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Abstract  33 

Aim: Wildlife-vehicle collisions are recognized as one of the major causes of mortality for 34 

many species. Empirical estimates of road mortality show that some species are more likely to 35 

be killed than others but to what extend this variation can be explained and predicted using 36 

intrinsic species characteristics remains poorly understood. This study aims to identify general 37 

macroecological patterns associated to road mortality and generate spatial and species-level 38 

predictions of risks.   39 

Location: Brazil 40 

Time period: 2001-2014 41 

Major taxa: Birds and mammals 42 

Methods: We fitted trait-based random forest regression models (controlling for survey 43 

characteristics) to explain 783 empirical road mortality rates from Brazil, representing 170 44 

bird and 73 mammalian species. Fitted models were then used to make spatial and species-45 

level prediction of road mortality risk in Brazil considering 1775 birds and 623 mammals 46 

which occur within the country’s continental boundaries.     47 

Results: Survey frequency and geographic location were key predictors of observed rates, but 48 

mortality was also explained by species’ body size, reproductive speed and ecological 49 

specialization. Spatial predictions revealed high potential standardized (per km road) 50 

mortality risk in Amazonia for birds and mammals, and additionally high risk in Southern 51 

Brazil for mammals. Given the existing road network, these predictions mean more than 8 52 

million birds and 2 million mammals could be killed per year in Brazilian roads. Furthermore, 53 

predicted rates for all Brazilian endotherm uncovered potential vulnerability to road mortality 54 

of several understudied species which are currently listed as threatened by the IUCN.  55 

Conclusion: With a fast-expanding global road network, there is an urgent need to develop 56 

improved approaches to assess and predict road-related impacts. This study illustrates the 57 

potential of trait-based models as assessment tools to better understand correlates of 58 

vulnerability to road mortality across species, and as predictive tools for difficult to sample or 59 

understudied species and areas.   60 
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Introduction  61 

Roads are increasingly prevalent features in global landscapes (Laurance & Balmford, 2013; 62 

Ibisch, Hoffmann, Kreft, Pe’er, Kati, Biber-Freudenberger, ..., & Selva, 2016) leading to 63 

growing concerns about their impacts on wildlife (Alamgir, Campbell, loan, Goosem, 64 

Clements, Mahmoud, & Laurance, 2017). Wildlife-vehicle collisions are one of the most 65 

visible road-related impacts (Coffin, 2007), which can reduce population abundance, limit 66 

dispersal, decrease genetic diversity, and ultimately threaten population viability (e.g., Fahrig 67 

& Rytwinski, 2009; Borda-de-Água, Grilo, & Pereira, 2014; Grilo C, Del Cerro, Centeno-68 

Cuadros, Ramiro, Román, Molina-Vacas, Fernández-Aguilar, …, & Godoy, 2016). However, 69 

not all species appear to be equally affected by road-associated risks (Fahrig & Rytwinski, 70 

2009). Variation among species can reflect methodological issues: small species degrade 71 

faster and are less conspicuous, which can reduce their detectability once collision has 72 

occurred, leading to underestimated rates (Santos, Carvalho, & Mira, 2011; Teixeira, Coelho, 73 

Esperandio, & Kindel, 2013). Differences may also occur due to true variability in collision 74 

risk associated to local abundance, more common species being more likely to suffer high 75 

mortality rates (Ford & Fahrig, 2007; Santos, Mira, Salgueiro, Costa, Medinas, & Beja, 76 

2016). However, detectability and abundance do not appear to be the only sources of 77 

variation. For example, the lowland tapir Tapirus terrestris and the crab-eating fox Cerdocyon 78 

thous have similar detectability and observed population densities in the Brazilian Pantanal 79 

region (0.4 ind/km² - Desbiez, Bodmer, & Tomas, 2010), yet estimated mortality rates vary 80 

considerably (fox: 0.24 ind/km/year; tapir: 0.01 ind/km/year. Souza, Cunha, & Markwith, 81 

2014). An explanation is that variability in road mortality rates among species is also 82 

explained by species’ traits related to ecological habits, behaviour, and life-history traits. 83 

Species’ traits can influence mortality risk via one or more of the processes that lead to 84 

collision. First, the probability of encountering roads can be influenced by how the animal 85 

moves on the landscape and acquires resources (Grilo, Molina-Vacas, Fernández-Aguilar, 86 

Rodríguez, Ramiro, Porto-Peter, & Revilla, 2018). Previous studies have shown higher risks 87 

for passerine birds that forage on foliage or bark and inhabit woodlands (Santos et al., 2016), 88 

for herbivorous and omnivorous mammals (Barthelmess & Brookes, 2010; Cook & 89 

Blumstein, 2013), and for more habitat generalist mammals (Núñez-Regueiro, Branch, 90 

Fletcher Jr, Marás, Derlindati, & Tálamo, 2015). Second, the probability of crossing an 91 

encountered road may be affected by how the road is perceived and the animal’s mobility 92 



4 

 

(Jaeger, Bowman, Brennan, Fahrig, Bert, Bouchard, …, Toschanowitz, 2005). For example, 93 

nocturnal species appear to have higher risk because low traffic volume at night may prevent 94 

roads from being perceived as a threat (Grilo, Sousa, Ascensão, Matos, Leitão, Pinheiro, …, 95 

& Revilla 2012). Conversely, species exposed to regular hunting or poaching may be more 96 

aware of the human-associated risks often linked to roads, which lead them to avoid roads and 97 

thus reduce the risk of collision (Laurance, Croes, Tchignoumba, Lahm, Alonso, Lee, 98 

Campbell, & Ondzeano, 2006). Finally, the probability of being hit if crossing can be 99 

influenced by the animals’ agility, behaviour, and its visibility to drivers (Legagneux & 100 

Ducatez, 2013). Collectively these previous results have shown that individual traits can be 101 

useful to understand road mortality risk, but to gain a comprehensive understanding and 102 

develop valuable predictive tools we need to simultaneously evaluate multiple ecological, 103 

behavioural and life-history traits for a diverse group of species.  104 

Trait-based models are powerful tools commonly used in macroecological studies to 105 

assess the mechanisms underlying the response of species to impacts and predict risks for 106 

unstudied or difficult-to-detect organisms (González-Suárez, Gómez, & Revilla, 2013; Bland, 107 

Collen, Orme, & Bielby, 2015). Here we used machine-learning trait-based models to assess 108 

the role of a wide range of species’ traits on estimated road mortality rates for bird and 109 

mammalian species in Brazil. We focused on birds and mammals because these are well-110 

studied groups that provide a suitable empirical dataset (e.g. Coelho, Kindel, & Coelho, 111 

2008). Brazil is also an interesting case study because in the last two decades economic and 112 

social growth has led to a 20% increase in the road network, increasing impacts on wildlife 113 

(DNIT, 2015) and this growth is likely to continue and expand into regions of exceptional 114 

biological diversity and global ecological importance like the Cerrado and the Amazon 115 

(Hoorn, Wesselingh, TerSteege, Bermudez, Mora, Sevink, …, Antonelli, 2010; Lahsen, 116 

Bustamante & Dalla-Nora, 2016). Therefore, there is an urgent need to better understand and 117 

predict road risks within Brazil to guide infrastructure planning and mitigation measures, 118 

including the protection of those species that are most susceptible to road impacts. To achieve 119 

this goal we fitted trait-based models to predict road mortality rates for all Brazilian birds and 120 

mammals including the many species for which roadkill estimates are not currently available 121 

(unstudied or undetected organisms). These predictions allowed us to identify unstudied 122 

species with high vulnerability to road-related mortality, and revealed areas where road 123 

impact is likely high. Our study provides a first comprehensive evaluation of the key intrinsic 124 
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risk factors associated with road impacts in endotherms, and demonstrates the potential of 125 

using macroecological approaches for road ecology to define predictive trait-based models 126 

that can identify potentially vulnerable species and high risk areas. 127 

 128 

Methods 129 

Data  130 

Empirical road mortality rates for birds and mammals were collected from unpublished 131 

databases (made available by individual researchers contacted via the Lattes platform 132 

http://lattes.cnpq.br), grey literature sources (technical reports, proceedings of scientific 133 

conferences, MSc and PhD theses), and scientific papers from peer-reviewed journals. 134 

Published sources were located using the following keywords in English and their translations 135 

to Portuguese: (“roadkills” OR “road mortality”) AND (“birds” OR “mammals” OR 136 

“vertebrates”). We considered only rates from areas of Brazil in which systematic surveys had 137 

been conducted at least once a week for a minimum period of three months to minimize the 138 

bias on roadkill rates among studies. From each study, road mortality rates per species were 139 

calculated as the number of individual carcasses detected standardized per kilometre of 140 

surveyed road per year (ind/km/year). Rates may be underestimated because not all carcasses 141 

persist equally in the pavement. In addition, in some studies not all carcases were identified or 142 

reported at the species level. The calculated rates were modified using a correction for carcass 143 

persistence estimated by Santos, Carvalho, & Mira (2011) that aims to reduce bias from 144 

variable detection rates among species (see Appendix S1 in Supporting Information). Both 145 

corrected and uncorrected rates were tested to evaluate consistency of results. We present the 146 

corrected rates in the main text, but results did not change qualitatively when using 147 

uncorrected rates (see Appendix S2). We characterized the study location using the 148 

geographic coordinates of the surveyed road(s) midway point (Appendix S3, Fig. S3.1). 149 

Taxonomic names used by each study were matched to the current IUCN taxonomy (IUCN 150 

2017). One mammalian species with empirical road mortality data (Guerlinguetus ingrami) 151 

was not recognized by the IUCN and was not considered in the analyses. Coendou spinosus 152 

was listed as two different species (Coendou villosus or Coendou spinosus) in separate studies 153 

but treated as one species in our analyses.  154 

We identified Brazilian birds and mammals based on overlap of distribution range maps 155 

(IUCN 2017) with the continental Brazilian territory (based on the IUCN country boundary 156 



6 

 

map). We used distribution range polygons classified as presence “Extant” or “Possible 157 

extant” and included all origins and seasonalities. These range polygons were also overlapped 158 

with a 1º x 1º grid (equivalent to ~110 x 110 km near the equator) covering the continental 159 

Brazilian territory.  160 

We considered 12 species’ traits as potentially important to predict the vulnerability of 161 

species to road mortality and used published trait databases to find information on all 162 

Brazilian birds and mammals (see Table 1 for details).  163 

 164 

Data analysis 165 

We modelled empirical road mortality rates using random forest regression trees, a machine 166 

learning technique that uses bootstrapped data samples to generate multiple regression trees 167 

from which the importance of the predictors is defined (Breiman, 2001). Regression trees 168 

have high predictive accuracy and the capacity to deal with complexity in relationships 169 

including non-linearities and interactions (Cutler, Edwards, Beard, Cutler, Hess, Gibson, & 170 

Lawler, 2007). Regression trees have also been show to offer comparable results to 171 

phylogenetic methods that explicitly account for the fact that related species may share similar 172 

traits due to shared evolutionary history (Bielby et al., 2009). While incorporating 173 

phylogenetic information into regression trees is not possible, to capture the potential 174 

importance of phylogeny we included taxonomic order (following the classification of the 175 

IUCN, 2017) as a predictor in our models. 176 

Rates from birds and mammals were analysed separately to reflect the intrinsic 177 

differences between these groups. For each imputed version (15 per taxonomic group) we 178 

fitted a random forest model with 2000 trees using the randomForest procedure from the 179 

randomForest library (Liaw & Wiener, 2002) in R version 3.4.1 (R Core Team 2017). Model 180 

predictors included traits (Table 1), taxonomic order, and the three survey related predictors 181 

for each study: survey interval (time between surveys in days), and latitude and longitude of 182 

the surveyed road(s) midway point.  183 

Trait data were not available for all species (data limitations are common in 184 

comparative studies, see González-Suárez, Lucas, & Revilla, 2012). To avoid excluding 185 

observations, which can lead to biases, we estimated missing values for each taxonomic group 186 

using nonparametric imputation based on random forest regression trees (Stekhoven & 187 

Bühlmann, 2012). Since this imputation approach results in slightly different values each time 188 
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it is run, we imputed and analysed 15 datasets for each taxonomic group to capture 189 

uncertainty in the imputation process and assess sensibility of results to that uncertainty. To 190 

facilitate reproducibility and encourage open science the code (R script) and data used in this 191 

study will be available at https://dx.doi.org/ 10.6084/m9.figshare.6237608 on 9 November 192 

2018.  193 

We assessed overall model performance using the total variance explained. We also 194 

calculated the importance of each variable by permuting all observed values within each 195 

variable across observations and evaluating the effect on model performance (changes in 196 

variance explained). The permutation of important variables decreases significantly the model 197 

performance whereas the permutation of less important variables should have little effect on 198 

the model performance. 199 

 Fitted models were subsequently used to generate predicted values for each Brazilian 200 

species in each of its occupied 1º x 1º grid cells, representing a hypothetical systematic survey 201 

across all Brazil (cells treated as studies sites). Geographic coordinates were defined as those 202 

of the grid cell centroid. The survey interval was set to the observed median value (3.5 days 203 

between surveys for both birds and mammals). Different survey intervals did not qualitatively 204 

affect results (Appendix 3 figure S3.2). We used the median prediction from the 15 models 205 

based on the different imputed datasets for each cell and species combination. Predicted risk 206 

for each species (species-level predictions) was then calculated as the median of the predicted 207 

rates over all its occupied grid cells; thus, reflecting intrinsic vulnerabilities and spatial risks 208 

within the species’ distribution range. Spatial predictions were generated by aggregating 209 

predicted values for each grid cell, thus, summarizing risk associated to geographic location 210 

and to the intrinsic vulnerabilities of co-occurring species. We calculated a standardized risk 211 

based on ind/km/year, and a predicted total risk (ind/year) obtained by multiplying the 212 

standardized risk by the total kilometres of paved road within each grid cell. Road network 213 

data were obtained from the Openstreetmap available at https://www.openstreetmap.org. As 214 

there is limited knowledge on the responses of the different species to roads, our approach 215 

assumes no specific road avoidance.  216 

 217 

Results 218 

We located 38 studies that reported road mortality rates in different areas of Brazil and met 219 

our criteria of minimum frequency and period of survey (Figure S3.1). From these studies we 220 
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obtained 417 mortality rates for 170 bird species, and 366 road mortality rates for 73 mammal 221 

species. Based on current distribution range maps we identified 1831 birds and 623 mammals 222 

as present in Brazil. We made predictions for all mammals, but had to exclude 56 bird species 223 

classified in taxonomic orders not represented in our empirical dataset (predictions cannot be 224 

made for new levels in a categorical variable). All data are available on (to be deposited on 225 

online repository upon acceptance, and made available as supplementary files for review).  226 

Some species were reported by multiple studies, for example the smooth-billed ani 227 

Crotophaga ani was the most frequently detected bird (16 studies), while the crab-eating fox 228 

was the most frequently reported mammal (32 studies). However, many species were only 229 

observed in one study (90 bird species and 26 mammals). Observed (corrected) road mortality 230 

rates ranged from 0.001 to 7.61 ind/km/year for birds (highest rate was observed for 231 

Crotophaga ani). For mammals rates ranged from 0.0007 to 18.52 ind/km/year (highest rate 232 

was reported for the capybara Hydrochoerus hydrochaeris).  233 

Fitted models explained 61.7% of the observed variance in road mortality rates for birds 234 

(median value, range across imputed datasets 61.1-62.4%) and 51.8% for mammals (range 235 

51.2-52.4%). As expected survey predictors were important in both groups (Fig. 1). In 236 

particular, survey interval was the most important predictor with intervals of 1-2 day 237 

generally associated with higher estimates both for birds and mammals (Figs. 2 and 3). 238 

Geographic location also explained observed road mortality rates (Fig. 1) with partial 239 

dependence plots showing higher rates associated to western locations for both birds and 240 

mammals, but contrasting patterns for latitude, with locations closer to the equator associated 241 

with higher risk in birds but with lower risk in mammals (Figs. 2 and 3). Taxonomic order 242 

was an important predictor for birds with higher rates found among cuckoos and anis 243 

(Cuculiformes, eight species) and flightless birds (Cariamiformes, one species; 244 

Struthioniformes, four species). Order was also important for mammals, with higher rates 245 

among anteaters and sloths (Pilosa, 6 species) and armadillos (Cingulata, six species).  246 

The analyses also revealed several species’ traits as predictors of road mortality rates in 247 

both birds and mammals with high consistency among models based on the different imputed 248 

datasets (Fig. 1). Partial dependence plots show higher road mortality rates in birds associated 249 

to larger body mass (>2 kg), earlier maturity ages, shorter lifespans, ground foraging 250 

behaviour, and habitat and diet generalism (Fig. 2). For mammals, higher rates were 251 
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associated with scavenging behaviour, early maturity, smaller home range sizes, intermediate 252 

body masses (3-50 kg), and habitat generalism (Fig. 3).  253 

Model predictions matched empirical data well for mammals, but showed a tendency to 254 

overestimate low values for birds (Fig. S3.3). Both observed and predicted rates showed 255 

considerable within-species variation. Overall, median observed and predicted road mortality 256 

rates per species were lower among species with more threatened conservation status as 257 

defined by the global IUCN Red List status (Fig. S3.4).  258 

Median predicted rates for all Brazilian species ranged from 0.02 to 0.37 ind/km/year 259 

for birds and from 0.02 to 1.08 ind/km/year for mammals. Among species without empirical 260 

data, the blue-black grassquit Volatinia jacarina and Reig’s grass mouse Akodon reigi had the 261 

highest predicted rates (0.37 and 1.08 respectively, data available at – online repository). High 262 

rates were also predicted for several unstudied species of conservation concern, including the 263 

white-lined antbird Myrmoborus lophotes and the rufous-fronted antthrush Formicarius 264 

rufifrons, both birds listed as Near Threatened by the IUCN Red List (predicted median rates 265 

of 0.30 and 0.28 ind/km/year, respectively), and the greater Wilfred’s mouse Wilfredomys 266 

oenax (Endangered status, predicted median rates of 0.93 ind/km/year) and the Lami tuco-267 

tuco Ctenomys lami (Vulnerable status, predicted median rates of 0.44 ind/km/year).  268 

The map of standardized predicted spatial risk (the sum of all predicted mortalities per 269 

kilometre of road per year for species co-occurring in a given grid cell) showed high expected 270 

roadkill rates in the western Amazon region for both birds and mammals, and also high 271 

mammalian rates in the Pampas region (southern Brazil), with the lowest values generally 272 

found in eastern Brazil (Fig. 4a, b). These patterns were consistent when representing median 273 

standardized predicted risk, the rates expected for an average species in each cell per 274 

kilometre of road (Fig. S3.5). Areas with high predicted risk generally also showed high 275 

variability among species (high standard deviation. Fig S3.5), reflecting differences in 276 

intrinsic vulnerabilities of the local fauna. These spatial standardized risk patterns did not 277 

solely reflect species richness. For example, the highest road mortality rates for mammals 278 

were predicted in southern Brazil where mammalian richness is lowest (Fig. 4e, f).  279 

When considering the existing road network to estimate total mortality (number of 280 

mortalities per year in each grid cell, Fig. 4c, d), the patterns, as expected, changed, and 281 

revealed higher total predicted risk in coastal areas where most roads are found (Fig. S3.6). 282 

However, total mortality did not exclusively reflect existing roads. For example, risk was high 283 



10 

 

in Western areas (Mato Grosso and Rondonia) where there are relatively few roads, and 284 

relatively low in the Northeast region where road density is high. Worryingly, in some areas 285 

total risk was very high with expected rates of over 96,000 individual birds and over 53,000 286 

individual mammals killed per year in some 1º x 1º areas. Adding all predicted rates across 287 

the country our results suggest that as many as 8,351,120 birds and 2,225,101 mammals could 288 

be killed per year in Brazilian roads. Considering potential impacts of additional planned 289 

paved roads (Fig. 3.7) we find increased risk in the Amazon, which we identify as a sensitive 290 

area (with high standardized and median risk rates). 291 

Mapping predicted rates only for threatened species we found a slightly different spatial 292 

pattern with highest risk found in the eastern Amazon (Fig S3.8). The predicted total risk 293 

suggests as many as 179,601 threatened birds and 73,031 threatened mammals could be killed 294 

per year in Brazilian roads. 295 

 296 

Discussion 297 

Our results provide evidence that road-associated mortality risk is not randomly distributed 298 

among species and can be partly explained by ecological, behavioural and life-history traits in 299 

avian and mammalian species. Previous studies explored the role of individual traits (e.g. 300 

Ford & Fahrig, 2007; Cook & Blumstein, 2013), but our results reveal that road mortality is 301 

associated to a combination of multiple predictors that reflect diverse characteristics of the 302 

studied species. Although analyses were conducted separately, we found that several traits 303 

explained vulnerability to traffic for both bird and mammal species suggesting generalized 304 

intrinsic sources of risk for endotherms, for example associated with body size. Our study also 305 

identified distinct sources of vulnerability, which highlight idiosyncrasies of the studied 306 

species and/or distinct mechanisms associated with vulnerability for birds and mammals. In 307 

addition, road mortality also varied among taxonomic groups, potentially reflecting untested 308 

characteristics. For example, for mammals we found higher rates among relatively slow 309 

moving species like armadillos and sloths, while for birds flightless groups exhibited higher 310 

rates. As expected survey-related variables were also important predictors of risk. Although 311 

we used a correction factor, survey interval remained a key predictor for both groups. Our 312 

results suggest that 1-2 days intervals between surveys may be optimal to assess risks for 313 

these species (those intervals were associated with the higher rates - see also Santos et al., 314 

2011). Survey location was also important for both birds and mammals, with higher predicted 315 
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risk towards the west in both groups but contrasting latitudinal gradients that identified 316 

distinct risk regions within Brazil for birds and mammals.    317 

We observed that species with weights above 2-3 kg had higher risk of being roadkilled, 318 

although for mammals the risk decreased again for species above ~50 kg. Generally, larger 319 

species tend to be more mobile (Sutherland, Harestad, Price, & Lertzman, 2000), which 320 

increases the probability of encountering and crossing roads. However, for the largest 321 

mammals, collision risk may be reduced due to earlier detection by drivers, which provides 322 

more time for response, and also due to more active avoidance responses by drivers seeking to 323 

prevent potentially dangerous collisions. Lower risk among smaller species could be partly 324 

explained by variation in detectability during surveys (methodological limitations). Smaller 325 

species are more difficult to see, and degrade faster, and this could result in potentially 326 

underestimated mortality rates. However, we actually found some increases in risk predicted 327 

for some small species, suggesting detectability during surveys does not fully explain this 328 

pattern. A previous study also reported a trend for higher mortality rates in smaller birds 329 

based on species <1.2 kg (Santos et al., 2016). 330 

Our findings also suggest generalists (those with wider habitat and diet breadths) have 331 

higher mortality rates than specialists (although for mammals diet specialization was not 332 

clearly related to road mortality risk). However, contrary to previous studies, we did not find 333 

an effect of trophic level (Ford & Fahrig, 2007; Cook & Blumstein, 2013). It is possible this 334 

difference occurs because those previous studies did not consider diet specialization. By 335 

exploring both variables we show that the degree of specialization may be more informative 336 

to predict roadkill likelihood than trophic level, at least for birds. In general, specialist species 337 

may be less likely to approach and cross roads if these are perceived as unsuitable 338 

environments. Previous studies have shown that species that are reluctant to cross open 339 

grounds avoid crossing roads due to low availability of cover, and therefore have lower 340 

likelihood of being roadkilled (Develey & Stouffer, 2001; Rytwinski & Fahrig, 2012). 341 

Moreover, the high availability of resources and refuges in road verges can attract habitat and 342 

diet generalist species to roads and increase their risk of being hit by passing vehicles (Ruiz-343 

Capillas, Mata, & Malo, 2012; Barrientos & Bolonio, 2009). Among the resources that may 344 

be available near roads are roadkill carcasses, which attract scavengers, potentially increasing 345 

their collision risk. Although we found scavenging behaviour of mammals considerably 346 

increased mortality rates, there was no clear association for birds. A previous study by Cook 347 
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& Blumstein (2013) reported no effect of scavenging behaviour for either group. These 348 

contrasting results may be due to individual responses to traffic and risk perception (Jacobson, 349 

Bliss-Ketchum, De Rivera, & Smith, 2016) and also be influenced by road-related features 350 

including sinuosity and traffic intensity (Grilo, Ascensão, Santos-Reis, & Bissonette, 2011).   351 

Population-level processes can also influence risk with locally abundant species being 352 

more likely to have higher mortality rates. Although we did not have abundance estimates for 353 

the studied areas, higher local abundance is often associated with faster reproductive rates 354 

(e.g., earlier maturity ages) which we found were associated with higher risk of collision in 355 

both birds and mammals. However, while consistent with predicted patterns, we note that 356 

many estimates of maturity age were imputed, particularly for bird species, thus, support 357 

should be interpreted with caution. Future studies would benefit from conducting both 358 

roadkill and abundance surveys in the same areas to better understand road-associated risks. 359 

Besides contributing to our understanding of the general drivers of road-associated 360 

mortality, our analyses show trait-based models can be used as predictive tools for 361 

conservation assessment and management of road-related impacts. Our model predicted high 362 

roadkill rates for several species of conservation concern for which empirical estimates are 363 

not currently available. Empirical estimates may be unavailable for different reasons: 1) 364 

species only inhabit poorly sampled areas (e.g., Amazon); 2) species occur in sampled areas 365 

but avoid modified habitats including roads; and 3) species are not detected (e.g., small size 366 

bias) or are not correctly identified during surveys due to taxonomic uncertainty or cryptic 367 

characteristics. A recommendation that emerges from our study is the need for targeted survey 368 

efforts for species identified as potentially susceptible here so their true risk can be quantified 369 

and if needed adequate management and mitigation actions can be implemented.  370 

 Our results also generate spatial predictions of road mortality risks, which highlight 371 

the apparent high vulnerability of Amazonian species (higher risk per kilometre of road). 372 

Although mortality rates in this area are likely to be relatively small due to low road density, 373 

this region has high biodiversity and our analyses suggest road infrastructure development 374 

could have severe impacts on many species. Considering the existing road network, as 375 

expected, we found higher total risk in areas with higher road density. However, median risk 376 

per species was not always high in areas, like Southern Brazil, with many threatened species 377 

and high road densities, perhaps reflecting former population depression due to road mortality 378 

(Teixeira, Kindel, Hartz, Mitchell, & Fahrig, 2017). Worryingly, our results suggest that more 379 



13 

 

than 8 million individual birds (nearly 180,000 from species threatened by extinction) and 380 

more than 2 million mammals (over 72,000 from threatened species) may be killed each year 381 

in existing Brazilian roads. These high values are predicted despite the fact that Brazil has a 382 

relatively high number of roadless areas (Ibisch, Hoffmann, Kreft, Pe’er, Kati, Biber-383 

Freudenberger, ..., & Selva, 2016). Furthermore, our rates may be underestimated because we 384 

do not consider unpaved roads. We also do not account for other indirect road impacts, such 385 

as changes in spatial distribution due to road avoidance (Torres, Jaeger & Alonso, 2016), 386 

which can reduce roadkill but may in turn impact population viability in other ways. Future 387 

road development is also likely to result in increased risk, particularly in areas we identified 388 

as sensitive (with intrinsically vulnerable species), like the Amazon. These results provide a 389 

first overview of risk revealing potentially vulnerable species and areas. However, localized 390 

and refined spatial predictions (accounting for unpaved roads and traffic levels) would be 391 

useful to further describe areas in which road development is likely to have widespread 392 

impacts on the local fauna, as well as areas in which mitigation measured would be most 393 

valuable.  394 

While our analyses offer useful insights, there are also limitations of the available data. 395 

First, missing trait data is a common problem in comparative studies (González-Suárez et al., 396 

2012). Data imputation methods may be helpful but some limitations (e.g. handling variable 397 

correlation) need consideration (Penone, Davidson, Shoemaker, Marco, Rondinini, 398 

Brooks, …, Costa, 2014). Also imputation of large proportions of the dataset incorporate 399 

uncertainty in results, this can be quantified as done here, but results should still be interpreted 400 

with caution. In addition, to missing trait data, empirical estimates of road mortality were also 401 

not available for all species or areas. Instead, these data reflect a non-random subset of species 402 

and locations, associated to biases in research effort and methodological issues. In fact, these 403 

biases may explain the relatively abrupt geographic changes in our spatial predictions, 404 

particularly for birds. Variation in detectability during surveys is a recurrent problem in road 405 

surveys. Carcasses from small species may disappear from roads in less than 24 hours 406 

(Teixeira et al., 2013). Carcasses in hot, humid areas, and those with high traffic levels may 407 

also disappear faster. We applied corrections to the observed road mortality rates, but our 408 

results were qualitatively the same when using uncorrected rates (Appendix 1) contrary to 409 

what Santos et al. (2011) found in their study. The criteria we adopted to only include studies 410 

with a 7-day minimum survey interval may have contributed to reduce differences; intervals 411 
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of one week or shorter have been found to significantly reduce bias for medium- and large-412 

sized birds and mammals (Bager & Rosa, 2011). Ultimately, data limitations and biases can 413 

only be effectively addressed with additional research efforts. In the meantime, studies using 414 

available data should consider uncertainty in results, explore correction methods, and interpret 415 

findings with caution. 416 

Overall, our results contribute to a better understanding of the biological drivers that 417 

make species vulnerable to road traffic collisions. Previous studies have largely focused on 418 

the importance of road characteristics (e.g. traffic, size, and design) and landscape features 419 

(e.g. vegetation type, and degree of fragmentation; Saeki & Macdonald, 2004; Grilo, 420 

Bissonette, & Santos-Reis, 2009). However, our study shows that using available knowledge 421 

on species traits and macroecological approaches can contribute to better evaluate risks and 422 

offer insights into species and spatial level risks. Obtained predictions can guide future survey 423 

efforts, pointing to poorly sampled areas with potentially susceptible species, and may also be 424 

used to plan conservation strategies, road development, and mitigation measures. These 425 

predictions also offer insights into the magnitude of the threat imposed by roads, with 426 

potentially millions of individual birds and mammals being killed each year within one 427 

country.  428 

 429 
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Table 1. Definitions, hypothesis, data sources and sample size availability for the species traits considered as predictors of road mortality in 624 

Brazilian birds and mammals in this study. Total species considered for birds data Nall=1831, birds with empirical roadkill rates NRK=170, total 625 

mammalian species Nall=623, and mammals with empirical roadkill rates NRK=73. Home range and sociality were only considered for 626 

mammals. 627 

Trait Definition and hypothesis Data source Birds Mammals 

   Nall NRK Nall NRK 

Diet breadth Total number of 10 possible dietary categories consumed by each 

species.  

Diet generalist are more likely to use resources on road verges and 

thus, approach roads leading to higher roadkill rates. 

Wilman et al., 2014 1527 153 454 70 

Scavenger 

behaviour  

Binary descriptor to identify species with diet consisting of ≥10% 

carrion. 

Scavengers can forage on roadkill, and thus will spend time on 

and near roads leading to higher roadkill rates. 

Wilman et al., 2014 1700 168 585 72 

Trophic level Trophic level described as: Herbivore (>80% plant diet), 

Carnivore (>80% animal diet), or Omnivore (<80% animal or 

plant diet). We used 80% thresholds as some diet data may 

include accidentally ingested material. 

Wilman et al., 2014 1700 168 585 72 
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Herbivores are more likely to utilize road verges, where 

vegetation can benefit from run-off, leading to higher roadkill 

rates. 

Habitat 

breadth 

Total number of ecoregions within Brazil overlapping the current 

geographic range area of each species.  

Habitat specialists are likely to avoid novel environments like 

roads, leading to reduced roadkill rates.  

Dinerstein et al., 2017  1831 170 544 70 

Ground 

foraging 

Prevalence of foraging on ground estimated as percentage of use 

of that substrate for birds. For mammals a categorical variable 

describing species classified as “ground foragers”.  

Species that forage in arboreal or aerial environments are less 

likely to be on roads, leading to reduced roadkill rates. 

Wilman et al. 2014 1646 167 623 73 

Activity cycle The main period a species is active defined as: nocturnal, diurnal 

or other. 

Nocturnal species are active at times with less traffic (which can 

reduce their perception of risk) and also when visibility is limited 

for drivers (affecting collision avoidance behaviours), both 

mechanisms can lead to higher roadkill rates.  

Jones et al., 2009; 

Wilman et al. 2014  

1700 168 585 72 
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Exploitation Binary descriptor to identify species classified as at risk from 

direct exploitation based on the IUCN (species classified as 

affected by categories 5.1 and/or 5.4). 

Hunted species are more likely to perceive roads as risks and 

avoid them, leading to reduced roadkill rates. 

IUCN Threats 

Classification Schemes, 

category 5.1 (Version 

3.2). 

1643 166 617 73 

Body mass Average body mass in grams of an adult individual. Median 

values per species based on all available sources.  

Large species are generally more mobile which could increase 

roadkill rates. 

Jones et al., 2009, Paglia 

et al., 2012, Wilman et al. 

2014,  

1664 170 546 72 

Home range Average home range size in km².  

Species with wider home ranges are more likely to overlap with 

roads, leading to increased roadkill rates. 

Jones et al. 2009 NA NA 85 30 

Lifespan The maximum recorded age of an individual of the species in 

days. Median values per species based on all available sources. 

Species with longer lifespans may be more likely to learn about 

road risks, leading to reduced roadkill rates. 

Jones et al., 2009; 

Myhrvold et al., 2015 

230 36 254 68 

Maturity age Average age in years at which individuals reach sexual maturity. 

Median values per species based on all available sources. 

Jones et al., 2009; 

Myhrvold et al., 2015 

177 30 197 50 
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Species with delayed maturation are more likely to prioritize 

survival, which can lead to greater perception of risk from roads 

and reduced roadkill rates.  

Sociality Binary descriptor to identify species in which individual spend 

most of their lives in a group. Defined as groups size=1 for 

solitary. 

Social species can benefit from collective vigilance and learning 

experienced that can reduce roadkill rates. 

Jones et al., 2009 NA NA 136 33 

 628 
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Figures and their legends   629 

 630 

Figure 1. Relative importance of predictors associated with empirical road mortality based on 631 

random forest regression models for birds (a) and mammals (b). Boxplots show results for the 632 

15 imputed datasets for each taxonomic group. Study predictors (representing study site 633 

coordinates and survey sampling frequency) are in bold, taxonomic predictor (order) is in 634 

italics, traits with <50% empirical data are marked with an asterisk.  635 

  636 
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 637 

Figure 2. Partial dependence plots for all tested predictors on the predicted road mortality 638 

rates of Brazilian birds. Predictors are in descending variable importance order (see Fig. 1a). 639 

Showing results for the 15 imputed datasets. Note that y-scales differ among plots. 640 

Taxonomic orders are abbreviated as follows: Acc (Accipitriformes), Ans (Anseriformes), Ccl 641 

(Cuculiformes), Chr (Charadriiformes), Clm (Columbiformes), Cpr (Caprimulgiformes), Crc 642 

(Coraciiformes), Crm (Cariamiformes), Cth (Cathartiformes), Flc (Falconiformes), Gll 643 

(Galliformes), Grf (Gruiformes), Pcf (Piciformes), Plc (Pelecaniformes), Pss (Passeriformes), 644 

Pst (Psittaciformes), Slf (Suliformes), Strg (Strigiformes), Strt (Struthioniformes). 645 

 646 
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 647 

 648 

Figure 3. Partial dependence plots for all tested predictors on the predicted road mortality 649 

rates of Brazilian mammals. Predictors are in descending variable importance order (see Fig. 650 

1b). Showing results for the 15 imputed datasets. Note that y-scales differ among plots. 651 

Taxonomic orders are abbreviated as follows: Crn (Carnivora), Ctr (Cetartiodactyla), Chr 652 

(Chiroptera), Cng (Cingulata), Ddl (Didelphimorphia), Lgm (Lagomorpha), Prs 653 

(Perissodactyla), Pls (Pilosa), Prm (Primates), Rdn (Rodentia). 654 

 655 
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 656 

Figure 4. Predicted standardized road mortality rates (in ind/km/year) for birds (a) and 657 

mammals (b) in Brazil. Total road mortality rates based on existing paved roads (ind/year) for 658 

birds (c) and mammals (d). Total bird (e) and mammalian (f) species richness. 659 

  660 
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Supplementary information for González-Suárez, M; Zanchetta Ferreira, F; Grilo, C. 661 

Spatial and species-level predictions of road mortality risk using trait data. Global Ecology 662 

and Biogeography 663 

[Appendices S1-S3] 664 

 665 

Appendix S1. Correction of mortality rates 666 

 667 

We used a correction factor derived from estimates of carcass persistence described in Santos, 668 

Carvalho, & Mira (2011). They estimated persistence probability (S), which we converted into 669 

a correction factor = 1+(1-S) adapting their estimates for survey intervals of 1, 2 and 7 days to 670 

our observed ranges, and combining some species groups to match our data (Table S1.1). 671 

Estimates from studies with survey intervals <1 day (ranging from twice a day to 16 times a 672 

day) were not corrected. Body mass was given priority when defining groups (e.g. rates for a 673 

bird of prey of 130 g were corrected based on the “Small birds” factor).  674 

Groups Survey intervals 

1.0-1.4 1.5-3.0 3.0-7.0 

Small birds (4-200 g) 1.634 1.797 1.968 

Large birds (200-23000 g, excluding birds of prey) 1.283 1.391 1.717 

Birds of prey (175-1600 g) 1.255 1.327 1.555 

Small mammals (29-300 g) 1.611 1.759 1.970 

Large mammals (1100-170000 g) 1.196 1.294 1.457 

Bats (20-60 g) 1.854 1.963 2.000 

 675 

 676 

  677 
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Appendix S2. Results based on uncorrected road mortality rates 678 

 679 

 680 

Figure S2.1. Relative importance of predictors associated with empirical uncorrected road 681 

mortality based on random forest regression models for bird (a) and mammal (b). Boxplots 682 

show results for the 15 imputed datasets for each taxonomic group. Study predictors 683 

(representing study site coordinates and survey sampling frequency) are in bold, taxonomic 684 

predictor (order) is in italics, traits with <50% empirical data are marked with an asterisk. 685 

 686 

 687 
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Figure S2.2. Predicted standardized road mortality rates (in ind/km/year) for birds (a) and 688 

mammals (b) in Brazil. Total road mortality rates based on existing paved roads (ind/year) for 689 

birds (c) and mammals (d). Values based on models fitted for uncorrected road-kill rates.  690 

 691 

 692 

Figure S2.3. Partial dependence plots for all tested predictors on the predicted uncorrected 693 

road mortality rates of Brazilian birds. Rates are in ind/km/year. Predictors are in descending 694 

variable importance order (Fig. S2.1). Showing results for the 15 imputed datasets. Note that 695 

y-scales differ among plots. Taxonomic orders are abbreviated as follows: Acc 696 

(Accipitriformes), Ans (Anseriformes), Ccl (Cuculiformes), Chr (Charadriiformes), Clm 697 

(Columbiformes), Cpr (Caprimulgiformes), Crc (Coraciiformes), Crm (Cariamiformes), Cth 698 

(Cathartiformes), Flc (Falconiformes), Gll (Galliformes), Grf (Gruiformes), Pcf (Piciformes), 699 

Plc (Pelecaniformes), Pss (Passeriformes), Pst (Psittaciformes), Slf (Suliformes), Strg 700 

(Strigiformes), Strt (Struthioniformes). 701 

 702 
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 703 

Figure S2.4. Partial dependence plots for all tested predictors on the predicted uncorrected 704 

road mortality rates of Brazilian mammals. Predictors are in descending variable importance 705 

order (Fig. S2.1). Showing results for the 15 imputed datasets. Note that y-scales differ among 706 

plots. Taxonomic orders are abbreviated as follows: Crn (Carnivora), Ctr (Cetartiodactyla), 707 

Chr (Chiroptera), Cng (Cingulata), Ddl (Didelphimorphia), Lgm (Lagomorpha), Prs 708 

(Perissodactyla), Pls (Pilosa), Prm (Primates), Rdn (Rodentia). 709 

  710 
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 711 

 712 

Figure S2.5. Predicted and observed uncorrected road mortality rates for 170 species of birds 713 

and 74 mammals. Symbol is the median value from all surveys for empirical data and across 714 

all predicted locations –grid cells, for predicted rates. Error bars represent the minimum and 715 

maximum range in observed and predicted values. Diagonal line indicates the 1:1 716 

relationship.  717 
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Appendix 3. Additional results with corrected road mortality rates 718 

 719 

 720 

Figure S3.1. Location of the surveyed roads in Brazil represented in the 41 studies with road 721 

mortality data for birds and mammals (note that some studies provided mortality rates for 722 

both groups). The size of the symbols represent the median road mortality rates for each 723 

taxonomic group. In birds the values range from 0.001 to 1.68 ind/km/year, while in 724 

mammals values range from 0.003 to 18.5 ind/km/year. 725 
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 726 

Figure S3.2. Predicted standardized road mortality rates (in ind/km/year) in Brazil assuming 727 

the minimum observed survey interval [(a) birds, (b) mammals, both 0.0417 days between 728 

surveys], mean observed interval [(c) birds 3.40 days between surveys, (d) mammals 3.64 729 

days between surveys], and maximum observed interval [(e) birds, (f) mammals, both 7 days 730 

between surveys, which was the maximum interval we considered for our study).  731 

 732 
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 733 

Figure S3.3. Predicted and observed road mortality rates for 170 species of birds and 74 734 

mammals. Symbol is the median value from all surveys for empirical data and across all 735 

predicted locations –grid cells, for predicted rates. Error bars represent the minimum and 736 

maximum range in observed and predicted values. Diagonal line indicates the 1:1 737 

relationship. 738 

 739 

 740 

Figure S3.4. Median predicted (grey boxplot) and observed (red symbols) road mortality rates 741 

for birds (left panel) and mammals (right panel) classified in the different IUCN Red List 742 

status categories.  743 
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 744 

Figure S3.5. Predicted standardized road mortality rates (in ind/km/year) for birds [(a) median 745 

rates, (c) standard deviation among species within each cell] and mammals [(a) median rates, 746 

(c) standard deviation among species within each cell] in Brazil.  747 

 748 
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Figure 3.6. Road density map for Brazil reflecting current paved roads (panel a) and current 749 

and planned paved roads (b). Road data from https://www.openstreetmap.org.  750 

 751 

 752 

Figure S3.7. Predicted total road mortality rates (in ind/year) for birds (a) and mammals (b) 753 

given the existing and planned paved road network in Brazil. Road data from 754 

https://www.openstreetmap.org.  755 

 756 

 757 

 758 
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 759 

Figure S3.8. Predicted standardized road mortality rates (in ind/km/year) for threatened birds 760 

(a) and threatened mammals (b) in Brazil. Total road mortality rates based on existing paved 761 

roads (ind/year) for threatened birds (c) and threatened mammals (d). Total threatened bird (e) 762 

and threatened mammalian (f) species richness. 763 

 764 


