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ABSTRACT

The role of the Indian Ocean dipole (IOD) in controlling interannual variability in the East African short

rains, from October to December, is examined in state-of-the-art models and in detail in one particular

climate model. In observations, a wet short-rainy season is associated with the positive phase of the IOD and

anomalous easterly low-level flow across the equatorial Indian Ocean. A model’s ability to capture the

teleconnection to the positive IOD is closely related to its representation of the mean state. During the short-

rains season, the observed low-level wind in the equatorial Indian Ocean is westerly. However, half of the

models analyzed exhibit mean-state easterlies across the entire basin. Specifically, those models that exhibit

mean-state low-level equatorial easterlies in the IndianOcean, rather than the observedwesterlies, are unable

to capture the latitudinal structure of moisture advection into East Africa during a positive IOD. Further-

more, the associated anomalous easterly surface wind stress causes upwelling in the eastern Indian Ocean.

This upwelling draws up cool subsurface waters, enhancing the zonal sea surface temperature gradient be-

tween west and east and strengthening the positive IOD pattern, further amplifying the easterly wind stress.

This positive Bjerknes coupled feedback is stronger in easterly mean-state models, resulting in a wetter East

African short-rain precipitation bias in those models.

1. Introduction

Eastern Africa comprises the countries Tanzania,

Burundi, Rwanda, Uganda, Kenya, Somalia, Ethiopia,

South Sudan, Djibouti, and Eritrea. It is home to ap-

proximately 300 million people, many of whom live in

rural areas and depend on rain-fed agriculture. The re-

gion is extremely vulnerable to interannual fluctuations

in rainfall (Nicholson 2016). For example, two consec-

utive significantly below-average rainy seasons led to

severe drought in 2010/11 that resulted in widespread

food and water shortages (FEWS NET 2011). It is

also home to some of the most flood-prone countries

in Africa (Li et al. 2016). When these extremes

occur successively, such as the flooding following the

2011 drought, the impact is exacerbated considerably

(Nicholson 2014). To help mitigate the impacts of fu-

ture extreme events, it is vitally important to under-

stand what controls the strong rainfall fluctuations over

this region.

Most of eastern Africa has a bimodal distribution of

rainfall characterized by two transition seasons from

March to May (MAM), known as the ‘‘long’’ rains, and

from October to December (OND), known as the

‘‘short’’ rains. This bimodal region, hereinafter referred

to as East Africa (EA), is reasonably dry compared with

other tropical land, with mean annual rainfall between

800 and 1200mm. While these transition seasons are

modulated by the meridional migration of the inter-

tropical convergence zone (ITCZ), Yang et al. (2015a)

showed that fluctuations in near-surface moist static

energy were crucial to enhancing rainfall over EA during

the two rainy seasons.

Although the long rains are more reliable and

provide a larger amount of rainfall to EA (Hastenrath
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et al. 1993), the short rains are more spatially coherent

(Moron et al. 2007; Hastenrath et al. 2011) and exhibit

more interannual variability (Camberlin and Wairoto

1997; Black et al. 2003; Hastenrath et al. 2011). In-

terannual variability in the short rains has been linked

with remote forcing from the tropical Pacific (e.g.,

Nicholson and Kim 1997) and Indian (e.g., Bahaga et al.

2015) Oceans. However, the relative importance of

these factors has been the subject of multiple studies,

including a recent review (Nicholson 2017).

There is strong evidence that El Niño–Southern Os-

cillation (ENSO) in the tropical Pacific plays a crucial

role in modulating the East African short rains (EASR)

on interannual time scales (e.g., Bowden and Semazzi

2007). Specifically, the EASR significantly increase

(decrease) during El Niño (La Niña) events (Dezfuli

and Nicholson 2013; Hoell and Funk 2014). However,

the links to ENSO vary regionally within EA and do not

hold for all extreme years. For example, Nicholson and

Selato (2000) showed that while most wet years were

associated with El Niño events, most dry years showed

no association with La Niña and, moreover, it has been

speculated that the anticipated impact of ENSO in EA

only materializes when corresponding warming/cooling

of the Indian Ocean occurs concurrently (e.g., Goddard

and Graham 1999; Hastenrath 2000).

The role of the Indian Ocean (IO) itself in modulating

the EASR has been the subject of many studies, with

authors concluding that interannual rainfall variability is

strongly linked to the Indian Ocean dipole (IOD; e.g.,

Nakamura et al. 2011; Bahaga et al. 2015) and the as-

sociated strength of the overturning Walker cell (e.g.,

Mutai et al. 2012). The Walker cell is characterized by a

strong eastward pressure gradient that results in low-

level westerlies with opposing easterlies aloft, rising

motion in the eastern IO, and large-scale subsidence in

the west near the EA coastline. A positive IOD [warm

sea surface temperatures (SSTs) in the western IO and

cooler SSTs in the eastern IO; Saji et al. 1999] is asso-

ciated with a weakening of this Walker cell in the IO,

leading to enhanced rainfall over EA (Black et al. 2003;

Nakamura et al. 2011), as anomalously easterly winds

bring moisture to the region (Cai et al. 2013). Nicholson

(2015) showed the intensity of this overturning cell in

the equatorial IO, as measured by the strength of the

low-level westerlies, was highly negatively correlated

(20.74) with EA precipitation.

Studies directly comparing the impact of the Pacific and

Indian Oceans have shown that, on interannual time

scales, the EASR aremore highly correlated with the IOD

index (section 2d) than with SSTs in the eastern Pacific [a

correlation of 0.80 compared to 0.64 in Liebmann et al.

(2014); 0.61 compared to 0.49 in Nicholson (2015)]. This

has led many authors to conclude that interannual vari-

ability in the EASR is more strongly modulated by the

IOD and low-level equatorial IO westerlies than by the

remote influence of ENSO (Bergonzini et al. 2004;

Hastenrath et al. 2011; Nicholson 2015, 2017). Although

ENSO and the IOD are not completely independent, this

paper will focus on the role of the IO in modulating the

EASR and will not examine ENSO further.

But how well do state-of-the-art models represent the

EASR and the climate of the IO?Many current coupled

global climate models (CGCMs) struggle, consistently

overestimating the EASR (e.g., Yang et al. 2014) and

the amplitude of the IOD (e.g., Cai and Cowan 2013).

Both issues have persisted through generations of

models.

CGCMs are also unable to correctly capture the

seasonal cycle of rainfall over EA, resulting in under-

estimation of the long rains and significant over-

estimation of the EASR (Anyah and Qiu 2012; Yang

et al. 2014). While these biases are slightly improved in

atmosphere-only models (AGCMs; Yang et al. 2014),

the wet bias is still present, suggesting this is not purely

an issue with atmosphere–ocean coupling. Bollasina and

Ming (2013) postulate that the existence of the wet bias

in AGCMs is due to the models being too sensitive to

meridional SST gradients in the western IO. Moreover,

Yang et al. (2015b) suggest that other remote systematic

biases in the tropics, such as the equatorial Pacific cold

tongue and double ITCZ (Li and Xie 2014) or the weak

Atlantic meridional overturning circulation (AMOC;

Wang et al. 2014), may also play a role in the over-

estimation of the EASR.

The majority of CGCMs have SST biases in the IO

that resemble a positive IOD (Li et al. 2015). Cai and

Cowan (2013) suggest this is due to the Bjerknes feed-

back being too strong over the equatorial IO. Spe-

cifically, they showed that models with the strongest

thermocline–SST feedback also systematically exhibited

the largest IOD amplitudes. Furthermore, the west–east

slope of the equatorial thermocline in the IO controls

the strength of the thermocline–SST feedback. Most

models generate an overly deep thermocline in the

western IO leading to an unrealistic thermocline tilt

toward the east. This unrealistic thermocline structure is

associated with excessive easterly winds and west–east

SST gradient that further reinforce the tilt and lead to an

excessive IOD amplitude (Cai and Cowan 2013). Li

et al. (2015) suggest this can be traced to the weaker-

than-observed southwest summer monsoon flow (e.g.,

Sperber et al. 2013), resulting in a warm SST bias—and

overly deep thermocline—over the western equatorial

IO leading, through the coupled Bjerknes feedback, to

the positive IOD-like pattern seen in most models.
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While many studies have highlighted a wet bias in the

EASR or discussed the influence of the IOD in con-

trolling interannual rainfall variability over EA, very

few have linked the two. This leads to several out-

standing questions: (i) How is the wet bias over EA re-

lated to larger-scale mean-state biases in the IO, and are

these consistent across models? (ii) What influence do

such large-scale biases in the IO have on the interaction

between the IOD and EASR? (iii) What is the role of

ocean–atmosphere coupling? This study will address

these questions by comparing teleconnections between the

IOD and EASR in a range of coupled and atmosphere-

only global climate models.

The remainder of this paper is structured as follows: A

description of the model simulations and observational

data is featured in section 2. Section 3 describes the

analysis of simulations from the Met Office Unified

Model (MetUM), while section 4 describes the analysis

of CMIP5 models. Sections 5 and 6 contain the discus-

sion and conclusions, respectively.

2. Model, data, and methods

a. MetUM model simulations

In this study, two atmosphere-only versions of the

MetUM, Global Atmosphere 6.0 (GA6; Walters et al.

2011) and 7.0 (GA7), are compared with their fully

coupled counterparts: Global Coupled 2.0 (GC2;

Williams et al. 2015) and 3.0 (GC3), respectively. The

global atmosphere (GA) models are driven by observed

SSTs (Reynolds et al. 2007) and sea ice from the At-

mospheric Model Intercomparison Project (AMIP)

dataset (Taylor et al. 2012). The global coupled (GC)

models comprise the GA coupled to the 0.258 Nucleus

for European Modelling of the Ocean (NEMO; Madec

2008) ocean model (known as ORCA025) via the Ocean

Atmosphere Sea Ice Soil (OASIS) coupler (Valcke

2013). All MetUM simulations in this study are run at

a horizontal resolution of N216; 0.8338 longitude 3
0.5558 latitude—approximately 60 km in the tropics.

All MetUM simulations have 85 levels with a model

lid at 85 km. The GA simulations have 27 years

(1982–2008) of available data from the AMIP period,

whereas the GC simulations have 100 years of data

(nominal years, 2013–21131). The GC simulations are

fixed, present-day 100-yr free-running simulations with

forcings set to values from 2000 (Experiment 2 in

CMIP3; Williams et al. 2015). All available data have

been analyzed for the EASR during OND. An over-

view of the MetUM simulations is given in Table 1.

GC2 was the global coupled configuration of the

MetUM released in March 2014. GC3 is the most recent

coupled configuration released in January 2016. The

most noteworthy modifications in GA7/GC3 compared

with GA6/GC2 are to the physical parameterizations.

These include 1) improved cloud and radiation pro-

cesses; 2) revisions to the numerics of the convection

scheme; 3) a new aerosol scheme; and 4) the in-

troduction of a seamless stochastic physics package in

the atmospheric model. For the purpose of this study,

GA6/GC2 can be thought of as the old version andGA7/

GC3 the new version of the MetUM. These simulations

will allow us to evaluate whether the MetUM is able

to capture the teleconnection between the IOD and

the EASR, and specifically whether SST biases intro-

duced in the coupled model affect the fidelity of this

teleconnection.

b. CMIP and AMIP model simulations

To test if the conclusions from comparing global

versions of the MetUM are consistent across other

models, the findings are comparedwith simulations from

phase 5 of the Coupled Model Intercomparison Project

(Taylor et al. 2012). Thirty years of data (1979–2008)

from 30 AGCMs, using the AMIP experiment design,

are compared to 27 years of data (1979–2005; the AMIP

years) from 48 CGCMs, using the ‘‘historical’’ experi-

ment. While it is not expected that the CMIP and AMIP

years match equivalent years in observations, these

experiments simulate present-day climate variability

in the late twentieth and early twenty-first centuries

and are both driven by realistic anthropogenic and

natural forcings. If an ensemble of simulations is avail-

able, only the first ensemble member is used. For some

TABLE 1. Description of the MetUM simulations

Simulation Configuration Run length (years) Reference

GA6 GA6 forced by observed SSTs (Reynolds et al. 2007) 27 Walters et al. (2011)

GC2 GA6 coupled to ORCA025 ocean 100 Williams et al. (2015)

GA7 GA7 forced by observed SSTs (Reynolds et al. 2007) 27 —

GC3 GA7 coupled to ORCA025 ocean 100 —

1 The reader is reminded that this is a 100-yr, free-running sim-

ulation and that these years do not correspond to observations.
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modeling groups, the AMIP and CMIP simulations are

directly comparable pairs,2 while others provide several

model versions. Hereinafter CMIP refers to the coupled

models only and AMIP refers to the atmosphere-only

experiments (details in Table 2).

c. Observational datasets

To validate themodel simulations, observations of the

real atmosphere are required. Reanalyzed zonal and

meridional winds and specific humidity are taken from

the European Centre for Medium-Range Weather Fore-

casts (ECMWF) interim reanalysis (ERA-Interim; Dee

et al. 2011), from 1979 to 2013. Reanalyzed zonal winds are

also taken from the Twentieth Century Reanalysis Project

(20C Reanalysis; Compo et al. 2011), from 1979 to 2014,

and from the National Centers for Environmental Pre-

diction (NCEP)–National Center for Atmospheric Re-

search (NCAR) reanalysis (Kistler et al. 2001), from 1979

to 2017. Observed precipitation data are taken from the

combined gauge and satellite Global Precipitation Cli-

matology Project (GPCP) monthly precipitation dataset

from1979 to 2015 (Huffman et al. 2009), available at 2.58 3
2.58 resolution. The observed SST data are taken from the

TABLE 2. Details of the CMIP and AMIP models used for analysis.

Modeling center Model names Atmospheric horizontal resolution (8)

BCC BCC_CSM1.1,a BCC_CSM1.1(m)a 2.8 3 2.8, 1.1 3 1.1

BNU BNU-ESMa 2.8 3 2.8

CCCma CanAM4,b CanCM4,c CanESM2c 2.8 3 2.8, 2.8 3 2.8, 3.75 3 3.7

CMCC CMCC-CESM,c CMCC-CM,a CMCC-CMSc 3.75 3 3.7, 0.75 3 0.7, 1.875 3 1.8

CNRM–CERFACS CNRM-CM5,a CNRM-CM5.2c 1.4 3 1.4, 1.4 3 1.4

CSIRO–BoM ACCESS1.0,a ACCESS1.3a 1.875 3 1.25, 1.875 3 1.25

CSIRO–QCCCE CSIRO Mk3.6.0a 1.9 3 1.9

FIO FIO-ESMc 2.8 3 2.8

Irish Centre for High-End

Computing (ICHEC)

EC-EARTHa 1.1 3 1.1

INM INM-CM4.0a 2.0 3 1.5

IPSL IPSL-CM5A-LR,a IPSL-CM5A-MR,a

IPSL-CM5B-LRa
3.75 3 1.875, 2.5 3 1.25, 3.75 3 1.875

LASG–IAP FGOALS-s2b 2.8 3 1.7

LASG–Center for Earth System

Science (CESS)

FGOALS-g2a 2.8 3 2.8

MIROC MIROC4h,c MIROC5,a MIROC-ESM,c 0.56 3 0.56, 1.4 3 1.4, 2.8 3 2.8

— MIROC-ESM-CHEMc 2.8 3 2.8

MOHC HadCM3,c HadGEM2-A,b HadGEM2-CC,c 3.7 3 2.5, 1.875 3 1.25, 1.875 3 1.25

— HadGEM2-ESc 1.875 3 1.25

Max Planck Institute for

Meteorology (MPI-M)

MPI-ESM-LR,a MPI-ESM-MR,a MPI-ESM-Pc 1.9 3 1.9, 1.9 3 1.9, 1.9 3 1.9

MRI MRI-AGCM3.2H,b MRI-AGCM3.2S,b

MRI-CGCM3,a
0.6 3 0.6, 0.2 3 0.2, 1.1 3 1.1

— MRI-ESM1c 1.1 3 1.1

NASA GISS GISS-E2-H,c GISS-E2-H-CC,c GISS-E2-R,a 2.5 3 2.0, 2.5 3 2.0, 2.5 3 2.0

— GISS-E2-R-CCc 2.5 3 2.0

NCAR CCSM4a 1.25 3 0.9

Norwegian Climate Centre (NCC) NorESM1-M,a NorESM1-MEc 2.5 3 1.9, 2.5 3 1.9

National Institute of

Meteorological Research

(NIMR)-Korea Meteorological

Administration (KMA)

HadGEM2-AOc 1.875 3 1.25

NOAA/GFDL GFDL CM2.1,c GFDL CM3,a GFDL-ESM2G,c

GFDL-ESM2M,c
2.5 3 2.0, 2.5 3 2.0, 2.5 3 2.0, 2.5 3 2.0

— GFDL HiRAM-C180,b GFDL HiRAM-C360b 0.625 3 0.5, 0.3 3 0.3

NSF–DOE–NCAR CESM1(BGC),c CESM1(CAM5),a

CESM1(FASTCHEM),c
1.25 3 0.9, 1.25 3 0.9, 1.25 3 0.9

— CESM1(WACCM)c 1.25 3 0.9

a AMIP and CMIP simulations available.
b AMIP simulations available.
c CMIP simulations available.

2 There are 22 AMIP–CMIP pairs.
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Met Office Hadley Centre (MOHC) Sea Ice and Sea

Surface Temperature dataset (HadISST) reconstruction

of monthly mean SSTs, version 1 (Rayner et al. 2003),

available on a 18 grid from 1870 to 2009.

d. Methods

To enable consistent comparison and statistical cal-

culations, the monthly CMIP and AMIP data were

bilinearly interpolated to the lowest common horizontal

resolution of 3.758 longitude 3 38 latitude. Where ap-

propriate, the observations were also bilinearly in-

terpolated to the same resolution for comparison. The

multimodel mean (MMM) is obtained by taking the

average of climate variables among the 30 AMIP and 48

CMIP models. It is recognized, however, that such an

MMM approach has limitations because some CMIP

models may share systematic biases due to shared ex-

pertise and model code (Abramowitz and Bishop 2015).

The IOD index is defined by calculating the SST

gradient between the western equatorial IO (108S–108N,

508–708E) and the southeastern IO (108S–08N, 908–
1108E). Traditionally this is calculated as an anoma-

lous SST gradient; however, to retain information about

the underlying SST bias within each model, the absolute

SST difference between west and east was used. To test

how well this IOD index actually describes each model’s

IOD spatial pattern, empirical orthogonal function

(EOF) analysis has been carried out on each model’s

detrended SST anomalies over the IO during OND (not

shown). The majority of the models exhibit an IOD-like

spatial pattern as their leading EOF, which explains

37.5% of the variance on average. The mean absolute

correlation of the associated EOF1 time series with the

IOD index for the 44CMIPmodels with available data is

0.77.3 This confirms that the IOD index introduced

above is sufficient to describe each model’s IOD mode

of variability.

The latitudinal center of the Mascarene high (MH) is

defined as the maximum in 850-hPa geopotential height

in the Africa–IO region (458S–158N, 158–1208E). Similar

to Manatsa et al. (2014), the eastern ridge of the MH is

defined as the farthest east point of longitude along the

defined latitude center that exceeds the geopotential

height threshold of 1540m.

3. SST teleconnection in the MetUM

Previous studies have highlighted the role of equato-

rial Pacific and IO SSTs in controlling EASR variability

(e.g., Hoell and Funk 2014; Bahaga et al. 2015). Flood

years in EA are associated with both El Niño condi-

tions in the equatorial Pacific and a positive IOD, with

relatively warmer SSTs in the western IO compared to

the eastern IO (e.g., Dezfuli and Nicholson 2013). This

is shown by correlating global SST with precipitation

averaged over EA (Rowell 2013 and Fig. 1a). All

MetUM simulations are able to capture the SST tele-

connections to EA rainfall, showing strong positive

correlations in the eastern Pacific and positive and

negative correlations in the western and eastern IO,

respectively. Compared to observations (Fig. 1a), the

strength of the Pacific signal is best represented in the

new versions of theMetUM (Figs. 1d,e; GA7 and GC3)

and better confined to the equatorial and eastern

coastal region in the coupled models (Figs. 1c,e; GC2

and GC3).

While all MetUM simulations capture a dipole pat-

tern of correlation in the IO, none are able to reproduce

the clear IOD structure from observations. In the

atmosphere-only models there is a dipole, but it is weak

and not statistically significant across much of the basin

(Figs. 1b,d). Coupling has a considerable impact on the

IOD teleconnection, with a clear increase in strength

and a significantly more coherent structure. However,

the negative correlation in the eastern IO extends too

far west along the equator in both GC2 and GC3

(Figs. 1c,e). This suggests that coupled model SST

biases in GC2 and GC3 influence the structure of this

teleconnection.

However, the fact that all MetUM model configura-

tions are able to capture the basic features of the tele-

connection between the EASR and IOD allows us to

study it in more detail. The IO is a region where there

are considerable differences between the MetUM sim-

ulations (Fig. 1); the remainder of this studywill focus on

the IO and how large-scale mean-state biases in this

region influence the local response to rainfall during

the EASR.

a. MetUM OND mean state

To analyze what controls variability in the EASR, it is

important to understand the mean state on which these

variations are occurring. Figure 2 shows the OND bias

in precipitation, SST, and 850-hPa wind in all MetUM

simulations compared with GPCP, HadISST, and

ERA-Interim observations/reanalysis, respectively. The

AGCMs are driven by AMIP-observed SSTs and so

have very small SST biases compared with HadISST

(Figs. 2a,c). However, the coupled models exhibit a

mean-state SST bias in the IO that resembles the pos-

itive IOD (Figs. 2b,c). Associated with these SST bia-

ses, the CGCMs are too wet over the warm SSTs in the

3Nineteen and 27 of the models exhibit an absolute correlation

with the IOD index above 0.9 and 0.8, respectively.
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western IO and too dry over the cooler SSTs in the east.

While these biases are slightly reduced in the new GC3

version, they are still present (Fig. 2d).

During OND, the ERA-Interim equatorial zonal

wind at 850hPa is westerly across the IO with easterly

off-equatorial trade winds between 108 and 208N and

between 108 and 208S. This is a very zonal pattern with a

clear tripole structure in the IO (Fig. 3a). The AGCMs

are able to capture the westerlies at the equator in the

central IO, although they are weaker than observed

(Figs. 3d,j). However, in the CGCMs the mean equa-

torial zonal wind in the IO is easterly (Figs. 3g,m),

although this is slightly improved in GC3 compared

with GC2.

The low-level wind will dynamically respond to the

zonal SST gradient; therefore, it is not surprising that

with the correct SST the mean-state wind is also closer

to observations. Within CGCMs the atmosphere can

respond to the coupled SST, which has a positive IOD

bias (Figs. 2b,d), which leads to mean-state winds in

the equatorial IO that are flowing in the wrong di-

rection. This results in a positive Bjerknes coupled

feedback where the anomalous easterly surface wind

stress will excite upwelling of cooler subsurface water.

The cooler water will further enhance the zonal SST

gradient between the west and east and further am-

plify the wind stress (Cai et al. 2013).

We know that variability in the EASR is modulated

by the IOD, but what will happen in a model whose

mean state is already biased toward the very telecon-

nection pattern that drives the variability?

b. MetUM positive IOD state

To assess the representation of the IOD in the

MetUM, composites have been made on years with a

strong positive IOD pattern during OND. This is done

by ranking all years in the respective datasets by the

strength of the IOD index and compositing on the top

20%of years. A percentage of years—rather than a fixed

number—was used as a method for comparing across

datasets of different lengths. This results in 20 years

contributing to theGC2 andGC3 composites, and only 7

and 5 years contributing to the observations and

AGCMs, respectively.

IMPACT OF POSITIVE IOD ON WINDS AND

PRECIPITATION

A positive IOD is associated with anomalous equa-

torial easterly flow across the IO Basin and wetter EA.

In ERA-Interim, during a positive IOD, the anomalous

easterly flow reduces the mean-state equatorial west-

erlies to near zero (Fig. 3b). The same can be seen in

GA6 and GA7 (Figs. 3e,k). However, in GC2 and

GC3 the anomalous easterly flow resulting from the

positive IOD is acting on a mean state that is already

easterly; therefore, the positive IOD in fact strengthens

the existing easterly flow at the equator (Figs. 3h,n).

The increasing strength of the near-surface wind in the

FIG. 1. (a) Correlations of observedOND rainfall fromGPCP, averaged over EA [land points in the region (38S–108N, 358–508E); black
square in (a)], against observed OND SSTs fromHadISST, for the period 1979–2009. (b)–(e) As in (a), but for 27 years of GA6 and GA7

and 100 years of GC2 and GC3. Black stippling indicates the local rejection of the null hypothesis of zero correlation, at the 5%

significance level.
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IO is likely to enhance evaporation over the basin, re-

sulting in potentially more moisture being advected

toward EA.

South of the equator, the cool, dry southeasterly (SE)

trade winds in the southern IO also weaken considerably in

ERA-Interim during a positive IOD. This allows SSTs to

remain warm in the western IO, enhancing convection over

the western IO and EA, resulting in wetter EASR.

The anomalous OND precipitation patterns during

positive IOD events are compared in observations and

MetUM simulations in Fig. 3 (right). As well as there

being an IO dipole in SST, in observations there is also a

west–east dipole in the response of OND precipitation

to the positive IOD. Despite only having 7 years in the

composite, GPCP shows a positive IOD pattern associ-

ated with anomalously wet conditions over EA/western

IO and anomalously dry conditions over the eastern IO

and Maritime Continent (Fig. 3c). The precipitation

response in GA6 and GA7 has the same pattern; how-

ever, it is quite noisy (Figs. 3f,l). Although the coherence

of this picture improves slightly with increased years in

the composite, it is limited by the short simulation length

of GA6 and GA7. The GC2 and GC3 composites look

similar, both showing wet anomalies over central and

EA/western IO and dry anomalies along the equatorial

and southern IO and in the west Pacific warm pool

(Figs. 3i,o). The precipitation signal is stronger in GC3

than in GC2, with rainfall anomalies over EA between 1

and 2mmday21 compared with only 0.4–0.8mmday21.

However, the CGCM response to a positive IOD is

not a west–east structure as in observations, but rather

it has a north–south structure in the central IO. The

extended anomalously dry region along the equator in

GC2 and GC3 is consistent with the overextension of

the negative SST anomalies shown in Figs. 1c and 1e.

This is evidence of the coupledBjerknes feedback having a

detrimental impact in the CGCMs: the zonal SST gradient

in the IO leads to excessive easterlies and upwelling in the

eastern IO, which maintains the cooler SST in the central

and eastern part of the basin and leads to a further am-

plification of the low-level easterly wind stress.

c. Moisture advection into EA

To study the means by which an IOD event perturbs

the EASR, the advection of moisture into EA is ex-

amined. Using the same definition of positive IOD

years, Fig. 4 shows composites of low-level (850 hPa)

moisture advection (uq and yq, where u and y are the

eastward and northward components of the zonal wind

and q is the specific humidity). In ERA-Interim there is

FIG. 2. Mean OND bias of SST (shading), 850-hPa winds (vectors), and precipitation (colored contours) from

HadISST, ERA-Interim, and GPCP, respectively, for 27 years of (a) GA6 and (c) GA7, and 100 years of (b) GC2

and (d) GC3. Wet (dry) precipitation biases are shown by the green/blue (brown/red) contours every mmday21

starting at 2 (22) mmday21.
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anomalous moisture advection into the EA region dur-

ing positive IOD years (Fig. 4a). This advection of

moisture extends across the entire equatorial IO Basin

but splits as it enters the EA region, with clear peaks

either side of the equator at 108N and 108S and a local

mimimum (or ‘‘dip’’) at the equator (see also Fig. 5).

The northern branch of moisture flux is stronger than

the southern branch (Figs. 4a and 5a).

FIG. 3. (a) Mean OND 850-hPa wind (vectors; u shading) from ERA-Interim. (d),(g),(j),(m) As in (a), but for GA6, GA7, GC2, and

GC3, respectively. (b) Mean OND 850-hPa wind for positive IOD years from ERA-Interim (top 20% of years after being ranked by the

strength of the IOD index). (e),(h),(k),(n) As in (b), but for GA6, GA7, GC2, and GC3, respectively. (c) Anomalous OND precipitation

and 850-hPa zonal wind for positive IODyears (positive IODminusmean) fromGPCP andERA-Interim, respectively. (f),(i),(l),(o)As in

(c), but for GA6, GA7, GC2, and GC3, respectively.
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FIG. 4. Composite anomaly of vertically integrated moisture flux (vectors) and magnitude of the uq term

(shading) from positive IOD years. Pink stars show the location of the eastern ridge of the MH in years of com-

posite, and the large black cross shows the meanMH eastern ridge position for those years (meanMH value shown

in black on the right). Black boxes show the IOD SST regions, with the mean IOD index value shown in purple

(right).
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The pink stars on the diagram in Fig. 4 show the lo-

cation of the eastern ridge of the MH during positive

IOD years, with the mean shown by the larger black

cross. During positive IOD years the MH eastern ridge

is zonally displaced to the east compared with the mean

observed (and model) position of approximately 928E.
This agrees with Manatsa et al. (2014), who suggested

flood (drought) years in EA were associated with the

eastern ridge of the MH being zonally displaced to the

east (west). ERA-Interim shows a weakening of the SE

trades and increased rainfall over EA when there is a

positive IOD (and the MH is displaced anomalously to

the east; Figs. 3a–c and 4a).

All the MetUM simulations are able to capture large-

scale advection of moisture into EA during a positive

IOD, and in all simulations this is associated with east-

ward displacement of the eastern ridge of the MH

(Figs. 4b–e) and reduced SE trade winds (Figs. 3e,h,k,n).

However, theMetUM simulations are unable to capture

the equatorial ‘‘dip’’ in moisture advection in the west-

ern IO that is present in ERA-Interim (Fig. 4a) and

show strong moisture advection toward equatorial EA

(Figs. 4b–e). The moisture advection is stronger and

more broad in the newer versions of the MetUM

(Figs. 4d,e), which more closely matches observations

over the IO.

Figure 5 shows the regression of vertically integrated

zonal moisture flux uq going along each latitude at 568E
(the vertical line marked in Fig. 4) onto the IOD index.

This provides a useful metric to determine the impact of

the IOD on moisture fluxes advected toward EA. The

strong peak of moisture being advected into the conti-

nent north of the equator and the equatorial dip are

clear in the black ERA-Interim line. The CGCMs are

unable to represent this feature, showing an erroneously

strong peak just south of the equator, which is in fact

worse in GC3 compared with GC2. This erroneous

equatorial peak in the CGCMs can be explained by er-

rors in the mean state: In the CGCMs the enhanced

easterlies during a positive IOD are acting on top of an

existing easterly mean state (Fig. 3). Therefore, rather

than a positive IOD reducing the magnitude of the flow

across the equatorial IO (as in ERA-Interim and the

AGCMs), it in fact increases the existing easterly

equatorial wind in the CGCMs, resulting in faster wind

speeds, more equatorial evaporation in the basin, and

therefore more moisture available to be advected to-

ward EA at the equator. The AGCMs are better able to

capture the latitudinal structure of moisture advec-

tion into EA during a positive IOD. This is likely due

to having a better representation of the IO mean

state with the correct SST distribution being prescribed

and resultant low-level equatorial westerlies close to

observations.

d. Summary of the MetUM simulations

Atmosphere-only (GA6, GA7) MetUM simulations

have been compared with their fully coupled counter-

parts (GC2, GC3) to assess their ability to capture the

observed teleconnection between the IOD and in-

terannual variability in the EASR. In observations, wet

EASR are associated with a positive IOD, a more

easterly low-level flow across the equatorial IO (the

eastern ridge of the MH being zonally displaced to the

east), and a weakening of the cool, dry SE trade winds in

the southern IO. Many of these features are better

captured by the MetUM AGCMs than the CGCMs.

This is because the AGCMs have a closer-to-observed

IO mean state. The MetUM AGCMs have the correct

distribution of SSTs and the mean-state low-level

equatorial winds flowing in the correct direction (east-

ward) in the IO. This means that in the MetUM

AGCMs, during a positive IOD, the easterly anomalies

reduce mean-state westerlies, reducing the absolute

wind strength across the equatorial IO. However, in the

FIG. 5. Vertically integrated moisture flux uq going along each

latitude at 568E regressed onto the IOD index.Green lines represent

the AGCMs and red lines represent the CGCMs. Stars indicate

where the regression coefficient is significant at the 5% level.
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MetUM CGCMs, there is an SST bias that already re-

sembles the positive IOD, and the associated easterly

anomalies strengthen the existing easterlies, resulting in

stronger overall equatorial low-level wind. This results

in the MetUM CGCMs being unable to capture the

observed latitudinal structure ofmoisture advection into

the EA region during the positive IOD. The AGCMs

are better able to capture the observed equatorial dip in

moisture advection into EA during wet years (Fig. 5).

This analysis has therefore shown that mean-state biases

in SST and zonal wind in the IO result in the MetUM

being unable to capture all the observed features of this

teleconnection to the EASR.

4. Extension to CMIP ensemble

To test if similar mean-state biases affect the IOD–

EASR teleconnection in other atmosphere-only and

coupled models, this analysis has been extended to the

CMIP and AMIP models (Table 2).

a. Mean state

The OND mean state of 30 atmosphere-only models

(AMIP; Table 2) and 48 atmosphere–ocean coupled

models (CMIP; Table 2) are compared with ERA-

Interim and GPCP data. Figures 6c and 6d show that

the AMIP and CMIP MMMs capture the observed

structure of low-level equatorial westerlies and off-

equatorial easterlies across the IO. The pattern corre-

lation compared with ERA-Interim is calculated for the

larger box (308S–258N, 408–1058E) in Fig. 6a, chosen to

represent the large-scale pattern across the entire IO

Basin. This pattern is well captured by AMIP and CMIP

with pattern correlations of 0.91 and 0.91, respectively.

The coupled models with the lowest and highest pattern

correlations are shown in Figs. 6e and 6f. MRI-CGCM3

(black star in Fig. 6b) shows a similar large-scale equa-

torial IO structure to that of GC2 and GC3 (Fig. 3), with

equatorial easterlies in the IO rather than westerlies,

resulting in a poor pattern correlation of 0.54. TheCGCM

with the highest4 pattern correlation is CESM1(CAM5)

(black diamond in Fig. 6b), with a correlation of 0.94. It is

clear that this model is able to capture stronger, broader

equatorial westerlies in the IO (Fig. 6f). In fact, it slightly

overestimates the strength of the westerlies compared to

ERA-Interim.

For all 78 models (30 AMIP and 48 CMIP), the

equatorial 850-hPa zonal wind has been averaged over

the smaller box (58S–58N, 50–1008E) shown in Fig. 6a.

This box was chosen to capture the observed equatorial

westerlies and results in positive values of 1.29, 1.64, and

2.48ms21 for ERA-Interim, NCEP–NCAR reanalysis,

and Twentieth Century Reanalysis, respectively (black,

dark gray, and light gray bars in Fig. 6b). Both AMIP

and CMIPMMMs exhibit mean westerlies in the central

equatorial IO (Figs. 6c,d); however, they are not me-

ridionally broad enough, so when averaged over the

equatorial box defined by observations, their values

are 20.201 and 0.003m s21, respectively (black unfilled

triangles in Fig. 6b). In fact, when all models are strati-

fied by this measure of area-averaged 850-hPa zonal

wind, half (39 of the 78) of the models actually have

mean easterlies in the equatorial IO (Fig. 6b), similar to

the easterlies seen in coupled versions of the MetUM

(GC2 and GC3 in Figs. 3g,m).

For theMetUM, there was a clear distinction between

AGCMs and CGCMs in terms of the direction of the

mean low-level equatorial zonal wind, with the CGCMs

being easterly and the AGCMs being westerly, as in

observations. However, it is clear from Fig. 6b that the

AMIP andCMIPmodels are distributed evenly between

westerly and easterly flow in the equatorial IO, with an

easterly-to-westerly ratio of 14:16 and 25:23 for the

AMIP and CMIP models, respectively. While there are

many modeling factors that could affect this IO mean-

state bias (e.g., choice of physical parameterizations,

vertical and horizontal resolution), the presence of an

interactive ocean does not appear to be the dominant

one. However, coupling to an interactive ocean is likely

to exacerbate an existing bias through a positive

Bjerknes-type coupled feedback.

Figure 7 investigates the influence of the mean equa-

torial zonal wind on local precipitation over EA. For

each model and the MMMs, the pattern correlation

compared with GPCP is calculated for the box shown in

Fig. 7a (158S–158N, 30–608E), chosen to represent the

local precipitation over EA and the coastal region. The

OND precipitation bias for AMIP and CMIPMMMs, as

well as the highest (NASAGISS-E2-H-CC; black star in

Fig. 7b) and lowest [BCC_CSM1.1(m), herein denoted

as bcc-csm1-1-m; black diamond in Fig. 7b] pattern

correlationmodels are shown in Figs. 7c–f. In agreement

with previous studies (Yang et al. 2015a), the CMIP and

AMIP models show wet biases over the EA region

during OND (Fig. 7b). This bias is significantly smaller

in the AMIP MMM compared with the CMIP MMM

(1.47 compared with 1.93mmday21; Fig. 7b); the AMIP

MMM also shows a higher pattern correlation than the

CMIP MMM (0.91 and 0.79; Figs. 7c,d).

Figure 7b shows the area-averaged EA precipitation

bias for each model versus that model’s mean low-level

4 This excludes EC-EARTH, which has a pattern correlation of

0.95 but was disregarded because it is compared with the reanalysis

product from the same center.
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FIG. 6. (a) Mean OND 850-hPa wind (vectors; u shading) from ERA-Interim. (b) Thirty AMIP (red) and

48 CMIP (blue) models stratified by the area-averaged 850-hPa zonal wind in the equatorial IO [small box in (a)].

Easterly and westerly models used for the composite analysis are labeled in (b) with letters E and W, respectively.

(c)–(f) As in (a), but for AMIP MMM, CMIP MMM, MRI-CGCM3, and CESM1(CAM5), respectively. The

pattern correlations with ERA-Interim, calculated over the larger box in (a), are shown in the top right-hand corner

of each panel along with the symbol used to identify this model in (b). (e) and (f) show the models with the lowest

and highest pattern correlations with ERA-Interim.

6622 JOURNAL OF CL IMATE VOLUME 31



FIG. 7. (a) Mean OND precipitation from GPCP. (b) EA OND precipitation bias over land vs mean equatorial

IO 850-hPa wind for 30 AMIP (red) and 48 CMIP (blue) models. Easterly and westerly models used for the

composite analysis are labeled with letters E and W, respectively. (c)–(f) OND precipitation bias compared with

GPCP for AMIP MMM, CMIP MMM, NASA GISS-E2-H-CC, and bcc-csm1-1-m, respectively. The pattern

correlations with GPCP, calculated over the box in (a), are shown in the top right-hand corner of each panel along

with the symbol used to identify this model in (b). Note the low and high pattern correlation models shown in

Figs. 6e and 6f differ from those models shown here in (e) and (f).
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equatorial IO winds. The models with a more easterly

mean state in the equatorial IO have higher EA pre-

cipitation biases than those with a more westerly mean

state. This negative relationship is shown in Fig. 7b for

all models (gray line; r 5 20.48) as well as the CMIP

(blue line; r 5 20.65) and AMIP (red line; r 5 20.38)

models separately. This confirms the hypothesis that the

wet bias is significantly worse in GCMs that have a more

easterly mean low-level flow in the equatorial IO.

b. Easterly mean-state versus westerly mean-state
models

Given the clear evidence that EA precipitation biases

are worse in GCMs with a more easterly low-level mean

state in the equatorial IO (EqIO), composite analysis

has been carried out comparing the six most easterly and

six most westerly5 CMIP models. There is no clear dis-

tinction in Fig. 6b between the behavior of CMIP versus

AMIP models; therefore, for simplicity, only CMIP

models have been considered for this composite analy-

sis. Themodels used aremarked in Figs. 6b and 7b by the

labels ‘‘E’’ and ‘‘W’’ (Table 3).

Figures 8a–e shows the composite difference between

six easterly (averaging22.43ms21 in the equatorial IO;

Table 3) and six westerly (averaging 2.48ms21 in the

equatorial IO; Table 3) models for near-surface zonal

wind, 200-hPa zonal wind, precipitation, 850-hPa mois-

ture flux (uq, yq), and SST. The low-level zonal wind

bias in the equatorial IO is not confined to 850 hPa but

extends to the surface, with easterly models unable to

capture the surface westerlies (Fig. 8a). In fact, the en-

tire Walker circulation is affected—in ERA-Interim,

upper-level equatorial easterlies complete the over-

turning Walker cell. These easterlies are weaker than

observed in westerly models but weaker still in easterly

models. Figure 8b shows the easterly models exhibit

increased westerly flow throughout much of the tropics

at upper levels. The difference in the SST resembles a

positive IOD pattern, with the easterly models having

warmer SSTs in the west and southern IO and cooler

SSTs in the east of the basin (Fig. 8e). This is consistent

with the findings for the MetUM simulations: the SST

bias resembled this positive IOD pattern and resulted in

easterly flow in the equatorial IO in the coupled runs

(GC2 andGC3; Figs. 2b,d and 3g,m). The corresponding

pattern in precipitation (Fig. 8c) shows that the easterly

models are wetter over the western IO and EA and drier

over the eastern IO.

Figure 8f investigates the impact of the mean-state

biases in the IO on thermocline gradients across the IO

Basin. The 208C isotherm depth, which is used as a proxy

for thermocline depth, has been calculated over equa-

torial boxes in the western (58S–58N, 458–658E) and

eastern (58S–58N, 858–1058E) IO (see insert of Fig. 8f)

and plotted against each other to give an indication of

the thermocline tilt across the IO Basin. The mean dif-

ference in 208C isotherm depth between the western and

eastern IO is also shown in the map insert of Fig. 8f.

Generally in easterly models (red dots in Fig. 8f), the

thermocline is deeper in the western IO compared to the

eastern IO, giving a positive average difference in depth

of 16.98m. The opposite is true of westerly models

(green dots in Fig. 8f), with the eastern IO having a

deeper thermocline than the west and a negative aver-

age difference of 22.31m. This analysis supports

the hypothesis that the excessive IOD amplitude and

TABLE 3. CMIP models used for compositing on those models with a strong easterly mean state in the EqIO (top half) and those with

a strong westerly mean state (bottom half).

Modeling center Model names EqIO 850-hPa u EA precipitation bias

MRI MRI-CGCM3 22.79 3.28

CMCC CMCC-CMS 22.74 2.38

CMCC CMCC-CM 22.50 1.96

MRI MRI-ESM1 22.46 3.10

MOHC HadGEM2-CC 22.14 2.83

CSIRO–BoM ACCESS1.3 21.93 3.47

Easterly mean 22.43 2.84

CCCma CanESM2 3.59 1.38

NSF–DOE–NCAR CESM1(WACCM) 3.36 1.32

ICHEC EC-EARTH 2.57 1.15

NSF–DOE–NCAR CESM1(CAM5) 2.33 1.86

CSIRO–QCCCE CSIRO Mk3.6.0 1.53 1.12

MIROC MIROC-ESM-CHEM 1.49 1.39

Westerly mean 2.48 1.37

5 The six most westerly models used are actually ranked 1, 2, 4, 5,

7, and 8 because all the data for all the required variables were not

available from models ranked 3 and 6. See labels ‘‘E’’ and ‘‘W’’ on

Figs. 6b and 7b and model details in Table 3.
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FIG. 8. Composite difference of six most easterly minus six most westerly CMIP models for mean (a) near-

surface zonal wind, (b) 200-hPa zonal wind, (c) precipitation, (d) 850-hPa moisture flux (vectors; uq shading),

(e) SST, and (f) 208C isotherm depth in the eastern (58S–58N, 858–1058E) vs western (58S–58N, 458–658E) IO
(boxes shown in insert map); for easterly (red) and westerly (green) models, the mean of the six models is

indicated by the red and green crosses, respectively. Themean difference in 208C isothermdepth betweenwest

and east is shown in the insert map for easterly models (red; 16.98m) and westerly models (green; 22.31m).

The easterly and westerly models used in the composites are labeled in Figs. 6b and 7b with the letters E andW,

respectively. Note that near-surface zonal wind data were not available for two of the six westerly models

[CESM1(WACCM) and CESM1(CAM5)], so (a) is a composite of four models only.

15 AUGUST 2018 H IRONS AND TURNER 6625



too-wet EASR in easterly models is a result of the

Bjerknes feedback being too strong. The thermocline

tilt toward the eastern IO in the easterly models is as-

sociated with the excessive easterly surface (Fig. 8a) and

low-level zonal wind and an excessive west–east SST

gradient (Fig. 8e). This also supports the findings of Cai

and Cowan (2013), who show that models with the

strongest thermocline–SST feedback also systematically

exhibited the largest IOD amplitudes.

This composite analysis has shown that having an

easterly mean-state bias in low-level winds in the

equatorial IO leads to a weaker Walker circulation,

warmer coastal SSTs, increased moisture advection into

EA, a reduction of the SE trades, and an upward tilt in

the thermocline toward the eastern IO. All of these

basin-scale conditions are conducive to having wetter

EASR resulting in an exacerbated wet bias during that

season; the EA precipitation bias (averaged over the

box 158S–158N, 308–608E) is more than doubled in

the easterly models (2.84mmday21) compared with the

westerly models (1.37mmday21; Table 3).

To address how these biases affect the IOD telecon-

nection, similar analysis to that of Fig. 4 has been applied

to the CMIP westerly and easterly models. Figure 9

shows the mean composite of vertically integrated

moisture flux for positive IOD years from the six east-

erly and six westerly CMIP models (Table 3). Both sets

of models show a clear advection of moisture across the

equatorial IO toward EA. However, in the westerly

models this is stronger and meridionally broader

and there is some evidence of a split as it enters EA,

with a weak equatorial dip as was observed in ERA-

Interim (Fig. 4a). The westerly models, with the

closer-to-observed IO mean state, show stronger ad-

vection of moisture away from the African continent

north and south of the equator, which also better

matches ERA-Interim. This suggests that correctly

simulating the low-level winds not only improves the

EASR precipitation bias but also improves the structure

of the vertically integrated advection of moisture over

the continent (Fig. 9).

The moisture advection metric used in Fig. 5 has

been applied to all CMIP and AMIP model simula-

tions with available data6 and is shown in Fig. 10. This

metric, which determines the impact of the IOD on

moisture fluxes advected toward the EA coastline,

shows the regression of vertically integrated zonal

moisture flux uq along each latitude band at 568E (the

vertical line marked in Fig. 9) onto the IOD index. As in

Fig. 5, ERA-Interim shows strong peaks of moisture be-

ing advected into EA north and south of the equator

with a local minimum or equatorial dip (black line in

Fig. 10). The westerly models (thick green line in Fig. 10)

are better able to capture this observed latitudinal struc-

ture compared with the easterly models (thick red line in

Fig. 10), which exhibit a strong unimodal peak just south

of the equator. All the individual AMIP and CMIP

models are included in Fig. 10; it is clear that the mean

moisture advection of AMIP models is weaker than that

FIG. 9. Composite anomaly of vertically integrated moisture flux (vectors; uq shading) from positive IOD years for

six (a) easterly EqIO models and (b) westerly EqIO models.

6 This analysis comprises 30 AMIPmodels and 42 CMIPmodels.

In Figs. 6 and 7 48 CMIP models were used; however, specific

humidity and SST data were only available for 42 of those, which

are shown in Fig. 10.
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of CMIP models (thick dashed and solid gray lines in

Fig. 10).

5. Discussion

It has been shown that the overestimation in model

precipitation over EA during OND is related to mean-

state biases in the IO during that season. More specifi-

cally, those mean-state biases affect a model’s ability to

reproduce observed teleconnection patterns between

the IOD and EASR. These results have been summa-

rized schematically in Fig. 11. The anomalous SST pat-

tern during a positive IOD results in anomalous easterly

low-level flow across the equatorial IO Basin. In obser-

vations this reduces the mean-state equatorial westerlies

to near zero (Figs. 3b and 11c). However, in models

featuring mean-state easterlies at the equator (Fig. 11b),

this strengthens the existing easterly flow (Figs. 3, 6, and

FIG. 10. Vertically integrated moisture flux uq going along each latitude at 568E regressed

onto the IOD index. The thick black line representsERA-Interim. TheAMIPandCMIPmeans

are represented by thick dashed and solid gray lines with plus andminus one standard deviation

shown by the light and dark shading, respectively. The six easterly and westerly models that go

into the composite analysis are represented by the thin red and green lines, with the easterly and

westerly means represented by thick red and green lines, respectively.

FIG. 11. (a),(b) Schematic representation of models with a westerly and easterly mean state, respectively.

(c),(d) Schematic representation of the response of a westerly and easterly model to a positive IOD.
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11d). Therefore, easterly mean-state models, with

strengthened equatorial flow, have considerably more

evaporation occurring at the equator than the westerly

mean-state models. As well as having more moisture

available through evaporation, the anomalous easterly

surface wind stress causes upwelling of cold water in the

eastern IO (Fig. 8f) that will further enhance the zonal

SST gradient between west and east, strengthening the

positive IOD pattern and further amplifying the easterly

wind stress. This positive Bjerknes coupled feedback is

likely to be stronger in the easterly mean-state models

and will result in larger wet precipitation biases during

the EASR (Figs. 7b and 11).

One interesting feature of the GCM analysis is that

even models with observed westerly winds in the equa-

torial IO are able to maintain a wet bias in precipitation

compared to GPCP (Figs. 6 and 7). This is likely due to a

stronger cross-equatorial component of the low-level

wind in the model mean state—and model positive IOD

state—which brings excessive moisture along the EA

coast from both the north and the south (Figs. 3 and 6).

To help understand why an equatorial dip exists in

observed moisture advection into EA during a positive

IOD, the analysis of Fig. 9 was repeated by month with

October, November, and December separately (not

shown). This revealed that during October the southern

branch of moisture advection is favored and it is mainly

during November, and more intensely during Decem-

ber, that the flow from the northeasterly monsoon winds

has an influence and moisture is advected toward EA

along the northern branch. The cross-equatorial com-

ponent of the low-level wind along the EA coastline

discussed above also has a monthly dependence: more

moisture is advected from the south during October and

from the north during November and December. This is

true of both westerly and easterly mean-state models.

Section 3 showed that in the case of the MetUM, the

atmosphere-only versions were able to capture the ob-

served westerly mean-state in the equatorial IO whereas

the coupled versions exhibited mean-state easterlies. To

check if this is consistent for individual models within

the CMIP ensemble, the analysis of Fig. 6 was repeated

for paired models only (i.e., those with AMIP and CMIP

equivalent). Six of the 22 paired models do show the

same as theMetUM, with the coupled version exhibiting

equatorial IO easterlies and the atmosphere-only ver-

sion exhibiting mean-state westerlies. However, this is

by nomeans systematic across models. Five of the 22 are

the opposite way around, with westerlies in the CMIP

model and easterlies in the AMIP model. For the re-

maining 11 model pairs, both AMIP and CMIP models

exhibit low-level equatorial IO winds that flow in the

same direction (five easterly pairs and six westerly

pairs). Therefore, model pairs are distributed reason-

ably evenly between westerly and easterly flow in the

equatorial IO with an easterly-to-westerly ratio of 9:15

and 14:10 for the AMIP and CMIPmodels, respectively.

This confirms the hypothesis that the presence of an

interactive ocean is not the only model characteristic

that causes this mean-state IO bias. However, it does

indicate that coupling is likely to exacerbate an existing

bias through the positive Bjerknes-type coupled feed-

back discussed above.

6. Conclusions

It is well known that large-scale patterns of sea surface

temperatures (SSTs) in the Pacific (e.g., Hoell and Funk

2014) and Indian (e.g., Bahaga et al. 2015) Oceans drive

interannual variability in the East African short rains

(EASR) from October to December (OND). However,

the consensus from recent studies is that the EASR are

more strongly modulated by the IO (e.g., Nicholson

2017), specifically the Indian Ocean dipole (IOD).

Therefore, this study has focused on the role of the IOD

in modulating the EASR on interannual time scales in a

range of coupled and atmosphere-only global climate

models, mostly drawn from CMIP5. Specifically, it has

linked mean-state biases in the IO to deficiencies in

representation of the short rains over EA and to the

ability of a model to capture correctly the observed

teleconnection patterns. This analysis has answered the

questions presented at the start of this study.

a. How is the wet bias over EA related to larger-scale
mean-state biases in the IO, and are these consistent
across models?

In agreement with Yang et al. (2014), all models an-

alyzed in this study (four MetUM and 30 AMIP and 48

CMIP simulations from CMIP5) exhibit a wet bias over

EA. It is slightly reduced in atmosphere-only models

compared with fully coupled atmosphere–ocean models

(Figs. 2 and 7), but still present in both. It has also been

shown that many of the models exhibit considerable

biases in the low-level winds in the equatorial IO. The

observed Walker cell over the IO during OND com-

prises low-level equatorial westerlies; however, half of

the models examined actually exhibit mean easterlies at

the equator during that season (Figs. 3 and 6). Those

models that are unable to capture the observed equa-

torial westerlies in the IO are also responsible for the

largest wet biases over EA during the short rains

(Fig. 7b). It is important to note, however, that because

of multiple models from individual modeling centers,

and shared expertise, parameterizations, and code be-

tween modeling centers, not all of these models will be
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independent and therefore may share systematic biases

(e.g., Abramowitz and Bishop 2015). The fact that half

of the ensemble are unable to capture the observed

westerlies over the IO suggests that this is indeed a

widespread modeling issue. Furthermore, these biases

are relevant to the findings of Tierney et al. (2015), who

show that trends in global models toward a wetter EA

in a warming climate can be attributed to a too-strong

EASR, largely driven by a weakening of the Walker

circulation. Further work is being carried out to un-

derstand the impacts of these basic-state biases on future

projections of precipitation.

b. What influence do such large-scale biases in the IO
have on the interaction between the IOD and
EASR?

The analysis has shown that having the correct mean-

state low-level winds over the IO during OND (i.e.,

westerlies rather than easterlies) was crucial to a

model’s ability to capture the correct latitudinal struc-

ture of moisture advection toward Africa during the

IOD. In observations, the vertically integrated moisture

advection during a positive IOD was shown to peak ei-

ther side of the equator with a clear equatorial ‘‘dip.’’

While all model simulations showed enhanced moisture

advection toward the EA coast during a positive IOD,

only models with mean-state westerlies in the IO, as in

observations, were able to capture the observed equa-

torial dip (Figs. 5, 10, and 11).

c. What is the role of ocean–atmosphere coupling?

Determining the impact of air–sea coupling on how

the IOD modulates the EASR on interannual time

scales is by no means trivial. While coupling to a full

dynamical ocean allows the two-way exchanges of heat,

moisture, and momentum at the surface and large-scale

oceanic modes of variability, such as ENSO and the

IOD, to be explicitly resolved, it can also introduce

significant mean-state biases in SST. Additionally, cou-

pled feedbacks allow the atmosphere to respond to and

generate SST anomalies that will have significant influ-

ence on the circulation. Atmosphere-only models were

compared to their coupled counterparts in bothMetUM

and AMIP–CMIP simulations. In the MetUM, coupling

was shown to introduce an SST bias that resembled a

positive IOD (Fig. 2), and a change in the direction of

the mean-state low-level wind in the equatorial IO from

westerly to easterly (Fig. 3). These changes resulted in

an excess of equatorial moisture being advected toward

EA in the coupled model (Figs. 4 and 5) and a wetter

EASR precipitation bias (Fig. 2).

However, the extension to the full CMIP ensemble of

models showed that having an atmosphere-only model

forced by observed SSTs did not always lead to correct

mean-state wind in the equatorial IO. In fact, almost half

the AMIP models exhibited mean-state easterlies

(Fig. 6). Even when reducing the model ensemble to

equivalent coupled and atmosphere-only pairs, only six

of the 22 pairs showed similar results to the MetUM

(with atmosphere only having westerly and coupled

having easterly mean state equatorial wind). Addition-

ally, the wet bias over EA was only slightly reduced in

atmosphere-only models compared with coupled

models (Fig. 7). Therefore, this analysis suggests that a

model’s mean state in the IO, that is, how well the

strength of the large-scale IOWalker cell is represented,

is a better indication for both a reduction in the EASR

wet bias and its ability to capture the teleconnection

between the IOD and the EASR. This is summarized in

the schematic in Fig. 11.
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