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ABSTRACT 

In younger adults, arousal amplifies attentional focus to the most salient or goal-relevant 

information while suppressing other information. A computational model of how the locus 
coeruleus-norepinephrine (LC-NE) system can implement this increased selectivity under 

arousal and an fMRI study comparing how arousal affects younger and older adults’ processing 

indicate that the amplification of salient stimuli and the suppression of non-salient stimuli are 

separate processes, with aging affecting suppression without impacting amplification under 

arousal. In the fMRI study, arousal increased processing of salient stimuli and decreased 

processing of non-salient stimuli for younger adults. In contrast, for older adults, arousal 

increased processing of both low and high salience stimuli, generally increasing excitatory 

responses to visual stimuli. Older adults also showed decline in LC functional connectivity with 

frontoparietal networks that coordinate attentional selectivity. Thus, among older adults, arousal 

increases the potential for distraction from non-salient stimuli.  
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INTRODUCTION 
 

The arousal system helps the brain and body coordinate action during threatening 

situations. Physiological arousal fluctuates moment by moment in response to events such as 

thoughts, loud noises, effort, and emotions. During an arousal response, the locus coeruleus 

(LC), a small nucleus in the brainstem, releases norepinephrine (NE) throughout most of the 

brain via its extensive network of axons. NE increases the gain on neural activity, so that highly 

active neurons become more excited while less active neurons get suppressed [1; 2]. 

Consistent with this, people notice and encode perceptually salient or goal-relevant stimuli even 

more under arousal while neglecting stimuli that do not stand out [3]. For instance, if people 

hear an emotional sound like a baby crying or a tone previously associated with getting a shock, 

in the next few seconds they notice salient visual stimuli even more and non-salient stimuli even 

less than they would otherwise [4; 5].  

Although these behavioral findings suggest that NE released during arousal affects 

neural representations differently depending on their priority or salience, it is not yet known how 

this interaction of arousal and salience occurs. The Glutamate Amplifies Noradrenergic Effects 

(GANE) model posits that phasic LC activity leads to selective cortical sites of amplified activity 

[2]. These hotspots emerge when, somewhere in the cortex, strongly active synapses “leak” 

glutamate into the extrasynaptic space at the same time that the LC is activated (Figure 1). The 

hotspots are triggered because glutamate stimulates NE release from nearby LC varicosities if 

the LC neurons happen to be activated (depolarized). The locally released NE in turn stimulates 

glutamate release via beta receptors on glutamatergic neurons, leading to a glutamate-NE 

feedback loop that promotes even higher excitation in the most highly active areas.  

In addition to these hotspots of amplified activity under arousal, GANE also outlines 

several mechanisms that suppress less active representations under arousal. First, the low 

levels of NE released at regions where no hotspots emerge cause suppression of activity in 

non-hotspot regions. This is due to the differential actions of alpha2A and beta-adrenergic 

receptors. The beta-adrenergic receptors involved in the excitatory hotspot feedback loop have 

a low affinity for NE and so are activated only with the high levels of NE that are triggered when 

local high levels of glutamate interact with nearby LC varicosities under phasic arousal. In 

contrast, alpha2A noradrenergic receptors have a high affinity for NE and so are activated at 

relatively low levels of NE. Furthermore, whereas beta-adrenergic receptors tend to be 

excitatory, alpha2A-adrenergic receptors typically have inhibitory effects. Alpha2A receptors are 
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highly prevalent both as autoreceptors at LC varicosities and as heteroreceptors on other 

neurons, leading to broad-scale inhibitory effects of arousal and NE on neural activity [6].  

In addition, GABA receptors could contribute to greater suppression of less salient 

representations via a couple of mechanisms. First, high glutamatergic activity at local hotspots 

should activate nearby GABAergic interneurons that suppress competing weaker 

representations in the same local network. Second, attention networks in frontoparietal regions 

[7] appear to coordinate activity across disparate cortical representations via long-range 

glutamatergic projections to other brain regions that stimulate local GABAergic neurons [8] and 

via long-range GABAergic projections [7]. Frontoparietal attention networks help coordinate 

selectivity across the cortex [9]. Because LC-NE activity stimulates these brain regions [10-12], 

the GANE model proposed that frontoparietal brain regions contribute to the increased inhibition 

of low priority information under arousal.  

The GANE model thus posits that the downstream inhibitory and excitatory effects of 

arousal on perception and attention have distinct mechanisms. In the current study, we tested 

this hypothesis by comparing younger and older adults, as there are reasons to believe that the 

inhibitory effects of arousal will decline more in aging than the excitatory effects. Aging is 

associated with more decline in alpha2A receptor function than in beta receptor function, as 

reflected in decreased alpha2-adrenergic receptor density in contrast with increased beta-

adrenergic receptor density in older rhesus monkeys [13; 14] and decreased gene expression 

differences in the alpha2A receptor gene but not beta receptor genes in older humans [15; 16]. 

Furthermore, GABA function declines with age [17]. Fast-spiking interneurons use more energy 

than most other neurons, leaving them especially vulnerable to metabolic and oxidative stress in 

aging [18]. In animals, age-related loss of GABAergic interneurons is greater than loss of other 

neurons [19; 20; see also 21 for consistent findings in humans] and GABA function also 

declines more than glutamate function [22]. In addition, the frontoparietal networks activated by 

the LC-NE system [for review see 2] that help implement inhibition and selective processing 

across disparate cortical regions show age-related changes in functional connectivity that are 

associated with age-related declines in cognitive performance [23-28]. Based on these age-

related vulnerabilities of the inhibitory mechanisms of GANE, we predict that arousal 

suppresses processing of less salient information less effectively in older adults than in younger 

adults.  

We used functional magnetic resonance imaging (fMRI) and computational modeling to 

test this prediction. We adapted a paradigm we previously used with younger adults [4] to 

compare activation of salient and non-salient visual stimuli under arousal in younger adults 
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versus older adults. We measured parahippocampal place area (PPA) activity while participants 

viewed a pair of images: one scene image that was either high or low priority compared to a 

simultaneously displayed object (Figure 2). The high priority options were both perceptually 

salient and goal relevant (i.e., participants had to indicate the location of the perceptually salient 

object). We focused on scene-associated activation in the PPA because it exhibits greater 

category specificity than most other category-selective cortical regions [29]. Before each pair of 

images was presented, we manipulated arousal by playing a tone that was conditioned to 

predict a shock (CS+) or no shock (CS-). We measured skin conductance and pupil dilation to 

assess arousal. After confirming our hypothesis of age-related differences in how salience and 

arousal influence PPA activity, we evaluated whether the neurochemical mechanisms 

associated with the GANE model could explain the pattern of observed fMRI effects. For this we 

implemented GANE in a neural network model and then examined how age-related declines in 

inhibitory mechanisms influence attention under arousal in this model. We then examined how 

arousal and place image salience on each trial influenced functional connectivity dynamics 

among the LC, PPA, and frontoparietal network for younger versus older adults.   

 
RESULTS 

 

fMRI Study  
Fear conditioning effectiveness. In the fMRI experiment, younger adults (n=28) and older 

adults (n=24) first completed a fear-conditioning task in which they learned associations 

between a CS+ tone and shock, and associations between a CS- tone and lack of shock during 

functional imaging. (See ‘Methods and Materials’ for more task details.) During the fear 

conditioning task, the CS+ tone increased arousal, as indicated by skin conductance, pupil 

diameter, and brain activation patterns (see Supplementary Results and Supplementary Figures 

1 and 2). CS+ tones continued to increase arousal during the subsequent spatial detection task 

involving the conditioned tones (see Supplementary Results and Supplementary Figure 3).  

 

PPA ROI results during spatial detection task. After fear conditioning, participants completed 

the main task, a spatial detection task with each trial starting with a CS+ or CS- tone, followed 

by a place-object image pair (Figure 2). Participants’ task was to quickly indicate whether the 

high-salience image was on the right or left via a button press. Based on previous studies [3; 4] 

and our model, we expected that arousal would enhance processing of salient stimuli. We 

examined the effects of picture saliency on stimulus-specific brain activation by tracking 
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activation in individually determined PPA regions-of-interest (ROI; Figure 3A) in response to the 

place images when they were salient vs. non-salient. These ROI results are the critical result we 

use to assess activation levels of the scene representation when it is salient vs. non-salient.  A 

mixed-effects ANOVA on the extracted PPA percent signal changes for the target processing 

with Arousal Condition (2: CS+, CS-) X Place Saliency Type (2: salient place target, non-salient 

place target) X Hemisphere (2: left, right) X Age Group (2: younger, older) as factors yielded no 

main effects, but an Arousal Condition X Place Saliency Type X Age Group interaction, F(1, 50) 

= 6.12, p = .017, ηp
2= .109, indicated that arousal and saliency interacted differently for younger 

adults versus older adults.  

To examine these different arousal-by-salience interactions for each age group, we 

conducted separate repeated-measures ANOVAs for younger adults and older adults. For the 

younger group, there was a significant cross-over Arousal Condition X Place Saliency Type 

interaction, F(1, 27) = 6.35, p = .018, ηp
2= .19. Compared with CS- tones, CS+ tones amplified 

PPA activation when a place image was salient (MCS+ = .325 vs. MCS- = .294; planned 

comparison t[27] = 1.84, p = .038; one-tailed) but not when the place image was non-salient 

(MCS+ = .268 vs. MCS- = .283; planned comparison t[27] = -1.02, p =.159; one-tailed; Figure 3B). 

There was no main effect of Arousal Condition, F(1, 27) = 0.35, p = .557, ηp
2= .013, thus in 

younger adults the impact of arousal depended on the saliency of the place image.   

For the older group, in contrast, there was only a main effect of Arousal Condition, F(1, 

23) = 4.99, p = .036, ηp
2= .178, indicating that CS+ trials generally increased PPA activity (MCS+ 

= .174 vs. MCS- = .151) regardless of saliency type (Figure 3C). There was no arousal-by-

salience interaction, F(1, 23) = 1.11, p = .303, ηp
2= .046. In addition, there were no significant 

effects of hemisphere in any of these analyses. 

Thus, as expected for younger adults, arousal interacted with saliency to increase the 

gain on perceptual processing during high arousal moments. In contrast, older adults showed 

no selectivity in the impact of arousal. For older adults, arousal increased activation associated 

with the presented place images regardless of their salience.  

 

GANE model simulation 
While the fMRI results confirm our primary hypothesis regarding age-related changes to 

arousal’s impact on perceptual processing (as reflected in the PPA results) and provide 

evidence for the involvement of the LC-NE system, they cannot directly evaluate whether 

neurochemicals specified in the GANE model could have produced the observed effects. To 

address this, an auto-encoder neural network was used to instantiate GANE while considering 
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all behavioral elements in the task (Figure 4A). Its input, intermediary, and output layers each 

has 80 processing units and they are connected by links (see Supplementary Methods for more 

detail). Each unit in each layer represents a unique stimulus within that layer. A processing unit 

in a neural network simulation is a neuron-like object intended to represent a small population of 

neurons. The activation strength of these processing units in the intermediary layer during the 

task was used as an approximate measure of brain activation and compared with PPA fMRI 

ROI results.  

As described above, during the behavioral task, participants were required to indicate 

which of two presented stimuli were more salient. To enable the model to complete the same 

task, the model was first trained and values of connection weights linking units were determined 

to generate a stronger signal for a salient stimulus and a weaker signal for a non-salient 

stimulus in the output units when it received two inputs with different activation strengths in the 

input layer. Next the model completed the main task, during which it received a stronger value 

for one input unit (i.e., a salient stimulus) and a weaker value for another input unit (i.e., a non-

salient stimulus). The activation of these units propagated to the intermediary layer units, whose 

activation strengths were determined not only by these incoming inputs but also by current 

arousal and NE levels. The resultant activations from the intermediary layer propagated to the 

output layer units. Stronger signals in the output units are considered as stronger attention to 

the corresponding input stimulus. As the fMRI study probed the brain activity during such a 

behavior, we also investigated the activity of the intermediary layer units during the time when 

the model achieved such an input-output mapping. The effect of arousal induced by CS+ were 

also modelled. To incorporate the local NE effects GANE posits, we assigned a unique NE 

parameter to each unit. On each trial, this NE parameter starts with the low baseline value of 1.0 

X 10-9 mol/liter NE (based on the baseline NE level observed in previous physiological studies of 

approx 1nM in the cortex [30]). Immediately after an arousing event, there is unit-specific NE 

release depending on the unit’s activation level. If the unit’s NE value exceeds a threshold high 

enough to activate beta-adrenergic receptors (7 x 10-6 [31; 32]), this leads to an excitatory 

feedback loop to allow for additional glutamate and NE release [33], resulting in our 

hypothesized NE hotspots. Activation of beta-adrenergic receptors also leads to the activation of 

GABAergic signals and suppresses other competing units [34]. The unit-specific value of NE 

then becomes smaller and smaller as time elapses after the event, simulating the NE reuptake 

process [35]. This model simulates the arousal-by-salience interaction (Figure 4B) seen both in 

the current study (Figure 3B) and in our previous research with younger adults [4]. 
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Modeling GANE changes in older adults 

We examined several ways to simulate effects of age-related declines in inhibitory 

mechanisms in the model (Figure 4C, panels 1-4). First, we modified the reuptake rate to be 

lower (based on less alpha2A inhibition of NE release). This change had no effect on the 

greater excitation of high salience units under arousal but abolished the inhibitory effect of 

arousal on low salience units. Moderate GABA impairment also eliminated the inhibition of low 

salience units under arousal. Combining both of these impairments in one model or making the 

GABA impairment more extreme led to indiscriminate excitation of units regardless of their 

salience (Figure 4C, panels 3-4). In summary, these models indicate that impairment of basic 

inhibitory mechanisms, whether due to decreased function in either GABA or alpha2A receptors 

or both, could reduce how much arousal inhibits low salience items without affecting how much 

arousal excites high salience items, as shown in our fMRI data (Figure 3C).    

 

Effects of Arousal on Frontoparietal Network and LC Functional Connectivity 
Returning to the fMRI analyses, the remaining results shed further light on how arousal affects 

network dynamics and locus coeruleus functional connectivity.   

 

Whole-brain voxelwise analysis. We examined overall brain activity differences on arousal vs. 

non-arousing trials during the main detection task to see if arousal amplified activity in 

frontoparietal network regions associated with attentional selectivity. When the interaction 

between Arousal Condition and Age Group was examined in a whole-brain analysis, significant 

differences in the right frontoparietal network region including the DLPFC, IFG, inferior parietal 

lobule (IPL), and dorsal premotor cortex extending to the frontal eye field (FEF) were identified 

(Figure 5A, Supplementary Figure 4, and Supplementary Table 2). These regions are involved 

in attentional inhibition, selection and control [9; 36; 37]. The significant interaction arose 

because, in younger adults, arousal during the task increased activation of these attentional 

selection regions, whereas in older adults, arousal did not significantly affect these frontoparietal 

regions (Figure 5B and Supplementary Figure 5). Furthermore, we found that the mean 

activation in these regions was significantly correlated with pupil diameter changes (CS+ minus 

CS- during the post-tone period) in younger adults, r (25) = .615, p = .001, 95% CI n	=	5,000	bootstrap	= 

[0.214, 0.828], but not in older adults, r(15) = .231, p = .371, 95% CI n	=	5,000	bootstrap	= [-0.182, 

0.692]s (Figure 5C). There was no statistical difference in correlation coefficients between aging 
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groups. In sum, the results suggest that arousal changes indexed by pupil size modulate 

frontoparietal attentional processes more for younger than for older adults.   

 

PPA functional connectivity analysis. In addition to PPA activation levels examined in the 

earlier ROI analyses, we also examined PPA-LC functional connectivity. In the GANE model, 

local cortical NE hotspots can only emerge both where there is high glutamatergic activity and 

when the LC is active. This is because the NMDA receptors on the LC varicosities in cortex are 

only activated by glutamate when the LC is simultaneously depolarized. Thus, GANE predicts 

increased BOLD coupling between the LC and the PPA when the participant is in a high arousal 

state and viewing a salient place stimulus. For these analyses, one important question is 

whether the BOLD coupling seen in fMRI occurs at a similar timescale as release of NE. LC-NE 

axons are slower than the typical axon conduction rate, conducting impulse activity on the order 

of 0.20-0.86 m/s [38]. Although this is slow for neural transmission, this is fast enough to act on 

a trial-by-trial basis in our study where trials lasted for a few seconds. Furthermore, a rat study 

shows a relatively tight timing relationship between LC and cortical BOLD activity [39]. When 

right or left LC was phasically stimulated (1s on/1 s off) for 20 s, frontoparietal cortex cerebral 

blood flow (CBF) started increasing within the first 3 s of the stimulation and continued to 

increase during the stimulation duration. When the LC stimulation period ended, CBF 

immediately started declining on the contralateral side, whereas there was a few-second delay 

in CBF decline on the ipsilateral side. Thus, current evidence suggests BOLD responses to LC 

activation can occur quickly enough to be detected in a trial-by-trial design.  

We examined the functional connectivity of PPA seed regions (individually located for 

each participant), comparing CS+ and CS- trials for salient place condition and non-salient 

place condition for each age group. Given our a-priori prediction of LC involvement in arousal-

salience interactions based on our GANE model simulation and the small size of the LC (see 

Figure 6A for LC location), we focused our investigation on the brainstem region aligned using a 

brainstem-weighted registration process [40]. Both younger and older adults showed greater 

PPA-LC functional connectivity during arousing trials than during non-arousing trials (Figure 6B, 

left panel), a main effect that was seen during trials with salient places but not during trials with 

non-salient places (Figure 6B, middle panel). This led to significant arousal-by-salience 

interactions in clusters overlapping the LC for both groups (Figure 6B, right panel). There were 

no significant clusters within the LC for the 3-way interaction of arousal, saliency, and age. 

 According to the GANE model, the PPA should have high levels of glutamatergic activity 

during viewing salient stimuli, and those high levels of glutamate should allow for stimulation of 
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more local NE release (which in turn stimulates more glutamate release) if the LC is phasically 

activated (Figure 1). Thus, it is during conditions of high glutamate in the PPA and high phasic 

activity in the LC that coordinated bursts in activity should occur in the two regions.  Thus, the 

arousal-by-salience interactions in functional connectivity between these regions support the 

GANE model hotspot mechanism, indicating that LC activity during arousal is more coordinated 

with activity in a cortical representational area when that cortical area is representing something 

salient than non-salient.  

In addition, the finding that the arousal-by-salience interaction was significant for PPA-

LC functional connectivity not only for younger adults who showed the behavioral arousal-by-

salience effect but also for older adults who did not show behavioral selectivity is quite 

interesting and suggests that the hot spot excitatory mechanism in which highly activated 

representations become even more active under arousal will fail to yield selectivity without intact 

inhibitory contributions. This scenario of intact NE-glutamate interactions that fail to lead to 

selective enhancement of salient stimuli is represented by our modeling, as depicted in Figure 

4C, with the strong GABA impairment model in the rightmost panel. That modeling scenario 

indicates that an increase in activation under arousal for salient representations will not yield a 

selective benefit for salient representations in the presence of an impairment in inhibitory 

mechanisms.  

 Using the same individually defined PPA ROIs, we also examined PPA functional 

connectivity with cortical regions in a whole-brain analysis. This allowed us to see if arousal 

influenced the strength of functional connectivity between the PPA and frontoparietal regions. 

There was an age-by-arousal interaction of functional connectivity within parietal regions (Figure 

6C, lower left). When examined independently, younger adults had an arousal-by-salience 

interaction in functional connectivity with the PPA in frontoparietal network regions. This 

arousal-by-salience interaction reflected greater PPA-frontoparietal functional connectivity 

during CS+ than CS- trials only when the displayed place stimulus was salient. In contrast, older 

adults showed no differential cortical functional connectivity with PPA depending on salience or 

arousal. These findings suggest that arousal had a bigger impact on how frontoparietal network 

modulated activity in the place area for younger adults than for older adults.  

  

Frontoparietal network functional connectivity. To see if there was also an age-by-arousal 

interaction in how the LC interacted with the frontoparietal network, we used a bilateral mask of 

the frontoparietal network (Figure 6A from [41]) as the seed region, applied to activity within the 

brainstem mask (with brainstem-optimized alignment, as detailed above). The frontoparietal 
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seed region had significantly more functional connectivity with the LC during CS+ trials than 

during CS- trials for both younger and older adults, but this effect was significantly stronger in 

younger adults, as indicated by significant age-by-arousal interaction effect clusters overlapping 

the LC (Figure 6D). Thus, in summary, significant age differences were seen in the functional 

connectivity pathways between LC and frontoparietal network regions and between 

frontoparietal network regions and the PPA (Figure 7). 

 

Analyses to check for potential age-related confounds. Older adults may respond less 

specifically to places in the PPA due to age-related dedifferentiation. Representational similarity 

analyses (see Supplementary Figure 6 and Supplementary Results) indicate this was not the 

case in our dataset. Another possible account of our findings is that younger adults were more 

likely than older adults to shift their gaze to salient items, especially under arousal. Analyses of 

gaze biases indicated this was not the case (see Supplementary Figure 7 and Supplementary 

Results).  

 
DISCUSSION 

Under emotionally intense or cognitively demanding situations that elevate arousal, it 

can be beneficial to focus on whatever is most salient or important at that moment and ignore 

everything else. In this study, we tested a theoretical model of how arousal influences cortical 

processing (GANE [2]) and how these processes differ in older adults. We predicted that 

arousal would amplify salient stimuli similarly in younger and older adults but that arousal would 

suppress non-salient stimuli only in younger adults. To test this, we adapted an fMRI paradigm 

we had previously used with younger adults [4], in which one of two competing categorical 

stimuli had greater perceptual salience. We found that younger adults showed the expected 

increased gain under arousal, as indicated by greater activation of highly salient representations 

and less activation of competing less salient representations. In contrast, older adults showed 

no increase in selectivity under arousal. Instead, they showed greater activation of both salient 

and non-salient stimuli under arousal. Thus, our findings suggest that, for older adults, arousal 

is less effective at highlighting only stimuli that stand out most and instead increases 

distractibility from multiple strongly activated representations.  
We used neural network simulation to test whether these findings are consistent with 

GANE. The neural network model of GANE we outline in this paper provides a computational 

model of how the LC-NE system can simultaneously up-regulate and down-regulate processing 

of different stimuli depending on their salience. In this model, in younger adults, activation of the 
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LC under arousal increases the gain on cortical neural activity by increasing activation of highly 

active representations while also increasing suppression of not-very-active representations. 

Activation of highly active representations is amplified as depolarization of LC neurons allows 

NMDA receptors on the LC axons passing through cortical regions to respond to high levels of 

glutamate in a particular cortical milieu and release more NE in that local region (Figure 1). At 

these sites where highly active representations release high levels of glutamate, glutamate-NE 

interactions create hotspots of even further amplified glutamatergic activity. At the same time, 

LC-NE activity amplifies inhibitory mechanisms via increased alpha-2A and GABAergic 

inhibition during LC activation.  

Within our model, we simulated several different scenarios involving age-related decline 

in alpha-2A receptor activity and GABAergic processing inhibitory mechanisms. These 

simulations yielded intact excitatory components of the LC-NE effects in older adults, but a lack 

of the countervailing inhibitory components seen in younger adults. Two scenarios (Figure 4C, 

panels 3 and 4) not only eliminated inhibition of low salience representations but reversed it to 

yield excitation of low salience representations under arousal. Thus, the modeling indicated that 

age-related impairments in basic neural inhibitory mechanisms could lead to age differences in 

processing non-salient information while not affecting processing of salient information, 

supporting the notion that the excitatory and inhibitory effects of arousal are dissociable.  

Furthermore, our fMRI functional connectivity analyses help discriminate between 

potential mechanisms underlying the age-related changes. The GANE hot spot mechanism 

predicts that activity in the LC should be most coordinated with a particular cortical region when 

two factors coincide: 1) that cortical region is strongly activated and 2) the LC is activated. Using 

individually defined parahippocampal place area (PPA) as seed regions confirmed this 

prediction; the LC was significantly more functionally connected to the PPA on trials when the 

place stimulus was salient and there was an arousing CS+ tone. This arousal-by-salience 

interaction in LC-PPA functional connectivity was significant for both younger and older adults. 

Thus, the direct interactions between the LC and the cortical representation were similarly 

modulated by arousal and salience for younger and older adults, suggesting that this pathway 

was responsible for the increased excitation of the salient stimulus representation under arousal 

seen in both younger and older adults. In contrast, age-by-arousal interactions were found in the 

interactions of the frontoparietal network with both the LC and the PPA. Arousal activated the 

frontoparietal network less in older adults than in younger adults and the frontoparietal network 

was less involved in modulating activity in the PPA under arousal. Frontoparietal network 

regions engage in long-range communication across cortical networks to activate local GABA 
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activity [e.g., 7; 8], thus, a reduction in frontoparietal activation under arousal would decrease 

the ability of arousal to amplify reactivity of GABA (as in Figure 4C, panel 4).  

These findings raise the question of why, during brief bursts of arousal, LC increases its 

coordination with frontoparietal network less among older adults than younger adults. Previous 

findings reveal age differences in the frontoparietal network activity and functional connectivity 

that are associated with age-related declines in cognitive performance [23-28]. Thus, it is 

possible that at least part of the reduced impact of arousal on this network lies in declines in the 

frontoparietal network itself that make it less sensitive to modulatory influences such as NE 

release. But contrary to this notion are findings that LC-frontoparietal functional connectivity is 

greater during rest among older than younger participants (although the sample only included 

ages 18-49 [42]). This suggests another possibility: tonically elevated baseline cortical levels of 

NE among older adults [43] make arousal inductions less able to increase global levels of NE in 

ways that stimulate the frontoparietal network. Noradrenaline transporter blockade increases 

frontoparietal functional connectivity [11] suggesting that increasing general cortical NE levels 

increases frontoparietal activity. If the alpha-adrenergic receptors in the frontoparietal network 

are already activated by higher circulating levels of NE in older adults, small global increases in 

NE levels may not have much impact. In contrast, high NE levels still seem to have an impact 

on beta-adrenergic excitatory processes in older adults, as indicated by intact arousal-by-

saliency LC-PPA functional connectivity interactions in older adults (Figure 6B), which based on 

GANE, depend on beta-adrenergic activity. 

Our findings not only advance understanding the basic mechanisms of selectivity under 

arousal but also those underlying age-related decline in selectivity. The GANE computational 

model outlined here provides a framework for thinking about how local cortical interactions of 

NE and glutamate can lead to hot spots of increased neural activation under arousal. The 

functional connectivity analyses from the fMRI study help provide information about the broader 

context of which brain regions beyond the local site representing the stimulus are involved. In 

particular, the functional connectivity findings point to an important role of the frontoparietal 

network in coordinating suppression of competing representations across disparate regions. In 

the original presentation of GANE [2], a potential role of frontoparietal cortex was suggested 

based on the strong noradrenergic influences over this network but it was not the main focus. 

The findings here suggest that the LC interactions with frontoparietal cortex are an important 

component of the phenomenon of increased selectivity under arousal. Furthermore, our findings 

of arousal-by-salience interactions in LC-PPA functional connectivity support the GANE hotspot 

model in which cortical regions with high glutamatergic activity show further amplified activity 
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when the LC is simultaneously activated. These findings replicated in older adults and there 

were no age differences in the strength of this direct LC-PPA functional connectivity, indicating 

this aspect of LC function is still intact in late life, allowing for greater excitation of high salience 

stimuli under arousal. 

 In general, older adults are worse at inhibiting irrelevant information [44]. For instance, 

older adults activate representations of whatever is the focus of their attention as much as do 

younger adults, but fail to suppress the representations they should be ignoring [45; 46]. Our 

findings indicate that age differences in the likelihood of suppressing less salient competing 

information are particularly pronounced under arousal. This raises the interesting question of 

whether arousal-induced activation of the LC-NE system contributes to laboratory findings of 

age differences under arousal. Our model and findings suggests that the more engaged (and 

therefore the more LC is likely to be activated) participants are during a task, the more marked 

the age differences in the ability to inhibit irrelevant information should be. The LC is activated 

by a wide range of circumstances, including threatening or exciting situations, cognitive load, 

and novelty. Focusing on what is most salient during these moments may often be 

advantageous even if it means neglecting some less salient information. Our findings indicate 

that, due to age-related changes in inhibitory mechanisms, older adults cannot rely on increases 

in selective attention during these potentially high-stake moments.  

 

METHODS AND MATERIALS 

GANE fMRI experiment 
Participants. Twenty-eight healthy younger adults (Mage = 24.39 years, age range = 18 – 34; 9 

females) and 24 healthy older adults (Mage = 66.95 years, age range = 55 – 75; 9 females) 

participated in the current study. There were no significant differences between groups in terms 

of intellectual level (Meducation: younger adults = 16.85 vs. older adults = 16.38 years; MWechsler Test 

of Adult Reading: younger adults = 43.96 / 50 vs. older adults = 39.75 / 50). Participants had normal or 

corrected-to-normal visual acuity. Participants provided informed consent approved by the 

University of Southern California Institutional Review Board and were paid for their participation. 

Procedures conformed to human-subject ethical guidelines.  

 

MRI data acquisition and preprocessing. MRI data were acquired on a Siemens 3T 

Magnetom Trio with a liquid crystal display projector (1024 × 768 pixels at 60 Hz) onto a rear 

project screen behind the head of participants and viewed using a mirror attached to a 32-
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channel matrix head coil. High resolution structural images (MPRAGE) were acquired first; 

repetition time (TR) = 1950 ms; echo time (TE) = 2.26 ms; flip angle (FA) = 7°; 1-mm isotropic 

voxel; field of view (FOV) = 256 mm. Next, functional images were acquired with gradient-echo 

echo-planar T2*-weighted imaging. Each functional volume consisted of 41 interleaved (no skip) 

4 mm axial T2*-weighted slices; TR = 2000 ms; TE = 25 ms; FA = 90°; matrix size = 64 X 64; 

FOV = 256 mm. The fear conditioning run, each run of the spatial detection task, and the PPA 

localizer run were acquired with 180, 160 and 256 EPI volumes respectively. An additional T1-

weighted fast-spin echo (FSE) sequence was administered (repetition time = 750 ms, echo time 

= 12 ms, flip angle = 120, 1 average, 11 axial slices, field of view = 220 mm, bandwidth = 220 

Hz/Px, slice-thickness = 2.5 mm, slice gap = 3.5 mm, in-plane resolution = 0.43 mm2, scan 

duration = 1 minute and 53 seconds).  

During preprocessing, we discarded the first three volumes to account for equilibration 

effects. FMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) Version 

6.00, part of FSL [FMRIB's Software Library; 47]. The following preprocessing steps were 

applied; motion correction using MCFLIRT [48]; slice-timing correction using Fourier-space time-

series phase-shifting; non-brain removal using BET [49]; spatial smoothing using a Gaussian 

kernel of FWHM 5mm; grand-mean intensity normalization of the entire 4D dataset by a single 

multiplicative factor; ICA denoising using MELODIC ICA2 [50] and an automated toolbox [51] 

(an average of 15.54 components were removed from each participant); registration to high 

resolution structural and standard Montreal Neurological Institute (MNI) 2-mm brain using FLIRT 

[48]. For brainstem-targeted connectivity analysis, we performed an additional registration step 

to optimize brainstem alignment (please see section on functional connectivity with brainstem 

regions for more details).   

 

Stimuli and apparatus. Two tones (500 Hz and 800 Hz) served as conditioned stimuli (i.e., 

CSs). We used 270 house/ building place images obtained from several websites, and 240 color 

photographs of various real-world objects obtained from a previously published set of object 

stimuli [52]. All stimuli were gray-scaled and normalized to the mean luminance of all images. In 

the main spatial detection task, one object and one place image were randomly selected from 

the stimuli pool (each participant saw 160 object and 160 place stimuli from the larger pool of 

stimuli). The mild electric shock used as an unconditioned stimulus (US) was delivered to the 

third and fourth fingers of the left hand via a shock stimulator (E13-22; Coulbourn Instruments, 

Allentown, PA), which included a grounded RF filter. The PsychToolbox extension [53; 54] of 
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Matlab 2010b (The MathWorks Corp. Natrick, MA) controlled stimuli presentation and data 

collection. 

 

 

Spatial detection task.  After the fear-conditioning task (see Supplementary Methods for 

details), participants performed a simple spatial detection task (Figure 2). A trial began with 

simultaneous onset of a fixation cross and either the CS+ or CS- tone. The tone played for 0.7 

s, then the fixation cross remained on the screen for 2 s after the tone ended. Then a place-

object image pair was presented in two placeholder frames simultaneously for 0.6 s (4.3° X 4.3°; 

11.5° eccentricity). The salient image had a higher contrast level (80%) than the paired non-

salient image (20%), and to further increase its salience, it was framed by yellow for 0.1s. 

Participants were asked to identify the location of the salient image by pressing a left or right 

button. The ITI was randomly jittered (2.5, 3.5, 4.5 and 5.5 s). Each place image was randomly 

paired with one of the object images with unique pictures shown on each trial; with locations 

also randomly determined. Across five runs, 160 trials were presented. During each run, 16 

CS+ trials (eight place salient and eight place nonsalient trials) and 16 CS- trials appeared in a 

random order. To minimize extinction, three additional CS+ shock trials were presented 

randomly in each run with the constraint that shocks did not occur on consecutive trials. Other 

than the shock and a subsequent 10-s blank interval, these booster trials were identical to the 

main trials, and were excluded from further analysis.  

We asked participants to fixate their eyes on the fixation point that was always in the 

middle of the screen during the task. We took into account stimulus size and eccentricity when 

choosing the two cue image locations, so that participants could see both sides simultaneously 

even when their gaze was directed at the fixation point.  Both younger and older adults 

successfully maintained gaze on the fixation point (see Supplementary Figure 7). Details on skin 

conductance and pupil dilation measures during the tasks are in the Supplemental Methods 

(see associated Supplementary Figure 7).  

 

Parahippocampal place area (PPA) ROI analysis for spatial detection task. We first 

estimated stimulus-dependent changes in BOLD signal for each participant using a GLM with 

regressors for target stimulus and their temporal derivatives for each saliency condition (i.e., 

when place image was salient vs. non-salient) as a function of arousal condition (i.e., CS+ and 

CS-). Motion parameters, booster shock trials, error trials and tone onset timing were included in 

the design matrix as covariates of no interest. The effects of each regressor were estimated 
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over five functional runs (fixed-effects; one younger and one older adult completed four runs, 

and one older adult finished three runs due to time issues).  

We conducted a region of interest (ROI) analysis using FSL Featquery 

(fmrib.ox.ac.uk/fsl/feat5/featquery.html) to probe how emotional arousal interacted with stimulus 

saliency for each Age Group, focusing on the parahippocampal place area (PPA) response, with 

PPA delineated for each participant based on a localizer scan (see Supplementary Methods). 

The PPA is selective for place/scene images [55] and responds to gross spatial properties more 

than to object identity, showing little modulation by object properties [56]. Although object 

images used in the current study induce selective brain response in the lateral occipital complex 

[LOC; 57], the response of the LOC and its sub-regions is mediated not only by object shape 

property itself, but also by various factors such as spatial information of the presented images 

[33], simultaneous presentation with task-irrelevant information [i.e., clutter; 58] and other 

contextual factors such as bottom-up saliency [59]. Consistent with previous findings, we found 

that neural activity in the LOC did not adequately discriminate between our object and place 

images (Figure 8). Hence, the LOC was a sub-optimal region for measuring visual competition 

between places and objects, however objects served as useful control stimuli for examining the 

effects of scene salience on PPA response. 

 

Whole-brain voxelwise analysis for spatial detection task. In this analysis, we focused on 

whether emotional arousal had different effects on brain activity in younger versus older adults 

(i.e., the interaction Arousal Condition X Age Group). To do so, a standard GLM was performed 

to estimate the BOLD signal for the tone onset and their temporal derivatives as a function of 

arousal condition (CS+, CS-) regardless of saliency conditions. Motion parameters, booster 

shock trials, and target onset timing were included in the design matrix as covariates of no 

interest. A group-level analysis (random-effects) was also performed (random-effects with 

FLAME1+2 model; Z > 2.3 with corrected cluster p = .05, one-tailed). 

 
PPA-whole brain functional connectivity analysis.  To characterize dynamic interregional 

interactions, a beta series correlation analysis [60] was performed using least squares 

estimation [see LS-S model; 61] where each single-level general linear model (GLM) included 

regressors for the current trial, all other remaining events, and all other non-interest events (i.e., 

nuisance regressor; motion parameters, booster shock trials, error trials and tone onset timing). 

Finally, extracted mean activation (i.e., mean parameter estimates) of each trial from the 

individual ROI masks were used to compute correlations between the seed's signal and signal 
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of all other voxels in the whole brain, thus generating condition-specific seed correlation maps. 

Correlation magnitudes were converted into z scores using the Fisher's r-to- z transformation. 

Condition-dependent changes in functional connectivity were assessed using random effects 

analyses, which were thresholded at the whole-brain level using clusters determined by Z > 2.3 

and a cluster significance threshold of p = .05 (corrected; one-tailed). Since our interest was 

how the PPA interacted with frontoparietal networks as a function of place salience, arousal 

level and age, we examined the 3-way Arousal (CS+, CS-) X Saliency (place salient, place non-

salient) X Age Group (younger, older) interaction. 

 

PPA and frontoparietal network functional connectivity with brainstem regions. To 

optimize brainstem signal measures for analyses examining functional connectivity between 

cortical seed regions and the LC, we conducted a separate registration process for the target 

brainstem region. Images were registered to a 2-mm standard-space MNI image using the 

following steps: 1) Registering each participant’s functional scan to his/her high-resolution 

anatomical scan using an affine transformation with 6 DOF; 2) Registering each participant’s 

high-resolution anatomical scan to the MNI standard-space 2mm brain template using an affine 

transformation with 12 DOF; 3) Performing a follow-up anatomical-to-standard affine registration 

with 12 DOF and applying a binarized brainstem mask (Harvard-Oxford atlas at 50% probability) 

as a reference weight [40]. Then we used the same beta series correlation analysis method as 

outlined above, with the mean parameter estimates extracted from the PPA and the 

frontoparietal network from data processed using the standard whole-brain alignment process. 

Condition-specific seed correlation maps were produced for the relationship between these 

cortical seeds’ signals and signals in voxels within the brainstem mask. Given our a-priori 

prediction of LC involvement in arousal-salience interactions based on our GANE model 

simulation and the small size of the LC, we applied voxel-based thresholding combined with 

false recovery rate (FDR) correction (q = .01) based on the statistical map within the brainstem 

mask (from Harvard-Oxford atlas).  

 

Code Availability  
 The code associated with the neural network simulation and with the experimental tasks 

are publicly available at https://osf.io/zw8aj/. 

 
Data Availability  
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 The behavioral and summarized data from the current study are available at 

https://osf.io/zw8aj/. The MRI data are available at the OpenNeuro repository at 

https://openneuro.org/datasets/ds001242.
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Figure 1. A graphical depiction of the proposed mechanism. (A) Glutamate spills over from 
glutamatergic synapses at the sites of excited representations [62] (e.g., neurons responding to 
the salient building depicted in Figure 2B). (B) If the LC happens to be activated (i.e., 
depolarized) at the same time that glutamate reaches NMDA receptors on LC axons, this 
triggers more local release of NE from those LC varicosities. (C) Elevated local levels of NE 
activate beta-adrenergic receptors that further stimulate glutamate release, leading to a local hot 
spot of high excitation. Autoreceptors at LC varicosities also contribute to increasing neural gain 
by inhibiting NE release when low levels of NE activate alpha-adrenergic receptors but 
increasing NE release when high levels of NE activate beta-adrenergic receptors [for details see 
2]. 
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Figure 2. A) MRI session sequence. B) Schematic illustration of one trial for the detection task. 

Participants heard a tone for .7s, then after a 2-s interstimulus interval (ISI), were shown one 

salient image and one non-salient image and pressed a button to indicate whether the salient 

image was on the right or left. Salience was manipulated both by varying the contrast between 

the two images and by having the more salient image have a yellow border.  
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Figure 3. Place area activity during the spatial detection task. (A) Location of individual PPAs 
(B) Averaged % signal changes in the PPA region as a function of trial type and arousal in 
younger adults (N=28) and (C) in older adults (N=24). For distributions of individual data points, 
please see Supplementary Figure 3.  
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Figure 4. Computational modelling. (A) Schematic illustration of the model architecture. Only 

two units in each layer are displayed. (B) Simulated values for activation in the GANE model 

hidden unit representing the place area when arousal is high or low and the place stimuli 

representation is salient or nonsalient. (C) Examining effects of impaired inhibitory mechanisms 

in the model to simulate older adults. 1st panel: reduced NE reuptake efficacy based on 

impaired alpha2a function. 2nd panel: moderately impaired GABA function. 3rd panel: reduced 

NE reuptake efficacy and moderately impaired GABA function. 4th panel: Strong GABA 

impairment. Notes: The sample size in each simulation was 50; y-axis error bars indicate 

standard error of the mean. 
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Figure 5. (A) Whole-brain analysis results of the Arousal X Age Group interaction and (B) 
extracted percentage signal change (CS+ minus CS-) within the frontoparietal network clusters 
for younger adults (YA, N =28) and for older adults (OA, N = 24). Although error bars are 
included for the graph, it should not be interpreted inferentially. (C) Scatter plot illustrating the 
relationship between percentage signal change in the frontoparietal network region during the 
detection phase and pupil diameter changes during the post-tone period for each age group. *p 
= .001, 95% CI from non-parametric testing with 5,000 bootstrapped samples, (YA N =27 and 
OA N = 17). To see distributions of individual data points for (B), please see Supplementary 
Figure 5.   
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Figure 6. (A) For reference for the connectivity analyses, we provide images of the target 

regions of interest; the locus coeruleus (LC) mask is from Keren et al. [63], and the bilateral 

frontoparietal network (FPN) mask is from Laird et al. [41]. (B) Parahippocampal place area 

(PPA; individually localized for each participant) served as the seed region with brainstem as 

the target; both younger and older adults had greater LC activity for arousing than non-arousing 

trials (left panel), with this arousal effect significant in the salient condition but not in the non-

salient condition (middle panel), leading to an arousal-by-saliency interaction within the LC (left 

panel). (C) The same PPA seed with cortex as the target revealed regions in the FPN that 

showed age differences in how much arousal modulates functional connectivity. (D) Using the 

Laird et al. (2011) FPN mask shown in panel A as the seed region and the brainstem as the 

target region revealed greater increases in LC-FPN functional connectivity under arousal for 

younger than for older adults. Note: YA, younger adult (N=28); OA, older adult (N=24). 
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Figure 7. The arrows summarize the increased functional connectivity observed under arousal. 
For younger adults, there were increases in functional connectivity under arousal in all three 
pathways represented here. For older adults, arousal increased functional connectivity between 
the locus coeruleus (LC) and local cortical representations (here the parahippocampal place 
area or PPA) especially when that cortical representation was of a salient stimulus, just as seen 
for younger adults. However, older adults showed smaller increases in LC-frontoparietal 
functional connectivity than younger adults did, and older adults showed no detectable 
increases under arousal in functional connectivity between the frontoparietal network and the 
PPA. This pattern of results suggests that older adults had intact LC direct modulation of salient 
cortical representations of place stimuli under arousal, but the frontoparietal network no longer 
responded effectively to LC and so frontoparietal contributions to attentional selectivity did not 
increase under arousal.   


