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Vlasov-Maxwell equilibria are described by the self-consistent solutions of the time-independent
Maxwell equations for the real-space dynamics of electromagnetic fields, and the Vlasov equation for
the phase-space dynamics of particle distribution functions (DFs) in a collisionless plasma. These two
systems (macroscopic and microscopic) are coupled via the source terms in Maxwell’s equations, which
are sums of velocity-space ‘moment’ integrals of the particle DF. This paper considers a particular subset
of solutions of the broad plasma physics problem: ‘the inverse problem for collisionless equilibria’
(IPCE), viz. “given information regarding the macroscopic configuration of a collisionless plasma
equilibrium, what self-consistent equilibrium DFs exist?” We introduce the constants of motion
approach to IPCE using the assumptions of a ‘modified Maxwellian’ DF, and a strictly neutral and
spatially one-dimensional plasma, and this is consistent with ‘Channell’s method’ (Channell, 1976). In
such circumstances, IPCE formally reduces to the inversion of Weierstrass transformations (Bilodeau,
1962), such as those transformations that feature in the initial value problem for the heat/diffusion
equation. We discuss the various mathematical conditions that a candidate solution of IPCE must satisfy.
One method that can be used to invert the Weierstrass transform is expansions in Hermite polynomials.
Building on the results of Allanson et al. (2016), we establish under what circumstances a solution
obtained by these means converges, and allows velocity moments of all orders. Ever since the seminal
work by Bernstein et al. (1957), on ‘stationary’ electrostatic plasma waves, the necessary quality of
non-negativity has been noted as a feature that any candidate solution of IPCE will not a priori satisfy.
We discuss this problem in the context of Channell equilibria, for magnetised plasmas.

Keywords: Insert keyword text here.

1. Introduction

It is estimated that more than 99% of the observable matter in the universe is in the plasma state. These
plasmas are frequently sufficiently hot and/or diffuse that the particles rarely collide, for example the
collisional mean free path in the solar wind is approximately equal to the distance from the Sun to the
Earth (e.g. see Marsch & Goldstein (1983); Marsch (2006)). In such circumstances, the plasma dynam-
ics can be accurately modelled without including collisions (e.g. see Schindler (2007); Belmont et al.
(2013)). Collisionless plasmas behave quite differently to collisional plasmas, and are best modelled
using the Vlasov kinetic theory of particle distribution functions (DFs) in position-velocity phase space
(e.g. see Krall & Trivelpiece (1973); Chen (2015)), rather than collisional fluid models that operate in
position space only (e.g. see Kulsrud (1983); Freidberg (1987) for discussions of the Magnetohydrody-
namic theory).

In nature, this difference is made manifest by the critical dependence of the macroscopic dynamics
of collisionless plasmas on the velocity space structure of particle distributions (Gary, 2005), and on
the short length and time scale physics of collisionless processes (e.g. see Lifshitz & Pitaevskiı̆ (1981);
Kulsrud (2005); Schindler (2007)). Modern instrumentation is now able to make observations of par-
ticle distributions with spatio-temporal resolution on kinetic scales, for example the NASA Multiscale
Magnetospheric (MMS) mission (Hesse et al., 2016). As such, it is of interest and importance to plasma
observers, modellers and theorists to better understand the micro-scale kinetic physics of collisionless
plasmas, and in particular how this relates to the macroscopic dynamics, which are typically better
understood.

Collisionless plasma dynamics are frequently modelled using self-consistent particle-in-cell (PIC)
codes (e.g. see Birdsall & Langdon (2004)). In both PIC simulations and ab initio kinetic theory analy-
ses, a very common approach that is used to model the dynamics is to first set up a Vlasov equilibrium
state, then make a perturbation, and next track the subsequent kinetic evolution and the effect on the
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macroscopic physics (e.g. see Drake & Lee (1977); Daughton (1999)). Due to the technical difficulty
in calculating exact Vlasov equilibria, approximate solutions are often used as initial conditions instead
of exact solutions (e.g. see Swisdak et al. (2003); Hesse et al. (2005); Pritchett (2008); Malakit et al.
(2010); Aunai et al. (2013); Hesse et al. (2013); Guo et al. (2014); Hesse et al. (2014); Liu & Hesse
(2016)), and it is not always known how far the approximate solution is from a true equilibrium. As
such, it is of interest to modellers and theorists to better understand the equilibrium states of Vlasov
plasmas. However, there is not a well-established ‘user-friendly’ theory that relates the equilibrium and
stability properties of the macroscopic real-space description of the plasma to those of the microscopic
phase-space description, in the sense of a ‘one-to-one’ correspondence, i.e. ‘micro↔macro’. Calcu-
lating a kinetic equilibrium given some macroscopic conditions is an example of a non-unique inverse
problem: ‘the inverse problem in collisionless equilibria’ (IPCE), viz. “given information regarding
the macroscopic configuration of a specific collisionless plasma equilibrium, what self-consistent equi-
librium distributions exist?” (e.g. see Channell (1976); Mynick et al. (1979); Harrison & Neukirch
(2009b) for examples of IPCE solutions, and Allanson et al. (2016) for examples and discussion). This
paper considers IPCE applied to spatially one-dimensional (1D) plasmas, and focuses in particular on
the mathematical validity of 1D IPCE solutions.

This paper is structured as follows. In Section 2. we introduce the basic theory of the Vlasov equa-
tion and the equations of Vlasov-Maxwell equilibria. We discuss the two distinct approaches to calculat-
ing self-consistent collisionless plasma equilibria (‘forward’ and ‘inverse’), and previous works on the
non-negativity of DFs obtained in IPCE. Section 3. focusses on IPCE in spatially 1D plasmas; outlines
parallels between the mathematical formalism of IPCE as presented, and the initial value problem for
the heat equation; and introduces the Fourier transform method of formally inverting the equations in
this formalism to obtain IPCE solutions. An alternative method to solve IPCE is to use expansions in
Hermite polynomials, and this method is outlined in Section 4. One downfall of this method is that the
non-negativity of expansions in Hermite polynomials is not a priori known. We present general results
on the convergence of the Hermite polynomial expansions, and the existence of velocity moments of all
orders, and we discuss the problem of non-negativity. In Section 5. we summarise the theory and results
presented in this paper.

2. Basic Theory

2.1 The Vlasov Equation

The Vlasov equation (Vlasov, 1968) - also known as the collisionless Boltzmann equation - governs
the evolution of the plasma DF for ‘particle’ species s, fs, in six-dimensional phase-space, (xxx(t),vvv(t)).
Here, xxx and vvv = dtxxx denote the particle position and velocity, respectively. The Vlasov equation can
be used to model the statistical behaviour of collisionless particle distributions for rarefied gases and
plasmas, or even to describe the distribution of stars (e.g. see Henon (1982); Pegoraro et al. (2015)
for short introductions to some relevant literature and applications). The Vlasov equation is given in
Cartesian geometry by

d
dt

fs (xxx(t),vvv(t); t) =
∂ fs

∂ t
+

dxxx
dt
· ∂ fs

∂xxx
+

dvvv
dt
· ∂ fs

∂vvv
= 0. (2.1)

Hence, the Vlasov equation states that the DF is conserved along the particle trajectories in phase-space,
and we see that the closure of the system by Maxwell’s equations (and the Lorentz force, introduced
shortly) is necessary to define its characteristics.
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One can construct ‘macroscopic’ quantities in real-space by taking velocity-space moments of the
DF. For example, the number density (a scalar), bulk flow (a vector), and pressure tensor (of rank-2) for
species s are given by

ns(xxx; t) =
∫

fs d3v,

VVV s(xxx; t) = n−1
s

∫
vvv fs d3v,

Pi j(xxx; t) = ∑
s

ms

∫
(vi−Vi,s)(v j−Vj,s) fs d3v, (2.2)

for ms the mass of particle species s, and
∫

d3v the integral over all velocity space, i.e. R3. In order for
the DF to be have physical meaning, one must be able to take at least as many velocity moments as a
corresponding fluid theory requires, and the DF must be non-negative over all phase space. In this paper
we define a physical DF as one which allows velocity-space moments of all orders, and so satisfies∣∣∣∣ ∫ vi

x v j
y vk

z fs d3v
∣∣∣∣ < ∞ ∀ i, j, k ∈ 0,1,2, ... (2.3)

fs (xxx,vvv, t) > 0∀ (xxx,vvv, t) . (2.4)

2.2 Vlasov-Maxwell equilibria

This paper will focus on the application to a fully ionised and non-relativistic ion-electron plasma, for
which the electromagnetic forces dominate the collective behaviour of the plasma. We shall also ignore
gravitational effects. In such circumstances, an individual particle of charge qs and mass ms is subject
to the Lorentz force,

ms
dvvv
dt

= qs(EEE + vvv×BBB), (2.5)

for EEE and BBB the self-consistent electric and magnetic fields respectively. A Vlasov equilibrium cor-
responds to a statistically steady-state of the particle distribution, and is mathematically described by
∂t fs = 0. Therefore, we see from equations (2.1) and (2.5) that a collisionless plasma equilibrium DFs
obeys by the steady-state Vlasov-Maxwell equation,

vvv · ∂ fs

∂xxx
+

qs

ms
(EEE + vvv×BBB) · ∂ fs

∂vvv
= 0. (2.6)

Most typically (e.g. see Schindler (2007)), analytical equilibrium solutions of the Vlasov equation
are constructed using a theorem attributed to Jeans (Jeans, 1915; Lynden-Bell, 1962). ‘Jeans’ theorem’
states that fs is a solution of the Vlasov equation if it is a function of a subset of the k known constants
of motion for particle species s,

{Cn,s(xxx(t),vvv(t)) : dtCn,s = 0,n = 1, ...,k}.

Since dtCn,s = ∂tCn,s = 0, we see that any such function will also be a Vlasov equilibrium (∂t fs = 0).
We should mention another (numerical) method to solve the Vlasov equation based on the notion of
‘particle accessibility’ (Whipple et al., 1984), that exploits the fact that whilst the DF must be a single-
valued function over phase-space, (xxx,vvv), it need not necessarily be a single-valued as a function of the
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constants of motion, Cn,s(xxx,vvv), since Cn,s may not be monotonic functions of (xxx,vvv) (e.g. see Belmont
et al. (2012); Dorville et al. (2015) and references therein).

Whilst the steady-state Vlasov-Maxwell equation (equation 2.6) can trivially be solved by any func-
tion of the constants of motion (that also obeys equations (2.3) and (2.4)), the challenge lies in the fact
that the DF must also be self-consistent with the time-independent Maxwell equations,

∇ ·EEE =
σ

ε0
, (2.7)

∇×EEE = 000, (2.8)
∇ ·BBB = 0, (2.9)

∇×BBB = µ0 jjj, (2.10)

for the speed of light c = (µ0ε0)
−1/2, ε0 the vacuum permittivity, µ0 the vacuum permeability, σ the

charge density, and jjj the current density. Maxwell’s equations couple to the Vlasov-Maxwell equation
through the source terms on the right-hand side (RHS) of Gauss’ law, and Ampère’s Law (equations
(2.7) and (2.10) respectively):

σ(xxx) = ∑
s

qsns = ∑
s

qs

∫
fs d3v, (2.11)

jjj(xxx) = ∑qsnsVVV s = ∑
s

qs

∫
vvv fs d3v. (2.12)

Note that equations (2.8) and (2.9) are automatically satisfied for the electric field EEE =−∇φ defined as
the (negative) gradient of the scalar potential φ(xxx), and BBB = ∇×AAA the curl of the vector potential AAA(xxx).

An equilibrium solution of the Vlasov-Maxwell system is therefore characterised by a self-consistent
set of DFs and potential functions,

{ fs : s = i,e},φφφ(xxx),AAA(xxx),

such that equations (2.6), (2.7) and (2.10) are satisfied, with the subscripts i and e corresponding to ions
and electrons respectively (e.g. see Mynick et al. (1979); Greene (1993); Schindler (2007)).

2.3 The forward and inverse approaches

The Vlasov-Maxwell system is an integro-differential set of equations, and there are two different
approaches that could be made to solve it. The one most typically seen is the ‘forward’ approach,
in which one specifies the DFs, proceeds to calculate the source terms via the integrals in equations
(2.11) and (2.12), and then attempts to solve the differential equations (2.7) and (2.10) for φ and AAA (e.g.
see discussions in Bennett (1934); Grad (1961); Harris (1962); Sestero (1964, 1965); Lee & Kan (1979);
Schindler (2007); Kocharovsky et al. (2010); Vasko et al. (2013)). In this approach (‘micro’→‘macro’),
one typically assumes a form of the equilibrium DF that is thought to be mathematically/physically
reasonable, and frequently one of Maxwellian form,

fMaxw,s =
ns(xxx)

(
√

2πvth,s)3
e−(vvv−VVV s(xxx))2/(2v2

th,s),

for vth,s a positive constant (the thermal velocity). Then, given some conditions on certain elements of
the macroscopic description (e.g. boundary conditions for the electromagnetic potentials), one is hope-
fully able to solve differential equations and calculate the macroscopic quantities EEE and BBB, as well as
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ns,VVV s, jjj,Pi j etc (e.g. see Harris (1962); Schindler (2007); Vasko et al. (2013)). Whilst this approach is
typically easier than the one that we are about to introduce, it has one significant drawback. In contrast
to collisional plasmas for which there is in principle a unique equilibrium solution of the corresponding
kinetic equation: the Maxwellian DF (Grad, 1949b), collisionless plasmas admit an infinity of possible
equilibrium DFs (i.e. any function of the constants of motion). Hence, for the many man-made, terres-
trial, space, solar and astrophysical plasmas in which the collisionality is insufficient to drive the DF to
a thermal equilibrium Maxwellian DF, one does not a priori know what form of the DF on which to
base their calculation.

The ‘inverse’ approach is the method that we shall focus on in this paper (‘macro’→‘micro’). In the
‘inverse problem for collisionless equilibria’ (IPCE), one specifies certain features of the macroscopic
equilibrium configuration, e.g. BBB and EEE, and attempts to find a self-consistent DF (e.g. see discussions
in Alpers (1969); Channell (1976); Mynick et al. (1979); Greene (1993); Harrison & Neukirch (2009b);
Belmont et al. (2012); Allanson et al. (2016)). This approach involves the inversion of integral equations,
and has two potential drawbacks. The first is that there are in principle infinitely many solutions to IPCE,
and so one has to question whether the DF obtained by the chosen method is physically realistic, or just
a mathematical curiosity. The second is that the equilibrium DF may not be able to be expressed in
closed form, and the necessary conditions of equations (2.3) and (2.4) may be in question.

2.4 Previous work on non-negativity

The first body of works on IPCE (Bernstein et al., 1957; Montgomery & Joyce, 1969; Tasso, 1969;
Schamel, 1971) mainly focussed on electrostatic configurations, i.e. EEE 6= 000 and BBB = 000 (the Vlasov-
Poisson system). In Bernstein et al. (1957), an inductive integral equation method is developed that
calculates the DF of trapped electrons in a nonlinear travelling electrostatic wave (Bernstein-Greene-
Kruskal (BGK) waves), for a given 1D scalar potential, φ , in the wave frame. Whilst Bernstein et al.
(1957) recognised that equation (2.4) must be satisfied for the DF to be physically meaningful, they
did not formally explore this feature. Montgomery & Joyce (1969), Tasso (1969) and Schamel (1971)
demonstrated that it is indeed possible to obtain non-negative trapped DFs for the trapped electron
population, and this is relevant to the physics of nonlinear plasma waves (e.g. see Schamel (1972,
1986)) and collisionless shocks (e.g. see Burgess & Scholer (2015)).

However, the work in this paper will focus on IPCE applied to ‘strictly neutral’ magnetised plasma
configurations (φ = |EEE| = σ = 0 and BBB 6= 000), as used in Vlasov-Maxwell equilibrium studies by Grad
(1961); Hurley (1963); Nicholson (1963); Schmid-Burgk (1965); Moratz & Richter (1966); Lerche
(1967); Alpers (1969); Channell (1976); Bobrova & Syrovatskiǐ (1979); Lakhina & Schindler (1983);
Attico & Pegoraro (1999); Bobrova et al. (2001); Fu & Hau (2005); Yoon & Lui (2005); Harrison
& Neukirch (2009a); Neukirch et al. (2009); Panov et al. (2011); Wilson & Neukirch (2011); Belmont
et al. (2012); Janaki & Dasgupta (2012); Abraham-Shrauner (2013); Ghosh et al. (2014); Kolotkov et al.
(2015); Allanson et al. (2015, 2016). This approach is somewhat stricter than imposing quasineutrality.
Quasineutrality (typically taken to mean that σ = 0) is satisfied when typical spatial variations, L, are
much larger than a quantity known as the Debye radius, λD,

λD

L
� 1, s.t. λD =

√
ε0kBTe

nee2 ,

for kB Boltzmann’s constant, Te the electron temperature, and e the fundamental charge (Schindler,
2007).

Questions regarding the non-negativity of IPCE solutions for magnetised plasmas arise in the works
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by Abraham-Shrauner (1968); Alpers (1969); Channell (1976); Hewett et al. (1976); Suzuki & Shigeyama
(2008); Allanson et al. (2015, 2016). All of these works, except Suzuki & Shigeyama (2008), consider
equilibria that are 1D in space, and use (possibly infinite) expansions in Hermite polynomials (Arfken
& Weber, 2001) to represent the DF, i.e. a non-closed form. In the following section, we proceed to
develop the basic formalism required for IPCE with 1D neutral Vlasov-Maxwell equilibria, using the
constants of motion approach.

3. One-dimensional strictly neutral Vlasov-Maxwell equilibria

Without loss of generality, we take the z coordinate as the one spatial coordinate on which the 1D system
dynamics depend. There are numerous environments and phenomena in which this approximation is
justifiable (based on a separation of scales), with examples including current sheets (e.g. see Schindler
(2007); Fruit et al. (2002); Yamada et al. (2010); Beidler & Cassak (2011); Zelenyi et al. (2011); DeVore
et al. (2015)); nonlinear waves (e.g. see Bernstein et al. (1957); Ng et al. (2012)); electron holes, ion
holes and double layers (e.g. see Schamel (1986)); and colllisionless shock fronts (e.g. see Montgomery
& Joyce (1969); Burgess & Scholer (2015)). As a result of this 1D assumption, the magnetic field and
current density are written as

BBB =

(
−

dAy

dz
,

dAx

dz
,0
)
,

jjj =
1
µ0

(
−

dBy

dz
,

dBx

dz
,0
)
,

respectively. Furthermore, the classical action (for a particle of species s),

S =
∫ t2

t1
Ldt =

∫ t2

t1
(msv2/2+qsvvv ·AAA)dt,

for t1, t2, t ∈ R, is invariant (δS = 0) under infinitesimal continuous transformations in t,x and y (e.g.
see Landau & Lifshitz (2013)). Since the system is invariant in both time and two spatial dimensions,
we have – by Noether’s theorem (e.g. see Weinberg (2005)) – three known constants of motion for a
particle in an electromagnetic field,

Hs = msv2/2,
px,s = msvx +qsAx,

py,s = msvy +qsAy, ,

the Hamiltonian, and canonical momenta in the x and y directions respectively. We shall now make
one broad assumption on the functional form of the DF, namely that – as a function of the constants of
motion – it is written as,

fs = fs(Hs, px,s, py,s) =
n0

(
√

2πvth,s)3
e−βsHsgs(px,s, py,s), (3.1)

for n0,vth,s, and βs = (msv2
th,s)

−1 positive constants/parameters, with dimensions of number density,
velocity and energy−1 respectively; and gs an unknown function to be determined. This assumption
has a long history in the literature (e.g. see first use in Alpers (1969); Channell (1976)), and is cho-
sen for both mathematical reasons (integrability), and physical ones (the DF reduces to a ‘stationary’
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Maxwellian when gs = 1). Hence, the task of IPCE has been reduced to finding gs functions that are
self-consistent with the prescribed macroscopic conditions. As written, it is the gs function that poten-
tially encodes the interesting non-Maxwellian phase-space structure, only permitted for collisionless
plasma equilibria.

One immediate consequence of the ansatz in equation (3.1) is that Vz,s = 0, since the DF is an even
function of vz. As such, the zz component of the pressure tensor (equation 2.2) is written as

Pzz = ∑
s

ms

∫
v2

z fsd3v. (3.2)

Many authors have noted the pivotal role that Pzz plays in the Vlasov-Maxwell equilibrium system for
1D plasmas (e.g. see Grad (1961); Channell (1976); Mynick et al. (1979); Greene (1993); Tassi et al.
(2008); Harrison & Neukirch (2009b)), and the following discussion shall make use of results from
these works.

The zz component of Pi j is not the only non-zero component for our problem, but it is the only one
that plays a role in macroscopic force balance, given for a neutral plasma as

3

∑
i=1

∂

∂xi
Pi j = ( jjj×BBB) j,

=⇒ d
dz

Pzz = jxBy− jyBx =−
1

2µ0

d
dz

B2. (3.3)

Equation (3.3) is the statement of pressure balance, Pzz + B2/(2µ0) = Ptotal, for B2/(2µ0) the mag-
netic energy density (pressure), and Ptotal the total pressure (thermal plus magnetic). Furthermore, the
existence of a neutral Vlasov-Maxwell equilibrium can be shown to imply that Pzz = Pzz(Ax(z),Ay(z))
(Channell, 1976), and hence the chain rule gives

d
dz

Pzz =
∂Pzz

∂Ax

dAx

dz
+

∂Pzz

∂Ay

dAy

dz
. (3.4)

By comparing terms in the first equality of equation (3.3), and equation (3.4), we see that Pzz plays the
role of a potential function in this problem, from which the sources of Ampère’s Law (equation (2.10))
can be derived

− 1
µ0

d2Ax

dz2 = jx(z) =
∂Pzz

∂Ax
, (3.5)

− 1
µ0

d2Ay

dz2 = jy(z) =
∂Pzz

∂Ay
. (3.6)

These equations are analogous to the equations of motion (FFF = −∇U = md2x/dt2, for a particle at
position xxx = xxx(t) under the influence of a potential U) for a particle at ‘position’ (Ax,Ay) and ‘time’ z,
under the influence of a ‘potential’, Pzz. Equations (3.2), (3.5) and (3.6) neatly summarise the task for a
self-consistent solution of the neutral Vlasov-Maxwell equilibrium system.

3.1 The inverse problem for one-dimensional Vlasov-Maxwell equilibria

In the context of IPCE, after one has first specified the macroscopic equilibrium, i.e. (in our case) given
(Ax(z),Ay(z)), the first step is to calculate a Pzz function that satisfies equations (3.5) and (3.6). For
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example, in the case of ‘force-free’ magnetic fields (Marsh, 1996), there is an algorithmic path that
takes (Ax(z),Ay(z)) as input, and gives Pzz(Ax,Ay) as output (e.g. see Harrison & Neukirch (2009a);
Neukirch et al. (2009); Wilson & Neukirch (2011); Abraham-Shrauner (2013); Kolotkov et al. (2015);
Allanson et al. (2015, 2016)).

The next task is to invert equation (3.2) for a known left-hand side (LHS), and the unknown function
fs. The details of this step are summarised in Channell (1976). Channell’s method is characterised by
the inversion of the following equation for gs,

Pzz(Ax,Ay) =
βe +βi

βeβi

n0

2πm2
s v2

th,s

∫ ∫
e−βs((px,s−qsAx)

2+(py,s−qsAy)
2)/(2ms)gs(px,s, py,s)d px,sd py,s, (3.7)

which is a re-expression of equation (3.2) (after one layer of integration over vz, with the functional
form of the DF given by the ansatz in equation (3.1), and the integral taken over R2). Note that Pzz is
formally defined as a sum (over species) of integrals, whereas the RHS of equation (3.7) has only one
integral, indexed by a generic species s, i.e. the RHS must yield the same result for s = i as for s = e.
This requirement is shown by Channell to be equivalent to that imposed by exact charge neutrality,

ni(Ax,Ay) = ne(Ax,Ay).

After some consideration, we should be convinced that the species-independent result of the RHS of
equation (3.7) implies that the gs function must itself depend on species-dependent parameters. Using
this fact, and after making some substitutions, equation (3.7) can be re-written according to

P(Ax,s,Ay,s) =
1

4πεs

∫ ∫
e−((px,s−Ax,s)

2+(py,s−Ay,s)
2)/(4εs)gs(px,s, py,s;εs)d px,sd py,s, (3.8)

with εs = m2
s v2

th,s/2, AAAs = qsAAA, gs = gs(px,s, py,s;εs), and with P defined according to

P(Ax,s,Ay,s) =
βeβi

(βe +βi)n0
Pzz (Ax,Ay) . (3.9)

3.2 The Weierstrass transform

Equations (3.7) and (3.8) express Pzz (or Ps) as two-dimensional (2D) integral transforms of the gs
function. As discussed in Allanson et al. (2015, 2016), the integral transform in equation (3.8) is a 2D
generalisation of the 1D Weierstrass transform (Widder, 1951, 1954; Bilodeau, 1962; Zayed, 1996). The
Weierstrass transform, u(x, t), of u0(y) is defined by

u(x, t) := W [u0] (x, t) =
1√
4πt

∫
e−(x−y)2/(4t) u0(y)dy, (3.10)

for x,y, t ∈ R and t > 0. This is also known as the Gauss transform, Gauss-Weiertrass transform or the
Hille transform (Widder, 1951). As the Green’s function solution to the 1D heat/diffusion equation on
an infinite domain,

∂u
∂ t
− ∂ 2u

∂x2 = 0,

with initial data u0(x), u(x, t) represents the temperature/density profile on an infinite rod, t seconds after
it was u0(x) (e.g. see Widder (1951)). Note that equation (3.10) is only a meaningful representation of
the function u(x, t) (i.e. the Weierstrass transform exists) if u0(x) is locally integrable, and such that

|u0(x)|6 Meαx2
,
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for M < ∞ and 0 < t < 1/(4α) (e.g. see Widder (1951); Zayed (1996)). One can immediately see
from equation (3.10) that the Weierstrass transform of an everywhere non-negative function is itself
a non-negative function, and furthermore that the transform of an everywhere negative function is an
everywhere negative function. However, it is possible for the Weierstrass transform of a function that
is somewhere negative (i.e. a candidate gs function), to be a function that is everywhere non-negative
(i.e. the Pzz function). This case is potentially very troubling for a meaningful solution of IPCE, and is
discussed in Allanson et al. (2016), and later on in this paper.

Motivated by the appearance of the Weierstrass transform in IPCE, and for completeness, we now
introduce some basic properties of the initial value problem (IVP) for the heat equation.

3.3 Initial value problems for the heat equation

The n-dimensional (nD) heat equation models the temperature distribution, u(xxx, t), on an infinite nD
spatial domain, and is given by

∂u
∂ t
−∇

2u = 0,

for ∇2 = ∑
n
i=1 ∂ 2

xi
. We define the IVP for the nD heat equation on the unbounded spatial domain Rn,

according to

u = u(xxx, t) ∈C2(Rn×ΩT )∩C0(Rn×ΩT ),

∂u
∂ t
−∇

2u = 0 in Rn×ΩT ,

u(xxx,0) = u0(xxx), xxx ∈ Rn,

sup
(xxx,t)∈Rn×ΩT

|u(xxx, t)|= uB(xxx),

for the as yet unspecified temporal domain ΩT , for ΩT the closure of ΩT , and for uB(xxx) the as yet
unspecified supremum of u(xxx, t). There are some standard results regarding bounded, unbounded, and
non-negative solutions of the IVP respectively, and we shall briefly detail these.

There is a unique bounded solution of the IVP for bounded and continuous initial data, u0, i.e.
ΩT = (0,∞) and uB(xxx) =C < ∞ (e.g. see Sauvigny (2012)). This unique solution is defined by the nD
integral transform (a generalisation of the Weierstrass transform) given by

u(xxx, t) = (4πt)−n/2
∫

e−(xxx−yyy)2/(4t) u0(yyy)dyyy, (3.11)

and belongs to C∞ for xxx ∈ Rn, t > 0. Moreover, u has the initial values u0, in the sense that when we
extend u by u(xxx,0) = u0(xxx) to t = 0, then u is continuous for xxx ∈ Rn, t > 0.

It is also possible to obtain unbounded solutions of the heat equation, using equation (3.11). In fact,
there is a unique solution to the IVP on the bounded temporal domain ΩT = (0,T ), with uB(xxx) =Meαxxx2

,
and such that 4αT < 1 (e.g. see John (1991)). Unbounded solutions are of interest to IPCE, since - for
example in our problem - the gs function need not be bounded from above.

Of clear interest to the work in this paper, are solutions to the IVP for non-negative functions. It is a
standard result that there is a unique solution to the IVP on ΩT = (0,T ) using equation (3.11), with the
condition that u(xxx, t) is non-negative on Rn× [0,T ) (e.g. see John (1991)).

In informal terms, we see that a non-negative initial condition (or history) for the heat distribution
implies a non-negative distribution in the present and in the future. However, the converse is not neces-
sarily true. The extent to which we can be sure of a non-negative ‘past’, given a non-negative ‘present’,
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2D Heat Eq. Green’s function 1D strictly neutral IPCE: Caveat?
(Equation (3.11)) (Equation (3.8))

Primary space variable: Vector potential: Exact analogy.
xxx AAAs = qsAAA

Conjugate space variable: Canonical momenta: Exact analogy.
yyy ppps

Time: (‘thermal momentum’)2: Exact analogy.
t εs = m2

s v2
th,s/2

Temp. distribution Pressure: Ps fixed at ‘time’
at time t: P(Ax,s,Ay,s) εs = (eB0L)2δ 2

s /2
u(xxx, t) (micro-macro parameter conditions).

(Fixed) Initial Momentum-dependent gs is a function of ‘time’ εs,
temp. distribution: part of DF: it represents the ‘temperature’

u0(yyy) gs(px,s, py,s;εs) εs ‘seconds’ ago.

Table 1. The analogy between 1D strictly neutral IPCE and the Green’s function for the 2D heat equation

is the question we consider. Tackling this inverse problem, in the context of equation (3.8), is perhaps the
main mathematical challenge for validity of solutions obtained in IPCE, and is akin to going backwards
in time (see Evans (2010) for a brief discussion on ‘backwards solutions of the heat equation’). Our
known and non-negative ‘present distribution’ is defined by P(Ax,s,Ay,s), and the ‘past distribution’,
with questionable sign, is defined by gs(px,s, py,s;εs).

3.4 Implications and interpretation for IPCE

Equation (3.8) casts the inverse problem in direct comparison with the Weiertrass transform, thus making
a correspondence between space and time in the heat equation, (x, t), to (AAA,εs) in our inverse problem.
However, one difference is that the gs function must - at least parametrically - depend on ‘time’, εs,
in contrast to the initial condition (i.e. a time-independent function) that is part of the integrand in
Equation (3.10). We know that gs must depend on εs, since the result of the integral (the LHS) must be
independent of εs, as mentioned in Section 3.1. Hence, it is not immediately clear how ‘far’ the analogy
applies, e.g. is there a differential equation (the heat equation or similar) that gs and/or Pzz obey?

On this subject, and in contrast to the IVP, the approach of IPCE casts the Pzz function as the
given/fixed quantity, i.e. the final condition. In tackling IPCE, we look for non-negative ‘initial condi-
tions’, gs, that will produce the correct Pzz. Hence, it is reasonable that the ‘initial condition’ should be
‘time-dependent’. That is to say, “given a Pzz(Ax,Ay) function, we calculate the self-consistent gs func-
tion ‘εs seconds ago’ by inverting equation (3.8), the integral transform that ‘evolves’ the gs(px,s, py,s;εs)
function by ‘εs seconds’ ”. We summarise the analogy between 1D strictly neutral IPCE, and the 2D
Green’s function solution of the Heat equation in Table 1.

There is one more conceptual hurdle to overcome, that has its origins in a physical problem rather
than a mathematical one. Properly considered, the LHS of equation (3.7) is a function of the (macro-
scopic) vector potential, which is typically normalised using the macroscopic parameters B0 and L
(ÃAA = AAA/(B0L)): constants with dimensions of magnetic field and length respectively. In contrast, the
integral on the RHS is in (microscopic) momentum space, which is typically normalised using the
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microscopic parameters ms and vth,s ( p̃pps = ppps/(msvth,s) = ppps/(
√

2εs)). Whenever we solve the Vlasov-
Maxwell system, much of the hard work is in actually fixing all of the micro-macro parameter relation-
ships (e.g. see Neukirch et al. (2009); Wilson & Neukirch (2011); Kolotkov et al. (2015); Allanson et al.
(2015, 2017); Wilson et al. (2017); Neukirch et al. (2018) for practical examples). For given values of
the macroscopic parameters (B0,L), the one parameter than characterises the micro-macro parameter
relationships is

δs =
rL,s

L
=

msvth,s

eB0L
,

for e the fundamental charge. δs is the dimensionless and species-dependent magnetisation parameter
(e.g. see Fitzpatrick (2014)). It is the ratio of the thermal Larmor radius, rLs = vth,s/|Ωs|, to the char-
acteristic length scale of the system, L (the gyrofrequency of particle species s is Ωs = qsB0/ms). By
fixing δs we also fix εs, according to(

m2
s v2

th,s

2
=:

)
εs :=

(eB0L)2δ 2
s

2
, (3.12)

which is analogous to fixing the ‘time’ in the heat equation analogy.

3.5 Using Fourier transforms to solve IPCE

As written, Equation (3.8) defines P(Ax,s,Ay,s) as a 2D convolution of the functions Gs = e−(p2
x,s+p2

y,s)/4εs

and gs(px,s, py,s)] As such, and using the convolution theorem, gs can - at least formally - be written

gs(pxs, pys;εs) = 4πεsIFT
[

P̃zz / G̃s
]
, (3.13)

for IFT the 2D inverse Fourier transform, and P̃zz, G̃s denoting the 2D Fourier transforms of Pzz and Gs
respectively. This Fourier transform method has been used by authors to solve IPCE (e.g. see Channell
(1976); Harrison & Neukirch (2009a). Indeed, at first glance, it would seem that using equation (3.13)
is the general solution to our IPCE problem. However, the solution defined is only formal, without
further investigation. It is not of use when either the Fourier transform of the gs or P functions cannot
be evaluated, or when the inverse Fourier transform expression on the RHS of equation (3.13) cannot
be evaluated. It may be the case that these transforms cannot be evaluated either in the sense that there
exists no exact analytic answer in closed form, or that they are divergent (e.g. see Channell (1976);
Allanson et al. (2016) for examples and discussion).

The subsequent work in this paper makes use of, and develops, the theory of solutions to IPCE with
the use of Hermite polynomial expansions. This technique is to be seen as an alternative method to
Fourier transforms.

3.6 Summary

In this section we have demonstrated that for neutral equilibria, IPCE in 1D can be reduced to the
inversion of Weierstrass transforms once the expression for the pressure tensor component Pzz is known.
The problem is therefore succinctly described by equations (3.5), (3.6) and (3.8). We have discussed
the parallels between the integral equations to be inverted, and the Green’s function solutions of the
heat equation. Whilst there are many standard results regarding the IVP for the heat equation, the
problem that we face with IPCE is more related to ‘backwards solutions’: ‘for a given distribution that
is everywhere non-negative heat distribution at time t1, was there a everywhere non-negative distribution
at time t0, in the past?’.
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4. Expansions in Hermite polynomials

4.1 Hermite polynomials

The use of Hermite polynomials in kinetic theory dates back, at least, to Grad (1949b) in the study
of rarefied collisional gases, in which non-equilibrium DFs are represented by shifted Maxwellians
multiplied by an expansion in “n-dimensional” Hermite polynomials (Grad, 1949a). However, the most
typical approach in collisionless and weakly collisional plasma kinetic theory is to use expansions in
‘scalar’ Hermite polynomials (Zayed, 1996), defined by

Hn(p) = (−1)nep2 dn

d pn e−p2
, (4.1)∫

∞

−∞

Hm(p)Hn(p)e−p2
d p = δm,n2nn!

√
π, (4.2)

for δm,n the Kronecker delta, and p ∈ R. Hermite polynomials are a complete orthogonal set of poly-
nomials for g(p) ∈ L2(R,e−p2

d p) (Sansone, 1959; Arfken & Weber, 2001). That is to say that for any
piecewise continuous g(p), such that ∫

∞

−∞

|g(p)|2e−p2
d p < ∞, (4.3)

then there exists an (infinite) expansion in Hermite polynomials, ∑
∞
n=0 cnHn(p), such that

lim
k→∞

∫
∞

−∞

∣∣∣∣g(p)−
k

∑
n=0

cnHn(p)
∣∣∣∣2e−p2

d p = 0. (4.4)

Hermite polynomials have a long history in kinetic theory precisely due to equation (4.2): they are a
natural orthogonal basis with which to use when also considering Gaussian/Maxwellian/normal profiles
∼ e−p̃2 ∼ e−ṽ2

, for some appropriately normalised momenta or velocity (p̃ or ṽ).

4.2 Hermite polynomials for exact VM equilibria

In the work by Abraham-Shrauner (1968), expansions in Hermite polynomials of the canonical momen-
tum are used to solve the VM system for the case of ‘stationary waves’ in a manner similar to that to
be described in this section. In the laboratory frame, these nonlinear waves are not Vlasov equilibria,
however they are equivalent to Vlasov equilibria once a transformation is made to a frame co-moving
with the wave. Abraham-Shrauner considers a 1D plasma with only one component of current density,
first in a general sense, and then considers three different magnetic field configurations. Alpers (1969)
also presents a somewhat general discussion on the use of Hermite polynomials for 1D VM equilibria,
and proceeds to consider models suitable for the magnetopause, with both one component of the current
density, and with two. In the work by Channell (1976), two methods are presented for the solution of
the inverse problem with neutral VM equilibria, by means of example. These two methods are inversion
by Fourier transforms and – once again – expansion over Hermite polynomials respectively. Channell
uses Hermite polynomials in the canonical momenta, but this time with two components of the current
density, for the specific case of a magnetic field that is especially suitable to be considered as a stationary
wave solution.

In contrast to Abraham-Shrauner (1968); Alpers (1969); Channell (1976), the works by Hewett
et al. (1976); Suzuki & Shigeyama (2008) both consider the forwards problem in VM equilibria, and
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use Hermite polynomial expansions in velocity space, for 1D and 2D plasmas respectively. Hewett
et al. (1976) assume a representation for the DF using expansions in velocity space, but with only one
current density component, and ensure self-consistency with Maxwell’s equations numerically, whereas
Suzuki & Shigeyama (2008) use an analytical approach, e.g. demonstrating that the Hermite polynomial
approach can reproduce known equilibria such as the Harris sheet (Harris, 1962), and the Bennett Pinch
(Bennett, 1934).

Crucially, none of the above references sytematically tackled the necessary mathematical conditions
of convergence and non-negativity in a rigorous way. Motivated by new exact Vlasov-Maxwell solu-
tions involving expansions in Hermite polynomials in Allanson et al. (2015), the work in Allanson et al.
(2016) formally treated the use of Hermite polynomials in IPCE, and tackled the problems of conver-
gence, boundedness and non-negativity of the resultant DF. This work will be discussed, and built upon,
in the following sections.

To give a subset of (modern) examples outside the realm of equilibrium studies per se, Hermite
polynomial expansions are used by Daughton (1999) to assess the linear stability of a Harris current
sheet; by Camporeale et al. (2006) also on the linear stability problem, using a truncation method some-
what like that of Grad (1949b), and managing to bypass the traditional approach of integrating over the
‘unperturbed orbits’ (Coppi et al., 1966; Drake & Lee, 1977; Quest & Coroniti, 1981; Daughton, 1999);
by Zocco (2015) on linear collisionless Landau damping (Landau, 1946; Mouhot & Villani, 2011); by
Schekochihin et al. (2016); Adkins & Schekochihin (2018) on the problem of the free-energy associ-
ated with velocity-space moments of the DF, in the context of plasma turbulence; and by Servidio et al.
(2017) in the analysis of the plasma velocity-space cascade observed by the MMS mission in the Earth’s
magnetosheath.

4.3 Formal solutions to 1D IPCE using Hermite polynomials

Whereas Equations (4.1) and (4.3) are the standard ‘physicists’ definitions of Hermite polynomials, it
will be of use in this work, as in Alpers (1969); Channell (1976); Allanson et al. (2015, 2016) to consider
the scaled function Hn(p/(2

√
εs)). This slight modification results in changes to Equations (4.1), (4.2),

(4.3) and (4.4), easily achieved by substitution.
In fact, we see that expansions in Hermite polynomials Hn(p/(2

√
εs)) are a complete orthogonal

set for f ∈ L2(R,e−p2/(4εs)d p). By equation (4.3), we see that this means that expansions in Hermite
polynomials, Hn(p/(2

√
εs)), are valid representations for piecewise-continuous functions g, such that

|g| 6 Mep2/(8εs), for M < ∞. This condition is more strict than that for the existence of the integrals in
equations (3.8) and (3.10), i.e. the validity of the Weierstrass transform representation (equivalent to
|g|6 Mep2/(4εs)).

Expansions in Hermite polynmials are of particular interest when the Fourier transform inversion
technique detailed in Section (3.5) is intractable, and/or when Pzz(Ax,Ay) is not given in closed form.
In Allanson et al. (2016), IPCE was solved using Hermite polynomial expansion, and the assumption
was made that the Maclaurin expansion of Pzz(Ax,Ay) was either ‘summatively’ or ‘multiplicatively’
separable in it’s indices, i.e. of the form

Pzz ∝ P1(Ax)+P2(Ay), or Pzz ∝ P1(Ax)P2(Ay). (4.5)

Here we generalise the work presented in Allanson et al. (2016) to an arbitrarily indexed 2D sum, we
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suppose that Pzz(Ax,Ay) is given as a 2D sum of the most general form,

Pzz(Ax,Ay) = n0
βe +βi

βeβi
∑
m,n

cm,n

(
Ax

B0L

)m( Ay

B0L

)n

, (4.6)

with the RHS a convergent Maclaurin expansion with infinite radius of convergence in both of its
arguments. The indices m,n ∈ {0,1,2, ...}, and the coefficient cm,n ∈ R. (Note that convergence of
the Maclaurin expansion of Pzz, and hence the convergence of the sum of derivatives, implies that
Pzz ∈C∞(R2), e.g. see Bartle & Sherbert (2000)).

Using theory as in Bilodeau (1962); Allanson et al. (2016), it can be shown that the following
expansion in Hermite polynomials

gs(px,s, py,s;εs) = ∑
m,n

cm,nsgn(qs)
m+n

(
δs√

2

)m+n

Hm

(
px,s

2
√

εs

)
Hn

(
py,s

2
√

εs

)
, (4.7)

is, formally speaking, an exact inverse solution of equation (3.7), for Pzz given by equation (4.6). The
only change in this calculation, as compared to those thoroughly detailed in Allanson et al. (2015, 2016),
is that the once ‘separable’ index cm,n (i.e.‘additively’ separable, cm,n = am + bn; or ‘multiplicatively’
separable, cm,n = ambn), is now not assumed to be separable. However, this constant index/coefficient
falls outside of any integrals, and has no effect on the main outcome.

4.4 Mathematical criteria

Since a gs function found using the Hermite polynomial method - as in equation (4.7) - could be an
infinite series of polynomials that does not represent a known function in closed form, it is by no means
clear if gs is everywhere non-negative. This issue is recognised by Abraham-Shrauner (1968); Hewett
et al. (1976). Not only is the non-negativity in question, but it is not obvious whether a given expansion
in Hermite polynomials even converges, and this question was also raised by Hewett et al. (1976).
Finally, even if the Hermite expansion converges, it must -when multiplied by the Maxwellian factor
(equation (3.1)) - produce a DF for which velocity moments of all order exist, as discussed in Section
2. In order to have full confidence in the Hermite polynomial method we need to address these issues of
non-negativity, convergence, and the existence of moments.

We should mention that the reverse questions are well established, i.e. if one a priori knows the DF
in closed form, or at least if Equation (4.3) is satisfied. In such circumstances, one can represent a given
non-negative DF as a Maxwellian multiplied by an expansion in Hermite polynomials, Hn(p/(2

√
εs)),

provided the gs function grows at a rate below ep2/(8εs) ∼ ev2/4v2
th,s (Grad, 1949b; Widder, 1951).

In Allanson et al. (2016), sufficient conditions on the cm,n coefficients were found that when sat-
isfied, guaranteed the convergence of the Hermite expansion in the case of additive or multiplicative
separability. The resultant DFs were also demonstrated to be bounded over all velocity/momentum
space. Furthermore, it was proven for certain gs function classes that the derived Hermite polynomial
expansion will correspond to a non-negative DF, for at least some finite range of values of 0 < δs < δc,s.

4.5 Convergence for separable indices

In Allanson et al. (2016), it was proven that for gs functions compatible with Pzz as in equation (4.5),

gs ∝ gx,s(px,s;εs)+gy,s(py,s;εs), or gs ∝ gx,s(px,s;εs)gy,s(py,s;εs),
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the corresponding Hermite expansions of the form

g js(p js;εs) =
∞

∑
m=0

am sgn(qs)
m
(

δs√
2

)m

Hm

(
p js

2
√

εs

)
(4.8)

for j = x,y, converge for all p js, provided

lim
m→∞

√
m
∣∣∣∣am+1

am

∣∣∣∣< 1/δs, (4.9)

in the case of a series composed of both even- and odd-order terms, or

lim
m→∞

m
∣∣∣∣a2m+2

a2m

∣∣∣∣< 1/(2δ
2
s ), lim

m→∞
m
∣∣∣∣a2m+3

a2m+1

∣∣∣∣< 1/(2δ
2
s ), (4.10)

in the case of a series composed only of even-, or odd-order terms, respectively. In order to get a better
understanding of the meaning of this theorem, it is instructive to recapitulate the results in a continuous
setting. One could imagine the modulus of the coefficients, |am|, as a subset of the range of a continuous
function of the independent variable m,

|am|, m = 0,1,2, ....
→ a = a(m), m ∈ [0,∞), s.t. a(0) = |a0|,a(1) = |a1|... .

In this case, we require
a(m) = O(au(m)), s.t. au(m) = (δ 2

s m)−m/2,

since the function au defines the limiting behaviour of am, according to the restrictions of Equations
(4.9) and (4.10), i.e ∣∣∣∣au(m+1)

au(m)

∣∣∣∣ =
1

δs
√

m
,∣∣∣∣au(2m+2)

au(2m)

∣∣∣∣ =
1

2δ 2
s m

,∣∣∣∣au(2m+3)
au(2m+1)

∣∣∣∣ =
1

2δ 2
s m

.

Hence the modulus of the coefficients, |am| must ‘fall below’ the graph of (δ 2
s m)−m/2 for large m,

depicted in Figure 1.

4.6 Convergence for non-separable indices

Here we generalise the results of Allanson et al. (2016), as detailed in Section 4.5, for the convergence
of a Hermite expansion representation for gs that is indexed by a non-separable index, cm,n (i.e. the
general solution that corresponds to the pressure function in equation (4.6)).

Essentially, the argument rests on applying the conditions for 1D indices of equations (4.9) and
(4.10), to the case of 2D indices. Formally speaking, we know that gs defined by equation (4.7), and
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FIG. 1. If the modulus of the coefficients, |am|, ‘fall below’ the graph of (δ 2
s m)−m/2 as m→ ∞, then the Hermite series will

converge.

indexed by the 2D index cm,n, is the IPCE solution for Pzz defined by equation (4.6). Now, let dm and en
be 1D indices fixed by the following conditions,

dm ∈ D :=
{
|cm,n? | : lim

m→∞
|cm+1,n?/cm,n? |= max

n

(
lim

m→∞
|cm+1,n/cm,n|

)
, m = 0,1,2, ...

}
,(4.11)

en ∈ E :=
{
|cm?,n| : lim

n→∞
|cm?,n+1/cm?,n|= max

m

(
lim
n→∞
|cm,n+1/cm,n|

)
, n = 0,1,2, ..

}
. (4.12)

In row− column matrix terminology, that is to say that dm is a 1D index that identifies the (not nec-
essarily unique) column, n = n?, for which the cm,n indices decay most slowly as m→ ∞. Likewise,
en identify the (not necessarily unique) row, m = m?, for which the cm,n indices decay most slowly as
n→ ∞.

Once dm and en are identified, we can - for sufficently large m and n - formally bound the summand
of the general solution (equation (4.7)),

cm,nsgn(qs)
m+n

(
δs√

2

)m+n

Hm

(
px,s

2
√

εs

)
Hn

(
py,s

2
√

εs

)
< dmen

(
δs√

2

)m+n ∣∣∣∣Hm

(
px,s

2
√

εs

)∣∣∣∣Hn

(
py,s

2
√

εs

)∣∣∣∣,
and construct a sum composed of these upper bounds, according to

gs,bound =
∞

∑
m=0

∞

∑
n=0

dmen

(
δs√

2

)m+n ∣∣∣∣Hm

(
px,s

2
√

εs

)∣∣∣∣Hn

(
py,s

2
√

εs

)∣∣∣∣. (4.13)

The RHS of this equation is now of separable form. If each individual sum (over both m and n) is
convergent, then the expression on the RHS is convergent. Then, by using the comparison test (e.g. see
Bartle & Sherbert (2000)), convergence of the 2D series, gs,upper, guarantees convergence of the series
representation of gs in equation (4.7).

One can now treat equation (4.13) in the same manner as in Allanson et al. (2016), and derive
conditions on the dm and en coefficients for convergence of the general solution, exactly analogous to
those of equations (4.9) and (4.10), and by using an upper bound on Hermite polynomials (e.g. see
Sansone (1959))

|H j(x)|< k
√

j!2 j/2 exp
(
x2/2

)
s.t. k = 1.086435 . (4.14)



18 of 25 O.ALLANSON, S. TROSCHEIT & T. NEUKIRCH

As a result, a sufficient condition for the Hermite series representation of gs in equation (4.7) to converge
is given by

lim
m→∞

√
m
∣∣∣∣dm+1

dm

∣∣∣∣< 1/δs,

in the case of a series composed of both even- and odd-order terms, or

lim
m→∞

m
∣∣∣∣d2m+2

d2m

∣∣∣∣< 1/(2δ
2
s ), lim

m→∞
m
∣∣∣∣d2m+3

d2m+1

∣∣∣∣< 1/(2δ
2
s ),

and analogously for en, with dm and en defined by equations (4.11) and (4.12).

4.7 The existence of all velocity moments

Once the convergence of the Hermite polynomial expansion is established, then one can begin to con-
sider the boundedness of the DF, and the existence of velocity moments. In Allanson et al. (2016), it
was shown that DFs of the form in equation (4.7) were bounded over all velocity space, but this does not
guarantee that the DF has velocity space moments of all orders. For the DF to be physically meaningful,
equation (2.3) must be satisfied.

If the Hermite representation of gs is a convergent series, then by using Equation (4.14) we deduce
that

|gs(px,s, py,s;εs)|< Lx,s(εs)Ly,s(εs)exp

(
p2

x,s + p2
y,s

8ε2
s

)
∀ px,s, py,s

and for Lx,s(εs),Ly,s(εs) finite positive constants, independent of space and momentum, but dependent
on εs. Now, by using the form of the DF from equation (3.1) we see that

| fs|< n0

(
ms

π
√

8εs

)3/2(
Lxs(εs)Lys(εs)ep2

xs/(8ε2
s )ep2

ys/(8ε2
s )
)

×exp
[
−(pxs−qsAx)

2/(4ε
2
s )− (pys−qsAy)

2/(4ε
2
s )− v2

z/(2v2
th,s)
]
, (4.15)

and we see that boundedness in momentum space (and hence velocity space) is guaranteed. The reason-
ing is as follows. Since p js = msv j +qsA j, the arguments of the exponentials scale like

exp

(
−

v2
j

4v2
th,s

)
, (4.16)

in v j velocity space. There is also a spatial dependence in the argument of the exponential, through
A j(z), but this does not affect the value of fs at a given z value. The scaling described by Expression
(4.16) not only ensures boundedness, but guarantees that velocity moments of all order exist, since∣∣∣∣∫ ∞

−∞

vke−v2/(4v2
th,s)dv

∣∣∣∣ < ∞∀k ∈ 0,1,2, ...

Hence, a convergent Hermite series representation for the gs function, will guarantee that the DF in
equation (3.1) allows velocity moments of all orders.
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4.8 Non-negativity of the Hermite polynomial solution

The sign of the DF as written in equation (3.1) is identified with the sign of gs, and hence non-negativity
of the DF depends entirely on the non-negativity of the gs function. It was demonstrated in e.g. Channell
(1976); Allanson et al. (2016), that the non-negativity of the Pzz function does not necessarily guarantee
non-negativity of the gs function. For example, consider the pressure function originally studied by
Channell (1976),

Pzz ∝
1
2

(
a0 +a2

(
Ax

B0L

)2
)
+

1
2

(
a0 +a2

(
Ay

B0L

)2
)
,

with a0,a2 > 0. This pressure function is positive for all (Ax,Ay). However, the corresponding gs
function is of the form

gs ∝
1
2

[
a0 +a2

(
δs√

2

)2

H2

(
pxs

2
√

εs

)]
+

1
2

[
a0 +a2

(
δs√

2

)2

H2

(
pys

2
√

εs

)]
.

By substituting pxs = pys = 0, we see that positivity of gs is – for given values of a0 and a2 – dependent
on the size of εs,

gs(0,0) = a0−a2δ
2
s ,

∴ gs(0,0)> 0 =⇒ δ
2
s 6

a0

a2
.

The dependence of the sign of gs on δs, seems to be a rather general principle. In Allanson et al. (2016) it
was proven that for a smooth Pzz function (either summatively or multiplicatively separable), and under
the a priori assumption of a continuous gs function that is uniformly bounded from below in momentum
space, the corresponding gs function is non-negative for at least a finite range of δs values, i.e. for all
δs 6 δc,s, for δc,s ∈ (0,∞) some critical value of δs, and as yet undetermined. Here we generalise this
result for the arbitrarily indexed general solution of the form in equation (4.7)

4.9 The limit as δs→ 0, B0L→ ∞ and fixed εs

First suppose that for a given value of δs, that there exists some regions in (px,s, py,s) space where gs < 0.
Then, the priori assumption that gs is uniformly bounded from below, combined with the expression in
Equation (4.7) implies that the gs function is bounded below according to

gs(px,s, py,s;εs)> c0,0 +δsM

with M a finite constant,

M =
1√
2

inf
(px,s,py,s)

∞

∑
n=1

∞

∑
m=1

cm,nsgn(qs)
m+n

(
δs√

2

)m+n−1

Hm

(
px,s

2
√

εs

)
Hn

(
py,s

2
√

εs

)
,

i.e. the greatest lower bound of all terms in gs above zeroth order. In Allanson et al. (2016), the next step
in the (similar) argument was to let δs→ 0, independently of εs (from equation (3.12), we see that this is
equivalent to sending B0L→ ∞). We see that by letting δs→ 0 whilst keeping εs fixed, that δsM → 0,
and so

lim
δs→0

gs = c0,0 = lim
B0L→∞

Pzz > 0, for fixedεs > 0,

since Pzz > 0∀(Ax,Ay). Therefore, there must exist some critical value of δs = δs,c, such that for all
δs < δc, gs is non-negative. Note that if the negative patches of g js do not exist for any δs, then trivially
δs,c = ∞ as a special case.
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5. Discussion & Conclusions

This paper has introduced and reviewed the theory first of collisionless plasma equilibria (Vlasov-
Maxwell equilibria), and then of the inverse problem in collisionless plasma equilibria (IPCE) in a
general sense. Then we have applied this theory to equlibrium distribution functions that are single
valued functions of the constants of motion, and are self-consistent with spatially one-dimensional and
strictly neutral magnetised plasmas. We have demonstrated that in this context, IPCE can reduce to the
inversion of Weierstrass transforms, and discussed the parallels between IPCE and ‘backwards solutions
of the heat equation’. It will be a very interesting topic for future investigation to see if this analogy can
bring further useful insight and results.

The main theoretical developments of this paper have focussed on the mathematical criteria that a
candidate solution of IPCE must satisfy, and in particular for those solutions obtained by use of a Her-
mite polynomial expansion. We have reviewed the recent works by Allanson et al. (2015, 2016) on this
topic and placed them in context with existing works using Hermite polynomials in Vlasov-Maxwell
equilibria. We have derived new results relating to convergence and non-negativity of a candidate solu-
tion for IPCE, as well as the existence of velocity moments of all orders, for distribution functions that
are consistent with an arbitrarily indexed 2D Maclaurin expansion of the pressure function. In partic-
ular, we have proven that non-negative solutions of IPCE will exist over all momentum space, and for
some sections of parameter space, for candidate solutions belonging to a certain class. Future work
should focus on extending the results regarding non-negativity to a broader class of solutions, since at
present we have a priori assumed that the momentum-dependent part of the naive/formal solution to
IPCE (the gs function) is uniformly bounded from below, over all parameter and momentum space. It
would be useful to understand to what extent this condition can be relaxed, and whether the aforemen-
tioned analogy with the heat equation can be brought to bear on this problem. Furthermore, we would
like to establish precisely over which values of parameter space the candidate solution is non-negative,
i.e. extend the results from being purely existence results, to something more concrete.

The other obvious generalisation is to relax earlier assumptions relating to the macroscopic nature of
the plasma. For example, to what extent does IPCE change when applied to spatially 2D plasmas, non-
strictly-neutral or even non-neutral, non-planar (e.g. cylindrical) geometries, or even the inclusion of
gravitational effects? Future work could be directed in these directions, motivated by the many possible
applications in plasma physics.
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