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Claire Witham1, and Kathy Zhang2

1Met Office, Exeter, UK, 2Meteorological Service Singapore, Singapore

Abstract Transboundary smoke haze caused by biomass burning frequently causes extreme
air pollution episodes in maritime and continental Southeast Asia. With millions of people being affected
by this type of pollution every year, the task to introduce smoke haze related air quality forecasts is urgent.
We investigate three severe haze episodes: June 2013 in Maritime SE Asia, induced by fires in central
Sumatra, and March/April 2013 and 2014 on mainland SE Asia. Based on comparisons with surface
measurements of PM10 we demonstrate that the combination of the Lagrangian dispersion model NAME
with emissions derived from satellite-based active-fire detection provides reliable forecasts for the region.
Contrasting two fire emission inventories shows that using algorithms to account for fire pixel obscuration
by cloud or haze better captures the temporal variations and observed persistence of local pollution levels.
Including up-to-date representations of fuel types in the area and using better conversion and emission
factors is found to more accurately represent local concentration magnitudes, particularly for peat fires.
With both emission inventories the overall spatial and temporal evolution of the haze events is captured
qualitatively, with some error attributed to the resolution of the meteorological data driving the dispersion
process. In order to arrive at a quantitative agreement with local PM10 levels, the simulation results need to
be scaled. Considering the requirements of operational forecasts, we introduce a real-time bias correction
technique to the modeling system to address systematic and random modeling errors, which successfully
improves the results in terms of reduced normalized mean biases and fractional gross errors.

1. Introduction

Smoke haze resulting from hundreds of simultaneously emitting wildfires regularly deteriorates air quality
in Southeast Asia and can result in particularly hazardous conditions in densely populated urban areas.
The large-scale burning of biomass (e.g., forests, crop residue, or peat) is mostly of anthropogenic origin.
Resulting emissions of particulate aerosols and greenhouse gases, including carbon dioxide and methane,
into the atmosphere are of great environmental and political concern regarding the short- and long-term
consequences for human health [e.g., Emmanuel, 2000; Kunii et al., 2002; Frankenberger et al., 2005; Marlier
et al., 2013], the stability of local ecosystems [e.g., Nichol, 1997; Balasubramanian et al., 1999; Taylor, 2010],
and global climate change [e.g., Goldammer, 1997; Heil and Goldammer, 2001; Page et al., 2002; van der Werf
et al., 2004].

Though now illegal, deforestation and land clearing through fires are commonly seen in the region.
Local fires often escalate into uncontrollable large-scale environmental catastrophes that also affect air
quality in neighboring countries through long-range transport of pollutants [e.g., Taylor, 2010; Jones, 2006].
This is usually referred to as transboundary smoke haze. Since 2002, member states of the Association
of Southeast Asian Nations have been promoting a zero-burning policy as part of the “Agreement on
Transboundary Haze Pollution,” with Indonesia being the last member country to ratify the agreement
in September 2014 (haze.asean.org) [Jones, 2006]. The periodic reoccurrence of smoke haze problems in
Southeast Asia, however, shows that enforcing these regulations has not yet cascaded down to all entities.
This is a particular problem in Indonesia, where fires, especially in Sumatra and Kalimantan, Borneo, are
continuing to escalate almost on a yearly basis and prevention and mitigation efforts so far have had limited
effect [Jones, 2006; Lohman et al., 2007; Hansen et al., 2013; Reid et al., 2012, 2013; Kim et al., 2015]. Based
on a comprehensive publication survey, Streets et al. [2003] estimate that approximately 330 Tg of biomass
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are burnt in Southeast Asia in an average year, with forest fires playing a dominant role. However, such
quantitative estimates are associated with large degrees of uncertainty [e.g., Hyer et al., 2013; Reid et al., 2013].

Air-pollution problems related to fires are also encountered in continental Southeast Asia. Every year dur-
ing the dry season from October to April highland forests and croplands in North Thailand, Myanmar, Laos,
Vietnam, and Cambodia suffer from burning on large scales, resulting in prolonged spells of poor air quality,
particularly in the premonsoon months of March and April [e.g., Stott, 1986; Hoare, 2004; Sirimongkonlertkul
and Phonekeo, 2012; Gautam et al., 2013]. Transboundary smoke haze from these fires can also affect faraway
areas in Southern China, the South China Sea, and the Taiwan Strait [Huang et al., 2013].

The potential of local fires to develop beyond control into disastrous burns with haze affecting regions over
large distances is strongly intertwined with the complex meteorology of the tropics. Both the Indian and the
Australian monsoons induce seasonal shifts in wind regimes and strong variations in precipitation intensities
throughout Southeast Asia (see detailed discussions by Lau and Yang [1997], Chang et al. [2005], and Xian et al.
[2013]). Precipitation patterns in continental Southeast Asia are governed by the Indian monsoon, inducing a
wet season from May to September (details of the climatology are discussed by Zhang et al. [2002]). However,
in maritime Southeast Asia, often referred to as the Maritime Continent [Ramage, 1968], monsoon phases are
more closely related to the Australian monsoon, with a wet season during boreal winter and a dry season
during boreal summer [Chang et al., 2005]. This annual cycle, however, is subject to strong local variations due
to the complex distribution of land, sea, and terrain.

Giglio et al. [2006] have identified typical fire patterns in maritime Southeast Asia, with the peak activity start-
ing in Sumatra and continuously shifting eastward during the dry season from July to October. Xian et al. [2013]
showed that from June to September smoke aerosols emitted in central and southern Sumatra and south-
ern and western Borneo are typically transported north-eastward with the cross-equatorial flow. Fire activity
typically ceases with the onset of the winter monsoon and associated high rainfall rates in October/November.

In their multiyear analysis of fire hot spots in the Maritime Continent, Reid et al. [2012] presented a comprehen-
sive overview of the influence of multiscale meteorological phenomena on the bulk seasonal and short-term
fire activity in the Maritime Continent. Wildfire intensities can, for example, be significantly amplified by
the El Niño–Southern Oscillation (ENSO) [see also Heil and Goldammer, 2001; van der Werf et al., 2004; Fuller
and Murphy, 2006] and/or the Indian Ocean Dipole (IOD) [e.g., Field et al., 2009], leading to strong emission
anomalies. Unprecedented levels of smoke haze originating from Sumatra and Kalimantan occurred during
the strong 1997 to 1998 El Niño-induced drought period [e.g., Heil and Goldammer, 2001; Koe et al., 2001;
Kunii et al., 2002]. Page et al. [2002] estimated that during this prolonged burning episode the equivalent of
13 to 40% of the mean annual global carbon emissions from fossil fuels were emitted from the Indonesian
archipelago.

High hot spot counts continue to be encountered every year in Sumatra and Kalimantan (see recent studies
by Yulianti et al. [2013], Atwood et al. [2013], and Reddington et al. [2014]). Peat fires in eastern central and
southeastern Sumatra, primarily lit for converting land to palm oil plantations, are particularly detrimental
for air quality in major cities in the Maritime Continent [Kim et al., 2015]. Reid et al. [2012] have shown that
wildfires in central Sumatra are more independent of the ENSO phase: Smoke haze pollution from this region
can occur throughout the year as a result of land-clearing activities and crop residue burning during any
period of prolonged dry weather conditions.

As an example, in June 2013 Singapore and its surrounding regions were blanketed by thick smoke haze that
was transported across the Strait of Malacca by anomalous, strong westerly winds that were enhanced by the
presence of a tropical cyclone in the South China Sea (Figure 1). The severe pollution episode was caused by
agricultural fires in the eastern part of central Sumatra (mainly Riau Province). These fires were lit following a
dry spell during non-El Niño and IOD-neutral conditions just before the onset of the usual haze season [Koplitz
et al., 2014]. Within the short period between the 11 and 30 June 2013, the air quality monitoring network
in Singapore recorded the worst wildfire-induced air quality degradation in its history, with pollution levels
exceeding the records of the 1997/1998 haze. The 24 h Pollutant Standards Index (PSI) issued by Singapore’s
National Environment Agency, an index calculated from a range of pollutants including particulate matter
(http://www.nea.gov.sg/anti-pollution-radiation-protection/air-pollution-control/psi), indicated “unhealthy”
to “very unhealthy” air quality conditions between 17 and 23 June with a record high of 246 being reached
on 22 June [National Environment Agency, 2013].
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Figure 1. Transboundary smoke haze plumes originating from central Sumatran wildfires on 19 June 2013, shortly
before record pollution conditions were reached in Singapore (source: NASA Worldview).

Gaveau et al. [2014] report that in the two months prior to the outbreak of the fires, deficits in the monthly
rainfall rates were registered in central Sumatra in an otherwise wetter than usual year. Their investigations
showed that June 2013 saw the largest monthly release of Fire Radiative Power (FRP) ever detected by the
Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA’s polar-orbiting Terra and Aqua
satellites. The bulk of FRP was found to have been generated on land that had already been deforested in
recent years. 84% of the estimated 163,336 ha of burnt landscape was drained peatland.

Tropical peat soil is a major reserve of organic carbon [Page et al., 2002]. Its burning typically results in persis-
tent smouldering fires that can lead to higher emission levels of greenhouse gases and, through incomplete
combustion, of particulate matter compared to vegetation fires [e.g., Christian et al., 2003; Heil et al., 2007; van
der Werf et al., 2010]. In recent years, the most fire-prone areas in the Maritime Continent were observed to
be located in peat areas along the eastern coast of Sumatra and southern Kalimantan [Yulianti and Hayasaka,
2013; Yulianti et al., 2013]. These areas have also been subject to rapid deforestation, conversion to plantations,
and degradation into secondary vegetation [Miettinen et al., 2011].

1.1. Scope of This Study
Reacting to the June 2013 event, the Met Office of the United Kingdom and the Hazard Risk and Impact
Assessment Unit of the Meteorological Service Singapore (MSS) have explored how to adequately simulate
haze pollution dispersion in this region, with the particular aim of setting up a reliable routine quantitative
haze forecast system for Singapore. At the core of the modeling system lies the Met Office’s Lagrangian par-
ticle dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment), which is driven
with off-line Numerical Weather Prediction (NWP) data and high-resolution, satellite-based emission products
from active-fire detection that are currently available in near real time for the region of interest.

The aim of the study is to establish confidence in the NAME haze-dispersion simulations using these quan-
titative wildfire emission estimates. For this purpose, near-surface predictions from the modeling system are
evaluated against ground-based observations of PM10 that were available for recent smoke haze episodes in
the region. While the primary focus is on the severe haze event affecting Singapore in June 2013, we also run
the forecast demonstration system for two smoke haze episodes in North Thailand occurring in March/April
2013 and 2014. Analyzing events in both maritime and continental Southeast Asia offers a better appreci-
ation of deficiencies of individual components of the modeling system, as meteorological, orographic, and
biomass-burning features (e.g., in terms of typical fuel types) differ vastly between these regions. The results
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of this study are interpreted with regard to further optimizations of model components that are expected to
increase the skill of local and regional smoke haze predictions.

Finally, we explore real-time bias correction strategies for implementation within an operational smoke haze
dispersion forecast product for Singapore. The bias correction method used here is a pragmatic approach
designed to optimize predictions of localized near-surface concentrations based on available real-time
observations.

2. Models and Data
2.1. Satellite-Based Emission Inventories
In many parts of the world where surface observations are limited, such as the Maritime Continent, satellites
provide the most comprehensive way to measure fire activity and resulting emissions. In recent years,
fire hot spot detections, burnt-area estimates, and FRP measurements have been commonly used as the
basis to estimate the quantity of burnt biomass. The linear relationship between time-integrated FRP and
biomass combustion rate was demonstrated by Wooster et al. [2005]. From there, empirically derived emission
factors can be applied to calculate emission rates for various smoke constituents. Ichoku and Kaufman [2005]
and Ichoku and Ellison [2014] have also examined the direct relationship between FRP and emissions of
smoke aerosols. Some widely used emission inventories are the Global Fire Emissions Database (GFED)
[van der Werf et al., 2010], Fire INventory of NCAR (FINN) [Wiedinmyer et al., 2011], Quick Fire Emission Dataset
(QFED) [Darmenov and da Silva, 2013], and the Global Fire Assimilation System (GFAS) [Kaiser et al., 2012]. GFED
relies on estimates of burnt area whereas the other systems convert active-fire measurements into emissions.
As Hyer et al. [2013] state, active-fire detection products are the best data available for automated systems
such as the one we aim to develop here. The burnt-area approach is not suitable as it does not supply data in
near real time.

These emission inventories all rely on data from the polar-orbiting MODIS sensors on board Aqua and Terra
[Giglio et al., 2003]. MODIS data are generally available from four daily overpasses for each location on Earth,
with active-fire products available at a uniform resolution of 1 km. However, MODIS pixels vary across the
width of each scan from a minimum of roughly 1 km2 at nadir to more than 9 km2 at the scan edge, leading
to a factor of 10 decrease in detection efficiency between the center and edges of the MODIS scan
[Hyer et al., 2013]. For our study area, other significant challenges exist in satellite detection and monitoring
of fires when using polar-orbiting derived data due to the proximity to the equator. Orbital gaps at swath
edges near the equator often decrease the number of available MODIS overpasses, thereby reducing the tem-
poral availability of fire data. Furthermore, fire activity in peat areas shows a peak during the late afternoon
period, but this important part of the fire diurnal cycle lacks coverage from fire-detecting polar-orbiting satel-
lites in the Maritime Continent [Hyer et al., 2013]. Low thermal signatures from smouldering peat fires burning
beneath the surface also tend to be harder to detect than surface vegetation fires [Reid et al., 2013], while being
highly significant in terms of emissions. Finally, the highly fragmented landscape of our study area can lead
to additional uncertainties in emissions calculated through the FRP method, as small errors made in locating
hot spots can easily lead to the wrong land cover classification being used.

Data sets based on geostationary satellite observations are also available, providing high temporal coverage
and enabling the full diurnal cycle of burning to be captured, but with reduced spatial resolution. For exam-
ple, data produced by the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) from the geostationary
MTSAT satellite has a resolution of approximately 4 km at nadir and up to 8 km at limb viewing [Reid et al.,
2009]. Hyer et al. [2013] compared WF_ABBA data to MODIS active-fire data for the Maritime Continent. They
found broad-scale similarities in spatial and temporal patterns between the data sets when aggregating data
to relatively coarse resolutions of 5∘ in space and 16 days in time. However, correlations were low for higher
resolutions that would be required for air quality forecasting. This was thought to be due to the reduced detec-
tion efficiency of the low-resolution WF_ABBA product and related errors in fire detection in heterogeneous
land cover.

Hyer et al. [2013] conclude that a combination of polar-orbiting and geostationary detections of active fire are
needed to create a truly quantitative estimate of biomass burning emissions in Southeast Asia. This challenge
has not yet been undertaken in an automated way, but an analyst-based system is being trialed and used by
NOAA for a North American forecast domain [Rolph et al., 2009].
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A major issue with emissions derived from both polar and geostationary satellite-based hot spot detections
occurs from obscuration of fires by clouds and haze. This issue is particularly significant in our study area
where abundant cloud cover, including ubiquitous high cirrus cloud, frequently obscures fires from satellite
sensors (as shown by the MISR Level 3 cloud fractions presented for 2001–2010 in Reid et al. [2013]). Further
obscuration can also be expected by thick smoke plumes during severe fire episodes. Emission inventories
attempt to address this issue in different ways. GFAS corrects for partial cloud cover during a single day by
assuming a uniform distribution of fires in each grid cell. A persistence algorithm is used to fill observation
gaps from day to day. However, this assumption may lead to an overestimation when precipitation beneath
the clouds diminishes fire activity. QFED makes use of the cloud correction method developed by GFAS
but contains a complex assimilation method for completely obscured pixels [Darmenov and da Silva, 2013].
Products based on burnt-area or geostationary satellite data have the opportunity for multiple scans of the
same area, reducing the likelihood of cloud contamination.

For the development of an operational smoke haze dispersion forecast system for Singapore, two biomass
burning emission inventories have been used. Due to our requirement to have a near real time system
that can be operated with limited computing resources and analysts, active-fire products from MODIS have
been used as the basis for two tested emissions databases. (1) The GFAS v1.2 data set, which is produced
operationally and available in near real time, and (2) the “MSS data set,” which is generated by incorporating
updated conversion and emission factors, which will be used in the next version of GFAS [Kaiser et al., 2014],
and is based on higher-resolution land cover and peat maps for Southeast Asia. Given the severity of peat fire
emissions and the rapid land conversion rates in Sumatra and Borneo, the accuracy of land cover and peatland
maps used in the emission data sets are of great importance for the estimation of smoke emissions.
2.1.1. GFAS v1.2
GFAS v1.2 provides daily gridded global emission estimates from biomass burning at 0.1∘ resolution.
FRP values are assimilated, and biomass burning emission estimates are produced for eight land cover classes.
Corrections are applied for observation gaps and partial cloud cover through a Kalman filter and fire per-
sistence model, and spurious observations from volcanoes, gas flares, and industrial activity are masked out
[Kaiser et al., 2012]. The combustion rate is subsequently calculated based on land cover-specific conversion
factors that are linked to GFED v3.1 [Heil et al., 2010]. Emission rates of 40 smoke constituents, including total
particulate matter (TPM), are then calculated by linearly scaling the dry matter combustion rate with emission
factors documented by Andreae and Merlet [2001].

As emissions for PM10 are not available in GFAS v1.2, we use TPM as an approximation for PM10 in our modeling
since the majority of particulate emissions from biomass burning have been found to be in the accumulation
mode, with only a very small fraction larger than PM10 [Reid et al., 2005]. Injection heights for each source are
determined from a plume-rise model [Freitas et al., 2007].

The 0.5∘ resolution land cover map used in GFAS v1.2 is derived from the dominant fire-type map in GFED
v3.1 [Kaiser et al., 2012]. Six of the overall eight land cover classes used in GFAS v1.2 can be found in our study
area and are indicated in Figure 2. Areas with organic soil are differentiated for savannah, agriculture, and
extratropical forest. Due to the dominance of peat, it is treated as an individual land cover type and surface
vegetation characteristics are unaccounted for.

In this study, we defined two sources domains, one focusing on the Maritime Continent and the other
in mainland Southeast Asia. Both domains are indicated in Figures 2 and 3 and described in more detail in
section 3.1. An overview of the GFAS v1.2 land cover classification, the area, and percentage of the total land
area covered by each land cover class for the Maritime Continent and mainland Southeast Asia domains are
presented in Table 1. For both domains, the dominant land cover type is tropical forest, covering 70.6% and
69% of the respective total land area. The representation of peat areas in GFAS v1.2 is based on the 0.5∘ peat
map used in GFED v3.1 [van der Werf et al., 2010]. This map only includes peat areas in Sumatra and Kalimantan.
Other peat areas in Southeast Asia have been omitted. Compared with peat inventories by Wetlands Interna-
tional (WI) [Wahyunto and Subagjo, 2003] and the Harmonised World Soil Database [Nachtergaele et al., 2012],
peat areas in GFAS v1.2 are much smaller in central Sumatra (Riau Province) and much larger in the provinces
of South Sumatra and Lampung (see Figure 2). Thus, peat fire emissions in GFAS v1.2 are expected to be under-
estimated in Riau and conversely overestimated in South Sumatra and Lampung. In Kalimantan, however,
there is relatively good agreement in the spatial pattern of peatland among the peat inventories.
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Figure 2. Land cover class maps used for (top left) GFAS v1.2 and (top right) MSS biomass-burning emission estimates.
Land-type acronyms are described in Table 1. (bottom) Peatland map used in the MSS data set for areas in Sumatra,
Kalimantan, Malaysia, Sabah, and Sarawak.

2.1.2. MSS Data Set
For a more detailed representation of peat in the MSS data set, we make use of the WI peatland atlases for

Sumatra and Kalimantan [Wahyunto and Subagjo, 2003, 2004]. Peatland areas for Peninsular Malaysia, Sabah,

and Sarawak were derived from maps available in the European Digital Archive of Soil Maps [Selvaradjou et al.,

2005] and are the same as described in Miettinen et al. [2012].

Significant agricultural and plantation areas in Peninsular Malaysia, Sumatra, Borneo, and Java are notably

absent in the GFAS v1.2 land cover map and are primarily represented as tropical forest (Figure 2). To improve

the land cover representation for the MSS data set, we use the 250 m resolution 2010 land cover map

developed by the Centre for Remote Imaging, Sensing, and Processing (CRISP) at the National University of

Singapore [Miettinen et al., 2012], covering latitudes between 10∘S and 10∘N. We use the individual MODIS

1 km resolution active fire detection products, MOD14 and MYD14 [Giglio et al., 2003, 2006], and the CRISP

map was correspondingly remapped to 1 km resolution using a nearest neighbor approach.

Land cover classifications used in the MSS data set as well as respective fractions of total land area in the

Maritime Continent and mainland Southeast Asia domains are shown in Table 1. The CRISP land cover

classes were translated based on the description that most closely corresponds to one of the fire-type classes

presented in Kaiser et al. [2014]. Forest and mangrove areas are translated into the “tropical forest” fire type,

areas comprising plantations and agriculture into “cropland,” and open areas into “savannah.” For areas north

of 10∘N, the 0.05∘ MODIS land cover type product MCD12C1 v5.1 with University of Maryland (UMD) classifi-

cation is used, and the default translation scheme is applied as outlined in Kaiser et al. [2014]. In the Maritime

Continent, the land cover type with the largest area is cropland, covering 46.6% of the total area, while for the

mainland Southeast Asia domain it is tropical forest (42.9%). Major urban areas demarcated in the CRISP and

MCD12C1 maps are used to mask spurious FRP observations from industrial installations. Known locations of

volcanoes are used to filter out volcanic hot spots.
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Table 1. Description of Land Cover Classification Used in GFASv1.2 and the MSS Data Set, Including the Area and
Percentage of Total Land Area Covered by Each Class in the Maritime Continent and Mainland Southeast Asia Domainsa

Land Cover Classification Maritime Continent Domain Mainland Southeast Asia Domain

Abbreviation Description ×106 km2 % ×106 km2 %

GFAS v1.2 Emission Inventory

SA savannah 0.25 7.7 0.55 9.5

AG agriculture 0.44 13.4 0.66 11.4

TF tropical forest 2.30 70.6 3.98 69.0

PEAT peat 0.21 6.5 0.20 3.4

EF extratropical forest 0.06 1.9 0.36 6.2

EFOS extratropical forest 0.00 0.0 0.02 0.4

with organic soil

MSS Emission Inventory

TEMFOR temperate forest 0.0 0.0 0.01 0.2

TROFORb tropical forest 1.18 36.4 2.47 42.9

SAVAc savannah 0.51 15.6 1.21 21.0

GRAS grassland 0.02 0.6 0.29 5.0

CROPd cropland 1.51 46.6 1.74 30.3
aIn the MSS data set the detailed CRISP land cover types were translated into more general fire types described in

Kaiser et al. [2014].
bIncluding mangrove, peatswamp forest, lowland forest, lower/upper montane forest.
cIncluding lowland/montane open.
dIncluding plantation/regrowth, lowland/montane mosaic, and large-scale palm plantation.

On top of the fire-type classes, conversion factors differentiated for peat and nonpeat areas are used to obtain
combustion rates [Kaiser et al., 2014], accounting for vegetation characteristics of peat areas. Emission rates
for PM10 are then calculated for each source using emission factors for TPM based on Akagi et al. [2011].

Instead of using a plume-rise model as in GFAS v1.2, a fixed injection height of 800 m was chosen based on the
findings of Tosca et al. [2011] and Wang et al. [2013]. Furthermore, no correction or fire persistence algorithms
for observation gaps and obstruction of fire pixels due to cloud or haze were applied during the construction
of the MSS emissions inventory.

2.2. Dispersion Modeling
Wildfire emissions have been widely included in global climate and atmospheric chemistry models, and
strong effort has been put into parameterizing and integrating the disparate processes involved in biomass
burning and transport [e.g., Byun and Schere, 2006; Strand et al., 2012; Xian et al., 2013; Kim et al., 2015].

In recent years, a number of NWP centers have moved toward the development and integration of aerosol
modeling in their operational systems. Operational or semioperational aerosol forecasts are now available
from several state-of-the-art aerosol prediction systems including the U.S. Navy Aerosol Analysis and Predic-
tion System model (NAAPS) [Zhang et al., 2008; Xian et al., 2009], the European Centre for Medium-Range
Weather Forecasts (ECMWF) Monitoring Atmospheric Composition and Climate model (MACC) [Morcrette
et al., 2009; Benedetti et al., 2009], the Japan Meteorological Agency (JMA) Model of Aerosol Species in
the Global Atmosphere (MASINGAR) [Tanaka et al., 2003], and the NASA Global Modelling and Assimilation
Office (GMAO) Goddard Earth Observing System Version 5 (GEOS-5) [Rienecker et al., 2008]. All of these
models include some form of satellite data assimilation, but not surface observations of particulate matter.
Furthermore, a global multimodel aerosol forecasting ensemble has been developed under the International
Cooperative for Aerosol Prediction (ICAP), which incorporates the aforementioned models as members
[Sessions et al., 2015]. Predictions of AOT at Singapore were shown to be underestimated by the models when
comparing with the Singapore AERONET site [Sessions et al., 2015].

A variety of bottom-up and top-down approaches to deriving emissions are employed in these global opera-
tional systems. One common aspect among these different emission inventories is that they draw from MODIS
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Figure 3. Locations of ground-based PM10 measurement sites analyzed in this study. Concentrations are reported as
24-hour averaged values at all locations except for Singapore. Here hourly-averaged concentrations are available at 12
urban sites (detailed map). The extents of the sources domains defined for the case studies are also indicated.

fire detections, though the Fire Locating and Modelling of Burning Emissions dataset (FLAMBE) [Reid et al.,
2009] used in the NAAPS model also assimilates data from geostationary satellites.

As peat fires are a key source of smoke haze in Southeast Asia, the specific treatment of their emissions is an
important consideration. Many of the worst smoke haze events in Southeast Asia have been associated with
burning in peatland areas [Reid et al., 2013]. While GFAS differentiates between fires in peat and nonpeat areas,
other global emission inventories (e.g., FLAMBE and QFED) do not explicitly account for peat fires. While the
drawbacks of using a satellite-based FRP approach are well documented [Reid et al., 2013; Kaiser et al., 2012],
the explicit inclusion of peat fire emissions is a critical factor in our selection of the GFAS data set in this study,
given the nature of smoke haze sources in the region.

The current suite of available operational aerosol forecast systems comprise Eulerian (NAAPS and GEOS-5) and
semi-Lagrangian (MACC and MASINGAR) models. In such models, complex calculations performed to work out
species concentrations at each time step and at all locations are computationally expensive. Consequently,
this can limit the spatial and temporal resolution of these models. For example, NAAPS has a resolution of
1∘ × 1∘ with 27 vertical levels and produces 6-hourly forecasts, MASINGAR runs at 1.125∘ ×1.125∘ with 30
vertical levels, and GEOS-5 at 0.25∘ × 0.3125∘ with 70 levels [Sessions et al., 2015].

For our study into the feasibility of an operational smoke haze dispersion forecast for Singapore, the need for
timely information about biomass-burning emissions from a large number of wildfire sources in the region
currently precludes the use of a complex atmospheric chemistry model. Instead, a Lagrangian atmospheric
dispersion model with its chemistry scheme switched off has been selected. The system presented is the
first operational, Lagrangian-based system in Southeast Asia. The model can meet the requirements to pro-
duce high temporal and spatial forecasts of PM10 at ground level where health impacts are experienced and
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can be verified and bias corrected against ground-based measurement stations. Such outputs are not readily
available from the current global operational systems nor do they make use of surface observations in their
assimilation schemes. Additionally, the Lagrangian framework allows smoke plumes to be better resolved
near to source areas.

Lagrangian dispersion models are designed to predict the atmospheric transport and deposition of airborne
gaseous and particulate substances, covering spatial scales from a few hundred meters to across the globe
[e.g., Lin et al., 2013]. Turbulent transport of pollutants in the atmosphere is modeled using a stochastic frame-
work. Emissions from a pollutant source are simulated by creating a large number of model particles, of
which each represents a certain proportion of the mass of pollutants released. These particles are advected
by an ambient three-dimensional wind field with turbulent dispersion being simulated using random-walk
methods. The particles can also evolve with time to account for various atmospheric processes that might
transform or remove pollutants, such as radioactive decay of radionuclide species, chemical transformations,
gravitational settling, or dry and wet deposition.

In this study we use the Met Office’s Lagrangian atmospheric dispersion model NAME [Jones et al., 2007].
This model is used in a diverse range of applications which include emergency-response modeling, routine
forecasting, scientific research, and policy support work [e.g., Webster et al., 2012; Draxler et al., 2015]. NAME has
previously been used to identify contributions to global greenhouse gases from large-scale biomass burning
[Simmonds et al., 2005] and for individual studies of biomass-burning transport [Witham and Manning, 2007;
Johnson et al., 2008].

2.3. Air Quality Observations
We analyze hourly-averaged PM10 concentrations from 12 sites in Singapore that were acquired by Singa-
pore’s National Environment Agency through the Telemetric Air Quality Monitoring and Management System.
Equipment installed at the air quality monitoring sites measures concentrations of major criteria pollutants
including sulphur dioxide, oxides of nitrogen, carbon monoxide, ozone, hydrocarbons, and respirable sus-
pended particles (PM10 and PM2.5). In addition, 24 h averaged PM10 concentrations were obtained from
ground-based measurements at sites in North Thailand and Malaysia. The locations of all measurement sites
are shown in Figure 3.

3. Methodology
3.1. Case Studies
We investigate three recent cases of transboundary smoke haze in terms of PM10 pollution in Southeast Asia
occurring in 2013 and 2014 within two sources domains indicated in Figure 3.
3.1.1. Maritime Continent Haze Event
To investigate the severe haze event of June 2013 resulting from fires in central Sumatra, we define the
so-called Maritime Continent (MC) domain. The MC domain ranges from 10∘S to 19∘N and from 94∘E to 127∘E
and encompasses the Indonesian archipelago, the Malay Peninsula, East Malaysia, Brunei, the Philippines, and
parts of the Mekong subregion of continental Southeast Asia. The dispersion of smoke haze is simulated from
15 May to 15 July 2013 and compared to hourly- and daily-averaged pollution data from Singapore and Port
Dickson, Malaysia.
3.1.2. Thailand Haze Events
Pollution events due to annually recurring fire activity in North Thailand are studied in the boreal springs
of 2013 and 2014 in the so-called mainland Southeast Asia (MSA) domain. The MSA domain extends from
4∘S to 30∘N and from 90∘E to 118∘E, encompassing parts of the islands of Sumatra and Borneo, the Malay
Peninsula, continental Southeast Asia, and Southern China. Simulated smoke haze concentrations are
compared to daily-averaged concentration readings from four stations in North Thailand from 6 January to
31 May 2013 and from 6 January to 26 April 2014.

3.2. Emission Characteristics
Fire emissions from GFAS v1.2 are available on a daily basis and used as source data in NAME for each 24 h
period from 00 to 24 UTC. In the MSS data set, MODIS fire detections are grouped into 12 h periods from 00
to 12 UTC and 12 to 24 UTC. The 00 to 12 UTC time window includes the two MODIS daytime overpasses
(morning and early afternoon, local time) for the region, while the 12 to 24 UTC time window includes two
nighttime overpasses. These time groupings allow for the diurnal variation in fire activity to be taken into
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Figure 4. Mass of PM10 released per day in the MC domain (top) during the June 2013 haze episode and in the MSA
domain during haze events in (middle) 2013 and (bottom) 2014 according to the GFAS v1.2 and MSS emission
inventories. Arrows in Figure 4 (top) indicate the 11, 19, and 25 June 2013, approximately corresponding to the onset,
peak, and end of the severe pollution recorded in Singapore.

consideration in a basic way. In the dispersion simulations with NAME, the GFAS v1.2 and MSS PM10 emission
rates are assumed to be constant over their 24 h and 12 h windows, respectively.

Figure 4 shows time series of PM10 mass released per day within the entire MC and MSA domains, derived from
MSS and GFAS v1.2 data during the three haze events in 2013 and 2014. As both emission products are based
on the same underlying MODIS FRP data, there is a high level of qualitative agreement in emission trends.
However, the MSS PM10 emissions display a significantly higher day-to-day variability. Over some periods of
time there is a distinct pattern of MSS exceeding the GFAS emission rates on one day and falling short of them
on the other. This is particularly evident in the longer data records for the IC domain in 2013 and 2014. Due
to orbital gaps, MODIS fire detections in the tropics display an oscillation with a 2 day period: fire activity is
alternately captured well and underestimated the next day [Andela et al., 2013]. This underestimation is com-
pensated for in GFAS by using a persistence algorithm that incorporates previous FRP observations and also
includes corrections for cloud cover. Neither of these effects are accounted for in the MSS data set, resulting
in the comparatively strong oscillation of source strength amplitudes.

At individual source locations, typically emission rates in the MSS database are higher than in GFAS v1.2, while
the daily number of active fire sources in the simulation domains is typically higher in the GFAS data. Pollutant
emissions in GFAS v1.2 are produced from the average of MODIS FRP observations available over a 24 h period
for each 0.1∘ grid cell and therefore have a lower magnitude than the direct MODIS FRP observations used in
the MSS setup.

3.3. NAME Dispersion Simulations
NAME version 6.3 is used in a parallelized setup for all smoke haze simulations performed in this study. The
computational dispersion domains are defined by extending the MC and MSA sources domains described in
section 3.1 by 4∘ (MC domain) and 5∘ (MSA domain) in meridional and zonal directions. This prevents particles
that are released near the edges of the source domains from being lost immediately and allows for some
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recirculation of pollutants. The top of the dispersion domain is set to 20 km above ground level to allow
dispersion within the tropical troposphere to be fully accounted for.

The NAME runs are performed using time-dependent source location information and corresponding
PM10 emission rates from GFAS v1.2 and the MSS data sets. Individual wildfire sources are represented as
cuboid-shaped releases with horizontal dimensions of dx = dy = 0.1° for GFAS v1.2 and dx = dy = 0.01° for
MSS, reflecting the horizontal resolution of each product. The vertical extent of the emissions from the ground,
dz, is determined by the injection height described in both data sets with Lagrangian particles being uniformly
released within this layer.

For these simulations, NAME was set up to only represent the dispersion and deposition of primary PM10

particles that are emitted from wildfire sources. Contributions to the ambient PM10 levels from other natural
or anthropogenic (e.g., industry and traffic) sources and from secondary aerosol formation are not accounted
for. Hence, output model concentrations consistently lack a background pollution level. The modeled PM10

particles are subject to wet and dry deposition mechanisms.

In order to ensure an acceptable level of statistical noise in the output from the Lagrangian dispersion simula-
tions, we set up the model to release large numbers of particles for each source location (100 and 50 per hour
for the MC and MSA case studies, respectively). Depending on the overall number of fire sources, the average
number of computational particles present in the domains over 1 h of simulated time was in the range of
approximately 0.5–50 million. The maximum travel time of each particle is set to 96 h for the benefit of com-
putational efficiency. After this time it is reasonable to assume that most particles will have left the domain
and those that have not will have traveled a significant distance away from the source so are well dispersed
and have been affected by deposition processes, contributing to comparatively low concentration levels.
A spin-up time of a minimum of 4 days is implemented in all runs in order to create realistic initial PM10 levels
resulting from biomass burning prior to retrieving the first model output.

Concentration outputs in terms of local time series at specific locations and spatial plumes are retrieved as
hourly and daily time averages. PM10 time series are extracted within NAME by specifying output grid boxes
centered on the location of the air quality monitoring sites. A horizontal grid box resolution of dx=dy=0.1°
has been found to provide adequate statistical noise reduction in the retrieved model outputs. Concentrations
are furthermore represented as boundary layer averages using depth information available from the driving
NWP model.
3.3.1. Meteorological Data
The global configuration of the Met Office Unified Model (MetUM) [Davies et al., 2005] was used to supply
three-dimensional deterministic input meteorology to NAME. The MetUM can be used in different configura-
tions across varying time and space scales (e.g., for short-range weather forecasting, seasonal forecasting, and
climate predictions). The atmospheric component of the model uses nonhydrostatic dynamics. Subgrid-scale
processes represented include convection, boundary layer turbulence, radiation, cloud microphysics, and
orographic drag.

MetUM uses a hybrid ensemble 4 day variational data assimilation system to assimilate available observations
into the model initial state. Forecasts are produced on a 6 h cycle to produce four forecast runs per day.
Model fields are output for NAME at a temporal resolution of 3 h. The operational configuration of the global
forecast model during the period for this study supplied meteorological fields with a horizontal resolution
of 0.35∘ (longitude) by 0.23∘ (latitude), and with 70 nonuniform vertical levels extending to an altitude of
80 km. Meteorology in NAME for the haze simulation setup extends to an altitude of 20 km, using the lowest
53 MetUM model levels. Within NAME, meteorological data are interpolated in both space and time.

The NAME simulation will be influenced by uncertainties in the meteorological modeling in the MetUM and in
the transport and dispersion processes within NAME and by uncertainties associated with source character-
istics (e.g., release amount, height, and location). These uncertainties, which are not examined directly here,
would include aspects such as exchange at the top of the boundary layer (BL), which requires an accurate
estimate of BL depth from the NWP, vertical transport by moist convection, and pollutant washout by rainfall.
The use of strongly unphysical NWP BL depth values in NAME is avoided by setting the minimum/maximum
BL depths allowed in the dispersion simulations to 80 m and 4 km, respectively.
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4. Results

In the following we validate NAME haze simulations for MSA and the MC against ground-based PM10

measurements. For each pollution scenario we determine correction factors for local model concentrations
by means of a regression analysis over the entire pollution episode. Based on the Singapore haze event of
2013 we also explore the potential of using a more flexible bias correction approach, which can be used in
real time to account for systematic errors in the emissions and modeling.

4.1. June 2013 Case Study
We evaluate Lagrangian dispersion simulations of the June 2013 haze episode within the MC domain by
means of comparisons with PM10 observations from the dense air quality monitoring network in Singapore
and from a measurement site at Port Dickson, Malaysia (Figure 3). In the case of Singapore, this is achieved by
comparing concentrations that are spatially averaged over all the measurement sites.

Since our simulations only account for PM10 released from wildfires, background pollution levels are
systematically missing from the model results. In order to allow for a direct comparison with the observations,
we determined approximate background PM10 concentrations for each comparison site and corrected
the simulation results accordingly. Based on daily-averaged PM10 levels from all 12 measurement sites in
Singapore, we determined an approximate mean background pollution of 30μg/m3 with a standard deviation
of 8 μg/m3 during haze-free periods from 1 January 2013 to 26 April 2014. The analyzed data included
comparatively “clean” periods in terms of pollution from natural or anthropogenic sources other than biomass
burning, but also periods of significant background pollution levels, with a range (i.e., maximum minus
minimum pollution levels) of 52 μg/m3 detected over the analysis period. These ranges and average values
are in agreement with PM10 levels reported by Chew et al. [2013] over an analysis period from September 2009
to March 2011. Background PM10 levels at Port Dickson, Malaysia, were found to be higher with an approxi-
mate mean background level of 38 μg/m3, a standard deviation of ± 9 μg/m3 and a value range of 53 μg/m3

for haze-free periods from 1 January 2013 to 31 December 2013.

Using a linear regression analysis as a postprocessing step, we estimate approximate scaling factors for
the NAME-GFAS and NAME-MSS outputs that are required to match the concentration levels observed and
taking into account the estimated baseline PM10 pollution levels (for details, see supporting information for
this article). For Singapore we obtained scaling factors of 1.9 for NAME-GFAS and 0.9 for NAME-MSS, while at
Port Dickson scaling factors of 2.3 (GFAS v1.2) and 0.7 (MSS) were determined. It has to be noted that the MSS
correction factor for Port Dickson would have been higher (on the order of 1.5) if the scaling had been specifi-
cally targeted at matching the peak concentrations instead of using a more “global” approach via a regression
analysis. This scaling behavior is not mimicked in the results from the GFAS setup.

Scaled model results from NAME-GFAS and NAME-MSS for Singapore are shown in Figure 5 together
with corresponding daily and hourly-averaged PM10 measurements. For Singapore, modeled and observed
concentrations represent averages over all 12 monitoring stations. Also shown are daily PM10 averages at the
air quality monitoring site in Port Dickson.

A high level of temporal correlation between simulations and observations in Singapore is evident over the
peak pollution period. However, both simulations feature an overall shorter duration of the haze event, not
capturing the onset of the episode around 15 June and failing to reproduce the elongated tail present in
the observations from 26 June to 1 July. This is particularly pronounced for NAME-MSS, which only indicates
very high pollution levels in a narrow window around 20 June. NAME-GFAS better reproduces the short-term
variability seen in the hourly observations during the peak period between 16 and 24 June. At Port Dickson, a
distinct three-peak pattern is evident in observations and simulations, but with the latter not quite matching
the timings observed in the field. In NAME-MSS a rapid decline of PM10 concentrations takes place on 24 June,
resulting in a significantly reduced length of the event compared to the observations and NAME-GFAS.

These findings are in agreement with the differences evident in the PM10 mass release within the MC domain
shown in Figure 4. The MSS emissions are significantly lower compared to GFAS v1.2 at the beginning (11 June)
and end (25 June) of the haze event, but much higher during the peak period (19 June). The high concentra-
tion of fires in the Riau Province in Sumatra led to a sharp increase in the number of hot spots represented
in the MSS data set due to the higher spatial resolution used. Since mainly peat was burning in Riau [Gaveau
et al., 2014], the accuracy with which peat is represented is crucial. The fraction of peat in the land cover maps
used to derive the GFAS v1.2 emissions is much smaller compared to the MSS data set (Figure 2), offering
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Figure 5. Scaled NAME-GFAS and NAME-MSS results for the June 2013 haze episode together with (top) daily PM10
averages from Singapore, (middle) 1 h averaged PM10 observations from Singapore, and (bottom) daily observations
from Port Dickson, Malaysia. Grey areas in the Singapore records indicate the range of concentrations detected over all
12 measurements sites. Simulation results are presented as boundary layer averages.

an explanation for the higher smoke emissions observed in the latter during the peak of the event and for
the differences in scaling factors determined for NAME-GFAS and NAME-MSS. The significantly lower release
strengths at the onset and end of the event are believed to be linked to the increased cloud fractions over
central Sumatra as visible in Terra/Aqua satellite images. Cloud cover effects are particularly evident in the
MSS data set where fire persistence and cloud cover correction algorithms are not applied.

For a more quantitative comparison between the scaled model results and the field observations, different
validation metrics are displayed in Table 2a and introduced in more detail in Appendix A. For Singapore and

HERTWIG ET AL. SMOKE HAZE DISPERSION IN SOUTHEAST ASIA 12,617



Journal of Geophysical Research: Atmospheres 10.1002/2015JD023422

Table 2. Validation Metrics for Bias-Corrected NAME-GFAS and NAME-MSS Simulations: (a, b) Bias Correction Using Scaling Factors Derived for Each Site Via a
Regression Analysis Based on Hourly (Singapore) and Daily Concentration Observations (Port Dickson; North Thailand); (c) Real-Time Bias Correction Using an
Additive 24 h Median Bias for the June 2013 Haze Episode Together With Metrics From Persistence Tests

FAC2 MNMB FGE R

NAME-GFAS NAME-MSS NAME-GFAS NAME-MSS NAME-GFAS NAME-MSS NAME-GFAS NAME-MSS

(a) 2013 Singapore 0.84 0.75 −0.05 −0.17 0.36 0.43 0.86 0.68

Port Dickson 0.87 0.83 −0.26 −0.34 0.34 0.38 0.81 0.45

(b) 2013 Chiang Mai 0.95 0.92 −0.2 −0.26 0.26 0.33 0.89 0.89

Chiang Rai 0.84 0.82 −0.24 −0.29 0.32 0.38 0.84 0.78

Mae Hong Son 0.79 0.62 −0.38 −0.48 0.44 0.55 0.8 0.74

Lampang 0.94 0.89 −0.01 −0.13 0.25 0.34 0.78 0.62

2014 Chiang Mai 0.71 0.65 −0.37 −0.58 0.46 0.66 0.7 0.4

Chiang Rai 1.0 1.0 −0.15 −0.13 0.21 0.22 0.91 0.87

Mae Hong Son 0.74 0.71 −0.39 −0.3 0.43 0.44 0.75 0.75

Lampang 1.0 0.9 −0.09 −0.19 0.25 0.32 0.63 0.39

(c) 2013 Singapore 0.92 0.88 0.01 0.004 0.31 0.33 0.87 0.73

persistence actual 0.83 0.0002 0.37 0.78

persistence median 0.88 0.023 0.33 0.81

Port Dickson, the majority of scaled model results are well within a factor of 2 (FAC2) of the observations,
but the modified normalized mean bias (MNMB) shows that both models are systematically underpredicting.
The overall simulation error, measured by the fractional gross error (FGE), is slightly lower for NAME-GFAS.
The correlation coefficient (R), which is independent of the introduced quantitative scaling, indicates a
high level of qualitative agreement between NAME-GFAS and temporal patterns evident in the local
PM10 observations. Hence, the metrics quantitatively reflect the fact that NAME-GFAS provides a better
representation of the short time variability of smoke haze pollution for this event together with a closer match
in terms of the overall duration.
4.1.1. Smoke Haze Plume Behavior
Analyzing spatial dispersion patterns of haze plumes is essential to better understand causes for the discrep-
ancies observed in the local concentration time series. Figure 6 shows unscaled PM10 concentration plumes
from NAME-GFAS during the onset, peak, and decline of the severe smoke emissions from central Sumatra.
Despite the fact that local concentration levels differ, the plume envelopes and overall dispersion behavior are
very similar to NAME-MSS (not shown). Concentrations shown are 24 h averages valid at 00 UTC and therefore
are based on emission information available during the preceding day from 00 to 24 UTC. The plumes rep-
resent boundary layer averaged concentration fields based on BL depths diagnosed by the MetUM. Figure 7
shows corresponding MetUM early afternoon wind fields at a height of 1 km together with precipitation rates.
The wind fields are plotted over GFAS v1.2 emission rates from fire hot spots that were active during the 24 h
period covering that day.

At the onset of the haze episode around 15 June, the MetUM shows very light southerly winds over the hot
spot area in central Sumatra but a quite strong westerly flow farther north and over the Malay Peninsula.
During this phase, pollutant plumes from Sumatra are transported in a northeasterly direction, with the
high-concentration center of the plume lying north of Singapore, resulting in the first pollution peak at Port
Dickson (Figure 5). Both NAME-GFAS and NAME-MSS underpredict the concentration levels during the early
phase of the event. This may be attributed to a too strong southerly flow component in the MetUM. During
the peak period of fire activity around 20 June, emissions are transported straight across the Strait of Malacca
into Malaysia and Singapore by strong westerly winds that are enhanced by the presence of a tropical cyclone
in the South China Sea. The downwind edge of the smoke plume reaches as far as the Philippines.

Dry weather conditions persisted into the second half of June and the fire activity in Sumatra continued to
be very intense (Figure 4). However, as the tropical cyclone made landfall, the low-level winds over Singapore
shifted to a south-southeasterly direction, locally resulting in a strong improvement of the pollution situation
compared to the preceding days (see also Figure 5). With the plume moving northward, the haze situation in
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Figure 6. 24 h averaged NAME-GFAS PM10 concentrations within the boundary layer (not bias corrected) during the
onset, peak, and end of the June 2013 smoke haze episode in the Maritime Continent.

Port Dickson reached its worst state around 24 June. At the same time, convective activity in the entire region
picked up, resulting in rainfall over the Sumatran hot spot area. This put an end to the anomalous dry spell
that had prevailed over Riau Province for about two months [Gaveau et al., 2014]. The rain quickly helped to
subdue most of the fires in Sumatra, resulting in a significant improvement of the haze situation in the entire
region during the last days of June. Very light and variable winds confined the remaining smoke haze close
to the fire sources (Figure 6).

The increased cloud cover over the area is likely to have significantly contributed to the differences between
NAME and local observations (Figure 5). While increased precipitation leads to a fast but gradual decrease of
fire activity in the area, the FRP retrievals suggest a more-or-less instantaneous shut-off of emissions. While
partial cloud cover is accounted for to some degree in the generation process of the GFAS v1.2 emissions,
there is a limit to the correction scheme when multipixel areas are obscured by persistent cloud cover. Very
light and variable winds at the end of June also resulted in haze-obscuring fire hot spots, contributing to
further emission underestimations. It is also likely that smouldering fires were still actively emitting significant
amounts of pollutants even after the rain set in, particularly so in peat areas. FRP signals associated with these
low-intensity fires may not have been detected by the MODIS instruments, resulting in an undersampling of
hot spots.

4.2. Thailand Case Studies
Severe air pollution due to smoke haze from crop-residue burning and land conversion and forest fires
affects continental Southeast Asia every year in the months prior to the onset of the Indian monsoon in May.
Strongly stable layers and temperature inversions quite frequently can be observed in the region [Nodzu et al.,
2006, 2011], trapping wildfire emissions in the lower troposphere. Multiyear spaceborne lidar measurements
analyzed by Gautam et al. [2013], for example, showed evidence that aerosols are mostly concentrated within
the boundary layer.

We simulate haze episodes in 2013 and 2014 with NAME-GFAS and NAME-MSS and validate the results against
ground-based observations of PM10 (24 h averages) from four measurement sites in the North Thailand
provinces of Chiang Mai, Chiang Rai, Mae Hong Son, and Lampang (Figure 3). For this region, the study by
Gautam et al. [2013] using data from the AERONET project found particularly high smoke haze aerosol
loadings (Chiang Mai) during the annually recurring haze season.
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Figure 7. MetUM early afternoon local time (left column) 1 km wind fields and (right column) precipitation rates during
the June 2013 haze episode. Wind vectors are plotted over GFAS v1.2 PM10 emission rates from wildfire sources that
were active from 00 to 24 UTC.
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Figure 8. Same as Figure 5 but for the mainland Southeast Asia smoke haze episodes in 2013 (left column) and 2014
(right column) detected at four sites in North Thailand. Modeled and observed PM10 concentrations represent daily
averages.

Nonhaze background levels of PM10 observed at the four sites in North Thailand during the period of 1 May
2013 to 31 December 2013 are the following: Chiang Mai: average of 26 μg/m3 with a standard deviation of
±13 μg/m3 and a data range of 70 μg/m3; Chiang Rai: 34 μg/m3 ± 19 μg/m3 (range: 106 μg/m3); Mae Hong
Son: 21 μg/m3 ± 12 μg/m3 (range: 68 μg/m3); Lampang: 41 μg/m3 ± 16 μg/m3 (range: 84 μg/m3).

For each of the four sites we calculated scaling factors based on the 2 month high-pollution period in March
and April of 2013 and 2014 via a regression analysis. For the 2013 haze episode, the site-specific scaling factors
for the NAME-GFAS simulation varied between 3.9 and 5.6, while for NAME-MSS scaling factors ranging
between 4.0 and 6.7 were obtained. For the 2014 pollution event, the quantitative differences between
NAME-MSS and local PM10 observations showed a stronger site-to-site variability with scaling factors ranging
between 3.4 and 8.1. For the same period of time, site-specific scaling factors for NAME-GFAS showed a slightly
smaller range from 4.6 to 5.6 compared to 2013.

The correspondingly scaled and background pollution-corrected NAME-GFAS and NAME-MSS simulations
are shown in Figure 8 together with observations. Table 2b displays quantitative validation metrics for both
events. With few exceptions, there is a high level of correlation between the measured and simulated local
concentration levels during the periods of significant pollution in March and April. Scaling the raw model
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output results in negative normalized biases and FGE values that are comparable to the metrics obtained for
the June 2013 haze episode. Compared to the haze event in maritime Southeast Asia, however, qualitatively
the results of NAME-GFAS and NAME-MSS are more consistent with each other. Differences observed between
NAME-GFAS and NAME-MSS are believed to be mainly attributable to differences in conversion and emission
factors used (all for nonpeat land types) as well as to the way in which the loss of FRP information due to
obscuration by cloud and haze is treated.

Differences in the magnitude of the scaling factors for the North Thailand sites compared to Singapore and
Port Dickson mainly reflect differences in regional source characteristics and fire types (i.e., different land
use/cover characteristics and resulting differences in fire fuel types; absence of peat). Year-to-year differences
in scaling factors for the same region, as encountered for the Thailand haze events, also indicate a variability
in local fire characteristics in connection with meteorological pattern prevailing during the analysis period
and the associated predictive skill of the NWP model.

4.3. Real-Time Bias Correction
With the above analyses we were able to establish confidence in using the Lagrangian dispersion modeling
approach combined with emission estimates derived from active-fire detections to qualitatively capture local
haze pollution levels in Southeast Asia. However, the analyses also showed that it is necessary to apply some
scaling to the model results in order to arrive at a quantitative agreement with locally observed pollutant
concentrations. The scaling factors derived here are similar in magnitude to the factors reported by Hyer and
Chew [2010], who used the Eulerian model NAAPS together with FLAMBE to analyze a Maritime Continent
haze event occurring in 2006 and also evaluated their model results against ground-based air quality observa-
tions in Singapore and Malaysia. Our analysis showed that the scaling factors strongly depend on the region
of interest, due to differences in local land cover characteristics, fire fuel types, and prevailing meteorological
conditions. In the case of North Thailand, we also observed a time dependency from one year to the other.
Hence, it cannot be expected that the scaling factors will be equally valid for future haze events. For the setup
of an operational quantitative smoke haze forecast a more flexible scaling scheme needs to be used.

We revisit the June 2013 haze episode and apply a bias correction scheme to hourly PM10 model time series
for Singapore. Real-time bias correction based on observations can be used to improve operational air quality
and pollutant dispersion forecasts [e.g., Borrego et al., 2011; Neal et al., 2014]. Systematic and random model
errors introduced, for example, by regionally varying uncertainties in emissions or NWP skill can be addressed
through such a correction process. Applying bias correction to the model output as a postprocessing step is a
pragmatic approach for optimizing the prediction of localized near-surface concentrations based on available
real-time observations. The methodology, however, does not attempt to adjust the original emission terms
(or, equivalently, the overall smoke budget).

We explore the practicality of using real-time bias correction based on surface observations in Singapore for
the operational smoke haze forecast demonstration system presented here. Following the hybrid forecast
technique described by Kang et al. [2008], we correct raw model outputs of PM10 concentrations at a certain
monitoring site using a residual determined from observations and model results for that site at previous
times. With this approach we are assuming a short-term persistence of the model bias at each site. In our
study, the corrected concentration forecast at site i is obtained according to

Mcorr
i,t+j = Mi,t+j − b̃i,t, (1)

where Mi,t+j is the raw forecast issued at time t for j = 0, 1,… hours lead time and

b̃i,t = median
[(

mi,t−N − oi,t−N

)
,… ,

(
mi,t − oi,t

)]
(2)

is the sample median of N+1 residuals computed between raw forecasts, m, and observations, o, at site i prior
to the forecast issue time t. From sensitivity tests carried out on the basis of hourly-averaged concentration
observations in Singapore, we determined an optimum analysis window of 24 h prior to the forecast issue time
to determine a representative residual according to equation (2). Using the median assures that occasional
outliers in the sample of hourly residuals do not affect the robustness of the retrieved statistic.

In order to create a resemblance to a real-life forecast product, the NAME-GFAS and NAME-MSS simula-
tion outputs are split up into 24 h concentration forecast blocks (i.e., corresponding to daily forecasts with

HERTWIG ET AL. SMOKE HAZE DISPERSION IN SOUTHEAST ASIA 12,622



Journal of Geophysical Research: Atmospheres 10.1002/2015JD023422

Figure 9. Bias-corrected (top) NAME-GFAS and (bottom) NAME-MSS simulations of the June 2013 haze episode in
Singapore based on the median bias determined over a 24 h analysis window. Hourly simulation and observation data
represent averages over all 12 local monitoring sites in Singapore. Red areas indicate the forecast margins based on the
25th and 75th bias quantiles.

24 h maximum lead time and hourly output). Figure 9 shows concatenated time series of the bias-corrected
daily NAME forecasts for Singapore based on the median bias determined over a 24 h analysis window.
Both the simulation and observation data represent averages over all 12 local monitoring sites in Singapore.
The median bias is assumed to persist over the entire 24 h forecast length. For both NAME-GFAS and
NAME-MSS the bias correction resulted in a much better representation of the early phases and declining
stages of the haze episode. A similar level of agreement during the peak period is evident when comparing
the new results using the additive bias to the earlier scaling approach (see Figure 5, middle). Step-like patterns
in the NAME concentration signals occur whenever the raw model output is zero, indicating that no PM10

pollution from wildfire sources arrived at the monitoring sites. The bias correction approach automatically
accounts for background PM10 levels, which is beneficial from an operational point of view since industrial or
traffic pollution can vary quite strongly on short time scales. Short-term variations of nonfire-related anthro-
pogenic or natural pollution during the course of the forecast period, however, cannot be predicted with
this system as NAME is not being run as an air quality model. Influences of such short-term fluctuations
on the predictive skill of the model would need to be assessed based on evidence from other air quality
measurements.

Table 2c shows updated validation metrics based on the new bias correction scheme. Compared to
the regression-scaling approach (Table 2a) the more flexible bias correction resulted in an improvement
of all metrics, particularly so for the NAME-MSS simulations. Also shown here are metrics determined
from persistence tests using only the observations from the Singapore air quality network. The metrics were
determined by (1) persisting the entire observation time series (averaged over all sites) from the previous
day into the future for 24 h on an hour-by-hour basis (persistence actual) and by (2) persisting only the
median PM10 level that was determined from the observations during the previous day (persistence median).
Comparing the metrics from the persistence test with the metrics determined for the bias-corrected NAME
simulations shows a significantly improved simulation skill for NAME-GFAS. Here the very small value of
MNMB for the persistence-actual method does not reflect a higher skill, but rather a random cancelation of
overpredictions and underpredictions, which is known to affect the representativeness of this metric. The
NAME-MSS skill, on the other hand, is comparable to the persistence test based on the median of previ-
ous day observations in terms of FAC2 and FGE and reduced when looking at the correlation coefficient.
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This result is linked to the raw NAME-MSS simulation showing an overall reduced duration of the haze event
compared to NAME-GFAS. Whenever the raw model output shows zero concentrations from biomass burn-
ing at the location of interest, the bias correction approach will result in a forecast that is purely based on
a persistence of the median (equation (1)). However, if the model delivers a better representation of the local
temporal evolution of smoke haze pollution, as seen in NAME-GFAS, the bias correction approach clearly
outperforms the persistence test.

5. Discussion and Conclusions

We have investigated smoke haze pollution episodes in maritime and continental Southeast Asia by running
the Lagrangian particle model NAME with two biomass-burning emission inventories based on active fire
detection by MODIS instruments. Our results show that the extreme haze conditions observed in the Maritime
Continent and in mainland Southeast Asia in 2013 and 2014 can be reproduced by this modeling system. Both
GFAS v1.2 and MSS emission repositories represent the temporal variation of fire intensities in the area very
well. Combining these sources with the Lagrangian dispersion modeling approach using meteorological fields
from the MetUM resulted in a high level of qualitative agreement with ground-based pollution measurements.
However, in order to arrive at an acceptable quantitative match of concentration magnitudes, it was necessary
to introduce a scaling/bias correction to the raw model output.

Shortcomings in the reproduction of locally observed pollution magnitudes and the qualitative and quanti-
tative differences between NAME-GFAS and NAME-MSS are linked to complexities involved in the modeling
of biomass burning emissions. Dominant contributing factors are the following:

Land Cover Information. Accurate information about fuel types plays a crucial role for estimating pollutant
fluxes, particularly when high-emission fuels like peat are present in the fire area [e.g., Hyer and Chew, 2010].
There is a recognized need to reduce uncertainties in source emissions, especially for a quantitative oper-
ational forecast system outputting hourly predictions of PM10. The modeling comparison of different fire
emission inventories by Zhang et al. [2014] showed that the reliability of simulations of atmospheric aerosol
loading and transport is highly influenced by emission uncertainties, with the largest influence at local and
hourly-to-daily scales.

The fact that the MSS approach uses a significantly more detailed representation of peat areas in the eastern
part of central Sumatra than GFAS v1.2 is believed to have contributed strongly to the differences seen
between the NAME simulations of the June 2013 haze event. While the NAME-GFAS raw output underpre-
dicted concentrations by approximately a factor of 2, the raw NAME-MSS results matched the observed
peak levels of PM10 in Singapore and Port Dickson considerably better. This result underlines the importance
of an accurate representation of peat in the Maritime Continent. In agreement with that, biomass burning
in nonpeat, highland areas of mainland Southeast Asia resulted in a higher level of congruence between
NAME-MSS and NAME-GFAS. Differences can be further attributed to the fact that the MSS emissions are
derived with updated emission and conversion factors in combination with more recent, better-resolved land
cover maps. Keeping track of the rapid land conversions taking place in parts of Southeast Asia and updating
land-class maps correspondingly is crucial to deliver reliable emission products.

Representation of Fire Activity. Another important factor contributing to the observed differences between
NAME-GFAS and NAME-MSS is related to the way in which missing FRP observations are treated. The fact that
GFAS v1.2 corrects for partial hot spot obstructions due to cloud and/or smoke haze while the MSS approach
does not, significantly contributed to differences in the persistence of local pollution levels observed during
the June 2013 haze event. On the other hand, continuous cloud cover that is often encountered in terms of
ubiquitous cirrus in Southeast Asia [e.g., Reid et al., 2013] can make it very difficult to derive accurate informa-
tion about fire activity from space. Another general issue is presented by detection limitations of the MODIS
instruments regarding fire pixels of low radiative intensity. Wooster et al. [2003] show that MODIS can under-
estimate the FRP of low-intensity fires by up to 46% when compared to measurements from the Bi-spectral
InfraRed Detection (BIRD) small satellite, which is equipped with dedicated sensors for active fire detection.
Low-intensity, smouldering fires can result in significant emissions depending on their number and on the
particular fuel (e.g., peat).

Injection Heights. While GFAS v1.2 uses a plume-rise model to estimate the initial injection height of
pollutants, resulting in local emission depths varying between a few decameters to a few kilometers above
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ground, MSS uses a fixed height of 800 m. We performed a sensitivity test for the Maritime Continent
haze event by fixing the injection height in GFAS v1.2 to 800 m and comparing the results to the original
NAME-GFAS run in Singapore. Particularly during the peak of the event, fixing the injection height resulted
in significantly reduced local concentration levels and increased model differences with the observations
(not shown). The majority of GFAS sources are associated with injection heights that are significantly
lower than 800 m. Pollutants are therefore primarily emitted directly into the lower portions of the atmo-
spheric boundary layer. Representing these vertically confined emissions in Sumatra proved to be important
for a better reproduction of ground-level concentrations in Singapore. Regarding the MSS emissions, it has to
be investigated whether site-specific injection heights retrieved from a plume-rise model would consequently
result in an overprediction of PM10 levels for the June 2013 scenario.

Background Pollution. The NAME dispersion simulations are purely driven by emissions from biomass burning.
Hence, the forecast will constantly lack local baseline pollution levels associated with other natural or anthro-
pogenic sources of particulate matter (e.g., due to sea salt, dust, industrial, or traffic emissions). The impact of
such local or regional sources on near-surface air quality in Singapore can vary on a range of different time and
geographic scales. The real-time bias correction approach presented here takes into account the local back-
ground pollution based on observations from the past 24 h, which are then projected into the forecast period.
The skill of the bias-corrected haze prediction, however, can of course be further influenced by short-term
changes of anthropogenic emissions taking place during the forecast period. While for the large event in June
2013 short-term fluctuations of other local/regional pollutant sources are deemed to have a minor overall
effect on the skill of the simulation, particularly in comparison to uncertainties in the emission inventories,
this may not be true for future haze episodes. Forecasts and observations for other pollutants like PM2.5 can be
of help in assessing the impact of anthropogenic emissions on local air quality in relation to smoke haze from
biomass burning (see also section 5.1). Furthermore, taking into account the information from a multitude
of sites, as done in the case of Singapore, helps to mitigate effects of strong spatial variability of background
pollution levels within the domain of interest.

The accuracy of dispersion simulations with Lagrangian particle models like NAME to a large degree depends
on the accuracy of the driving meteorological data. Given the moderate resolution of the global configura-
tion of the MetUM, coastal regions and smaller islands, including Singapore, are not reproduced in detail or, in
some cases, not at all. Not fully representing the complex distribution of land, sea and terrain in the Maritime
Continent has to be expected to have an influence on local dispersion features, for example, by missing impor-
tant local flow features induced, for example, through the presence of orographic features and/or land-sea
contrasts. Milton et al. [2015] discussed that the MetUM, in common with other global NWP models, suffers
from systematic errors affecting the representation of multiscale convection and associated diurnal cycles in
Southeast Asia, particularly over land. Inaccuracies in precipitation rates and rainfall locations can feed back to
the dispersion simulation in terms of erroneous wet deposition rates of pollutants. The accuracy of low-level
wind fields is adversely affected by errors in the representation of moist processes and diabatic heating and
is also influenced by “remote errors” from other regions, e.g., through monsoon forcing errors [Milton et al.,
2015].

The quantitative bias detected in local NAME concentration outputs needs to be addressed in a flexible way
in order to account for the interaction of different factors influencing the simulation skill. Inaccurate estimates
of emission rates and source locations are believed to be dominant contributors to quantitative discrepan-
cies detected between simulations and observations. However, inaccuracies in other parts of the modeling
system, for example, the NWP or dispersion model, play a role as well. We have presented an approach to
address the combined forecast bias in a more flexible way by using a real-time bias correction technique that
can be implemented into a quantitative operational haze-forecast system. The approach automatically cor-
rects for background concentration levels that cannot be attributed to biomass burning and whose explicit
inclusion would add considerably to the forecast system complexity and computational costs. Furthermore,
the technique will not be affected by internal changes to parts of the modeling system, for example, regard-
ing the emission inventories (e.g., updates to conversion/emission factors, correction schemes, or plume-rise
information). When using GFAS or MSS emission products in operational forecasts, it needs to be considered
that the evolution of fire activity and corresponding emissions over the duration of the forecast is unknown.
Persisting fire emissions that are valid at the initiation of the forecast into the future can be used as a first
guess but inevitably will introduce errors. Since air quality observations are also needed in near real time, it
also has to be taken into account that these measurements have not yet been fully quality controlled by the
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time they are introduced into the bias correction system. Receiving information from a network of sensors as
in the example of Singapore can help to mitigate this problem.

5.1. Conclusions and Outlook
Poor air quality due to smoke haze pollution continues to be a major problem in Southeast Asia, affecting the
health of millions of people in the region on short and long time scales. Following a dry spell in early March
2014 fire intensities in the Riau Province in Sumatra again reached levels comparable to the June 2013 event.
On this occasion the severe haze mainly affected central Sumatra as the smoke was transported toward the
Indian Ocean by prevailing northeasterly winds.

Thus, it is an urgent task to introduce regional air quality forecasts targeted at the prediction of such smoke
haze pollution events. The near real-time availability of biomass-burning emission products based on MODIS
active-fire detection shows strong potential for the applicability within an operational haze-forecast system.
Our case studies based on high temporal and spatial resolution dispersion simulations with NAME combined
with a flexible bias correction scheme targeted at Singapore can be successfully applied to improve the
simulation accuracy of local pollution levels.

Next steps will concentrate on exploring the skill of bias-corrected smoke haze predictions with NAME-GFAS
and NAME-MSS for Singapore in an operational environment based on events occurring since mid-2014. In an
operational setup, the modeling system takes between 2 and 3 h to produce a forecast, consisting of a 4 day
spin-up followed by a 48 h forecast period, depending on the number of fires in the region. These timings are
from tests on a single server and would be significantly faster on a high-performance computer.

In the next steps of the work, particular attention will be directed at investigating the skill of the forecasts with
increasing lead time. Another focus will be on exploring bias correction approaches of NAME concentration
plumes by making use of ground-based observations available in the wider region. Information about the
vertical structure of aerosols in the atmosphere, such as AOD measurements from satellites and LIDAR, will also
be assimilated into the system. Forecast accuracy gains from running on high-resolution meteorological data
from limited-area NWP models will also be investigated. Observations PM2.5 will be used to further investigate
the forecast skill of the modeling system in future haze events. PM2.5 observations may also prove helpful to
disentangle uncertainties associated with the smoke haze modeling system from short-term fluctuations of
local baseline pollution levels.

Our analyses showed that detailed information about fuel types, particularly peat, and correction schemes
for partial pixel obstructions due to cloud or haze have strong qualitative and quantitative effects on emis-
sions and resulting pollution levels. Future work will aim toward an improvement of the MSS emission data
by making use of FRP observations that are processed by GFAS and therefore include cloud-cover correc-
tions and plume-rise information. Further improvements of the representation of fire activity may be gained
from including a diurnal burning cycle. Combining the spatially much better resolved information from
polar-orbiting satellites with time-resolved information from geostationary satellite retrievals will also be vital
for a truly quantitative forecast of biomass burning in Southeast Asia.

Appendix A: Validation Metrics

The following validation metrics were used for a quantitative evaluation of dispersion simulation accuracies
presented in section 4:

1. Factor of 2 of observations:

FAC2 = 1
N

∑
i

Φi with Φi =

{
1, if 1

2
≤

Mi

oi
≤ 2.

0, otherwise.

2. Modified normalized mean bias:

MNMB = 2
N

∑
i

(
Mi − oi

Mi + oi

)
.

3. Fractional gross error:

FRG = 2
N

∑
i

||||Mi − oi

Mi + oi

|||| .
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4. Correlation coefficient:

R =
1
N

∑
i(Mi − M)(oi − o)

𝜎M𝜎o
.

Here M denotes the simulation (forecast) results and o the observations. In the case of this study, i denotes
a time index at a specific site. FAC2 provides a measure of the fraction of modeled PM10 concentrations that
are within a factor of 2 of the observed values. In order to evaluate simulation bias and errors, we use metrics
that are commonly employed to evaluate forecast accuracies of air quality models [e.g., Ordóñez et al., 2010;
Savage et al., 2013]. As discussed by Savage et al. [2013], normalized bias and error metrics like the MNMB or
FGE provide consistent accuracy scales independent of pollutant type and concentration threshold values.
Using the arithmetic mean of observed and modeled concentration values for the normalization, MNMB treats
model deficiencies in terms of overprediction and underprediction trends in a symmetric manner [Cox and
Tikvart, 1990]. The MNMB is bounded on the interval [−2,+2]. The FGE represents a normalized version of the
mean absolute error of the simulation. It indicates the overall forecast error and also behaves symmetrically
with regard to overpredictions and underpredictions. The FGE is bounded on the interval [0,+2]. For both
MNMB and FGE, a value of 0 indicates a flawless simulation. The correlation coefficient is consulted in order
to determine the extent to which trends and patterns in the simulation are matching those present in the
observations.
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