Carbon budget for 1.5 and 2oC targets lowered by natural wetland and permafrost feedbacks

Article
Accepted Version

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1038/s41561-018-0174-9

Publisher: Nature Publishing Group

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
Carbon budget for 1.5 and 2°C targets lowered by natural wetland and permafrost feedbacks

Edward Comyn-Platt1,*, Garry Hayman1, Chris Huntingford1, Sarah Chadburn2,3, Eleanor Burke4, Anna Harper3, William Collins5, Christopher Webber5, Tom Powell4, Peter Cox4, Nic Gedney6, Stephen Sitch4

1: Centre for Ecology and Hydrology, Wallingford, OX10 8BB, U.K.
3: University of Exeter, Exeter, EX4 4QF, U.K.
4: Met Office Hadley Centre, FitzRoy Road, Exeter, EX1 3PB, U.K.
5: University of Reading, Reading, RG6 6BB, U.K.
6: Met Office Hadley Centre, Joint Centre for Hydrometeorological Research, Wallingford, OX10 8BB, U.K.

* Corresponding Author

Keywords: Climate stabilisation, global warming, temperature thresholds, carbon cycle, methane cycle, permafrost thaw

Methane emissions from natural wetlands and carbon release from permafrost thaw have a positive feedback on climate, yet are not represented in most state-of-the-art climate models. Furthermore, a fraction of the thawed permafrost carbon is released as methane, enhancing the combined feedback strength. We present simulations with an intermediate complexity climate model which follow prescribed global warming pathways to stabilisation at 1.5°C or 2.0°C above pre-industrial levels by the year 2100, and that incorporates a state-of-the-art global land surface model with updated descriptions of wetland and permafrost carbon release. We demonstrate that the climate feedbacks from those two processes are substantial. Specifically, permissible anthropogenic fossil fuel CO2 emission budgets are reduced by 17-23% (47-56 GtC) for stabilisation at 1.5°C, and 9-13% (52-57 GtC) for 2.0°C stabilisation. In our simulations these feedback processes respond faster at temperatures below 1.5°C, and the differences between the 1.5°C and 2°C targets are disproportionately small. This key finding is due to our interest in
transient emission pathways to the year 2100 and does not consider the longer term implications of these feedback processes. We conclude that natural feedback processes from wetlands and permafrost must be considered in assessments of transient emission pathways to limit global warming.

Background

The 2009 meeting of the United Nations’ Framework Convention on Climate Change (UNFCCC) in Copenhagen formalised the aspiration to stabilise global warming at no more than 2°C above pre-industrial levels. The subsequent UNFCCC Paris Agreement in 2015 raised the additional possibility of aiming for an even lower upper warming threshold of 1.5°C. These targets will require large reductions in anthropogenic greenhouse gas (GHG) emissions, with sustained decreases of ~3% per annum and development of technologies to remove carbon dioxide (CO₂) from the atmosphere. This is because the equilibrium global warming for current GHG concentrations may already be near 1.5°C. Given the anticipated difficulty in keeping below the 1.5°C threshold, two key questions are being asked. First, what are the implications in terms of allowable anthropogenic emissions to keep warming below 1.5°C rather than 2.0°C? Second, what is gained climatically or environmentally by keeping below 1.5°C, i.e. are unwelcome climate impacts potentially avoided?

The climate change observed during recent decades has been strongly linked to human influences on atmospheric GHG composition, leading the 5th IPCC assessment to state: “it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.” However atmospheric GHG levels are affected both directly (via anthropogenic GHG emissions) and indirectly by human activity. Indirect effects include climate change-induced adjustments to the land-atmosphere and/or ocean-atmosphere GHG exchange fluxes. This was first modelled for the global carbon cycle by [7] who predicted a
significant flux of carbon to the atmosphere via increased plant and soil respiration under warming for a business-as-usual scenario. Similar analyses have been undertaken separately for additional methane (CH\textsubscript{4}) release from wetlands8,9 and additional carbon released from the long-term permafrost store10-12. The increase in global warming may be under-estimated for a prescribed anthropogenic emissions trajectory if these processes are not considered. In reference to policy objectives, the anthropogenic fossil fuel emission budgets (AFFEBs) to limit global warming to 1.5°C or 2.0°C may be significantly reduced from current assessments6,13,14.

This research focuses on two key feedback processes which were not included in most models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5)15 and will only be included in a small fraction of models participating the sixth phase (CMIP6). These are the effects of carbon release from the long-term permafrost store as CO\textsubscript{2} and the increased CH\textsubscript{4} emissions from natural wetlands, and the coupling between the two effects where carbon from thawed permafrost is also released as CH\textsubscript{4}16,17. These are particularly pertinent issues given that CH\textsubscript{4} has a larger Global Warming Potential (GWP) by equivalent weight than CO\textsubscript{2}, and the recent resurgent growth in atmospheric CH\textsubscript{4}18.

In contrast to CMIP5 simulations, which modelled climatic and environmental responses to prescribed pathways in atmospheric concentrations, the objective here is to estimate the anthropogenic response to meet a specified global warming target. We develop an inverted form of climate model to follow prescribed temperature trajectories19 and calculate the corresponding AFFEBs13, including the two aforementioned feedback effects. The modelling framework is based on the coupled Joint UK Land Environment Simulator (JULES20,21) and Integrated Model Of Global Effects of climatic anomalies (IMOGEN22,23) system (Methods). The approach taken is generic and may be employed in further research to answer a number of environmental policy related questions in terms of meeting specified warming thresholds.
Model Setup

We use JULES version 4.8 release, with the addition of a 14 layered soil column for both hydro-thermal\(^\text{24}\) and carbon\(^\text{25}\) dynamics (Methods). The JULES configuration includes representations of land-use and land-use change (LULUC) and ozone damage on plant stomata to address policy-relevant warming scenarios outside the scope of this paper. Full JULES details are given in Methods.

The major advancement in the IMOGEN configuration used for this study is the prescription of evolving global temperature trajectories. Following this inverted form (Figure SI.1b; Methods), changes in radiative forcing, \(\Delta Q\), are calculated as a function of the time-history of global warming which are then ascribed to compatible atmospheric compositions of GHGs. The anthropogenic contribution to atmospheric CO\(_2\) is calculated whilst taking in to account changes to the land and ocean carbon stores, together with prescription or calculation of non-CO\(_2\) greenhouse gases. Additional IMOGEN enhancements for this analysis include the calculation of atmospheric CH\(_4\) concentration and effective radiative forcing, capturing the climate impacts on CH\(_4\) release from natural wetlands (Methods).

Critical to our analysis is understanding emission pathways available to stabilise at either 1.5°C or 2.0°C of warming since pre-industrial times. As this will be strongly influenced by anthropogenic perturbation of the climate system to present day, we constrain the historical global temperature (\(\Delta T_G\)) to the HadCRUT4 observational record\(^\text{26}\) and atmospheric composition to the Representative Concentration Pathway (RCP) record\(^\text{27}\) for the period 1850-2015. Future projections of the non-CO\(_2\) atmospheric composition is taken from the IMAGE-3.0 implementation of Shared-Socioeconomic-Pathway (SSP) version 2 under RCP2.6 (SSP2_RCP-2.6_IMAGE)\(^\text{28}\) (Methods).
We select three possible global warming pathways to stabilisation at the 1.5°C or 2.0°C targets by 2100 (Figure 1a and Figure SI.2), which are described using the formulation in [19] (Methods). Two of the considered trajectories follow the more traditional scenario of reaching asymptotes at 1.5°C and 2.0°C from below. The third asymptotes to 1.5°C after an overshoot to 1.75°C, representing far greater attempts of decarbonisation of the atmosphere towards the end of the 21st century. The overshoot trajectory allows investigation into hysteresis effects which may have path-dependent impact on temperature stabilisation, e.g. carbon release due to permafrost thaw.

Discussion

The atmospheric CO₂ concentrations and derived anthropogenic emission pathways from our control runs (i.e. with no natural wetland CH₄ nor permafrost carbon feedbacks) are displayed in Figure 1. Using this “standard” configuration of JULES, we estimate the interquartile range of the AFFEBs for 2015-2100 as 464-568 GtC to meet the 2°C target, and 227-283 GtC or 227-288 GtC to meet the 1.5°C target with or without the overshoot, respectively (Table 1). The AFFEBs are broadly linear in ΔT₉ across the three scenarios, i.e. 378-480 GtC °C⁻¹ and 421-516 GtC °C⁻¹ for the 1.5°C and 2°C scenarios, respectively. These results agree with previous estimates of AFFEBs using different methods¹₃.

The 2°C scenario allows close to “business as usual” emissions for the coming decade followed by extensive emission reductions of 3.5-4.1% per year between 2030 and 2100. However, if society were to act more immediately, the AFFEB could be met with year-on-year reductions of 2.2-2.7% from 2020. The 1.5°C scenario with no overshoot indicates a near immediate peak in annual emissions followed by 3.5-4.3% year-on-year reductions from 2020. Despite the similarity of the AFFEB for the two 1.5°C scenarios, the overshoot scenario places larger pressure on future generations. This pathway implies that anthropogenic activities are a net
311-377 GtC source of CO\textsubscript{2} until the early-2050s, then must become a net sink, capturing 90.4-101 GtC. These estimates go further than previous attempts to quantify AFFEB13,14 as they provide an AFFEB for each GCM, and the transient pathway, to meet the specified stabilised temperature.

The role of permafrost thaw in modulating the AFFEB is measured as the amount of carbon that was in the pre-industrial permafrost carbon store that is lost to the atmosphere. We define permafrost as soil layers within grid cells which JULES simulates as perennially frozen. We find our estimates of present day permafrost extent and loss rate to agree with the models assessed in [11] (Figure SI.3). Furthermore, a comparison with an observation dataset29 demonstrates that our simulations reproduce a reasonable present day spatial coverage of permafrost (Figure SI.4). By 2100, the model ensemble estimates a median 138 Mha loss of permafrost area at 3m depth for the 1.5°C asymptote pathway and a median 239 Mha loss for the 2.0°C pathway (Figure 2a and Table SI.3). This degradation of permafrost results in an additional 40.0-46.3, 45.6-51.2 and 61.9-72.0 GtC of pre-industrial permafrost carbon which is no longer perennially frozen, relative to 2015, for the three temperature scenarios. Between 20% and 30% of this newly “thermally active” carbon has been released to the atmosphere, reducing AFFEBs by 11.6-13.8 GtC across the three scenarios (Figure 2d and Table 1– blue boxes in first column). The uncertainty range presented here is the interquartile range of the climate ensemble. We use a model configuration very close to the upper extreme of the process uncertainty presented in [10], hence our estimates represent an upper limit to the potential permafrost feedback. Applying the findings of [10] implies that a lower limit to the permafrost feedback would be roughly half of what is presented here (~5-7 GtC).

The differences in permafrost loss between scenarios appears less than previous estimates30. However, our estimates represent a transient snapshot at 2100 and not equilibrium conditions which will not be met for several centuries. The permafrost is not in equilibrium by 2100,
particularly the deeper soil layers which show a lagged response to changes in the surface air temperature (Figure 2a and 2b). This behaviour is similarly observed in the pre-industrial permafrost carbon stocks which are still being significantly depleted by year 2100 (Figure 2c and 2d). The loss-rate of pre-industrial permafrost carbon to the atmosphere is still increasing by 2100 as the total pool of soil carbon to respire continues to grow despite the stabilisation of surface air temperature. This highlights the time-scales involved in permafrost processes and indicates that permafrost thaw will continue to have large implications on anthropogenic emissions into the 22nd century even if temperatures have stabilised.

The response of the AFFEB to permafrost thaw is non-linear with respect to ΔTG, i.e. 19.3-21.7 GtC °C⁻¹ for the 1.5°C scenarios and 11.6-12.5 GtC °C⁻¹ for the 2°C scenario. This implies that the permafrost feedback is faster at lower temperature changes, and keeping temperatures below 1.5°C, rather than 2°C, does not make large differences to AFFEBs to 2100. However, this behaviour is primarily a feature of our interest in the AFFEB to 2100 and the additional carbon released in the 2°C scenario will continue to have implications into the 22nd century.

The impact of the natural wetland CH₄ feedback on the AFFEBs is the sum of reduced carbon uptake of the atmosphere, ocean and land due to a higher atmospheric CH₄ concentration. The magnitude and distribution of the JULES natural wetland CH₄ emissions are driven primarily by wetland area and the soil temperature and carbon content (Methods). Our estimates of wetland extent and zonal distribution for the present day are within the range of state-of-the-art observation datasets31,32 (Figure SI.4). To encapsulate a range of methanogenesis process uncertainty we include a temperature sensitivity ensemble by varying Q₁₀ in Equation 1 (Methods). We use Q₁₀ values calibrated to represent two wetland types identified in [33] (“poor-fen” and “rich-fen”) and a third “low-Q₁₀” which gave increased importance to high latitude emissions (Methods). Our ensemble spread sufficiently describes the magnitude and distribution of present day CH₄ emissions from natural wetlands according to the models
assessed in a recent intercomparison study34 (Figure SI.5). That said, there is still much uncertainty in natural wetland CH\textsubscript{4} emissions and future work will look to improve our model via more rigorous comparisons with observational datasets.

The global mean atmospheric CH\textsubscript{4} concentrations are increased by 3-9\% and 6-15\% (w.r.t. the control simulation) when the natural CH\textsubscript{4} feedback is included for the 1.5°C and 2°C target, respectively (Figure 3a for the “poor-fen” parameterisation and supplementary Figure SI.6 for the other parameterisations). The major driver of increased to CH\textsubscript{4} emissions is increased soil temperatures as changes in wetland extent and soil carbon content are not consistent globally (Figure SI.7). The increased atmospheric CH\textsubscript{4} concentrations imply reduced atmospheric CO\textsubscript{2} concentrations to ensure that simulations follow the prescribed temperature pathway (Figure 3b). The reduced atmospheric CO\textsubscript{2} concentrations result in reduced CO\textsubscript{2} fertilisation of vegetation and a slower oceanic drawdown of CO\textsubscript{2}. Additionally, the increased ozone due to increased CH\textsubscript{4} (Methods) limits productivity further still. The AFFEBs are hence lowered by 33-51 GtC for the full temperature sensitivity ensemble (yellow cells in Table 1 and Figure 3d).

Similar to the permafrost feedback, the natural CH\textsubscript{4} feedback is non-linear with respect to ΔT\textsubscript{G}, i.e. 55-71 GtC °C-1 for the 1.5°C scenario and 34-46 GtC °C-1 for the 2°C scenario. The effects of the natural CH\textsubscript{4} feedbacks are 13-21\% larger for the 2°C scenario than the 1.5°C scenarios despite a temperature increase that is 83\% larger, from present day. Furthermore, we found that this non-linear behaviour was maintained for the three temperature sensitivities considered in our uncertainty analysis (Figure 3d). Therefore, in the context of the natural wetland feedback strength, we conclude that constraining warming to less than 1.5°C, rather than 2°C, has a disproportionately small impact on the AFFEB.
The natural CH$_4$ feedback strength is slightly reduced for the 1.5°C with overshoot in comparison to the 1.5°C asymptote pathway (Figure 3a). The two scenarios have similar atmospheric CH$_4$ concentrations by 2100 (median difference < 5ppb) hence the atmospheric CO$_2$ sinks in year 2100 are similar. However, the overshooting pathway has higher atmospheric CO$_2$ concentrations during the 21st Century, hence the ocean and land sinks are not reduced by as much. This implies that an overshooting pathway may be more robust to the natural CH$_4$ feedback as the land and ocean sinks are more effective. Given that the magnitude of this difference is small, 1-2 GtC, it is difficult to generalise this behaviour.

Our simulations show little interaction (where thawed permafrost is released as CH$_4$) between the feedback processes, i.e. the difference between the sum of the AFFEB differences and AFFEB difference from the simulation including both feedback processes < 2 GtC. The amount of CH$_4$ released from the thawed permafrost carbon is 0.2-0.6 TgCH$_4$ per year, where the upper limit corresponds to the “low-Q$_{10}$” parameterisation (Figure SI.8a) which gave a greater emphasis to CH$_4$ emissions from cooler regions (methods). This is ~0.16-0.56 % of global CH$_4$ emissions in 2015, decreasing to ~0.12-0.46% in 2100 (Figure SI.8b). Similarly, the fraction of permafrost carbon released as CH$_4$ is 0.15-0.59% (Figure SI.8c). The additional atmospheric CH$_4$ translates to changes of global atmospheric CO$_2$ of the order 0.1 ppmv, which has little impact on the absolute atmospheric carbon sink nor the uptake of carbon by the land and ocean. Hence, in the context of our estimates of AFFEBs to meet the UNFCC targets (200-500 GtC), the interplay of these two feedback schemes is largely negligible. However, our modelling framework does not account for thermokarst lakes created via ground subsidence following permafrost thaw. To provide an estimate of uncertainty regarding this omission we emulate the behaviour offline by linearly increasing wetland extent in permafrost regions through the 21st Century, from a factor of 1 in year 2000 to a factor of 2 in year 2100 (Figure SI.10). The increased CH$_4$ emissions reduces the AFFEB by a further 0.8-2.5 GtC. However, we see this
as an over-estimate as the emulation does not consider the reduced aerobic respiration due to increased saturated soil which has been shown to outweigh the increased CH$_4$ emissions16.

Conclusions

The combined effect of these feedback processes has large implications on AFFEBs, 16.7-23.2\% (46.6-55.7 GtC) and 9.5-13\% (51.4-64.6 GtC) reductions for the 1.5°C and 2°C scenarios from the control runs, respectively (Table 1 – green cells). In terms of mitigation pathways this corresponds to 4.6-5.4\% year-on-year reductions in anthropogenic emissions beginning in 2020 to meet the 1.5°C emission budget. To meet the 2°C warming target, the allowable emissions would require year-on-year reductions of 3.9-4.5\% beginning in 2030, or 2.4-3.0\% starting in 2020. This represents a 1-1.5\% increase in reduction rates for the 1.5°C and only a 0.3-0.6\% increase in reduction rates for the 2°C. The 1.5°C overshoot pathway indicates that total allowable anthropogenic emissions would need to be no more than 292-351 GtC prior to the mid-2050s followed by a removal of 101-118 GtC.

We find that to fulfil a 1.5°C warming threshold with no overshoot, increased CH$_4$ emissions from natural wetlands reduce the AFFEB between now and year 2100 by 12-17\%. Carbon released from the long-term permafrost store reduces the AFFEB by an additional 4.1-5.3\%, and the interplay between the two processes a further 0.5-1\%. This leaves AFFEBs of 175-235 GtC to 2100, a total reduction of 17-23\%. Allowing for an overshoot to 1.75°C, but still leading ultimately to 1.5°C warming, makes little difference to the AFFEB, 172-240 GtC to 2100. However, such an eventuality would require significant developments of carbon capture technologies in the second half of the 21st century during which the net anthropogenic contribution to the carbon cycle would have to be a 101-118 GtC sink. The reduction in AFFEB for stabilisation at 2.0°C is, in absolute terms, similar to the reductions required to meet the 1.5°C target, 51.4-64.6 GtC. However, this is a much lower fraction of the AFFEB, 9.5-13.0\%.
Our overall findings are that the natural climate feedbacks considered here are non-linear with respect to the AFFEB to meet a given temperature target by year 2100. Therefore, the role of the natural CH₄ and permafrost thaw feedback processes become increasingly more important when considering the lower stabilisation temperature target of 1.5°C.

References

5. Huntingford, C. & Mercado, L. M. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land. 6, 30294 (2016).

IPCC. *Climate change 2001: the scientific basis*. (The Press Syndicate of the University of Cambridge, 2001).

Corresponding Author

All correspondence and requests for materials should be made to Edward Comyn-Platt (edwcom@ceh.ac.uk).

Acknowledgements

The work was undertaken as part of the UK Natural Environment Research Council’s programme “Understanding the Pathways to and Impacts of a 1.5°C Rise in Global Temperature” through grants NE/P015050/1 CLIFFTOP (E.C-P, G.H., S.C.), NE/P014909/1, MOC1.5 (W.C., C.W., C.H., P.C., S.S.) and NE/P014941/1 CLUES (P.C., T.P.). We also acknowledge the support for: (a) E.B. and N.G., the Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme (GA01101); (b) E.B., CRESCENDO (EU project 641816); (c) A.H., EPSRC Fellowship ”Negative Emissions and the Food-Energy-Water Nexus” (EP/N030141/1); and (d) C.H., CEH National Capability Funding. We also acknowledge the
wetland extent data products provided by Dr. B. Zhang, of Auburn University, USA and Dr.
B. Poulter of the NASA Goddard Space Flight Center, USA.

Author Contributions

G.H., E.B., S.C. and E.C-P conceived and developed the project. E.C-P and C.H. led the
development of the inverse IMOGEN model system. E.B. and S.C. contributed code and
expertise on permafrost and soil carbon modelling. N.G., S.C. and E.C.P. contributed code and
expertise on the JULES wetlands methane scheme. A.H. and T.P. contributed land use change,
W.C. and C.W. ozone ancillary data and S.S. contributed expertise on the ozone damage
contributed to the design of the IMOGEN model runs. All authors contributed to the
interpretation of the results and to the writing of the paper.

Competing financial interests

The authors declare no competing financial interests.
Methods

(1) The JULES model20,21.

(a) Model version and configuration

JULES is a process-based land surface model that simulates energy, water and carbon fluxes at the land-atmosphere boundary. JULES can be run as a standalone model using given meteorological driving variables or as the land surface component of climate modelling systems of varying degrees of complexity, e.g. Earth System Models35 or IMOGEN18. We use the JULES version 4.8 release with the addition of a 14 layered soil column over 3m for both hydro-thermal24 and carbon dynamics25. Burke et al.,25 demonstrated that modelling the soil carbon fluxes as a multi-layered scheme improves estimates of soil carbon stocks and net ecosystem exchange. In addition to the vertically discretised respiration and litter input terms, the soil carbon balance also includes a diffusivity term which represents cryoturbation/bioturbation processes. The freeze-thaw processes of cryoturbation is particularly important in cold permafrost type soils10.

The multi-layered methanogenesis scheme improves the representation of high latitude CH$_4$ emissions where previous studies underestimated production at cold permafrost sites during “shoulder seasons”36. The multi-layered scheme allows an insulated sub-surface layer of active methanogenesis to continue after the surface has frozen. These model developments not only improve the seasonality of the emissions, but more importantly for this study capture the release of carbon as CH$_4$ from deep soil layers, including thawed permafrost. The formulation of the multi-layered scheme gives the local land-atmosphere CH$_4$ flux, E_{CH4} (kg C m$^{-2}$ s$^{-1}$), as:

$$E_{CH4} = k \cdot f_{wett} \cdot \sum_{i}^{i} c_{pools} \cdot \sum_{z=0m}^{z=3m} e^{-\gamma z} C_{i,x} \cdot Q_{10}(T_{soil})^{0.1(T_{soil}-T_{0})}$$

Equation 1
Where z is the depth in soil column (in m), i is the soil carbon pool, f_{wetl} is the fraction of wetland area in the gridcell, κ_i (s$^{-1}$) is the specific respiration rate of each pool (Table 8 of [21]), C_s (kg m$^{-2}$) is soil carbon, T_{soil} (K) is the soil temperature. γ (= 0.4 m$^{-1}$) is a constant that describes the reduced contribution of CH$_4$ emission at deeper soil layers due to inhibited transport and increased oxidation through overlaying soil layers. This is a simplification, however previous work which explicitly represented these processes showed little to no improvement when compared with in-situ observations37. The four soil carbon pools (i) in JULES are decomposable plant material, resistant plant material, microbial biomass, and humus. As JULES is a processed based model, the carbon emitted as CH$_4$ is therefore removed from the soil carbon stock. Furthermore, as described in [38], soil respiration is non-zero in fully saturated soils, hence in anaerobic conditions JULES produces CO$_2$ in addition to CH$_4$.

f_{wetl} is calculated using the JULES implementation of TOPMODEL39 as the integral of a normalised gamma distribution of a prescribed topographic index dataset40, $G(\tau)$, between a critical, τ_{crit} (ln(m)), and maximum, τ_{max} (ln(m)), topographic index, i.e.:

$$f_{\text{wetl}} = \int_{\tau_{\text{crit}}}^{\tau_{\text{max}}} G(\tau) d\tau,$$

where τ_{crit} is dependent on the local water table as:

$$\tau_{\text{crit}} = \ln \left(\frac{\Psi(0)}{\Psi(\bar{z}_w)} \right) + \bar{\tau},$$

where $\Psi(0)$ and $\Psi(\bar{z}_w)$ (m2s$^{-1}$) are the transmissivities of entire soil column and the soil column below the mean water table depth, \bar{z}_w (m). The τ_{max} limit excludes regions where the water table is sufficiently high enough for stream flow and hence assumed to be a negligible emitter of CH$_4$. It is calculated as:

$$\tau_{\text{max}} = \tau_{\text{crit}} + \tau_{\text{range}}.$$

where τ_{range} (= 2.0) is a global tuning parameter.
\(\bar{z}_w \) is incrementally updated based on the balance of water flux processes on each JULES timestep. When \(\bar{z}_w \) is in the deep store (a singular 15 m below the 14 modelled layers) it is updated as the balance between the infiltration water, \(I_{\text{Deep}} \), and the baseflow, \(B_{\text{Deep}} \), as:

\[
\rho \theta_{\text{sat}} \frac{d(\bar{z}_w)}{dt} = I_{\text{Deep}} - B_{\text{Deep}},
\]

Equation 5

where \(\rho \) is the density of water and \(\theta_{\text{sat}} \) is the saturated volumetric water content. If the deep layer is fully saturated \(\bar{z}_w \) is calculated diagnostically to be in the deepest unsaturated model soil layer. The water content of each layer, \(j \), is updated on each time step as the balance of the vertical flux processes (infiltration, \(I_j \), and Evapotranspiration, \(E_j \)), and, for layers below \(\bar{z}_w \), a horizontal baseflow flux, \(B_j \), i.e.:

\[
\Delta z_j \rho \frac{d(\theta_j)}{dt} = I_j - E_j - B_j,
\]

Equation 6

where \(\Delta z_j \) is the thickness and \(\theta_j \) is the volumetric water content of \(j^{th} \) soil layer. For full details of the process based JULES hydrology please refer to [20] and [39].

In addition, the JULES configuration includes prescribed land-use and land-use change (LULUC), where land used for agriculture can only grow C3 and C4 grasses to represent crops and pasture. The land-use mask consists of an annual fraction of agricultural land in each grid cell. Historical LULUC is based on the HYDE 3.1 dataset, and future LULUC is based on the SSP2_RCP-2.6_IMAGE. When natural vegetation is converted to managed agricultural land, the removed vegetation carbon is placed into woody product pools that decay at various rates back into the atmosphere. The carbon flux from LULUC is therefore not lost from the system.

We use a JULES configuration including ozone deposition damage to plant stomata, which then affects land-atmosphere \(CO_2 \) exchange. JULES requires surface atmospheric ozone concentrations, \(O_3 \) (ppb), for the duration of the simulation period (1850-2100). Here, we use
two sets of monthly O$_3$ concentration fields calculated using the HADGEM3-A GA4.0 model for low (1285 ppbv) and high (2062 ppbv) global mean atmospheric CH$_4$ concentrations43. We regrid these fields (1.875°x1.25° horizontal grid) to the spatial grid of IMOGEN-JULES (3.75°x2.5° horizontal grid). We then linearly interpolate between the respective months in the regridded O$_3$ fields using the global annual atmospheric CH$_4$ concentration. The CH$_4$ concentration is taken from the prescribed SSP2_RCP-2.6_IMAGE plus the natural CH$_4$ modulation when the interactive scheme is in use.

(b) Wetland CH$_4$ emission scheme calibration

We calibrate the temperature sensitivity of the multi-layered methanogenesis scheme (k and $Q_{10}(T_{soil})= Q_{0.0}^{T_{soil}}/T_{soil}$ in Equation 1) for each CMIP5 model in the IMOGEN ensemble to ensure the wetland CH$_4$ production rates match present day observations33,34. $^{[33]}$ fit observed surface CH$_4$ fluxes, E_{CH4}, against temperature to Equation 7 using data from 71 sites:

$$E_{CH4,Turetsky} = A_{Turetsky} \times Q_{10,Turetsky}^{0.1T_{soil-10cm}},$$ \textit{Equation 7}

where $T_{soil-10cm}$ is the temperature of the top 10 cm of soil.

To capture temperature sensitivity uncertainty we calibrate Q_{10} in Equation 1 against Equation 7 for 2 of the wetland types identified in $^{[33]}$ (“Poor Fen” and “Rich Fen”) using the daily output from the JULES-simulations at the year 2000 for each GCM. We select Q_{10} values which maximise the Pearson’s correlation coefficient. k is then calculated such that the global total for the year 2000 is 180 TgCH$_4$ to match our assumptions of the atmospheric growth rate of CH$_4$ in the IMOGEN CH$_4$ feedback calculations (see IMOGEN description below). We selected the “Poor Fen” and “Rich Fen” parameterisations for our ensemble as these gave the best representation of the global distribution of CH$_4$ emissions when compared with the output from $^{[34]}$ (Figure SI.9). A “Bog” parameterisation was ruled out as this tended towards unrealistically high tropical emissions, a “Swamp” parameterisation was ruled out due to the
high levels of uncertainty reported in \cite{33}. The optimised parameter values are given in Table SI.2 of the Supplementary Information. In addition to the two calibrated parameterisations we include a “lowQ_{10}” ($Q_{10}=2.0$, $k=1.625 \times 10^{-9}$) parameterisation which gave a larger fraction of global emissions to lower temperature regions (Figure SI.9).

(2) IMOGEN, EBM Inversion and the CMIP5 models selected for its calibration.

(a) IMOGEN23 is a climate-carbon cycle model of intermediate complexity that uses “pattern-scaling” of the seven meteorological variables required to drive JULES. Huntingford, et al.23 assume that changes in local temperature, precipitation, humidity, wind-speed, surface shortwave and longwave radiation and pressure are linear in global warming. Patterns are multiplied by the amount of global warming over land, ΔT_L, to give local monthly predictions of climate change. When using IMOGEN in forward mode, ΔT_L is calculated with an Energy Balance Model (EBM) as a function of the overall changes in radiative forcing, ΔQ (W m-2). ΔQ is the sum of the atmospheric greenhouse gas contributions44, updated on a yearly timestep.

Our simulations include a CH\textsubscript{4} feedback system that captures the climate impacts on CH\textsubscript{4} emissions from natural wetland sources. The approach here follows that of [8] where prescribed CH\textsubscript{4} concentrations, which assume a non-varying natural wetland CH\textsubscript{4} component28, are perturbed using the anomaly in modelled natural wetland CH\textsubscript{4} emission. To ensure consistency with the observed atmospheric CH\textsubscript{4} growth rate we calibrate our model to produce 180 TgCH\textsubscript{4} per year for the year 2000, as detailed in the model calibration description above. The increased/reduced atmospheric CH\textsubscript{4} concentration will have corresponding longer/short atmospheric lifetime, λ, than the prescribed concentration pathway. We account for changes in λ following the formulation and parameterisation of [45], i.e. $\lambda=8.4$ yr-1 for an atmospheric CH\textsubscript{4} concentration of 1745ppb. The changes in radiative forcing were calculated using the formulation in [44]. There is large uncertainty in the natural wetland contribution to global CH\textsubscript{4}
emissions, for this study we scale to 180 TgCH$_4$ per year, approximation based on a recent model intercomparison study34 (Figure SI.6). Additionally, the effect of increased atmospheric CH$_4$ concentrations on tropospheric ozone levels is also accounted for, both in terms of radiative forcing and the impact on surface functioning through stomatal damage (see JULES description in Methods section 1a).

Previous IMOGEN studies23,10 used 22 of the Earth System models (ESMs) involved in CMIP3 (phase 3 of the Coupled Model Intercomparison Project). Here, we update and extend IMOGEN to use Earth System models (ESMs) involved in CMIP5. We downloaded CMIP5 data from the mirror database held on the UK JASMIN computer during Autumn 2015. Table SI.1 lists every model for which historical monthly surface temperature fields were available.

The key criteria for inclusion of the output from a given CMIP5 GCM simulation is as follows (see Supplementary Information and Table SI.1):

1. Availability for the internal Energy Balance Model of surface temperature, top of the atmosphere (TOA) incoming shortwave radiation, outgoing TOA shortwave and longwave radiation;
2. Availability of meteorological parameters to drive JULES: surface temperature, precipitation, surface relative humidity, surface downward shortwave radiation, surface downward longwave radiation, surface wind speeds and surface pressure
3. Availability of two RCP scenarios for calibration and testing

(b) Energy Balance Model (EBM) Inversion. The EBM was inverted such that a change in radiative forcing, ΔQ, is calculated as a function of a change in the global temperature, ΔT_g (K), re-ordering of Equation (10) from Huntingford and Cox22 gives:

$$\Delta Q(t) = f \left[\Delta T_o \left(\frac{(1-f)\lambda_l}{f} + \lambda_o \right) - \kappa \frac{\partial \Delta T_{o,s}}{\partial z} \right]_{g=0},$$

Equation 8
Where \(\Delta Q(t) \) is the change in radiative forcing (W m\(^{-2}\)) at time \(t \), \(f \) is the fraction of Earth that is ocean, \(\lambda_l \) and \(\lambda_o \) are the climate sensitivities over land and ocean, respectively (W m\(^{-2}\) K\(^{-1}\)), \(\nu \) is the land-sea contrast and \(\kappa \) is the ocean diffusivity (W m\(^{-1}\) K\(^{-1}\)). The values of the parameters \(f, \lambda_l, \lambda_o, \nu \) and \(\kappa \) are unique to each GCM in the ensemble and are listed in the Supplementary Information, Table SI.2.

The change in the depth-dependent ocean temperature (\(\Delta T_o \)) (K) must satisfy the diffusivity equation:

\[
c_p \frac{\partial \Delta T_{o,s}}{\partial t} = \kappa \frac{\partial^2 \Delta T_{o,s}}{\partial z^2},
\]

Equation 9

where \(c_p \) is (J K\(^{-1}\) m\(^{-3}\)) is the specific heat capacity of salt water and \(z \) (m) is ocean depth (positive downwards). The change in the global mean surface ocean temperature (\(z = 0 \)) is then calculated from the global temperature, \(\Delta T_G \) as \(^{22}\):

\[
\Delta T_o = \frac{\Delta T_G}{[f + \nu - f \nu]}.
\]

Equation 10

The global mean land temperature, \(\Delta T_L \), required for the “pattern scaling” was calculated as:

\[
\Delta T_L = \nu \Delta T_o.
\]

Equation 11

(c) Etminan CO\(_2\) Radiative Forcing Inversion.

Etminan et al.\(^{44}\) present a formulation to calculate the change in radiative forcing, \(\Delta Q_{CO_2} \), from a given change in the global mean atmospheric CO\(_2\) concentration. There is no exact solution for the inverse of this, i.e. to calculate the change in CO\(_2\) for a given \(\Delta Q_{CO_2} \). We find the solution iteratively using Equation 3:

\[
CO_{2i+1} = CO_{2REF} \times e^{\left[\frac{\Delta Q_{CO_2}}{a_1(CO_{2i} - CO_{2REF})^2 + b_1(CO_{2i} - CO_{2REF}) + c_1n + 5.36}\right]}
\]

Equation 12
We assume convergence has occurred if the CO$_2$ concentration changes by less than 0.001535 ppm. The initial CO$_2$ concentration for the iteration is taken to be the CO$_2$ concentration for the previous year. We typically find that no more than 5 iterations are required for a change of 10 ppm from the starting concentration.

(d) $Q_{\text{non-CO2}}$ calculation. Changes in radiative forcing, ΔQ (Wm$^{-2}$), calculated by the inverted IMOGEN EBM must be ascribed to changes in the atmospheric composition of GHGs. For this simplified description we consider two forcing contributions. The CO$_2$ forcing, ΔQ_{CO2} (Wm$^{-2}$), and the forcing of all other agents, $\Delta Q_{\text{non-CO2}}$ (Wm$^{-2}$). In the simplest case (not considering interactive CH$_4$), a prescribed $\Delta Q_{\text{non-CO2}}$, is removed from ΔQ to give ΔQ_{CO2} as:

$$\Delta Q_{\text{CO2}} = \Delta Q - \Delta Q_{\text{non-CO2}}.$$

Equation 13

The non-CO$_2$ composition is taken from the SSP2_RCP-2.6_IMAGE pathway28. The SSP2_RCP-2.6_IMAGE pathway was chosen as it assumes very high GHG mitigation and the global warming pathway is reasonably close to the 1.5°C or 2.0°C targets of interest (i.e. 1.8°C by 2100). This prescribed non-CO$_2$ radiative forcing is subtracted from ΔQ to give the CO$_2$ radiative forcing ($\Delta Q_{\text{CO2}} = \Delta Q - \Delta Q_{\text{non-CO2}}$). The CO$_2$ concentration is then derived using an iterated inversion of the CO$_2$ radiative forcing equation in Etminan et al.44 (Methods). For a given $\Delta Q_{\text{non-CO2}}$, we then estimate the CO$_2$ concentration iteratively, as described above, using Equation 3.

Each of the 34 GCMs that IMOGEN emulates has a different set of EBM parameters - λ_i, λ_o, ν, κ and f. Hence each GCM has a different ΔQ estimate for a given $\Delta T_G(t)$ pathway. When IMOGEN is driven with a historical record of ΔT_G the range of ΔQ for the present day (2015) is 1.13 W m$^{-2}$ (Supplementary Information Figure SI.5a). For this work, we require the historical period, 1850-2015, to match observations of both ΔT_G and atmospheric composition for all GCMs. We, therefore, attribute the spread in ΔQ to uncertainty in $\Delta Q_{\text{non-CO2}}$, particularly
the atmospheric aerosol contribution which has an uncertainty range of -0.5 to -4 Wm\(^{-2}\)\(^6\). Given this, and to ensure continuous functions of \(\Delta Q_{\text{CO2}}\) and \(\Delta Q_{\text{non CO2}}\), we calculated the contributions as:

\[
\Delta Q_{\text{CO2}}(t) = \begin{cases}
\Delta Q_{\text{CO2}}(t)_{\text{SSP}}, & t \leq 2015 \\
\Delta Q(t) - \Delta Q_{\text{non CO2}}(t), & t > 2015
\end{cases}
\]

\[
\Delta Q_{\text{non CO2}}(t) = \begin{cases}
\Delta Q(t) - \Delta Q_{\text{CO2}}(t)_{\text{SSP}}, & t \leq 2015 \\
(\Delta Q_{\text{non CO2}}(t)_{\text{SSP}} + c(\text{GCM})), & t > 2015
\end{cases}
\]

where the subscript SSP indicates the value is sourced from SSP2_RCP-2.6_IMAGE. \(c\) (Wm\(^{-2}\)) is a GCM specific offset which ensured continuous \(\Delta Q_{\text{CO2}}\) or \(\Delta Q_{\text{non CO2}}\) and was calculated at the transitional year (2015) as:

\[
c(\text{GCM}) = \Delta Q_{\text{non CO2}}(2015) - \Delta Q_{\text{non CO2}}(2015)_{\text{SSP}}
\]

Figure SI.5 in the supplementary information shows the allocation of the \(\Delta Q\) and the resultant atmospheric CO\(_2\) concentration pathways for the 2°C stabilisation temperature. We include the GCM specific 2015 aerosol-offsets in Table SI.2 in the Supplementary Information.

(3) Temperature Profile Formulation. \([19]\) provides a framework to create temperature trajectories based on two parameters which model the efforts of humanity to limit emissions and, if necessary, capture atmospheric carbon, i.e.:

\[
\Delta T(t) = \Delta T_0 + \gamma t + (1 - e^{-\mu(t) t})[\gamma t - (\Delta T_{\text{Lim}} - \Delta T_0)]
\]

where, \(\Delta T(t)\) is the change in temperature from pre-industrial levels at year \(t\), \(\Delta T_0\) is the temperature change at a given initial point (in this case \(\Delta T_0 = 0.89^\circ\text{C}\) for 2015), \(\Delta T_{\text{Lim}}\) is the final prescribed warming limit and:

\[
\mu(t) = \mu_0 + \mu_1 t,
\]
\[\gamma = \beta - \mu_0(\Delta T_{\text{lim}} - \Delta T_0). \]

Where \(\beta \) (= 0.00128) is the current rate of warming and the \(\mu_0 \) and \(\mu_1 \) are tuning parameters which describe anthropogenic attempts to stabilise global temperatures\(^\text{19}\). The selected parameterisation of the three trajectories are based on comparisons with CMIP5 simulations for the RCP2.6 scenario (grey lines in Figure SI.2). The parameter values used for the three profiles selected are shown below.

<table>
<thead>
<tr>
<th>Profile</th>
<th>(\Delta T_{\text{lim}})</th>
<th>(\mu_0)</th>
<th>(\mu_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5°C</td>
<td>1.5</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>1.5°C (overshoot)</td>
<td>1.5</td>
<td>-0.01</td>
<td>0.00085</td>
</tr>
<tr>
<td>2°C</td>
<td>2.0</td>
<td>0.08</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(4) Code and Data Availability

The data that support the findings of this study are available from the corresponding author upon request. The IMOGEN patterns and the model output required to produce the resulted presented herein will shortly be made publicly available for download on the EIDC. JULES is an open-source model and the branch used in this work is available from the met-office science repository using the following URL (registration required):

The parameterisations used here are also permanently stored on the met-office science repository. Given the complexities in accessing the specific revision and machine configuration, these will be made available upon request to the corresponding author.
Figures

Figure 1 Time-series for the control model ensemble. Blue is the 1.5°C asymptote pathway, yellow is the 1.5°C overshoot pathway and red is the 2°C asymptote pathway. Faint lines are the individual GCMs, bold lines represent the ensemble median, and the colours are consistent across the panels. (a) Temperature pathways; (b) simulated atmospheric CO₂ concentrations; (c) derived allowable anthropogenic emissions.

Figure 2 The response of the permafrost soil column to warming through the 21st century. (a) Areal extent of permafrost within the top 1m of soil column; (b) areal extent of permafrost within the top 3m of soil column; (c) the amount of pre-industrial permafrost carbon still perennially frozen; (d) the amount of pre-industrial carbon lost to the atmosphere. Blue is the 1.5°C asymptote pathway, yellow is the 1.5°C overshoot pathway and red is the 2°C asymptote pathway.
Figure 3 Summary results for the natural methane feedback experiment. (a) Time-series of atmospheric CH$_4$ when the interactive natural CH$_4$ is included (“poor fen” parameterisation) for the three temperature pathways. The black line is the control simulation atmospheric CH$_4$. (b) The reduction in atmospheric CO$_2$ (from control simulation) to follow the prescribed temperature pathway. (c) The reduction in anthropogenic fossil fuel emissions due to reduced atmosphere, land and ocean sinks. (d) The reduction in AFFEB for the temperature sensitivity uncertainty ensemble. Blue is the 1.5°C asymptote pathway, yellow is the 1.5°C overshoot pathway and red is the 2°C asymptote pathway.
Total Anthropogenic CO₂ emissions (GtC)

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Methane Feedback</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>265 (226-283)</td>
<td>226 (187-249)</td>
<td>39.6 (33.1-42.1)</td>
</tr>
<tr>
<td>Permafrost</td>
<td>254 (214-276)</td>
<td>214 (175-235)</td>
<td>40.1 (34.7-42.4)</td>
</tr>
<tr>
<td>Feedback</td>
<td>11.9 (11.6-12.2)</td>
<td>12.5 (11.9-14.0)</td>
<td>52.1 (46.6-54.2)</td>
</tr>
<tr>
<td>Difference</td>
<td>11.9 (11.6-12.2)</td>
<td>12.5 (11.9-14.0)</td>
<td>52.1 (46.6-54.2)</td>
</tr>
</tbody>
</table>

	1.5°C		
overshoot	**271** (227-288)	**232** (185-254)	**40.2** (33.6-42.8)
Permafrost	**258** (214-276)	**218** (172-240)	**40.6** (36.3-43.1)
Feedback	**12.5** (12.1-13.0)	**13.0** (12.4-14.3)	**53.5** (47.4-55.7)
Difference	**12.5** (12.1-13.0)	**13.0** (12.4-14.3)	**53.5** (47.4-55.7)

	2°C		
Standard	**527** (464-568)	**504** (417-528)	**47.4** (37.3-51.0)
Permafrost	**514** (451-554)	**467** (404-514)	**47.8** (38.6-51.3)
Feedback	**13.3** (12.8-13.8)	**13.6** (13.0-15.0)	**61.1** (51.4-64.6)
Difference	**13.3** (12.8-13.8)	**13.6** (13.0-15.0)	**61.1** (51.4-64.6)

Table 1: Emission budgets from the factorial experiment and the changes due to the introduction of the feedback processes. White cells represent the absolute emission budget for the 2015-2100 period, blue cells represent the change due to inclusion of carbon released from the permafrost store, yellow cells represent the change due to inclusion of an interactive CH₄ scheme and green cells represent the change due to inclusion of both permafrost and interactive CH₄ feedbacks. Bold values give the climate ensemble median for the "poor fen" CH₄ parameterisation. Bracketed values represent the spread of the climate ensemble interquartile ranges for the 3 temperature sensitivity experiments (i.e. the full spread of the boxes in Figure 3b).