

 

4583.39 1770.62 

  

129mg 

 

4660.56 1652.82 

 

4437.11 1511.59 

  

258mg 

 

4514.64 1445.50 

 

4527.53 1624.32 

  

310mg 

 

4828.93 2035.04 

 

4480.39 1561.91 

  

517mg 

 

4713.68 1558.86 

 

4325.14 1552.65 

  

724mg 

 

4791.82 1787.96 

 

4427.62 1941.27 

                  

 

For the serial subtraction tasks, Session was a significant predictor of 3s score [F(1,263.94)=22.98, 

p<0.001], 3s RT [F(1,261.91)=63.60, p<0.001], 7s score [F(1,261.55)=16.52, p<0.001], and 7s RT 

[F(1,237.18)=14.59, p<0.001].  A non-significant trend was observed for serial 3s errors 

[F(1,254.27)=3.37, p=0.067]. All scores and RTs significantly improved between baseline and 1 hour 

[p<0.001]. Serial 3s errors increased between baseline and 1 hour [p=0.067]. Neither Dose, nor 

Session x Dose interaction were found to be significant factors in predicting any of the serial 

subtraction variables. For serial 3s score and RT, pairwise comparisons for the interaction simply 

revealed a significant improvement in performance over time regardless of dose [p<0.1]. The only 

exception was for 3s score following the 517mg dose where no significant change was observed 
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[p=0.194]. No significant changes were observed for 3s errors. However, significant improvements in 

serial 7s score and RT were apparent between baseline and 1 hour following the two highest 

blueberry doses (517mg & 724mg) only [p<0.05] with a non-significant trend for 7s RT following the 

310mg dose [p=0.091]. No significant improvements were observed following the control or any of 

the lower doses [p>0.10]. These interactions are shown in Figure 4.2 and Figure 4.3. For serial 7s 

errors there was a non-significant trend towards increased errors following the 258mg dose only 

[p=0.065]. 

 

 

Figure 4.2 The interaction between test session and dose for serial 7s scores 

Values are estimated marginal means. Error bars represent standard error of the mean. Difference from 
baseline is indicated above the column, ** (p<0.01), * (p<0.05), † (p<0.1). 
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Figure 4.3 The interaction between test session and dose for serial 7s RT 

Values are estimated marginal means. Error bars represent standard error of the mean. Difference from 
baseline is indicated above the column, ** (p<0.01), * (p<0.05), † (p<0.1). 

 
 

4.4.1.4 Sternberg task 

Tabulated means for the Sternberg task can be found in Table 4.5. 

For the Sternberg task, Session was a significant predictor of extrapolated RT only F(1,264.00)=17.37, 

p<0.001], with faster RTs observed at 1 hour compared with baseline. Neither Dose, nor Session x 

Dose interaction were predictive of any of the Sternberg variables. Pairwise comparisons for the 

interaction revealed a significant decrease in extrapolated RT for the control [p=0.035], 258mg 

[p=0.051], 310mg [p=0.010], and 724mg [p=0.013] doses, but not for the 129mg or 517mg doses 

[p>0.1].  

 

  

3,500 

3,750 

4,000 

4,250 

4,500 

4,750 

5,000 

5,250 

5,500 

Baseline 1 hour 

Se
ri

al
 7

s 
R

T 
(m

s)
 

Test session 

control 129mg 258mg 310mg 517mg 724mg 

** * 
† 
 



 

92 
 

 

Table 4.5 Sternberg data for Experiment 2 (n=45) 

             Test session 

Sternberg 

 

Dose 

 

Baseline 

 

1 hr 

variable 

 

  

 

Mean SD 

 

Mean SD 

Accuracy 
(correct/96) 

 

0mg 

 

89.31 7.32 

 

90.37 5.13 

 

129mg 

 

89.72 5.01 

 

89.02 5.12 

  

258mg 

 

89.36 6.34 

 

90.15 4.27 

  

310mg 

 

89.50 5.59 

 

89.42 5.11 

  

517mg 

 

90.63 4.96 

 

90.40 3.04 

  

724mg 

 

90.05 4.83 

 

90.12 5.04 

         Scanning rate 
(ms/item) 

 

0mg 

 

27.26 20.89 

 

24.83 18.10 

 

129mg 

 

27.11 13.91 

 

25.48 14.62 

  

258mg 

 

29.44 16.53 

 

28.80 17.73 

  

310mg 

 

23.41 14.17 

 

24.50 16.08 

  

517mg 

 

28.96 15.52 

 

25.22 18.99 

  

724mg 

 

28.16 14.40 

 

26.90 17.55 

         Extrapolated RT (ms) 

 

0mg 

 

574.13 140.45 

 

550.17 129.78 

  

129mg 

 

551.15 126.87 

 

542.37 119.34 

  

258mg 

 

558.30 107.50 

 

535.69 114.17 

  

310mg 

 

576.62 134.04 

 

547.38 133.67 

  

517mg 

 

562.18 127.80 

 

558.98 122.43 

  

724mg 

 

564.06 118.56 

 

535.20 116.71 

                  

 

4.4.1.5 Stroop task 

Tabulated means for the Stroop task can be found in Table 4.6. 
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Table 4.6 Stroop data for Experiment 2 (n=45) 

             Test session 

Stroop 

 

Dose 

 

Baseline 

 

1 hr 

variable 

 

  

 

Mean SD 

 

Mean SD 

Accuracy 
(correct/96) 

 

0mg 

 

91.75 2.89 

 

91.91 3.06 

 

129mg 

 

91.82 2.90 

 

91.77 3.20 

  

258mg 

 

91.39 3.71 

 

91.84 2.75 

  

310mg 

 

91.57 2.85 

 

90.96 3.54 

  

517mg 

 

91.89 2.91 

 

91.63 3.53 

  

724mg 

 

92.07 2.98 

 

92.02 2.64 

         Incongruent RT (ms) 

 

0mg 

 

719.67 97.68 

 

701.96 95.28 

  

129mg 

 

705.95 98.63 

 

695.75 94.23 

  

258mg 

 

708.38 95.58 

 

692.47 93.00 

  

310mg 

 

719.17 102.27 

 

702.26 103.12 

  

517mg 

 

708.43 86.58 

 

692.83 86.27 

  

724mg 

 

691.89 88.15 

 

685.34 89.56 

         Congruent RT (ms) 

 

0mg 

 

667.61 100.22 

 

648.51 105.60 

  

129mg 

 

651.65 94.87 

 

646.12 93.67 

  

258mg 

 

662.90 100.78 

 

647.49 94.29 

  

310mg 

 

667.15 103.65 

 

649.02 100.77 

  

517mg 

 

646.58 85.72 

 

635.79 88.16 

  

724mg 

 

645.51 78.03 

 

631.19 83.92 

         Interference effect 
(ms) 

 

0mg 

 

52.06 35.22 

 

53.45 31.60 

 

129mg 

 

54.31 37.69 

 

49.63 35.58 

  

258mg 

 

45.49 38.71 

 

44.98 39.33 

  

310mg 

 

52.02 42.48 

 

53.25 43.10 

  

517mg 

 

61.85 44.64 

 

52.98 39.55 

  

724mg 

 

46.37 29.94 

 

51.45 30.27 

                  

 

Session was a significant predictor of both congruent RT [F(1,264.00)=21.99, p<0.001] and 

incongruent RT [F(1,264.00)=19.54, p<0.001], but not of accuracy or interference effect [p>0.1]. RTs 

were faster at 1 hour compared with baseline [p<0.001]. Dose was a marginally significant predictor 
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of congruent RT [F(5,218.71)=2.12, p=0.064]; RTs for the 724mg condition were faster than for all 

other conditions, however statistical significance was not maintained following pairwise comparison. 

No other significant Dose or Dose x Session interactions were evident from the model. However, 

pairwise comparisons for the interaction revealed significant improvements in congruent RT 

between baseline and 1 hour following the control [p=0.008], 258mg [p=0.038], 310mg [p=0.012], 

and 724mg [p=0.052] doses, but not following the 129mg or 517mg doses [p>0.1]. Significant 

improvements in incongruent RT were observed between baseline and 1 hour for the control 

[p=0.020], 258mg [p=0.041], 310mg [0.026], and 517mg [p=0.043] doses, but not for the 129mg or 

724mg doses [p>0.1].  

4.4.2 Mood analysis 

Tabulated means for the self-reported mood measures can be found in Table 4.7 

Visit was found to be a significant predictor of mental fatigue only [F(5,219.63)=3.40, p=0.006]. 

Pairwise comparisons revealed a significant decrease in ratings of mental fatigue between Visit 2 (M 

5.12, SE 0.26) and Visit 7 (M 4.20, SE 0.26) [p=0.023]. Significant decreases between consecutive, 

intermediate visits were observed between Visits 2 & 3 only [p=0.006]. These findings suggest that 

participants found the tasks particularly mentally challenging at the beginning of the experiment, but 

quickly became more comfortable with the level of cognitive testing. No similar order effects were 

apparent for measures of affect [p>0.1]. Pairwise comparisons indicated no significant baseline 

differences for any of the counterbalanced dose conditions, for any of the mood measures [p>0.1]. 

Session was found to be a significant predictor of mental fatigue [F(1,264.00)=10.51, p=0.001] and 

negative affect [F(1,259.58)=4.55, p=0.034], and approached significance for positive affect 

[F(1,264.00)=3.37, p=0.067]. Mental fatigue decreased between baseline and 1 hour, positive affect 

increased, and negative affect decreased. These Session effects are most likely attributable to the 

consumption of a sugary drink, irrespective of dose condition.  
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Table 4.7 Mood data for Experiment 2 (n=45) 

             Test session 

Mood 

 

Dose 

 

Baseline 

 

1 hr 

variable 

 

  

 

Mean SD 

 

Mean SD 

Mental fatigue 
(rating/9) 

 

0mg 

 

4.53 2.14 

 

4.09 2.00 

 

129mg 

 

4.32 1.96 

 

4.41 1.98 

  

258mg 

 

4.84 2.00 

 

4.21 2.17 

  

310mg 

 

4.91 2.11 

 

4.18 1.72 

  

517mg 

 

4.48 2.10 

 

3.89 1.85 

  

724mg 

 

4.42 2.33 

 

4.28 2.35 

         Positive affect 
(score/50) 

 

0mg 

 

21.29 8.70 

 

21.38 8.86 

 

129mg 

 

21.68 7.91 

 

22.57 8.21 

  

258mg 

 

20.33 7.25 

 

22.00 7.76 

  

310mg 

 

20.76 7.44 

 

22.16 7.91 

  

517mg 

 

21.20 8.14 

 

22.30 7.83 

  

724mg 

 

22.26 7.74 

 

21.72 8.73 

         Negative affect 
(score/50) 

 

0mg 

 

13.42 4.14 

 

13.11 4.25 

 

129mg 

 

13.00 3.59 

 

13.05 3.95 

  

258mg 

 

13.17 3.51 

 

12.79 4.28 

  

310mg 

 

13.27 4.30 

 

12.16 2.96 

  

517mg 

 

12.95 3.46 

 

13.00 3.95 

  

724mg 

 

12.98 3.69 

 

12.57 3.12 

                  

 

Dose and Session x Dose interaction were not significant for any of the mood measures [p>0.1]. 

However, more detailed interpretation of pairwise comparisons for the Session x Dose interaction 

revealed a significant reduction in mental fatigue between baseline and 1 hour following the 258mg 

[p=0.045] and 310mg [p=0.017] doses, and non-significant trend following the 517mg dose 

[p=0.056]. No significant changes were observed for the control, 129mg or 724 mg conditions 

[p>0.1]. A significant decrease in negative affect was observed following the 310mg dose only 

[p=0.013]. These interactions are shown in Figure 4.4 and Figure 4.5. 
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Figure 4.4 The interaction between session and dose for ratings of mental fatigue 

Values are estimated marginal means. Error bars represent standard error of the mean. Difference from 
baseline is indicated above the column, ** (p<0.01), * (p<0.05), † (p<0.1). 
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Figure 4.5 The interaction between session and dose for ratings of negative affect 

Values are estimated marginal means. Error bars represent standard error of the mean. Difference from 
baseline is indicated above the column, ** (p<0.01), * (p<0.05), † (p<0.1). 

 
 

4.4.3 Blood pressure analysis 

Tabulated means for all blood pressure data can be found in Table 4.8. 

Unexpectedly, Visit was found to be a significant factor in predicting both systolic (SBP) 

[F(5,219.10)=2.80, p=0.018] and diastolic (DBP) blood pressure [F(5,217.05)=3.90, p=0.002]. Pairwise 

comparisons revealed a significant increase in SBP between Visit 3 (M 102.79, SE 1.59) and Visit 7 (M 

105.15, SE 1.59) [p=0.028]. Similarly, DBP increased significantly at Visit 7 (M 69.80, SE 0.82) when 

compared with both Visit 2 (M 67.98, SE 0.81) [p=0.043] and Visit 3 (M 67.67, SE 0.81) [p=0.007]. 

This gradual increase in blood pressure observed over the duration of the experiment remains 

unexplained. No similar changes in heart rate were evident. However, the impact of this order effect 

was minimal due to the counterbalancing of the doses; no baseline differences in blood pressure or 

heart rate were evident between any of the dose conditions [p>0.1]. 
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Table 4.8 Blood pressure data for Experiment 2 (n=45) 

             Test session 

Blood pressure 

 

Dose 

 

Baseline 

 

1 hr 

Variable 

 

  

 

Mean SD 

 

Mean SD 

Systolic BP (mmHg) 

 

0mg 

 

102.62 11.35 

 

105.73 12.16 

  

129mg 

 

101.18 9.79 

 

104.20 11.58 

  

258mg 

 

102.65 10.77 

 

105.93 11.14 

  

310mg 

 

101.69 10.24 

 

105.51 11.63 

  

517mg 

 

101.89 11.80 

 

105.34 11.93 

  

724mg 

 

101.16 10.60 

 

104.79 10.86 

         Diastolic BP (mmHg) 

 

0mg 

 

67.93 5.41 

 

69.70 5.22 

  

129mg 

 

67.34 5.22 

 

69.57 6.91 

  

258mg 

 

66.62 4.83 

 

69.14 5.18 

  

310mg 

 

67.47 6.32 

 

69.93 5.80 

  

517mg 

 

66.59 5.22 

 

69.09 5.23 

  

724mg 

 

67.77 6.16 

 

69.62 5.14 

         Heart rate (bpm) 

 

0mg 

 

72.00 7.20 

 

68.73 8.30 

  

129mg 

 

71.91 9.60 

 

70.45 8.64 

  

258mg 

 

72.26 10.24 

 

69.63 8.86 

  

310mg 

 

71.04 8.84 

 

69.58 9.60 

  

517mg 

 

72.59 9.92 

 

71.98 9.88 

  

724mg 

 

72.70 11.27 

 

71.28 8.92 

                  

 

Session was observed to be a significant predictor of SBP [F(1,264.00)=153.18, p<0.001], DBP 

[F(1,259.02)=107.86, p<0.001] and heart rate [F(1,263.40)=28.60, p<0.001]. Both SBP and DBP 

increased significantly after consuming the intervention drinks, whereas heart rate decreased. 

Although Dose and Session x Dose interaction were not significant for any of the physiological 

measures [p>0.1]; more detailed investigation of pairwise comparisons for the interaction revealed 

that significant postprandial reductions in heart rate were observed following the control and lower 

doses, however these were attenuated in the higher dose conditions. Specifically, a significant 
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difference between baseline and 1 hour was observed following the control [p<0.001] and 258mg 

dose [p=0.002] but not following the 517mg dose [p=0.465]. Non-significant trends were observed 

following the 129mg, 310mg, and 724mg doses, [p=0.084], [p=0.078], and [p=0.096] respectively. At 

the 1 hour test session heart rate was significantly lower in the control condition compared with the 

517mg condition [p=0.021], indeed this was the only between-condition effect observed during this 

experiment. All other reported effects were within-condition only. This dose dependent interaction 

is shown in Figure 4.6. 

 

Figure 4.6 The interaction between test session and dose for measurements of heart rate 

Values are estimated marginal means. Error bars represent standard error of the mean. Difference from 
baseline is indicated above the column, difference between conditions is indicated by a horizontal bar, ** 
(p<0.01), * (p<0.05), † (p<0.1). 
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724mg [p<0.001] doses. The 310mg dose was also rated most ‘pleasant’ and most ‘satisfying’; 

significantly more so than the 724mg dose, [p<0.001] and [p=0.001] respectively. The 724mg dose 

was rated more ‘sour’ than the control [p=0.082], 129mg [p=0.001], 258mg [p=0.011], and 310mg 

[p=0.009] doses. The 724mg was also rated the least ‘easy’ to drink and was similarly rated worst in 

terms of how much more participants felt they could consume. The control drink was rated most 

‘bland’; approaching significance when compared with the 129mg [p=0.060] and 517mg [p=0.059] 

doses. Therefore, although the intervention drinks appeared well-matched for sweetness, noticeable 

differences were evident for all other taste dimensions. 

 

Figure 4.7 Palatability ratings for all intervention doses 

Values are estimated marginal means. Error bars represent standard error of the mean. 
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Table 4.9 Cohen's d effect sizes for Experiment 2 

Table 4.9 continued 

    Variable   Dose   Cohen's d 

Cognition: 

    Immediate recall score 

 

129mg 

 

(**)0.297 

  

517mg 

 

(**)0.291 

  

724mg 

 

(**)0.285 

Immediate recall interference errors 

 

310mg 

 

*-0.247 

  

724mg 

 

†-0.174 

     Serial 3s score 

 

517mg 

 

(†)-0.082 

  

724mg 

 

**0.14 

     Serial 7s score 

 

517mg 

 

*0.213 

  

724mg 

 

**0.423 

     Serial 7s RT 

 

310mg 

 

†0.055 

  

517mg 

 

*0.106 

  

724mg 

 

**0.344 

     Serial 7s errors 

 

258mg 

 

†-0.325 

     Sternberg RT 

 

129mg 

 

(*)-0.201 

  

517mg 

 

(*)-0.275 

     Stroop congruent RT 

 

129mg 

 

(**)-0.284 

  

517mg 

 

(**)-0.174 

     Stroop incongruent RT 

 

129mg 

 

(*)-0.149 

  

724mg 

 

(*)-0.220 

Mood: 

    Mental fatigue 

 

258mg 

 

*0.090 

  

310mg 

 

*0.143 

  

517mg 

 

†0.072 

     Negative affect 

 

310mg 

 

*0.318 

     Physiology: 

    Heart rate 

 

517mg 

 

(**)0.506 
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Table 4.9 continued 

    Variable   Dose   Cohen's d 

  

724mg 

 

(**)0.359 

     Cohen’s d values represent small (d=0.2), medium (d=0.5), and large (d=0.8) effect sizes, respectively. Positive 
values indicate performance improvements, and negative values indicate detriments to performance, 
compared to the control.  Significance of the underlying pairwise comparison with baseline is indicated, 
**(p<0.01), *(p<0.05), †(p<0.1). The use of brackets, (**), (*), (†) indicates an effect derived through a change 
from baseline for the control condition, attenuated for the blueberry condition. 

 

4.5 Discussion 

The lack of a LMM Session x Dose interaction for any of the DVs suggests that, in this experiment, 

anthocyanin-rich blueberry had no effect on the cognition, mood or blood pressure of a healthy 

young adult population, at any dose, when compared with a matched control condition. However, 

when employing statistically less conservative pairwise comparisons, as recommended by Huck 

(2015), significant dose-dependent effects on episodic memory, working memory, mood, and heart 

rate became evident. These pairwise effects were corrected for multiple comparisons, and so have 

been reported despite the non-significance of the LMM interaction. Possible reasons for this lack of 

a significant LMM interaction are considered later in this section.  

Where consistent effects have been observed for specific doses, across two or more DVs for the 

same cognitive task, and in line with previous literature findings, it seems likely that the results are 

not simply a result of type I error.  In particular, consumption of the highest doses (517mg & 724mg) 

appeared to convey small to medium benefits for the maintenance of constant heart rate and 

immediate recall memory score, and improvements in serial 7s performance for both score and 

reaction time. The 310mg dose elicited small to medium benefits in mental fatigue and mood. 

However the lower (129mg & 258mg) doses showed no consistent domain specific effects. 

Immediate recall and serial 7s benefits were evident following the 517mg and 724mg blueberry 

doses, findings which are consistent with previous literature following supplementation with varying 

flavonoid-rich food sources and in varying populations e.g. (Dodd, 2012; Kennedy et al., 2002; 

Massee et al., 2015; Whyte & Williams, 2015). Indeed the serial subtraction benefits were 

successfully replicated later in this thesis (Chapter 6). However it is unclear how these observations 

relate to the underlying FMD response previously published for the same doses (Rodriguez-Mateos 

et al., 2013). The FMD data predicted the greatest benefit to cognition following the 310mg dose. 

Therefore, alternative mechanisms of action may be relevant here. As reported in the literature 
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review, a difference in postprandial blood glucose response has previously been observed 

concurrently with cognitive benefits when an anthocyanin-rich berry intervention was compared 

with a sugar-matched control (Watson et al., 2015). Therefore, a similar mechanism may be 

responsible for cognitive improvements here. The link showing that glucose influences cognitive 

performance is well supported. For example, a study by Benton, Owens, & Parker, (1994) 

investigating the effects of glucose on cognition in healthy young adults found that immediate and 

delayed recall memory performance was  correlated with individual changes in blood sugar levels at 

the time of testing. The authors suggest that it is the ability to process a glucose load that influences 

cognition. The same effect has been demonstrated in older adults (Craft, Zallen, & Baker, 1992). 

Similar studies have revealed a significant effect of glucose on serial 7s subtraction tasks (Kennedy & 

Scholey, 2000; Scholey et al., 2001). It has been theorised that increased glucose supply to the brain 

is a physiological response to a cognitively demanding task, but that individual differences in heart 

rate and glucose response may influence cognitive outcome (Kennedy & Scholey, 2000).  Blood 

glucose may therefore have influenced memory and serial 7s performance in the current study 

through a mechanism of altered glucose regulation in the blueberry conditions but not the control 

condition. Possible mechanisms of action are considered in Chapters 5 and 6. 

The lack of a beneficial effect for the Sternberg and Stroop tasks suggests that these tasks were not 

sensitive to blueberry intervention. The 129mg & 517mg doses were observed to elicit a moderate 

negative effect on performance during each of these tasks when compared to the control. However, 

it seems likely that these effects may be attributable to type 1 error as the remaining doses, of both 

intermediate and higher anthocyanin strength, showed no similar negative outcome. In addition, the 

previous literature has shown performance on these tasks to be improved by similar nutritional 

interventions e.g. flavonoid-rich ginkgo biloba (Subhan & Hindmarch, 1984).  In the previous chapter, 

the piloting of these tasks revealed that they were rated amongst the least difficult, and so it may be 

that a more demanding cognitive load is needed before blueberry benefits become apparent in 

healthy young adults. This theory is consistent with the serial subtraction task data, where moderate 

cognitive benefits were observed for the serial 7s task but effect size was far smaller for the less 

demanding serial 3s. The theory is also compatible with the glucose mechanism proposed above, as 

increased availability of glucose may only be beneficial during particularly cognitively demanding 

tasks. As there was a great deal of overlap between the neural correlates for all of the cognitive 

tasks (Chapter 2), it appears likely that it is cognitive load, particularly working memory demand, 

that is responsible for these differences in cognitive outcome.  Additionally, the computerised serial 

subtraction tasks used here had a high psychomotor processing component. The extra physical costs 

of these tasks may therefore contribute to extra demand for glucose. 
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The observed negative affect and mental fatigue benefits observed following the 310mg dose were 

consistent with both the FMD data and the previous literature e.g. (Khalid et al., 2017; Scholey et al., 

2010, 2012). However, palatability data for the intervention drinks revealed that this dose was rated 

more pleasant, tasty, and satisfying than all other doses and therefore these mood effects may 

simply have been due to the influence of positive taste dimensions rather than the anthocyanin-rich 

blueberry content of the intervention. However, it may also be the case that these were genuine 

blueberry effects on mood that were also present following the 517mg and 724mg doses but, for 

these higher dose conditions, subjective ratings were negatively influenced by the poor taste of the 

intervention drink. Palatability has previously been shown to impact mood (Benton, 2002), in 

particular negative affect (Macht & Mueller, 2007). In future work it is therefore important to pay 

greater attention to palatability differences between intervention conditions. 

The physiological measure of blood pressure was included in the study as an indirect measure of 

vasoreactivity, with a lowering of blood pressure expected following anthocyanin-rich berry 

supplementation (Keane, George, et al., 2016; Keane, Haskell-Ramsay, et al., 2016).  However, in this 

experiment, no significant differences were observed between the control and blueberry doses for 

measures of systolic or diastolic blood pressure.  A significant main effect of Session revealed an 

increase in blood pressure (SBP & DBP) between pre- and post- intervention time points, irrespective 

of intervention condition. This is likely attributable to circadian changes in blood pressure 

approaching a mid-morning peak (Millar-Craig, Bishop, & Raftery, 1978). Blood pressure 

measurements appeared not to be sensitive to any additional blueberry induced vasodilatory 

response. However, heart rate results were more interesting. Although the LMM interaction was not 

statistically significant, pairwise comparisons revealed that consumption of the highest doses 

(517mg & 724mg) conveyed small to medium protective benefits for the maintenance of a constant 

heart rate.  Conversely, a marked decrease in heart rate was observed following the control and 

258mg doses. As with the cognitive observations, glucose effects may similarly be responsible for 

the observed heart rate effects. Heart rate is known to be highly correlated with blood glucose e.g. 

(Ostrander & Weinstein, 1964; Valensi et al., 2011), and so the attenuation of postprandial decline in 

heart rate following these doses is suggestive of a dose-dependent glucoregulatory effect. This 

observation may point to an interaction between anthocyanins and sugars in the intervention drinks, 

influencing the postprandial glucose profile. In vitro and in vivo studies have linked polyphenols such 

as anthocyanins with the modulation of glucose digestion, absorption, and distribution to insulin-

sensitive tissue (Cazarolli et al., 2008). Effects on postprandial glucose response have also been 

previously observed in human studies following anthocyanin-rich berry intervention (Törrönen et al., 
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2010; Watson et al., 2015; Wilson et al., 2008). Blood glucose measurements were not recorded 

during this experiment, but clearly warrant further investigation. 

Despite the small to moderate effects on cognition, mood, and physiology described above, LMM 

analysis found no significant interactions between dose and session for any of the measured DVs. 

Huck (2015) suggests that having similar means across multiple conditions will negatively impact the 

statistical outcome of an F test interaction. In addition, a number of potential methodological factors 

were identified which may further account for the LMM null effects. It was inferred that FMD and 

CBF timings were likely to be synonymous (Teragawa et al., 2005; Gonzales et al., 2010). In addition, 

both Francis et al. (2006) and Dodd (2012) observed increased CBF at similar time points for cocoa 

and blueberry polyphenols respectively. But it is possible that that peak CBF did not occur at the 

time of testing or that the dose-dependent vasodilatory response was somehow altered. For 

example, extracellular glucose has been demonstrated in vitro to facilitate vasodilation through a 

mechanism of insulin-induced endothelial nitric oxide production (Taubert, Rosenkranz, Berkels, 

Roesen, & Schömig, 2004). While not evident in the published findings for the control drink used in 

the Rodriguez-Mateos et al. (2013) study, the control was only matched to the second highest dose 

and contained 28 g total sugars compared to the 40g used in this experiment. Taubert et al. (2004) 

demonstrated the mechanism to be concentration-dependent, so enhanced nitric oxide production 

induced by sugar ingestion may have confounded the outcome of the current study by eliciting a 

vasodilatory response following the control condition, thus reducing the expected difference 

between the control and blueberry conditions. A further study (Kawano et al., 1999) revealed that 

hyperglycaemia  suppressed endothelium dependant vasodilation, therefore the vasodilatory 

response in the blueberry conditions may have been attenuated; though this was not evident in the 

Rodriguez-Mateos et al. (2013) study where the FMD data for the highest dose showed a clear 

vascular response. A repeat FMD study would be necessary to confirm whether the timings of the 

cognitive study still coincided with peak vasodilation. Regrettably, this was beyond the timescale and 

resources of the current thesis. However, it is also unlikely that such an affect would reduce the 

statistical power of the LMM analysis but not the pairwise comparisons. 

A more plausible explanation for the lack of LMM interaction despite significant pairwise 

comparisons is that, despite methodological efforts to keep them to a minimum, the order effects 

resulting from the length of study were of greater magnitude than the expected blueberry effects. 

As a result of the sizeable order effects, the necessary counterbalancing of doses over the six week 

period may have increased within-dose variance sufficiently to impact the statistical power of the 

LMM analysis. Additionally, main effects of session revealed order effects of greater magnitude than 
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those observed during the piloting of the tasks. In Chapter 3 participants received no intervention 

drink between the baseline and test sessions. This suggests that the intervention drink itself may 

have been an additional confound. The control and blueberry drinks were matched to the highest 

dose in terms of sugars (21g fructose and 19g glucose) and vitamin C (9.5mg) content. As previously 

discussed, glucose is the main fuel for brain function and is highly correlated with cognitive 

performance, so the high sugar content of the drinks may have boosted cognitive performance to a 

ceiling following both the control and blueberry doses. There was no evidence that participants were 

operating at ceiling for any of the cognitive tasks deployed, however it is possible that following the 

sugary intervention drink participants may have achieved a cognitive ceiling in terms of their 

individual potential for improvement, particularly on the tasks where no significant pairwise 

comparisons were observed. 

In conclusion, only limited dose-dependent cognition and mood effects were apparent. Small mood 

benefits following the 310mg dose, while consistent with the literature, may have been confounded 

by the poorly matched flavour of the intervention drink. It is possible that subjective mood may have 

been positively influenced by the taste of the intervention rather than the blueberry content. 

Conversely, blueberry induced mood effects following the higher doses may have been negated by 

their poor taste. The pattern of results for cognition appeared inconsistent with the previous FMD 

data. The two highest doses (517mg & 724mg) conveyed the strongest cognitive benefits rather than 

the expected 310mg dose. However, heart rate data following the same two highest doses 

suggested that blood glucose effects may, at least in part, have been responsible for these findings. 

From these results it was considered necessary to investigate the postprandial glycaemic response 

for the control and blueberry drinks used in the study. A more detailed literature review of flavonoid 

effects on postprandial glucose regulation is reported in the next chapter along with the findings of 

the glycaemic response experiment. 
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Chapter 5  

Experiment 3: A study of glycaemic effects following acute 

anthocyanin-rich blueberry supplementation in healthy 

young adults; implications for cognition and type 2 

diabetes 

An abridged version of this chapter has been published as Bell, L., Lamport, D. J., Butler, L. T., & 

Williams, C. M. (2017). A study of glycaemic effects following acute anthocyanin-rich blueberry 

supplementation in healthy young adults. Food & Function, 8, 3104-3110. 

5.1 Introduction 

In the previous chapter, protection against postprandial heart rate decline was observed in 

conjunction with benefits to episodic memory, working memory and mood, particularly following 

the higher doses of anthocyanin-rich blueberry. Specifically, pairwise comparisons revealed that 

consumption of the highest doses (517mg & 724mg) conveyed benefits for the maintenance of a 

constant heart rate and maintenance of immediate recall memory score. Additionally, the same two 

doses elicited improvements to serial 7s performance for measures of both score and reaction time. 

The 310mg dose was observed to benefit mental fatigue and mood. However the lower (129mg & 

258mg) doses showed no consistent cognitive effects. Irrespective of dose, blueberry intervention 

failed to impact Stroop or Sternberg task performance.  It was posited that the high sugar content of 

the intervention drinks may have influenced the experimental outcome, through a dose-dependent 

modulation of postprandial glucoregulation. Therefore, it was deemed important to investigate the 

postprandial glucose response for the doses of blueberry administered during the previous 

experiment.  

Flavonoid-rich foods have been previously observed to influence blood glucose and glucose 

homeostasis. For example, key mechanisms have been identified in vitro including inhibition of 

carbohydrate digestion and glucose absorption, facilitation of insulin synthesis and secretion, and 

facilitation of glucose uptake by cells (Cazarolli et al., 2008; Hanhineva et al., 2010; Norberto et al., 

2013; Sancho & Pastore, 2012; Williamson, 2013; Zia Ul Haq, Riaz, & Saad, 2016). In vivo animal 

models have demonstrated that these mechanisms can impact upon the immediate postprandial 

period in addition to longer term glucoregulatory health (Hanamura, Mayama, Aoki, Hirayama, & 
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Shimizu, 2006). Epidemiological data support these findings (Jennings, Welch, Spector, Macgregor, & 

Cassidy, 2014; Wedick et al., 2012); in particular, this epidemiological evidence suggests that higher 

intake of the flavonoid subclass anthocyanins is associated with lower incidence of type 2 diabetes 

and increased insulin sensitivity. However few research trials have been conducted in humans that 

investigate modulation of the glycaemic response following anthocyanin-rich foods (Burton-

Freeman, 2010), or have considered how these effects may impact on cognitive function.  

Research to date has produced mixed findings. Attenuated and/or delayed postprandial blood 

glucose concentrations have been observed in healthy adults in a number of studies. Following a 

480ml serving of cranberry juice, Wilson et al., (2008) observed attenuated and delayed postprandial 

plasma glucose concentrations when compared with a sugar matched control. 187 participants took 

part in this between-subjects study investigating six different control and active conditions. The 

outcome reported here was for the normal calorie juice. Anthocyanins levels were reportedly 

quantified however were not documented in the paper. The authors attributed the findings to the 

proanthocyanidin content of the juice rather than the anthocyanins that were also present. Other 

studies have similarly linked proanthocyanidins (oligomers of the subgroup of flavonoids known as 

flavanols) with altered glycaemic response e.g. (Sulaiman, 2014). Torronen et al (2010) investigated 

the postprandial glucose response, in 12 healthy adults, following sucrose consumption (35g) either 

with or without a mixed berry puree (bilberry, blackcurrant, cranberry & strawberry) containing an 

estimated 300mg anthocyanins. This crossover study found that the mixed berry condition was 

associated with a delayed and attenuated glucose peak relative to the sugar-matched control. 

Additionally, after 150 minutes blood glucose levels remained significantly elevated in the mixed 

berry condition relative to the control condition. Nyambe-Silavwe & Williamson (2016) observed 

significant lowering of peak postprandial glucose and insulin, in a dose-dependent manner, when 

white bread was consumed with a flavonoid-rich intervention combining green tea and a mixture of 

freeze-dried fruits. This was a crossover intervention study with 16 participants.  Incremental area-

under-the-curve (iAUC) values for glucose were reduced following both high and low flavonoid 

doses, when compared with sugar-matched controls. Insulin iAUC was reduced for the high dose 

only. The exact flavonoid content of the intervention, again, was not stated. Based on tabulated 

values supplied for the individual fruits, the total flavonoid content of the high dose was estimated 

to be 690mg, of which an estimated 250mg were anthocyanins.  

In a study of eight middle aged males (Kay & Holub, 2002), significant postprandial glucose effects 

were observed following a wild blueberry intervention consumed with a high fat, high carbohydrate 

fast food meal that included potatoes and white bread. Glucose levels were observed to remain 
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significantly elevated at 3 & 4 hours postprandially when compared with a blueberry-free control 

condition. Interestingly though, the glucose effect was attributed to the fructose content of the 

blueberry rather than the 1160mg anthocyanins present in the intervention; the rationale being that 

fructose consumption has been associated with a delayed appearance of glucose in blood serum 

following the conversion of fructose to glucose in the liver. The control condition in the study had 

not been matched for fructose content, making it impossible to differentiate anthocyanins and 

fructose effects in this case. The above studies were all conducted in healthy adults, however effects 

have also been observed in clinical populations. For example, in 10 glucose intolerant subjects (J. 

Hidalgo et al., 2014), attenuation of peak glucose was observed in the immediate 60 minute 

postprandial period following boiled rice when consumed with a maqui berry extract containing 

20mg anthocyanins.  

Despite these positive findings, other similar studies have failed to replicate anthocyanin-rich 

intervention effects on glycaemic response. For example, in eight healthy adults, Cao, Russell, 

Lischner, & Prior, (1998) observed no significant effect of a 240g fresh strawberry intervention on 

postprandial glucose, when consumed with a breakfast meal. Vinson, Bose, Proch, Al Kharrat, & 

Samman, (2008) investigated the effect of cranberry juice on postprandial glucose response in 10 

healthy adults following consumption of high fructose corn syrup. The intervention containing 24mg 

anthocyanins was observed to blunt the initial glucose peak and reduce AUC; however statistical 

significance was not achieved. The authors suggest that the true peak for the control condition may 

have been missed due to individual differences in the response profiles for different subjects that 

failed to coincide with the timing of blood samples. Clegg, Pratt, Meade, & Henry, (2011) 

investigated the postprandial glucose response in 12 healthy subjects following a starchy 

carbohydrate intervention of pancakes fortified with 100g blueberries or 100g raspberries. However, 

no differences in iAUC were observed for either of the berry conditions when compared to pancakes 

alone. Again, the anthocyanins content of the berry interventions were not quantified. In other 

studies, even though glucose effects were not observed, insulin effects were evident. For example, 

in 24 overweight adults, freeze-dried strawberry powder containing 39mg anthocyanins taken with a 

high carbohydrate meal, significantly attenuated postprandial plasma insulin concentrations when 

compared with a control beverage containing no strawberry (Edirisinghe et al., 2011). Alqurashi, 

Galante, Rowland, Spencer, & Commane, (2016) investigated postprandial glucose and insulin 

response in 23 mildly obese subjects following an acai fruit and banana smoothie consumed with a 

high fat breakfast. The intervention contained 493mg anthocyanins. No significant differences in 

postprandial blood glucose were observed compared with a control condition, although mean 

insulin peak was found to be greater in the acai condition. But in this study, blood sampling only 
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occurred at hourly intervals, so it is possible that glucose differences in the immediate 60 minute 

postprandial period may have been missed. Most recently, the postprandial glucose and insulin 

effects of freeze-dried strawberry powder were measured in 21 obese adults with insulin resistance 

(Park et al., 2016). Four doses containing 0mg, 42mg, 88mg, & 155mg anthocyanins, matched for 

energy and fibre, were administered in drink form with a high fat, high carbohydrate meal. Although 

the glucose response following the highest dose appeared to show an attenuated peak, and 

extended availability of glucose at later postprandial time points, measurements were not 

statistically different from the control. However, postprandial insulin concentrations were 

significantly lower than control between baseline and 2 hours following the same dose. Interestingly, 

a significant inverse correlation was observed between plasma concentrations of anthocyanin 

metabolites and both glucose and insulin levels, indicative of a possible mechanism of action. 

As reviewed above, there were many methodological differences between previous studies, not 

least the variability in the anthocyanin content of the berry interventions investigated (ranging from 

20mg up to 1160mg). Significant methodological limitations were evident in a number of these 

studies. For example: low anthocyanins dose (Edirisinghe et al., 2011; Vinson et al., 2008), no 

quantification of anthocyanins dose (Cao et al., 1998; Clegg et al., 2011; Nyambe-Silavwe & 

Williamson, 2016; Wilson et al., 2008), infrequent blood sampling time points (Alqurashi et al., 

2016), and an inadequately matched control condition (Kay & Holub, 2002). Whilst findings are not 

conclusive, there remains enough supporting evidence to suggest that anthocyanin consumption can 

modulate the postprandial glycaemic response. The degree of this response and the associated 

implications for cognitive outcomes in humans remain to be determined. A major shortcoming of 

the current literature is the absence of clearly defined flavonoid concentrations and subclasses. 

Therefore, not surprisingly, knowledge of the specific impact of anthocyanins on blood glucose 

remains limited (Zia Ul Haq et al., 2016). In light of this, the aim of the current study was to 

determine postprandial blood glucose profiles following known doses of anthocyanin-rich blueberry 

in healthy adults. Two blueberry doses, containing 310mg & 724mg anthocyanins, were selected 

from the previous experimental chapter. These doses represented the upper and lower limits of the 

range for which changes in heart rate, cognition and mood were observed. Blueberry doses were 

investigated with and without added sugar in order to better understand the impact of sugar-

matching on postprandial glucose response. Therefore blueberry effects were compared with both 

sugar-matched and no-added-sugar controls. The aims of the study were twofold.  First, the aim was 

to determine likely blood glucose status of participants at the time of cognitive testing in the 

previous thesis chapter. Second, the study aimed to determine whether anthocyanin-rich blueberry 

evoked a dose-dependent effect on postprandial glucose response that might provide a plausible 
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mechanism of action for the cognitive benefits observed during Experiment 2, and in the previous 

cognitive literature.  

5.2 Methods 

Methodological detail common to all experiments in this thesis can be found in Chapter 2. 

Methodology specific to this intervention study is reported here. 

5.2.1 Participants 

Seventeen young adults, 4 male, with a mean age of 24.12 years (SD 4.85) and a mean BMI of 23.82 

kg/m2 (SD 3.56) were recruited for the study. The participants were of similar demographic to those 

who took part in the previous experiment. Full participant details are reported in Chapter 2 

5.2.2 Design 

The study was a double-blind, five-condition, counterbalanced, crossover design comparing doses of 

anthocyanin-rich blueberry powder containing 0mg, 310mg and 724mg anthocyanins in both sugar-

matched and no-added-sugar conditions (see Table 1). All testing took place in the morning. 

Participants attended a total of five regularly spaced visits. The minimum number of days between 

visits was 4, (M 7.69, SD 2.80). Blood glucose measurements were recorded at regular intervals 

(specified below) for 2 ½ hours post intervention. Equipment details and measuring procedure are 

reported in Chapter 2. 

 

Table 5.1 Composition of each experimental condition in Experiment 3 

Condition Anthocyanins (mg) Vitamin C (mg) Fructose (g) Glucose (g) 

No-added-sugar control 0 9.5 0 0 

Sugar-matched control 0 9.5 21 19 

No-added-sugar low dose 310 9.5 9 8 

Sugar-matched low dose 310 9.5 21 19 

Sugar-matched high dose 724 9.5 21 19 

All conditions were prepared by dissolving the required quantities of freeze dried blueberry powder, sugars 
and ascorbic acid in 500ml water. Sugar-matched conditions were matched to the naturally occurring sugar 
content of the highest blueberry dose. 

 

5.2.3 Procedure 

Participants were required to follow the low polyphenol diet (Chapter 2) for 24 hours prior to each 

visit and were asked to fast for 2 hours immediately prior to attending the laboratory. On arrival, 
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baseline blood glucose was recorded. Participants then consumed one of five test condition drinks. 

Drink order was counterbalanced. Participants were asked to consume the drink as quickly as 

possible within a maximum 10 minute period (Alqurashi et al., 2016; Rodriguez-Mateos et al., 2013). 

Blood glucose measurements were recorded at pre-consumption, 15, 30, 45, 60, 90, 120 and 150 

minutes postprandially. Equipment and procedural details for the sampling of blood glucose can be 

found in Chapter 2. 

5.3 Data analysis 

Data were analysed with a linear mixed model (LMM), using an unstructured covariance matrix for 

repeated blood glucose measurements. Time, Dose and Time x Dose interaction were included as 

fixed factors in the model. Subjects were included as random effects and BMI was included as a 

covariate (Model 3.1). Pairwise comparisons with Bonferroni corrections were applied to investigate 

any significant effects. The analysis aim was to determine whether blueberry dose had a mediating 

effect on postprandial glucose response. 

 iAUC was subsequently calculated, from the glucose response curve for each dose, using the 

trapezoid rule (Le Floch, Escuyer, Baudin, Baudon, & Perlemuter, 1990). Incremental analysis, 

determined by excluding the area below baseline, has been shown to be a more representative 

measure of rapid postprandial changes in glycaemic status than total AUC analysis which is strongly 

correlated with basal blood glucose level (Le Floch et al., 1990). Between-subjects differences in 

baseline glucose were taken into account during the calculation. LMM analysis was used to 

determine the effect of dose on iAUC, again using an unstructured covariance matrix for repeat 

doses. Dose was included as a fixed factor in the model, and BMI was included as a covariate (Model 

3.2). The aim of this analysis was to determine whether blueberry dose had a mediating effect on 

postprandial iAUC. 

5.4 Results 

Raw glucose results can be found in the supplementary data accompanying this thesis. All LMM 

results are presented in Appendix L. For clarity, only statistically significant effects are reported in 

full within the text below. 

5.4.1 Blood Glucose Effects 

Mean blood glucose concentrations are summarised in Figure 5.1. All factors were statistically 

significant: Time [F(7,84.00)=45.17, p<0.001], Dose [F(4,59.06)=15.12, p<0.001], Time x Dose 

[F(28,84.00)=4.53, p<0.001]. BMI was a significant covariate [F(1,15.99)=5.64, p=0.030] with higher 
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BMI predicting higher glucose levels (beta=0.047). Pairwise comparisons for the three sugar-

matched conditions revealed that the highest anthocyanin dose (724mg) extended the glycaemic 

response such that blood glucose remained significantly elevated at 120 minutes compared with 

baseline levels [p=0.008]. Blood glucose remained significantly elevated compared with baseline at 

90 minutes [p=0.016] following the sugar-matched low dose (310mg), and at 45 minutes [p<0.001] 

following the sugar-matched control. As observed in Figure 5.1, the sugar-matched blueberry doses 

produced non-significant reductions in mean peak compared with the sugar-matched control 

condition at postprandial time points of 15 minutes (p>0.999) and 30 minutes (p>0.999). The no-

added-sugar control condition profile confirmed that there was no significant blood glucose effect 

(hyper- or hypoglycaemic) associated with simply consuming a 500ml sugar-free beverage. 

 

 

Figure 5.1 Mean blood glucose concentration recorded at baseline and following each dose at fixed 

postprandial time points 

All sugar-matched doses contained the same quantity of sugars naturally present in the highest dose (40g total 
sugars). The 310mg no-added-sugar dose contained 17g total sugars. Values are estimated marginal means 
adjusted for BMI. Error bars represent standard error of the mean. Horizontal bars indicate the final time point 
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at which blood glucose remained significantly elevated compared with baseline for each dose, 
**(p<0.01),*(p<0.05). 

 

5.4.2 iAUC 

Mean iAUC values are summarised in Table 5.2. Dose was observed to be a significant predictor of 

iAUC [F(4,17.12)=14.02, p<0.001]. BMI did not reach significance as a covariate [F(1,17.88)=0.07, 

p=0.795]. Post hoc comparisons revealed no significant difference in iAUC between any of the three 

sugar-matched conditions [p>0.1]. Other comparisons are summarised in Table 5.2. 

Table 5.2 Mean iAUC values for each intervention condition in Experiment 3 (n=17) 

  

Condition iAUC (mmol.min/l) 

 Mean SE 

No-added-sugar control (0mg) 34.38
a
 8.66 

No-added-sugar low dose (310mg) 78.47
ab

 15.73 

Sugar-matched control (0mg) 119.00
b
 17.38 

Sugar-matched low dose (310mg) 140.03
b
 16.73 

Sugar-matched high dose (724mg) 138.14
b
 16.34 

   

Values are estimated marginal means adjusted for BMI. Means not sharing a common superscript are 
significantly different from each other (p<0.05). 

 

5.5 Discussion 

The results show that anthocyanin-rich blueberry significantly extended the postprandial glycaemic 

response compared to the equivalent sugar dose in the absence of blueberry. Indeed, blood glucose 

levels remained significantly elevated above baseline for 2 hours following a blueberry dose 

containing 724mg anthocyanins, and for 1.5 hours following a lower 310mg dose. These post-peak 

elevations were in the range of 0.5-1.5mmol/l above fasting baseline which is well within the healthy 

postprandial blood glucose range (American Diabetes Association, 2014) and is metabolically 

beneficial through the avoidance of reactive hypoglycaemic episodes (Willett, Manson, & Liu, 2002) 

where glucose level falls close to, or below, fasting levels. 

In addition, the results demonstrate that at the time of cognitive testing used in Chapter 4 (60 

minutes postprandially), glucose levels were already in decline, but still remained significantly 

elevated following the 724mg and 310mg sugar-matched blueberry doses (and by inference the 
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517mg dose). Following the sugar-matched control dose, while glucose levels appeared to remain 

elevated at 60 minutes (Figure 5.1), the difference from baseline was not found to be statistically 

significant at this time point. Indeed, it is possible that the limited cognitive effects observed in 

Chapter 4 may, at least in part, have been due to differences in blood glucose at the time of testing. 

The cognitive benefits were of small effect size when compared with the control, which might be 

explained by marginally elevated blood glucose levels in the control condition at the time of 

cognitive testing. The potential impact of improved blood glucose regulation on cognition is 

discussed in more detail later in this chapter. 

The findings of the current study are consistent with previous human research (Törrönen et al., 

2010; Wilson et al., 2008) where extension of the postprandial glycaemic response was observed for 

mixed berry and cranberry interventions respectively. Here we have demonstrated an effect for 

blueberries, and have shown that the effect is not due to the presence of fructose as previously 

reported (Kay & Holub, 2002), but is likely related to anthocyanin content. However unlike many 

previous studies (Hidalgo et al., 2014; Nyambe-Silavwe & Williamson, 2016; Törrönen et al., 2010; 

Wilson et al., 2008), we did not observe a statistically significant attenuation of peak glucose during 

the immediate postprandial period of 15-30 minutes, despite the apparent differences in peak 

height shown in Figure 5.1. A possible explanation is that the intervention drinks were consumed 

after a 2 hour fast period in the absence of any starchy food. Previous studies included additional 

food items, therefore attenuation of peak glucose may be more noticeable in the presence of a high 

sucrose (Törrönen et al., 2010) or more complex carbohydrate load (Hidalgo et al., 2014; Nyambe-

Silavwe & Williamson, 2016). 

The findings may, in part, also be due to the mediating effect of BMI on postprandial glucose 

response, as reflected by the significance of BMI as a covariate in this analysis. Postprandial glucose 

response has been shown to be associated with BMI (Carroll, Kaiser, Franks, Deere, & Caffrey, 2007; 

Hopper, Koch, & Koch, 2013) and the issue of individual variability in glucose response has been 

previously highlighted (Carroll et al., 2007; Vinson et al., 2008). It is of particular interest here that 

BMI predicted blood glucose even in a group of young adults with a healthy BMI range, an effect not 

apparent in the current literature. Future studies should consider whether the effects of 

anthocyanin-rich foods on postprandial metabolism are mediated by BMI; it is possible that 

overweight adults with high levels of subcutaneous fat may show a greater reduction in peak glucose 

following an anthocyanin-rich intervention relative to healthy normal weight adults; however this 

hypothesis could not be tested in our small sample of healthy young adults. Additionally, individual 

differences in the time taken to consume the drink may also have influenced the outcome. Ten 
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minutes were allowed, but some participants consumed the drinks considerably faster than this 

(range 0.5-10 minutes). Peak glucose may have occurred prior to the onset of postprandial testing, 

or between the earlier testing time points for some of the participants, particularly following rapid 

absorption of glucose in the sugar-matched control which contained free sugars not bound with 

other nutrients. Thus, mean glucose peak may not have accurately reflected the true value for the 

control condition. Future studies should impose tighter control over the time taken to consume an 

intervention, and consider the use of continuous glucose monitoring to identify true peaks. 

Another important consideration here is that the drinks were not matched for fibre content. Fibre is 

known to influence postprandial glucose response. For example, guar gum and sugar beet fibre 

(both non-starch polysaccharides) have been observed to attenuate peak postprandial blood glucose 

levels and reduce overall glucose AUC (Morgan, Tredger, Wright, & Marks, 1990). However, the 

maintenance of raised glucose over a longer postprandial period, as observed in the current study, 

has not been previously associated with a high fibre intervention. It has been posited that it is 

predominantly soluble fibre that attenuates postprandial glucose through viscosity effects (Törrönen 

et al., 2010). As berries are typically low in soluble fibre and no significant attenuation of peak 

glucose was observed, the extended postprandial response following blueberry supplementation 

observed here is unlikely due to fibre confounds. Indeed, insulin regulatory effects of anthocyanin-

rich berries have previously been observed where control and experimental conditions were 

matched for fibre (although apparent glucose effects were not found to be statistically significant) 

(Park et al., 2016). As an alternative mechanism of action, anthocyanins have been observed to 

inhibit intestinal alpha-amylase and alpha-glucosidase activity (Hanamura et al., 2006; McDougall et 

al., 2005; Nyambe-Silavwe & Williamson, 2016; Tadera, Minami, Takamatsu, & Matsuoka, 2006), 

thereby slowing the rate of carbohydrate digestion. Furthermore, anthocyanins and other berry 

polyphenols have also been associated with inhibition of glucose transport from the intestine to 

blood plasma (Hanamura et al., 2006). Specific mechanisms include delayed intestinal absorption of 

glucose through inhibition of the sodium glucose co-transporter SGLT1 (Hidalgo et al., 2014; 

Johnston, Sharp, Clifford, & Morgan, 2005), and the glucose transporter GLUT2 (Kwon et al., 2007; 

Song et al., 2002). Therefore, any combination of these mechanisms is likely to underlie the 

immediate postprandial effects observed here and these potential mechanisms of action warrant 

further investigation in future studies.  

There are a number of important implications for this work. Numerous cognitive benefits of 

flavonoid-rich foods, including foods rich in anthocyanins, have been previously documented 

including reduced risk of neurodegenerative disease, and short term improvements to cognition 
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during the immediate postprandial period. It is possible that previously observed cognitive effects, 

following acute intervention with anthocyanin-rich foods, are mediated by variations in blood 

glucose levels rather than, or in addition to, other hypothesised mechanisms of actions associated 

with flavonoid intake, such as increased cerebral blood flow (Rendeiro, Rhodes, & Spencer, 2015). 

Increased glucose availability in the late postprandial period following ingestion of anthocyanin-rich 

foods may convey a cognitive advantage, given that low circulating glucose levels are often 

correlated with cognitive deficits. Indeed, it has been demonstrated that foods which elicit a 

favourable glycaemic response are beneficial for cognition (Lamport, Lawton, Mansfield, Moulin, & 

Dye, 2014), and such effects may even extend beyond the first postprandial response period, 

continuing to influence cognition after subsequent food intake (Lamport, Hoyle, Lawton, Mansfield, 

& Dye, 2011). Therefore, it is possible that circulating anthocyanin metabolites may also induce 

‘second meal’ effects (Lamport et al., 2011), which is an important consideration for flavonoid 

intervention studies where a standardised meal is provided prior to extended cognitive testing time 

points. Further work is needed to confirm whether effects on glycaemic response, such as the 

effects following anthocyanin-rich blueberry observed here, correlate with changes in cognitive 

performance. However, it is possible that cognitive benefits may be limited in a metabolically 

healthy population such as the young adults investigated here. 

The postprandial response to ingested carbohydrate is also recognised as a marker of metabolic 

health. For example, postprandial hyperglycaemia is observed in type 2 diabetes mellitus and has 

been shown to be a risk factor for cardiovascular disease (Bonora & Muggeo, 2001). Cognitive 

deficits including neurodegenerative disease are also associated with type 2 diabetes (Chung et al., 

2015; Lamport, Lawton, Mansfield, & Dye, 2009) and hypertension (Muela et al., 2017). Therefore, 

interventions which moderate postprandial glucose by limiting periods of hyper- or hypoglycaemia 

are desirable. Indeed, although not directly relevant to the aims of this thesis, the present data may 

also have implications for type 2 diabetes where regulation of postprandial glucose response is 

important in the prevention and treatment of the disease, and in the reduction of associated risk 

factors such as cardiovascular disease (Bonora & Muggeo, 2001). Glucoregulatory effects similar to 

the current study have been reported following the consumption of low glycaemic index foods, 

which are reported to reduce incidence of hypoglycaemia and type 2 diabetes (Willett et al., 2002). 

It should be noted, however, that no hypoglycaemic episodes were observed following the control 

intervention in the current study, suggesting that these benefits may only be relevant in subjects 

with pre- or type 2 diabetes, rather than in healthy young adults. Nevertheless, anthocyanin-rich 

blueberries have been positively associated with multiple health outcomes including enhanced 

cognition (Bell et al., 2015; Lamport et al., 2012), decreased blood pressure (Basu et al., 2010), and 
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improved vasoreactivity (Rodriguez-Mateos et al., 2013), all of which are compromised in type 2 

diabetes (Chung et al., 2015; Lamport et al., 2009). Furthermore, anthocyanins, and particularly 

blueberry consumption, are significantly associated with lower type 2 diabetes mellitus risk 

(Jennings et al., 2014; Wedick et al., 2012). In addition to the regulatory mechanisms described 

previously, anthocyanins have also been reported to further inhibit alpha-glucosidase activity in 

synergy with acarbose (Akkarachiyasit, Charoenlertkul, Yibchok-Anun, & Adisakwattana, 2010), a 

common anti-diabetic drug. Other reviewed blueberry effects on metabolic syndrome include 

evidence of a lowering of leptin concentrations thereby decreasing the tendency towards obesity, 

improved pancreatic beta cell function facilitating insulin secretion (Martineau et al., 2006), and 

subsequent improved insulin sensitivity (Norberto et al., 2013). Other flavonoid subclasses have also 

been observed to regulate tissue and cell specific isoforms of glucose transporters (GLUTs1-5) 

(Cazarolli et al., 2008), the rate determining step for glucose uptake by all cells including transport of 

glucose across the blood-brain barrier (Vannucci, Maher, & Simpson, 1997). Additional evidence also 

suggests that berry anthocyanins may inhibit glycative activity, where glucose interacts with proteins 

and lipids in both exogenous food sources and endogenous body tissue (Thangthaeng, Poulose, 

Miller, & Shukitt-Hale, 2016). The reactive products of such activity (AGEs) have been linked with 

both hyperglycaemia and cognitive decline. Cognitive outcomes have not been assessed in the 

current study, however these mechanisms would support enhancement of cognition in type 2 

diabetes following anthocyanin-rich intervention. The combined evidence suggests there is clear 

potential for a diet-based blueberry intervention to benefit the risk factors and co-morbidities 

associated with type 2 diabetes. 

In conclusion, blood glucose levels were found to be significantly elevated at the time of cognitive 

testing utilised in Chapter 4 following the sugar-matched blueberry doses, but not following the 

sugar-matched control. It is unclear at this stage whether the sugar levels in the intervention drinks 

confounded the previous experiment, or provided an additional mechanism of action for observed 

cognitive benefits. In the current glycaemic experiment, anthocyanin-rich blueberry also influenced 

the postprandial glucose response such that blood glucose availability was extended, in a dose-

dependent manner, for up to 2 hours postprandially. The potential impact of this experimental 

outcome has been discussed with reference to cognition and metabolic health.  In relation to the 

current thesis, it was decided to design a follow-up experiment, incorporating blood glucose 

measurements and cognitive testing at baseline, 1 hour and 2 hour postprandial time points. The 

aim was to determine whether cognitive benefits following blueberry intervention were directly 

related to blood glucose levels at the time of cognitive testing and whether extended availability of 
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blood glucose conveyed cognitive benefits at a slightly later time point. The outcome of this follow-

up study is reported in the next chapter.
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Chapter 6  

Experiment 4: A dose-response study of cognitive and 

blood glucose effects following acute anthocyanin-rich 

blueberry supplementation in healthy young adults 

6.1 Introduction 

As with Experiment 2 (Chapter 4), this study aimed to determine a dose-response for the cognitive 

effects of blueberry flavonoids, using doses matched to those used by Rodriguez-Mateos et al. 

(2013). This time cognitive testing was performed pre-, 1 hour, and 2 hours post-intervention in 

order to monitor changes in cognition at time points with and without expected differences in blood 

glucose concentration, as identified in the previous chapter. Blood glucose measurements were 

included in the current study in order to confirm glucose status at the time of cognitive testing. The 

cognitive tasks previously used in Experiment 2 were identified as sensitive to flavonoid intervention 

in the literature review, but for this experiment the task battery was modified to place greater 

emphasis on mood, working memory and attention. There were a number of reasons for this; newly 

published research showed marked effects in these domains following berry intervention (Khalid et 

al., 2017; Watson et al., 2015); as a possible mechanism, glucose has previously been linked with 

improved attention and working memory (Benton, Brett, & Brain, 1987; Benton et al., 1994; 

Kennedy & Scholey, 2000; Scholey et al., 2001); a shortened cognitive test battery was needed to 

maintain two distinct post-intervention time points. In particular, the shortened battery ruled out 

the testing of episodic memory. The tasks were all investigated for practice effects prior to use, as 

reported in Chapter 3. Again, the methodology used here reflects the findings of that study. 

6.2 Methods 

6.2.1 Participants 

The participants were 41 healthy adults, aged 18-36 years (M 23.54, SD 5.14 years), 11 male, BMI (M 

23.44, SD 4.99). The participants were of similar demographic to those who took part in all previous 

experiments. Full participant details are reported in Chapter 2. 
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6.2.2 Design 

A double-blind crossover intervention study design was used. Independent variables were blueberry 

dose (4 levels; 3 doses and a matched control) and time (3 levels; pre-, 1 hour, and 2 hours post-

intervention). Additional postprandial time points of 15 minutes and 30 minutes were included for 

blood glucose measurement only. Participants attended a total of 5 regularly spaced visits. The 

minimum number of days between visits was 3 (M 6.97, SD 4.27).  Again, in order to minimise the 

impact of practice on cognitive task performance, the first visit was treated as a familiarisation visit. 

Cognitive and blood glucose data collected during this visit were not included in subsequent 

analyses. Participants were not made aware of this and followed the same procedure as for all other 

visits, with the exception that participants were permitted as much practice as they required in 

order to feel comfortable with the cognitive tasks. The different blueberry doses were administered 

in drink form. The drink consumed at the familiarisation visit was identical to the control. At 

subsequent visits, the control and all blueberry doses were administered in counterbalanced order, 

determined using Williams matrices (Williams, 1949).  

6.2.3 Procedure 

At each visit participants arrived 2 hours fasted having previously followed a 24 hour low polyphenol 

diet (Chapter 2). They completed a pre-intervention battery of cognitive tasks and blood glucose 

measurements. Participants then consumed a blueberry or control drink. In order to minimise drink 

consumption rate variability, participants were required to finish the drink within a 5 minute time 

period, after which they were asked to remain in the lab waiting room. As in Experiment 2, 

participants completed a 24 hour retrospective food diary and a post-drink palatability questionnaire 

(Chapter 2). Further blood glucose measurements were recorded 15 minutes and 30 minutes after 

consuming the intervention. Participants resumed testing, repeating the cognitive task battery and 

blood glucose measurements at the post-intervention time points of 1 and 2 hours. A return 

appointment was then booked for the following week. 

6.2.4 Blueberry intervention drinks 

The blueberry doses used in the drinks were again aligned with those used in a previous vascular 

study (Rodriguez-Mateos et al., 2013), however in this case two of the previous doses (129mg and 

258mg) were omitted. Thus, three blueberry doses, containing 310mg, 517mg & 724mg 

anthocyanins, were selected as these doses represented the range for which heart rate, cognition 

and mood effects were observed in Experiment 2.  Additionally, as described in Chapter 2, a new 

batch of freeze-dried blueberry powder was used in this experiment. The anthocyanin content of 
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this new batch was proportionally greater than the powder used in previous experiments. Indeed, by 

matching the anthocyanin content of the doses between experiments, the overall polyphenol 

content of each dose was greatly reduced in the current experiment when compared with 

Experiments 2 & 3. Therefore, the total polyphenol content of the lower, 129mg & 258mg, doses fell 

below that observed to elicit a vasodilatory response in the vascular study (Rodriguez-Mateos et al., 

2013), giving further justification for the omission of these doses. Similarly, the total sugar content of 

the highest dose was reduced compared with Experiments 2 & 3. All doses were sugar-matched to 

this new value. The compositional analyses of all intervention drinks are shown in Table 6.1. The 

drinks were again prepared immediately prior to consumption by adding the appropriate amounts of 

freeze-dried blueberry powder, sugars and vitamin C to water. However, this time a lower volume of 

300ml water was used. Lower amounts of powder were needed to achieve the doses and so the 

corresponding amount of water was reduced to maintain taste and consistency of the drinks. As a 

result the drinks were also easier to consume within the reduced time limit.  

Table 6.1. Composition of blueberry and control doses in Experiment 4 

   

  Freeze-dried wild blueberry powder (g) 

Composition Control 16.3 27.2 38.1 

Anthocyanins (mg) 0 310 517 724 

Procyanidins (mg) 0 Not 
quantified 

Not 
quantified 

Not 
quantified 

Total polyphenols (mg) 0 473 789 1105 

Vitamin C (mg) 128 128 128 128 

Fructose (g) 13.7 13.7 13.7 13.7 

Glucose (g) 13.0 13.0 13.0 13.0 

 

6.2.5 Cognitive & subjective measures 

Full details of the selected cognitive tasks are given in Chapter 2. The order of the tasks was as 

follows: serial 3s & 7s subtraction tasks, RVIP, and digit vigilance, presented in between-subjects 

counterbalanced order; PANAS Now mood questionnaire. 

6.2.6 Physiological measures 

Blood glucose was measured at baseline and at 15, 30, 60 and 120 minutes. At each time point that 

coincided with a cognitive test session (baseline, 1 hour, 2 hours), measurements were recorded 
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prior to cognitive testing. Blood sampling equipment details and measuring procedure are reported 

in Chapter 2. 

6.3 Data analysis 

Data collected during Visit 1 were discarded prior to analysis and any outliers were removed 

according to criteria previously described in Chapter 2.  

Blood glucose data were analysed by LMM using an unstructured covariance matrix to model 

successive repeat measurements. Visit, Time, Dose, and Time x Dose interaction were included as 

fixed factors in the model. Subjects were included as random effects. BMI was included as a 

covariate (Model 4.1). Where the covariate was found to be a significant predictor of performance, 

the analysis was performed with the further addition of covariate interactions (Model 4.2).The 

analysis aim was to determine whether blueberry dose had a mediating effect on postprandial 

glycaemic response. Pairwise comparisons were used to investigate significant effects and all 

interactions. A Bonferroni correction was applied to all multiple comparisons. iAUC values were 

calculated for each dose using the trapezoid rule. iAUC data were analysed by LMM, again using an 

unstructured covariance matrix. Visit and Dose were included as fixed factors in the model and BMI 

was included as a covariate (Model 4.3). The analysis aim was to determine whether blueberry dose 

had a mediating effect on the total amount of glucose absorbed into the blood stream post 

ingestion. Pairwise comparisons with Bonferroni correction were again used to investigate any 

significant effects and all interactions.  

All cognitive and mood data were similarly analysed by LMM, also using an unstructured covariance 

matrix to model successive repeat measurements. Visit, Session, Dose, and Session x Dose 

interaction were included as fixed factors in the model. Subjects were included as random effects. 

The analysis aim was to determine whether blueberry dose was a significant predictor of cognitive or 

mood performance. In order to determine whether blood glucose concentration was also a 

significant predictor of cognition or mood, the analysis was performed both without (Model 4.4) and 

with the addition of this repeated covariate (Model 4.5). Where the covariate was found to be a 

significant predictor of performance, the analysis was performed with the further addition of 

covariate interactions (Model 4.6). Pairwise comparisons with Bonferroni correction were used to 

investigate any significant effects and all interactions for each of the models. 

Palatability ratings for the intervention drinks were analysed by LMM using an unstructured 

covariance matrix to model successive ratings. Dose was the only fixed factor in the model (Model 
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4.7). The analysis aim was to determine whether the intervention drinks were adequately matched 

for flavour across a number of different taste dimensions. 

6.4 Results 

Raw data for all measured variables can be found in the supplementary data accompanying this 

thesis. Tabulated LMM results can be found in Appendix L. For clarity, only significant F-statistics are 

reported in full in the text. 

6.4.1 Glucose analysis 

LMM analysis revealed that Time [F(4,164.00)=215.62, p<0.001], Dose [F(3,90.27)=4.81, p=0.004], 

and Time x Dose interaction [F(12,164.00)=3.36, p<0.001] were all statistically significant factors in 

the prediction of blood glucose concentration. Visit was not observed to be a significant factor 

[F(3,120.95)=2.03, p=0.113], indicating that order effects were not present in the data. BMI was a 

significant covariate [F(1,39.01)=9.96, p=0.003]; higher BMI was predictive of higher glucose 

[beta=0.043]. When added to the model, no covariate interactions were observed to be significant. 

The interaction between blueberry dose and postprandial glucose response is shown in Figure 6.1. 

For all doses, blood glucose levels were significantly elevated compared to baseline at 15minutes 

[p<0.001] and 30minutes [p<0.001], but were no longer elevated at 1 hour [p>0.1]. At 2 hours, 

glucose levels were significantly reduced for all doses compared with baseline values [p<0.001]. 

Significant differences in peak glucose concentration were observed between 15 minutes and 30 

minutes postprandially: at 15 minutes the 724mg dose was significantly lower than both the 310mg 

[p=0.011] and 0mg [p<0.001] doses, and the 517mg dose was significantly lower than the 0mg dose 

[p=0.009]; at 30 minutes the 724mg dose was significantly lower than both the 517mg [p=0.048] and 

0mg [p=0.001] doses. No significant differences were found between doses at baseline, or at 1 and 2 

hours postprandially, despite apparent differences at 1 hour seen in Figure 6.1 . 
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Figure 6.1 The interaction between blueberry dose and postprandial blood glucose concentration 

All doses were sugar-matched to contain the same quantity of sugars naturally present in the highest dose 
(26.7g total sugars). Values are estimated marginal means adjusted for BMI. Error bars represent standard 
error of the mean. Coloured asterisks indicate a significant difference between the corresponding blueberry 
dose and the 0mg control condition at that time point, ** (p<0.01).  

 

Analysis of iAUC data revealed that neither Visit [F(3,40.03)=0.09, p=0.965] nor Dose 

[F(3,92.64)=2.15, p=0.100] significantly predicted iAUC. BMI was not a significant covariate 

[F(1,39.86)=0.33, p=0.569]. Therefore iAUC did not significantly differ between conditions. 

Table 6.2 Mean iAUC values for each intervention condition in Experiment 4 (n=41) 

  

Anthocyanins dose iAUC (mmol.min/l) 

 Mean SE 

0mg 63.98 6.97 

310mg 68.17 7.01 

517mg 70.26 6.98 

724mg 55.43 6.99 

Values are estimated marginal means adjusted for BMI 
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6.4.2 Cognitive analysis 

Tabulated means for cognitive data can be found under each individual task subheading. LMM 

results for the analyses of all cognitive variables are reported in full in Appendix M. In the text 

significant F-statistics are reported in full. Non-significant effects are reported as p values only. 

6.4.2.1 Order effects and baseline differences 

The factor Visit was included in the LMM model for each cognitive dependent variable in order to 

determine the nature of any residual order effects. For the digit vigilance task, Visit was a significant 

predictor of both score [F(3,113.74)=3.42, p=0.020] and commission errors [F(3,121.23)=2.83, 

p=0.041] , but not RT [p=0.082]. Pairwise comparisons revealed a significant decrease in digit 

vigilance score between Visits 2 & 5 [p=0.025]. A corresponding trend for increased commission 

errors was evident over the same period [p=0.094]. For the RVIP task, Visit was a significant 

predictor of RT only [F(3,122.19)=2.86, p=0.040]. Pairwise comparisons revealed a significant slowing 

of RT between Visits 3 & 5 [p=0.045]. No other significant order effects were evident for this task. 

Visit was a significant predictor of 3s score [F(3,120.61)=97.76, p<0.001], 3s RT [F(3,116.29)=31.53, 

p<0.001], 7s score [F(3,118.96)=35.01, p<0.001], and 7s RT [F(3,114.31)=24.56, p<0.001]. Post hoc 

comparisons revealed a significant increase in both 3s and 7s scores between all consecutive visits 

[p<0.05]. Significant decreases for 3s RT occurred up to Visit 3 [p<0.05], however for 7s RT significant 

improvements continued between all visits [p<0.05] apart from between Visits 3 & 4 where 

apparent improvements were non-significant [p=0.281]. Therefore significant order effects were 

evident for both serial 3s and 7s tasks. In general, order effects therefore remained apparent despite 

methodological measures employed to keep them to a minimum. However, following the successful 

counterbalancing of the order in which all doses were presented to participants, no significant 

baseline differences were evident for any of the cognitive tasks, under any of the individual dose 

conditions [p>0.1]. 

6.4.2.2 Digit vigilance 

Tabulated means for the digit vigilance task can be found in Table 6.3. 
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Table 6.3 Digit vigilance data for Experiment 4 (n=41) 

             Test session 

Digit vigilance 

 

Dose 

 

Baseline 

 

1 hr 

 

2 hr 

 variable 

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

Score 
(correct/45) 

 

0mg 

 

42.85 2.89 

 

42.75 2.36 

 

42.31 2.92 

 

310mg 

 

42.41 2.87 

 

42.20 3.16 

 

43.05 2.16 

  

517mg 

 

42.66 3.41 

 

42.83 2.65 

 

42.74 2.62 

  

724mg 

 

42.80 2.76 

 

42.41 2.95 

 

42.15 3.43 

            Commission 
errors 

 

0mg 

 

1.53 1.58 

 

1.63 1.80 

 

1.93 1.80 

 

310mg 

 

1.56 1.19 

 

1.95 1.92 

 

1.45 1.57 

  

517mg 

 

1.76 1.76 

 

1.40 1.32 

 

1.83 1.89 

  

724mg 

 

1.56 1.45 

 

2.07 1.89 

 

2.08 1.61 

    
        

RT (ms) 

 

0mg 

 

442.05 40.82 

 

448.92 45.89 

 

451.65 48.35 

  

310mg 

 

446.50 50.20 

 

449.34 44.21 

 

448.66 47.40 

  

517mg 

 

436.76 38.72 

 

449.19 46.51 

 

446.44 41.90 

  

724mg 

 

440.31 48.30 

 

449.64 51.73 

 

451.08 48.91 

                        

 

For the digit vigilance task, Session was a significant predictor of RT [F(2,163.68)=7.59, p=0.001], but 

not of score or errors [p>0.1]. RTs slowed significantly between baseline and 1 hour [p=0.002]. 

Neither Dose, nor Session x Dose interaction was found to be a significant factor in predicting any of 

the digit vigilance variables. However, more detailed interpretation of pairwise comparisons for the 

interaction revealed a significant slowing of RT between baseline & 1 hour [p=0.016] and a trend 

towards a slowing of RT between baseline & 2 hours [p=0.085] following the 517mg dose, however 

no corresponding changes in score or errors were observed. When added to the model as covariate, 

glucose concentration was not found to be a significant factor [p>0.1]. 
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6.4.2.3 RVIP 

Tabulated means for the RVIP task can be found in Table 6.4. 

Table 6.4 RVIP data for Experiment 4 (n=41) 

             Test session 

RVIP variable 

 

Dose 

 

Baseline 

 

1 hr 

 

2 hr 

  

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

Score 
(correct/40) 

 

0mg 

 

23.20 8.89 

 

25.00 9.44 

 

23.93 9.43 

 

310mg 

 

22.93 8.68 

 

23.66 9.72 

 

23.44 9.59 

  

517mg 

 

23.63 9.36 

 

25.02 9.51 

 

23.98 10.16 

  

724mg 

 

23.88 9.67 

 

23.85 9.32 

 

23.08 9.58 

            Commission 
errors 

 

0mg 

 

12.07 13.17 

 

11.20 12.47 

 

11.35 13.68 

 

310mg 

 

11.39 12.15 

 

12.46 13.40 

 

12.41 14.00 

  

517mg 

 

12.76 14.26 

 

11.54 14.02 

 

12.17 14.67 

  

724mg 

 

12.56 14.23 

 

11.51 14.73 

 

11.13 13.07 

    
        

RT (ms) 

 

0mg 

 

388.39 39.45 

 

394.62 48.28 

 

384.37 46.21 

  

310mg 

 

398.26 47.75 

 

391.45 45.06 

 

392.79 43.00 

  

517mg 

 

395.01 47.16 

 

386.69 40.57 

 

391.24 44.84 

  

724mg 

 

387.76 48.96 

 

392.33 46.48 

 

388.51 38.74 

                        

 

For the RVIP task, Session was a significant predictor of score [F(2,163.61)=4.54, p=0.012], but not of 

RT or errors [p>0.1]. Scores significantly increased between baseline and 1 hour [p=0.038]. Neither 

Dose, nor Session x Dose interaction were found to be significant factors in predicting any of the 

RVIP variables, however pairwise comparisons for the interaction revealed a trend towards 

increased score between baseline & 1 hour following the control intervention [p=0.063]. No 

corresponding changes in RT or error rate were observed. When added to the model as covariate, 

glucose concentration was not found to be a significant factor [p>0.1]. 
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6.4.2.4 Serial 3s & 7s 

Tabulated means for the serial 3s & 7s tasks can be found in Table 6.5 & Table 6.6, respectively. 

Table 6.5 Serial 3s data for Experiment 4 (n=41) 

 

        Test session 

Serial 3s 
variable 

 

Dose 

 

Baseline 

 

1 hr 

 

2 hr 

  

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

Score 
(correct 
in 2 mins) 

 

0mg 

 

53.08 19.33 

 

55.93 19.73 

 

55.47 18.43 

 

310mg 

 

50.79 19.50 

 

53.00 19.64 

 

53.05 18.89 

 

517mg 

 

51.73 20.84 

 

55.63 20.88 

 

57.28 20.76 

  

724mg 

 

52.53 18.32 

 

55.60 19.41 

 

56.13 16.15 

            Errors 
(incorrect 
in 2 mins) 

 

0mg 

 

1.15 1.49 

 

1.63 1.64 

 

1.92 1.92 

 

310mg 

 

1.44 2.01 
 

1.82 1.76 
 

1.88 2.05 

 

517mg 

 

1.39 1.36 
 

1.90 2.01 
 

1.51 1.80 

  

724mg 

 

1.63 1.71 
 

1.71 1.68 
 

1.62 1.95 

    
        

RT (ms) 

 

0mg 

 

2283.43 957.26 
 

2170.61 1017.07 
 

2085.89 869.50 

  

310mg 

 

2428.45 1171.80 
 

2258.22 1102.35 
 

2249.03 1029.78 

  

517mg 

 

2361.19 1005.97 
 

2125.26 874.77 
 

2128.29 863.73 

  

724mg 

 

2315.17 1094.88 
 

2025.87 862.48 
 

2139.95 873.66 
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Table 6.6 Serial 7s data for Experiment 4 (n=41) 

 

        Test session 

Serial 7s 
variable 

 

Dose 

 

Baseline 

 

1 hr 

 

2 hr 

  

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

Score 
(correct 
in 2 mins) 

 

0mg 

 

26.18 8.64 

 

26.18 10.85 

 

28.92 13.94 

 

310mg 

 

25.30 11.24 

 

26.93 11.05 

 

26.82 12.96 

 

517mg 

 

26.30 13.26 

 

28.33 14.89 

 

27.95 10.57 

  

724mg 

 

26.23 13.27 

 

26.77 11.14 

 

27.31 11.21 

            Errors 
(incorrect 
in 2 mins) 

 

0mg 

 

1.68 1.68 

 

2.32 1.89 

 

1.56 1.74 

 

310mg 

 

1.88 1.93 

 

2.05 2.28 

 

2.46 2.05 

 

517mg 

 

1.98 2.04 

 

2.27 1.95 

 

2.39 2.38 

  

724mg 

 

1.93 1.57 

 

1.95 2.05 

 

2.25 2.15 

    
        

RT (ms) 

 

0mg 

 

4332.43 1907.26 
 

3953.11 1626.98 
 

4257.97 1993.81 

  

310mg 

 

4513.37 1906.53 
 

4471.30 2036.34 
 

4380.48 2058.33 

  

517mg 

 

4302.26 1619.31 
 

4156.56 1729.86 
 

4070.61 1740.44 

  

724mg 

 

4403.49 1772.28 
 

4105.09 1636.97 
 

4420.54 2112.45 

                        

 

For the serial subtraction tasks, Session was a significant predictor of 3s score [F(2,158.32)=18.62, 

p<0.001], 3s RT [F(2,156.34)=31.24, p<0.001], 7s score [F(2,156.55)=11.62, p<0.001],  and 7s RT 

[F(2,145.93)=10.99, p<0.001].  All scores and RTs significantly improved between baseline and 1 hour 

[p<0.001] but no further improvements were observed between 1hour and 2 hours [p>0.1]. Error 

scores remained stable between all visits and sessions. Neither Dose, nor Session x Dose interaction 

were found to be significant factors in predicting any of the serial subtraction variables. However, 

pairwise comparisons for the interaction revealed significant improvements in serial 3s score and RT 

between baseline & 1 hour, and between baseline & 2 hours following the control, 517mg and 

724mg conditions [p<0.05], but not the 310mg condition [p>0.10]. For the control condition, these 

improvements were accompanied by a trend towards an increase in error rate [p=0.052] that was 

not observed for any of the blueberry doses, shown in Figure 6.2.  
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Figure 6.2 The interaction between test session and dose for serial 3s errors 

Values are estimated marginal means. Error bars represent standard error of the mean. A significant difference 
from baseline is indicated above the column, † (p<0.10). 

 

Pairwise comparisons for the serial 7s interaction revealed significant improvements in score and RT 

between baseline & 1 hour, and between baseline & 2 hours following the two highest blueberry 

doses (517mg & 724mg) only [p<0.05]. No significant improvements were observed following the 

control or 310mg dose [p>0.10]. These interactions are shown in Figure 6.3 & Figure 6.4. 
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Figure 6.3 The interaction between test session and dose for serial 7s score 

Values are estimated marginal means. Error bars represent standard error of the mean. A significant difference 
from baseline is indicated above the column, *(p<0.05), †(p<0.10). 

 

 

Figure 6.4 The interaction between test session and dose for serial 7s RT 

Values are estimated marginal means. Error bars represent standard error of the mean. A significant difference 
from baseline is indicated above the column, *(p<0.05). 
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When added to the model as covariate, glucose concentration was found to be a significant 

predictor of serial 3s score only [F(1,345.39)=6.81, p=0.009]; higher glucose levels were predictive of 

better cognitive performance [beta=1.406]. In order to further investigate the relationship between 

glucose and serial 3s task performance, covariate interactions with the fixed factors Session & Dose 

were added to the LMM model. Glucose x Session [F(2,208.96)=5.16, p=0.006], and Glucose x Dose 

[F(3,308.62)=4.81, p=0.003] were found to be statistically significant, however Glucose x Session x 

Dose was not [F(6,241.69)=1.69, p=0.125]. For the Glucose x Session interaction, beta coefficients 

were: baseline [beta=1.748]; 1 hour [beta=1.831]; 2 hours [beta=2.841]. Therefore, at later time 

points a greater proportional difference in serial 3s performance was observed for each unit 

difference in blood glucose i.e. blood glucose level showed greatest impact on cognitive 

performance at 2 hours postprandially. For the Glucose x Dose interaction, beta coefficients were: 

0mg [beta=2.841]; 310mg [beta=0.308]; 517mg [beta=6.497]; 724mg [beta=5.063]. Therefore, 

differences in blood glucose showed the greatest impact on cognitive performance following the 

two highest blueberry doses. 

6.4.3 Mood analysis 

Tabulated means for all mood data can be found in Table 6.7. LMM results for the analyses of 

positive affect, negative affect and mental fatigue can be found in Appendix L. For clarity, only 

significant F-statistics are reported in full in the text.  
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Table 6.7 Mood data for Experiment 4 (n=41) 

             Test session 

Mood measure 

 

Dose 

 

Baseline 

 

1 hr 

 

2 hr 

  

 

  

 

Mean SD 

 

Mean SD 

 

Mean SD 

    

    

 

    

   Mental fatigue 
(rating/9) 

 

0mg 

 

4.17 2.10 

 

3.83 2.17 

 

4.00 2.22 

 

310mg 

 

4.54 2.27 
 

4.34 2.27 
 

4.27 2.11 

  

517mg 

 

4.34 2.15 
 

3.88 1.82 
 

3.59 1.72 

  

724mg 

 

4.56 2.26 
 

4.49 2.05 
 

4.05 1.96 

            Positive affect 
(score/50) 

 

0mg 

 

23.90 8.52 

 

21.93 7.47 

 

23.67 8.13 

 

310mg 

 

21.95 8.01 
 

21.51 8.03 
 

23.20 8.35 

  

517mg 

 

22.78 7.44 
 

23.71 7.77 
 

24.76 9.19 

  

724mg 

 

22.41 8.39 
 

22.41 7.49 
 

23.73 7.84 

 

           Negative affect 
(score/50) 

 

0mg 

 

12.49 2.70 

 

11.90 3.13 

 

11.97 2.99 

 

310mg 

 

12.63 4.04 
 

12.51 3.49 

 

12.32 2.71 

  

517mg 

 

12.76 3.71 
 

12.27 3.32 
 

12.00 2.74 

  

724mg 

 

13.54 4.15 
 

12.37 3.48 

 

11.98 2.58 

                        

 

For all subjective mood measures Visit was not a significant factor [p>0.1], indicating no order 

effects for these measures. Subsequently, pairwise comparisons revealed there were no significant 

baseline differences for any of the counterbalanced dose conditions [p>0.1]. Dose and Session x 

Dose interaction were not significant for any of the mood measures [p>0.1]. Session, however, was 

observed to be a significant predictor of positive affect [F(2,161.97)=4.99, p=0.008], negative affect 

[F(2,161.93)=4.63, p=0.011], and mental fatigue [F(2,163.32)=3.45, p=0.034]. Pairwise comparisons 

revealed: a significant increase in positive affect between the 1 & 2 hour test sessions [p=0.007]; a 

significant reduction in negative affect between baseline & 1 hour [p=0.038], and baseline & 2 hours 

[p=0.009]; and a significant reduction in mental fatigue between baseline & 2 hours [p=0.028]. These 

Session effects are most likely attributable to the consumption of an energy-containing drink, 

irrespective of dose condition.  

More detailed interpretation of pairwise comparisons for the Session x Dose interaction revealed a 

trend towards decreased positive affect between baseline & 1hour following the control condition 
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[p=0.091]; no similar trends were observed following any of the blueberry conditions. A trend 

towards reduced mental fatigue between baseline & 2 hours was observed following the 517mg 

dose [p=0.076]. The highest (724mg) dose elicited significant reductions in negative affect between 

baseline & 1hr [p=0.041], and between baseline & 2hrs [p=0.010], as shown in Figure 6.5.  When 

added to the model as a repeated covariate, blood glucose concentration approached significance as 

a predictor of mental fatigue [F(1,364.76)=3.12, p=0.078]; higher glucose levels were predictive of 

lower levels of mental fatigue [beta=-0.227]. Following their addition to the model, no covariate 

interactions were observed to be significant. 

 

Figure 6.5 The interaction between session and dose for negative affect 

Values are estimated marginal means. Error bars represent standard error of the mean.  A significant 
difference from baseline is indicated above the column, **(p<0.05), *(p<0.05).  

 

6.4.4 Cohen’s d effect sizes  

Cohen’s d effect sizes for all significant interactions (identified by pairwise comparisons) are shown 

in Table 6.8. Effect sizes were calculated from estimated marginal means and standard error values 

using the method described in Chapter 2. For cognition and mood effects, difference from baseline 

following blueberry intervention was compared with difference from baseline following the control. 

Glucose effect sizes indicate the difference compared to control at the stated postprandial time 

point.   
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Table 6.8 Cohen's d effect sizes for Experiment 4 

Table 6.8 continued   

    Variable  Dose   Time point   Cohen's d 

Physiology:   

    Blood glucose  517mg 

 

15 mins 

 

**0.647 

 

 724mg 

 

15 mins 

 

**0.876 

 

  

 

30 mins 

 

**0.789 

Cognition:   

    Digit vigilance RT  517mg 

 

1h 

 

*-0.200 

 

  

 

2h 

 

†-0.023 

 

  

    RVIP score  310mg 

 

1h 

 

(†)-0.219 

 

 517mg 

 

1h 

 

(†)-0.085 

 

 724mg 

 

1h 

 

(†)-0.373 

 

  

    Serial 3s score  310mg 

 

1h 

 

(*)-0.119 

 

  

 

2h 

 

(*)-0.178 

 

 517mg 

 

1h 

 

**0.143 

 

  

 

2h 

 

**0.258 

 

 724mg 

 

1h 

 

*0.031 

 

  

 

2h 

 

*0.021 

 

  

    Serial 3s errors  310mg 

 

2h 

 

(†)0.187 

 

 517mg 

 

2h 

 

(†)0.330 

 

 724mg 

 

2h 

 

(†)0.378 

 

  

    Serial 3s RT  310mg 

 

1h 

 

(*)-0.295 

 

  

 

2h 

 

(*)-0.434 

 

 517mg 

 

1h 

 

**0.167 

 

  

 

2h 

 

**0.633 

 

 724mg 

 

1h 

 

*0.062 

 

  

 

2h 

 

**0.362 

 

  

    Serial 7s score  517mg 

 

1h 

 

†0.362 

 

  

 

2h 

 

*0.248 

 

 724mg 

 

2h 

 

*0.116 

 

  

    Serial 7s RT  517mg 

 

1h 

 

*0.116 
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Table 6.8 continued   

    Variable  Dose   Time point   Cohen's d 

 

  

 

2h 

 

*0.297 

 

 724mg 

 

1h 

 

*0.142 

Mood:   

    Mental fatigue  517mg 

 

2h 

 

†0.241 

 

  

    Positive affect  310mg 

 

1h 

 

(†)0.294 

 

 517mg 

 

1h 

 

(†)0.507 

 

 724mg 

 

1h 

 

(†)0.345 

 

  

    Negative affect  724mg 

 

1 h 

 

*0.197 

 

  

 

2h 

 

**0.305 

    

    Cohen’s d values represent small (d=0.2), medium (d=0.5), and large (d=0.8) effect sizes, respectively. Positive 
values indicate performance improvements, and negative values indicate detriments to performance, 
compared to the control.  Significance of the underlying pairwise comparison is indicated, **(p<0.01), 
*(p<0.05), †(p<0.1). The use of brackets, (*), (†), indicates a change from baseline for the control condition, 
which was attenuated for the blueberry condition. 

 

6.4.5 Palatability analysis 

LMM analysis of the palatability data revealed a significant effect of dose for ‘sweet’ 

[F(3,40.81)=15.76, p<0.001], ‘bland’[F(3,40.94)=6.79, p=0.001], and ‘sour’ [F(3,40.63)=8.82, 

p<0.001]rating dimensions, but nor for ‘tasty’[p=0.114], ‘pleasant’[p=0.112], ‘satisfying’[p=0.382], 

‘how much more could you consume?’[p=0.429], and ‘how easy was it to consume?’ [p=0.714] 

ratings. The effect of dose on each rating dimension is shown in Figure 6.6. The 0mg control drink 

was rated as tasting significantly sweeter than all of the blueberry doses [p<0.001]. The 517mg and 

724mg doses were rated significantly more sour than the control [<0.001], and were each rated 

marginally more sour than the 310mg dose, [p=0.093] and [p=0.058], respectively. However, 

although there were noticeable differences between interventions for specific taste dimensions 

(sweet, bland, sour), they appeared well-matched in terms of overall taste, pleasantness and 

satisfaction ratings. 
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Figure 6.6 Palatability ratings for all intervention doses in Experiment 4 

Values are estimated marginal means. Error bars represent standard error of the mean. 

 

6.5 Discussion 

LMM analysis revealed a significant dose-dependent effect of anthocyanin-rich blueberry on 

postprandial glucose response. Specifically, the 724mg and 517mg doses, but not the 310mg dose, 

significantly attenuated peak postprandial glucose compared to the control condition. Observed 

effect sizes were large following the 724mg dose and moderate following the 517mg dose. However, 

unlike my previous results in Experiment 3 (Chapter 5), no extended elevation of blood glucose was 

observed following any of the blueberry doses.  

The lack of a LMM Dose x Session interaction for any of the cognitive or mood DVs suggests that, in 

this experiment, blueberry anthocyanins had no effect on mood or cognition at any dose when 

compared with the matched control condition. However, when employing statistically less 

conservative pairwise comparisons, as recommended by Huck (2015), significant effects on mood 

and working memory became evident. In particular, the 724mg dose elicited a significant reduction 

in negative affect between baseline and 1 & 2hrs, while positive affect decreased at 1 hour following 

the control but not following any of the blueberry doses. Improvements in serial 3s score & RT, at 1 

& 2 hour time points, were evident following the two highest (517mg & 724mg) blueberry doses but 
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not the lowest 310mg dose. In this case, similar score & RT improvements were also observed 

following the matched control, although here the improvements were accompanied by an increase 

in errors that approached significance at 2 hours. No such increased error rate was observed for any 

of the blueberry conditions. Improvements in serial 7s score & RT were evident at 1 & 2 hours 

following the 516mg & 724mg doses only.  

No cognitive benefits were observed for the digit vigilance or RVIP tasks suggesting that they were 

not sensitive to flavonoid-rich intervention in this study. During the piloting of the tasks (Chapter 3), 

the digit vigilance task was rated the easiest of all the tasks in the cognitive battery so it may be that 

a more demanding cognitive load is needed before blueberry effects become apparent. Indeed, a 

similar observation has been made in a study of executive function in children following blueberry 

intervention (Whyte, Shafer, & Williams, 2017). However, the RVIP task was rated at a similar level 

of difficulty as the serial 7s task. It is unclear why intervention with anthocyanin-rich blueberry 

should elicit improvement in serial 7s but not RVIP, as the tasks were well matched for cognitive 

load, with some overlap in cognitive domain. The RVIP task has previously shown sensitivity to 

flavonoid-rich intervention in young adult populations (Scholey et al., 2010; Watson et al., 2015). 

While Scholey et al. (2010) investigated flavanol-rich cocoa, Watson et al. (2015) observed 

maintenance of RVIP accuracy compared to control following a freeze-dried blackcurrant extract rich 

in anthocyanins. However in the same study, a juiced extract from a different cultivar did not elicit 

the same effect. Conversely, significant improvements in digit vigilance RT were observed following 

the juice but not the freeze-dried extract. Therefore it may be that different profiles of anthocyanins 

or other polyphenols also present, or indeed other components of the food matrix, may impact very 

specific cognitive domains via different mechanisms of action. For example, in the same experiment, 

the juice elicited altered postprandial glucose response and inhibited monoamine oxidase, whereas 

the freeze-dried extract showed neither effect. Due to cost implications, the exact polyphenol and 

anthocyanin profiles for the freeze-dried powder used here were not determined, but such analyses 

should be considered in future work. 

The improvements to working memory following the highest doses of anthocyanin-rich blueberry 

are similar to the effects observed in Experiment 2 (Chapter 4); the observed small to moderate 

effect sizes compare favourably between the two thesis chapters and are in agreement with 

literature values. Similar effects on serial subtraction performance have been observed following 

flavonoid-rich intervention e.g. (Kennedy et al., 2002; Massee et al., 2015; Scholey et al., 2010) and 

are reported in Chapter 1. No significant differences in blood glucose were evident at the time of 

cognitive testing in the current study, suggesting that elevated glucose could not be a cause of the 
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observed cognitive effects. However, the two highest doses were observed to significantly attenuate 

the peak postprandial glucose response. Therefore, changes to blood glucose regulation may still, at 

least in part, underlie these working memory effects through other related mechanisms of action, 

for example through insulin effects. The co-regulation of insulin and glucose is particularly important 

when considering the impact of carbohydrate on cognitive function as it is insulin that facilitates the  

uptake of glucose to the brain e.g.(Gibson, 2007; Kullmann et al., 2016). Indeed, acute increases in 

insulin have been observed to improve cognition and vasoreactivity (Novak et al., 2014). Insulin was 

not measured for this thesis but should be included in future work. As discussed in the previous 

chapter, it has been demonstrated that foods which elicit a favourable postprandial glycaemic 

response are beneficial for cognition (Lamport, Lawton, et al., 2014), even at later time points where 

no blood glucose differences are apparent (Benton & Nabb, 2003; Lamport et al., 2011).  Therefore 

the overall glucose (or insulin) profile may be important, not just the plasma glucose level at the 

time of cognitive testing. Indeed, at the 2 hour time point, where mean blood glucose fell below 

baseline for all dose conditions, effect sizes for improvements in serial 3s RT following the 517mg 

and 724mg doses were at their greatest. Further, irrespective of dose condition or time point, blood 

glucose concentration was observed to be a significant predictor of serial 3s score and approached 

significance as a predictor of mental fatigue in the current experiment. As marginal decreases in 

mental fatigue were also observed following the 517mg dose, there is some suggestion that 

increases in task performance may be facilitated by immediate availability of plasma glucose, 

perhaps affording protection against mental fatigue. Such a mechanism may be particularly relevant 

in cognitively demanding working memory tasks that are combined with a rapid speed of processing 

component, such as in the serial subtraction tasks used here.  Indeed similar observations have been 

made in the literature (Massee et al., 2015; Scholey et al., 2010). 

When considering the original hypothesis that cognitive benefits following blueberry intervention 

might be related to CBF increases, the results of this experiment echo my observations in 

Experiment 2 (Chapter 4) and do not appear compatible with the findings of Rodriguez-Mateos et al. 

(2013), where peak vasodilatory effects occurred following the 310mg anthocyanins dose. Therefore 

the outcome of this study casts further doubt on whether increased CBF following flavonoid-rich 

intervention may be the main mechanism for acute cognitive enhancement. In light of the discussed 

evidence relating to anthocyanin-facilitated improvements to blood glucose regulation (Chapter 5), 

it seems more likely that cognitive effects may arise from a synergy between increased CBF and 

improved glucoregulation. A well-powered intervention study similar to the one performed here, 

manipulating both flavonoid dose and glucose dose, and combining postprandial cognition and 
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blood glucose testing with FMD or fMRI analysis in a subset of participants, may help to confirm this 

hypothesis. 

The observed mood effects, again identified through pairwise comparisons, compare favourably 

with the literature.  For example, Khalid et al. (2017) observed improvements in positive affect, in 

young adults, 2 hours after a consumption of a blueberry dose containing 253mg anthocyanins. 

Increases in ratings of calmness have also been reported following anthocyanin-rich grape 

intervention (Haskell-Ramsay et al., 2017). Studies investigating interventions rich in other flavonoid 

subgroups have also shown similar effects on self-reported ratings of mood and mental fatigue e.g. 

(Boolani et al., 2017; Massee et al., 2015; Scholey et al., 2012). In the current study, a marginal 

reduction in positive affect, at 1 hour following the control condition, was attenuated following all 

three blueberry doses. The 517mg dose reduced mental fatigue, and interestingly, the highest 

(724mg) dose also significantly reduced negative affect; an effect not observed by Khalid et al. 

(2017). While a similar reduction in negative affect, following the 310mg dose in Chapter 4, may 

have been confounded by differences in the pleasantness of the doses, in this experiment no such 

differences were evident. Therefore it is unlikely that the observed effects on positive, or negative, 

affect here are simply due to the consumption of a pleasant beverage. 

Positive and negative affect, as determined by PANAS, are distinct facets of mood. Low positive 

affect is an indicator of depression, whereas high negative affect is an indicator of anxiety (D. 

Watson et al., 1988), therefore different flavonoid mechanisms may be responsible for observed 

changes in either scale. Here, it has been posited that acute cognitive improvements following 

flavonoid-rich intervention are likely due to an interaction between improvements in blood glucose 

regulation and CBF. However, the underlying mechanisms for acute mood improvements may be 

more complex. Khalid et al. (2017) posit that glucose consumption may enhance uptake of 

tryptophan, a precursor of serotonin, to the brain. This insulin driven mechanism of action requires 

competing large neutral amino acids to be selectively transported into peripheral tissue, increasing 

the ratio of circulating tryptophan available for transport across the blood brain barrier. However 

this has been reported not to occur if glucose is consumed with even small levels of plant or animal 

protein, which are naturally low in tryptophan compared with other amino acids and thereby 

oppose any increase in the ratio of circulating tryptophan (Benton & Donohoe, 1999; Benton & 

Nabb, 2003; Gibson & Green, 2002).  Therefore this mechanism is unlikely to be responsible for the 

blueberry influence on negative affect observed here. Increased availability of glucose has also been 

associated with a reduction in self-reported tension (Benton & Owens, 1993). The mechanism 

remains unclear but is again suggestive of an impact on negative affect. Falling glucose levels during 
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cognitively demanding tasks have been associated with increases in mental fatigue (Owens, Parker, 

& Benton, 1997), therefore flavonoid induced improvements in glucoregulation may afford 

protection against mental fatigue, thereby attenuating a dip in mood. Blood glucose effects are 

likely, then, to contribute to flavonoid induced mood effects. But other flavonoid related mood 

mechanisms have been observed. For example, anxiolytic effects have been observed via flavonoid 

interaction with GABA receptors, leading to the upregulation of the inhibitory neurotransmitter 

GABA (Hanrahan, Chebib, & Johnston, 2011; Wasowski & Marder, 2012). Anthocyanins have also 

been observed to inhibit monoamine oxidase (MAO) (Watson et al., 2015), resulting in the 

upregulation of monoamine type neurotransmitters such as serotonin and dopamine. These 

mechanisms were not tested in the current study, but may have contributed to the observed mood 

effects, and therefore warrant further investigation.  

When considering the varying physiological, cognitive and mood effects observed in this experiment 

following different blueberry doses, it should be noted that the doses administered were from a 

batch of blueberry powder different from that used previously, both in earlier chapters of this thesis 

and in the Rodriguez-Mateos et al (2013) study. The lowest blueberry dose containing 310mg 

anthocyanins elicited no glucose, mood or cognitive effects in the current study. Although the dose 

contained a level of anthocyanins comparable to previous research, which has shown significant 

cognition or mood effects (Khalid et al., 2017; Whyte & Williams, 2015; Whyte et al., 2016), the total 

polyphenol content of this dose (473mg total polyphenols) was lower than that found in the 

equivalent dose (766mg polyphenols) for which a peak vasodilatory response had been previously 

observed (Rodriguez-Mateos et al., 2013). It is possible that anthocyanins may not be effective in 

isolation; other polyphenols also present may be a contributory factor in improvements to 

vasodilation, cognition and mood. However, the 310mg dose did not elicit any cognitive effects in 

Experiment 2 (Chapter 4) either, when the previous batch of powder was used. Negative affect was 

reduced following this dose in Chapter 4, but this outcome may have been influenced by taste 

differences rather than flavonoid effects. Therefore, irrespective of total polyphenol content, the 

310mg dose appeared relatively ineffective in the current research. Studies using extracts of 

anthocyanins may be more helpful in isolating their specific benefits, in the absence of other 

polyphenol confounds. 

In the previous investigation of glycaemic response (Chapter 5), extended availability of blood 

glucose was observed up to 2 hours postprandially following the 724mg dose and up to 90 minutes 

following the 310mg dose. In that experiment the sugar matched doses and control all contained 

40g sugar; substantially higher than the 26.7g in the current experiment. Indeed, an additional 
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difference between this study and the previous literature is the considerably lower availability of 

sugars or more complex forms of carbohydrate. In similar flavonoid-rich intervention studies 

reviewed in Chapter 1 (Dodd, 2012; Field, Williams, & Butler, 2011; Haskell-Ramsay et al., 2017; 

Khalid et al., 2017; Lamport et al., 2016; Scholey et al., 2010; Watson et al., 2015), this value ranged 

from 19.9g-55g, and in all cases further forms of carbohydrate were introduced through the 

provision of standardised breakfasts and lunches or the addition of cordials to improve intervention 

taste. Therefore the overall carbohydrate consumption in these studies was much greater than in 

the current study. Given the known effects of flavonoid-rich foods on postprandial blood glucose 

response, it is possible that in all of these studies blood glucose levels remained elevated for longer 

periods in the flavonoid-rich conditions compared with the control conditions, due to the abundant 

availability of glucose. Indeed this was evident in the Watson et al (2015) study, where blood glucose 

remained significantly elevated up to 2.5 hours after a blackcurrant juice extract. In Experiment 2 

(Chapter 4) cognitive testing did not take place at the later time point when differential glucose 

concentrations were subsequently observed (Chapter 5). However, it is possible that cognitive 

effects at later time points may be more likely to occur when flavonoid-rich foods are consumed 

with higher amounts of glucose, due to increased availability combined with facilitated uptake of 

glucose. None of the other studies reviewed in Chapter 1 recorded blood glucose during cognitive 

test sessions so this cannot be confirmed as a potential mechanism of action, but nevertheless, 

warrants further investigation.  

When interpreting the cognitive data presented here, it is important to recognise that the 

dependent variables for each cognitive task (score, errors, RT) are intrinsically related. A limitation of 

the type of analysis performed here is that each dependent variable is analysed separately. 

Therefore greater weight should be given to the findings that extend across two or more of these 

variables. Where only one variable is affected, there may be a greater likelihood of type 1 error. 

Some of the isolated cognitive effects observed here, such as the worsening performance for RVIP 

and digit vigilance, may indeed be false positives and should be interpreted with caution. 

Nevertheless, the effects on working memory appear consistent across scores, errors and RTs, and 

are in line with previous research.  Future research should seek to develop ways of combining 

related dependent variables in their analyses. Currently available methods such as hits minus false 

alarms, summation of z scores, or inverse efficiency scores (expressing accuracy as a function of RT) 

often suffer from a lack of statistical power due to increased variance in the combined data (Bruyer 

& Brysbaert, 2011). Such methods were, therefore, considered inappropriate for the current work in 

light of the already considerable variance within the data that resulted from the within-subjects 

design incorporating multiple conditions and time points. 
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In conclusion, only limited dose-dependent cognition and mood effects were apparent, as identified 

through Bonferroni corrected pairwise comparisons. With respect to the research questions, the 

highest blueberry dose (containing 724mg anthocyanins) has shown a small modulating effect on 

mood and cognition, and the second highest dose (517mg) has shown effects on cognition, whereas 

the lowest dose (310mg) has not impacted either domain. This is clearly suggestive of a dose 

dependent effect that may be related to the concurrently observed effects on blood glucose 

regulation, and may also relate to the previously observed effects on vasodilation (Rodriguez-

Mateos et al., 2013). Indeed a synergy of the two effects offers a plausible mechanism for improved 

cognition as discussed in Chapter 5. Mood effects may be less straightforward. As discussed above, 

other potential mechanisms of action such as monoamine oxidase inhibition and GABA upregulation 

have not been investigated here but may be responsible for observed mood effects. Finally, although 

dose-dependent effects were evident, it remains unclear whether the anthocyanin dose or the total 

polyphenol dose was the determining factor for the observed effects on either cognition or mood. 
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Chapter 7  

Final Discussion 

7.1 Summary of findings 

Following recent interest in the maintenance of health and wellbeing through dietary intervention, 

the acute cognitive and mood benefits of wild blueberries were investigated in a young adult 

population. The main thesis aims were to determine whether cognition and mood effects following 

wild blueberry supplementation were dose dependent, and whether modulation of blood glucose 

regulation was a likely mechanism of action. The cognitive, mood, blood pressure, and blood glucose 

effects of various wild blueberry doses, with known postprandial metabolite and FMD response 

profiles, were investigated across three separate experiments, each using a crossover design. Key 

findings included dose-dependent cognitive benefits to episodic memory, working memory, and 

mood. In addition, dose-dependent effects on postprandial blood glucose regulation were observed, 

providing evidence for a possible mechanism of action. Indeed, in the case of working memory, 

blood glucose at the time of cognitive testing was found to be a significant predictor of performance. 

The outcome of each experiment is discussed in more detail below. 

7.1.1 Experiment 1 

All cognitive tasks were first piloted in Experiment 1 in order to determine appropriate design 

strategies for minimizing cognitive practice effects. Methodological recommendations following the 

outcome of Experiment 1 were that participants should attend a familiarization visit on a separate 

occasion prior to data collection, and that well-correlated alternate task forms should be used at 

each test point, with familiarization trials also included immediately before each period of data 

collection. Visit order was also included as a factor in the subsequent analysis of all cognitive data in 

order to statistically model any residual practice effects, thereby accounting for some of the variance 

in the data that may otherwise have been attributed to intervention effects. 

7.1.2 Experiment 2 

Following on from Experiment 1, an investigation into the effects of wild blueberry on cognitive 

function was performed using the previously piloted cognitive tasks. In Experiment 2, a double-blind, 

crossover intervention study compared the effects of five separate wild blueberry doses (containing 

129mg, 258mg, 310mg, 517mg, and 724mg anthocyanins) with a sugar-matched control. Measures 

included cognition, mood, blood pressure and heart rate. Testing was performed at baseline, and 1 
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hour postprandially.  No significant blood pressure effects were observed for any of the doses when 

compared with the control. However, consumption of the highest doses (517mg & 724mg) appeared 

to convey small to medium protective benefits for the maintenance of a constant heart rate. 

Following the control and 258mg blueberry dose heart rate was observed to drop significantly. Heart 

rate is strongly correlated with blood glucose and so the attenuation of postprandial decline in heart 

rate following these doses is suggestive of a dose-dependent glucoregulatory effect. The same doses 

similarly showed maintenance of immediate recall memory score, and improvements in serial 7s 

performance for both score and reaction time. The 310mg dose elicited small to medium benefits in 

mental fatigue and mood, although these findings may have been confounded by taste differences 

between the intervention doses. The lower (129mg & 258mg) doses showed no consistent domain 

specific effects for cognition or mood.  

7.1.3 Experiment 3 

Based on the physiological and cognitive observations from Experiment 2, and the probable link 

between postprandial heart rate and blood glucose availability, it was deemed necessary to 

investigate the underlying glucose response for the doses that elicited heart rate, cognition and 

mood effects. Therefore in Experiment 3, the impact of anthocyanin-rich wild blueberry on 

postprandial glucose response was investigated for two of the doses used in Experiment 2. Blueberry 

doses containing 310mg and 724mg anthocyanins were administered to participants, in both sugar-

matched and no-added-sugar conditions. Plasma glucose was determined by a capillary sampling 

method at baseline and at regular intervals up to 2.5 hours postprandially. The results demonstrated 

that wild blueberry significantly extended the postprandial glycaemic response compared with the 

equivalent sugar dose in the absence of blueberry. Indeed, blood glucose levels remained 

significantly elevated above baseline for 2 hours following a blueberry dose containing 724mg 

anthocyanins, and for 1.5 hours following a lower 310mg dose. These post-peak elevations were in 

the range of 0.5-1.5mmol/l above fasting baseline which is well within the healthy postprandial 

blood glucose range (American Diabetes Association, 2014) and is metabolically beneficial through 

the avoidance of reactive hypoglycaemic episodes (Willett et al., 2002) where glucose level falls 

close to or below fasting levels. Furthermore, blueberry was observed to reduce peak postprandial 

glucose levels, although statistical significance was not achieved.  The results were suggestive of a 

possible glucoregulatory mechanism of action for the observed heart rate, cognition, and mood 

effects in Experiment 2, through extended availability of blood glucose in the blueberry conditions. 

Indeed, at the time of cognitive testing in the previous experiment (1 hour postprandially), blood 

glucose remained significantly elevated above baseline following the 310mg and 724mg sugar-
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matched doses, but not following the sugar–matched control. However, apparent blood glucose 

differences between each of these three matched conditions did not reach statistical significance at 

the 1 hour time point. This may be due to a lack of statistical power as this was a small study, but 

also suggests that anthocyanin-rich blueberries may not facilitate improvements to cognition solely 

through availability of glucose, but also through other related mechanisms such as insulin regulation 

leading to increased efficiency of glucose uptake. Clear differences in glucose availability were 

evident at later time points providing a rationale for the investigation of cognitive effects beyond 1 

hour. 

7.1.4 Experiment 4 

As Experiment 3 revealed extended availability of blood glucose following anthocyanin-rich 

blueberry, a repeat of the cognitive investigation performed in Experiment 2 was carried out, but 

with the addition of a later testing time point at 2 hours postprandially. A modified cognitive task 

battery was also administered to investigate whether glucose differences at this later time point 

would elicit effects not previously measured by the cognitive battery from Experiment 2. Specifically, 

a greater emphasis was placed on attention as both glucose and flavonoid interventions have been 

independently reported to impact attention.  Therefore in Experiment 4, a double-blind, crossover 

intervention study compared the effects of three separate wild blueberry doses (containing 310mg, 

517mg, and 724mg anthocyanins) with a sugar-matched control. Measures included cognition, 

mood, and postprandial glucose response. Testing was performed at baseline, and 1 and 2 hours 

postprandially. The wild blueberry doses containing 517mg and 724mg anthocyanins elicited 

significant improvements in working memory at 1 and 2 hours, as measured by the serial subtraction 

task. Following the 724mg dose, participants also reported a significant reduction in negative affect. 

Both the 517mg and 724mg doses significantly attenuated the peak postprandial glucose response, 

when compared to the control, at a time point of 15 minutes. However, blood glucose levels 

following wild blueberry intervention were not found to be significantly different from those 

observed following the control at either time of cognition and mood testing. The 310mg dose 

produced no significant cognitive, mood or glucose effects. Interestingly, this dose was previously 

observed to elicit the greatest vasodilatory response when measured for the same range of wild 

blueberry doses. The findings suggest that benefits to cognition and mood following wild blueberry 

supplementation may be related to concurrent alterations in blood glucose regulation. Indeed, 

irrespective of experimental condition, blood glucose level was observed to be a significant predictor 

of serial subtraction performance. A similar observation was made by Kennedy & Scholey (2000) 

during a glucose intervention, where serial 7s performance correlated with blood glucose level.  
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7.2 General discussion 

In this section the cognitive and physiological effects of anthocyanin-rich blueberries reported above 

are compared with the literature. Potential mechanisms of action are discussed in relation to the 

thesis hypotheses. 

7.2.1 Cognitive effects 

The episodic memory effects observed in Experiment 2 are consistent with the findings of Whyte et 

al. (2016), where increased immediate recall was observed at 1.25 hours postprandially in children. 

Here the same effect has been demonstrated in young adults. The effect size appears somewhat 

diminished in the young adults (d=0.29) compared with the children (d=0.80). Indeed, in the children 

immediate recall improved between baseline and test following blueberry intervention, whereas in 

the young adults blueberry merely attenuated a decline in performance. The differences in effect 

may reflect developmental differences in the capacity for improvement. Interestingly, in the child 

study it was the higher of two blueberry doses (253mg anthocyanins) that elicited a significant 

effect. In young adults, effects were similarly observed following the higher blueberry doses (517mg 

and 724mg), although the 129mg dose did also elicit an immediate recall effect. In general however, 

there is some evidence for dose-dependency with higher doses being more effective. Differences in 

the effective dose sizes between the two studies may simply reflect body mass differences between 

the different age groups. Indeed, for an average child weighing 27.5kg (based on NHS growth curve 

data), the effective dose in Whyte et al. (2016) was calculated to be 9.2mg/kg body weight. For a 

60kg young adult this equates to an anthocyanin dose of 552mg, which is comparable to the 517mg 

and 724mg doses that were observed to elicit significant effects in Experiment 2. 

The working memory effects observed in Experiments 2 and 4 are consistent with the findings of 

Scholey et al. (2010), Massee et al. (2015), and Kennedy et al. (2002), who observed serial 3s and 

serial 7s improvements following acute doses of cocoa and ginkgo in young adults. However this is 

the first study to demonstrate a similar effect following anthocyanin-rich blueberry. Again, the effect 

sizes are smaller in this thesis (d=0.02-0.42) compared with the previous work (d=0.47-0.56). As with 

cocoa, significant effects following blueberry were evident at 1 - 2 hours postprandially, whereas 

ginkgo effects occurred at a later time point of 6 hours, reflecting differences in the absorption and 

metabolism rates of the different flavonoid subclasses present. A notable difference between the 

previous and current work is that effect sizes for blueberry were clearly dose dependent; in 

Experiment 2 effect sizes were largest following the 724mg dose and no significant effects were 

observed for doses of 310mg or lower. In Experiment 4 the largest effect sizes were observed 
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following the 517mg dose, but were still evident following the 724mg dose. Again, no significant 

performance improvements were evident following the 310mg dose. However, fewer doses were 

investigated in the previous literature and the flavonoid profiles of cocoa and ginkgo are very 

different to blueberry, making direct dose comparisons difficult. 

Previous literature on acute mood changes following flavonoid-rich intervention is limited. However 

the effects on positive and negative affect observed in Experiments 2 and 4 are broadly in 

agreement with recent published data. Khalid et al. (2017) observed significant improvements in 

positive affect following a single blueberry dose containing 253mg anthocyanins in both children and 

young adults, and Boolani et al. (2017) observed a reduction in anxiety in young adults following 

cocoa. The outcomes of these two studies suggest that flavonoid-rich interventions can impact 

different facets of mood; depression or anxiety. In the current thesis the findings of Experiment 2 

revealed a reduction in negative affect following the 310mg dose only. This observation may have 

been confounded by significant taste differences between doses, but in Experiment 4, where taste 

differences were minimal, maintenance of positive affect was observed for all blueberry conditions 

when compared with a marginally significant drop in the control condition, and a significant 

reduction in negative affect was observed following the 517mg and 724mg doses. The findings 

suggest that, at varying doses, anthocyanin-rich blueberries may exert effects on both anxiety and 

depression scales of mood. 

7.2.2 Physiological effects 

Experiment 2 failed to replicate the reductions in blood pressure observed following acute 

supplementation with cherry juice (Keane et al 2016). Therefore, it may be that different flavonoid-

rich fruits elicit different cardiovascular effects due to differences in their flavonoid profile. 

Differences in flavonoid composition are considered in the limitations section below. However 

despite the lack of a blood pressure effect, constant heart rate was maintained following the 517mg 

blueberry dose, despite a significant drop following the control. To a lesser degree this decline in 

heart rate was also attenuated following the 129mg, 310mg and 724mg blueberry doses. This effect 

was unexpected as similar findings have not been previously reported in the literature, but is 

suggestive of a glucoregulatory effect as heart rate is correlated with glucose availability (Valensi et 

al., 2011). Indeed, when postprandial glucose response was subsequently investigated in 

Experiments 3 and 4, significant differences in glucose profile were observed between the control 

and blueberry conditions. Similar glucoregulatory effects have been previously observed for a 

number of different anthocyanin-rich berry interventions e.g. (Törrönen et al., 2010; Watson et al., 

2015; Wilson et al., 2008). Heart rate and blood glucose were not recorded concurrently during any 
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of the experiments carried out during this thesis. On reflection it may have been helpful to do so in 

Experiment 4. Nevertheless, evidence of the interaction between glucose, heart rate and cognition 

has previously been reported following direct supplementation with glucose (Kennedy & Scholey, 

2000). 

7.2.3 Mechanisms of action 

Combined, the cognitive findings of each of the blueberry intervention experiments reported in this 

thesis support the hypothesis that wild blueberry effects on cognition are dose-dependent, with 

doses containing 517mg and 724mg anthocyanins eliciting the greatest cognitive effects. However, 

contrary to expectation, the most effective doses were higher than the 310mg dose previously 

observed to elicit the greatest vasodilatory response by Rodriguez-Mateos et al. (2013). No 

vasodilatory measures were recorded during any of the current experiments; vasodilatory response 

was inferred from the previous research, using the same source of blueberry powder in participants 

of a similar age. Nevertheless, the results suggest that other mechanism(s) may play a role in 

improvements to cognition. Indeed, it was hypothesised that dose-dependent blood glucose effects 

would likely contribute to the cognitive outcome of the study through a mechanism of increased 

availability of glucose to the brain. Few cognitive studies have measured blood glucose to date, 

however Watson et al. (2015) demonstrated enhanced cognition and concurrently elevated blood 

glucose following an anthocyanin-rich berry intervention. As reported in Chapter 5 there are a 

number of mechanisms whereby flavonoid interventions, and in particular those rich in 

anthocyanins, have been shown to impact glucoregulation, supporting the idea that flavonoid 

intervention may improve availability or efficiency of glucose uptake by the brain during cognitive 

exertion. This hypothesis was supported in Experiment 4, where cognitive performance and blood 

glucose were measured concurrently, and the 517mg and 724mg doses elicited significant 

modulation of the postprandial blood glucose profile and significant improvements to working 

memory and mood, whereas the 310mg dose did neither. In the same experiment, blood glucose 

level was also observed to be a significant predictor of working memory performance irrespective of 

dose condition, providing further evidence that cognitive outcome is dependent on the availability of 

glucose. Improved glucoregulation did not appear to facilitate global increases in cognition as there 

were no significant effects observed for the RVIP or digit vigilance tasks. Observed effects were 

clearly domain specific, relating to episodic memory, working memory, and mood. The availability of 

extracellular glucose and improved glucoregulation have  been associated with improved episodic 

memory and working memory (for a comprehensive review see Smith, Riby, Eekelen, & Foster, 

2011). There is some evidence that hippocampus function may be selectively enhanced by glucose, 
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possibly due to the increased number of insulin receptors in this area of the brain (Smith et al., 

2011). There is also some evidence that glucose facilitates the synthesis of acetylcholine and 

influences the action of other neurotransmitters including dopamine and serotonin (Benton & Nabb, 

2003; Benton et al., 1994). These neurotransmitter effects have the potential to facilitate global 

cognition and mood improvements such as the serial subtraction and PANAS effects observed in this 

thesis. However, it remains unclear why such mechanisms should not also impact attention. No 

consistent attention effects were observed on any of the tasks deployed in this work, although other 

authors have reported such actions e.g. (Haskell-Ramsay et al., 2017; Kennedy et al., 2000; Scholey 

et al., 2010; Watson et al., 2015). A possible explanation may be that the task versions used here 

were not cognitively demanding enough; the most robust effects of glucose have been observed 

during divided attention or at times of high cognitive demand (Benton & Nabb, 2003; Scholey et al., 

2001; Smith et al., 2011). Although improved glucoregulation appears a viable mechanism of action 

for the cognition and mood effects observed throughout this thesis, it is possible that such a 

glucoregulatory mechanism of action may occur in synergy with increased cerebral blood flow. 

Increased CBF is a much posited mechanism for cognitive improvements following flavonoid-rich 

interventions. However, it should be noted that neither CBF nor other potential mechanisms of 

action, such as MAO inhibition or BDNF synthesis, have been directly investigated here, and require 

further study.  

7.3 Limitations of the research 

7.3.1 Experimental confounds 

7.3.1.1 Practice effects 

Methodology was specifically tailored to minimise cognitive practice effects after an investigation of 

the size and distribution of these effects was carried out in Experiment 1. However previous 

research suggests that it is impossible to completely eradicate practice effects and so a low level of 

confound is still likely to have remained during the two blueberry intervention studies. Indeed 

practice related improvements were evident in all experiments, as identified by the significance of 

visit number as a predictor of cognitive performance for the majority of tasks. Residual practice 

effects are likely to have increased the variance in each counterbalanced dose condition, thus 

reducing the statistical power of each experiment to detect small changes in cognition and mood. 

Therefore, residual practice effects are likely to have impacted the statistical significance of the 

session x dose interaction term when employing conservative LMM analyses of cognition and mood 

in Experiments 2 and 4. The problem was overcome by employing Bonferroni corrected pairwise 
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comparisons as a less conservative alternative to the F test interaction (Huck, 2015).  Previously 

published crossover studies with multiple conditions appear to have adopted a similar analysis 

strategy e.g. Kennedy et al. (2000) and Kennedy et al. (2002). Replication is important when judging 

the validity and reliability of a statistical approach (Keppel, 1991). Working memory and mood 

effects evident in Experiment 2 were replicated in Experiment 4, further demonstrating the 

suitability of this statistical strategy. 

7.3.1.2 Habitual diet 

The interfering effects of habitual diet were addressed by asking participants to follow a low 

polyphenol diet for 24 hours before participation, to eat the same breakfast on each visit date, and 

fast for 2 hours immediately prior to baseline testing. Compliance was recorded using self-report. 

The presence of a few minor misdemeanours in these reports suggests that participants were honest 

in their recording of dietary intake. No attempt was made to quantify differences in the intake of any 

prohibited items between participants or between visits; rather any deviance from the diet was 

immediately discussed with the participant to ensure that they would not repeat the mistake, and 

therefore further minimise any interference from polyphenol consumption other than the test 

intervention. Tighter controls on diet could have been implemented. For example a standardised 

evening meal could have been provided for all participants on the day before testing, along with a 

standardised breakfast across all participants (rather than within-participants) on the morning of 

testing. This may have further reduced any dietary confound. Standardisation of food intake may 

therefore have helped to reduce variance in the data. However, if such measures are required to 

detect the acute cognitive effects of flavonoids, then observed effects may arguably have little real 

world relevance. As such, there is a counter argument for conducting studies with no dietary 

restrictions.  

7.3.1.3 Taste matching of doses 

An additional confound was that the intervention drinks were not always well matched in terms of 

taste. Variations in pleasantness may have influenced mood ratings in Experiment 2 in particular, as 

palatability has previously been observed to influence negative affect (Benton, 2002; Macht & 

Mueller, 2007). Drink ratings were more similar in Experiment 4 following the use of a different 

batch of wild blueberry powder, but further improvements could be made, for example through the 

addition of flavourings and thickeners to better match both taste and texture of all interventions. 

There were also notable hydration differences between the two cognitive studies. In Experiment 2, 

drinks were mixed using 500ml water, whereas in Experiment 4 this volume was reduced to 300ml in 
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order to make the drinks easier to consume within a shorter time period. Hydration has been 

previously shown to influence cognition and mood (Masento, Golightly, Field, Butler, & van Reekum, 

2014) and so minor differences between the study outcomes could, at least in part, be due to 

hydration differences. However, the task batteries for the two studies were different making direct 

comparison difficult. 

7.3.1.4 Presence of other polyphenols 

In this thesis, wild blueberry doses were quantified in terms of their anthocyanin content. 

Anthocyanins form the largest group of flavonoids, and indeed polyphenols, in wild blueberries. It 

was considered appropriate to quantify the doses in this way as anthocyanins consumption has 

specifically been linked to vasodilatory (Bell & Gochenaur, 2006) and glucoregulatory (Cazarolli et al., 

2008; Hanhineva et al., 2010; Sancho & Pastore, 2012) mechanisms of action in vitro, and has been 

linked with improved cognition in vivo (Rendeiro et al., 2013). Epidemiological studies have also 

linked anthocyanins to reduced incidence of type 2 diabetes (Jennings et al., 2014; Wedick et al., 

2012).  The Oxygen Radical Absorbance Capacity (ORAC) of blueberry also correlates strongly with 

anthocyanins (Howard, Clark, & Brownmiller, 2003; Lohachoompol et al., 2004; Zheng & Wang, 

2003). However, it should be noted that other polyphenols are also present in moderate quantities 

and so the effects observed in this thesis cannot solely be attributed to anthocyanins and should be 

considered as blueberry effects. Human supplementation with pure extracts would be needed to 

confirm if acute benefits to cognition and mood were attributable to anthocyanins in isolation. 

However, pure extracts are costly and arguably unnecessary given that blueberries provide a 

relatively cheap and convenient way to consume beneficial quantities of anthocyanins and other 

polyphenols within a normal healthy diet. 

7.3.1.5 The role of gut microbiota in the biotransformation & metabolism of polyphenols  

As described in Chapter 1, notable individual differences have been observed in the absorption 

profiles of a range of flavonoids and their associated metabolites (Bresciani et al., 2017; Mennen et 

al., 2008; Rodriguez-Mateos et al., 2015); not only in the types and quantities of metabolites 

present, but also in the timings of their appearance (Bresciani et al., 2017). Recent research has 

attributed many of these individual differences to gut microbiota; specific bacteria have been 

identified that act on different flavonoids (Braune & Blaut, 2016). Individuals have varying 

polyphenol metabolising phenotypes, largely dependent on their gut microbiota profile (Tomás-

Barberán et al., 2016). The effectiveness of a flavonoid intervention is therefore dependent on the 

phenotype of the subject; polyphenol biotransformation and metabolism by microbiota in the gut is 
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pivotal to the subsequent biological activity of an intervention. If the relevant bacteria are not 

present then the intervention may show little or no effect at postprandial time points where the 

ingested intervention has reached the large intestine. Interestingly, a flavonoid-rich diet can have a 

positive impact on the profile of gut microbiota (Cardona et al., 2013; Hidalgo et al., 2012; Valdés et 

al., 2015), and so subjects who regularly consume flavonoids are likely to produce greater quantities 

of biologically active metabolites, and may therefore experience greater cognitive health benefits in 

the immediate postprandial period following their consumption, although this has not yet been 

investigated. Therefore it is important to identify the gut microbiota phenotype of participants. 

Small effect sizes may simply be due to the diluting effect of participants with a mismatched 

phenotype, for whom little or no flavonoid effects are likely to be observed. The young adult student 

participants in this research reportedly consumed around 4-5 daily portions of fruit and vegetables, 

suggesting a relatively healthy lifestyle. However, this was a self-report measure and appears very 

close to the ‘5-a-day’ Government target, so reporting may have been influenced by demand 

characteristics. If participants routinely consumed below this level, then this may explain the small 

cognitive and mood effect sizes observed here. All of the experiments in this thesis used a within-

subjects design in order to minimise the impact of individual differences such as gut microbiota, but 

phenotypes were not determined. In future research, studies may benefit from the assessment of 

gut micriobiota phenotype so that its impact can be systematically investigated.  

7.3.2 Methodology 

7.3.2.1 Population 

The data collected throughout this thesis relate to healthy young adults. The data cannot therefore 

be generalised to older or younger populations, or those with clinical conditions. In order to fully 

understand the acute effects of anthocyanin-rich blueberries it is recommended to extend this work 

to other age ranges and clinical populations who may further benefit from acute blueberry 

supplementation. 

7.3.2.2 Physiological measures 

Physiological measures that were recorded during this research were limited to blood pressure and 

blood glucose. The absorption, metabolism, and vasodilatory response profiles following varying 

doses of wild blueberry were not measured directly but were inferred from previous research 

conducted by Rodriguez-Mateos et al. (2013); therefore the study would have been strengthened by 

the inclusion of these measures. Similarly, cerebral blood flow was not measured; again, peripheral 

and cerebral vasodilation was assumed from the published observations of Rodriguez-Mateos et al. 
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(2015) and Dodd (2012). A methodological strength of Experiments 2 and 3 was that the 

intervention drinks were prepared using the same batch of freeze-dried blueberry powder as used 

by Rodriguez-Mateos and colleagues, so metabolism and vasodilation profiles were likely to be 

similar. However in Experiment 4 a new batch, still from the same cultivar, was used. Therefore, it is 

unknown whether the same underlying response occurred in this final experiment.  It should also be 

noted that individual differences, for example in gut microbiota, may have altered absorption, 

metabolism and vasodilatory response profiles or effect sizes throughout this research, when 

compared with previous work. Any differences may potentially have reduced the statistical power of 

this series of experiments to observe cognitive changes resulting from direct or indirect metabolite 

effects.  

With respect to the measurement of glucose regulation, only blood glucose values were recorded. 

However, blueberry-induced changes to the corresponding insulin response may also have 

influenced the availability of glucose in these experiments, for example through facilitated uptake of 

glucose by cells. Indeed, as described in Chapter 5, insulin effects have previously been observed 

following anthocyanins-rich berry interventions (Alqurashi et al., 2016; Edirisinghe et al., 2011; 

Nyambe-Silavwe & Williamson, 2016). Future flavonoid research should consider the interaction 

between postprandial glucose and insulin response, and how this relationship may influence 

cognitive outcome. 

7.3.2.3 Cognitive measures 

Although a range of cognition, mood and memory tasks were deployed in Experiments 2 and 4, it 

should be noted that significant outcomes relate only to performance on those specific tasks. It is 

not valid to generalise these effects to other related tasks or domains.  

7.3.2.4 Compositional differences between blueberry powder batches 

Two different batches of freeze dried blueberry powder were used during the course of this 

research. The total anthocyanin content was matched between studies; however there remained 

considerable differences in the total polyphenol content. There were also considerable differences in 

the vitamin C content of the two batches. It is unclear whether vitamin C differences arose from 

actual differences between the batches or differences in the analytical techniques used for each 

assay. The analysis of the second batch (used in Experiment 4) was carried out using a reducing 

agent to convert dehydroascorbic acid (DHA), the oxidised form of ascorbic acid, into ascorbic acid 

prior to determination. This method is commonly used for the determination of vitamin C in fruits 

and vegetables (Campos, Ribeiro, Della Lucia, Pinheiro-Sant’Ana, & Stringheta, 2009) as DHA is 
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known to be a biologically available and active form of vitamin C (Wilson, 2002). However the same 

method was not used in the analysis of the first batch (used in Experiments 2 & 3). This may have 

resulted in inconsistencies in the vitamin C matching of blueberry and control drinks. Regrettably, 

fibre was not quantified for the first batch of blueberry powder making direct comparison between 

batches impossible. It is unlikely that the total fibre content differed greatly between the two 

batches; however after anthocyanin-matching between experiments, differences in the total fibre 

content of the intervention drinks may have been introduced. 

Anthocyanin profiling was not performed for either batch of blueberry powder used in this thesis. 

Anthocyanins are a group of compounds with similar structural properties. There are reportedly 

more than 600 unmodified anthocyanidin and modified anthocyanin compounds (Babu, Liu, & 

Gilbert, 2013). It is possible that these compounds may exert different physiological and cognitive 

effects. For example, in vitro glucose stimulation of insulin secretion was reported to be augmented 

by pelargonidin-3-galctoside, cyanidin -3-glucoside, delphinidin-3-glucoside, and marginally by 

delphinidin, whereas cyanidin, pelargonidin, malvidin and petunidin showed no effect 

(Jayaprakasam, Vareed, Olson, & Nair, 2005). Additionally, as described in Chapter 1, Watson et al. 

(2015) observed different cognitive and physiological outcomes following two blackcurrant cultivars 

with different polyphenol and anthocyanin profiles. Therefore anthocyanin profiles for a particular 

intervention may be important in determining cognitive and/or physiological outcomes. 

Observed differences in the outcomes of Experiment 2 and Experiment 4 in this thesis reflect 

differences in the study design, such as changes to the task battery and the addition of an extra 

testing time point. For the cognition and mood tasks in common between the two experiments, the 

outcome was very similar. Blood glucose response profiles were quite different between Experiment 

3 and Experiment 4, but as identical cultivars were used for all experiments it is likely that these 

differences were due to variation in sugar content rather than anthocyanin profile. Nevertheless, 

polyphenol, vitamin C and fibre differences between the experiments, as described above, may have 

contributed to the outcome. With hindsight, it may have been methodologically preferable to match 

the sugar, fibre and vitamin C content across studies in order to better control for these differences. 

Future work should seek to better define the full compositional profile, including anthocyanin 

subclasses present in any intervention, and control for as many compositional elements as possible.  

7.4 Future work 

Now that this work has identified that higher doses of anthocyanin-rich blueberry (517mg & 724mg) 

appear the most effective doses in terms of mood and working memory outcomes, the natural 
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progression would be an acute intervention trial focussing on a single similar dose, with the aim of 

obtaining sufficient statistical power to confirm a significant dose x session interaction when 

comparing the blueberry dose with a well-matched control (e.g. matched for flavour, colour, 

viscosity, sugars, protein, vitamin C and fibre) at pre- and post-intervention time points. It would also 

be desirable to concurrently measure postprandial blood glucose and insulin, and to profile 

participants’ gut microbiota. Measurement of vasodilatory response should also be considered, but 

may require testing of a subgroup of participants as there are inherent methodological difficulties in 

recording cognition and vasodilation simultaneously. A series of such studies might further 

investigate the impact of age, gender, health status, cognitive domain, or cognitive load with respect 

to acute wild blueberry intervention. Well-powered studies, such as those described, may provide a 

fuller understanding of the acute cognitive benefits of wild blueberry and their likely mechanisms of 

action. 

The observed effects on blood glucose regulation strongly suggest that wild blueberry may have a 

clinical application in the prevention or treatment of metabolic disorders such as type 2 diabetes. As 

discussed in Chapter 5, the postprandial response to ingested carbohydrate is recognised as a 

marker of metabolic health. Interventions such as wild blueberry which modulate postprandial 

glucose by limiting periods of hyper- or hypoglycaemia are desirable. In type 2 diabetes, regulation 

of postprandial glucose response is important not only in the prevention and treatment of the 

disease, but also in the reduction of associated risk factors such as cardiovascular disease (Bonora & 

Muggeo, 2001). Cognition, blood pressure and vasoreactivity are all reportedly compromised in type 

2 diabetes (Chung et al., 2015; Lamport et al., 2009) and, as reviewed in Chapter 1, these areas have 

all shown  improvement following acute anthocyanins-rich interventions. Furthermore, habitual 

diets rich in anthocyanins, and particularly blueberry consumption, are significantly associated with 

lower type 2 diabetes mellitus risk (Jennings et al., 2014; Wedick et al., 2012). The combined 

evidence suggests there is clear potential for a diet-based blueberry intervention to benefit the risk 

factors and co-morbidities associated with type 2 diabetes. This should be further investigated 

through intervention trials on a clinical population of type 2 diabetes patients, or those with pre-

diabetes. 

7.5 Final conclusions 

With some statistical caveats, this programme of research is the first to demonstrate a dose-

dependent effect of anthocyanin-rich wild blueberries on episodic memory, working memory and 

mood. In particular effects appear strongest for the maintenance of immediate recall on a single-trial 

word list learning task, the attenuation of negative affect using a self-report questionnaire, and the 
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improvement of working memory on a serial subtraction task combining a high cognitive load with a 

psychomotor component. However, in order to increase the statistical power, allowing future 

studies to detect these small cognitive changes following flavonoid-rich intervention, additional 

controls for the reduction of variance in collected data may be needed. In particular, research is 

recommended into the mediating effect of gut microbiota on the effectiveness of acute wild 

blueberry supplementation. 

This research is also the first to indentify a dose-dependent glucoregulatory effect of wild 

blueberries that may provide a plausible mechanism of action for observed cognitive and mood 

benefits, through extended glucose availability and/or facilitated uptake of glucose to the brain. 

Therefore, future research should consider the potential application of wild blueberry as a treatment 

or preventative intervention for metabolic disorders such as type 2 diabetes, where both cognition 

and glucoregulation are typically impaired. 
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Appendix A Ethical approval for Experiments 1-4 

A.1 SREC Ethics committee approval for Experiment 1.1 

From: Philip T. Smith [p.t.smith@reading.ac.uk] 

Sent: 19 March 2014 12:28 

To: claire.williams@reading.ac.uk 

Cc: l.a.forrest@reading.ac.uk 

Subject: Ethics 2014/033/CW 

 

Dear Claire 

 

Ethics proposal: Examination of the occurrence of practice effects in the Sternberg task and other 

cognitive tasks commonly used in crossover dietary intervention studies. 

 

I have been asked to look at this proposal. This project is in line with University of Reading ethics 

guidelines, and may proceed. 

 

Regards 
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A.2 SREC Ethics committee approval for Experiment 1.2 

From: Philip T. Smith <p.t.smith@reading.ac.uk> 

Date: Thu, Dec 3, 2015 at 10:41 AM 

Subject: Ethics 2014/033/CW 

To: Lynne Bell <l.bell@pgr.reading.ac.uk>, Claire Michelle Williams <claire.williams@reading.ac.uk> 

Cc: PCLS Ethics <pclsethics@reading.ac.uk> 

 

Dear Claire and Lynne 

Thank you for the request to revise this project. This project is in line with University of Reading 

ethics guidelines, and may proceed. 

There is just one detail: it is not clear to me whether Emma and Nasser are undergraduates, and 

whether they will conduct any of the testing without any more senior member of the School being 

present. If so, they need to sign the consent form, beneath each participant’s signature. But I can 

rely on you to make these adjustments, if they are necessary: I don’t need to see the application 

again. 

Regards 

Philip 
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A.3 UREC Ethics committee approval for Experiment 2 

 

Coordinator for Quality Assurance in 

Research  

Dr Mike Proven, BSc(Hons), PhD  

Office of the University Secretary  

Whiteknights House  

Whiteknights, PO Box 217   

Reading RG6 6AH  

phone +44 (0)118 378 7119  

fax  +44 (0)118 378 8979  

email m.j.proven@reading.ac.uk  

 

 Dr Claire Williams  

School of Psychology and Clinical Language  

Sciences  

University of Reading  

RG6 6AL  

 

10 July 2014 

 

 Dear Claire  

UREC 14/28: A dose-response study of the acute effects of blueberry juice on cognitive performance 

in healthy young adults. Provisional opinion  

 

Thank you for your revised application (your email, including attachment, dated 10 July 2014  

refers) addressing the minor issues raised by the UREC Sub-committee at its June meeting. On  

the basis of these revisions, I can confirm that the Chair is pleased to confirm a favourable  

ethical opinion.  

 

Please note that the Committee will monitor the progress of projects to which it has given  

favourable ethical opinion approximately one year after such agreement, and then on a regular  

basis until its completion.  
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Please also find attached Safety Note 59: Incident Reporting in Human Interventional Studies at  

the University of Reading, to be followed should there be an incident arising from the conduct  

of this research.  

 

 The University Board for Research and Innovation has also asked that recipients of favourable  

ethical opinions from UREC be reminded of the provisions of the University Code of Good  

Practice in Research. A copy is attached and further information may be obtained here:  

http://www.reading.ac.uk/internal/res/QualityAssuranceInResearch/reas-RSqar.aspx.   

  

Yours sincerely  

  

Dr M J Proven  

Coordinator for Quality Assurance in Research (UREC Secretary)  

cc: Dr John Wright (Chair); Dr Laurie Butler, Head of School 
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A.4 SREC Ethics committee approval for Experiment 3 

2015-053-CW - An investigation of the glycaemic response following blueberry drink ingestion in 

healthy young adults: a dose response study – Claire Williams, Laurie Butler, Daniel Lamport, & 

Lynne Bell 

11th May 2015 

In my opinion, this study meets the requirements for ethical approval, and I am happy for it to 

proceed 

 

John Harris 
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A.5 SREC Ethics committee approval for Experiment 4 

From: PCLS Ethics <pclsethics@reading.ac.uk> 

Date: Mon, Jan 25, 2016 at 12:45 PM 

Subject: FW: 2014-047-CW - A dose-response study of the acute effects of blueberry juice on 

cognitive performance in healthy young adults 

To: "claire.williams@reading.ac.uk" <claire.williams@reading.ac.uk>, Lynne Bell 

<l.bell@pgr.reading.ac.uk> 

 

From: Anastasia Christakou [mailto:a.christakou@reading.ac.uk]  

Sent: 25 January 2016 12:43 

To: PCLS Ethics 

Subject: Re: 2014-047-CW - A dose-response study of the acute effects of blueberry juice on 

cognitive performance in healthy young adults 

These amendments have SREC approval. 

Anastasia 

[sent from a mobile device] 
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Appendix B Intervention study eligibility criteria 

 

Age 18-40 years 

Non-smoker 

Not pregnant 

Able to consume the beverages 

No significant vision, hearing or language difficulties 

Should not suffer from any of the following diseases: 

 Major mental illness 

 Liver disease 

 Diabetes mellitus (Type 1 and 2) 

 Heart disease 

 Renal or gastrointestinal disorders 

Should not be taking blood pressure lowering or anticoagulant medication 

Should not be consuming more than the Government recommended units of alcohol per week 

Should not be vigorous exercisers (restricted to < 4 hours per week for the duration of the study) 

Should not be taking nutritional supplements (for the duration of the study) 

Should not be taking recreational drugs (either illegal or legal for the duration of the study) 
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Appendix C Health screening questionnaire 

*** Please answer the following questions as accurately as possible.  All information 

provided will remain confidential *** 

Demographic Information: 

Age      ________ 

Gender ________ 

Questions about health and lifestyle: (Circle the relevant answer) 

Do you smoke?  Yes / No 

If ‘Yes’, please state how many per day ________. 

Do you drink alcohol?  Yes/No 

If ‘Yes’, approximately how many units per week? ________________ 

Do you drink tea? Yes / No 

If ‘Yes’, approximately how many cups of tea per day? ________________ 

Do you drink coffee? Yes / No 

If ‘Yes’, approximately how many cups of coffee per day? ________________ 

Are you currently on a weight-reducing or other special diet?  Yes/No 

If ‘Yes’, please give details. 

_________________________________________________________________________

_________________________________________________________________________

_______________________________________________________ 

Do you exercise regularly?  Yes/No  

If ‘Yes’, please give an estimate of the number of hours you spend exercising per week. 

___________________________________________________________________ 

Do you have allergies to any foods?  In particular, any fruits or cocoa, nut, milk or gluten 

based products?  Yes/No 

If ‘Yes’, please list foods you have an allergy to below: 

_________________________________________________________________________

_________________________________________________________________________

_______________________________________________________ 
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Are you pregnant?  Yes/No/Not applicable 

Please indicate if you had or have any if the following conditions:  (place a tick next to 

any relevant conditions) 

[  ] Diabetes – if yes, please circle: Type I / Type II 

[  ] Heart disease – if yes, have you had open heart/bypass surgery? Yes / No 

[  ] High blood pressure – if yes, are you currently taking medication to control your 

blood pressure? Yes / No 

Did you start taking medication immediately after diagnosis?  Yes / No 

How long have you been taking medication for?__________________ 

[  ] Nervous system disease / Degenerative disorder (e.g. Multiple Sclerosis)  

[  ] Stroke or Transient Ischaemic Attack 

[  ] Chronic kidney disease/impaired kidney function 

[  ] Chronic liver disease/impaired liver function 

[  ] Chronic thyroid disease/impaired thyroid function 

[  ] Mental or emotional problems for which you were admitted to hospital  

[  ] Renal or Gastrointestinal disorders – if yes, please give details  

_________________________________________________________________  

[  ] Any other serious illnesses – if yes, please give details 

_________________________________________________________________ 

Are you currently, or have you been within the last month, on any of the following 

medication? 

[  ]  Warfarin 

[  ] Heparin 

[  ] Rivaroxaban 

[  ]  Dabigatran 

[  ] Apixaban 

[  ] Aspirin 

[  ] Plavix (Clopidogrel) 

[  ] Persantin 

[  ] Other anticoagulant medication- if yes, please give details 

_______________________________________________________________ 

[  ] Any other medication – if yes, please give details 

_________________________________________________________________ 
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Appendix D Information sheets 

D.1 Participant information sheet for Experiment 1.1 

Title of Study: A comparison of practice effects for the Sternberg task and other 

cognitive tasks commonly used in crossover intervention studies 

 

Information Sheet 
 

Supervisors:   Email:      Phone: 

Dr Claire M. Williams claire.williams@reading.ac.uk  0118 378 7540 

Dr Laurie T. Butler  l.t.butler@reading.ac.uk   0 118 378 7543 

 

Experimenter:    

Lynne Bell                  l.bell@pgr.rdg.ac.uk       

 

 

We would be grateful if you could please assist us by participating in our study exploring 

practice effects for the Sternberg task. Specifically we are interested to find out whether 

prolonged practice on this task improves performance and whether or not the level of 

observed improvement differs from other commonly used cognitive tasks.  

 

Your participation will take approximately 2.5 hours, on each of 3 separate visits, with 1 

week between each visit. During each visit you will perform a range of cognitive tasks, 

measuring episodic memory, working memory and executive function. At each visit the 

complete set of tasks will be performed twice with a one hour break between each set. During 

the break you may spend the time as you wish, but you are requested not to consume any 

food and to only drink water. At your first visit you will also be asked to record what you 

consumed for your last meal (breakfast for morning participants and lunch for afternoon 

participants). For your subsequent visits you will be asked to eat the same meal (or as close as 

possible) before attending. 

 

Your data will be kept confidential and securely stored, with only an anonymous number 

identifying it. Information linking that number to your name will be stored securely and 

separately from the data you provide us. All information collected for the project will be 

destroyed after a period of 5 years from the completion of the project. Taking part in this 

study is completely voluntary; you may withdraw at any time without having to give any 

reason. Please feel free to ask any questions that you may have about this study at any point.  

 

This application has been reviewed by the University Research Ethics Committee and has 

been given a favourable ethical opinion for conduct 

 

Thank you for your help. 
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D.2 Participant information sheet for Experiment 1.2 

Title of Study: Examination of the occurrence of practice effects in cognitive tasks 

commonly used in crossover dietary intervention studies 

 

Information Sheet 
 

Supervisors:   Email:      Phone: 

Dr Claire M. Williams claire.williams@reading.ac.uk  0118 378 7540 

Dr Daniel J. Lamport  d.j.lamport@reading.ac.uk   0118 378 7937 

Dr Laurie T. Butler  l.t.butler@reading.ac.uk   0 118 378 7543 

 

Experimenter:    

Lynne Bell                  l.bell@pgr.rdg.ac.uk         0118 378 7928 

Emma Coleman  e.coleman2@student.reading.ac.uk 

Nasser Al-Farhan  Nasser.s.al.farhan@gmail.com 

 

We would be grateful if you could please assist us by participating in our study exploring 

practice effects in cognitive testing. Specifically we are interested to find out whether 

prolonged practice on cognitive tasks improves performance and whether or not the level of 

observed improvement differs between different cognitive domains.  

 

Your participation will take approximately 2.5 hours, on each of 3 separate visits, with 1 

week between each visit. During each visit you will perform a range of cognitive tasks. Each 

task will be performed 3 times on each visit, with a one hour break between each set of tasks. 

During the break you may spend the time as you wish, but you are requested not to consume 

any food and to only drink water. At your first visit you will also be asked to record what you 

consumed for your last meal (breakfast for morning participants and lunch for afternoon 

participants). For your subsequent visits you will be asked to eat the same meal (or as close as 

possible) before attending. 

 

Your data will be kept confidential and securely stored, with only an anonymous number 

identifying it. Information linking that number to your name will be stored securely and 

separately from the data you provide us. All information collected for the project will be 

destroyed after a period of 5 years from the completion of the project. Taking part in this 

study is completely voluntary; you may withdraw at any time without having to give any 

reason. Please feel free to ask any questions that you may have about this study at any point.  

 

This application has been reviewed by the University Research Ethics Committee and has 

been given a favourable ethical opinion for conduct 

 

Thank you for your help. 
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D.3 Participant information sheet for Experiment 2 

Title of study: A dose-response study of the acute effects of blueberry juice on cognitive 

performance in healthy young adults  

Participant Information Sheet 

Supervisors:    

Name:    E mail:    Telephone: 

Dr L.T. Butler    l.t.butler@reading.ac.uk +44 (0)118 378 7543 

School of Psychology and Clinical Language Sciences. 

 

Name:    E mail:    Telephone: 

Dr C.M.Williams   claire.williams@reading.ac.uk +44 (0)118 378 7540 

School of Psychology and Clinical Language Sciences. 

 

Experimenter: 

Name:    E mail:    Telephone: 

Lynne Bell    l.bell@pgr.reading.ac.uk  PCLS Office: +44 (0)118 378 8523 

School of Psychology and Clinical Language Sciences. 

  

Introduction 

Flavonoids are dietary polyphenols (plant chemicals found in certain foods such as fruit and vegetables) 

and previous studies have shown both cognitive and cardiovascular benefits of these compounds. This 

research project is looking at the short-term effects of a range of doses of flavonoid-rich blueberry on 

measures of cognition, which will be administered in the form of juice drinks. To avoid interference you 

will be asked to restrict your intake of flavonoid-rich foods prior to participating in the study and to fast 

for 2 hours prior to each test session. During the study you will undergo a range of cognitive tests. You 

will also be asked to give permission for blood pressure measurements to be taken. This is in order to 

determine the effects of flavonoids on vascular reactivity. 

Project Description 

The following is a brief description of the procedure for this research project.  If you have any additional 

questions or require further explanation, please do not hesitate to ask.  

Participation in this research project will require you to be available to attend the Psychology 

department on seven separate days and times that will be agreed with you in advance. Please let the 

Experimenter know if you cannot attend for any reason and the appointment can be rearranged. 

Screening 
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Before participating in the study you are asked to fill in a short health questionnaire and return this to 

the experimenter via email. 

All visits - Test sessions 

For the 24 hours preceding all visits we ask that you follow a restricted diet, and do not partake in any 

vigorous physical activities. Please also refrain from eating or drinking for 2 hours immediately prior to 

each test visit. During the first half of each visit you will have your blood pressure recorded and 

complete a battery of computerised cognitive tasks. You will then be given a 600ml drink that may have 

a thick smoothie-like texture and will be asked to complete a food consumption questionnaire. You will 

then have one hour of free time but we ask that you stay within the Department and do not eat or drink 

anything else other than water.  After the one hour break you will complete a second set of computer 

based cognitive tasks and further blood pressure measurements will be taken. The whole visit should 

take no longer than 2 3/4 hours. Before leaving we will also confirm your next visit date which will be one 

week later. The procedure will be exactly the same for all test visits, with the exception that you will be 

given a different drink.  

All of your data throughout the study will be kept confidential by the use of an identification code 

and therefore your name will not be attached to any of the data collected.  Data will be securely 

stored and retained for 5 years then destroyed. Please note that participation in this study is entirely 

voluntary and you have the right to withdraw from the study at any time without having to give a 

reason.  The juice drinks are safe for human consumption and no negative side-effects are expected. 

This application has been reviewed by the University Research Ethics Committee and has been given 

a favourable ethical opinion for conduct.  This research will be carried out by a PhD student from the 

University of Reading.  

Thank you for your help. 
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D.4 Participant information sheet for Experiment 3 

Title of study: An investigation of the glycaemic response following blueberry drink 

ingestion in healthy young adults: a dose response study 

Participant Information Sheet 

Supervisors:    

Name:    E mail:     Telephone: 

Prof C.M.Williams   claire.williams@reading.ac.uk +44 (0)118 378 7540 

School of Psychology and Clinical Language Sciences. 

 

Name:    E mail:     Telephone: 

Dr D.J.Lamport    d.j.lamport@reading.ac.uk +44 (0)118 378 7937 

School of Psychology and Clinical Language Sciences. 

 

Name:    E mail:     Telephone: 

Prof L.T. Butler    l.t.butler@reading.ac.uk +44 (0)118 378 7543 

School of Psychology and Clinical Language Sciences. 

 

Experimenter: 

Name:    E mail:     Telephone: 

Lynne Bell    l.bell@pgr.reading.ac.uk  +44 (0)118 378 7924 

School of Psychology and Clinical Language Sciences. 

  

Introduction 

This research project is looking at the short-term effects of a range of doses of blueberry on blood 

glucose. Blueberries are a rich source of flavonoids (plant chemicals found in certain foods such as fruit 

and vegetables) and will be administered in the form of a smoothie-like drink. To avoid interference you 

will be asked to restrict your intake of flavonoid-rich foods prior to participating in the study and to fast 

for 2 hours prior to each test session.  

Blood glucose measurement 

During this study you will be required to give a finger prick sample which is used to measure your blood 

glucose level. This is a relatively painless procedure which will cause you minimal distress. If you would 

like to experience giving a finger prick sample before consenting to take part in this research please tell 
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the experimenter. If during the experiment you decide that you do not want to give a finger prick 

sample then you can withdraw from the experiment without giving a reason. Unusually low or high 

glucose levels can be indicative of abnormalities in glucose regulation. We will inform you verbally if we 

observe unusual glucose levels and in such cases we recommend that you contact your GP and ask for 

an official glucose assessment. If you prefer we can contact your GP directly and pass on your readings. 

This finger prick procedure has been has been reviewed by the University Research Ethics Committee 

and has been given a favourable ethical opinion for conduct. 

Procedure 

The following is a brief description of the procedure for this research project.  If you have any additional 

questions or require further explanation, please do not hesitate to ask.  

Participation in this research project will require you to be available to attend the Psychology 

department on five separate days and times that will be agreed with you in advance. Please let the 

Experimenter know if you cannot attend for any reason and the appointment can be rearranged. 

Initial screening 

A short medical questionnaire has been emailed to you along with this information sheet. Please 

complete and return by email to the experimenter. You will then be given a date for your first test 

session. At this session you will be asked to sign a consent form before commencing the study.  

Test sessions 

For the 24 hours preceding these sessions we ask that you follow a restricted diet (see attached), and do 

not partake in any vigorous physical activities. Please also refrain from eating or drinking for 2 hours 

immediately prior to each test session. You may eat a light breakfast (still following the restricted diet) 

before the 2 hour fasting period. If you choose to do so, you are kindly asked to eat an identical 

breakfast before all subsequent visits. At the start of each session you will complete a food consumption 

questionnaire, before having your baseline blood glucose level recorded. You will then be given a 600ml 

drink that may have a thick smoothie-like texture. The drink must be fully consumed within 10 minutes. 

After this you will remain in the lab for a period of 2 ½ hours, during which further blood glucose 

measurements will be recorded at intervals of 15 minutes. The whole visit should take no longer than 3 

hours. Before leaving we will also confirm your next session date which will be one week later. The 

procedure will be exactly the same for all test sessions, with the exception that you will be given a 

different drink.   
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Data protection and ethical conduct 

All of your data throughout the study will be kept confidential by the use of an identification code 

and therefore your name will not be attached to any of the data collected.  Data will be securely 

stored and retained for 5 years then destroyed. Please note that participation in this study is entirely 

voluntary and you have the right to withdraw from the study at any time without having to give a 

reason.  The blueberry drinks are safe for human consumption and no negative side-effects are 

expected. This application has been reviewed by the University Research Ethics Committee and has 

been given a favourable ethical opinion for conduct.  This research will be carried out by a PhD 

student from the University of Reading.  

Thank you for your help. 
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D.5 Participant information sheet for Experiment 4 

Title of study: A dose-response study of the acute effects of blueberry juice oncognitive 

performance in healthy young adults  

Participant Information Sheet 

Supervisors:    

Name:    E mail:     Telephone: 

Dr D.J.Lamport    d.j.lamport@reading.ac.uk +44 (0)118 378 7937 

School of Psychology and Clinical Language Sciences. 

 

Name:    E mail:     Telephone: 

Dr L.T. Butler    l.t.butler@reading.ac.uk +44 (0)118 378 7543 

School of Psychology and Clinical Language Sciences. 

 

Name:    E mail:     Telephone: 

Dr C.M.Williams   claire.williams@reading.ac.uk +44 (0)118 378 7540 

School of Psychology and Clinical Language Sciences. 

 

Experimenter: 

Name:    E mail:     Telephone: 

Lynne Bell    pf008864@pgr.reading.ac.uk  +44 (0)118 378 7928 

School of Psychology and Clinical Language Sciences. 

  

Introduction 

This research project is looking at the short-term effects of a range of doses of blueberry on measures of 

cognition. Flavonoids are dietary polyphenols (plant chemicals found in certain foods such as fruit and 

vegetables) and will be administered in the form of a juice drink. To avoid interference you will be asked 

to restrict your intake of flavonoid-rich foods prior to participating in the study and to fast for 2 hours 

prior to each test session. During the study you will undergo a range of cognitive tests. You will also be 

asked to give permission for blood glucose measurements to be taken. This is in order to determine the 

effects of flavonoids on blood glucose regulation. 

Blood glucose measurement is a relatively painless procedure involving a finger prick which will cause 

you minimal distress. If you would like to experience giving a finger prick sample before consenting to 

take part in this research please tell the experimenter. If during the experiment you decide that you do 
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not want to give a finger prick sample then you can withdraw from the experiment without giving a 

reason. Unusually low or high glucose levels can be indicative of abnormalities in glucose regulation. We 

will inform you verbally if we observe unusual glucose levels and in such cases we recommend that you 

contact your GP and ask for an official glucose assessment. If you prefer we can contact your GP directly 

and pass on your readings. This finger prick procedure has been has been reviewed by the University 

Research Ethics Committee and has been given a favourable ethical opinion for conduct. 

Project Description 

The following is a brief description of the procedure for this research project.  If you have any additional 

questions or require further explanation, please do not hesitate to ask.  

Participation in this research project will require you to be available to attend the Psychology 

department on five separate days and times that will be agreed with you in advance. Please let the 

Experimenter know if you cannot attend for any reason and the appointment can be rearranged. 

Screening 

Before participating in the study you are asked to fill in a short health questionnaire and return this to 

the experimenter via email. 

All visits - Test sessions 

For the 24 hours preceding these visits we ask that you follow a restricted diet, and do not partake in 

any vigorous physical activities. Please also refrain from eating or drinking for 2 hours immediately prior 

to each test session. At the start of each session you will complete a food consumption questionnaire, 

before having your blood glucose level recorded and completing a short battery of computerised 

cognitive tasks. You will then be given a 300ml drink that may have a thick smoothie-like texture. After 

this you will have your blood glucose re-measured at 15 mins and 30 mins followed by a further 30 mins 

of free time. We ask that you stay within the Department and do not eat or drink anything else other 

than water.  After the break you will complete a second set of computer based cognitive tasks.  After a 

further break of around 45 minutes you will complete the cognitive tasks for a third time. Blood glucose 

measurements will also be taken each time you resume cognitive testing (5 finger pricks in total per 

visit). The whole visit should take no longer than 2 3/4 hours. Before leaving we will also confirm your 

next visit date which will be one week later. The procedure will be exactly the same for all test visits, 

with the exception that you will be given a different drink.  

All of your data throughout the study will be kept confidential by the use of an identification code 

and therefore your name will not be attached to any of the data collected.  Data will be securely 

stored and retained for 5 years then destroyed. Please note that participation in this study is entirely 

voluntary and you have the right to withdraw from the study at any time without having to give a 

reason.  The juice drinks are safe for human consumption and no negative side-effects are expected. 

This application has been reviewed by the University Research Ethics Committee and has been given 

a favourable ethical opinion for conduct.  This research will be carried out by a PhD student from the 

University of Reading.  

Thank you for your help. 
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Appendix E Consent forms 

E.1 Consent form for Experiment 1.1 

 

Title of Study: Examination of the occurrence of practice effects in the Sternberg task and other 

cognitive tasks commonly used in crossover dietary intervention studies 

CONSENT FORM 

 

I, ……………………………………… agree to participate in the study ‘Examination of the occurrence of 

practice effects in the Sternberg task and other cognitive tasks commonly used in crossover 

dietary intervention studies’, being conducted by Lynne Bell at The University of Reading. I have 

seen and read a copy of the Participants Information Sheet and have been given the opportunity to 

ask questions about the study and these have been answered to my satisfaction. I understand that 

all personal information will remain confidential to the Investigator and arrangements for the 

storage and eventual disposal of any identifiable material have been made clear to me. I understand 

that participation in this study is voluntary and that I can withdraw at any time without having to 

give an explanation. 

 

I am happy to proceed with my participation. 

 

Signature  ------------------------------------------------------------ 

 

Name (in capitals) ------------------------------------------------------------- 

 

Date     ------------------------------------------------------------- 
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E.2 Consent form for Experiment 1.2 

Title of Study: Examination of the occurrence of practice effects in cognitive tasks commonly used 

in crossover dietary intervention studies 

CONSENT FORM 

 

I, ……………………………………… agree to participate in the study ‘Examination of the occurrence of 

practice effects in cognitive tasks commonly used in crossover dietary intervention studies’, being 

conducted by Lynne Bell, Emma Coleman & Nasser Al-Farhan at The University of Reading. I have 

seen and read a copy of the Participants Information Sheet and have been given the opportunity to 

ask questions about the study and these have been answered to my satisfaction. I understand that 

all personal information will remain confidential to the Investigator and arrangements for the 

storage and eventual disposal of any identifiable material have been made clear to me. I understand 

that participation in this study is voluntary and that I can withdraw at any time without having to 

give an explanation. 

 

I am happy to proceed with my participation. 

 

Signature  ------------------------------------------------------------ 

Name (in capitals) ------------------------------------------------------------- 

Date     ------------------------------------------------------------- 

 

Researcher signature ------------------------------------------------------------ 

Name (in capitals) ------------------------------------------------------------- 

Date     ------------------------------------------------------------- 
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E.3 Consent form for Experiment 2 

A dose-response study of the acute effects of blueberry juice on 

cognitive performance in healthy young adults 

Consent Form 

When you have read each statement below, please put your initials in the box next to it to 

show that you understand and agree with the statement 

 

1. I agree to participate in the project ‘A dose-response study of the acute effects of blueberry 
juice on 
cognitive performance in healthy young adults’, being conducted by the Nutrition and 
Cognition Research Group at the University of Reading. 
 

2. I have read and been given a copy of the Participant’s Information Sheet and this consent 
form.  I have had the opportunity to ask any questions about the project and these have 
been answered to my satisfaction.  I agree to the arrangements described in the Information 
Sheet in so far as they relate to my participation.  
 

3. I am aware that this application has been reviewed by the University Research Ethics 
Committee and has been given a favourable ethical opinion for conduct. 
 

4. I understand that participation is entirely voluntary and that I have the right to withdraw 
from the project at any time, without giving a reason, and that this will be without detriment 
to any care or services I may be receiving or may receive in the future. 
 

5. I understand that all personal information will remain confidential to the Investigator and 
arrangements for the storage and eventual disposal of any identifiable material have been 
made clear to me. 
 

6. I am happy to proceed with my participation. 
 

        In the presence of: 

Name:.........................................(Volunteer)  Name:........................................(Researcher) 

Signed:........................................(Volunteer)  Signed:......................................(Researcher) 

Date:...........................................(Volunteer)   Date:……….............................(Researcher) 
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E.4 Consent form for Experiment 3 

An investigation of the glycaemic response following blueberry drink 

ingestion in healthy young adults: a dose response study 

Consent Form 

When you have read each statement below, please put your initials in the box next to it to 

show that you understand and agree with the statement 

 

1. I agree to participate in the project ‘An investigation of the glycaemic response to varying 
doses of blueberry in healthy young adults’, being conducted by the Nutrition and Cognition 
Research Group at the University of Reading. 
 

2.  I have read the information sheet and I have been told the reasons why a finger prick blood 
sample is required. I have had the opportunity to ask any questions about the project and 
these have been answered to my satisfaction.  I agree to the arrangements described in the 
Information Sheet in so far as they relate to my participation. 
 

3. I consent to a series of finger prick samples being taken. 

 

4. I authorise the Investigator to consult my General Practitioner if abnormal glucose readings 
are observed. 

 

5. I am aware that the finger prick procedure has been reviewed by the University Research 
Ethics Committee and has been given a favourable ethical opinion for conduct. 
 

6. I understand that participation is entirely voluntary and that I have the right to withdraw 
from the project at any time, without giving a reason, and that this will be without detriment 
to any care or services I may be receiving or may receive in the future. 
 

7. I understand that all personal information will remain confidential to the Investigator and 
arrangements for the storage and eventual disposal of any identifiable material have been 
made clear to me. 
 

8. I am happy to proceed with my participation. 
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        In the presence of: 

Name:.........................................(Volunteer)    Name:........................................(Researcher) 

Signed:........................................(Volunteer)    Signed:......................................(Researcher) 

Date of birth:..............................(Volunteer)   Date:……….............................(Researcher) 

Name and address of GP:.............(Volunteer) 

..................................................................... 

...................................................................... 

...................................................................... 

  



 

206 
 

E.5 Consent form for Experiment 4 

A dose-response study of the acute effects of blueberry juice on 

cognitive performance in healthy young adults 

Consent Form 

When you have read each statement below, please put your initials in the box next to it to 

show that you understand and agree with the statement 

 

1. I agree to participate in the project ‘A dose-response study of the acute effects of blueberry 
juice on 
cognitive performance in healthy young adults’, being conducted by the Nutrition and 
Cognition Research Group at the University of Reading. 
 

2. I have read the information sheet and I have been told the reasons why a finger prick blood 
sample is required. I have had the opportunity to ask any questions about the project and 
these have been answered to my satisfaction.  I agree to the arrangements described in the 
Information Sheet in so far as they relate to my participation. 
 

3. I consent to a series of finger prick samples being taken 

 

4. I authorise the Investigator to consult my General Practitioner if abnormal glucose readings 
are observed 

 

5. I am aware that the finger prick procedure has been reviewed by the University Research 
Ethics Committee and has been given a favourable ethical opinion for conduct. 
 

6. I am aware that this application has been reviewed by the University Research Ethics 
Committee and has been given a favourable ethical opinion for conduct. 
 

7. I understand that participation is entirely voluntary and that I have the right to withdraw 
from the project at any time, without giving a reason, and that this will be without detriment 
to any care or services I may be receiving or may receive in the future. 
 

8. I understand that all personal information will remain confidential to the Investigator and 
arrangements for the storage and eventual disposal of any identifiable material have been 
made clear to me. 
 

9. I am happy to proceed with my participation. 
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       In the presence of: 

Name:.........................................(Volunteer)  Name:........................................(Researcher) 

Signed:........................................(Volunteer)  Signed:......................................(Researcher) 

Date:...........................................(Volunteer)   Date:……….............................(Researcher) 

Name and address of GP:.............(Volunteer) 

..................................................................... 

...................................................................... 

...................................................................... 
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Appendix F Low polyphenol diet 

 

Please avoid alcohol or other recreational drugs for 48 hours before each visit 

to the Nutritional Psychology Unit and for the duration of each study day. 

Please avoid eating foods shown below for 24 hours before each visit to the 

Nutritional Psychology Unit and for the duration of each study day. 

 All berries 

 Fruit and vegetables (except potatoes) 

 Fruit juices 

 Jams and preserves 

 Red wine 

 Fruit teas 

 Soy products 

 Chocolate/cocoa 

 Tea (black, green. earl grey etc) 

 Coffee  

 All high energy and/or caffeinated drinks, eg: Coca-Cola, 
Red Bull, Lucozade.  

 All dietary supplements 

 Alcohol or other recreational drugs (avoid for 48 hours) 
 

Foods you may eat include those shown below. 

 Potatoes 

 Rice 

 Sweetcorn 

 Mushrooms 

 Carrots 

 Bananas 

 Pasta 

 Meat/fish 

 Dairy products 
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Appendix G 24 hour food record 

 

Participant No: Participant ID: Visit No: 

Food intake record 

Please write down everything you consumed during the 24 hours prior to your 2 hour fast. Please 

include details of all meals, snacks and beverages: 
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Appendix H Blueberry intervention palatability questionnaire 

 

Participant number:_______ Visit:________ Drink:______ Date: ____/____/___ 

 

Please answer the following questions by circling the appropriate number response on the scale. 

Please regard the ends of each scale as indicating the most extreme sensation you have ever felt. 

 

1.  How sweet did you find the drink? 

  

Not at all 1 2 3 4 5 6 7 8 9 Extremely 

 

2.  How bland did you find the drink? 

  

Not at all 1 2 3 4 5 6 7 8 9 Extremely 

 

3.  How tasty did you find the drink? 

 

Not at all 1 2 3 4 5 6 7 8 9 Extremely 

 

4.  How pleasant did you find the drink? 

 

Not at all 1 2 3 4 5 6 7 8 9 Extremely 

 

5.  How sour did you find the drink? 

 

Not at all 1 2 3 4 5 6 7 8 9 Extremely 

 

6.  How satisfying did you find the drink? 

 

Not at all 1 2 3 4 5 6 7 8 9 Extremely 

 

7.  How much more of this drink do you think you could consume? 

 

None at all1 2 3 4 5 6 7 8 9 A lot more 

 

8.  How easy did you find it to consume the drink? 

 

Not at all 1 2 3 4 5 6 7 8 9 Extremely 

 

9.  Any additional comments about the drink: 

__________________________________________________________________________________________

__________________________________________________________________________________________

__________________________________________________________________________________________ 
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Appendix I Immediate & delayed recall word lists 

 

1 2 3 4 5 6 7 

hose latch swamp inn cane dew scout 

tank fox fudge yacht spike prune pit 

seed branch sail worm owl knight shell 

bone brick gun soil pearl drain blade 

card tool board stew lung crown flag 

wood star pine film church nurse oil 

bin ball pot coin jar broom tray 

clock meat neck soap dog leaf brush 

salt spoon fruit men bag knee book 

prison metal penny doorway needle forest palace 

shepherd armour woodland sardine ferry dairy lily 

chapel measles arrow knuckle package cotton gravel 

jewel linen kitten valley bullet iron gravy 

hotel chicken rubber candy shoulder teacher wire 

toilet garden oven pocket picture paper building 

       

8 9 10 11 12 13 14 

lime fawn herd wick sword crane beast 

calf doll rake barn vest shrub crow 

oak duck rod dart cliff cone heel 

weed shore mud net deck pole shark 

van bush sweat thread frost stool chin 

blood land rug heart cloth beard throat 

school glove sock wheel stone corn sleeve 

rain ring soup hall seat plate lamp 

face tree plant room door box girl 

tack bowl sheet cheek pipe pig shield 

marble beehive camel ruby kennel cellar farmyard 

rifle barrel mansion slipper napkin daisy laundry 

tractor hammer soldier cherry lemon salad movie 

office motor piano dentist pepper brother uncle 

orange button ticket shower mirror bedroom pillow 
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Appendix J Motivation & task difficulty questionnaire 

 

Participant No: Participant ID: Visit No: Session No: 

 

<Cognitive task name> 

How difficult did you find the <cognitive task name> task? 

 

1 2 3 4 5 6 7 8 9 

 

  Not at         Extremely 

  all 

 

 

How motivated were you to do well during the <cognitive task name> task? 

 

1 2 3 4 5 6 7 8 9 

 

  Not at         Extremely 

  all 

 

 

  



 

213 
 

Appendix K Fruit & vegetable consumption questionnaire 

To answer the next questions it is important that you understand what a portion of fruit is and 
also what a portion of vegetables is so below is a quick guide: 

 

Quick guide to fruit and vegetable portions 

FRUIT One portion of fruit is: 

Fresh Small-sized fruit - 2 satsumas, 2 kiwi fruits, 14 cherries, 2 handfuls of raspberries or 
blueberries 

 Medium-sized fruit - 1 medium fruit, e.g. 1 apple, banana, pear, orange or nectarine 

 Large fruit - 1 (5cm slice) of melon, 1 large slice of pineapple, 2 (5cm slices) of 
mango 

Dried  1 tablespoon of raisins, currants, sultanas, 3 apricots 

Juice A glass (150ml) of 100% juice (or smoothie) counts as 1 portion, but you can only 
count juice as 1 portion per day, however much you drink 

Tinned Roughly the same quantity of fruit that you would eat as a fresh portion: 2 pear or 
peach halves, 3 heaped tablespoons of fruit salad 

VEGETABLES One portions of vegetables is: 

Green  2 broccoli spears, 8 cauliflower florets 

Cooked  3 heaped tablespoons of cooked vegetables such as carrots, peas or sweetcorn  

Salad  3 sticks of celery, 1 medium tomato, 7 cherry tomatoes 

Tinned & 
frozen  

Roughly the same quantity as you would eat as a fresh portion 

Pulses & 
beans 

3 heaped tablespoons of baked beans, haricot beans, kidney beans, cannelloni 
beans, butter beans or chick peas. Remember that beans and pulses do count, but 
you can only count beans/pulses as 1 portion per day, however much you eat 

  

1. How many portions of fruit, of any sort, do you eat on a typical day?   ______ portions 

2. How many portions of vegetables, excluding potatoes, do you eat on a typical day?  _______ portions 
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Appendix L LMM results tables 

Table L.1 LMM results for Experiment 1.1 

Table L.1 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.1 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Cognition: 

         Immediate recall score 
(correct/15) 

 

1.1 716.50 

 

Visit 

 

F(2,54.00) 15.91 <0.001 

    

Session 

 

F(1,69.62) 1.83 0.181 

     

Visit x 
Session 

 

F(2,82.13) 2.92 0.059 

          

  

1.2 704.10 

 

Visit 

 

F(2,54.20) 16.82 <0.001 

     

Session 

 

F(1,79.39) 0.02 0.881 

     

Visit x 
Session 

 

F(2,81.91) 4.36 0.016 

     

Motivation 

 

F(1,136.77) 13.56 <0.001 

          Immediate recall 
interference errors 

 

1.3 -14.71 

 

Visit 

 

F(2,73.11) 0.07 0.934 

    

Session 

 

F(1,61.39) 0.38 0.538 

     

Visit x 
Session 

 

F(2,71.07) 0.67 0.517 

          Delayed recall score 
(correct/15) 

 

1.1 798.11 

 

Visit 

 

F(2,55.09) 2.87 0.065 

    

Session 

 

F(1,72.68) 19.20 <0.001 

     

Visit x 
Session 

 

F(2,67.28) 2.03 0.140 

          

  

1.2 791.03 

 

Visit 

 

F(2,53.22) 2.79 0.070 

     

Session 

 

F(1,71.43) 17.08 <0.001 

     

Visit x 
Session 

 

F(2,65.15) 2.13 0.127 

     

Motivation 

 

F(1,127.22) 7.64 0.007 

          Delayed recall 
interference errors 

 

1.3 295.14 

 

Visit 

 

F(2,54.91) 11.31 <.001 

    

Session 

 

F(1,67.05) 44.29 <.001 

     

Visit x 
Session 

 

F(2,54.76) 9.16 <.001 

          Serial 3s score 

 

1.1 1188.55 

 

Visit 

 

F(5,51.08) 72.00 <0.001 
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Table L.1 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.1 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

(correct in 2 mins) 

    

Session 

 

F(1,74.78) 41.29 <0.001 

     

Visit x 
Session 

 

F(2,74.32) 4.39 0.016 

          

  

1.2 1186.78 

 

Visit 

 

F(2,49.95) 70.48 <0.001 

     

Session 

 

F(1,76.87) 42.98 <0.001 

     

Visit x 
Session 

 

F(2,76.20) 3.87 0.025 

     

Motivation 

 

F(1,155.27) 1.92 0.168 

        
  

Serial 3s RT (ms) 

 

1.1 2716.36 

 

Visit 

 

F(2,53.86) 33.98 <0.001 

     

Session 

 

F(1,84.73) 16.13 <0.001 

     

Visit x 
Session 

 

F(2,47.79) 1.98 0.149 

          

  

1.2 2713.70 

 

Visit 

 

F(2,53.89) 35.30 <0.001 

     

Session 

 

F(1,86.05) 16.59 <0.001 

     

Visit x 
Session 

 

F(2,50.31) 1.45 0.243 

     

Motivation 

 

F(1,118.84) 2.85 0.094 

          Serial 3s errors 
(incorrect in 2 mins) 

 

1.1 725.55 

 

Visit 

 

F(2,48.98) 0.11 0.893 

    

Session 

 

F(1,68.38) 0.67 0.416 

     

Visit x 
Session 

 

F(2,80.10) 1.04 0.356 

          

  

1.2 724.30 

 

Visit 

 

F(2,50.64) 0.07 0.930 

     

Session 

 

F(1,66.62) 0.69 0.411 

     

Visit x 
Session 

 

F(2,79.75) 0.95 0.391 

     

Motivation 

 

F(1,40.60) 1.39 0.246 

          Serial 7s score 
(correct in 2 mins) 

 

1.1 1078.76 

 

Visit 

 

F(2,48.54) 26.88 <0.001 

    

Session 

 

F(1,57.88) 9.13 0.004 

     

Visit x 
Session 

 

F(2,67.26) 0.37 0.690 
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Table L.1 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.1 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

  

1.2 1062.77 

 

Visit 

 

F(2,46.26) 32.86 <0.001 

     

Session 

 

F(1,69.02) 10.74 0.002 

     

Visit x 
Session 

 

F(2,71.52) 0.71 0.496 

     

Motivation 

 

F(1,135.85) 19.05 <0.001 

          Serial 7s RT (ms) 

 

1.1 2963.58 

 

Visit 

 

F(2,66.09) 11.37 <0.001 

     

Session 

 

F(1,67.10) 17.01 <0.001 

     

Visit x 
Session 

 

F(2,73.84) 4.39 0.016 

          

  

1.2 2963.53 

 

Visit 

 

F(2,66.14) 11.43 <0.001 

     

Session 

 

F(1,67.33) 17.04 <0.001 

     

Visit x 
Session 

 

F(2,73.47) 4.39 0.016 

     

Motivation 

 

F(1,124.54) 0.05 0.825 

          Serial 7s errors 
(incorrect in 2 mins) 

 

1.1 773.58 

 

Visit 

 

F(2,53.59) 0.52 0.595 

    

Session 

 

F(1,77.42) 0.52 0.474 

     

Visit x 
Session 

 

F(2,86.86) 0.51 0.600 

          

  

1.2 759.72 

 

Visit 

 

F(2,49.04) 0.88 0.423 

     

Session 

 

F(1,76.45) 0.36 0.548 

     

Visit x 
Session 

 

F(2,87.48) 0.67 0.513 

     

Motivation 

 

F(1,82.72) 16.49 <0.001 

          Sternberg accuracy 
(correct/96) 

 

1.1 963.90 

 

Visit 

 

F(2,89.31) 1.51 0.226 

    

Session 

 

F(1,95.03) 0.68 0.412 

     

Visit x 
Session 

 

F(2,79.32) 0.25 0.777 

          

  

1.2 926.88 

 

Visit 

 

F(2,89.83) 1.84 0.165 

     

Session 

 

F(1,86.21) 0.37 0.542 

     

Visit x 
Session 

 

F(2,81.68) 0.33 0.722 
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Table L.1 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.1 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Motivation 

 

F(1,131.06) 44.25 0.000 

          Sternberg scanning 
rate (ms/item) 

 

1.1 1466.11 

 

Visit 

 

F(2,60.33) 7.08 0.002 

    

Session 

 

F(1,58.80) 0.10 0.754 

     

Visit x 
Session 

 

F(2,70.08) 0.26 0.774 

          

  

1.2 1464.85 

 

Visit 

 

F(2,60.89) 6.87 0.002 

     

Session 

 

F(1,58.29) 0.07 0.789 

     

Visit x 
Session 

 

F(2,71.51) 0.25 0.777 

     

Motivation 

 

F(1,130.19) 1.37 0.243 

          Sternberg extrapolated 
RT (ms) 

 

1.1 2149.69 

 

Visit 

 

F(2,60.81) 2.80 0.069 

    

Session 

 

F(1,56.18) 8.80 0.004 

     

Visit x 
Session 

 

F(2,71.12) 1.13 0.328 

          

  

1.2 2146.33 

 

Visit 

 

F(2,60.23) 2.82 0.067 

     

Session 

 

F(1,55.60) 9.37 0.003 

     

Visit x 
Session 

 

F(2,71.45) 1.06 0.351 

     

Motivation 

 

F(1,128.73) 3.60 0.060 

          Stroop accuracy 
(correct/96) 

 

1.1 988.00 

 

Visit 

 

F(2,72.10) 0.03 0.966 

    

Session 

 

F(1,56.97) 0.04 0.835 

     

Visit x 
Session 

 

F(2,58.63) 1.18 0.316 

          

  

1.2 982.40 

 

Visit 

 

F(2,66.97) 0.06 0.938 

     

Session 

 

F(1,55.68) <0.01 0.949 

     

Visit x 
Session 

 

F(2,60.04) 1.20 
0.307 

     

Motivation 

 

F(1,102.34) 6.35 0.013 

        
  

Stroop incongruent RT 
(ms) 

 

1.1 1833.20 

 

Visit 

 

F(2,52.04) 12.66 <0.001 

    

Session 

 

F(1,58.63) 23.75 <0.001 
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Table L.1 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.1 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Visit x 
Session 

 

F(2,74.99) 8.91 <0.001 

        
  

  

1.2 1830.40 

 

Visit 

 

F(2,52.41) 13.62 <0.001 

     

Session 

 

F(1,57.19) 24.57 <0.001 

     

Visit x 
Session 

 

F(2,74.68) 8.70 <0.001 

     

Motivation 

 

F(1,140.55) 3.24 0.074 

          Stroop congruent RT 
(ms) 

 

1.1 1858.71 

 

Visit 

 

F(2,48.90) 6.17 0.004 

    

Session 

 

F(1,47.64) 44.81 <0.001 

     

Visit x 
Session 

 

F(2,83.96) 3.45 0.036 

          

  

1.2 1853.27 

 

Visit 

 

F(2,43.04) 6.65 0.003 

     

Session 

 

F(1,42.89) 50.08 <0.001 

     

Visit x 
Session 

 

F(2,83.05) 3.52 0.034 

     

Motivation 

 

F(1,140.24) 5.82 0.017 

          Stroop interference 
effect (ms) 

 

1.1 1753.17 

 

Visit 

 

F(2,55.68) 0.32 0.729 

    

Session 

 

F(1,58.75) 5.51 0.022 

     

Visit x 
Session 

 

F(2,84.38) 2.29 0.108 

          

  

1.2 1750.37 

 

Visit 

 

F(2,55.57) 0.29 0.748 

     

Session 

 

F(1,61.19) 6.50 0.013 

     

Visit x 
Session 

 

F(2,84.16) 2.40 0.097 

     

Motivation 

 

F(1,145.5) 3.19 0.076 

          Mood: 

         Mental fatigue 
(rating/9) 

 

1.1 657.59 

 

Visit 

 

F(2,58.82) 5.18 0.008 

    

Session 

 

F(1,69.09) 7.24 0.009 

     

Visit x 
Session 

 

F(2,83.19) 0.52 0.599 
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Table L.1 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.1 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Positive affect 
(score/50) 

 

1.1 1034.15 

 

Visit 

 

F(2,53.70) 5.18 0.009 

    

Session 

 

F(1,61.90) 13.24 0.001 

     

Visit x 
Session 

 

F(2,71.46) 3.13 0.050 

          Negative affect 
(score/50) 

 

1.1 789.83 

 

Visit 

 

F(2,75.48) 0.31 0.737 

    

Session 

 

F(1,58.12) 2.69 0.107 

     

Visit x 
Session 

 

F(2,54.22) 0.40 0.673 

          Perceived difficulty 
(rating/9) 

 

1.4 3597.07 

 

Task 

 

F(5,186.29) 20.12 <0.001 

    

Visit 

 

F(2,595.30) 7.38 <0.001 

     

Session 

 

F(1,602.72) <0.01 0.947 

     

Task x Visit 

 

F(10,595.30) 1.07 0.387 

     

Task x 
Session 

 

F(5,602.72) 7.22 <0.001 

     

Visit x 
Session 

 

F(2,544.08) 6.54 0.002 

     

Task x Visit x 
Session F(10,544.08) 1.87 0.047 

                    

Motivation 
(rating/9) 

 

1.4 3287.93 

 

Task 

 

F(5,262.17) 10.42 <0.001 

    

Visit 

 

F(2,537.87) 8.03 <0.001 

     

Session 

 

F(1,481.32) 15.14 <0.001 

     

Task x Visit 

 

F(10,537.87) 0.80 0.632 

     

Task x 
Session 

 

F(5,481.32) 2.72 0.019 

     

Visit x 
Session 

 

F(2,547.79) 0.28 0.759 

     

Task x Visit 
x Session 

 

F(10,547.79) 0.61 0.803 
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Table L.2 LMM results for Experiment 1.2 

Table L.2 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Cognition: 

         Digit vigilance score 
(correct/45) 

 

1.1 1354.2 

 

Visit 

 

F(2,71.98) 2.31 0.106 

    

Session 

 

F(2,113.33) 8.35 <0.001 

     

Visit x 
Session 

 

F(4,86.69) 0.25 0.908 

          

  

1.2 1340.72 

 

Visit 

 

F(2,80.15) 1.87 0.160 

     

Session 

 

F(2,117.55) 5.87 0.004 

     

Visit x 
Session 

 

F(4,85.72) 
0.32 0.867 

     

Motivation 

 

F(1,172.34) 6.54 0.011 

          Digit vigilance 
commission errors 

 

1.1 1035.88 

 

Visit 

 

F(2,90.77) 6.64 0.002 

    

Session 

 

F(2,132.04) 0.52 0.598 

     

Visit x 
Session 

 

F(4,101.48) 0.74 0.568 

          

  

1.2 1020.55 

 

Visit 

 

F(2,93.92) 4.94 0.009 

     

Session 

 

F(2,132.14) 0.09 0.917 

     

Visit x 
Session 

 

F(4,98.55) 
0.58 0.677 

     

Motivation 

 

F(1,224.24) 10.48 0.001 

        
  

Digit vigilance RT (ms) 

 

1.1 2636.74 

 

Visit 

 

F(2,63.25) 1.31 0.277 

     

Session 

 

F(2,125.79) 6.70 0.002 

     

Visit x 
Session 

 

F(4,88.65) 0.89 0.475 

          

  

1.2 2613.18 

 

Visit 

 

F(2,65.49) 0.78 0.463 

     

Session 

 

F(2,127.82) 4.21 0.017 

     

Visit x 
Session 

 

F(4,88.14) 
0.75 0.560 

     

Motivation 

 

F(1,237.80) 8.14 0.005 

          RVIP score 
(correct/40) 

 

1.1 1701.31 

 

Visit 

 

F(2,73.09) 24.45 <0.001 

    

Session 

 

F(2,138.86} 3.77 0.026 
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Table L.2 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Visit x 
Session 

 

F(4,98.89) 2.47 0.049 

          

  

1.2 1671.44 

 

Visit 

 

F(2,71.74) 26.88 <0.001 

     

Session 

 

F(2,138.85) 5.51 0.005 

     

Visit x 
Session 

 

F(4,100.73) 
2.09 0.088 

     

Motivation 

 

F(1,243.60) 9.49 0.002 

        
  

RVIP commission 
errors 

 

1.1 2017.52 

 

Visit 

 

F(2,61.71) 0.47 0.627 

    

Session 

 

F(2,115.62) 3.13 0.048 

     

Visit x 
Session 

 

F(4,90.25) 3.01 0.022 

          

  

1.2 1979.62 

 

Visit 

 

F(2,64.14) 0.61 0.548 

     

Session 

 

F(2,116.65) 3.06 0.050 

     

Visit x 
Session 

 

F(4,86.94) 
3.22 0.016 

     

Motivation 

 

F(1,206.91) 2.31 0.130 

          RVIP RT (ms) 

 

1.1 2763.36 

 

Visit 

 

F(2,82.07) 3.97 0.023 

     

Session 

 

F(2,133.40) 4.44 0.014 

     

Visit x 
Session 

 

F(4,100.73) 0.91 0.464 

          

  

1.2 2725.26 

 

Visit 

 

F(2,82.56) 3.59 0.032 

     

Session 

 

F(2,133.46) 5.38 0.006 

     

Visit x 
Session 

 

F(4,97.61) 0.86 0.490 

     

Motivation 

 

F(1,231.89) 1.68 0.196 

          Serial 3s score (correct 
in 2 mins) 

 

1.1 1959.48 

 

Visit 

 

F(2,39.61) 46.21 <0.001 

    

Session 

 

F(2,104.14) 16.73 <0.001 

     

Visit x 
Session 

 

F(4,84.61) 2.81 0.031 

          

  

1.2 1943.22 

 

Visit 

 

F(2,35.86) 49.65 <.001 
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Table L.2 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Session 

 

F(2,105.74) 22.49 <.001 

     

Visit x 
Session 

 

F(4,82.51) 
2.87 0.028 

     

Motivation 

 

F(1,197.14) 17.64 <.001 

          Serial 3s errors 
(incorrect in 2 mins) 

 

1.1 1257.89 

 

Visit 

 

F(2,78.14) 2.87 0.063 

    

Session 

 

F(2,115.35) 0.37 0.691 

     

Visit x 
Session 

 

F(4,93.40) 1.45 0.223 

          

  

1.2 1255.26 

 

Visit 

 

F(2,77.23) 2.72 0.072 

     

Session 

 

F(2,117.78) 0.18 0.832 

     

Visit x 
Session 

 

F(4,92.95) 
1.46 0.222 

     

Motivation 

 

F(1,158.75) 2.81 0.096 

          Serial 3s RT (ms) 

 

1.1 4402.4 

 

Visit 

 

F(2,64.08) 31.22 <0.001 

     

Session 

 

F(2,104.49) 11.44 <0.001 

     

Visit x 
Session 

 

F(4,93.00) 1.56 0.192 

          

  

1.2 4400.72 

 

Visit 

 

F(2,64.06) 30.25 <.001 

     

Session 

 

F(2,104.83) 12.12 <.001 

     

Visit x 
Session 

 

F(4,93.23) 
1.58 0.185 

     

Motivation 

 

F(1,165.433) 1.82 0.180 

          Serial 7s score (correct 
in 2 mins) 

 

1.1 1736.98 

 

Visit 

 

F(2,62.26) 28.94 <0.001 

    

Session 

 

F(2,123.19) 13.49 <0.001 

     

Visit x 
Session 

 

F(4,94.21) 0.84 0.503 

          

  

1.2 1715.02 

 

Visit 

 

F(2,63.84) 32.34 <0.001 

     

Session 

 

F(2,114.35) 16.54 <0.001 

     

Visit x 
Session 

 

F(4,92.52) 
1.11 0.355 

     

Motivation 

 

F(1,209.03) 11.28 0.001 
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Table L.2 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

          Serial 7s errors 
(incorrect in 2 mins) 

 

1.1 1110.51 

 

Visit 

 

F(2,78.98) 0.61 0.545 

    

Session 

 

F(2,127.26) 7.94 0.001 

     

Visit x 
Session 

 

F(4,94.52) 0.91 0.462 

          

  

1.2 1086.54 

 

Visit 

 

F(2,73.78) 1.14 0.325 

     

Session 

 

F(2,133.11) 8.63 <0.001 

     

Visit x 
Session 

 

F(4,98.18) 
1.39 0.244 

     

Motivation 

 

F(1,183.87) 2.72 0.101 

          Serial 7s RT (ms) 

 

1.1 4745.02 

 

Visit 

 

F(2,79.59) 42.14 <0.001 

     

Session 

 

F(2,107.78) 25.42 <0.001 

     

Visit x 
Session 

 

F(4,89.87) 1.94 0.111 

          

  

1.2 4706.44 

 

Visit 

 

F(2,79.61) 44.95 <0.001 

     

Session 

 

F(2,110.43) 28.16 <0.001 

     

Visit x 
Session 

 

F(4,87.32) 
2.34 0.061 

     

Motivation 

 

F(1,219.22) 4.45 0.036 

Mood: 

         Mental fatigue 
(rating/9) 

 

1.1 1132.14 

 

Visit 

 

F(2,76.15) 0.18 0.836 

    

Session 

 

F(2,130.86) 2.00 0.139 

     

Visit x 
Session 

 

F(4,94.29) 
1.11 0.359 

          Positive affect 
(score/50) 

 

1.1 1729.76 

 

Visit 

 

F(2,73.67) 3.48 0.036 

    

Session 

 

F(2,126.73) 8.93 <0.001 

     

Visit x 
Session 

 

F(4,88.15) 
0.28 0.888 

          Negative affect 
(score/50) 

 

1.1 1309.28 

 

Visit 

 

F(2,71.56) 1.28 0.286 

    

Session 

 

F(2,136.12) 6.35 0.002 

     

Visit x 
Session 

 

F(4,98.66) 
0.64 0.635 
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Table L.2 continued 

      LMM fixed effects, interactions & covariates 

Experiment 1.2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

        
  

Perceived difficulty 
(rating/9) 

 

1.4 3873.52 

 

Task 

 

F(3,204.29) 142.51 <0.001 

    

Visit 

 

F(2,452.46) 22.98 <0.001 

     

Session 

 

F(2,586.29) 37.75 <0.001 

     

Task x Visit 

 

F(6,449.48) 2.72 0.013 

     

Task x 
Session 

 

F(6,585.91) 2.83 0.010 

     

Visit x 
Session 

 

F(4,447.35) 8.86 <0.001 

     

Task x Visit x 
Session F(447.30) 1.18 0.297 
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Table L.3 LMM results for Experiments 1.1 & 1.2 combined 

Table L.3 continued 

      LMM fixed effects, interactions & covariates 

Experiments 1.1 & 1.2 
combined 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Cognition: 

         Serial 3s score (correct 
in 2 mins) 

 

1.5 3161.68 

 

Time of 
day 

 

F(1,171.56) 0.02 0.891 

     

Visit 

 

F(2,95.87) 100.94 <0.001 

     

Session 

 

F(2,144.33) 35.24 <0.001 

     

ToD x Visit 

 

F(2,97.24) 2.23 0.113 

     

ToD x 
Session 

 

F(2,144.55) 1.07 0.345 

     

Visit x 
Session 

 

F(4,106.31) 4.00 0.005 

     

ToD x Visit 
x Session 

 

F(4,106.30) 0.91 0.463 

          

  

1.6 3141.77 

 

Time of 
day 

 

F(1,171.33) <0.01 0.999 

     

Visit 

 

F(2,95.38) 107.35 <0.001 

     

Session 

 

F(2,148.61) 41.71 <0.001 

     

ToD x Visit 

 

F(2,96.33) 2.72 0.071 

     

ToD x 
Session 

 

F(2,147.96) 0.75 0.475 

     

Visit x 
Session 

 

F(4,107.74) 3.65 0.008 

     

ToD x Visit 
x Session 

 

F(4,107.80) 0.70 0.596 

     

Motivation 

 

F(1,388.76) 21.02 <0.001 

          Serial 3s errors 
(incorrect in 2 mins) 

 

1.5 1983.35 

 

Time of 
day 

 

F(1,69.15) 5.34 0.024 

     

Visit 

 

F(2,117.59) 2.04 0.135 

     

Session 

 

F(2,144.40) 0.90 0.410 

     

ToD x Visit 

 

F(2,119.15) 0.73 0.485 

     

ToD x 
Session 

 

F(2,144.70) 0.77 0.467 

     

Visit x 
Session 

 

F(4,110.41) 1.64 0.168 

     

ToD x Visit 

 

F(4,110.55) 1.02 0.401 
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Table L.3 continued 

      LMM fixed effects, interactions & covariates 

Experiments 1.1 & 1.2 
combined 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

x Session 

          

  

1.6 1978.14 

 

Time of 
day 

 

F(1,71.49) 6.66 0.012 

     

Visit 

 

F(2,115.97) 1.79 0.172 

     

Session 

 

F(2,144.19) 0.62 0.540 

     

ToD x Visit 

 

F(2,117.31) 0.77 0.465 

     

ToD x 
Session 

 

F(2,143.69) 0.96 0.387 

     

Visit x 
Session 

 

F(4,110.69) 1.67 0.163 

     

ToD x Visit 
x Session 

 

F(4,110.83) 0.96 0.433 

     

Motivation 

 

F(1,194.51) 5.40 0.021 

          
Serial 3s RT (ms) 

 

1.5 7118.82 

 

Time of 
day 

 

F(1,146.48) 0.45 0.505 

     

Visit 

 

F(2,119.15) 63.75 <0.001 

     

Session 

 

F(2,205.13) 21.52 <0.001 

     

ToD x Visit 

 

F(2,121.59) 0.15 0.857 

     

ToD x 
Session 

 

F(2,204.88) 0.71 0.491 

     

Visit x 
Session 

 

F(4,146.74) 1.57 0.184 

     

ToD x Visit 
x Session 

 

F(4,147.48) 0.79 0.536 

          

  

1.6 7115.79 

 

Time of 
day 

 

F(1,144.47) 0.41 0.521 

     

Visit 

 

F(2,118.64) 62.76 <0.001 

     

Session 

 

F(2,206.34) 22.69 <0.001 

     

ToD x Visit 

 

F(2,120.63) 0.17 0.844 

     

ToD x 
Session 

 

F(2,205.55) 0.54 0.582 

     

Visit x 
Session 

 

F(4,145.76) 1.47 0.215 
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Table L.3 continued 

      LMM fixed effects, interactions & covariates 

Experiments 1.1 & 1.2 
combined 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

ToD x Visit 
x Session 

 

F(4,147.02) 0.86 0.487 

     

Motivation 

 

F(1,270.60) 3.16 0.077 

          Serial 7s score (correct 
in 2 mins) 

 

1.5 2812.56 

 

Time of 
day 

 

F(1,151.74) 1.87 0.174 

     

Visit 

 

F(2,111.21) 52.10 <0.001 

     

Session 

 

F(2,173.06) 17.45 <0.001 

     

ToD x Visit 

 

F(2,113.08) 6.44 0.002 

     

ToD x 
Session 

 

F(2,173.41) 0.82 0.441 

     

Visit x 
Session 

 

F(4,115.67) 0.99 0.414 

     

ToD x Visit 
x Session 

 

F(4,115.88) 0.80 0.531 

          

  

1.6 2776.99 

 

Time of 
day 

 

F(1,151.59) 0.87 0.353 

     

Visit 

 

F(2,110.47) 57.18 <0.001 

     

Session 

 

F(2,156.24) 22.27 <0.001 

     

ToD x Visit 

 

F(2,111.67) 5.80 0.004 

     

ToD x 
Session 

 

F(2,154.61) 1.20 0.304 

     

Visit x 
Session 

 

F(4,116.54) 1.14 0.342 

     

ToD x Visit 
x Session 

 

F(4,117.30) 1.21 0.311 

     

Motivation 

 

F(1,380.09) 27.13 <0.001 

          Serial 7s errors 
(incorrect in 2 mins) 

 

1.5 1915.13 

 

Time of 
day 

 

F(1,81.57) 0.06 0.805 

     

Visit 

 

F(2,107.19) 1.25 0.289 

     

Session 

 

F(2,163.85) 4.60 0.011 

     

ToD x Visit 

 

F(2,109.03) 0.12 0.890 

     

ToD x 
Session 

 

F(2,164.00) 0.25 0.782 

     

Visit x 
Session 

 

F(4,111.94) 0.19 0.942 
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Table L.3 continued 

      LMM fixed effects, interactions & covariates 

Experiments 1.1 & 1.2 
combined 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

ToD x Visit 
x Session 

 

F(4,112.33) 1.16 0.334 

          

  

1.6 1889.38 

 

Time of 
day 

 

F(1,82.59) 0.08 0.780 

     

Visit 

 

F(2,105.37) 1.91 0.153 

     

Session 

 

F(2,156.62) 3.85 0.023 

     

ToD x Visit 

 

F(2,106.15) 0.12 0.887 

     

ToD x 
Session 

 

F(2,155.14) 0.20 0.819 

     

Visit x 
Session 

 

F(4,107.47) 0.23 0.920 

     

ToD x Visit 
x Session 

 

F(4,108.27) 1.21 0.309 

     

Motivation 

 

F(1,326.80) 11.78 0.001 

          
Serial 7s RT (ms) 

 

1.5 7672.87 

 

Time of 
day 

 

F(1,161.61) 0.25 0.618 

     

Visit 

 

F(2,102.79) 42.23 <0.001 

     

Session 

 

F(2,152.25) 27.73 <0.001 

     

ToD x Visit 

 

F(2,103.56) 2.53 0.085 

     

ToD x 
Session 

 

F(2,152.36) 0.66 0.519 

     

Visit x 
Session 

 

F(4,106.37) 2.19 0.075 

     

ToD x Visit 
x Session 

 

F(4,106.64) 1.06 0.379 

          

  

1.6 7634.93 

 

Time of 
day 

 

F(1,164.69) 0.58 0.448 

     

Visit 

 

F(2,100.57) 42.40 <0.001 

     

Session 

 

F(2,154.15) 29.24 <0.001 

     

ToD x Visit 

 

F(2,100.65) 2.32 0.103 

     

ToD x 
Session 

 

F(2,152.83) 0.62 0.540 

     

Visit x 
Session 

 

F(4,107.45) 2.71 0.034 
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Table L.3 continued 

      LMM fixed effects, interactions & covariates 

Experiments 1.1 & 1.2 
combined 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

ToD x Visit 
x Session 

 

F(4,108.36) 1.05 0.383 

     

Motivation 

 

F(1,310.62) 2.20 0.139 

Mood: 

         Mental fatigue 
(rating/9) 

 

1.5 2779.06 

 

Time of 
day 

 

F(1,79.41) 0.91 0.343 

     

Visit 

 

F(2,115.12) 1.61 0.205 

     

Session 

 

F(2,158.09) 0.45 0.638 

     

ToD x Visit 

 

F(2,116.97) 0.66 0.521 

     

ToD x 
Session 

 

F(2,158.09) 1.74 0.179 

     

Visit x 
Session 

 

F(4,111.79) 0.40 0.808 

     

ToD x Visit 
x Session 

 

F(4,112.25) 0.16 0.960 

          Positive affect 
(score/50) 

 

1.5 2085.36 

 

Time of 
day 

 

F(1,129.26) 3.18 0.077 

     

Visit 

 

F(2,106.24) 6.44 0.002 

     

Session 

 

F(2,138.03) 15.91 <0.001 

     

ToD x Visit 

 

F(2,107.87) 4.32 0.016 

     

ToD x 
Session 

 

F(2,138.11) 0.38 0.683 

     

Visit x 
Session 

 

F(4,96.71) 1.51 0.205 

     

ToD x Visit 
x Session 

 

F(4,97.03) 1.42 0.235 

          Negative affect 
(score/50) 

 

1.5 1821.22 

 

Time of 
day 

 

F(1,97.94) 0.01 0.929 

     

Visit 

 

F(2,118.14) 1.49 0.229 

     

Session 

 

F(2,168.32) 6.57 0.002 

     

ToD x Visit 

 

F(2,119.59) 1.93 0.150 

     

ToD x 
Session 

 

F(2,168.34) 0.91 0.404 

     

Visit x 
Session 

 

F(4,114.36) 1.28 0.283 



 

230 
 

Table L.3 continued 

      LMM fixed effects, interactions & covariates 

Experiments 1.1 & 1.2 
combined 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

ToD x Visit 
x Session 

 

F(4,115.34) 0.05 0.995 
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Table L.4 LMM results for Experiment 2 

Table L.4 continued 

      LMM fixed effects, interactions & covariates 

Experiment 2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Cognition: 

         Immediate recall 
(score/15) 

 

2.1 2213.36 

 

Visit 

 

F(5,219.21) 1.88 0.098 

    

Session 

 

F(1,264.00) 30.95 <0.001 

     

Dose 

 

F(5,216.82) 0.36 0.875 

     

Session x Dose 

 

F(5,264) 1.23 0.293 

          Immediate recall 
interference errors 

 

2.2 -680.2 

 

Visit 

 

F(5,264.06) 1.07 0.379 

    

Session 

 

F(1,264.01) 11.24 0.001 

     

Dose 

 

F(5,263.30) 0.16 0.978 

     

Session x Dose 

 

F(5,264.01) 0.33 0.898 

          Delayed recall 
(score/15) 

 

2.1 2259.32 

 

Visit 

 

F(5,219.14) 2.98 0.013 

    

Session 

 

F(1,264.00) 100.36 <0.001 

     

Dose 

 

F(5,217.31) 0.76 0.583 

     

Session x Dose 

 

F(5,264.00) 1.40 0.225 

          Delayed recall 
interference errors 

 

2.2 199.64 

 

Visit 

 

F(5,264.04) 0.67 0.647 

    

Session 

 

F(1,263.06) 58.79 <0.001 

     

Dose 

 

F(5,263.17) 0.96 0.441 

     

Session x Dose 

 

F(5,263.06) 1.03 0.401 

          Seral 3s score 
(correct in 2 mins) 

 

2.1 3648.66 

 

Visit 

 

F(5,219.20) 80.02 <0.001 

    

Session 

 

F(1,263.94) 22.98 <0.001 

     

Dose 

 

F(5,218.38) 1.25 0.287 

     

Session x Dose 

 

F(5,263.94) 0.25 0.941 

          Serial 3s errors 
(incorrect in 2 mins) 

 

2.1 2152.71 

 

Visit 

 

F(5,213.88) 0.83 0.531 

    

Session 

 

F(1,254.27) 3.37 0.067 

     

Dose 

 

F(5,214.96) 0.61 0.695 

     

Session x Dose 

 

F(5,254.27) 0.25 0.942 

          Serial 3s RT (ms) 

 

2.1 7417.28 

 

Visit 

 

F(5,218.15) 109.92 <0.001 

     

Session 

 

F(1,261.91) 63.60 <0.001 

     

Dose 

 

F(5,212.89) 1.47 0.201 
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Table L.4 continued 

      LMM fixed effects, interactions & covariates 

Experiment 2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Session x Dose 

 

F(5,261.89) 0.57 0.727 

          Seral 7s score 
(correct in 2 mins) 

 

2.1 3191.56 

 

Visit 

 

F(5,218.11) 27.62 <0.001 

    

Session 

 

F(1,261.55) 16.52 <0.001 

     

Dose 

 

F(5,217.68) 0.57 0.721 

     

Session x Dose 

 

F(5,261.63) 1.16 0.328 

          Serial 7s errors 
(incorrect in 2 mins) 

 

2.1 2025.52 

 

Visit 

 

F(5,221.58) 0.75 0.585 

    

Session 

 

F(1,263.97) 1.64 0.201 

     

Dose 

 

F(5,221.65) 0.65 0.661 

     

Session x Dose 

 

F(5,263.97) 0.67 0.650 

          Serial 7s RT (ms) 

 

2.1 8481.82 

 

Visit 

 

F(5,192.26) 20.45 <0.001 

     

Session 

 

F(1,237.18) 14.59 <0.001 

     

Dose 

 

F(5,193.34) 0.32 0.898 

     

Session x Dose 

 

F(5,236.58) 1.51 0.189 

          Sternberg accuracy 
(correct/96) 

 

2.1 2747.04 

 

Visit 

 

F(5,206.40) 5.67 <0.001 

    

Session 

 

F(1,245.07) 0.45 0.501 

     

Dose 

 

F(5,206.75) 1.07 0.376 

     

Session x Dose 

 

F(5,245.25) 0.43 0.824 

          Sternberg scanning 
rate (ms/item) 

 

2.1 4211.07 

 

Visit 

 

F(5,219.80) 7.69 <0.001 

    

Session 

 

F(1,264.15) 1.77 0.185 

     

Dose 

 

F(5,219.15) 1.85 0.104 

     

Session x Dose 

 

F(5,264.13) 0.42 0.833 

          Sternberg 
extrapolated RT (ms) 

 

2.1 5991.01 

 

Visit 

 

F(5,219.23) 3.79 0.003 

    

Session 

 

F(1,264.00) 17.37 <0.001 

     

Dose 

 

F(5,219.24) 1.49 0.194 

     

Session x Dose 

 

F(5,264.00) 0.91 0.476 

          Stroop accuracy 
(correct/96) 

 

2.1 2444.58 

 

Visit 

 

F(5,218.39) 0.79 0.560 

    

Session 

 

F(1,260.78) 0.08 0.772 

     

Dose 

 

F(5,218.22) 1.09 0.367 
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Table L.4 continued 

      LMM fixed effects, interactions & covariates 

Experiment 2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Session x Dose 

 

F(5,260.71) 0.72 0.610 

          Stroop incongruent 
RT (ms) 

 

2.1 5601.64 

 

Visit 

 

F(5,218.94) 1.97 0.083 

    

Session 

 

F(1,264.00) 19.54 <0.001 

     

Dose 

 

F(5,218.95) 1.82 0.109 

     

Session x Dose 

 

F(5,264.00) 0.33 0.893 

          Stroop congruent RT 
(ms) 

 

2.1 5564.72 

 

Visit 

 

F(5,218.91) 0.61 0.691 

    

Session 

 

F(1,264.00) 21.99 <0.001 

     

Dose 

 

F(5,218.71) 2.12 0.064 

     

Session x Dose 

 

F(5,264.00) 0.49 0.785 

          Stroop interference 
effect (ms) 

 

2.1 5153.71 

 

Visit 

 

F(5,219.28) 4.24 0.001 

    

Session 

 

F(1,263.11) 0.11 0.741 

     

Dose 

 

F(5,219.96) 1.28 0.272 

     

Session x Dose 

 

F(5,263.10) 0.69 0.630 

Mood: 

         Mental fatigue 
(rating/9) 

 

2.1 2098.79 

 

Visit 

 

F(5,219.63) 3.40 0.006 

    

Session 

 

F(1,264.00) 10.51 0.001 

     

Dose 

 

F(5,219.58) 0.40 0.845 

     

Session x Dose 

 

F(5,264.00) 1.08 0.375 

          Positive affect 
(score/50) 

 

2.1 3368.94 

 

Visit 

 

F(5,219.44) 1.86 0.102 

    

Session 

 

F(1,264.00) 3.37 0.067 

     

Dose 

 

F(5,218.87) 0.41 0.838 

     

Session x Dose 

 

F(5,264.00) 0.66 0.654 

          Negative affect 
(score/50) 

 

2.1 2496.64 

 

Visit 

 

F(5,219.03) 0.39 0.852 

    

Session 

 

F(1,259.58) 4.55 0.034 

     

Dose 

 

F(5,219.06) 0.48 0.793 

     

Session x Dose 

 

F(5,259.65) 1.05 0.389 

Physiology: 

         Systolic BP (mmHg) 

 

2.1 3122.99 

 

Visit 

 

F(5,219.10) 2.80 0.018 

     

Session 

 

F(1,264.00) 153.18 <0.001 

     

Dose 

 

F(5,218.27) 1.46 0.205 
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Table L.4 continued 

      LMM fixed effects, interactions & covariates 

Experiment 2 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Session x Dose 

 

F(5,264.00) 0.21 0.957 

          Diastolic BP (mmHg) 

 

2.1 2843.16 

 

Visit 

 

F(5,217.05) 3.90 0.002 

     

Session 

 

F(1,259.02) 107.86 <0.001 

     

Dose 

 

F(5,216.67) 0.71 0.620 

     

Session x Dose 

 

F(5,259.87) 0.30 0.915 

          Heart rate (bpm) 

 

2.1 3322.48 

 

Visit 

 

F(5,219.50) 1.62 0.155 

     

Session 

 

F(1,263.40) 28.60 <0.001 

     

Dose 

 

F(5,210.58) 1.46 0.204 

     

Session x Dose 

 

F(5,263.39) 1.45 0.206 

Palatability: 

         ‘Sweet' rating 
(out of 9) 

 

2.3 987.07 

 

Dose 

 

F(5,44.23) 1.57 0.190 

         ‘Bland' rating 
(out of 9) 

 

2.3 978.25 

 

Dose 

 

F(5,44.52) 2.82 0.027 

         ‘Tasty' rating 
(out of 9) 

 

2.3 1049.05 

 

Dose 

 

F(5,44.54) 10.07 <0.001 

         ‘Pleasant' rating 
(out of 9) 

 

2.3 1046.32 

 

Dose 

 

F(5,44.36) 10.26 <0.001 

         ‘Sour' rating 
(out of 9) 

 

2.3 945.97 

 

Dose 

 

F(5,44.21) 3.97 0.005 

         ‘Satisfying' rating 
(out of 9) 

 

2.3 1053.19 

 

Dose 

 

F(5,44.29) 5.10 0.001 

         ‘How much more 
could you consume?’ 
rating (out of 9) 

 

2.3 1051.72 

 

Dose 

 

F(5,43.24) 6.82 <0.001 

         ‘How easy was it to 
consume?' rating 
(out of 9) 

  

 

2.3 1100.45 

 

Dose 

 

F(5,43.75) 10.61 <0.001 
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Table L.5 LMM results for Experiment 3 

    LMM fixed effects, interactions & covariates 

Experiment 3 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Physiology: 

         Blood glucose (mmol/l) 

 

3.1 1194.95 

 

Time 

 

F(7,84.00) 45.17 <0.001 

     

Dose 

 

F(4,59.06) 15.12 <0.001 

     

Time x Dose 

 

F(28,84.00) 4.53 <0.001 

     

BMI 

 

F(1,15.99) 5.64 0.030 

          iAUC 

 

3.2 908.44 

 

Dose 

 

F(4,17.12) 14.02 <0.001 

     

BMI 

 

F(1,17.88) 0.07 0.795 
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Table L.6 LMM results for Experiment 4  

Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Glucose: 

        
 

Blood glucose (mmol/l) 

 

4.0 1555.11 

 

Visit 

 

F(3,121.85) 2.02 0.115 

     

Time 

 

F(4,164.00) 215.62 <0.001 

     

Dose 

 

F(3,91.99) 4.93 0.003 

     

Time x 
Dose 

 

F(12,164.00) 3.36 <0.001 

          

  

4.1 1546.29 

 

Visit 

 

F(3,120.95) 2.03 0.113 

     

Time 

 

F(4,164.00) 215.62 <0.001 

     

Dose 

 

F(3,90.27) 4.81 0.004 

     

Time x 
Dose 

 

F(12,164.00) 3.36 <0.001 

     

BMI 

 

F(1,39.01) 9.96 0.003 

          

  

4.2 1535.77 

 

Visit 

 

F(3,121.01) 2.39 0.072 

     

Time 

 

F(4,164.00) 11.30 <0.001 

     

Dose 

 

F(3,91.02) 0.23 0.878 

     

Time x 
Dose 

 

F(12,164.00) 0.62 0.824 

     

BMI 

 

F(1,44.38) 8.48 0.006 

     

Time x 
BMI 

 

F(4,164.00) 0.84 0.504 

     

Dose x 
BMI 

 

F(3,91.12) 0.19 0.906 

     

Time x 
Dose x 
BMI 

 

F(12,164.00) 0.40 0.962 

          iAUC 

 

4.0 1646.42 

 

Visit 

 

F(3,39.99) 0.09 0.965 

     

Dose 

 

F(3,91.69) 2.11 0.104 

          

  

4.3 1646.1 

 

Visit 

 

F(3,40.03) 0.09 0.965 

     

Dose 

 

F(3,92.64) 2.15 0.100 

     

BMI 

 

F(1,39.86) 0.33 0.569 

          Cognition: 
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Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

Digit vigilance score 
(correct/45) 

 

4.4 2078.6 

 

Visit 

 

F(3,113.74) 3.42 .020 

    

Session 

 

F(2,154.02) .48 .621 

     

Dose 

 

F(3,112.93) .29 .836 

     

Session 
x Dose 

 

F(6,154.00) 1.22 .297 

          

  

4.5 2078.58 

 

Visit 

 

F(3,113.98) 3.37 .021 

     

Session 

 

F(2,180.71) .42 .656 

     

Dose 

 

F(3,112.81) .29 .835 

     

Session 
x Dose 

 

F(6,153.77) 1.23 .295 

     

Glucose 

 

F(1,373.34) .02 .885 

          Digit vigilance commission 
errors 

 

4.4 1660.27 

 

Visit 

 

F(3,121.23) 2.83 .041 

    

Session 

 

F(2,157.54) 0.63 .535 

     

Dose 

 

F(3,121.48) 1.02 .388 

     

Session 
x Dose 

 

F(6,157.40) 1.20 .308 

          

  

4.5 1660.02 

 

Visit 

 

F(3,121.28) 2.74 .046 

     

Session 

 

F(2,179.16) 0.43 .649 

     

Dose 

 

F(3,121.36) 1.04 .379 

     

Session 
x Dose 

 

F(6,156.89) 1.20 .307 

     

Glucose 

 

F(1,413.42) 0.27 .607 

          Digit vigilance RT (ms) 

 

4.4 4512.43 

 

Visit 

 

F(3,123.55) 2.29 .082 

     

Session 

 

F(2,163.68) 7.59 .001 

     

Dose 

 

F(3,123.06) 0.65 .581 

     

Session 
x Dose 

 

F(6,163.67) 0.58 .748 

          

  

4.5 4512.42 

 

Visit 

 

F(3,124.03) 2.28 .083 

     

Session 

 

F(2,190.03) 7.28 .001 

     

Dose 

 

F(3,123.13) 0.66 .581 

     

Session 
x Dose 

 

F(6,164.07) 0.58 .746 
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Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Glucose 

 

F(1,394.38) 0.01 .915 

          RVIP score (correct/40) 

 

4.4 2828.14 

 

Visit 

 

F(3,123.36) 0.31 .821 

     

Session 

 

F(2,163.61) 4.54 .012 

     

Dose 

 

F(122.70) 0.92 .434 

     

Session 
x Dose 

 

F(6,163.61) 0.68 .666 

          

  

4.5 2826.45 

 

Visit 

 

F(3,123.72) 0.26 .851 

     

Session 

 

F(2,192.98) 5.40 .005 

     

Dose 

 

F(3,122.63) 0.90 .442 

     

Session 
x Dose 

 

F(6,164.28) 0.63 .705 

     

Glucose 

 

F(1,342.04) 1.70 .193 

          RVIP commission errors 

 

4.4 2936.27 

 

Visit 

 

F(3,123.16) 1.55 .204 

     

Session 

 

F(2,160.78) 1.60 .206 

     

Dose 

 

F(3,122.98) 0.07 .977 

     

Session 
x Dose 

 

F(6,160.77) 1.03 .405 

          

  

4.5 2936.15 

 

Visit 

 

F(3,123.69) 1.51 .216 

     

Session 

 

F(2,187.78) 1.60 .204 

     

Dose 

 

F(3,123.09) 0.07 .977 

     

Session 
x Dose 

 

F(6,161.14) 1.03 .406 

     

Glucose 

 

F(1,323.17) 0.12 .726 

          RVIP RT (ms) 

 

4.4 4603.01 

 

Visit 

 

F(3,122.19) 2.86 .040 

     

Session 

 

F(2,163.51) .92 .400 

     

Dose 

 

F(3,123.36) 1.33 .269 

     

Session 
x Dose 

 

F(6,163.51) 1.54 .169 

          

  

4.5 4602.68 

 

Visit 

 

F(3,122.75) 2.86 .040 

     

Session 

 

F(2,190.19) .48 .622 
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Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Dose 

 

F(3,123.32) 1.34 .263 

     

Session 
x Dose 

 

F(6,164.04) 1.58 .156 

     

Glucose 

 

F(1,416.08) .33 .567 

          Serial 3s score (correct in 2 
mins) 

 

4.4 3212.85 

 

Visit 

 

F(3,120.61) 97.76 <.001 

    

Session 

 

F(2,158.32) 18.62 <.001 

     

Dose 

 

F(3,120.71) 1.84 .143 

     

Session 
x Dose 

 

F(6,158.30) 0.66 .684 

          

  

4.5 3206.36 

 

Visit 

 

F(3,120.59) 96.90 <.001 

     

Session 

 

F(2,186.33) 21.80 <.001 

     

Dose 

 

F(3,120.33) 1.87 .138 

     

Session 
x Dose 

 

F(6,158.58) 0.66 .684 

     

Glucose 

 

F(1,345.39) 6.81 .009 

          

  

4.6 3174.72 

 

Visit 

 

F(3,117.04) 106.68 <0.001 

     

Session 

 

F(2,214.29) 3.62 0.028 

     

Dose 

 

F(3,308.69) 3.83 0.010 

     

Session 
x Dose 

 

F(6,237.09) 1.57 0.155 

     

Glucose 

 

F(1,405.87) 9.68 0.002 

     

Glucose 
x 
Session 

 

F(2,208.96) 5.16 0.006 

     

Glucose 
x Dose 

 

F(3,308.62) 4.81 0.003 

     

Glucose 
x 
Session 
x Dose 

 

F(6,241.69) 1.69 0.125 

           

         Serial 3s errors (incorrect in 
2 mins) 

 

4.4 1840.93 

 

Visit 

 

F(3,121.95) 2.19 .093 

    

Session 

 

F(2,161.68) 2.95 .055 

    

Dose 

 

F(3,117.66) 0.17 .916 
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Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Session 
x Dose 

 

F(6,161.74) 0.82 .553 

          

  

4.5 1840.76 

 

Visit 

 

F(3,122.43) 2.21 .090 

     

Session 

 

F(2,184.03) 2.83 .061 

     

Dose 

 

F(3,117.61) 0.18 .911 

     

Session 
x Dose 

 

F(6,159.80) 0.83 .552 

     

Glucose 

 

F(1,397.38) 0.17 .678 

          Serial 3s RT (ms) 

 

4.4 7006.66 

 

Visit 

 

F(3,116.29) 31.53 <.001 

     

Session 

 

F(2,156.34) 31.24 <.001 

     

Dose 

 

F(3,106.34) 1.00 .394 

     

Session 
x Dose 

 

F(6,156.23) 1.44 .204 

          

  

4.5 7006.44 

 

Visit 

 

F(3,116.39) 31.60 <.001 

     

Session 

 

F(2,181.67) 28.98 <.001 

     

Dose 

 

F(3,106.57) 0.99 .399 

     

Session 
x Dose 

 

F(6,156.82) 1.41 .212 

     

Glucose 

 

F(1,305.07) 0.23 .632 

          Serial 7s score (correct in 2 
mins) 

 

4.4 2909.63 

 

Visit 

 

F(3,118.96) 35.01 <.001 

    

Session 

 

F(2,156.55) 11.62 <.001 

     

Dose 

 

F(3,118.73) 1.15 .330 

     

Session 
x Dose 

 

F(6,156.43) 0.93 .477 

          

  

4.5 2907.69 

 

Visit 

 

F(3,117.46) 36.54 <.001 

     

Session 

 

F(2,185.35) 12.37 <.001 

     

Dose 

 

F(3,117.11) 1.22 .305 

     

Session 
x Dose 

 

F(6,156.74) 0.81 .566 

     

Glucose 

 

F(1,366.22) 2.01 .157 

          Serial 7s errors (incorrect in 

 

4.4 1905.87 

 

Visit 

 

F(3,122.12) 1.77 .157 
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Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

2 mins) 

    

Session 

 

F(2,163.04) 2.42 .092 

     

Dose 

 

F(3,120.87) 0.94 .423 

     

Session 
x Dose 

 

F(6,163.09) 1.06 .389 

          

  

4.5 1905.66 

 

Visit 

 

F(3,121.53) 1.81 .149 

     

Session 

 

F(2,185.23) 2.07 .129 

     

Dose 

 

F(3,119.52) 0.95 .419 

     

Session 
x Dose 

 

F(6,163.16) 1.03 .410 

     

Glucose 

 

F(1,432.31) 0.22 .642 

          Serial 7s RT (ms) 

 

4.4 7736.26 

 

Visit 

 

F(3,114.31) 24.56 <.001 

     

Session 

 

F(2,145.93) 10.99 <.001 

     

Dose 

 

F(3,115.09) 1.71 .168 

     

Session 
x Dose 

 

F(6,146.53) 0.89 .502 

          

  

4.5 

  

Visit 

 

F(3,114.47) 24.64 <.001 

   

7736.06 

 

Session 

 

F(2,170.14) 10.93 <.001 

     

Dose 

 

F(3,115.05) 1.72 .166 

     

Session 
x Dose 

 

F(6,148.88) 0.88 .509 

     

Glucose 

 

F(1,341.38) 0.20 .655 

Mood: 

         Mental fatigue (rating/9) 

 

4.4 1882.09 

 

Visit 

 

F(3,123.79) 0.34 0.799 

     

Session 

 

F(2,163.32) 3.45 0.034 

     

Dose 

 

F(3,123.45) 2.04 0.112 

     

Session 
x Dose 

 

F(6,163.30) 0.53 0.788 

          

  

4.5 1879.06 

 

Visit 

 

F(3,124.28) 0.32 0.813 

     

Session 

 

F(2,193.07) 4.77 0.009 

     

Dose 

 

F(3,123.30) 2.12 0.102 

     

Session 
x Dose 

 

F(6,163.37) 0.60 0.728 
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Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Glucose 

 

F(1,364.76) 3.12 0.078 

          

  

4.6 1868.98 

 

Visit 

 

F(3,120.40) 0.27 0.844 

     

Session 

 

F(2,235.88) 1.09 0.338 

     

Dose 

 

F(3,321.80) 0.67 0.573 

     

Session 
x Dose 

 

F(6,239.18) 0.77 0.593 

     

Glucose 

 

F(1,434.37) 1.19 0.276 

     

Glucose 
x 
Session 

 

F(2,237.88) 1.79 0.169 

     

Glucose 
x Dose 

 

F(3,329.16) 0.37 0.772 

     

Glucose 
x 
Session 
x Dose 

 

F(6,246.05) 0.92 0.482 

          Positive affect (score/50) 

 

4.4 3042.2 

 

Visit 

 

F(3,121.50) 2.01 0.116 

     

Session 

 

F(2,161.97) 4.99 0.008 

     

Dose 

 

F(3,120.70) 1.31 0.275 

     

Session 
x Dose 

 

F(6,161.96) 1.07 0.384 

          

  

4.5 3027.96 

 

Visit 

 

F(3,122.47) 1.80 0.150 

     

Session 

 

F(2,189.76) 5.55 0.005 

     

Dose 

 

F(3,121.48) 1.13 0.338 

     

Session 
x Dose 

 

F(6,163.31) 0.95 0.461 

     

Glucose 

 

F(1,356.86) 1.36 0.244 

          Negative affect (score/50) 

 

4.4 2227.91 

 

Visit 

 

F(3,120.75) 0.40 0.751 

     

Session 

 

F(2,161.93) 4.63 0.011 

     

Dose 

 

F(3,111.87) 0.63 0.594 

     

Session 
x Dose 

 

F(6,162.81) 0.63 0.705 

          

  

4.5 2227.86 

 

Visit 

 

F(3,121.18) 0.40 0.750 
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Table L.6 continued 

      LMM fixed effects & covariates 

Experiment 4 

           

 

Model Fit (-2LL) 

 

Factor 

 

df F statistic p value 

     

Session 

 

F(2,193.08) 4.23 0.016 

     

Dose 

 

F(3,111.94) 0.63 0.597 

     

Session 
x Dose 

 

F(6,161.77) 0.63 0.708 

     

Glucose 

 

F(1,307.10) 0.04 0.834 

Palatability: 

         ‘Sweet' rating (out of 9) 

 

4.7 602.7 

 

Dose 

 

F(3,40.81) 15.76 <0.001 

          ‘Bland' rating (out of 9) 

 

4.7 633.65 

 

Dose 

 

F(3,40.94) 6.79 0.001 

          ‘Tasty' rating (out of 9) 

 

4.7 645.36 

 

Dose 

 

F(3,40.62) 2.11 0.114 

          ‘Pleasant' rating (out of 9) 

 

4.7 662.16 

 

Dose 

 

F(3,40.43) 2.13 0.112 

          ‘Sour' rating (out of 9) 

 

4.7 503.48 

 

Dose 

 

F(3,40.63) 8.82 <0.001 

          ‘Satisfying' rating (out of 9) 

 

4.7 650.21 

 

Dose 

 

F(3,40.59) 1.05 0.382 

          ‘How much more could you 
consume?’ rating (out of 9) 

 

4.7 664.4 

 

Dose 

 

F(3,40.62) 0.94 0.429 

         ‘How easy was it to 
consume?' rating (out of 9) 

  
 

4.7 682.43 

 

Dose 

 

F(3,40.56) 0.457 0.714 

                  

 

 


