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Species distribution model 
transferability and model grain  
size – finer may not always be better
Syed Amir Manzoor1, Geoffrey Griffiths2 & Martin Lukac1,3

Species distribution models have been used to predict the distribution of invasive species for 
conservation planning. Understanding spatial transferability of niche predictions is critical to promote 
species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor 
variables is an important factor affecting the accuracy and transferability of species distribution models. 
Choice of grain size is often dependent on the type of predictor variables used and the selection of 
predictors sometimes rely on data availability. This study employed the MAXENT species distribution 
model to investigate the effect of the grain size on model transferability for an invasive plant species. 
We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance 
and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive 
to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic 
variables may lead to less accurate models as it often compromises the finer grain size of biophysical 
variables which may be more important determinants of species distribution at small spatial scales. 
Model accuracy is likely to increase with decreasing grain size. However, successful model transferability 
may require optimization of model grain size.

Species distribution models (SDMs) are becoming increasingly important in predicting spatial patterns of bio-
logical invasions, identification of hotspots for early detection and informing management of invasive species1. 
SDMs relate the presence/absence records of species to relevant environmental variables and subsequently project 
modelled relationships across geographical space using gridded layers of environmental data, producing a map 
indicating areas of potential species distribution2. One of the key features of gridded data is the ‘grain size’ – a 
term describing the geographical representation (spatial resolution) of the map layers. Grain size of predictor 
variables strongly affects the interpretation of biogeographic characteristics of modelled species3. Use of smaller 
or finer grain size allows for a more accurate representation of the effect of local environmental conditions and 
biotic interactions in model prediction4.

The challenge in using smaller grain size in SDMs is finding the optimum balance between data quality, data 
availability, and model performance5. Grain size represents the geographical space unit which contains all the 
information on characteristic attributes of the study area6. A decrease in grain size enhances the details of the 
landscape by sharpening the features it contains and by making the rare land use types in the landscape more 
prominent and distinguishable7. Conversely, coarse grain size of predictor variables in SDMs negatively affects 
the delineation of habitat features in a landscape, a feature of critical importance to modelling species presence. 
Selection of grain size and its relationship with habitat features is a crucial factor in SDM based studies3,7–9. Most 
literature to date reports on species distribution models built at a grain size of 1 km, a fact recently subjected to 
some scrutiny and critique7,10. Earlier observations indicate that the use of 1 km grain size may be too coarse to 
generate reliable SDM outputs7, especially for studies at small spatial scales. The challenge therefore, is to establish 
the threshold grain size at which predictor variables correctly describe local conditions and biotic interactions 
which play an important role in defining species’ range11.

The choice of grain size in SDM studies is sometimes based on data availability12 rather than relevant factors 
like species’ ecology and spatial scale of study. A review of more than 200 SDM-based research papers concluded 
that the choice of variables is ‘frequently opportunistic’ and that the majority of the studies, instead of making a 
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tailored choice of variables, rely on a standard set of 19 bioclimatic variables13 which are available at a minimum 
of 1 km grain size. In a complementary analysis designed to provide an overview of current practice, we reviewed 
59 recent SDM based studies published in peer-reviewed journals in 2016–2017 (Supplementary data S1). We 
confirmed that the most frequently used variables in MAXENT based ecological modelling studies are indeed, 
the 19 bioclimatic variables available from the ‘Global Climate Data’ (www.worldclim.org). We found that 55 out 
of the 59 studies selected the above-mentioned bioclimatic variables as input. Of these 55 studies 34 had used 
additional biophysical variables such as topography and land cover. These biophysical variables are available 
at a grain size as 100 meters or less. Since the grain size of all input variables in SDMs need to be harmonized, 
these biophysical variable are resampled to 1 km in when used in combination with the bioclimatic variables. 
Intriguingly, the results of 22 out of these 34 studies (which had both bioclimatic and biophysical variables) sug-
gest that the variables critical to accurate species distribution prediction were the biophysical variables. Given the 
earlier argument that a finer grain size is more likely to improve model accuracy, the following speculation can be 
made: had these 22 studies not coarsened the biophysical variables – by avoiding the ‘customary’ choice of biocli-
matic variables - this would have resulted in a more accurate prediction of species distribution. This speculation 
might appear to question the significance of bioclimatic variables in ecological models. It is a fact that bioclimatic 
variables are among the most frequently used variables in SDM based studies and rightly so as climate is a strong 
determinant of species’ distribution. However, an injudicious use of these variables without considering factors 
like species’ ecology, scale of study and optimal grain size is questionable13,14. Thus, we speculate that in many 
SDM based studies – especially at small spatial scale of study area - biophysical variables may be the more impor-
tant ones and inclusion of bioclimatic variables in such cases may reduce the model accuracy.

One of the motivations for creating SDMs is to use them to predict the behaviour of a species colonizing new 
territory. Successful transferability of SDMs across space or time is extremely valuable in context of conserva-
tion planning. A basic assumption underlying SDMs is that the model is spatially and temporally transferable, 
i.e. the niche attributes are conserved across space and time2. Although the effect of grain size in SDMs is well 
documented15–17, its role in model transferability has not been put to sufficient scrutiny. There is evidence that 
although SDMs can accurately predict species distribution in the training area, their transferability to new areas 
is challenging due to numerous complex phenomena18,19. Among many factors, grain size has been reported as 
critical to satisfactory model performance and transferability20,21.

In this study we aim to test the role of grain size in SDMs both in the training and the transfer areas. Based on 
our review of literature, we speculate that over-reliance on easily available bioclimatic variables may lead to an 
unnecessary compromise on the grain size of critical variables, with potentially negative impact on the accuracy 
of model predictions and transferability. Specifically, we use a MAXENT modelling environment22 to model the 
distribution of Rhododendron ponticum (L.) in the Snowdonia National Park, Wales and then transfer the model 
to the Brecon Beacons National Park, Wales. The objectives of this study were to assess whether the decreasing the 
grain size improves model performance both in the training and the transfer area.

Methods
Species description. Rhododendron ponticum (L.) is an invasive plant species in the United Kingdom, hav-
ing been introduced in the 18th century as an ornamental plant. The main ancestor is reported to be the popula-
tion of R. ponticum resident in the southern tip of Spain23. It is a perennial, evergreen shrub that generally invades 
woodlands24, although it has been shown to colonize other types of habitat too. The UK invasion by this shrub has 
been more intense in Western and North-Western areas of Britain, which are comparatively cooler and wetter. 
We chose Wales as the study region because it is one of the most affected regions of the UK to be impacted by 
invasions of R. ponticum. In this study, we trained the model on the dataset for the Snowdonia National Park in 
Wales25 and then transferred the model to the Brecon Beacons National Park. Given the scale of the invasion, it is 
clear that the current environmental, topographic and land cover conditions both in Snowdonia and the Brecon 
Beacons represent a range of conditions very suitable for R. ponticum.

Species distribution modelling algorithm. We used MAXENT, a maximum-entropy based machine 
learning (presence/pseudo-absence) algorithm to model the distribution R. ponticum (L.) in Snowdonia National 
Park (the training area) and projected the model to the Brecon Beacons National Park (the transfer area). 
MAXENT predicts the probability distribution of a species on the basis of a given set of predictor variables and 
presence-only species occurrence data22. We selected MAXENT because, a) it does not require absence data26, 
b) it efficiently handles complex interactions between predictor and response variables27, c) being a generative 
model, it performs better than discriminative models when it comes to modelling with presence-only records, d) 
it can be run with both categorical and continuous data variables28 and, e) it efficiently transfers the model pro-
jections to another geographical area2. We used a reasonably large sample size29 and applied the recommended 
screening and verification of occurrence records.

Presence records for model training and validation. For the training area (Snowdonia National Park), 
presence-only occurrence records of R. ponticum (L.) were obtained from COFNOD (Local Environmental 
Records Centre in Wales, UK). A dataset of 152 occurrence records was created by a continuous field observation 
campaign between 1981 and 2000. COFNOD has confirmed that the entire area of Snowdonia National Park 
was thoroughly surveyed by ground surveys and remote sensing tools, thus minimizing the possibility of sam-
pling bias in the dataset. Consequently, we targeted the entire area of the National Park, generating 10,000 ran-
dom background points to be selected during each replicate run of the model. We used independent occurrence 
records of R. ponticum (L.) in the Brecon Beacons National Park downloaded from the National Biodiversity 
Network (NBN) online database (www.nbnatlas.org), yielding 100 observations. Spatial uncertainty of all occur-
rence records was addressed by removing all duplicate or non-geo-referenced occurrence points. Occurrence data 

http://www.worldclim.org
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were spatially rarefied using SDM toolbox 2.030 in ArcGIS 10.5 by eliminating all but one point present within a 
single grid cell of the predictor variable layers to avoid double counting of presence points.

Selection of predictor variables. Predictor variables were selected in the following three steps. In the first 
step, two categories of variables were compiled. The first category of variables comprised the most frequently 
used variables in SDM studies: ‘Bioclimatic Variables’ (BCV). The second category of variables was based on our 
expert knowledge and a review of literature on the ecology of R. ponticum (L.): ‘Biophysical Variables’ (BPV). A 
set of 19 bioclimatic variables from ‘Global Climate Data’ (www.worldclim.org, version 2, 1970–2000), identified 
as the most commonly used suite of variables in SDM research13, formed the BCV category. An extensive review 
of literature and background knowledge of the R. ponticum ecology yielded the most important biophysical varia-
bles, namely; topography (altitude, aspect and slope), land cover and ‘distance from water channels’ which formed 
the BPV category31–34. Although Rhododendron is sensitive to many other ecological factors, we kept the BPV 
category to the above mentioned variables as these variables were the most pertinent ones at the current spatial 
scale of study.

In the second step of variable selection, a sub-set of variables from the BCV and BPV categories was created on 
the basis of grain size. The first variable set (VS-1) included both BCV and BPV categories, with the latter resam-
pled to a 1 km grain size which is the smallest cell size of BCV. The second variable set (VS-2) comprised the BPV 
at 300 m grain size. The third variable set (VS-3) consisted of the same BPV but at 50 m grain size (Tables 1 and 2). 
The VS-1 represents the commonly reported approach used in SDM studies and thus can be considered the ‘con-
trol’ scenario. The VS-2 & VS-3 represent scenarios where bioclimatic variables are excluded to conserve the finer 
grain size of BPV. All input data layers were re-sampled using nearest neighbour (for discrete variables) and bilin-
ear interpolation (for continuous variables) resampling techniques35–37. Collinearity among predictor variables 
negatively impacts the model due to the substantial amount of information shared between collinear variables. 
Therefore, collinearity in variables makes it difficult to correctly interpret the relative contribution or importance 
of variables in the model predictions38. A Pearson correlation coefficient cut-off of r ≤ 0.70 was applied to select 
the variablesfor use in the final model runs38 for all three sets of variables (VS-1, VS-2 and VS-3). The aim of this 
step was to reduce the negative impact of multicollinearity and to conform to statistical assumptions39.

Model calibration. All three modelling scenarios were run in MAXENT (version 3.3.3a) with a default con-
vergence threshold of 10−6 and with 5000 iterations to allow the model scope for convergence while reducing the 
risk of over- or under-predicting modelled relationships. We processed 25 model replications with a bootstrap 
resampling method randomly allocating 75% of the occurrence records in the training area for calibration and 
25% for validation. To avoid dubious projections by the model, we used the ‘fade-by-clamping’ feature which 
removes heavily clamped (clustered) pixels from the final predictions26. Rest of the MAXENT calibration was set 
to default settings.

Model Evaluation. Training area. Area Under the ROC (Receiver Operating Characteristic) Curve (AUC) 
was used to test the performance of the model against actual observations in the training area27. An AUC value 
of 0.5 shows that the model does not predict any better than random chance, whereas a value closer to 1 indicates 
a better performance of the model40. Permutation importance contribution was used to assess the relative signif-
icance of predictor variables. Fitted response curves were used to visually investigate the relationship between 
individual variables and predicted index of environmental suitability of R. ponticum. In addition to AUC, we 
used Continuous Boyce Index (CBI) as an additional assessment tool. The Boyce index requires presence data 
only and measures by how much model predictions differ from random distribution of observed presence across 
the prediction gradient. The continuous habitat suitability map is reclassified into i number of classes/bins. For 
each bin, Predicted and Expected frequencies are calculated. The Predicted Frequency is calculated by dividing 
the number of species’ occurrence points in the bin i, as forecasted by the model, by the total number of species’ 
occurrence points. The Expected Frequency is calculated by dividing the number of grid cells in bin i by the total 
number of grid cells. A P/E ratio is then calculated for each bin and a Spearman rank correlation coefficient rho 

VS-1 VS-2 VS-3

Grain Size 1 km Grain Size 300 m Grain Size 50 m

Predictor Variable Unit Predictor Variable Unit Predictor Variable Unit

Altitude m Altitude m Altitude m

Aspect ° Aspect ° Aspect °

Slope ° Slope ° Slope °

Land Cover Land Cover Land Cover

Distance from water channels m Distance from 
water channels m Distance from 

water channels m

Mean Diurnal Range (monthly (max temp - min temp)) °C

Isothermality (BIO2/BIO7)* 100

Mean Temperature of Driest Quarter °C

Precipitation Seasonality (Coefficient of Variation) C of 
V

Table 1. Predictor variables used in the study. Acronyms VS-1, VS-2 & VS-3 refer to variable set 1, variable set 2 
& variable set 3 respectively.

http://www.worldclim.org
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(1-tailed test) evaluates if the ratio significantly increases as suitability increases (p < 0.05). The continuous values 
of the Boyce index vary between −1 and +1. Positive values indicate a model where predictions are consistent 
with the distribution of actual presence data, values close to zero mean that the model is no different from a ran-
dom model and negative values indicate counter predictions (e.g. predicting no occurrence in areas where actual 
presence is recorded)41,42.

Transfer area (Model transferability). MAXENT produces continuous probability maps of habitat suita-
bility in the selected geographical area. We used R. ponticum (L.) presence records in the Brecon Beacons National 
Park to evaluate model projection in the transfer area. Continuous Boyce Index (CBI) was used to assess how 
well MAXENT has transferred the model to a different geographical area41,42. CBI is considered one of the most 
appropriate metrics for assessing model predictions applied to presence-only datasets. There is some indication 
that CBI is a more reliable metric than AUC when it comes to validating model transferability to a different geo-
graphical area43.

Data availability. Presence records of Rhododendron ponticum in Snowdonia National Park and Brecon 
Beacons National Park can be acquired from COFNOD (www.cofnod.org.uk) and NBN Atlas (www.nbnatlas.org)  
respectively.

Results
The AUC & CBI based evaluation of the three models in the training area, where each model used a different 
subset of predictor variables at different grain size, indicated variation in the degree of prediction accuracy. As 
shown in Fig. 1. AUCtrain, AUCtest and CBI values of VS-1, the variable set with the coarsest grain size are the 
lowest, indicating the least accurate predictions in the training area (Snowdonia). Variable sets VS-2 and VS-3, 
comprised of the same set of biophysical variables but at different grain size, indicate that the finer grain size is 
likely to yield better model predictions.

We used Continuous Boyce Index (CBI) to assess the transferability of the MAXENT models to an area not 
covered by the training dataset, in our case the Brecon Beacons National Park. The model comprising the VS-1 
variables showed the poorest model transferability with a CBI value of 0.65. In comparison, the model based on 
the VS-2 dataset showed a high CBI of 0.90, while the third model based on VS-3 achieved a moderate CBI of 
0.77. Analysis of the predictor variable contribution to model prediction (supplementary data S2) suggests that 
land cover and altitude were major contributors in all three models. Our results also suggest that the use of finer 
grain size improved model transferability (CBI value of Models VS-2 & VS-3 > VS-1). However, model transfera-
bility decreased at the finest grain size (50 m) of the predictor variables. Response curves for individual variables 
for all three modelling scenarios are provided in Supplementary data S3.

Discussion
A number of studies have highlighted the fact that coarse grain size of predictor variables in SDMs may obscure 
effects of biotic interactions, small-scale heterogeneity of abiotic factors and micro habitat of species44,45. A review 
of 149-peer reviewed publications concluded that the choice of grain size is a highly neglected aspect in species 
distribution modelling and is a factor that significantly impacts modelling outcomes12.

Model performance in the training area. The results from this study show that MAXENT model pre-
dictions in the training area are likely to improve with smaller grain size of predictor variables (AUC in the order 
of 50 m > 300 m > 1000 m grain size). The Snowdonia National Park is characterized by diverse topography, with 
altitude ranging from sea-level to above 1000 m over a relatively short distance. Altitude is one of the key factors 
affecting the invasive potential of alien species and the effect of altitude was shown to be most pronounced at fine 
grain size46. It has been claimed that too coarse a grain size in SDMs leads to spatial smoothing and thus obscures 
the connection between, for example, land cover types and species occurrence47. This occurs by homogenizing 
the dominant land types within a grid cell resulting in the loss of useful information for accurate modelling48. In 
accordance with this assertion, the accuracy of model predictions in our study improved with decreasing grain 
size of the predictor variables, possibly as the result of capturing small-scale ecological interactions critical for 

Predictor variable/s Grain Size Source Variables Category Variable Set

19 bioclimatic variables 1 km WorldClim - Global Climate Data BCV VS-1

Distance from water channels 1 km Edina Digimap Ordnance Survey BCV VS-1

Land Cover 300 m Edina Digimap Ordnance Survey BPV VS-2

Topography (Altitude, Aspect, Slope) 300 m Shuttle Radar Topography Mission USGS BPV VS-2

Distance from water channels 300 m Edina Digimap Ordnance Survey BPV VS-2

Land Cover 50 m Edina Digimap Ordnance Survey BPV VS-3

Topography (Altitude, Aspect, Slope) 50 m Edina Digimap Ordnance Survey BPV VS-3

Distance from water channels 50 m Edina Digimap Ordnance Survey BPV VS-3

Table 2. Allocation of predictor variables to ‘variable categories’ and ‘variable sets’. Acronyms BCV, BPV, VS-1, 
VS-2 & VS-3 refer to Bioclimatic Variables, Biophysical Variables, Variable Set 1, Variable Set 2 & Variable Set 3 
respectively.

http://www.cofnod.org.uk
http://www.nbnatlas.org
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species distribution being maximized at a finer grain size11,45,49. In our case, the rugged topography of the area 
also affects factors such as soil physical and chemical properties, atmospheric humidity and wind speed/exposure 
over very short distances. With decreasing grain size, representation of these factors was more pronounced and 
improved model predictions. As grain size becomes finer, the number of mixed pixels decreases, leading to an 
increase in ‘distinct’ pixels which clearly separate different land cover, topographical or environmental units (or 
classes) and thus enables the algorithm to build more accurate species-habitat relationships7. This improvement 
becomes more relevant when the species being modelled is a habitat specialist. Since R. ponticum is considered 
one such species – in Wales it has a high preference for woodlands – better performance of models using small 
grain size data can be explained by improving representation of this community type.

As a habitat specialist, R. ponticum has repeatedly been shown to be strongly correlated with land cover type 
(Yang et al., 2013a). In Britain woodland is the most important land cover type in the context of R. ponticum 
invasion23, largely because of the availability of suitable micro-environments for seed germination33. For example, 
dead plant material and moss cover is critical to R. ponticum establishment50. Response curves in our study show 
that Forests are the most important land cover classes for R. ponticum distribution. Furthermores, R. ponticum 
is sensitive to topographic controls51–53. Response curves show that R. ponticum favors a northerly aspect for its 
establishment and growth as north-facing slopes at this latitude (Wales) are generally cooler, offering higher soil 
moisture and lower direct insulation intensity. Moreover, response curves suggest that R. ponticum distribution in 
Snowdonia is negatively correlated with slope. Shallow-slope areas are typically those with high soil moisture and 
nutrient availability, thus offering more favorable microenvironment for invasive species54. Distance from water 
channel was an important variable determining the habitat suitability of R. ponticum. This finding is compliments 
earlier studies suggesting that R. ponticum favors areas near water bodies55 primarily because soil in vicinity of 
water body is moist and often has dense vegetation. Many other invasive species have been reported to be nega-
tively correlated with distance from water sources56.

Model performance in the transfer area. After assessing model performance in the training area, the 
second goal of the study was to test the effects of grain size on the spatial transferability of the model. The results 
suggest that a coarse grain size (1000 m) produced the poorest model transferability while a medium grain size 
(300 m) resulted in the most accurate transfer of the model. The poor model transferability at 1 km grain size 
(CBI = 0.65) may be explained by the fact that key environmental factors, which in our case were land cover 
and topography, are ‘averaged out’ at coarser grain size both in the training and the transfer areas44. We expected 
the best model transferability when using data with the finest grain size. This was not the case; our transferred 
model had the best predictive power at medium grain size. A possible explanation is that Snowdonia National 
Park (training area) and Brecon Beacons National Park (transfer area) differ in the range and the character of 
topographical features. Since topography and land cover are best represented at small grain size, a discrepancy in 
the typography of landscape features between the two areas will negatively affect model transferability. Similarly, 
it has been shown that species occurrence data needs to be highly accurate when modelled at very fine grain size 
as any location10,57 errors in the survey data may impact model performance.

In this study the CBI value of the SDM transferred at 300 m grain size was 0.90, a reasonably accurate predic-
tion but which leaves room for improvement. We tested SDM transferability under the assumption that abiotic 
factors are the principal controls on species distribution. However, the distribution of any species is also likely 
to be constrained by biotic interactions58. These biotic interactions vary between geographical regions, just as 
topography, land cover and climatic factors differ. Even though the training and transfer areas used in the study 
are similar, any difference in the nature of the biotic interactions limiting R. ponticum may have constrained the 
degree of model transferability11. In this context, this invasive species may have occupied only a subset of its 
potential niche in the invaded area so far, known as the realized niche. A species may fail to occupy the entire 
potential niche due to factors such as intra-species competition, dispersal limitation, scarcity of resources and 

Figure 1. Area Under Curve (AUC) and Continuous Boyce Index (CBI) comparing prediction accuracy of 
Maxent-based models in Snowdonia National Park using three predictor variable sets at 1 km (VS-1), 300 m 
(VS-2) and 50 m (VS-3) resolution.
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other spatial limitations59. The distribution of species is linked to a framework known as ‘Biotic Abiotic Mobility’ 
(BAM)60 which describes the potential niche yet to be inhabited by a species in the ‘unfilled niche’61. Thus, correct 
identification of this unfilled niche may help to identify areas vulnerable for future invasion and may prove help-
ful in understanding the invasive behavior of species under study62. Our results suggest therefore, that for habitat 
specialists, model transferability across geographical space becomes highly sensitive to the grain size when the 
model training and transfer areas differ in environmental and ecological features.

Although our study suggests that our model was transferred more accurately at 300 m grain size, it is important 
to mention that even at 50 m grain size, the model was also transferred with considerable success (CBI = 0.77). From 
an invasive species management point of view, a habitat suitability map at 50 m grain size with a lower prediction 
accuracy could still be more acceptable than a map with a better predictive ‘hit rate’ but at a six times coarser grain 
size. As an example, we include habitat suitability maps generated by model transfer to the Brecon Beacons National 
Park at three contrasting grain sizes (Fig. 2). The land cover map legend is provided in Supplementary data S3.

Figure 2. Rhododendron ponticum habitat suitability maps at 1 km, 300 m and 50 m resolutions generated in 
ArcGIS 10.5 (ESRI, Redlands, CA, USA, www.esri.com). A spatial distribution model was trained in Snowdonia 
National Park and transferred to the Brecon Beacons National Park. Blue dots indicate verified occurrence 
records of the species.

http://www.esri.com
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Bioclimatic variables in SDMs – an inevitable choice? In the context of our results it appears that 
unnecessary or ‘customary’ use of bioclimatic variables without considering the species’ ecology negatively affects 
the predictive potential of a SDM. Including these bioclimatic variables almost always comes at a cost of reducing 
the grain size of other variables, such as topography and land cover. However, as climate is likely to be one of the 
determinant of a species’ fundamental niche, we suggest that expert knowledge of species’ ecology and an exten-
sive review of the literature should be carried out before deciding whether or not to include climatic variables in a 
SDM. Naturally, when modelling large-scale distributions (continental or global) or if the objective is a temporal 
prediction, perhaps to account for climate change, there currently may not be many alternatives to a 1 km grain 
size bioclimatic variables at a global scale. Choice of predictor variables is also a matter of the research question. If 
researches are strictly interested in estimating climatic suitability or sensitivity, then the climatic variables become 
an appropriate choice. Our results strictly refer to cases where researchers might be interested in mapping species’ 
distribution with high accuracy using the best possible combination of all the available predictor variables.

Limitations of the study and future recommendations. Our study suggests that a grain size smaller 
than 1 km should be preferred in SDM studies; however, models using finer grain size data should be trained and 
validated with carefully validated occurrence records. Training a model with predictor variables at very small 
grain size leads to a very specific species-habitat relationship and thus needs to be verified with accurate pres-
ence records. Our study modelled the distribution of R. ponticum, a habitat specialist species that showed a clear 
response to the changes in grain size. By contrast, generalist species may not be as sensitive to a change in grain 
size. Our study also suggests that there may not be a ‘gold standard’ for the grain size of predictor variables when it 
comes to model transferability across space. Ideally, transferring the model to another area requires the identifica-
tion of optimum grain size by considering a range of grain sizes, perhaps on a sub-set of available occurrence data. 
Also, we considered only a small area for model training and transferability possibly explaining why climatic var-
iables contributed the least in our models. For SDMs over large spatial scale, climatic variables may have greater 
effect in determining the distribution of species. In this study, we have only used two evaluation tools (AUC & 
CBI) which hint that the model with higher values might be better than the rest. For future studies we recommend 
applying more robust statistics to evaluate the significance of difference between modelling scenarios.
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