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Abstract 9 

Recently there has been a significant change in the distribution of wind farms in Great Britain with the 10 
construction of clusters of large offshore wind farms. These clusters can produce large ramping events 11 
(i.e. changes in power output) on temporal scales which are critical for managing the power system 12 
(30 minute, 60 minute and 4 hours). This study analyses generation data from the Thames Estuary 13 
cluster in conjunction with meteorological observations to determine the magnitude and frequency of 14 
ramping events and the meteorological mechanism. 15 

Over a 4 hour time window, the extreme ramping events of the Thames Estuary cluster were caused 16 
by the passage of a cyclone and associated weather fronts. On shorter time scales, the largest ramping 17 
events over 30 minute and 60 minute time windows are not associated with the passage of fronts. 18 
They are caused by three main meteorological mechanisms; (1) very high wind speeds associated with 19 
a cyclone causing turbine cut-out (2) gusts associated with thunderstorms and (3) organised band of 20 
convection following a front. Despite clustering offshore capacity, the addition of offshore wind farms 21 
has increased the mean separation between capacity and therefore reduced the variability in nationally 22 
aggregated generation on high frequency time scales. 23 

Keywords: wind; offshore; variability; ramping; extremes 24 

1.0 Introduction 25 

To meet ambitious carbon reduction targets, global renewable energy deployment has expanded 26 
dramatically. In the UK, the capacity of wind power has grown steadily from 2.9 GW in 2008 to 17.9 27 
GW by June 2017 [1]. Due to the increasing penetration of wind power, extreme wind power 28 
generation events are of growing concern. In particular, ramps in generation provide challenges for 29 
the transmission system operator who schedule reserve holding in advance and require long term 30 
strategies for system balancing [2]. Consequently, a number of studies have focused on understanding 31 
and improving the predictability of wind power ramping events [3, 4, 5, 6]. 32 

For the UK, Cannon et al. [7] used wind speed data derived from the MERRA reanalysis dataset to 33 
quantify the magnitude and frequency of nationally-aggregated wind generation ramping on time 34 
scales of 6 hours and greater based on the 2012 wind farm distribution. However, in recent years there 35 
has been a significant change in the distribution of wind farms in the Great Britain [8]. Since 2012, 36 
the capacity of offshore wind farms has increased from 2.4 GW to 5.0 GW with much of this capacity 37 
spread over a small number of very large wind farms located in clusters. For example, in the Thames 38 
Estuary alone there is approximately 1.7 GW of capacity. Drew et al. [3] showed this has led to large 39 
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regional ramps in generation on time scales of minutes to hours as local meteorological phenomena 40 
simultaneously impacts production in several large farms. Given the large capacity of the farms, these 41 
ramps can present a challenge in maintaining the balance between supply and demand on a national 42 
scale, particularly if they are not accurately forecasted. 43 

The problem posed by local ramping events is expected to be exacerbated in the coming years, given 44 
the trend for clustering capacity in large offshore wind farms looks set to continue. The latest phase of 45 
offshore wind development in the UK, launched in 2009, identified 9 zones within which a number of 46 
individual wind farms could be located with a total capacity of over 30 GW [9, 10]. Consequently, 47 
following the construction of the round 3 wind farms the majority of GB wind capacity would be 48 
located offshore in clusters of very large wind farms [11, 12]. 49 

To improve the performance of operational wind power forecasts there is an increasing need for a 50 
clear understanding of the meteorological features responsible for the extreme local ramping events 51 
[13]. For example, Trombe et al. [14] showed that high frequency ramping of large Danish offshore 52 
wind farms can be associated with heavy rainfall and therefore considered the scope for using data 53 
from the rainfall radar to adjust the forecast in real-time if necessary. This study investigates whether 54 
such an approach could be applied to ramping events in the Thames Estuary wind farms. 55 

In addition to the problems posed by local ramping events, there are concerns that clustering capacity 56 
could lead to an increase in the variability of the nationally aggregated wind generation (i.e. a reversal 57 
of some of the smoothing benefits gained by the spatial dispersion of turbines). A number of studies 58 
have investigated the reduction in wind power variability due to geographical dispersion of turbines 59 
for single European countries. For example, Kubik et al. for Northern Ireland [15], Hurley and 60 
Watson for Ireland [16], Hasche for Germany and Ireland [17] and Giebel [18], Landberg [19], 61 
Buttler [20] and Huber et al. [21] considered the whole of Europe.  62 

For the UK, Sinden [22] and Earl et al. [23] used wind speed data measured at Met Office surface 63 
stations to quantify the inter-annual, seasonal and diurnal variability of UK aggregated wind 64 
generation. However, these studies did not consider offshore sites and assumed the distribution of 65 
wind capacity matched the distribution of weather stations which can lead to large errors [24]. To 66 
address this problem, Cannon et al. [7] used wind speed data derived from the MERRA reanalysis 67 
dataset to determine the characteristics of wind power in Great Britain over a 33 year period. The 68 
study provides a detailed climatology of ramping on time scales of 6 hours and greater. 69 

Using the approach outlined in Cannon et al. [7], Drew et al. [12] showed that the increased 70 
penetration of offshore wind farms has little impact on the ramping of GB-aggregated wind 71 
generation on time scales of greater than 6 hours. However, due to the resolution of the model, 72 
MERRA reanalysis data cannot be used to determine the high frequency GB-aggregated power 73 
swings (minutes to hours) or quantify the magnitude of wind power ramps at high spatial resolutions 74 
(below 300 km), both of which are important considerations for managing the power system. 75 

In the UK, the electricity market is managed in 30 minute windows, known as settlement periods. For 76 
each period, suppliers and generators contract electricity up to 1 hour prior to the delivery time, a cut-77 
off time known as “gate closure”. It is then the responsibility of the system operator (National Grid) to 78 
take any necessary actions in order to balance the grid within each settlement period. The electricity 79 
network in the UK is largely isolated with relatively few interconnectors to neighbouring countries 80 
and therefore there is a reliance on large conventional power plants to manage the system. However, 81 
these plants generally require a period of notice prior to generation to ramp up, generally assumed to 82 
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be at least 4 hours. To manage the power system, it is therefore important to understand the possible 83 
ramps in power that could occur on time scales shorter than the ramp up time of a conventional power 84 
plant (4 hours), between gate closure and settlement period (1 hour) and from one settlement period to 85 
the next (30 minutes). 86 

The aim of this study is to use a 30-minute averaged time series of wind power generation from a 87 
number of regions across Great Britain (GB) in 2014 to investigate how the increased penetration of 88 
clustered offshore wind capacity has affected the characteristics of generation at high spatial and 89 
temporal resolutions. The first section considers the impact on high frequency variability of wind 90 
generation on both a national and regional scale, particularly the magnitude of ramping in generation 91 
on time scales of less than 4 hours. The second section determines the meteorological causes of 92 
extreme regional ramping events using the Thames Estuary as a case study. 93 

2.0 Datasets and analysis methods 94 

One of the main challenges when investigating the variability of wind generation in the UK at high 95 
spatiotemporal resolutions is the limited availability of suitable data. Actual metered data from the 96 
individual wind farms is protected by commercial interests; therefore there is a reliance on nationally 97 
aggregated data. However, analysis using this data is unable to quantify the regional power swings or 98 
indicate how the variability has been affected by the change in wind farm distribution. Cradden et al. 99 
[24] used an hourly 11 year hindcast derived using the Weather Research and Forecasting model 100 
(WRF) at 3 km resolution to assess the variability of generation from 13 different regions in the UK. 101 

This study introduces a new dataset which details the aggregated power output from four offshore 102 
clusters (Anglia, Cumbria, N.Wales and Thames) and five onshore regions; Argyll, Ayrshire, Central, 103 
Lothian and SSENW (see Figure 1) at 30 min resolution from 1st January 2014 to 31st December 2014 104 
(see Table 1 and Figure 1).  The total capacity across the 9 regions is 6.5 GW, which is approximately 105 
70% of the total installed wind capacity of Great Britain.  106 

A number of wind farms have been excluded from the analysis for two reasons (1) they the sole wind 107 
farm in a region therefore it was not possible to produce anonymous, aggregated generation data or 108 
(2) the data was not of sufficient quality. Despite the reduced number of wind farms, the dataset 109 
provides a good representation of the wind resource. For example, the GB-aggregated capacity factor 110 
for 2014 was calculated to be 31%, which compares well to the figure of 30.2% for the full wind farm 111 
distribution [25]. 112 

 

Mean 
separation 
(km) 

Number 
of farms 

Capacity 
(GW) 

Lothian 17.3 5 0.44 

N.Wales 26.9 3 0.18 

Cumbria 30.7 5 1.17 

Thames 34.5 4 1.54 

Anglia 38.1 3 0.33 

Central 60.7 11 1.22 

Ayrshire 79.3 8 0.52 

Argyll 89.1 6 0.30 

SSENW 115.2 16 0.80 
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Table 1 Details of the 4 offshore clusters (bold) and the 5 onshore regions. The mean separation is derived using 113 
equation 1 based on the wind farms within each region. 114 

2.1 Spatial separation of capacity 115 

The addition of offshore wind farms has changed the distribution of capacity in two distinct ways. 116 
Firstly, there is an increased concentration of capacity in clusters. For each region the spatial 117 
dispersion of the capacity has been quantified in terms of the mean separation per unit MW of 118 
capacity, S, as calculated in [12] as: 119 
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where cj is the wind farm capacity, dij is the distance between wind farms, N is the number of wind 120 
farms in the region and CT is the total installed capacity of the region. The offshore regions are 121 
generally made up of large wind farms clustered together in a relatively small area and consequently 122 
have a low separation between units of capacity (26.9 km to 38.1 km). In comparison, onshore regions 123 
generally consist of spatially dispersed small wind farms therefore the separation of the capacity is 124 
larger (60.7 km to 115.2 km), with the exception of Lothian (17.3 km). Secondly, the addition of the 125 
offshore regions has changed the geographical location of the generation. Figure 1 shows that all of 126 
the onshore zones are located relatively close to each other in Scotland; therefore the mean separation 127 
between the onshore capacity is only 168 km. In contrast, all of the offshore clusters are connected to 128 
England, and are more geographically dispersed (mean separation of 327.6 km between the offshore 129 
capacity), therefore by combining the onshore and offshore capacity the mean separation between 130 
capacity for the GB wind farm distribution increases to 399 km.  131 

 132 

Figure 1 Map of the wind farm distribution used in this study. The onshore and offshore farms are represented by 133 
the circles and crosses respectively. 134 

2.2 Impact of spatial separation on generation characteristics 135 

To investigate the impact of spatial separation of capacity on wind power variability in Great Britain, 136 
the 30-minute averaged time series of aggregated generation for each of the 9 regions have been 137 
combined to derive a time series of power output for every possible combination of regions. This 138 
ranges from a combination of two regions (36 possibilities) to the single combination of all nine 139 
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regions (GB-aggregate) and therefore amounts to a total of 515 possible wind farm distribution 140 
scenarios each with a different number of wind farms and mean separation between capacity. The data 141 
are then used to determine the impact of clustering capacity on the high frequency variability of the 142 
wind generation. 143 

A range of different metrics have been used to quantify the variability of wind generation. For the 144 
purposes of this study a ramp, R, at time, t, is defined as the difference in the power output over a 145 
period of time, Δt, given by: 146 

)()()( tPttPtR   (2) 

where P(t) is the power output at time, t. Using the 30-minute averaged dataset, a time series of ramps 147 
for Δt=30 minutes, 60 minutes and 4 hours, has been calculated for each wind farm distribution 148 
scenario. The standard deviation, σ, of each time series is then calculated to quantify the distribution 149 
of the ramps for each scenario. 150 

2.3 Thames Estuary analysis 151 

Section 3.3 investigates the most extreme ramping events over three time scales (30 minutes, 60 152 
minutes and 4 hours) of a single offshore cluster in order to determine the meteorological 153 
mechanisms. The analysis focuses on the offshore wind farms in the Thames Estuary, located 154 
approximately 100-200 km east of London, UK. This is the largest of the offshore clusters consisting 155 
of 5 individual farms with a total capacity of 1.7 GW. Drew et al. [3] presents a detailed analysis of a 156 
high frequency ramping event of this cluster which had significant implications on the management of 157 
the power system. This study investigates the full range of extreme ramps to determine the 158 
meteorological cause. 159 

To determine extreme ramping events the 30 minute averaged time series of the capacity factor of the 160 
Thames region (as outlined in section 2.2) has been used. The extreme ramping events for each time 161 
window have been defined following a similar method to that outlined in Cutler et al. [6]. 162 

 4 hour ramps: Find all instances where the 30 minute averaged capacity factor changes by 163 
more than 40% within a 4 hour window. Two individual ramps occurring within a 6 hour 164 
window of each other are considered the same event. 165 

 60 minute ramps: After removing the periods of time during which a 4 hour ramp occurs, find 166 
the occasions where the 30 minute averaged capacity factor changes by more than 25% in a 167 
60 minute time window. Two ramps are considered the same event if they occur within 1 hour 168 
of each other. 169 

 30 minute ramps: After removing the periods where either a 4 hour or 60 minute ramp occurs, 170 
find the occasions where the 30 minute averaged capacity factor changes by more than 15% 171 
in a 30 minute time window.  172 

To determine the meteorological mechanisms behind extreme ramping events, a number of datasets 173 
have been used (Table 2). Firstly, the meteorological conditions in the Thames Estuary region have 174 
been determined using 1-minute averaged observations of temperature, wind speed and surface 175 
pressure from two nearby Met Office weather stations (shown in Figure 2) and rainfall rate data 176 
derived from radar observations for an area of 4884 m2 covering all of the wind farms on a 1km2 177 
spatial resolution and a 5 minute temporal resolution [26, 27]. On the larger scale, the synoptic scale 178 
conditions have been determined using hourly wind fields and surface pressure from Modern-Era 179 
Retrospective Analysis for Research and Applications (MERRA) data [28]. 180 
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In addition to determining the meteorological conditions associated with ramps, hourly surface wind 181 
field data from MERRA has been used to estimate the aggregated power generation of the wind farms 182 
in the region, following the method of Cannon et al. [7]. Firstly, the horizontally gridded surface 183 
hourly winds were bi-linearly interpolated to the location of each wind farm. The derived winds were 184 
then vertically interpolated to the hub height of the turbines. Finally, the hub-height wind speeds were 185 
converted to power output using a transfer function derived from empirical comparisons between the 186 
derived wind speeds and recorded wind farm output. The power output was summed over all wind 187 
farms to produce an hourly time series of generation of the Thames Estuary cluster. 188 

 189 

Dataset Variables Temporal 
resolution 

Location 

UK Met Office weather 
station observations 

Air temperature (C) at 1.25 m 
above the ground.  
Mean wind speed and maximum 
gust at 10 m above the ground 
(ms-1). Atmospheric pressure 
(hPa). 

1-minute Manston (51.346°N, 
1.337°E).and 
Shoeburyness 
(51.536°N, 0.809°E). 

Met Office  rainfall 
radar 

Rainfall rate (mm hr-1)  5-minute Thames Estuary region 
(see Figure 2) on 1 km2 
resolution. 

MERRA: Modern-Era 
Retrospective Analysis 
for Research and 
Applications 

Mean wind speed (ms-1) at 
heights of 2 m, 10 m and 50 m.  
Surface pressure (hPa). 

Hourly 0.5° x 0.667° global grid. 

Table 1 Details of the meteorological datasets used in this study. 190 

 191 

Figure 2 Map showing the location of the 5 wind farms in the Thames Estuary: Greater Gabbard (GG), London 192 
Array (LA), Gunfleet Sands (GF), Kentish Flats (KF) and Thanet (THA). The red box indicates the region for which 193 
radar rainfall data was obtained. The map also shows the locations of the surface meteorological stations: Manston 194 
and Shoeburyness. 195 

3.0 Results 196 

The dataset outlined in Section 2 has been used to address a series of questions related to wind power 197 
variability. Section 3.1 investigates the impact of the offshore wind farms on the GB-aggregated wind 198 
generation characteristics, with a particular emphasis on the impact of changing the separation 199 
between capacity and the number of wind farms on the magnitude on the high frequency ramps. 200 
Section 3.2 determines the magnitude of regional high frequency power swings for the offshore 201 
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clusters and compares the results to that of the more spatially-dispersed onshore regions. Finally, 202 
Section 3.3 quantifies the high frequency ramping of wind farms in the Thames Estuary, the largest 203 
offshore cluster and identifies the meteorological mechanism. 204 

3.1 Impact of clustering capacity on generation variability 205 

This section determines how the magnitude of the ramps in regional wind power varies with two 206 
metrics used to define the level of clustering (1) the number of wind farms aggregated and (2) the 207 
mean separation between capacity. For all 515 possible wind farm distributions, the time series of 208 
power ramps over three time periods (30 minutes, 60 minutes and 4 hours) have been determine. The 209 
standard deviation of the resulting time series was calculated and is used as a measure of the 210 
magnitude of the ramps. 211 

 212 

Figure 3 Standard deviation of the power ramps of each of the 515 different wind farm distributions as a function of 213 
the number of farms in the distribution and the mean separation between the capacity for three time windows (a)-(b) 214 
30 minutes, (c)-(d) 60 minutes and (e)-(f) 4 hours. 215 

For all three time scales, the magnitude of the ramps decreases as the number of wind farms in the 216 
distribution increases (see Figures 3(a)-(f)). A large reduction in the standard deviation is shown 217 
between 5 and 30 wind farms before levelling off as the number of farms increases further. For 218 
example, for the 30 minute ramps the standard deviation decreases from approximately 4.8% to 2.1% 219 
as the number of wind farms increases from 5 to 25, but decreases to only 1.9% as the number of 220 
wind farms increases further to 50. However, for all time scales the lowest standard deviation is 221 
shown for the largest number of wind farms (i.e. the full GB wind farm distribution).  222 
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This analysis indicates that the number of wind farms aggregated is a useful parameter for estimating 223 
the distribution of power swings on time scales of 30 minutes to 4 hours. In comparison, the 224 
separation between capacity is not a good indicator of the size of the ramps. For all time scales, 225 
increasing the separation (but keeping the number of wind farms the same) has little impact on the 226 
size of the ramps (see Figures 3(b), 3(d) and 3(f). For example, for a wind farm distribution which 227 
contains 41-60 farms, if the separation between the units of capacity is 200 km the standard deviation 228 
of the 30 minute ramps is between 1.8% and 2.0%. If the separation were to increase to 400 km the 229 
standard deviation is very similar (1.7% - 2.0%). These results suggest that on the time scales 230 
considered, the power ramps of the regions are not well correlated, therefore the magnitude of the 231 
aggregated ramps decrease as more and more regions (number of farms) are added, irrespective of any 232 
potential change in the separation between capacity.  233 

3.2 Regional power ramps 234 

The analysis in section 3.2 has shown that the magnitude of the power ramps of a wind farm 235 
distribution is highly dependent on the number of wind farms. The recent trend of concentrating a 236 
small number of very large wind farms therefore results in an increase in the magnitude of the local 237 
power ramps. Figures 4 to 6 show the distribution of the power ramps for each region in Great Britain 238 
in 2014. For all time intervals, the distribution is approximately symmetric with median values close 239 
to zero for both the onshore and offshore regions, indicating that positive and negative ramps have a 240 
similar distribution. 241 

In general, when considered in terms of a change in capacity factor, the magnitude of the ramps is 242 
larger for the offshore clusters for all time scales. Consequently, if the system operator were to hold 243 
reserve to protect against a 90th percentile swing, for the onshore regions it would equate to on 244 
average 3.8%, 6.0% and 14.5% of capacity for 30 minutes, 60 minutes and 4 hours respectively. In 245 
comparison a similar holding for the offshore regions would equate to an average of 4.8%, 7.9% and 246 
18.9% of capacity. This is due to the offshore clusters containing a lower number of farms than the 247 
onshore zones. As the 4 offshore regions have a similar number of farms, the magnitude of ramps is 248 
very similar for all offshore regions- with slight differences in the extreme values. For the onshore 249 
regions, there is generally a larger spread in the distributions reflecting the variability in the number of 250 
farms across the regions. For example, for Lothian there are a similar number of wind farms to the 251 
offshore regions and the standard deviation of the ramps is 4.7%, 7.6% and 17.9% for 30 minutes, 60 252 
minutes and 4 hours respectively. 253 

When considered in terms of change in power (MW), due to large capacity in Thames Estuary, the 254 
ramps of the cluster are larger than all other regions for all time scales (as shown in Figures 4-6 (c)). 255 
For example, for the 30 minutes, 60 minutes and 4 hour time window, the maximum ramp in the 256 
Thames Estuary is 777 MW, 886 MW and 1363 MW. Power ramps of this magnitude could 257 
potentially pose a challenge to those responsible for maintaining a balance between supply and 258 
demand on the power system. Accurate meteorological forecasting is critical to decisions made on 259 
holding reserve, but can be difficult on such short timescales. Here follows a detailed investigation 260 
into the meteorological conditions causing ramps in the Thames Estuary, to inform development of 261 
accurate forecasts. 262 



9 
 

 263 

Figure 4 Distribution of the change in capacity factor within a 30 minute time window in 2014 for (a) offshore 264 
clusters (b) onshore regions. (c) The ramps expressed in terms of power (MW). 265 

 266 

Figure 5 Distribution of the change in capacity factor within a 60 minute time window in 2014 for (a) offshore 267 
clusters (b) onshore regions. (c) The ramps expressed in terms of power (MW). 268 

 269 

Figure 6 Distribution of the change in capacity factor within a 4 hour time window in 2014 for (a) offshore clusters 270 
(b) onshore regions. (c) The ramps expressed in terms of power (MW). 271 

3.3 Thames Estuary ramping 272 

In Section 3.2 it was shown that the clusters of offshore wind farms can lead to large high frequency 273 
regional power ramps. This section analyses the generation data from the Thames Estuary cluster (the 274 
largest of the offshore clusters in terms of capacity) in more detail, to identify the extreme ramping 275 
events and determine the meteorological drivers. As with the previous sections, the analysis has been 276 
completed on three time scales (30 minutes, 60 minutes and 4 hours).  277 

3.3.1 Extreme ramps over a 4-hour time window 278 

Following the method outlined in section 2.3 (the hourly capacity factor changes by more than 40% 279 
over a 4 hour time window), 74 ramp-up events and 69 ramp-down events were identified. Events 280 
occurred throughout the year, however a larger proportion occurred in winter (39% in DJF) than any 281 
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of the other seasons (22% in MAM, 24% in JJA and 15% in SON). The most extreme ramp-up event 282 
was 86.2% which equates to a change in power of 1.3 GW and the most extreme ramp-down was 283 
76.7% which equates to a change in power of 1.2 GW. 284 

For each event, the synoptic meteorological conditions have been investigated using the surface 285 
pressure data from MERRA (see figure 7). All of the extreme ramping events on this time scale can 286 
be linked to the passage of an extra-tropical cyclone (low pressure system) and the associated weather 287 
fronts. For all of the 74 ramp-up events, there is a clear pattern in the surface pressure field. A low 288 
pressure system is centred over Iceland and the frontal features stretch south-east across the UK. 289 
There is a similar pattern for the ramp-down events however the centre of the low pressure has moved 290 
eastwards and the gradient in surface pressure over the UK has weakened. Additionally, the frontal 291 
features are now located east of the cluster. 292 

By applying the method developed in Cannon et al. [7], the hourly generation of the Thames Estuary 293 
cluster in 2014 has been estimated based on the surface wind field given by MERRA. The derived 294 
data have been analysed to determine whether extreme ramping events are captured.  MERRA is 295 
defined to have captured a ramp if it is at least 75% of the size of the measured ramp within a ±3 hour 296 
time window of when it occurred. Based on this criterion, the MERRA derived data captures all 74 297 
ramp-up events and 69 ramp-down events which occurred in the Thames Estuary offshore cluster 298 
during 2014. This confirms that the extreme ramping on this time scale is the result of synoptic scale 299 
meteorological features which are well reproduced by the reanalysis product. 300 

 301 

Figure 7 Mean sea level pressure averaged across all (a) 74 ramp-up events and (b) 69 ramp-down events. 302 

3.3.2 Extreme ramps over a 1-hour time window 303 

For the full year of measured data, power ramps over a one hour time window have been calculated 304 
and the frequency distribution of the ramps is shown in Figure 8 (this is the same data as the Thames 305 
curve in Figure 5(a)). The data have then been filtered to remove the periods which contain a 4 hour 306 
ramp (identified in section 3.3.1) and the distribution of the filtered ramps is also shown in Figure 8. 307 
A comparison of the probability density functions shows the most extreme 60 minute ramping events 308 
are the same in both distributions. For the both the filtered and unfiltered datasets the largest ramp-309 
down is -48.8% and the largest ramp-up event is 57.9%. This indicates that the most extreme 1 hour 310 
ramps are not part of a larger scale ramp and are therefore not caused by the passage of low pressure 311 
system but by smaller scale meteorological features. 312 
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 313 

Figure 8 The 60 minute ramps for the Thames Estuary cluster during 2014 using the whole dataset (blue) and then 314 
excluding the periods during which a 4 hour ramp occurs. 315 

Using the criteria outlined in section 2.3, 24 x 1 hour extreme ramping events have been identified. 316 
Further analysis shows, on 10 occasions an extreme ramp-up and ramp-down occurred within 3 hours 317 
of each other (as shown in Table 3). These ramps were combined to produce 14 independent events. 318 
For each event, the meteorological conditions have been investigated using surface pressure fields 319 
from MERRA, observations of surface temperature and wind speed from Met Office weather stations 320 
close to the cluster (Manston and Shoeburyness) and rainfall radar data. Based on the meteorological 321 
data, 3 main drivers of the extreme ramping on this time scale have been identified; (1) turbine cut-out 322 
due to high wind speed conditions (2) outflow or gust fronts from thunderstorms and (3) organised 323 
band of convection following a frontal system. 324 

3.3.3 High wind speed cut-out 325 

There were 5 ramping events associated with the high wind speed shutdown of turbines. The largest 326 
of which occurred on 14th February 2014, when the output of the farms reduced by 44.3% (i.e. a 327 
reduction in power output of 680 MW in 1 hour). All 5 of the cut-out ramping events occurred in 328 
winter and are associated with a low pressure system located over the UK. The strong pressure 329 
gradient leads to very high wind speeds in the Thames Estuary region. For all of the events, the 1 330 
minute mean wind speed at both Manston and Shoeburyness exceeds 25 ms-1 during the period when 331 
generation is reduced.  332 

Three of the five events are characterised by a large reduction in the output as the turbines cut-out 333 
followed by a similar sized ramp-up. For example, on 25th January 2014 at 16:00 there was a 334 
reduction in capacity factor of the cluster by 28.6% (see Figure 9) which corresponds to a spike in 335 
wind speeds observed in the region (at Manston, the mean wind speed peaked at 35.5 ms-1 at 17:30). 336 
Following this, there is a reduction in wind speeds and therefore the turbines start to generate again 337 
and therefore there is a ramp-up of 26.7% at 17:00. 338 

 339 

 340 

 341 

 342 
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 343 

 344 

 345 

 346 

 347 

 348 

 349 

Figure 9 Meteorological conditions on 25th January 2014.  (a) 30 minute averaged wind power generation of the 350 
Thames Estuary cluster (expressed in terms of capacity factor) (b) 1-minute averaged wind speed observations from 351 
Manston (blue) and Shoeburyness (red). 352 

 353 

No. Date 
Ramp-up (%) 

and time 
Ramp-down (%) 

and time 

Maximum 
rainfall rate 
(mm hr-1) 

Type 

1 25/01 26.7 (17:00) -28.6 (16:00) 91 Cut-out 
2 12/02 38.3 (16:30) -29.0 (14:00) 15 Cut-out 
3 14/02  -44.3 (22:00) 26 Cut-out 
4 07/03 27.6 (20:00)  150 Post-frontal 
5 23/03 32.6 (16:30) -28.4 (17:30) 71 Thunderstorms 
6 24/05 26.3 (16:30)  97 Post-frontal 
7 07/06 45.4 (08:30) -48.8 (10:00) 12 Thunderstorms 
8 18/07 57.9 (19:30) -42.5 (22:00) 1023 Thunderstorms 
9 19/07 39.1 (04:30) -25.4 (07:00) 64 Thunderstorms 
10 19/07 28.6 (19:30) -28.4 (20:30) 115 Thunderstorms 
11 14/08 26.8 (14:30) -45.9 (15:30) 396 Thunderstorms 
12 03/11 31.1 (13:30) -48.8 (15:30) 147 Post-frontal 
13 19/12 36.9 (09:30) -39.8 (07:00) 622 Cut-out 
14 26/12  -36.3 (23:30) 77 Cut-out 

Table 3 Meteorological conditions for the 60 minute ramping events which occurred in the Thames Estuary in 2014 
identified using the method outlined in section 2.3. 
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 354 

Figure 10 Meteorological conditions for the wind power ramping event on 18th July 2014. (a) 30 minute averaged 355 
wind power generation of the Thames Estuary cluster (expressed in terms of capacity factor) (b) the maximum 356 
rainfall rate of any gridbox in the Thames Estuary on a 5 minute resolution and (c) 1-minute surface pressure 357 
observations from Manston. 358 

 359 

3.3.4 Thunderstorms 360 

There were 6 ramping events caused by the wind speed gusts associated with a thunderstorm (2 on 361 
19th July 2014), all of which occurred between March and August. For these events the atmospheric 362 
conditions are dominated by a high pressure system (anticyclonic) located over the UK and a low 363 
pressure system to the south west. Analysis of the meteorological conditions in the Thames Estuary 364 
shows that all ramps coincide with other meteorological conditions which are a signature of the 365 
thunderstorm, such as a period of heavy rainfall in the region and large fluctuations in temperature. 366 
For example, the maximum rainfall rate during the ramp for any 1 km radar gridbox in the Thames 367 
Estuary exceeds 64 mm hr-1- for all but one of the ramping events. Furthermore, observations at 368 
Manston and Shoeburyness show there is generally sharp drop in temperature during the ramping 369 
event.  370 

The largest ramping event associated with a thunderstorm occurred on the 18th July 2014. At 19:30 the 371 
capacity factor of the cluster increased by 57.9% (890 MW in 1 hr). Figure 10 shows this ramp 372 
coincided with very heavy rainfall across the region. The maximum rainfall rate derived from the 373 
radar observations was 1023 mm hr-1 at 22:00. In addition, the surface pressure observed at Manston 374 
increased by 4 hPa in a 25 minute period (Figure 10(c)).  375 

3.3.5 Post-frontal convection 376 

Three events are caused by a band of increased wind speeds which occur after a front. The elevated 377 
wind speeds lead to an increase in power output from the cluster for a short period of time before the 378 
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feature moves away from the region. As with the thunderstorms, there is also a signature of these 379 
features in the rainfall data.  Figure 11 shows the capacity factor of the Thames Estuary wind farms on 380 
24th May 2014 and the mean rainfall rate across the region. During the morning a weather front 381 
moved across the South East of England which led to high wind speeds and heavy rainfall. After the 382 
front moved eastwards away from the cluster of farms, their wind generation reduced dramatically, 383 
falling from 69.7% of capacity at 08:00 to only 23.7% at 13:00. In the mid-afternoon there was an 384 
increase in wind power generation and by 17:00 the output was back up to 62.6%, however this ramp 385 
had a short duration and by 20:00 the output had reduced to only 30.0%. Figure 11(b) shows a 386 
corresponding ramp in the rainfall in the region.  387 

 388 

Figure 11 Meteorological conditions for the wind power ramping event and the meteorological conditions on 24th May 389 
2014. (a) The 30 minute averaged wind power generation of the Thames Estuary cluster (expressed in terms of 390 

capacity factor) and (b) the mean rainfall rate across the Thames Estuary on a 5 minute resolution. 391 

3.4 Extreme ramps over 30 time windows 392 

For the full year of the data the power ramps over a 30 minute time window have been calculated 393 
using the method outlined in Section 2.3. The data have then been filtered to remove the periods 394 
which correspond to a 4 hour ramp (derived in section 3.3.1). As with the 60 minute ramps, Figure 12 395 
shows that the most extreme 30 minute ramping events are not associated with a larger scale ramp and 396 
therefore are not caused by the passage of low pressure system but by a smaller scale meteorological 397 
feature.  398 

Using the method outlined in section 2.3, only 6 30-minute ramping events have been identified (see 399 
Table 4). For each event, the meteorological mechanism has been determined using a range of 400 
datasets. Based on the analysis, 4 of the ramps were shown to be associated with the high wind speed 401 
cut-out of turbines and two are associated with thunderstorms. 402 

 403 
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 404 

 405 

 406 

 407 

Figure 12 The 30 minute ramps for the Thames Estuary cluster during 2014 using the whole dataset (blue) and then 408 
excluding the periods during which a 4 hour ramp occurs. 409 

4.0 Conclusions 410 

In recent years there has been a significant change in the distribution of wind capacity in the UK, with 411 
the construction of several clusters of very large offshore wind farms. This paper investigates how this 412 
change has affected the magnitude of the nationally aggregated and regionalised ramps on temporal 413 
scales which are critical for the management of the power system (30 minute, 60 minute and 4 hours). 414 
In addition, the extreme high frequency ramps of the largest cluster of offshore wind farms (Thames 415 
Estuary) have been investigated in detail to determine the meteorological drivers. 416 

Despite the clustering of capacity in relatively small areas, the addition of the offshore wind farms 417 
reduces the high frequency variability of nationally aggregated generation. This study has used two 418 
key parameters to quantify the level of clustering; (1) number of wind farms in the region (2) mean 419 
separation between capacity. The level of the variability has been considered in terms of the 420 
magnitude of the power ramps on the three timescales which are of importance for system 421 
management (30 minutes, 60 minutes and 4 hours). For this metric, the magnitude of the variability 422 
was highly correlated to the number of wind farms aggregated. As the number of wind farms in the 423 
distribution increases, the magnitude of the ramps decreases. This reduction is particularly large 424 
between 5 and 25 wind farms before levelling off as the number of farms increases further. In 425 
contrast, the mean separation between capacity had little impact on the magnitude of the power 426 
swings. In fact, keeping the number of wind farms fixed but changing the separation has a negligible 427 
impact on the standard deviation of the distribution of the power swings. These results show that the 428 
ramps on these time scales in the different regions are not correlated; therefore aggregating the 429 
regions leads to a smoothing effect. 430 

No. Date 
Ramp-up (%) 

and time 
Ramp-down (%) 

and time 

Maximum 
rainfall rate 
(mm hr-1) 

Type 

1 03/01  -18.3 (15:30) 9 Cut-out 
2 26/01  -16.0 (18:00) 8 Cut-out 
3 28/01  -17.4 (04:00) 37 Cut-out 
4 01/02 15.2 (07:30)  14 Cut-in 
5 19/07 21.3 (08:30)  19 Thunderstorm 
6 19/07 16.7 (12:00)  20 Thunderstorm 

Table 4 Details of the 30 minute ramping events which occurred in the Thames Estuary in 2014 identified using the 
method outlined in section 2.3. 
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As the magnitude of the high frequency power swings are highly dependent on the number of wind 431 
farms, the recent trend in Great Britain for clustering capacity in a small number of very large wind 432 
farms results in an increase in the local power swings. For example, if the system operator were to 433 
hold reserve to protect against a 90th percentile swing, for the onshore regions in 2014 it would equate 434 
to on average 3.8%, 6.0% and 14.5% of capacity for 30 minutes, 60 minutes and 4 hours respectively. 435 
In comparison, a similar holding for the offshore regions would equate to an average of 4.8%, 7.9% 436 
and 18.9% of capacity. Consequently, for clusters with high levels of capacity this could lead to very 437 
large ramps in power. For example, for the Thames Estuary, an 18.9% ramp equates to a change in 438 
power of 290 MW. This effect would be exacerbated in the future with the development of even 439 
larger clusters (e.g. Dogger Bank which could have a capacity in excess of 4 GW). 440 

The meteorological conditions leading to extreme high frequency ramping of an offshore cluster have 441 
been investigated in more detail using the Thames Estuary as a case study. Over a 4 hour time 442 
window, the largest ramp in capacity factor was 86.2% (which equates to a power swing of 1.3 GW). 443 
This, along with the other extreme 4 hour ramping events was caused by the passage of a cyclone and 444 
the associated weather fronts. On shorter time scales, the largest ramping events over 30 minute and 445 
60 minute time windows are not associated with the passage of fronts. They are caused by three main 446 
meteorological mechanisms; (1) very high wind speeds associated with a cyclone causing turbine cut-447 
out (2) gusts associated with thunderstorms and (3) organised band of convection following a front.  448 

To minimise the balancing costs associated with the extreme high frequency ramping events the 449 
meteorological features need to be captured by the wind power forecast. Drew et al. [3] has shown 450 
that high resolution ensemble models are able to capture the elevated wind speed associated with post-451 
frontal convection. However, the timing and location of the feature may not be exactly correct. This 452 
study has shown that this problem could potentially be addressed by considering the use of real time 453 
meteorological observations, such as data from the rainfall radar to adjust the forecast in real-time if 454 
necessary.  455 
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Abstract 9 

Recently there has been a significant change in the distribution of wind farms in Great Britain with the 10 
construction of clusters of large offshore wind farms. These clusters can produce large ramping events 11 
(i.e. changes in power output) on temporal scales which are critical for managing the power system 12 
(30 minute, 60 minute and 4 hours). This study analyses generation data from the Thames Estuary 13 
cluster in conjunction with meteorological observations to determine the magnitude and frequency of 14 
ramping events and the meteorological mechanism. 15 

Over a 4 hour time window, the extreme ramping events of the Thames Estuary cluster were caused 16 
by the passage of a cyclone and associated weather fronts. On shorter time scales, the largest ramping 17 
events over 30 minute and 60 minute time windows are not associated with the passage of fronts. 18 
They are caused by three main meteorological mechanisms; (1) very high wind speeds associated with 19 
a cyclone causing turbine cut-out (2) gusts associated with thunderstorms and (3) organised band of 20 
convection following a front. Despite clustering offshore capacity, the addition of offshore wind farms 21 
has increased the mean separation between capacity and therefore reduced the variability in nationally 22 
aggregated generation on high frequency time scales. 23 

Keywords: wind; offshore; variability; ramping; extremes 24 

1.0 Introduction 25 

To meet ambitious carbon reduction targets, global renewable energy deployment has expanded 26 
dramatically. In the UK, the capacity of wind power has grown steadily from 2.9 GW in 2008 to 17.9 27 
GW by June 2017 [1]. Due to the increasing penetration of wind power, extreme wind power 28 
generation events are of growing concern. In particular, ramps in generation provide challenges for 29 
the transmission system operator who schedule reserve holding in advance and require long term 30 
strategies for system balancing [2]. Consequently, a number of studies have focused on understanding 31 
and improving the predictability of wind power ramping events [3, 4, 5, 6]. 32 

For the UK, Cannon et al. [7] used wind speed data derived from the MERRA reanalysis dataset to 33 
quantify the magnitude and frequency of nationally-aggregated wind generation ramping on time 34 
scales of 6 hours and greater based on the 2012 wind farm distribution. However, in recent years there 35 
has been a significant change in the distribution of wind farms in the Great Britain [8]. Since 2012, 36 
the capacity of offshore wind farms has increased from 2.4 GW to 5.0 GW with much of this capacity 37 
spread over a small number of very large wind farms located in clusters. For example, in the Thames 38 
Estuary alone there is approximately 1.7 GW of capacity. Drew et al. [3] showed this has led to large 39 
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regional ramps in generation on time scales of minutes to hours as local meteorological phenomena 40 
simultaneously impacts production in several large farms. Given the large capacity of the farms, these 41 
ramps can present a challenge in maintaining the balance between supply and demand on a national 42 
scale, particularly if they are not accurately forecasted. 43 

The problem posed by local ramping events is expected to be exacerbated in the coming years, given 44 
the trend for clustering capacity in large offshore wind farms looks set to continue. The latest phase of 45 
offshore wind development in the UK, launched in 2009, identified 9 zones within which a number of 46 
individual wind farms could be located with a total capacity of over 30 GW [9, 10]. Consequently, 47 
following the construction of the round 3 wind farms the majority of GB wind capacity would be 48 
located offshore in clusters of very large wind farms [11, 12]. 49 

To improve the performance of operational wind power forecasts there is an increasing need for a 50 
clear understanding of the meteorological features responsible for the extreme local ramping events 51 
[13]. For example, Trombe et al. [14] showed that high frequency ramping of large Danish offshore 52 
wind farms can be associated with heavy rainfall and therefore considered the scope for using data 53 
from the rainfall radar to adjust the forecast in real-time if necessary. This study investigates whether 54 
such an approach could be applied to ramping events in the Thames Estuary wind farms. 55 

In addition to the problems posed by local ramping events, there are concerns that clustering capacity 56 
could lead to an increase in the variability of the nationally aggregated wind generation (i.e. a reversal 57 
of some of the smoothing benefits gained by the spatial dispersion of turbines). A number of studies 58 
have investigated the reduction in wind power variability due to geographical dispersion of turbines 59 
for single European countries. For example, Kubik et al. for Northern Ireland [15], Hurley and 60 
Watson for Ireland [16], Hasche for Germany and Ireland [17] and Giebel [18], Landberg [19], 61 
Buttler [20] and Huber et al. [21] considered the whole of Europe.  62 

For the UK, Sinden [22] and Earl et al. [23] used wind speed data measured at Met Office surface 63 
stations to quantify the inter-annual, seasonal and diurnal variability of UK aggregated wind 64 
generation. However, these studies did not consider offshore sites and assumed the distribution of 65 
wind capacity matched the distribution of weather stations which can lead to large errors [24]. To 66 
address this problem, Cannon et al. [7] used wind speed data derived from the MERRA reanalysis 67 
dataset to determine the characteristics of wind power in Great Britain over a 33 year period. The 68 
study provides a detailed climatology of ramping on time scales of 6 hours and greater. 69 

Using the approach outlined in Cannon et al. [7], Drew et al. [12] showed that the increased 70 
penetration of offshore wind farms has little impact on the ramping of GB-aggregated wind 71 
generation on time scales of greater than 6 hours. However, due to the resolution of the model, 72 
MERRA reanalysis data cannot be used to determine the high frequency GB-aggregated power 73 
swings (minutes to hours) or quantify the magnitude of wind power ramps at high spatial resolutions 74 
(below 300 km), both of which are important considerations for managing the power system. 75 

In the UK, the electricity market is managed in 30 minute windows, known as settlement periods. For 76 
each period, suppliers and generators contract electricity up to 1 hour prior to the delivery time, a cut-77 
off time known as “gate closure”. It is then the responsibility of the system operator (National Grid) to 78 
take any necessary actions in order to balance the grid within each settlement period. The electricity 79 
network in the UK is largely isolated with relatively few interconnectors to neighbouring countries 80 
and therefore there is a reliance on large conventional power plants to manage the system. However, 81 
these plants generally require a period of notice prior to generation to ramp up, generally assumed to 82 
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be at least 4 hours. To manage the power system, it is therefore important to understand the possible 83 
ramps in power that could occur on time scales shorter than the ramp up time of a conventional power 84 
plant (4 hours), between gate closure and settlement period (1 hour) and from one settlement period to 85 
the next (30 minutes). 86 

The aim of this study is to use a 30-minute averaged time series of wind power generation from a 87 
number of regions across Great Britain (GB) in 2014 to investigate how the increased penetration of 88 
clustered offshore wind capacity has affected the characteristics of generation at high spatial and 89 
temporal resolutions. The first section considers the impact on high frequency variability of wind 90 
generation on both a national and regional scale, particularly the magnitude of ramping in generation 91 
on time scales of less than 4 hours. The second section determines the meteorological causes of 92 
extreme regional ramping events using the Thames Estuary as a case study. 93 

2.0 Datasets and analysis methods 94 

One of the main challenges when investigating the variability of wind generation in the UK at high 95 
spatiotemporal resolutions is the limited availability of suitable data. Actual metered data from the 96 
individual wind farms is protected by commercial interests; therefore there is a reliance on nationally 97 
aggregated data. However, analysis using this data is unable to quantify the regional power swings or 98 
indicate how the variability has been affected by the change in wind farm distribution. Cradden et al. 99 
[24] used an hourly 11 year hindcast derived using the Weather Research and Forecasting model 100 
(WRF) at 3 km resolution to assess the variability of generation from 13 different regions in the UK. 101 

This study introduces a new dataset which details the aggregated power output from four offshore 102 
clusters (Anglia, Cumbria, N.Wales and Thames) and five onshore regions; Argyll, Ayrshire, Central, 103 
Lothian and SSENW (see Figure 1) at 30 min resolution from 1st January 2014 to 31st December 2014 104 
(see Table 1 and Figure 1).  The total capacity across the 9 regions is 6.5 GW, which is approximately 105 
70% of the total installed wind capacity of Great Britain.  106 

A number of wind farms have been excluded from the analysis for two reasons (1) they the sole wind 107 
farm in a region therefore it was not possible to produce anonymous, aggregated generation data or 108 
(2) the data was not of sufficient quality. Despite the reduced number of wind farms, the dataset 109 
provides a good representation of the wind resource. For example, the GB-aggregated capacity factor 110 
for 2014 was calculated to be 31%, which compares well to the figure of 30.2% for the full wind farm 111 
distribution [25]. 112 

 

Mean 
separation 
(km) 

Number 
of farms 

Capacity 
(GW) 

Lothian 17.3 5 0.44 

N.Wales 26.9 3 0.18 

Cumbria 30.7 5 1.17 

Thames 34.5 4 1.54 

Anglia 38.1 3 0.33 

Central 60.7 11 1.22 

Ayrshire 79.3 8 0.52 

Argyll 89.1 6 0.30 

SSENW 115.2 16 0.80 
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Table 1 Details of the 4 offshore clusters (bold) and the 5 onshore regions. The mean separation is derived using 113 
equation 1 based on the wind farms within each region. 114 

2.1 Spatial separation of capacity 115 

The addition of offshore wind farms has changed the distribution of capacity in two distinct ways. 116 
Firstly, there is an increased concentration of capacity in clusters. For each region the spatial 117 
dispersion of the capacity has been quantified in terms of the mean separation per unit MW of 118 
capacity, S, as calculated in [12] as: 119 
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where cj is the wind farm capacity, dij is the distance between wind farms, N is the number of wind 120 
farms in the region and CT is the total installed capacity of the region. The offshore regions are 121 
generally made up of large wind farms clustered together in a relatively small area and consequently 122 
have a low separation between units of capacity (26.9 km to 38.1 km). In comparison, onshore regions 123 
generally consist of spatially dispersed small wind farms therefore the separation of the capacity is 124 
larger (60.7 km to 115.2 km), with the exception of Lothian (17.3 km). Secondly, the addition of the 125 
offshore regions has changed the geographical location of the generation. Figure 1 shows that all of 126 
the onshore zones are located relatively close to each other in Scotland; therefore the mean separation 127 
between the onshore capacity is only 168 km. In contrast, all of the offshore clusters are connected to 128 
England, and are more geographically dispersed (mean separation of 327.6 km between the offshore 129 
capacity), therefore by combining the onshore and offshore capacity the mean separation between 130 
capacity for the GB wind farm distribution increases to 399 km.  131 

 132 

Figure 1 Map of the wind farm distribution used in this study. The onshore and offshore farms are represented by 133 
the circles and crosses respectively. 134 

2.2 Impact of spatial separation on generation characteristics 135 

To investigate the impact of spatial separation of capacity on wind power variability in Great Britain, 136 
the 30-minute averaged time series of aggregated generation for each of the 9 regions have been 137 
combined to derive a time series of power output for every possible combination of regions. This 138 
ranges from a combination of two regions (36 possibilities) to the single combination of all nine 139 
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regions (GB-aggregate) and therefore amounts to a total of 515 possible wind farm distribution 140 
scenarios each with a different number of wind farms and mean separation between capacity. The data 141 
are then used to determine the impact of clustering capacity on the high frequency variability of the 142 
wind generation. 143 

A range of different metrics have been used to quantify the variability of wind generation. For the 144 
purposes of this study a ramp, R, at time, t, is defined as the difference in the power output over a 145 
period of time, Δt, given by: 146 

)()()( tPttPtR   (2) 

where P(t) is the power output at time, t. Using the 30-minute averaged dataset, a time series of ramps 147 
for Δt=30 minutes, 60 minutes and 4 hours, has been calculated for each wind farm distribution 148 
scenario. The standard deviation, σ, of each time series is then calculated to quantify the distribution 149 
of the ramps for each scenario. 150 

2.3 Thames Estuary analysis 151 

Section 3.3 investigates the most extreme ramping events over three time scales (30 minutes, 60 152 
minutes and 4 hours) of a single offshore cluster in order to determine the meteorological 153 
mechanisms. The analysis focuses on the offshore wind farms in the Thames Estuary, located 154 
approximately 100-200 km east of London, UK. This is the largest of the offshore clusters consisting 155 
of 5 individual farms with a total capacity of 1.7 GW. Drew et al. [3] presents a detailed analysis of a 156 
high frequency ramping event of this cluster which had significant implications on the management of 157 
the power system. This study investigates the full range of extreme ramps to determine the 158 
meteorological cause. 159 

To determine extreme ramping events the 30 minute averaged time series of the capacity factor of the 160 
Thames region (as outlined in section 2.2) has been used. The extreme ramping events for each time 161 
window have been defined following a similar method to that outlined in Cutler et al. [6]. 162 

 4 hour ramps: Find all instances where the 30 minute averaged capacity factor changes by 163 
more than 40% within a 4 hour window. Two individual ramps occurring within a 6 hour 164 
window of each other are considered the same event. 165 

 60 minute ramps: After removing the periods of time during which a 4 hour ramp occurs, find 166 
the occasions where the 30 minute averaged capacity factor changes by more than 25% in a 167 
60 minute time window. Two ramps are considered the same event if they occur within 1 hour 168 
of each other. 169 

 30 minute ramps: After removing the periods where either a 4 hour or 60 minute ramp occurs, 170 
find the occasions where the 30 minute averaged capacity factor changes by more than 15% 171 
in a 30 minute time window.  172 

To determine the meteorological mechanisms behind extreme ramping events, a number of datasets 173 
have been used (Table 2). Firstly, the meteorological conditions in the Thames Estuary region have 174 
been determined using 1-minute averaged observations of temperature, wind speed and surface 175 
pressure from two nearby Met Office weather stations (shown in Figure 2) and rainfall rate data 176 
derived from radar observations for an area of 4884 m2 covering all of the wind farms on a 1km2 177 
spatial resolution and a 5 minute temporal resolution [26, 27]. On the larger scale, the synoptic scale 178 
conditions have been determined using hourly wind fields and surface pressure from Modern-Era 179 
Retrospective Analysis for Research and Applications (MERRA) data [28]. 180 
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In addition to determining the meteorological conditions associated with ramps, hourly surface wind 181 
field data from MERRA has been used to estimate the aggregated power generation of the wind farms 182 
in the region, following the method of Cannon et al. [7]. Firstly, the horizontally gridded surface 183 
hourly winds were bi-linearly interpolated to the location of each wind farm. The derived winds were 184 
then vertically interpolated to the hub height of the turbines. Finally, the hub-height wind speeds were 185 
converted to power output using a transfer function derived from empirical comparisons between the 186 
derived wind speeds and recorded wind farm output. The power output was summed over all wind 187 
farms to produce an hourly time series of generation of the Thames Estuary cluster. 188 

 189 

Dataset Variables Temporal 
resolution 

Location 

UK Met Office weather 
station observations 

Air temperature (C) at 1.25 m 
above the ground.  
Mean wind speed and maximum 
gust at 10 m above the ground 
(ms-1). Atmospheric pressure 
(hPa). 

1-minute Manston (51.346°N, 
1.337°E).and 
Shoeburyness 
(51.536°N, 0.809°E). 

Met Office  rainfall 
radar 

Rainfall rate (mm hr-1)  5-minute Thames Estuary region 
(see Figure 2) on 1 km2 
resolution. 

MERRA: Modern-Era 
Retrospective Analysis 
for Research and 
Applications 

Mean wind speed (ms-1) at 
heights of 2 m, 10 m and 50 m.  
Surface pressure (hPa). 

Hourly 0.5° x 0.667° global grid. 

Table 1 Details of the meteorological datasets used in this study. 190 

 191 

Figure 2 Map showing the location of the 5 wind farms in the Thames Estuary: Greater Gabbard (GG), London 192 
Array (LA), Gunfleet Sands (GF), Kentish Flats (KF) and Thanet (THA). The red box indicates the region for which 193 
radar rainfall data was obtained. The map also shows the locations of the surface meteorological stations: Manston 194 
and Shoeburyness. 195 

3.0 Results 196 

The dataset outlined in Section 2 has been used to address a series of questions related to wind power 197 
variability. Section 3.1 investigates the impact of the offshore wind farms on the GB-aggregated wind 198 
generation characteristics, with a particular emphasis on the impact of changing the separation 199 
between capacity and the number of wind farms on the magnitude on the high frequency ramps. 200 
Section 3.2 determines the magnitude of regional high frequency power swings for the offshore 201 
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clusters and compares the results to that of the more spatially-dispersed onshore regions. Finally, 202 
Section 3.3 quantifies the high frequency ramping of wind farms in the Thames Estuary, the largest 203 
offshore cluster and identifies the meteorological mechanism. 204 

3.1 Impact of clustering capacity on generation variability 205 

This section determines how the magnitude of the ramps in regional wind power varies with two 206 
metrics used to define the level of clustering (1) the number of wind farms aggregated and (2) the 207 
mean separation between capacity. For all 515 possible wind farm distributions, the time series of 208 
power ramps over three time periods (30 minutes, 60 minutes and 4 hours) have been determine. The 209 
standard deviation of the resulting time series was calculated and is used as a measure of the 210 
magnitude of the ramps. 211 

 212 

Figure 3 Standard deviation of the power ramps of each of the 515 different wind farm distributions as a function of 213 
the number of farms in the distribution and the mean separation between the capacity for three time windows (a)-(b) 214 
30 minutes, (c)-(d) 60 minutes and (e)-(f) 4 hours. 215 

For all three time scales, the magnitude of the ramps decreases as the number of wind farms in the 216 
distribution increases (see Figures 3(a)-(f)). A large reduction in the standard deviation is shown 217 
between 5 and 30 wind farms before levelling off as the number of farms increases further. For 218 
example, for the 30 minute ramps the standard deviation decreases from approximately 4.8% to 2.1% 219 
as the number of wind farms increases from 5 to 25, but decreases to only 1.9% as the number of 220 
wind farms increases further to 50. However, for all time scales the lowest standard deviation is 221 
shown for the largest number of wind farms (i.e. the full GB wind farm distribution).  222 
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This analysis indicates that the number of wind farms aggregated is a useful parameter for estimating 223 
the distribution of power swings on time scales of 30 minutes to 4 hours. In comparison, the 224 
separation between capacity is not a good indicator of the size of the ramps. For all time scales, 225 
increasing the separation (but keeping the number of wind farms the same) has little impact on the 226 
size of the ramps (see Figures 3(b), 3(d) and 3(f). For example, for a wind farm distribution which 227 
contains 41-60 farms, if the separation between the units of capacity is 200 km the standard deviation 228 
of the 30 minute ramps is between 1.8% and 2.0%. If the separation were to increase to 400 km the 229 
standard deviation is very similar (1.7% - 2.0%). These results suggest that on the time scales 230 
considered, the power ramps of the regions are not well correlated, therefore the magnitude of the 231 
aggregated ramps decrease as more and more regions (number of farms) are added, irrespective of any 232 
potential change in the separation between capacity.  233 

3.2 Regional power ramps 234 

The analysis in section 3.2 has shown that the magnitude of the power ramps of a wind farm 235 
distribution is highly dependent on the number of wind farms. The recent trend of concentrating a 236 
small number of very large wind farms therefore results in an increase in the magnitude of the local 237 
power ramps. Figures 4 to 6 show the distribution of the power ramps for each region in Great Britain 238 
in 2014. For all time intervals, the distribution is approximately symmetric with median values close 239 
to zero for both the onshore and offshore regions, indicating that positive and negative ramps have a 240 
similar distribution. 241 

In general, when considered in terms of a change in capacity factor, the magnitude of the ramps is 242 
larger for the offshore clusters for all time scales. Consequently, if the system operator were to hold 243 
reserve to protect against a 90th percentile swing, for the onshore regions it would equate to on 244 
average 3.8%, 6.0% and 14.5% of capacity for 30 minutes, 60 minutes and 4 hours respectively. In 245 
comparison a similar holding for the offshore regions would equate to an average of 4.8%, 7.9% and 246 
18.9% of capacity. This is due to the offshore clusters containing a lower number of farms than the 247 
onshore zones. As the 4 offshore regions have a similar number of farms, the magnitude of ramps is 248 
very similar for all offshore regions- with slight differences in the extreme values. For the onshore 249 
regions, there is generally a larger spread in the distributions reflecting the variability in the number of 250 
farms across the regions. For example, for Lothian there are a similar number of wind farms to the 251 
offshore regions and the standard deviation of the ramps is 4.7%, 7.6% and 17.9% for 30 minutes, 60 252 
minutes and 4 hours respectively. 253 

When considered in terms of change in power (MW), due to large capacity in Thames Estuary, the 254 
ramps of the cluster are larger than all other regions for all time scales (as shown in Figures 4-6 (c)). 255 
For example, for the 30 minutes, 60 minutes and 4 hour time window, the maximum ramp in the 256 
Thames Estuary is 777 MW, 886 MW and 1363 MW. Power ramps of this magnitude could 257 
potentially pose a challenge to those responsible for maintaining a balance between supply and 258 
demand on the power system. Accurate meteorological forecasting is critical to decisions made on 259 
holding reserve, but can be difficult on such short timescales. Here follows a detailed investigation 260 
into the meteorological conditions causing ramps in the Thames Estuary, to inform development of 261 
accurate forecasts. 262 
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 263 

Figure 4 Distribution of the change in capacity factor within a 30 minute time window in 2014 for (a) offshore 264 
clusters (b) onshore regions. (c) The ramps expressed in terms of power (MW). 265 

 266 

Figure 5 Distribution of the change in capacity factor within a 60 minute time window in 2014 for (a) offshore 267 
clusters (b) onshore regions. (c) The ramps expressed in terms of power (MW). 268 

 269 

Figure 6 Distribution of the change in capacity factor within a 4 hour time window in 2014 for (a) offshore clusters 270 
(b) onshore regions. (c) The ramps expressed in terms of power (MW). 271 

3.3 Thames Estuary ramping 272 

In Section 3.2 it was shown that the clusters of offshore wind farms can lead to large high frequency 273 
regional power ramps. This section analyses the generation data from the Thames Estuary cluster (the 274 
largest of the offshore clusters in terms of capacity) in more detail, to identify the extreme ramping 275 
events and determine the meteorological drivers. As with the previous sections, the analysis has been 276 
completed on three time scales (30 minutes, 60 minutes and 4 hours).  277 

3.3.1 Extreme ramps over a 4-hour time window 278 

Following the method outlined in section 2.3 (the hourly capacity factor changes by more than 40% 279 
over a 4 hour time window), 74 ramp-up events and 69 ramp-down events were identified. Events 280 
occurred throughout the year, however a larger proportion occurred in winter (39% in DJF) than any 281 
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of the other seasons (22% in MAM, 24% in JJA and 15% in SON). The most extreme ramp-up event 282 
was 86.2% which equates to a change in power of 1.3 GW and the most extreme ramp-down was 283 
76.7% which equates to a change in power of 1.2 GW. 284 

For each event, the synoptic meteorological conditions have been investigated using the surface 285 
pressure data from MERRA (see figure 7). All of the extreme ramping events on this time scale can 286 
be linked to the passage of an extra-tropical cyclone (low pressure system) and the associated weather 287 
fronts. For all of the 74 ramp-up events, there is a clear pattern in the surface pressure field. A low 288 
pressure system is centred over Iceland and the frontal features stretch south-east across the UK. 289 
There is a similar pattern for the ramp-down events however the centre of the low pressure has moved 290 
eastwards and the gradient in surface pressure over the UK has weakened. Additionally, the frontal 291 
features are now located east of the cluster. 292 

By applying the method developed in Cannon et al. [7], the hourly generation of the Thames Estuary 293 
cluster in 2014 has been estimated based on the surface wind field given by MERRA. The derived 294 
data have been analysed to determine whether extreme ramping events are captured.  MERRA is 295 
defined to have captured a ramp if it is at least 75% of the size of the measured ramp within a ±3 hour 296 
time window of when it occurred. Based on this criterion, the MERRA derived data captures all 74 297 
ramp-up events and 69 ramp-down events which occurred in the Thames Estuary offshore cluster 298 
during 2014. This confirms that the extreme ramping on this time scale is the result of synoptic scale 299 
meteorological features which are well reproduced by the reanalysis product. 300 

 301 

Figure 7 Mean sea level pressure averaged across all (a) 74 ramp-up events and (b) 69 ramp-down events. 302 

3.3.2 Extreme ramps over a 1-hour time window 303 

For the full year of measured data, power ramps over a one hour time window have been calculated 304 
and the frequency distribution of the ramps is shown in Figure 8 (this is the same data as the Thames 305 
curve in Figure 5(a)). The data have then been filtered to remove the periods which contain a 4 hour 306 
ramp (identified in section 3.3.1) and the distribution of the filtered ramps is also shown in Figure 8. 307 
A comparison of the probability density functions shows the most extreme 60 minute ramping events 308 
are the same in both distributions. For the both the filtered and unfiltered datasets the largest ramp-309 
down is -48.8% and the largest ramp-up event is 57.9%. This indicates that the most extreme 1 hour 310 
ramps are not part of a larger scale ramp and are therefore not caused by the passage of low pressure 311 
system but by smaller scale meteorological features. 312 
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 313 

Figure 8 The 60 minute ramps for the Thames Estuary cluster during 2014 using the whole dataset (blue) and then 314 
excluding the periods during which a 4 hour ramp occurs. 315 

Using the criteria outlined in section 2.3, 24 x 1 hour extreme ramping events have been identified. 316 
Further analysis shows, on 10 occasions an extreme ramp-up and ramp-down occurred within 3 hours 317 
of each other (as shown in Table 3). These ramps were combined to produce 14 independent events. 318 
For each event, the meteorological conditions have been investigated using surface pressure fields 319 
from MERRA, observations of surface temperature and wind speed from Met Office weather stations 320 
close to the cluster (Manston and Shoeburyness) and rainfall radar data. Based on the meteorological 321 
data, 3 main drivers of the extreme ramping on this time scale have been identified; (1) turbine cut-out 322 
due to high wind speed conditions (2) outflow or gust fronts from thunderstorms and (3) organised 323 
band of convection following a frontal system. 324 

3.3.3 High wind speed cut-out 325 

There were 5 ramping events associated with the high wind speed shutdown of turbines. The largest 326 
of which occurred on 14th February 2014, when the output of the farms reduced by 44.3% (i.e. a 327 
reduction in power output of 680 MW in 1 hour). All 5 of the cut-out ramping events occurred in 328 
winter and are associated with a low pressure system located over the UK. The strong pressure 329 
gradient leads to very high wind speeds in the Thames Estuary region. For all of the events, the 1 330 
minute mean wind speed at both Manston and Shoeburyness exceeds 25 ms-1 during the period when 331 
generation is reduced.  332 

Three of the five events are characterised by a large reduction in the output as the turbines cut-out 333 
followed by a similar sized ramp-up. For example, on 25th January 2014 at 16:00 there was a 334 
reduction in capacity factor of the cluster by 28.6% (see Figure 9) which corresponds to a spike in 335 
wind speeds observed in the region (at Manston, the mean wind speed peaked at 35.5 ms-1 at 17:30). 336 
Following this, there is a reduction in wind speeds and therefore the turbines start to generate again 337 
and therefore there is a ramp-up of 26.7% at 17:00. 338 

 339 

 340 

 341 

 342 
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 343 

 344 

 345 

 346 

 347 

 348 

 349 

Figure 9 Meteorological conditions on 25th January 2014.  (a) 30 minute averaged wind power generation of the 350 
Thames Estuary cluster (expressed in terms of capacity factor) (b) 1-minute averaged wind speed observations from 351 
Manston (blue) and Shoeburyness (red). 352 

 353 

No. Date 
Ramp-up (%) 

and time 
Ramp-down (%) 

and time 

Maximum 
rainfall rate 
(mm hr-1) 

Type 

1 25/01 26.7 (17:00) -28.6 (16:00) 91 Cut-out 
2 12/02 38.3 (16:30) -29.0 (14:00) 15 Cut-out 
3 14/02  -44.3 (22:00) 26 Cut-out 
4 07/03 27.6 (20:00)  150 Post-frontal 
5 23/03 32.6 (16:30) -28.4 (17:30) 71 Thunderstorms 
6 24/05 26.3 (16:30)  97 Post-frontal 
7 07/06 45.4 (08:30) -48.8 (10:00) 12 Thunderstorms 
8 18/07 57.9 (19:30) -42.5 (22:00) 1023 Thunderstorms 
9 19/07 39.1 (04:30) -25.4 (07:00) 64 Thunderstorms 
10 19/07 28.6 (19:30) -28.4 (20:30) 115 Thunderstorms 
11 14/08 26.8 (14:30) -45.9 (15:30) 396 Thunderstorms 
12 03/11 31.1 (13:30) -48.8 (15:30) 147 Post-frontal 
13 19/12 36.9 (09:30) -39.8 (07:00) 622 Cut-out 
14 26/12  -36.3 (23:30) 77 Cut-out 

Table 3 Meteorological conditions for the 60 minute ramping events which occurred in the Thames Estuary in 2014 
identified using the method outlined in section 2.3. 
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 354 

Figure 10 Meteorological conditions for the wind power ramping event on 18th July 2014. (a) 30 minute averaged 355 
wind power generation of the Thames Estuary cluster (expressed in terms of capacity factor) (b) the maximum 356 
rainfall rate of any gridbox in the Thames Estuary on a 5 minute resolution and (c) 1-minute surface pressure 357 
observations from Manston. 358 

 359 

3.3.4 Thunderstorms 360 

There were 6 ramping events caused by the wind speed gusts associated with a thunderstorm (2 on 361 
19th July 2014), all of which occurred between March and August. For these events the atmospheric 362 
conditions are dominated by a high pressure system (anticyclonic) located over the UK and a low 363 
pressure system to the south west. Analysis of the meteorological conditions in the Thames Estuary 364 
shows that all ramps coincide with other meteorological conditions which are a signature of the 365 
thunderstorm, such as a period of heavy rainfall in the region and large fluctuations in temperature. 366 
For example, the maximum rainfall rate during the ramp for any 1 km radar gridbox in the Thames 367 
Estuary exceeds 64 mm hr-1- for all but one of the ramping events. Furthermore, observations at 368 
Manston and Shoeburyness show there is generally sharp drop in temperature during the ramping 369 
event.  370 

The largest ramping event associated with a thunderstorm occurred on the 18th July 2014. At 19:30 the 371 
capacity factor of the cluster increased by 57.9% (890 MW in 1 hr). Figure 10 shows this ramp 372 
coincided with very heavy rainfall across the region. The maximum rainfall rate derived from the 373 
radar observations was 1023 mm hr-1 at 22:00. In addition, the surface pressure observed at Manston 374 
increased by 4 hPa in a 25 minute period (Figure 10(c)).  375 

3.3.5 Post-frontal convection 376 

Three events are caused by a band of increased wind speeds which occur after a front. The elevated 377 
wind speeds lead to an increase in power output from the cluster for a short period of time before the 378 
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feature moves away from the region. As with the thunderstorms, there is also a signature of these 379 
features in the rainfall data.  Figure 11 shows the capacity factor of the Thames Estuary wind farms on 380 
24th May 2014 and the mean rainfall rate across the region. During the morning a weather front 381 
moved across the South East of England which led to high wind speeds and heavy rainfall. After the 382 
front moved eastwards away from the cluster of farms, their wind generation reduced dramatically, 383 
falling from 69.7% of capacity at 08:00 to only 23.7% at 13:00. In the mid-afternoon there was an 384 
increase in wind power generation and by 17:00 the output was back up to 62.6%, however this ramp 385 
had a short duration and by 20:00 the output had reduced to only 30.0%. Figure 11(b) shows a 386 
corresponding ramp in the rainfall in the region.  387 

 388 

Figure 11 Meteorological conditions for the wind power ramping event and the meteorological conditions on 24th May 389 
2014. (a) The 30 minute averaged wind power generation of the Thames Estuary cluster (expressed in terms of 390 

capacity factor) and (b) the mean rainfall rate across the Thames Estuary on a 5 minute resolution. 391 

3.4 Extreme ramps over 30 time windows 392 

For the full year of the data the power ramps over a 30 minute time window have been calculated 393 
using the method outlined in Section 2.3. The data have then been filtered to remove the periods 394 
which correspond to a 4 hour ramp (derived in section 3.3.1). As with the 60 minute ramps, Figure 12 395 
shows that the most extreme 30 minute ramping events are not associated with a larger scale ramp and 396 
therefore are not caused by the passage of low pressure system but by a smaller scale meteorological 397 
feature.  398 

Using the method outlined in section 2.3, only 6 30-minute ramping events have been identified (see 399 
Table 4). For each event, the meteorological mechanism has been determined using a range of 400 
datasets. Based on the analysis, 4 of the ramps were shown to be associated with the high wind speed 401 
cut-out of turbines and two are associated with thunderstorms. 402 

 403 
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 404 

 405 

 406 

 407 

Figure 12 The 30 minute ramps for the Thames Estuary cluster during 2014 using the whole dataset (blue) and then 408 
excluding the periods during which a 4 hour ramp occurs. 409 

4.0 Conclusions 410 

In recent years there has been a significant change in the distribution of wind capacity in the UK, with 411 
the construction of several clusters of very large offshore wind farms. This paper investigates how this 412 
change has affected the magnitude of the nationally aggregated and regionalised ramps on temporal 413 
scales which are critical for the management of the power system (30 minute, 60 minute and 4 hours). 414 
In addition, the extreme high frequency ramps of the largest cluster of offshore wind farms (Thames 415 
Estuary) have been investigated in detail to determine the meteorological drivers. 416 

Despite the clustering of capacity in relatively small areas, the addition of the offshore wind farms 417 
reduces the high frequency variability of nationally aggregated generation. This study has used two 418 
key parameters to quantify the level of clustering; (1) number of wind farms in the region (2) mean 419 
separation between capacity. The level of the variability has been considered in terms of the 420 
magnitude of the power ramps on the three timescales which are of importance for system 421 
management (30 minutes, 60 minutes and 4 hours). For this metric, the magnitude of the variability 422 
was highly correlated to the number of wind farms aggregated. As the number of wind farms in the 423 
distribution increases, the magnitude of the ramps decreases. This reduction is particularly large 424 
between 5 and 25 wind farms before levelling off as the number of farms increases further. In 425 
contrast, the mean separation between capacity had little impact on the magnitude of the power 426 
swings. In fact, keeping the number of wind farms fixed but changing the separation has a negligible 427 
impact on the standard deviation of the distribution of the power swings. These results show that the 428 
ramps on these time scales in the different regions are not correlated; therefore aggregating the 429 
regions leads to a smoothing effect. 430 

No. Date 
Ramp-up (%) 

and time 
Ramp-down (%) 

and time 

Maximum 
rainfall rate 
(mm hr-1) 

Type 

1 03/01  -18.3 (15:30) 9 Cut-out 
2 26/01  -16.0 (18:00) 8 Cut-out 
3 28/01  -17.4 (04:00) 37 Cut-out 
4 01/02 15.2 (07:30)  14 Cut-in 
5 19/07 21.3 (08:30)  19 Thunderstorm 
6 19/07 16.7 (12:00)  20 Thunderstorm 

Table 4 Details of the 30 minute ramping events which occurred in the Thames Estuary in 2014 identified using the 
method outlined in section 2.3. 
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As the magnitude of the high frequency power swings are highly dependent on the number of wind 431 
farms, the recent trend in Great Britain for clustering capacity in a small number of very large wind 432 
farms results in an increase in the local power swings. For example, if the system operator were to 433 
hold reserve to protect against a 90th percentile swing, for the onshore regions in 2014 it would equate 434 
to on average 3.8%, 6.0% and 14.5% of capacity for 30 minutes, 60 minutes and 4 hours respectively. 435 
In comparison, a similar holding for the offshore regions would equate to an average of 4.8%, 7.9% 436 
and 18.9% of capacity. Consequently, for clusters with high levels of capacity this could lead to very 437 
large ramps in power. For example, for the Thames Estuary, an 18.9% ramp equates to a change in 438 
power of 290 MW. This effect would be exacerbated in the future with the development of even 439 
larger clusters (e.g. Dogger Bank which could have a capacity in excess of 4 GW). 440 

The meteorological conditions leading to extreme high frequency ramping of an offshore cluster have 441 
been investigated in more detail using the Thames Estuary as a case study. Over a 4 hour time 442 
window, the largest ramp in capacity factor was 86.2% (which equates to a power swing of 1.3 GW). 443 
This, along with the other extreme 4 hour ramping events was caused by the passage of a cyclone and 444 
the associated weather fronts. On shorter time scales, the largest ramping events over 30 minute and 445 
60 minute time windows are not associated with the passage of fronts. They are caused by three main 446 
meteorological mechanisms; (1) very high wind speeds associated with a cyclone causing turbine cut-447 
out (2) gusts associated with thunderstorms and (3) organised band of convection following a front.  448 

To minimise the balancing costs associated with the extreme high frequency ramping events the 449 
meteorological features need to be captured by the wind power forecast. Drew et al. [3] has shown 450 
that high resolution ensemble models are able to capture the elevated wind speed associated with post-451 
frontal convection. However, the timing and location of the feature may not be exactly correct. This 452 
study has shown that this problem could potentially be addressed by considering the use of real time 453 
meteorological observations, such as data from the rainfall radar to adjust the forecast in real-time if 454 
necessary.  455 
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