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Abstract 

Ciprofloxacin (CFX) is a fluroquinolone antibiotic used as a first line treatment 

against infections caused by Pseudomonas aeruginosa and Streptococcus 

pneumonia that are commonly acquired by cystic fibrosis (CF) patients. 

However, no inhalation formulation is currently available for ciprofloxacin.  

Hybrid silica coated silver nanoparticles were prepared using Stöber reaction 

and the optimum ratio of chitosan and sodium tripolyphosphate was used to 

encapsulate CFX.  Particle deposition was assessed in vitro using twin stage 

impinger while antimicrobial activity was evaluated based on the planktonic 

growth of P. aeruginosa as well as against P. aeruginosa sp biofilm formation. 

In vitro deposition results showed significant deposition in stage 2 using twin 

stage impinger (TSI) (~70%).  Compared to CFX, the formed hybrid 

nanoparticles were 3-4 folds more effective against inhibiting growth and 

biofilm formation by P. aeruginosa PAO1 and P. aeruginosa NCTC 10662. 
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Introduction 

Cystic fibrosis (CF) is a multisystem genetic disorder caused by a mutation in 

cystic fibrosis transmembrane conductance regulator (CFTR) gene located on 

chromosome 7. The mutated gene leads to a malfunctioning protein causing 

hypersecretion of thick mucus which is difficult to clear. Due to the impaired 

mucosal defences, recurrent infections caused by Psuedomonas aeruginosa 

leading to chronic pulmonary symptoms and deteriorating lung function in CF 

patients.  Various antimicrobial agents are used to treat respiratory infections 

of which the most commonly used is oral ciprofloxacin.   Pseudomonas 

aeruginosa is a Gram-negative pathogen responsible for causing a wide 

range of nosocomial infections, most notably in immunocompromised 

patients. The infection is particularly challenging to treat due to the 

emergence of extended-spectrum-E-lactamase strains of P. aeruginosa. Its 

ability to form a robust biofilm as part of the infection makes it chronic and 

difficult to treat. The difficulty arises due to the production of a self-secreted 

extracellular polymeric substances (EPS) that form a protective matrix around 

the bacterial cells [1, 2]. Therefore, the need for alternatives to antibiotic 

treatment for this pathogen is becoming more apparent.  

 

Ciprofloxacin (CFX) is a broad spectrum second generation fluoroquinolone 

antibiotic used effectively against wide range of infections including P. 

aeruginosa and Streptococcus pneumonia [3]. The current delivery methods 

available for CFX are oral and intravenous infusion and no inhaled formulation 

is currently available.  It is also worth mentioning that prolonged 

administration of CFX could lead to severe gastrointestinal disturbances and 
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arthropathy, therefore it is not recommended for use in young children. 

Pulmonary drug delivery in particular is seen as a non-invasive approach as 

the lungs provide a thin, yet extremely efficient absorptive mucosal membrane 

with a good blood supply [4].  It is however challenging to deliver drugs to the 

highly viscous environment typically found in CF patients.  

 

In order to overcome such limitations, the study of metal nanoparticles (NPs), 

functional core-shell colloidal NPs in particular, have gained extensive 

attention [5].  It is a well-known fact that silver (Ag) has strong antimicrobial 

properties and is still being used to treat wound infections [6].  Recently, silver 

nanoparticles have been found to increase bactericidal activity against 

Staphylococcus aureus in human osteoclasts [7].  

 

Silver has also been found to have mucolytic properties combined with limited 

toxicity (based on suggested concentrations) in mammalian cells [8]. 

However, silver NPs may aggregate, coating with a silica shell is therefore 

essential to avoid loss of activity.  Another issue has been the dissolution of 

silver when ammonia was used as a catalyst; hence this was replaced with 

dimethylamine whereby optimum coating could be achieved [9].  

 

CFX is sparingly soluble in water, which may increase the chance for 

mucociliary clearance in the lungs; hence, the presence of silica may also aid 

the dissolution of CFX, which could minimize clearance.  Nanoparticles 

encapsulating CFX and silver can be a promising solution to deliver the drug 

to the lungs to retain sufficient drug concentration above the minimum 
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inhibitory concentration (MIC). A broad variety of materials ranging from 

natural to synthetic have been used with a particular interest in 

polysaccharides such as chitosan (CS), a linear cationic polymer mainly 

degraded by lysozymes in the lungs [10].  Its cationic nature dictates its 

mucoadhesive properties as a result of electrostatic forces between the 

cationic amino groups of chitosan and the negatively charged glycoprotein of 

mucin [11]. This will provide a capacity allowing the entrapment of CFX, which 

will ensure effective delivery, and maintaining the drug at the target tissue.   

 

The aim of this study was to prepare hybrid nanoparticles of silica coated 

silver nanoparticles embedded into a matrix of chitosan doped with 

ciprofloxacin.  Secondly, to fully characterise the prepared nanoparticles and 

determine deposition efficiency using in vitro assessment followed by 

evaluating the antimicrobial activity in the main bacteria present in CF patients 

(P. aeruginosa PAO1 and P. aeruginosa NCTC 10662).  This novel 

engineering of these nanoparticles has not been attempted before and it 

would therefore be very interesting to explore possible applications including 

delivery to the lungs.  
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Materials and methods  

 

Materials  

Tetraethyl orthosilicate (TEOS; ≥99.0%, GC, Aldrich), silver (Ag; nanopowder, 

<100 nm particle size, contains PVP as dispersant, 99.5% trace metals basis, 

Aldrich), chitosan (CS; low molecular weight, Aldrich), sodium 

tripolyphosphate (TPP; parum p.a., ≥98.0%, Sigma-Aldrich), ciprofloxacin 

(CFX; ≥98.0%, HPLC, Fluka), anhydrous lactose (Fluka), dimethylamine 

solution (DMA; 40 wt. % in H2O, Aldrich) and acetic acid (ReagentPlus®, 

≥99%, Sigma-Aldrich) were obtained from Sigma-Aldrich, Dorset, UK. Ethanol 

absolute (EtOH) was obtained from VWR International, Leicestershire, UK.  

 

Methods 

Preparation of silica coated Ag and entrapment within chitosan-CFX 

matrix 

75 mL of EtOH, 20 mL distilled water and silver nanoparticles were mixed 

followed by addition of 1 mL DMA combined with ultra sonication. Then to 

each of the flasks, 0.25, 0.5, 0.75 and 1 mL TEOS were added gradually 

whilst on vigorous stirring using mechanical stirrer. This created four 

suspensions containing different amounts of TEOS.  The amount of Ag was 

also varied to allow comparison (2, 5, 7.5 and 10mg).     
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Determining the optimum ratio of CS:TPP  

Prior to optimising the NPs, the loading efficiency of CS nanoparticles with 

CFX had to be determined and as indicated by a previous study [12]. CS:TPP 

of variable ratios ranging from 0.6 to 12.0 were tested using 0.3% w/v CS in 

0.2% v/v acetic acid, 0.8% w/v CFX in 0.2% v/v acetic acid and 2% w/v TPP 

in water, note that all solutions were freshly made before mixing. The 

controlled variable was the amount of CFX and the independent variables 

were the amounts of CS and TPP used.  

 

Formation of hybrid silica coated silver embedded in CS/CFX 

CFX (120mg) was added to CS solution with 400 μL acetic acid while stirred 

vigorously to ensure complete dissolution.  The suspension of the formed 

silica coated silver nanoparticles was then added to the CFX/CS solution and 

the mixture was kept stirring followed by drop wise addition of TPP which 

allows cross-linking of the CS.  The formed suspensions were then spray 

dried using B-290 Buchi spray dryer using inlet temperature of 130 °C and an 

outlet temperature of 60°C.  The resulting solid particles had silver content in 

the range of 0.047 to 0.14% w/w.   

 

Particle size measurements using photon correlation spectroscopy and 

dissolution rate analysis 

The formed nanoparticles were suspended in deionised water using different 

volumes (2 mL, 1 mL and 0.5 mL) and diluted using different dilution factors 

10, 20 and 40 times respectively.  Using photon correlation spectroscopy 
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(ZetaPlus, Brookhaven Instruments Corporation, USA), the count rate of the 

suspended particles was used as a measure of dissolution.  These 

measurements were performed by withdrawing samples at different time 

intervals (0, 1, 3 and 5 hours) followed by dilution with water; all 

measurements are average of 10 replicates. 

 

 

Transmission and scanning electron microscopy (TEM) 

Selected samples were run under TEM to determine the size of the 

nanoparticles using Philips Tecnai T20 microscope operating at 200 kV 

equipped with an EDS (energy dispersive spectrum) detector.  

 

X-ray powder diffraction  

The polymorphic nature of the formed samples was studies using x-ray 

powder diffraction (XRPD).  All samples were scanned using a Bruker D8 

advance X-ray diffractometer (Bruker AXS GmbH, Germany) which is a Cu-

source, theta– theta diffractometer equipped with a Lynx eye position 

sensitive detector. It was operated at 40 kV generator voltage and 40 mA 

generator current. The samples were analysed using DFFRAC plus XRD 

commander software (Bruker AXS GmbH, Germany) with a 2θ range of 5-45°, 

a step size of 0.02°and time per step of 1.33s.   
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In vitro equivalence testing using twin stage glass impinger (TSI) 

Lactose was used as a carrier as because of its common use in dry powder 

inhalers where selected samples were mixed with lactose 5 minutes with the 

aim to generate uniform formulations. Three gelatine capsules containing 40 

mg of each of the powder were filled for in vitro testing using TSI. About 7 mL 

and 30 mL of 0.2% v/v acetic acid were introduced in stages 1 and 2 

respectively. Particle deposition was assessed in vitro using twin stage 

impinge using Rotahaler device and based on peak flow of 50L/min. The 

capsule under test was placed in the DPI followed by attachment to the 

mouthpiece and the fractions of deposition were measured by collecting the 

powders of mouthpiece and upper chamber (stage 1) and lower chamber 

(stage 2). The concentration was measured at λ271nm and the % CFX 

deposition in each stage was calculated accordingly as % ratio = deposited 

amount/ total emitted dose.   

 

 

Bacterial strain, media and hybrid nanoparticles stocks 

Pseudomonas aeruginosa PAO1 (wild type) and P. aeruginosa NCTC 10662 

were obtained from The University of Westminster (London, UK) culture 

collection. The bacterial strains were cultured at 37q C for all experiments. 

Cation-adjusted Mueller–Hinton (CAMHB, Sigma-Aldrich, Dorset, UK) was 

used to determine minimum inhibitory concentrations (MICs) and minimal 

biofilm eradication concentration (MBEC). Luria-Bertani broth and agar 

(LBB and LBA, Sigma-Aldrich, Dorset, UK) was used for the determination 

of colony count for biofilm cell viability assay. Stock solutions of the hybrid 
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nanoparticle formulations were suspended in 0.1M acetic acid (Sigma-

Aldrich, Dorset, UK). The stock solution was then used diluted in CAMHB to 

obtain desired concentrations. 

 

Determination of Minimum inhibitory concentrations and MBEC 

MIC values of the hybrid nanoparticles against P. aeruginosa PAO1 and P. 

aeruginosa NCTC 10662 were determined by broth dilution method and the 

obtained results were interpreted according to guidelines set by European 

Committee on Antimicrobial Susceptibility Testing, EUCAST guidelines [13].  

Minimal biofilm eradication concentration (MBEC) of the formulations was 

determined by the method described by Rudilla et al., 2016 with a few 

modifications [14]. Briefly, pegs of a modified polystyrene lid (Nunc Immuno 

TSP system; catalog No. 445497) were immersed into separate 96-well 

microtiter plates containing 200 PL of LBB inoculated with P. aeruginosa 

PAO1 and P. aeruginosa NCTC 10662 per well, respectively. The plates were 

then incubated at 37 qC for a period of 24 h under static conditions. The pegs 

were gently rinsed twice during the process of MBEC determination with 0.5M 

PBS solution. The first wash effectively cleared the unattached planktonic 

cells while leaving behind the biofilm which was then immersed into a fresh 

set of 96-well plates containing different concentrations of hybrid 

nanoparticles which was then incubated for 24 h at 37 qC. After the second 

wash with 0.5M PBS solution, the biofilms were extracted by sonication for a 

period of 10 min. The bacteria, thus recovered from the biofilm were used to 

determine the MBEC values by recording the optical density of each treatment 
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at 600 nm. The lowest concentration of the hybrid nanoparticles that 

prevented growth of bacterial cells extracted from the treated biofilm was used 

to determine the MBEC. All the experiments were performed in triplicates.  

This work explores the potential of an effective hybrid nanoparticle treatment 

against a well-known biofilm forming Gram-negative pathogen as an 

alternative to mainstream antibiotics therapy. Experiments have thus 

specifically focused on demonstrating the effect of the hybrid nanoparticles on 

P. aeruginosa biofilm formation, since individual MIC of Ag, CFX and 

combinations have been widely explored and published in literature previously 

[15, 16].   

 

 

Microtiter plate assay for biofilm quantification 

P. aeruginosa PAO1 and P. aeruginosa NCTC 10662 biofilm was formed on 

96 well flat bottom polystyrene micro-titre plates in triplicates. Briefly, A 10 µl 

of cell suspension having an absorbance of 0.5 at 600 nm was inoculated in 

190 µl of LBB medium in each well. The microtiter plate was incubated for 18 

h at 37q C. After aspiration of planktonic cells biofilms were fixed with 99% 

methanol. Plates were washed twice with 0.5M PBS and air-dried. Then, 200 

μl of crystal violet solution (0.1%) was added to all wells. After 5 minutes, the 

excess crystal violet was removed and plates were washed twice and air 

dried. Finally, the biofilm bound crystal violet was dissolved in 33% acetic 

acid. Biofilm growth was measured at O.D 570 nm using a micro plate reader 

(BMG SPECTROstar Nano). 
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Biofilm bacteria enumeration after MIC treatment 

P. aeruginosa PAO1 and P. aeruginosa NCTC 10662 biofilm was formed on 

96 well flat bottom polystyrene micro-titre plates in triplicates. Briefly, A 10 µl 

of cell suspension having an absorbance of 0.5 at λ600 nm was inoculated in 

190 µl of LBB medium in each well. The microtiter plate was incubated for 4 h 

and 12 h at 37q C. After aspiration of planktonic cells, 200 µl of 0.5M PBS was 

added to each well and sonicated for 10 minutes. 100 µl of recovered cells 

were then plated on pre-prepared LBA plates and incubated overnight at 37 

qC and colonies were counted the following day. 

 

 

 

 

Results  

The first step was to form silica coated silver nanoparticles using a modified 

Stöber method.  The core silver nanoparticles had a diameter of about 10nm 

with strong tendency to aggregate when dispersed in water. Hence, coating 

silver with silica layers will help to form a stable colloidal dispersion and 

prevent aggregation.  The Stöber reaction is based on the base catalysed 

hydrolysis of tetraethyl orthosilicate using dimethylamine as a catalyst.  

 

(1)   Si(OR)4 + H2O → (OR)3Si(OH) + ROH 

(2)   (OR)3Si(OH) + H2O → SiO2 + 3ROH 
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Different processes were subsequently performed so that the prepared hybrid 

particulates composed of chitosan matrix entrapping ciprofloxacin and 

encapsulating the silica coated silver nanoparticles. 

 

 

 

Characterization of silica coated nanoparticles particles  

Because of the possible dissolution of silver cores when ammonia is used as 

a catalyst, dimethylamine (DMA) was used to avoid such possible loss of the 

core [9].  In order to reach the best ratio of the core/shell, a factorial design of 

36 formulations was prepared based on the independent variables used: Ag 

at 2, 5 and 7.5 mg, and TEOS at 1.1, 2.2, 3.4 and 4.5 mmol.  As indicated 

above, The reaction is based on the hydrolysis of TEOS using alkaline 

conditions and ethanol as a solvent [17].  The formation of the nanoparticles 

was then assessed using size measurements (photon correlation 

spectroscopy and TEM) as well as turbidity measurements.   

 

Photon correlation spectroscopy results showed a particle size range of 120-

200nm for the silica coated silver nanoparticles (Figure 1). The results 

showed that increasing the amount of the core silver nanoparticles was 

associated with size increase signifying possible aggregation of the core silver 

nanoparticles. Broad variation was seen with the particles containing lower 

amount of TEOS (1.1 mmol) with narrower size distribution was observed 
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when the TEOS was increased.  This may indicate better coating as the 

thickness of silica layers is increased.    

 
 
Particle morphology and the particles’ size distribution were further compared 

using TEM (Figure 2).  The TEM images showed some variation whereby the 

particles that contained 4.5 mmol TEOS were more distinct and individualised. 

On the other hand, the particles containing 1.1 mmol TEOS were smaller in 

size and showed signs of aggregation with neighbouring particles which 

indicated the importance of isolating the cores and optimising the ratio of the 

silica coat.  Encapsulation of silver nanoparticles was also evident as can be 

seen in the TEM images.  The size however was slightly lower than the size 

obtained from PCS results with a size range of approximately 100-120nm.   

This variation in size was previously reported where dynamic light scattering 

measurements could deviate especially in the case of polydispersity [18].   

 

 

 

Coating with chitosan layers with entrapped ciprofloxacin  

As the optimum ratio of silica to core silver was determined, the next step was 

to embed the formed nanoparticles in chitosan matrix.  Low molecular weight 

chitosan is a cationic polysaccharide synthesized by deacetylation of chitin.  

Its biodegradable, biocompatible and hydrophilic properties dictated its 

application in mucoadhesion and drug delivery [19].  In addition to hydrogen 

bonding potential with mucin, chitosan is polycationic hence can interact with 

the carboxyl and sulfate groups on mucin.  
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In order to enhance mucoadhesion properties of CFX containing NPs, it was 

important to ensure that the surface of the nanoparticles exhibits a positive 

charge. This was based on the Interaction between the cationic groups of CS 

with anionic regions of TPP.  A range of weight ratios of CS to TPP was 

investigated to decide which ratio(s) was best for embedding the silver 

nanoparticles.  The method is based on ionic gelation of the positive charge 

on chitosan with the oppositely charged TPP.  Controlling the weight ratio is 

essential to ensure that complete bridging of the chitosan chains is achieved.  

Not reaching that level leads to poor formation of particles while excess 

amount of TPP can lead to inter-particle aggregation and agglomeration [12].  

This was evident in Figure 3 where a significant aggregation of particles 

occurred at a weight ratio of chitosan/TPP 0.6-1.8.  Beyond this ratio, 

consistent increase in particles size was observed where the size of the 

particles reached 1000nm.  Zeta potential was measured for the formed 

particles within chitosan/TPP range of 4/1 to 2/1 and was 25-30 mv.    

 

 

The last step was to embed the silver coated silica nanoparticles into the 

chitosan matrix.  This also included encapsulation of CFX within the chitosan 

matrix.  As CFX is soluble in acidic conditions, it was important to adjust the 

pH prior to forming the final particles.  This was achieved via gradual change 

in the pH, using acetic acid to lower the pH to around 5-6.  Based on the 

dissolution data, this pH was optimum to delay the dissolution of the silica 

layer.  Based on obtained results, CFX was then loaded into particles that 
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were formed using chitosan/TPP ratio of 2 to 1 (pH was approximately 5.5).  

The formed particles were assessed visually and to examine whether these 

remain suspended or aggregate with time.  Possible aggregation should be 

avoided as this can lead to lower entrapment of the drug and eventually poor 

delivery of the particles.  Figure 2 shows the shape of the formed hybrid 

nanoparticles with a size range of 100-200 nm.  The hollow matrix formed 

from chitosan can be seen entrapping the silica coated silver nanoparticles. 

The particles in Figure 2 showed agglomeration, as experimental conditions to 

perform SEM and TEM require the removal of the suspending liquid.  The 

particles showed distinct spherical structures with no signs of aggregation, if 

agglomeration has happened; rough or irregular shaped particles would have 

been noticed.  PCS analysis has been systematically performed for all 

particles (core nanoparticles), chitosan matrix and the final hybrid 

microparticles; overall, the size distribution was narrow and uniform. 

 
 
 
The formed suspension of the final nanoparticles was spray dried to form solid 

particles.  As can be been in Figure 2, the silica coated silver nanoparticles 

exhibited raspberry like structures with a size range similar to the size 

observed using TEM (liquid state prior to spray drying).  Confirmation of the 

coating with silica and subsequent layers of chitosan was further confirmed 

using X-ray powder diffraction (Figure 4). The scans showed weakened 

intensity of silver diffraction peak as a result of coating with the silica and 

chitosan. The slight peak refers to the diffraction due to silver and the 

diminished peak is due to the amorphous silica coating, which reduced the 

intensity of the peak. These experiments were performed in conjunction with 
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SEM, TEM and PCS to demonstrate success and uniformity of coating.   The 

appearance of slight peak could be due to two factors: coating with silica or 

lower silver content.  However, the SEM and TEM images showed clear 

deposition of silica layers on silver cores hence we anticipate that the 

weakened X-ray peak is predominately because of the amorphous silica 

layers coating the silver nanoparticles. 

 

 

 

Dissolution rate of hybrid nanoparticles  

Dissolution rate was measured for particles using the count rate obtained from 

PCS because the size was considered as a controlling factor in the release of 

Ag and dissolution of CFX. The count rate is proportional to the size of the 

particles hence changes in count rate reflect changes in the size of the 

particles due to dissolution.    Overall the results showed that the majority of 

the particles completely dissolved after 5 hours when dispersed in water.  It is 

ideal to preserve the nanoparticles until they settle deep in the lungs and can 

then be engulfed by the bacteria. Premature dissolution leads to release of 

the drug with potential loss of activity.   

 

By comparing the % dissolution (Figure 5) with the particle sizes, the results 

are more distinct in that it was not necessarily particles formed from lower 

TEOS that produced fastest dissolution rate. This is due to the fact that 

dissolution rate is influenced by particle aggregation whereby the surface area 

of the aggregated particles have substantially decreased.  The amount of core 
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silver nanopartciles seemed to have variable impact on the dissolution of the 

particles where a change from 2 and 5 to 7mg resulted in a dissolution 

difference of up to 30%.  Overall, the dissolution rates of measured samples 

could be described as fast with minimum impact of the core particles possibly 

signifying uniform coating.   As shown in Figure 5, the dissolution of the 

particles was clear with the release of the silver nanoparticles supporting the 

dissolution results obtained using PCS measurements.  The process started 

with the disintegration of the chitosan network followed by the release of silver, 

which could clearly be seen as the dark contrasted region.  It was not clear 

whether the released silver nanoparticles aggregated and whether that was 

because of experimental conditions.  Nevertheless, we expect that 

physiological conditions are more dynamic and release in situ would be more 

likely which helps to release the nanoparticles as individual entities.  Typical 

physiological conditions involve diffusion of the alveolar fluid and airway 

epithelial cell cilia mobility.  Overall, the formed silica nanoparticles were 

uniform as based on PCS measurements with very reproducible size range 

for different batches.  The fate of the silica layers was demonstrated in Figure 

5 where the size has decreased over time which demonstrates controlled 

release of the drug and core silver nanoparticles. 

 

 

Measurement of deposition efficiency using TSI 

The entrapment efficiency (EE%) of the formed hybrid nanoparticles was 

assessed after loading with CFX.  The results showed that entrapment 

efficiency was highest for particles that were formed from chitosan/TPP 0.5 to 
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1 compared with other ratios (Table 1).  Having showed EE% of 

approximately 73%, it was decided that the TSI measurements to be 

performed for samples using chitosan/TPP of 0.5 to 1.   The details of 

samples that were run using TSI measurements are shown on Table 2.  

  

 

As shown in Figure 6, significant fraction of the delivered particles was 

deposited in stage 2 with some formulations reaching 70% deposition.  The 

deposition in this side represents the fine particle fraction (FPD%) which is 

vital for successful delivery of drugs deep inside the lungs.  The emitted dose 

on the other hand varied among all formulations with the formulations that 

contained the lowest amount of silver cores being highest in terms of emitted 

dose (Figure 6).  This could be attributed to the density differences where 

these are less dense, which may have affected the amount emitted from the 

device. While the formation of these particles has been a complex process, 

the outcome in terms of FPF was very promising.  

 

 

 

Assessment of antimicrobial activity in P. aeruginosa biofilms  

The final step was to assess whether the formed hybrid nanoparticles were 

more effective in terms of antibacterial activity compared with CFX alone.  

This was done using minimum inhibitory concentration as a measure of 

activity combined with inhibition of biofilm formation.  The latter has been a 

problem as antibacterial resistance typically exists with P. aeruginosa 
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infections [20-22].  Stock concentrations of all the formulations were prepared 

in 0.1M acetic acid at 200 mcg/ml and diluted as and when required in the 

growth medium to obtain the required concentrations.  

 

Cation-supplemented Mueller-Hinton broth was the medium used for 

identifying the MIC of Ciprofloxacin and other formulations. It allows good 

growth of most non-fastidious pathogens and is generally low in antagonists. 

Mueller-Hinton broth, which meets the requirements of the NCCLS standard, 

is considered the reference medium. The data presented in Table 3 show that 

the hybrid nanoparticles were highly effective against planktonic growth of P. 

aeruginosa PAO1 (wild type) and P. aeruginosa NCTC 10662 (commonly 

used control strain for antimicrobial sensitivity testing).   Calgary Biofilm 

Device (CBD), a 96-well plate with pegs built into the lid that allows for the 

adherence and growth of biofilm was used. It is a highly efficient and accurate 

method of testing antimicrobial agent efficacy against biofilm formation. 

Compared to Ciprofloxacin, sample 2 and sample 3 were effective against 

inhibiting biofilm formation by P. aeruginosa PAO1 and P. aeruginosa NCTC 

10662. Experiments were performed using Luria-Bertani broth and medium 

(Tables 3,4&5).  This enhanced activity could clearly be seen Figure 7 where 

antimicrobial activity has increased approximately 3-4 times when hybrid 

nanoparticles were used.  Overall, higher silver content resulted in greater 

antimicrobial activity.  As shown in Tables 3,4&5, stock concentrations of all 

the formulations were prepared in 0.1M acetic acid at 200 mcg/ml of sample 

2:  0.14% w/w Ag, 26.3% w/w CFX, 19.7% CS; Sample 3: 0.047% w/w Ag, 
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26.3% w/w CFX, 19.7% w/w CS, Sample 4: No silver, 30.7% w/w CFX, 23.1% 

w/w CS. 

 

 

Discussion 

Modified Stöber method based on using DMA rather than ammonia as the 

catalyst was successfully used to form silver core silica coated nanoparticles. 

Optimum ratio of chitosan was determined to form physically stable particles 

composed of chitosan as the matrix and contain silica coated silver 

nanoparticles. A ratio of CS:TPP of 0.5 to 1 seemed the best in terms of 

entrapment efficiency.  The presence of an optimum ratio signifies the 

importance of ionic gelation in the formation of the final particles.  This was 

reflected in the high entrapment efficiency where 73% of CFX was entrapped 

in the final particles.   

 

The impact of silver in the shape, morphology and entrapment efficiency was 

critical. High loading with silver led to dense particles with possible separation 

and non-uniform mixing.  This was avoided by varying the amounts of TEOS 

used so that to achieve a balance between silver content as well as optimum 

properties.  Hence, the final TSI measurements were done using best ratios.   

Not surprisingly, particles with lowest silver content showed highest emitted 

dose.  This however was balanced by the highest deposition of for most 

particles.   Several studies have showed that the lung deposition might 

change in pulmonary diseases including cystic fibrosis (CF) due to alteration 

of the architecture and morphology of the lung in these conditions [3].   For 
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example, it has been reported previously that deposition was enhanced for 

fine and ultra-fine particles [23, 24]. Smaller sizes particles may thus facilitate 

better travel and penetration through the viscous mucous layer encountered in 

cystic fibrosis. We aim to develop this work further to perform in vivo studies 

to investigate whether the disease conditions will have significant impact on 

the delivery of the particles.  

 

Assessment of the antibacterial activity revealed distinctive properties that 

correlated well with the silver content. At maximum loading with Ag, it was 

possible to achieve almost 3-4 times greater antimicrobial activity.   This 

enhanced activity can also be linked with the recent findings on the role of 

silver nanoparticles on the enhanced activity in human osteoclasts [7].  The 

authors showed that silver nanoparticles were non-toxic at concentrations 

below ~12μg which suggests that formed hybrid nanoparticles are non-toxic 

with enhanced antibacterial activity.  Stock concentrations of all the 

formulations were prepared in 0.1M acetic acid at 200 μg/ml and diluted as 

and when required in the growth medium to obtain the required 

concentrations.  For MIC experiments stock of 200 μg/mL in acetic acid that 

was diluted several times to yield a final concentration 4 μg/mL while for 

biofilm experiments the final concentration of 5 ug/ml was used.  This implies 

that the used silver amount is significantly below the stated safety level of 

12μg.  The FDA has categorized colloidal silver as an unclassified drug [25].  

Silver is available as homeopathic remedy (as colloidal silver mist spray) 

despite potential side effects (argyria and bluish discoloration of the skin).  

However, the concentration used in this study is significantly small.  For 
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comparison, homeopathic preparations contain 10-40ppm, and the silver 

content used in this study was 4-5ppm.  Nevertheless, it is difficult to 

anticipate potential hazards without further research on long-term effects, 

which will be the focus of our future research; the authors hope that these 

significantly low concentrations will have therapeutic applications while having 

negligible undesirable effects.  Silica nanoparticles are used in cosmetic, food 

packaging and industrial applications. Their deposition and clearance 

mechanisms in the lungs are considered to be similar to conventional 

nanoparticles of identical size range. Several studies have investigated in vitro 

and in vivo cytotoxic effects and while issue of toxicity are known, it has been 

regarded that the toxicity is dose dependent as well as subject to the 

frequency of exposure. Studies also suggest that unmodified silica 

nanoparticles can potentially cause greater cytotoxic effects and ROS 

induction than surface modified ones [26].  The composite nature of the 

prepared hybrid nanoparticles might render silica less prone to causing 

cytotoxic and pro-oxidant effects. In order to confirm this, future research will 

include comprehensive studies of cytotoxicity, cellular uptake and ROS 

induction.   

 

Conclusions 

The work presented here shows for the first time that it is possible to use 

silver at sub-toxic levels to achieve 3-4 times greater antibacterial activity.  

Properties of the final particles were optimised so as to ensure maximum 

entrapment efficiency with maximum deposition deep inside the lungs.  It was 
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possible to prepare hybrid nanoparticles with entrapment efficiency of 

approximately 73% with optimum deposition.  A higher rate of biofilm inhibition 

was achieved with sub-toxic levels of hybrid nanoparticles when compared 

against two strains of P. aeruginosa after a treatment period of 12 h under in 

vitro conditions. Enumeration bacterial cells extracted from the biofilm after 12 

h treatment showed a significant decrease in cell count which equates to high 

level of bactericidal activity against biofilm forming sessile cells. This shows 

us that the hybrid nanoparticles used in this study are effective against sessile 

cells of CF causing pathogen, P. aeruginosa that are protected by the EPS 

layer and are hard to reach and target using conventional antibiotic therapy. 
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Legend to Figures  

Figure 1: Diameter of nanoparticles prepared using different ratios of TEOS 
and Ag.  
Figure 2: (A) Transmission electron microscopy showing silica-coated silver 
nanoparticles with multiple silver nanoparticles were entrapped, (B) 
transmission electron microscopy showing the clusters formed from the silica 
coated silver nanoparticles entrapped within chitosan layers, (C) scanning 
electron microscopy showing “raspberry” structures formed form silica coated 
silver nanoparticles embedded particles in chitosan matrix and (D) scanning 
electron microscopy showing “raspberry” structures formed form silica coated 
silver nanoparticles.  
Figure 3: The diameter of the chitosan nanoaprticles formed using different 
ratios of chitosan/TPP and as measured using dynamic light scattering 
Figure 4: X-ray powder diffraction showing prepared particles, shaded bars 
indicate weakened intensity as the silver nanoparticles is coated with silica 
and chitosan.  
Figure 5: Dissolution of the hybrid nanoparticles after exposure to aqueous 
media for 1,3 and 5 hours as measured using photon correlation spectroscopy 
for (A) NPs prepared using 2mg, (B) 5mg and (C) 7.5mg Ag.  The dissolution 
was evident using transmission electron microscopy for the hybrid 
nanoparticles as shown in (D).  
Figure 6: Assessment of the in vitro deposition represented as % deposition 
of CFX in stage 1 and 2 in TSI compared with the emitted (μg) dose from the 
device for different formulations.  
Figure 7: Activity of Ciprofloxacin and formulations against P. aeruginosa sp 
biofilm formation after 18h of growth. Experiments performed in 96-well 
microtiter plates using ½ MIC of respective samples and compared against 
untreated control.  Stock concentrations of all the formulations were prepared 
in 0.1M acetic acid at 200 mcg/ml of sample 2:  0.14% w/w Ag, 26.3% w/w 
CFX, 19.7% CS; Sample 3: 0.047% w/w Ag, 26.3% w/w CFX, 19.7% w/w CS, 
Sample 4: No silver, 30.7% w/w CFX, 23.1% w/w CS.  
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Legend to Tables  
 
Table 1: The entrapment efficiency of CFX entrapped nanoparticles using 
different ratios of CS/TPP. 
Table 2: Composition of hybrid nanoparticles that were selected for TSI 
measurements  
Table 3: Minimum inhibitory concentration (MIC) by broth dilution method.  
Table 4: Minimum biofilm eradication concentration (MBEC) by broth dilution 
method.  
Table 5: Biofilm cell enumeration (viability) by plating.  
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Fig 1 
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Fig 2  
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Fig 3  
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Fig 4  
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Fig 5 
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Fig 6 
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Fig 7 
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Table 1: The entrapment efficiency of CFX entrapped nanoparticles using 
different ratios of CS/TPP. 
 

 

 

 

 

 

 

 

Table 2: Composition of hybrid nanoparticles that were selected for TSI 
measurements  

 
 

 

Ratio (CS/TPP) % EE ± sd 
0.5 72.7 ± 0.8 
1 38.0 ± 0.9 
2 16.1 ± 1.8 
3 10.2 ± 2.3 
4 12.1 ± 1.1 

Formula 
code Ag (mg) TEOS (mL) CS (mg) TPP (mg) CFX (mg) 

A1 2.0 0.25 90 180 120 

A2 2.0 0.50 90 180 120 

A3 2.0 0.75 90 180 120 

B1 5.0 0.25 90 180 120 

B2 5.0 0.50 90 180 120 

B3 5.0 0.75 90 180 120 

C1 7.5 0.25 90 180 120 

C2 7.5 0.50 90 180 120 

C3 7.5 0.75 90 180 120 
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Table 3: Minimum inhibitory concentration (MIC) by broth dilution method.  

Organism  
Cip Sample 2 Sample 3 Sample 4 

MIC µg/ml 

P. aeruginosa PAO1 24 8 12 16 

P. aeruginosa NCTC 10662 16 4 8 12 

 

 

 

 

 

Table 4: Minimum biofilm eradication concentration (MBEC) by broth dilution 
method.   

Organism  
Cip Sample 2 Sample 3 Sample 4 

MBEC µg/ml 

P. aeruginosa PAO1 105 15 45 65 

P. aeruginosa NCTC 10662 50 10 25 40 

 

 

 

 

 



  

 37 

 

 

 

 

 

Table 5: Biofilm cell enumeration (viability) by plating. 

  

Organism 

Sample Time 
P. aeruginosa PAO1 P. aeruginosa NCTC 10662 

log10 cfu/ml 

CFX 
4h 2.2 ± 0.24 1.02 ± 0.4 

12h 0.57 ± 0.53 0.15 ± 0.45 

2 
4h 1.41 ± 0.21 0.68 ± 0.35 

12h 0.21 ± 0.1 0.08 ± 0.21 

3 
4h 1.38 ± 0.16 0.79 ± 0.31 

12h 0.63 ± 0.12 0.07 ± 0.32 

4 
4h 1.93 ± 0.21 1.10 ± 0.12 

12h 1.21 ± 0.43 0.87 ± 0.35 

± depicts standard deviation, n=3 
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