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Abstract We present a composite design methodology for the simulation and optimization
of the solar cell performance. Our method is based on the synergy of different computational
techniques and it is especially designed for the thin-film cell technology. In particular, we aim
to efficiently simulate light trapping and plasmonic effects to enhance the light harvesting of
the cell. Themethodology is based on the sequential application of a hierarchy of approaches:
(a) full Maxwell simulations are applied to derive the photon’s scattering probability in sys-
tems presenting textured interfaces; (b) calibrated Photonic Monte Carlo is used in junction
with the scattering matrices method to evaluate coherent and scattered photon absorption
in the full cell architectures; (c) the results of these advanced optical simulations are used
as the pair generation terms in model implemented in an effective Technology Computer
Aided Design tool for the derivation of the cell performance; (d) the models are investigated
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by qualitative and quantitative sensitivity analysis algorithms, to evaluate the importance
of the design parameters considered on the models output and to get a first order descrip-
tions of the objective space; (e) sensitivity analysis results are used to guide and simplify
the optimization of the model achieved through both Single Objective Optimization (in order
to fully maximize devices efficiency) and Multi Objective Optimization (in order to balance
efficiency and cost); (f) Local,Global and “Glocal” robustness of optimal solutions found by
the optimization algorithms are statistically evaluated; (g) data-based Identifiability Analysis
is used to study the relationship between parameters. The results obtained show a noteworthy
improvement with respect to the quantum efficiency of the reference cell demonstrating that
the methodology presented is suitable for effective optimization of solar cell devices.

Keywords Thin-film silicon solar cell · Quantum efficiency · Photonic Monte Carlo ·
Multi-objective optimization · OptIA · Clonal selection algorithm · Morris method · Sobol
indexes · Robustness analysis

1 Introduction

In the last decades a lot of effort has been devoted to find optimal solar cells design, creating
a very vast research field [1–3]. Three main kinds of solar cell devices had captured most of
the attention: (I) photovoltaic (PV), which convert energy transported in light directly into
electrical energy using devices based on semiconductormaterials (this devicewill be analysed
in this works), (II) thermophotovoltaic (TPV) [4], which convert heat into electricity by
radiating photons that are then converted into electron-hole pairs via a photovoltaic medium,
(III) nanophotonic thermophotovoltaic, promising devices recently developed in [5] which
combines the best features of PV and TPV. However, optimization and analysis of solar
cells have revealed to be a hard task, mainly because of the high number of (microscopic and
conflicting) parameters to be set and the difficulties on finding a computationally-competitive
accurate model.

In this work we present a combination of numerical algorithms especially designed for
thin-film cell analysis and optimizations. Precisely, our approach is composed of four distinct
steps: Sensitivity Analysis (SA) of model parameters, in order to study the effect that each
parameter has on the model; Single Objective optimization (SOO) andMulti Objective Opti-
mization (MOO) applied to the most sensitive parameters (we call these “SA + SOO” and
“SA + MOO”), to find designs maximizing the efficiency of the cell along with trade-offs,
balancing the efficiency of the cell and its production costs; robustness analysis, local, global
and glocal, of the best designs found on the optimization cycle, to fully evaluate a device
resistance against perturbation (e.g. usage, production imprecisions etc.); identifiability anal-
ysis, used to investigate the model for parameters functional relationships. We demonstrate
the capabilities of our approach for the optimization and analysis of Tandem Thin-Film Sili-
con devices, using different Transparent Conductive Oxide (TCO) and Back Reflector (BR)
materials. We show that we are able to obtain remarkable efficiency-cost improvements, up
to 6.71% with respect to the reference cell considered.

The choice of tandem thin-film silicon solar cell in this study, is justified by the recent
amount of work that has been spent in optimizing the efficiency of these promising devices.
In fact the second generation of thin-film cells has recently arose as a valuable alternative to
the more expensive devices, previously built, made of thick polycrystalline silicon wafers.
However, the reduced thickness of the absorbing layer, as it will be demonstrated in the next
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sections, inevitably leads to a reduction in the device efficiency. Hence, several light trapping
techniques have been proposed and introduced, during the years, in thin-film cells in order to
balance such an effect. Examples are the introduction of a Back Reflector metals layer and,
mainly, the chemical introduction of random nano-texturing at the interfaces separating the
cell layers [6,7]. The former has been exhaustively investigated in this work. Indeed, a part
of our study concerns the explorations of different doping dosage (four dosage level have
been considered), together with two level of back reflector smoothness. We found that the
best materials to be used, compared to the ones here analysed, are the ZnO for the T C O
layer, and smooth Ag for the back reflector layer. However different doping dosage of ZnO
should be applied to obtain different trade-offs balancing efficiency and cost of the cell.

The presence of random nano-texturing, whereas, lead to the computational intractability
of this devices using Maxwell solvers [8], thus a lot of effort has been recently spent in
the development of accurate, however, computational tractable models. The one we have
implemented is based on a well balanced combination and generalization of the different
approaches presented in [9,10].

Finally we perform a comparison among the results obtained by using the methodolog-
ical approach here presented and by applying OptIA [11,12] , an immune system based
optimization algorithm for single and multi objective optimization.

The remainder of the paper is organized as it follows. In the second section we explain
the details of the algorithms composing our methodology. The optical model implemented is
discussed along with the experimental results obtained using different materials in the third
section. The simulation results obtained with our methodology are presented and commented
in the fourth section. Finally, in the last section we present our conclusions and possible
remarks for future works.

2 Building blocks and literature review

In this section we introduce the problem addressed in this paper, the algorithms we used
and the main reasons of our choices. The general form of a constrained global optimization
problem is:

minimize F(x1, . . . , xk)

subject to (x1, . . . , xk) ∈ T (1)

where F : R
k → R

n is the n-component objective functions vector, i.e. F(x) ≡
( f1(x), f2(x), . . . , fn(x)) for some scalar functions fi (x), i = 1, 2, . . . , n (assuming
that F is to be minimized is not restrictive), k is the domain space dimension, n is the
number of objective functions (if n = 1 we talk about Single Objective Optimization
(SOO), otherwise Multi-Objective Optimization (MOO)), and T is a subset of Rk . A point
x = (x1, . . . , xk) ∈ R

k is said to be a feasible (respectively unfeasible) point with respect to
problem (1), if x ∈ T (respectively x /∈ T ). The presence of constraints in an optimization
problem may greatly increase its complexity [13].

In Fig. 1we summarise the composite designmethodology presented in this work. Initially
the model is investigated by means of Sensitivity Analysis, that evaluate the magnitude of
the effect that each parameter has on the solar cell efficiency, and possibly remove from the
model input parameters that have only weak influence on the latter. The (reduced size) model
is hence fed into black-box Single andMulti Objective Optimization solvers, respectively for
full optimization of optical efficiency of the solar cell, and for trade-off analysis of efficiency
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Fig. 1 Flow chart of the composite design methodology applied for the analysis and optimization of the
tandem thin-film silicon solar cells. Relative computational costs are also provided for each step

and production costs. Finally optimal and Pareto-optimal designs are evaluated by means
of Robustness Analysis, and the Identifiability Analysis is used to invert the relationship
between model parameters and Pareto optimality.

2.1 Single objective Optimization

Almost all non-trivial engineering designing problems concern the optimization of an objec-
tive function characterized by a complex domain-codomain behaviour, forwhich traditionally
technique cannot be applied [14–16]. Clearly there is currently no algorithm, which performs
better than the others in every possible engineering problem [17], justifying the fact that new
algorithms are continuously designed. In this work we use the Multilevel Coordinate Search
(MCS) algorithm for solving the single objective optimization problem associated to thin-film
silicon solar cell efficiency. However, in some particular cases MCS is strongly competitive
and outperforms some state-of-art algorithms [18]. We here give just a quick explanation of
the working principle of the method, refer to [19] for details.

The MCS algorithm is a combination of heuristics and calculus approximations; it is
composed of two main sub-routines: a global routine and a local one. The global part is
obtained via a branch-based algorithm. The domain is repeatedly split, along a coordinate
direction, into, usually, three sub-boxes; each one of themcontaining abasepoint (a promising
point for the optimization problem) and an opposite point, used to determine the sub-box.
The splitting process is iterated up to an user-defined-number of times. The local search
is whereas obtained via quadratic approximations of the function in the neighbourhood of
some optimal points previously selected. Interpolating points used in the quadratic models
are selected using a combination of triple and coordinate search.

2.2 Multi-objective optimization

SOOmay reveal to be restrictive for the majority of real world problems; often mathematical
models present more than one objective function to be optimized, usually those being in
contrast with each other (e.g., generally the more efficient a device is the more expensive it
is). We thus introduce the well known definition of Pareto optimality, and the partial order
deriving from it. A point x ∈ T of the domain space, is said to dominate a point y ∈ T , with
respect to problem (1), if fi (x) ≤ fi (y) ∀ i = 1, . . . , n ∧ ∃ j s.t. f j (x) < f j (y). The
Pareto-Front is then defined as the total set of non-dominated feasible points.
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Evolutionary algorithms (EA) are a class ofmeta-heuristicmethods that operate on a set of
candidate solutions and subsequently, using biologically-derived evolution techniques (e.g.
mutation, crossover), modify it. Because of their intrinsic nature, this class of algorithms
may be easily adapted to face MOO problems [20]. Contrarily, exact algorithms for most of
real world problems, as thin-film solar cell optimization process, may reveal to be unsuitable
due to a high dimensionality of the problem considered. Indeed, in order to avoid an increase
of the computational complexity in the optimization process, we do not consider a robust
MOO [21–23] as a core of our optimization but, instead, we tackle this problem using a
post-processing robustness analysis techniques (see 2.2.2). Among a vast literature on MOO
algorithms [24–27], in this work we have used the NSGA-II algorithm, which we will briefly
explain in the following.

NSGA-II [28] is a multi-objective evolutionary algorithm based on non-domination,
elitism and crowding distances. At each iteration the algorithm assigns two attributes to
each point (candidate solution) of the current population, namely rank and crowding dis-
tance, as it follows. The fast non-dominated sort algorithm implemented in NSGA-II, sorts
the points of the current population P in different frontsF1,F2 . . . ,Fs , such thatF1 contains
all non-dominated points of the current population, F2 contains the non-dominated points
of the current population minus those ones which are in F1, and so on. We then say that a
point x has rank p if x ∈ Fp . So the rank is the measure of a point quality (the less the
better). The crowding distance of x , estimates how isolated x is in the domain space. Hence
the crowding distance of a point x is high if F(x) lies in unexplored regions of the objective
space (thus the higher the better). The points are thus sorted according to the order induced
by rank and crowding distance. The crowding distance of x , is an estimation of the density
of points near x . It is calculated by selecting, for each objective, the two closest points on
each side of x , calculating their distance and finally summing them over all the objective
functions. Namely it is defined Front-wise as it follows: let x j , j = 1, . . . , l be all the points
in the pth front Fp . Let fi , i = 1, . . . , n, be the i th objective function; assume that the x j s
are indexed accordingly to their i th objective function values, define:

mi (x1) = mi (xl) = +∞
mi (x j ) = fi (x j+1) − fi (x j−1)

fi (xl) − fi (x1)
, if j = 2, . . . , l − 1.

Finally the crowding distance of x is defined as: cdist (x) = ∑n
i=1 mi (x).

2.2.1 Sensitivity analysis

Sensitivity analysis (SA) may be loosely defined as the study of how output uncertainty of a
model may be justified in terms of uncertainty in the model input parameters [29]. We use
SA both to give an accurate mathematical description of the model parameters considered
in the optimization problems and to reduce the domain space dimension, in order to obtain
a computational reduction. In order to accomplish this task we implement two different SA
algorithms, namely the Morris algorithm and the Sobol’s indexes based approach. Methods
as the Morris one are usually referred to in literature as screening methods or qualitative
methods, because they tend to give a qualitative description of the parameters influence rather
than a quantitative [30,31], indeed ranking the factors on an interval scale (i.e. it is a one-step-
at-a-time method). The Sobol’s indexes approach is whereas a Variance-based quantitative
SA method, which indeed gives quantitative information about the output variance portion
that may be explained by each parameters or even by groups of parameters [29]. The cost
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of this information is, of course, a significantly higher computational burden. It follows a
review of the functioning principles of both methods.

The basic idea behind the Morris method is that, given the model function and the i th
parameter of the domain, low values of ∂ F

∂xi
may be interpreted as low influence of the i th

parameter on the output. Hence the method consists of random sampling of the domain T
(assumed to be a k-dimensional equally spaced grid) and approximation of the effect that
every parameter has. Namely, given x = (x1, . . . , xk) on the domain and a Δ ∈ R, multiple
of the grid step, such that x +ei Δ = (x1, x2, . . . , xi +Δ, . . . , xk) still belongs to the domain,
where ei is a vector of zeros but with a unit as its i th component, the algorithm computes the
elementary effect:

E Ei (x) = F(x1, x2, . . . , xi + Δ, . . . , xk) − F(x)

Δ
.

As x spans the domain we obtain the set:

EE i = {E Ei (x) | x ∈ T and x + ei Δ ∈ T }.
The i th parameter overall influence is thus estimated considering the mean μ∗

i and standard
deviation σi of the absolute values of EE i elements [32]. Specifically, high values of mean
stands for high influence of the i th parameter on the output, high values of standard deviation
stands for strongly non-linear effects and/or correlation with other parameters.

The computation of Sobol’s indexes [33] is based on a high dimensional model represen-
tation of the objective function F (known as ANOVA decomposition). It can be proved [34]
that:

V =
∑

i

Vi +
∑

i

∑

j>i

Vi j + · · · + V12...k

where V is the total variance. The right-side terms of this equation represent the contribution
of each and group of parameters on the total variance. The first order sensitivity index for the
i th parameter is thus defined as Si = Vi

V . It gives information on the contribution that each
factor (taken alone) has to the output. Whereas the total effect Sobol’s indexes STi is defined
as STi = 1− V−i

V , where V−i is the variance computed on all parameters except xi , which is
supposed to be fixed to its true (nominal) value [31].

To efficiently approximate the Sobol’s indexes we implemented a Monte Carlo approach
[29]. The complete procedure is illustrated in Algorithm 1. Let A = (A1, A2, . . . , Ak) ∈
R

N ,k and B = (B1, B2, . . . , Bk) ∈ R
N ,k (where k is the domain space dimension and N

is the number of samples considered) be two input sample matrices randomly generated
in the domain space and let Ci = (B1, . . . , Bi−1, Ai , Bi+1, . . . , Bk), ∀ i = 1, . . . , k. Let
Y ≡ F(x1, . . . , xk) be the model output (i.e. in our case a n-dimensional vector), the first-
order indexes Si and the total effects STi can be respectively computed as:

Si = Vi

V
= V [E[Y |Xi ]]

V [Y ] = yA · yCi − f 20
yA · yA − f 20

STi = 1 − V−i

V
= 1 − yB · yCi − f 20

yA · yA − f 20

where yA, yB and yCi are the evaluation of objective function on the matrices of data A, B
and on Ci , and f0 is the mean, that can be either estimated by using sample A or B, defined
as (e.g. using sample A)
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f 20 =
⎛

⎝ 1

N

N∑

j=1

y( j)
A

⎞

⎠

2

.

Algorithm 1 Sobol’s Indexes Computation [29]
procedure EstimateIndex(N)

A ← RandomSampling(N )

B ← RandomSampling(N )

f̂0 ← EstimateMean(A, B)

V̂ ← EstimateV ariance(A, B)

for i = 1, . . . , k do
Ci ← (B1, . . . , Bi−1, Ai , Bi+1, . . . , Bk )

Ui ← 1
N−1

(
yA · yCi

)

U−i ← 1
N−1

(
yB · yCi

)

Si ← Ui − f̂ 20

STi ← 1 − U−i − f̂ 20
V̂

return (S , ST )

2.2.2 Robustness analysis

In this section we introduce the concept of robust design and the three different indexes
we have used to evaluate thin-film devices robustness. It is indeed clear that the quality of
a solar cell cannot be evaluated only considering its Pareto-optimality with respect to the
objective functions. We argue that an important factor that has to be taken into account,
especially in such a design optimization problem (i.e. solar cell), is the robustness of the
device. Intuitively, a device (more generally a point of the domain) is said to be robust with
respect to problem (1) if small changes on the design parameters correspond to small changes
on the objective function computed on the “perturbed design” [35–37]. In order to precise this
intuitive definition of robustness we introduced three robustness indexes, which will reveal
to be essential for the Decision Making.

The Local robustness (LR)and Global robustness (GR) indexes are based on the idea
that perturbations, interpreted to be production errors or usage, may be both assumed to be
Gaussian distributed. We set to zero the distribution mean, and the standard deviation of the
distribution to 1% of the corresponding parameter value. The computation of the Local index
is as it follows: for i = 1, . . . , k, the i th Local robustness index of x (L Ri (x)) is computed
via a Monte Carlo approach by perturbing N times the i th parameter of x (say x + eiΔ

the perturbed point) using Gaussian noise (set as explained above), and then computing the
fraction of perturbed points for which F(x + eiΔ), where ei is a k-vector of zeros but with
a unit as its i th component, does not deviate more than 1% from F(x). In other words:

L Ri (x) = |τi |
N

where τi =
{

x + eiΔ : ||F(x + eiΔ) − F(x)|| ≤ ||F(x)||
100

}

Analogously the Global robustness index of x (G R(x)) is computed by perturbing N times
all the parameters of x with Gaussian noise and calculating the fraction of perturbed points
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(say x + Δ every each perturbation) such that F(x + Δ) do not deviate more than 1% from
F(x); in short:

G R(x) = |τ |
N

where τ =
{

x + Δ : ||F(x + Δ) − F(x)|| ≤ ||F(x)||
100

}

The Local robustness index is computed only considering perturbation along coordinate
directions, it doesworkwell as a screening of a point robustness, and quantifies the robustness
of each parameter of the point. The Global robustness index quantifies, on the other hand,
the point resistance against random perturbations. However these methods work with a fixed
perturbation strength (σ ) that bounds the region in which perturbed points are explored.

The “Glocal” robustness index (proposed in [38]) is a hybrid method for the evaluation
of a point robustness. Given an initial point, x ∈ T , it iteratively tries to find the biggest
viable region (which is a region in which F(x + Δ) does not deviate too much from F(x))
in a neighbourhood of x ; then a Monte-Carlo integration is used to approximate the volume
of the Viable region, and finally the volume is normalized in order to get a robustness index
which is independent on the number of parameters composing themodel. Hence the“Glocal”
index depends on the biggest “stable” region around x . An obvious drawback of this method
is the tremendous computational burden. In order to reduce the computational effort in the
Viable region search, the latter is guided by aPrincipal Component Analysis (PCA), which is a
standard statistical tool for non-parametrically extracting relevant information from complex
data-sets (see for example [39]).

2.2.3 Identifiability analysis

The last step of the methodology we present is the Identifiability Analysis (IA). In the most
general form (see [40] for further details on the definition), consider a system governed by
a set of (possibly differential) equation. Let z be the state variable of the model, with z0 the
initial value for z. Let t be the time variable and x be the parameter of the model (i.e. the
design parameter of the solar cell in our case). Identifiability analysis is applied to a model
of the form

ϕ(z, ż, z̈ . . . , z(m), t, x) = 0 (2)

z(0) = z0 (3)

y = G(z, t, x) (4)

where ϕ is a function of the state variable x , its derivatives, a k-dimensional parameters
vector x , and time t . Equation (3) enforces the initial condition for the model considered. y,
the observation variable, is a function of z, t and x . A parameter xi is said to be identifiable
(with respect to the model considered) if there exist, for given values of z0 and y , a unique
solution for xi from equations (2)–(4); otherwise it is said to be (structural) non-identifiable.
Non identifiability manifests itself through functional relations between the non-identifiable
parameters, thus most of the IA algorithm analyse the model looking for those.

In this work we use theMOTA (mean optimal transformation approach) algorithm, a data-
based Identifiability Analysis algorithm, which are a class of a-posteriori model-independent
method, hence perfectly suited for our application. The MOTA [40] algorithm is based on
consecutive iterations of the ACE (alternating conditional expectation) algorithm [41], which
estimates optimal transformations that maximize the linear correlation between parameters.
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Briefly by choosing a parameter as response, say x j , and the others as predictors, assuming
that there exist transformations such that

ψ(x j ) =
∑

i �= j

φi (xi ) + ε (5)

ε being Gaussian noise, the ACE algorithm estimates, via an iterative process, optimal trans-
formations ψ and φ j such that:

ψ(x j ) =
∑

i �= j

φi (xi ) (6)

However the ACE algorithm itself cannot be used for IA: if, say, φi (xi ) = 0 (i.e. xi is not
correlated to x j ) then it may occur that φi (xi ) �= 0, because xi will be used by the algorithm
to justify the noise in Eq. (5). The idea behind the MOTA algorithm is then easy to grasp:
running the ACE algorithmmore than once, if the i th transformation, φi (xi ), remains “quite”
stable (the authors introduced a precise index for that), then parameter xi is considered to
be correlated to x j . Finally parameters that have been found correlated with each other are
retained to be non-identifiable.

In the next section we will introduce the optical model we have used for the evaluation of
the optical efficiency of tandem thin-film silicon solar cell. As conclusion of thismethodology
section we present in Algorithm 2 the pseudo-code of our methodology, in the MOO case.

3 Thin-film silicon solar cell

The structure of a Thin-Film Silicon Solar Cell used as a case of study is shown in Fig. 2. The
cell structure is based on a two coupled p-i-n devices, one made by amorphous Si (a− Si) the
second by micro-crystalline Si (μc− Si) separated by a thin ZnO layer. The two p-i-n photo-
diodes are sequentially grown on a thick Si O2 + ZnO substrate and a metallic (Ag in our
case) electrode completes the structure. The light is collected through the glass. The tandem
solar cell takes the vantage of different regions of high light harvesting efficiency of the two

Algorithm 2Multi-objective oriented methodology
procedure Input: T opology, Param, MaxGen, Pop

gen ← 0
Param ← Sensi tivi t y Analysis(T opology, Param) /*Morris and Sobol Analysis*/
P(gen) ← I ni tiali ze(Param)

Rank&CrowdingDistance(P(0))
Evaluate(P(gen)) /*Ev. of the objective functions of P(gen)*/
while ¬gen < MaxGen do /*NSGAII loop*/

Pool(gen) ← Selection(P(gen),
[ pop

2
]
) /*Selection of

[ pop
2
]

from P(gen)*/

Q(gen) ← GenerateO f f spring(Pool(gen))

Evaluate(Q(gen))

Rank_and_crowding_distance(Q(gen))

P(gen+1) ← Best (P(gen) ∪ Q(gen), pop) /*Best individuals are chosen*/
gen ← gen + 1

PF = ParetoAnalysis(
(⋃

gen P(gen)
)
)

RI = Robustness Analysis(PF) /*Robustness Indexes evaluation*/[
{Φi }i∈I ,

{
Ψ j
}

j∈J

]
= I denti f iabili t y Analysis(PF) /*MOTA algorithm*/

return
(
PF ,RI, {Φi }i∈I ,

{
Ψ j
}

j∈J

)
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Fig. 2 2-D tandem thin-film
silicon solar cell structure, using
ZnO as transparent conductive
oxide (TCO) and Ag as back
reflector (BR). dμc−Si (the
thickness of the μc − Si : i layer)
and σi (i = 1, . . . , 11) are the
parameters selected for the
optimization process

materials in the solar spectrum related to the different band gaps∼ 1.1eV for theμc− Si and
∼ 1.7eV for the a − Si . Thin-Film technology gives the possibility of building cheaper PV
devices. Namely instead of cutting thick wafers of polycrystalline Si and then using them
to build the device, the layers are subsequently grown using the Plasma-assisted chemical
vapour deposition technique [42]. This makes possible to design devices with a Si layer
(more generally the absorber layer) thickness of the μm order, which is 2 order of magnitude
less then previously used devices. However, clearly, less thickness means less absorption, so
light trapping techniques have been used to improve the photon optical path in the layers.
Examples of this are the introduction of a back reflectors layer in the device architecture and
the nano-texturing in the cell layer interfaces. The latter is usually obtained using alkaline
solutions, as KOH or NaOH, which corrode the silicon forming randomly positioned square
pyramids. The depth of those can be accurately tuned controlling the temperature and the time
length of the corrosion process (an overview of the recent advances may be found in [43]).
The optimization of the cell geometry in term of light harvesting can be performedmodifying
meso-scale features (thickness of the different layer) and nano-scale features (nano-texturing
of the interface). However, the meso-scale features cannot be optimized without considering
the processing time (and the related cost), which is amonotonic function of the layer thickness
(especially the μc − Si : i one [1]). It is worth noting that there are alternatives to random
nano-texturing: the work in [44] demonstrates that periodic nano-texturing may strongly
improves the efficiency of the solar device. Understanding the trade-off between the different
effects in the cell design is, of course, a complex problem and it needs a suitable numerical
approach. We now give a quick overview of the two methods [9,10] we have combined in
order to compute devices quantum efficiency.

3.1 Electromagnetic fields computation

Let us assume that the electromagnetic radiation is normal to the device. First, we define:

– I, R, T the amplitude of incident, reflected and transmitted electric fields.
– σi , i = 1, . . . , 11, as the roughness of the interface between the (i − 1)th and the i th

layer (where the 0th layer is the external ambient);
– di , i = 1, . . . , 11, the thickness of the i th layer;
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– Ni = ni − ı ki the complex index of refraction of the i th layer;

– Sr,i = e− 1
2 (

2πni−1σi
λ

)2 and St,i = e− 1
2 (

2π [ni−1−ni ]σi
λ

)2 , λ being the wavelength;

– E L F
i , E RF

i , E L B
i , E RB

i , i = 1, . . . , 12, respectively the amplitude of the incident wave
on the i th interface travelling in a forward direction, backward direction, left and right.

According to Fresnel’s equations for nano-rough interfaces the complex reflection and trans-
mitted coefficients (forward and backward) are given by

rF,i = Ni−1 − Ni

Ni−1 + Ni
Sr,i rB,i = Ni − Ni−1

Ni−1 + Ni
Sr,i+1 (7)

tF,i = 2Ni−1

Ni−1 + Ni
St,i tB,i = 2Ni

Ni−1 + Ni
St,i+1 (8)

The second factors in (7)–(8) are due to the roughness of the interfaces.Hence, the relationship
between the incident, reflected and transmitted amplitude is

[
I
R

]

= I1L1 I2L2 . . . L11 I12

[
E RF
12

E RB
12

]

≡
[

S11 S12
S21 S22

] [
T
0

]

(9)

where

Ii =
⎡

⎢
⎣

1
tF,i

− rB,i
tF,i

rF,i
tF,i

tF,i tB,i −rF,i rB,i
tF,i

⎤

⎥
⎦ ,

Li =
[

eıβi di 0
0 e−ıβi di

]

,

where i = 1, 2, . . . , 11, 12 and βi ≡ 2πni
λ

− 2πki
λ

ı .
Having calculated the amplitudes, the respective intensity may be easily computed. Using

(9) we can determine E RF
i and E RB

i and hence the resultant forward-going wave E F
m (x) and

the resultant backward-goingwave E B
m (x). Finally, we can obtain the absorption profile in the

i th layer and the corresponding integrated absorption and sum them over all the wavelength
to obtain the total absorption profile and relative integrated absorption. Thus, as explained in
[10], the scattered light in the i th layer can be approximated by

X F
i = αni

[
|E RF

i |2|rF,i |2
(
1 − S2

r,i

)+ |E RB
i |2|tF,i |2

(
1 − S2

t,i

) ]

X B
i = αni

[
|E RF

i+1|2|rB,i |2
(
1 − S2

r,i+1

)+ |E RB
i+1|2|tB,i |2

(
1 − S2

t,i+1

)]

Refer to the original work for details on the computation of α.

3.1.1 Scattered light computation

In order to evaluate the total absorption profile of scattered light we have used the Monte
Carlo approach presented in [10]: a certain number of photons are traced until the photon
absorption in a layer or the photon reflection to air takes place. Photon possible behaviours
depend on his position within the cell:

– A photon in a layer may be absorbed with a probability that depends on ki , di and θ , the
latter being the convex angle between the photon direction and the normal direction to
the layer.
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Table 1 Reference cell Material Thickness (nm) Roughness (nm)

Glass 3.5 × 106 σ = 0

ZnO 600 σ = 120

a − Si :p 20 σ = 2

a − Si :i 300 σ = 30

a − Si :n 20 σ = 2

ZnO 20 σ = 2

μc − Si :p 20 σ = 2

μc − Si :i 1.7 × 103 σ = 170

μc − Si :n 20 σ = 2

ZnO:Ag 20 σ = 2

Ag 150 σ = 15

– Aphoton incidentwith a rough interfacemay be (i) transmitted and scattered, (ii) reflected
and scattered, (iii) refractively transmitted and specularly reflected; these events proba-
bilities depend on θi , θi+1 (the refractive angles that can be calculated using Snell’s law),
ni and σi .

3.2 Thin-film silicon solar cell problem

As previously explained the parameters we consider are: (i) the roughness of each interface:
σi , i = 1, . . . , 11; (ii) the thickness of the micro-crystalline silicon layer: dμc−Si . The multi-
objective optimization problem can be summarized as:

minimize dμc−Si

maximize Qe

subject to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ1 = 0

0 ≤ σ2 ≤ 0.3 d2

0 ≤ σi ≤ 0.2 di i = 3, . . . , 11

0.7dμc−Si ≤ dμc−Si ≤ 1.3 dμc−Si

(10)

in which Qe is the average overall quantum efficiency of the cell in the ideal charge collection
conditions (100 % collection efficiency independently on the frequency) calculated as the
average absorption in the two intrinsicμc−Si :i and a−Si :i layers, dμc−Si is the thickness of
the intrinsic μc − Si layer and di is the thickness of the i th reference cell material (Table 1).
Theminimization of themicro crystalline layer thickness is justified, as alreadymentioned, by
the high fabrication cost of this particular layer. Constraints in (10) are introduced to mitigate
the scattering weight in case of filmmuch thinner than the first ZnO layer roughness. In these
cases the approximationmade by themodelling approach used in this paper does not hold any
more; an improved description can be obtained using the effective medium approximation
[45] and it will be included in the next version of the algorithm.
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Fig. 3 Results of the Morris analysis applied on solar cells optical model for a number of trials N = 10,000.
The result shows that the most important parameters considered are dμc−Si , as it could be easily expected, σ2
and σ4, hence these three are the parameters to be considered during the analysis and the designing. Parameter
as σ5, σ8, σ9 have a weak effect on the model output

4 Results

In this section we present step-by-step all the results obtained by our methodology.

4.1 Sensitivity analysis

The results of the Morris analysis with a number of trials N = 10,000, plotted in Fig. 3,
show a qualitative ranking of the most relevant factors (represented by high values of μ∗)
are: (i) the thickness of the intrinsic layer, demonstrating what previously stated; (ii) the
interface roughness above the ZnO-layer, which is the first textured materials encountered
by an incident photon and shall, thus, have a relevant effect in terms of scattering events;
(iii) and the one of the intrinsic amorphous silicon layer, which is the first absorbing layer
encountered by an incident photon. It is worth noting that their respective values of σ are
high too, i.e. the relationships between these three parameters and the model objectives are
strongly non-linear. Parameters σ5, σ8, σ9 have a weak effect on the model output (less than
1% of maximum effect).

The Morris analysis results are confirmed, extended and quantified by the Sobol’s indexes
for the first order effects and the total effects, listed in Table 2 along with their relative errors
(50% probability). Once again parameters as σ3, σ5, σ6, σ8 and σ9 are ranked as non-effective
parameters (less than 1% of maximum STi value) confirming the preliminary hypothesis of
the Morris analysis qualitative ranking; whereas dμc−Si , σ2 and σ4 are the most influent
parameters (the total effect of the other parameters is at least reduced of a 10−1 factor).
Notice however that results for σ11 and σ7 are different for the two SA here performed. The
latter are ranked as insensitive by the Sobol analysis; whereas the Morris analysis ranks them
as the fifth and sixth important parameters for the model. We here perform a conservative
choice, selecting as in-sensitive only the parameter for which both analysis agree. We hence
discard (i.e. fixing to some predefined values) the non-influent parameters. However in order
to demonstrate the power of the “SA + Optimization” approach we ran the optimization
algorithms twice: considering the full parametrized model, and the reduced one. We find that
computational effort in the “SA + Optimization” is remarkably lower with respect to the full
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Table 2 First and total order Sobol’s indexes for the parameters of the thin-film Silicon solar cell optical
model

S j STj |STj − S j | PE

dμc−Si 9.26 × 10−1 1.05 1.28 × 10−1 1.12 × 10−2

σ2 3.86 × 10−2 3.62 × 10−2 2.44 × 10−3 8.20 × 10−3

σ4 5.44 × 10−2 4.51 × 10−2 9.32 × 10−3 8.20 × 10−3

σ10 9.55 × 10−3 4.49 × 10−3 5.06 × 10−3 8.14 × 10−3

σ7 6.92 × 10−3 6.64 × 10−4 6.26 × 10−3 8.14 × 10−3

σ9 6.91 × 10−3 2.50 × 10−4 7.16 × 10−3 8.13 × 10−3

σ8 6.76 × 10−3 3.99 × 10−4 3.26 × 10−3 8.14 × 10−3

σ3 6.66 × 10−3 9.04 × 10−4 5.76 × 10−3 8.13 × 10−3

σ5 6.55 × 10−3 9.19 × 10−5 6.44 × 10−3 8.13 × 10−3

σ6 6.54 × 10−3 5.08 × 10−4 7.05 × 10−3 8.14 × 10−3

σ11 6.19 × 10−3 5.87 × 10−4 5.60 × 10−3 8.15 × 10−3

Confirming the preliminary Morris analysis parameters as σ3, σ5, σ6, σ8 and σ9 are ranked as unsensitive.
The low values of STj − S j reveal that a large portion of the variance on the model output uncertainty may
be explained in terms of first order effects. Negative signs in the table and STj of dμc−Si > 1 are due to
numerical errors (i.e. negative sensitivity indices close to zero stand for unimportant factors)

parametrized model, however a little loss in the optimal point is found in the SOO, whereas
a significant improvement is found in the MOO case.

4.2 Single objective optimization

The termination criterion we used in the single objective optimizations is either an upper
bound on functions evaluations (50k2, k being the domain space dimension) or the stag-
nation of the algorithm. Notice that in our simulations the algorithm always terminates for
the stagnation of the solution. The efficiency gain of the best design found, compared to
the reference cell one, is definitely remarkable holding a relative improvement in Qe about
6.71%. The best total absorption profile obtained is plotted in Fig. 4. The improvement, com-
pared to the reference cell, is of 5.88% (Quantum efficiency and thickness of the intrinsic
layer are 0.604169 and 2210). However, notice that almost all parameter values are maxi-
mized (with respect to constraints in (10)), hence leading to a fragile design. To overcome
this important issue, we ran the algorithm another time reducing the dμc−Si constrain to
dμc−Si ≤ 1.1 dμc−Si . Three notable designs found are: (i) the one which maximize Qe

(objective functions values: Qe = 0.5928, dμc−Si = 1814.45); (ii) the one minimizing
dμc−Si (objective functions values: Qe = 0.5721, dμc−Si = 1190) and (iii) the best trade-off
(i.e. the closest design to the ideal point [26]) obtained (Qe = 0.5758, dμc−Si = 1305). Note
that the design minimizing the micro-crystalline intrinsic layer thickness (30% less than the
reference cell) still holds a 1.27% absorption improvement and a relative higher Qe.

Finally the results obtained trough the “SA + MCS” reach a 5.55% total absorption
improvement. Therefore, using this type of optimizations we have a little loss on the per-
formance with respect to the “full optimization” MCS, yet we want to underline that the
computational burden of the “SA + SOO” optimizations is significantly reduced: 24.3% on
average.
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Fig. 4 Total absorption profiles (red) of the optimized cells. Reference cell total absorption profile (in blue) is
plotted for comparison. Cell obtained in the dμc−Si -bounded-to 2210 MCS optimization shows an improve-
ment of 5.88%. (Color figure online)

4.3 Multi objective optimization

The Pareto-Front approximation obtained applying NSGA-II to the multi-objective, full-
parametrized, problem is plotted in Fig. 5a (total number of generations is 700, population
size is 100). Qe of non-dominated designs, found by the algorithm, spans from ≈ 0.567 to
≈ 0.6, whereas dμc−Si spans from 1190 to ≈ 2210 (which is the maximum range allowed
by the constrains). Thus we have obtained a wide spread Pareto-front approximation.

We may notice that the designs obtained using MOO are definitely more robust than
the previously obtained. The total absorption profile of the cell with the maximum value of
quantum efficiency (Qe = 0.6000, dμc−Si = 2209) obtained in these runs is plotted, along
with the reference cell one, in Fig. 6: the improvement, which mainly lies in the [700, 900]
wavelength region, is of 5.083%. The best absorption improvement obtained in these runs is
5.17%.

ThePareto-front approximation obtained in the “SA +MOO” optimization (using NSGA-
II set as above), along with the feasible designs explored, is plotted in Fig. 5b, whereas
the Pareto Pareto-front approximations obtained in the “MOO” and in the “SA + MOO”
approach are compared in Fig. 5c . The improvement, with respect to the “full-parameterized”
Pareto-front approximation, is remarkable. Figure 5c clearly shows how the “SA + MOO”
Pareto-front dominates the one obtained using the simple MOO approach. This significant
improvement may be due to the particular way in which EAs explore the objective space; a
reduced domain space seems to significantly enhance the search. This result demonstrates
the consistency of our combined algorithmic approach, which in complex problem (such
as the one associated to thin-film cell design) shall enhance the capability of a heuristic
optimization approach. In particular, SA reveals to be a fundamental tool as a pre-processing
phase to investigate parameter effects on the model. The convergence rate of the algorithm
is graphically analysed in Fig. fig:convergence, where we plot the non-dominated fronts
computed during the iterations of NSGA-II (Fig. 7).

The Pareto-orientation of the optimization allows us to perform a parametric analysis of
the absorption profile of optimal trade-offs. Figure 8 shows the absorption profile of Pareto-
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Fig. 5 Pareto-Front
approximations obtained and
feasible points explored by using
NSGA-II, in the multi objective
optimization of the optical model
for tandem-thin film silicon solar
cell with the “Full parametrized”
model (a) and for the reduced
“SA + MOO” (b). Notice how the
SA + MOO approach seems to
perform surprisingly better than
the simple-MOO one (c). a Full
parameterized model. b Reduced
order model. c Comparison of the
Pareto-front approximations
obtained using NSGA-II
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(b) Reduced order model
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(c) Comparison of the Pareto-front approximations obtained
using NSGA-II

optimal solutions as a function of the quantum efficiency. This plot demonstrates that most
of the gain in the optical efficiency of Pareto-optimal cell is due to improved absorption
capabilities in long wavelengths. Indeed, the effect is reflected by a shift in the figure, which
is appreciable even for quantum efficiency variation of the order of 10−2.
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Fig. 6 Total absorption profile (in red) of the cell with the maximum Qe value obtained using NSGA-II.
Reference cell total absorption profile is plotted, in blue, for comparison. The improvement, compared to
the reference cell absorption profile, is 5.083%. The Qe and dμc−Si values for this cell are: 0.599967 and
2209.97876, respectively. In Table 3 (fifth column) all the parameters values of the cell are listed along with
robustness indexes. (Color figure online)
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Fig. 7 Analysis of the convergence rate of NSGA-II in the SA + MOO optimization of the optical model of
tandem thin film silicon solar cell. (Color figure online)

Finally Fig. 9 depicts the absorption profile associated to the closest-to-ideal design found
by OptIA for this optimization problem. This has a Qe of: 0.5719 and a dμc−Si of 1190, i.e. a
variation of − 2.29 and − 25.63% ,respectively, compared to the closest-to-ideal cell design
found by NSGA-II.

4.3.1 Robustness analysis of notable designs

The Local and Global robustness indexes of the trade-offs found by NSGA-II are listed in
Table 3. Even if the Local indexes are very high, the Global Robustness indexes do not even
reach 70%. Thus, the designs analysed are very resistant to perturbations along coordinate
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Fig. 8 Parametric analysis of Pareto-optimal absorption profiles
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Fig. 9 Total absorption profiles (red) of the closest-to-ideal cell found by OptIA. Reference cell total absorp-
tion profile (in blue) is plotted for comparison. (Color figure online)

directions, but become unrobust (fragile) if the perturbations are combined. This means that,
at least locally for the points analysed, the objective functions of the model are strongly
non-linear, depending mostly on parameters combinations, rather then disjoint effects due to
single parameters. The only not maximized Local indexes are the ones associated to dμc−Si ,
σ2 and σ4. This locally confirms the global results given by the SA. In Fig. 10 are highlighted
the knee points of the Pareto front, along with their respective Global robustness indexes.
The highest index found so far is the one of Trade-off 3, namely 67.37%; which makes it the
most robust design analysed with respect to the optical model. Its “Glocal” index is 1.8035,
which, compared to the total volume of the feasible region, indicates a relatively big Viable
region, confirming and improving our hypothesis on the robustness of this device.

4.4 Identifiability analysis

In Table 4 we list the results of MOTA applied to 10−5 non-dominated points. The important
relationships found using these points are between p4 and p5 and between p7 and p9, plotted
in Fig. 11a, b respectively. Notice that these hidden functional relationships cause complex
behaviour of the model output with respect to the domain space, and thus making harder the
task of an optimization algorithm. However, all of them do not show up in the “SA + MOO”
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Table 3 Local and Global robustness indexes of some trade-offs found in the NSGA-II optimization of the
optical model of tandem thin-film silicon solar cells

Trade-off 1 Trade-off 2 Trade-off 3 Max Qe Min dμc−Si

Qe 0.5765 0.5735 0.5722 0.6000 0.5680

dμc−Si 1402 1318 1239 2209 1190

G R(%) 56.96 44.13 67.37 16.07 26.65

dμc−Si L R(%) 91.2 91.8 90.2 29.2 44.6

σ2L R(%) 100 100 100 56 100

σ3L R(%) 100 100 100 100 100

σ4L R(%) 65.8 50 74 100 58.4

σ5L R(%) 100 100 100 100 100

σ6L R(%) 100 100 100 100 100

σ7L R(%) 100 100 100 100 100

σ8L R(%) 100 100 100 100 100

σ9L R(%) 100 100 100 100 100

σ10L R(%) 100 100 100 100 100

σ11L R(%) 100 100 100 100 100

Trade-off 3 Global indexes exceeds 60%, which makes it a fairly robust design, compared to the others
analysed. The Local robust indexes are very high; the only exceptions are the indexes associated to dμc−Si
(this is no surprise because dμc−Si is one of the objective functions too, and as it may be seen in the Pareto-
front plot, even small variation of dμc−Si may cause strong changes on Qe) and the ones associated to σ2
and σ4, which may mean that, at least locally, those are the most influential parameters between the various
interfaces roughness
The best results are shown in bold
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Fig. 10 Knee points of the Pareto Front in the NSGA-II optimization and their respective Global Robustness
Indexes
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Table 4 Results of the IA applied to solar cell optical model

Parameter pi r2 cv � Pars scr

d1 p1 0.996 0.225 1 p1, p3, p10, p11 *

σ2 p2 0.997 0.220 1 p1, p2, p3, p5, p6, p10 *

σ3 p3 0.995 0.362 1 p2, p3, p5, p8, p11 *

σ4 p4 0.980 0.236 2 p4, p5 **

σ5 p5 0.980 0.402 2 p4, p5 **

σ6 p6 0.995 0.340 1 p6, p7, p8, p9 *

σ7 p7 0.986 0.332 2 p7, p9 **

σ8 p8 0.996 0.430 1 p3, p7, p8, p9, p11 *

σ9 p9 0.986 0.744 2 p7, p9 **

σ10 p10 0.994 0.277 1 p10 *

σ11 p11 0.982 0.428 1 p3, p7, p11 *

10−5 non dominated points are used as input data set for the MOTA algorithm. Strong relationship between
σ4 and σ5 and between σ7 and σ9 have been found
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Fig. 11 Scatter plots of the optimal transformations F found by the MOTA algorithm, using the 10−5 non
dominated points as input data set, for p4 and p5 and for p7 and p9 respectively. a p4 and p5. b p7 and p9

Optimization (at least one parameter involved in these relationships is considered fixed in
the latter), and this may be one of the reason for the improved behaviour of the optimization
algorithms.

4.5 TCO and back reflector materials

In the previous sections we have discussed about the results of our optimization and the
analysis of the most common structure of tandem solar cells: highly doped ZnO used as TCO
and smooth Ag used as a BR. Of course this is not the only possible choice, there is a huge
amount of different possiblematerials (having price comparable with Si) and different doping
dosage that may be used in solar cell design. In this section we will discuss the results that
we have obtained exploring some alternatives: (i) varying the dope dosage of the ZnO layers
in five conditions: non-doped, low doped (resistivity larger than 100 mΩ× cm), normally
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Fig. 12 Pareto Front obtained in the 8 NSGA-II simulations (population size set to 100, total number of
generations 200). Each simulation is performed with a different ZnO, used for the TCO layer, doping dosage
(optimal, normal, low, not) and Ag ,the back reflector used, roughness (smooth, rough) combination

Table 5 Comparison among the
best trade-off designs found by
NSGA-II and OptIA for rough
back reflector optimization for
various level of doping dosage of
the ZnO layer

NSGA-II OptIA

dμc−Si Qe dμc−Si Qe

Opt. 1210 0.571 1190 0.572

Norm. 1190 0.576 1191 0.574

Low. 2100 0.600 1630 0.595

Not 1738 0.593 1210 0.579The best results are shown in bold

doped (resistivity of the order 1 mΩ× cm) and optimally doped (resistivity less than 1 mΩ×
cm); (ii) considering rough Ag instead of smooth Ag.

Varying the ZnO layer doping dosage and the roughness value of theAgwe have obtained a
considerable gain on quantumefficiency.Wehave considered eight different cell architectures
(see Sect. 4.5 for the details on the materials) which arise from the combination of: (i) Not,
lowly, normally, optimally doped ZnO; (ii) smooth, roughAg. The optimally doped ZnOwith
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Table 6 Comparison among the
best trade-off designs found by
NSGA-II and OptIA for smooth
back reflector optimization for
various level of doping dosage of
the ZnO layer

NSGA-II OptIA

dμc−Si Qe dμc−Si Qe

Opt. 1613 0.583 2110 0.593

Norm. 1593 0.586 1193 0.578

Low. 1220 0.573 1431 0.58

Not 2035 0.598 1190 0.571The best results are shown in bold

Table 7 Abbreviations,
chemical symbols/formulas and
acronyms used in the manuscript

Acronym Meaning

ACE Alternating conditional expectation algorithm

Ag Silver

Al Aluminium

BR Back reflector material

dμc−Si Thickness of the intrinsic μc − Si layer

EA Evolutionary algorithms

Glocal Global-Local Robustness Index

GR Global Robustness Index

IA Identifiability analysis

LR Local Robustness Index

MCS Multilevel coordinate search

MOO Multi objective optimization

MOTA Mean optimal transformation approach

NSGA-II Nondominated sorting genetic algorithm II

OptIA Optimization immune algorithm

PCA Principal component analysis

PF Pareto front

PV Photovoltaic

Qe Quantum efficiency

SA Sensitivity analysis

SnO2 Tin dioxide (tin(IV) oxide), or stannic oxide

SOO Single objective optimization

TCAD Technology computer aided design

TCO Transparent conductive oxide material

TPV Thermophotovoltaic

ZnO Zinc oxide

smooth Ag combination, is the device analysed in Sect. 3.2. We applied NSGA-II algorithm
setting the population size to 100 and the maximum number of generation to 200, in order to
find which of these devices better perform. The eight Pareto-Front approximations obtained
are showed in Fig. 12. The results clearly show that, for low efficiency, the best combination
of material is given by normal doped ZnO and smooth Ag. For high efficiency the devices
seems to perform in a very similar way. In Tables 5 and 6 we report comparison among the
results obtained by using NSGA-II and OptIA in term of optimality of the closest-to-ideal
trade off for the eighth optimization performed in this section (Table 7).
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5 Conclusions

In this work we have given a complete analysis of a tandem thin-film Silicon solar cell
model. The combination between the matrix method and the calibrated photonic Monte
Carlo simulations allowed us to have an accurate fairly-quick optical model that could thus
be analysed.

The results obtained in all the different optimizations performed, not only widely demon-
strate the applicability of our methodology but also show the importance of every step: the
understanding of a high dimensional model would have not been possible without a prelim-
inary sensitivity analysis; MCS algorithm was used both to find extremely efficient designs,
up to a 6.71% Quantum Efficiency improvement and a 5.88% gain on the total absorption
profile, and fair efficient designs, up to a 3.70% gain on the total absorption profile, consid-
ering cost-savings bounds; NSGA-II was used to find Pareto-Optimal points of the problem:
Maximize Quantum Efficiency, Minimize Intrinsic Layer Thickness; hence balancing Effi-
ciency and cost-savings. An interesting fact about the points found in NSGA-II runs is the
higher Global Robustness indexes they hold compared to SOO results, even exceeding 80%.
Hence MCS results behave better in terms of efficiency, while NSGA-II results shows a
better behaviour in terms of stability. Of great importance was the improved behaviour of
NSGA-II algorithm when used in combination with the SA results. In fact “SA + MOO”
NSGA-II optimization, performed significantly better then the full-parameterized optimiza-
tion in terms of both optimality of the results obtained and reduced computational effort.
Finally Identifiability Analysis gave us higher order information on the domain parameters
and their behaviours with respect to the model outputs.

It was also demonstrated that our approach could be systematically applied on designing
thin-film solar cell devices, ensuring remarkable improvements in terms of efficiency, cost
savings and robustness. In particular, the robustness designs found in our optimization process
might be useful for a decision maker and should be take in consideration in a design process.
Future works will concern the exploration of alternative materials and solar cell types. An
interestingdirectionofwork lies in experimental validations of the optical efficiencyof several
Pareto-optimal designs obtained by our methodology, which could lead to new possible
prototypes in collaboration with industrial partners.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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