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Impact of specific functional groups 
in flavonoids on the modulation of 
platelet activation
Divyashree Ravishankar1, Maryam Salamah1, Angela Akimbaev1, Harry F. Williams  1,  
Dina A. I. Albadawi1, Rajendran Vaiyapuri2, Francesca Greco1, Helen M. I. Osborn1 &  
Sakthivel Vaiyapuri1

Flavonoids exert innumerable beneficial effects on cardiovascular health including the reduction of 
platelet activation, and thereby, thrombosis. Hence, flavonoids are deemed to be a molecular template 
for the design of novel therapeutic agents for various diseases including thrombotic conditions. 
However, the structure-activity relationships of flavonoids with platelets is not fully understood. 
Therefore, this study aims to advance the current knowledge on structure-activity relationships of 
flavonoids through a systematic analysis of structurally-related flavones. Here, we investigated a panel 
of 16 synthetic flavones containing hydroxy or methoxy groups at C-7,8 positions on the A-ring, with 
a phenyl group or its bioisosteres as the B-ring, along with their thio analogues possessing a sulfur 
molecule at the 4th carbon position of the C-ring. The antiplatelet efficacies of these compounds were 
analysed using human isolated platelets upon activation with cross-linked collagen-related peptide by 
optical aggregometry. The results demonstrate that the hydroxyl groups in flavonoids are important 
for optimum platelet inhibitory activities. In addition, the 4-C=O and B ring phenyl groups are less 
critical for the antiplatelet activity of these flavonoids. This structure-activity relationship of flavonoids 
with the modulation of platelet function may guide the design, optimisation and development of 
flavonoid scaffolds as antiplatelet agents.

Platelets are small circulating blood cells that play pivotal roles in the regulation of haemostasis upon vascular 
injury through blood clotting1,2. However, unnecessary activation of platelets within the vasculature leads to 
pathological conditions such as thrombosis, which results in blockage or reduction of blood flow to major organs 
including heart and brain instigating heart attack and stroke, respectively3,4. The currently used therapeutic 
options that involve the use of antiplatelet drugs such as clopidogrel, aspirin, and prasugrel are often linked with 
adverse side effects such as bleeding and are ineffective in some patients5–10. As cardiovascular diseases remain 
the leading cause of death worldwide11, the development of improved therapeutic strategies to prevent and treat 
thrombotic diseases remains a pressing priority.

Flavonoids, a group of polyphenolic plant metabolites, have been widely demonstrated to possess beneficial 
effects in the prevention of cardiovascular diseases12–14. Epidemiological and clinical studies have established a 
prominent link between the regular consumption of dietary flavonoids and decreased incidences of cardiovas-
cular diseases or their risk markers15–20. Flavonoids have also been recognised as modulators of platelet function 
and their inhibitory activities can be attributed to their ability to inhibit reactive oxygen species (ROS) produc-
tion21,22, modify cytoskeletal proteins such as actin and tubulin that mediate degranulation23,24, and to inhibit 
various kinases25–29 and receptors30,31 that play numerous roles in the regulation of platelet activation and throm-
bosis. The pharmacological potential of flavonoids is strongly related to their molecular structure, hence, the 
identification of key structural elements that are prerequisites for antiplatelet activity has provoked considerable 
interest in the area of drug discovery32,33. With a view to develop flavonoids as potential anti-thrombotic agents, 
some studies have been carried out to identify the key structural features governing the antiplatelet activity of 
flavonoids34. However, the current knowledge of structure-activity relationships (SARs) has mainly resulted from 
analyses involving different subclasses of natural flavonoids32,34. In order to translate flavonoids into potential 
molecular templates for drug design, a better understanding of the SAR of flavonoids, and a careful comparison of 
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substitution pattern within a flavonoid subclass is necessary. Hence, to gain greater insights into the SAR of flavo-
noids with human platelets, this study has focused on assessing the effect of methoxylation, 4-C=S substitution, 
and different B-ring substitutions using a series of 16 synthetic flavones on the antiplatelet activities.

Materials and Methods
Flavones. The synthetic flavones used in this study are grouped into four main classes namely; hydroxy fla-
vones with free –OH and 4-C=O, hydroxy 4-thioflavones with free –OH and 4-C=S, methoxy flavones with 
–OMe and 4-C=O and methoxy 4-thioflavones with–OMe and 4-C=S35. The hydroxy flavones include 7,8-dihy-
droxy-2-phenyl-4H-chromen-4-one (F-1), 7,8-dihydroxy-2(thiophen-2-yl)-4H-chromen-4-one (F-2), 2-(furan-
2-yl)-7-8,dihydroxy-4H-chromen-4-one (F-3) and 7,8-dihydroxy-2(pyridine-3yl)-4H-chromen-4-one (F-4). The 
hydroxy 4-thioflavones include 7,8-dihydroxy-2-phenyl-4H-chromen-4-thione (TF-1), 7,8-dihydroxy-2(thi-
ophen-2-yl)-4H-chromen-4-thione (TF-2), 2-(furan-2-yl)-7-8,dihydroxy-4H-chromen-4-thione (TF-3) and 
7,8-dihydroxy-2(pyridine-3yl)-4H-chromen-4-thione (TF-4). The methoxy flavones include 7,8-dimethoxy-2-
phenyl-4H-chromen-4-one (CYC-1), 7,8-dimethoxy-2-(thiophen-2-yl)-4H-chromen-4 (CYC-2), 2-(furan-2-yl)-
4H-chromen-4-one (CYC-3) and 7,8-dimethoxy-2-(pyridine-3-yl)-4H-chromen-4-one (CYC-4). The methoxy 
4-thioflavones include 7,8-dimethoxy-2-phenyl-4H-chromen-4-thione (TCYC-1), 7,8-dimethoxy-2-(thiophen-
2-yl)-4H-chromen-4-thione (TCYC-2), 2-(furan-2-yl)-7,8-dimethoxy-4H-chromen-4-thione (TCYC-3) and 
7,8-dimethoxy-2-(pyridine-3-yl)-4H-chromen-4-thione (TCYC-4). Stock solutions of these flavones were pre-
pared in dimethyl sulfoxide (DMSO) (100%) at 10 mg/mL concentration and the final required test concentra-
tions were obtained by appropriately diluting these stocks. The final concentration of DMSO in platelets was 
maintained at 0.1% (v/v), which did not affect their function.

Human blood collection. All the experiments in this study were conducted in line with the appropriate 
institutional and national guidelines and regulations. Human blood was collected by venepuncture from aspirin 
free, healthy volunteers into vacutainers containing 3.2% (v/v) citrate after obtaining their informed consent. The 
procedures and consent forms used in this study were approved by the University of Reading Research Ethics 
Committee.

Preparation of human isolated platelets. Human isolated platelets were prepared by adding 7.5 mL 
of ACD [(acid citrate dextrose) (20 g/L glucose, 25 g/L sodium citrate and 15 g/L citric acid)] to 50 mL of blood 
prior to centrifugation at 100 g for 20 minutes at room temperature. The Platelet-Rich Plasma (PRP) was removed 
using wide bore pipette tips and mixed with 3 mL of ACD and centrifuged at 1400 g for 10 minutes at room tem-
perature. The resulting platelet pellet was resuspended in modified Tyrodes-HEPES buffer (2.9 mM KCl, 134 mM 
NaCl, 0.34 mM Na2HPO4.12H2O, 1 mM MgCl2, 12 mM NaHCO3, 20 mM HEPES, pH 7.3) and centrifuged again 
at 1400 g for 10 minutes28. The final platelet pellet obtained was suspended in modified Tyrodes-HEPES buffer 
at a density of 4 × 108 cells/mL for aggregation assays and rested at 30 °C for 30 minutes before using in platelet 
functional assays.

Platelet aggregation assays. Platelet aggregation was performed using a platelet glycoprotein VI 
(GPVI)-selective agonist, CRP-XL (obtained from Professor Richard Farndale, University of Cambridge) in the 
presence or absence of a vehicle control [0.1% (v/v) DMSO] or different concentrations of flavone derivatives by 
optical aggregometry. Human isolated platelets (267 µL) taken in siliconised cuvettes were incubated with 3 µL of 
a vehicle control or various concentrations of flavone derivatives for 5 minutes at 37 °C. Following the incubation, 
30 µL of CRP-XL (0.5 µg/mL) was added to platelets and the level of aggregation was measured for 5 minutes at 
37 °C under constant stirring (1200 rpm). Data were analysed by calculating the percentage of maximum platelet 
aggregation at 5 minutes, and the level of aggregation obtained with the vehicle control was considered as 100% 
to quantify the impact of flavones on platelets.

Lactate dehydrogenase assay. The lactate dehydrogenase (LDH) assay was performed using a LDH 
Cytotoxicity Assay Kit (Pierce, Thermo Fisher) according to the manufacturer’s instructions. Briefly, to 50 µL of 
human isolated platelets, 1 µL of a positive control [1% (v/v) Triton-X 100, provided in the kit] or a vehicle control 
[0.1% (v/v) DMSO] or various concentrations of flavone derivatives were added and incubated for 30 minutes at 
37 °C. Then, 25 µL of the reaction mixture (provided in the kit) were added to the platelets and further incubated 
for 30 minutes in dark. Finally, the reaction was stopped by adding 25 µL of stop solution (provided in the kit). 
The absorbance was measured at 490 and 650 nm using a Fluostar Optima spectrofluorimeter (BMG Labtech, 
Germany). The level of LDH released with the positive control was considered as 100% to quantify the LDH 
release in flavone-treated samples.

Statistical analysis. The statistical significance between the vehicle controls and flavones-treated platelet 
samples was analysed by one-way ANOVA followed by Bonferroni post-hoc test. All the statistical analyses were 
performed using GraphPad Prism 7 (GraphPad Software Inc., USA).

Results
To determine the relationship between the specific functional groups in the structures of flavones and their 
antiplatelet activity, a series of hydroxy flavones, hydroxy 4-thioflavones, methoxy flavones and methoxy 
4-thioflavones containing different B-ring (Figs 1A, 2A, 3A & 4A) were used in this study. These 16 flavones were 
synthesised based on the molecular template of 7,8-hydroxy flavone to systematically determine the influence 
of hydroxyl (-OH), methoxy (-OMe) and 4-thiocarbonyl (4-C=S) groups as well as the effects of phenyl group 
and its bioisosteres such as thiofuran, furanyl and pyridinyl moieties as B-ring on platelet activation/function. 
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The synthesis of these compounds from our laboratories has been previously reported35 and the purities of com-
pounds were analysed by reverse phase HPLC, and they were found to be >95%.

In order to determine the SAR of flavones with human platelets, the effects of 16 selected synthetic flavones 
on CRP-XL-stimulated platelet aggregation were evaluated by optical aggregometery. Human isolated platelets 
were treated with a vehicle [0.1% (v/v) DMSO] or diverse concentrations of flavones (3.125, 6.25, 12.5, 25, 50 and 
100 μM) for 5 minutes prior to activation with 0.5 μg/mL CRP-XL for 5 minutes. None of the flavones exhibited 
activatory effects on platelets on their own, and the vehicle control containing 0.1% (v/v) DMSO did not affect 
platelet activation.

Flavones with phenyl B-ring. Hydroxy flavone (F-1) with free hydroxyls and carbonyl moiety significantly 
inhibited CRP-XL-stimulated platelet aggregation at lower concentrations such as 3.125, 6.25 and 12.5 μM but 
no significant inhibition was observed at concentrations higher than 12.5 μM. The hydroxy 4-thioflavone (TF-
1) showed significant inhibitory effects at all the concentrations tested. However, the methoxy flavone (CYC-1) 
inhibited the aggregation significantly only at 100 μM and the methoxy 4-thioflavone (TCYC-1) did not show any 
inhibitory effects at any of the concentrations tested (Fig. 1A–C).

Flavones with thiofuran B-ring. Hydroxy flavone (F-2) displayed a similar inhibitory trend to F-1 with 
significant inhibition at lower concentrations up to 12.5 μM, whereas the hydroxy 4-thioflavone (TF-2) and the 
methoxy flavone (CYC-2) inhibited aggregation only at 100 μM. The methoxy 4-thioflavone (TCYC-2) of this 
group was found to possess no inhibitory activity on platelet aggregation (Fig. 2A–C).

Figure 1. Effect of flavones with phenyl B-ring on human platelet activation. (A) Chemical structures of the 
flavones, F-1, TF-1, CYC-1 and TCYC-1. (B) Representative traces displaying the level of aggregation obtained 
when human isolated platelets were treated (for 5 minutes) with a vehicle control [0.1% (v/v) DMSO] or various 
concentrations of flavones, F-1, TF-1, CYC-1 and TCYC-1 (3.125–100 μM) and 0.5 μg/mL CRP-XL. (C) Bar 
graphs show the percentage of aggregation obtained in the presence and absence of different concentrations of 
flavones, F-1, TF-1, CYC-1 and TCYC-1. The data were normalised by considering the maximum aggregation 
observed for the vehicle control at 5 minutes as 100%, and the level of inhibition in flavone and its derivatives-
treated platelet samples was calculated accordingly. Cumulative data denote mean ± S.D. (n = 3). The p values 
displayed (*p < 0.05, ***p < 0.001 and ****p < 0.001) are as analysed by one-way ANOVA using Graphpad 
Prism.



www.nature.com/scientificreports/

4SCientifiC REPORts |  (2018) 8:9528  | DOI:10.1038/s41598-018-27809-z

Flavones with furan B-ring. Hydroxy flavone (F-3) and hydroxy 4-thioflavone (TF-3) inhibited the 
CRP-XL-induced platelet activation at all the concentrations tested, however, the methoxy flavone (CYC-3) and 
the methoxy 4-thioflavone (TCYC-3) failed to inhibit the aggregation (Fig. 3A–C).

Flavones with pyridine B-ring. None of the flavones with a pyridine B-ring displayed inhibitory effects on 
CRP-XL-stimulated platelet aggregation (Fig. 4A–C) at concentrations up to 100 μM.

It is interesting to note the impact of altering the B-ring on the platelet activity among the same class of 
flavones. For hydroxy flavones (with –OH and 4-C=O), changing the phenyl group (F-1) to a thiofuran group 
(F-2) did not affect the inhibitory potential as both compounds elicited the inhibitory activity up to 12.5 μM. 
Consistent inhibition (~65–70%) across the tested concentrations (3.125–100 μM) was observed when the phenyl 
group was replaced with a furan group (F-3). In contrast, substitution of the phenyl group with a pyridine group 
led to a complete abolition of inhibitory activity in platelets (F-4). A similar trend was observed for the hydroxy 
4-thioflavones (with –OH and 4-C=S) when the B-ring phenyl group was replaced with its bioisosteres furan 
and pyridine. However, the substitution of thiofuran led to a reduction in the activity, for example, TF-2 showed 
~50% inhibition only at 100 μM (Fig. 2) where its phenyl analogue, TF-1 elicited ~50% inhibition at all the con-
centrations used (Fig. 1).

The influence of B-ring modifications was not conspicuous among the methoxy flavones (with –OMe and 
4-C=O) and methoxy 4-thioflavones (with –OMe and 4-C=S) as these two classes of flavones did not display 
any significant inhibitory activity on platelets in comparison to their hydroxyl analogues. Nevertheless, amongst 
the methoxy flavones, flavones with a B ring phenyl group (CYC-1) or thiofuran group (CYC-2) showed similar 

Figure 2. Effect of flavones with thiofuran B-ring on human platelet activation. (A) Chemical structures of the 
flavones, F-2, TF-2, CYC-2 and TCYC-2. (B) Representative traces showing the level of aggregation obtained 
when human isolated platelets were treated (for 5 minutes) with a vehicle control [0.1% (v/v) DMSO] or diverse 
concentrations of flavones, F-2, TF-2, CYC-2 and TCYC-2 (3.125–100 μM) and 0.5 μg/mL CRP-XL. (C) Bar 
graphs show the percentage of aggregation obtained in the presence and absence of various concentrations of 
flavones, F-2, TF-2, CYC-2 and TCYC-2. The data were normalised by considering the maximum aggregation 
observed for the vehicle control at 5 minutes as 100%, and the level of inhibition in flavone and its derivatives-
treated platelet samples was calculated accordingly. Cumulative data denote mean ± S.D. (n = 3). The p values 
displayed (*p < 0.05, **p < 0.01 and ***p < 0.001) are as analysed by one-way ANOVA using Graphpad Prism.
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activities with inhibition only at 100 μM. Methoxy 4-thioflavones (with –OMe and 4-C=S) did not exert any 
inhibitory effects on platelets.

To corroborate the above results, the effects of these flavones on another platelet activation marker, specifically 
fibrinogen binding (a marker for inside-out signalling to integrin αIIbβ3), were measured by flow cytometry. The 
results obtained from this experiment concur with the aggregation data where hydroxy flavones F-1 (at 3.125–
12.5 μM), F-2 (at 3.125–12.5 μM) and F-3 (at all concentrations tested), as well as thiohydroxy flavones TF-1 (at all 
concentrations tested), TF-2 (at 100 μM) and TF-3 (at all concentrations tested) significantly inhibited fibrinogen 
binding (Fig. S1), which is critical for subsequent platelet aggregation.

Finally, to determine whether the platelet inhibition observed was the result of a specific pharmacological 
effect of flavones rather than due to their cytotoxic effects, an LDH cytotoxicity assay was performed. For this, 
platelets were treated with a vehicle control [0.1% (v/v) DMSO] or diverse concentrations of flavones (3.125, 6.25, 
12.5, 25, 50 and 100 μM) and the release of LDH, a cytosolic enzyme, which is an indicator of cellular toxicity was 
measured. As shown in Fig. 5, a positive control showed the maximum level of cytotoxicity with a higher LDH 
release, whereas the flavones did not exert cytotoxic effects at the concentrations (3.125–100 μM) used. These 
observations suggest that the inhibitory effects of flavones demonstrated in this study were not due to their cyto-
toxic effects on platelets.

Figure 3. Effect of flavones with furan B-ring on human platelet activation. (A) Chemical structures of the 
flavones, F-3, TF-3, CYC-3 and TCYC-3. (B) Representative traces displaying the level of aggregation obtained 
when human isolated platelets were treated (for 5 minutes) with a vehicle control [0.1% (v/v) DMSO] or various 
concentrations of flavones, F-3, TF-3, CYC-3 and TCYC-3 (3.125–100 μM) and 0.5 μg/mL CRP-XL. (C) Bar 
graphs display the percentage of aggregation obtained in the presence and absence of diverse concentrations of 
flavones, F-3, TF-3, CYC-3 and TCYC-3. The data were normalised by considering the maximum aggregation 
observed for the vehicle control at 5 minutes as 100%, and the level of inhibition in flavone and its derivatives-
treated platelet samples was calculated accordingly. Cumulative data denote mean ± S.D. (n = 3). The p values 
displayed (*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.001) are as analysed by one-way ANOVA using 
Graphpad Prism.
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Discussion
Understanding the relationship between distinct functional groups within the structures of flavones and their 
influence on antiplatelet activity is critical for further development and modification of flavones in order to make 
them as more potent lead compounds for drug design. Such knowledge will aid in the development of improved 
therapeutic strategies for the prevention and treatment of cardiovascular disesaes, specifically thrombosis. In the 
present study, the analysis and comparison of the inhibitory activities of a series of 16 structurally-related syn-
thetic flavones on CRP-XL-stimulated human platelet activation highlighted the key structural features that are 
required for the inhibition of platelet function.

In general, comparison between different classes of flavones with the same B-ring moiety suggested that the 
hydroxy flavones (with free -OH groups) were more effective than their corresponding methoxy flavones (with 
-OCH3 group). This highlighted that hydroxy groups, which are hydrogen bond donors, are essential for their 
inhibitory activities in platelets and that methoxy groups with hydrogen bond accepting profiles are less effective 
in this regard. However, the study by Bojić et al.34 reports increased anti-aggregatory potencies of O-methylated 
derivatives in comparison to their hydroxy analogues. This disparity could possibly be due to the difference in 
the hydroxyl substitution pattern of the flavones studied which would affect the interaction with the molecular 
target. In addition, several previous studies reported the loss of biological activity of flavonoids upon complete 
methylation of their active hydroxy groups29,35,36. Together with these previous studies, our data suggest that 
hydroxy groups are a key descriptor for the biological activity of flavonoids. It is worth highlighting that the 
hydroxy flavones used in this study possess hydroxyl groups at the C-7,8 position as opposed to the C-5,7 posi-
tion in chrysin, a natural flavone that was previously reported to negatively modulate platelet activity37. When 
comparing the activity between chrysin and its 7,8-hydroxy analogue (F-1), it can be deduced that the position of 
the hydroxyl groups also influences platelet function as chrysin exhibited dose-dependent inhibition of platelet 

Figure 4. Effect of flavones with pyridyl B-ring on human platelet activation. (A) Chemical structures of the 
flavones, F-4, TF-4, CYC-4 and TCYC-4. (B) Representative traces showing the level of aggregation obtained 
when human isolated platelets treated (for 5 minutes) with a vehicle control [0.1% (v/v) DMSO] or various 
concentrations of flavones, F-4, TF-4, CYC-4 and TCYC-4 (3.125–100 μM) and 0.5 μg/mL CRP-XL. (C) Bar 
graphs show the percentage of aggregation obtained with flavones, F-4, TF-4, CYC-4 and TCYC-4. The data 
were normalised by considering the maximum aggregation observed for the vehicle control at 5 minutes 
as 100%, and the level of inhibition in flavone and its derivatives-treated platelet samples was calculated 
accordingly. Cumulative data denote mean ± S.D. (n = 3).
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activity (6.25–100 μM)38, whereas, 7,8- hydroxyl flavone showed inhibition only between 3.25–12.5 μM. Further 
studies are required to determine the reasons for the low inhibitory effects obtained from higher concentrations 
of hydroxyl flavones with phenyl and thiofuran B-rings.

Figure 5. Cytotoxicity profile of flavones in human platelets. Human isolated platelets were treated with a 
positive control, or a vehicle control [0.1% (v/v) DMSO] or various concentrations (3.125–100 μM) of flavones, 
F-1, TF-1, CYC-1 and TCYC-1 (A), F-2, TF-2, CYC-2 and TCYC-2 (B), F-3, TF-3, CYC-3 and TCYC-3 (C) 
and F-4, TF-4, CYC-4 and TCYC-4 (D) for 30 minutes and the release of LDH, a marker for cytotoxicity was 
measured at 490 and 650 nm using spectrofluorimeter. The LDH release attained with the positive control 
was considered as 100%, and the levels of LDH release for flavone-treated samples were calculated. The data 
represent mean ± S.D. (n = 3). Statistical significance was analysed by one-way ANOVA using Graphpad Prism.
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A number of previous studies have reported the significance of 4-C=O in the C-ring of flavonoids for anti-
platelet activities based on the comparison between flavonoids with and without 4-C=O32,34,39. In this study, 
the influence of modification of 4-C=O to 4-C=S was also evaluated. Indeed, the replacement of 4-C=O with 
4-C=S was well tolerated for flavones with free hydroxy groups (hydroxy flavones and hydroxy 4-thioflavones), 
however, no beneficial effects were observed for flavones with methoxy groups (methoxy flavones and methoxy 
4-thioflavones). It is interesting to note that the influence of 4-C=S was also found to be dependent on the B-ring 
functionality as moderate loss of inhibitory activity was observed upon the replacement of 4-C=O with 4-C=S 
for flavones with a thiofuran B-ring. This demonstrates that the systematic analysis of flavones through careful 
correlation of effect of each substitution with respect to other functional groups is important for better optimisa-
tion of these compounds as molecular templates for drug design and discovery.

Natural flavonoids contain a phenyl group as the B-ring, hence, previous reports have focused on the influ-
ence of the position of the B-ring and its hydroxylation patterns. The present study involving synthetic flavonoids 
allowed the determination of the effect of incorporating bioisosteres of the phenyl group. It was found that replac-
ing the phenyl group with a furan group was well tolerated for hydroxy flavones and hydroxy 4-thioflavones, 
whereas replacement of a phenyl group with a thiofuran group led to loss of inhibitory activities in platelets 
for hydroxy 4-thioflavones but was tolerated for hydroxy flavones. Conversely, replacement of the phenyl group 
with a pyridine group led to complete loss of inhibition in platelets. These observations suggest that the B-ring 
phenyl group is not critical for the antiplatelet activity, but the B-ring heteroatoms largely influence the activity. 
Furthermore, these observations suggest that the orientation and binding modes of the B-ring moieties might 
influence the interaction with their molecular targets. Hence, identification of the molecular targets for these fla-
vones, and careful optimisation of the nature of the B-ring could lead to more efficacious flavone scaffolds for the 
development of novel antiplatelet agents. Furthermore, the hydroxy flavones and thiohydroxy flavones showed 
significant inhibitory effects on fibrinogen binding, a key marker for platelet activation via inside-out signalling 
to integrin αIIbβ3. This suggests that these flavones specifically with free hydroxy groups may modulate distinc-
tive functions of platelets. The LDH cytotoxicity assay showed that these flavones are not cytotoxic to platelets at 
the concentrations tested and hence the inhibitory effects observed are due to their pharmacological effects on 
platelet function.

In conclusion, a panel of 16 structurally-related hydroxy flavones, methoxy flavones and their 4-thio ana-
logues were screened for their antiplatelet activity upon CRP-XL-induced activation in human platelets. SAR 
analysis of these flavones suggested that the free hydroxyl group is essential for antiplatelet activity. Moreover, the 
modification at 4-C=O to 4-C=S in the C-ring, and B-ring modifications of phenyl group into specific bioisostere 
such as furanyl group, are well tolerated without any significant loss of their inhibitory activities. The molecular 
targets and the impact of these synthetic flavones on specific signalling pathways in platelets were not investigated 
in this study. Since the natural flavonoids posses broad spectrum of binding affinities and inhibitory activities 
against numerous cellular targets, the synthetic flavones with higher specificity for selective targets may be ben-
eficial in achieving targeted effects. Therefore, further studies will be required to underpin the impact of these 
synthetic flavones with specific functional groups on various molecular targets in platelets. Together, the results 
obtained in this study with synthetic flavones enhance the current understanding of the SAR of flavones with 
human platelets and may aid in the design and development of novel anti-thrombotic strategies using flavones as 
potential molecular templates.
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