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Abstract 

                    

Intramolecular i-motifs of the form C3L3-8C3L3-8C3L3-8C3, where C3 denotes the cytosine 

stretch and L3-8 are “loop” regions containing any DNA base (L) including cytosine, were studied to 

understand the effects of loop length on i-motif stability. It contrast to the previously held notion that 

long-looped i-motifs are more stable, it was found that i-motif structures with short loops exhibit 

higher thermal stabilities and transitional pH values.  

 The stability of long-looped i-motifs are then shown to increase with the addition of 

[Ru(phen)2dppz]2+ (phen = 1,10-phenanthroline, dppz = dipyrido [3,2-a:2',3'-c] phenazine); a 

polypyridyl complex that has a potential for photodynamic therapy. Addition of the complex 

enhances the stability of d(C3T838)3C3 but not that of d(C3T383)3C3, implying that loop lengths are 

important in defining i-motif-ligand interactions.  

The effects of loop base composition on the stability of i-motifs have also been presented. It is 

shown that when d(C3XYZ)3C3 sequences are used (where X and Z are adenine, thymine and guanine, 

and Y is any of the four DNA bases), pyrimidine-rich sequences form more stable i-motif structures. 

However, when guanine is X, only two out of 12 d(C3XYG)3C3 sequences were able to form i-motifs. 

Change in sequence direction also resulted in different thermal and pH stabilities; emphasising the 

role of loop base composition on not only the i-motif’s stability but also in its formation.  

X-ray crystallography was used to further understand the effects of loop bases on i-motif 

structures. The study focuses on four tetramolecular i-motifs; two of which were solved in the mid-

1990’s; (d(C4)4 and d(C3T)4 but have now been re-examined using improved experimental 

approaches. Two novel i-motif structures of d(C3A)4 and [d(C3A) + d(C3T)] are presented.  

Following the X-ray diffraction of d(C3T)4 crystals to 0.68 Å resolution (previously reported 

at 1.4 Å) at beamline I02 (Diamond Light Source Ltd.), a novel neutron diffraction study on the 

particular i-motif was conducted. Single crystal neutron diffraction was carried out at MaNDi 

beamline (Spallation Neutron Source) to find the distribution of the proton between the hemi-

protonated cytosine+·cytosine base pairs and to understand the role that H-bonded water can play in 

stabilising the i-motif structure. 
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Abbreviations Used 
 

DNA – Deoxyribonucleic acid 

RNA – Ribonucleic acid 

ss – single-stranded DNA 

ds – double-stranded DNA 

C – Cytosine 

T – Thymine 

G – Guanine 

A – Adenine 

N – Nitrogen 

H – Hydrogen 

D – Deuterium 

Tm – DNA melting temperature 

TpH – Transitional pH value 

phen – 1,10-phenanthroline 

dppz – dipyridophenazine 

 

[Ru(phen)
2
dppz]

2+ 

 

 

 

Experimental Methods 

UV – Ultraviolet 

CD – Circular Dichroism 

srCD – Synchrotron Radiation Circular 

             Dichroism 

VD – Vapour Diffusion 

SDVD – Sitting Drop Vapour Diffusion 

XC – X-ray Crystallography 

NC – Neutron Crystallography 

MR – Molecular Replacement 

TOF – Time of Flight 

 

 

DNA Sequences used for Crystallographic 
Studies 
 

Abbreviation Sequence (5’→3’) 

C4 CCCC 

C3T CCCT 

C3A CCCA 

C3G CCCG 
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                  DNA Sequences used for Solution Studies 

Group Name Sequence (5’→3’) 

 

C3Tx 

C3T3 CCCTTTCCCTTTCCCTTTCCCT 

C3T4 CCCTTTTCCCTTTTCCCTTTTCCCT 

C3T5 CCCTTTTTCCCTTTTTCCCTTTTTCCCT 

C3T6 CCCTTTTTTCCCTTTTTTCCCTTTTTTCCCT 

C3T7 CCCTTTTTTTCCCTTTTTTTCCCTTTTTTTCCCT 

C3T8 CCCTTTTTTTTCCCTTTTTTTTCCCTTTTTTTTCCCT 

 

C3Tabc 

C3T338 CCCTTTCCCTTTCCCTTTTTTTTCCC 

C3T383 CCCTTTCCCTTTTTTTTCCCTTTCCC 

C3T833 CCCTTTTTTTTCCCTTTCCCTTTCCC 

C3T883 CCCTTTTTTTTCCCTTTTTTTTCCCTTTCCC 

C3T838 CCCTTTTTTTTCCCTTTCCCTTTTTTTTCCC 

C3T388 CCCTTTCCCTTTTTTTTCCCTTTTTTTTCCC 

 

 

 

C3AYZ 

AAA CCCAAACCCAAACCCAAACCC 

AAT CCCAATCCCAATCCCAATCCC 

AAG CCCAAGCCCAAGCCCAAGCCC 

ATA CCCATACCCATACCCATACCC 

ATT CCCATTCCCATTCCCATTCCC 

ATG CCCATGCCCATGCCCATGCCC 

AGA CCCAGACCCAGACCCAGACCC 

AGT CCCAGTCCCAGTCCCAGTCCC 

AGG CCCAGGCCCAGGCCCAGGCCC 

ACA CCCACACCCACACCCACACCC 

ACT CCCACTCCCACTCCCACTCCC 

ACG CCCACGCCCACGCCCACGCCC 

 

 

 

C3TYZ 

TAA CCCTAACCCTAACCCTAACCC 

TAT CCCTATCCCTATCCCTATCCC 

TAG CCCTAGCCTAAGCCCTAGCCC 

TTA CCCTTACCCTTACCCTTACCC 

TTT CCCTTTCCCTTTCCCTTTCCC 

TTG CCCTTGCCCTTGCCCTTGCCC 

TGA CCCTGACCCTGACCCTGACCC 

TGT CCCTGTCCCTGTCCCTGTCCC 

TGG CCCTGGCCCTGGCCCTGGCCC 

TCA CCCTCACCCTCACCCTCACCC 

TCT CCCTCTCCCTCTCCCTCTCCC 

TCG CCCTCGCCCTCGCCCTCGCCC 

 

 

 

C3GYZ 

GAA CCCGAACCCGAACCCGAACCC 

GAT CCCGATCCCGATCCCGATCCC 

GAG CCCGAGCCCGAGCCCGAGCCC 

GTA CCCGTACCCGTACCCGTACCC 

GTT CCCGTTCCCGTTCCCGTTCCC 

GTG CCCGTGCCCGTGCCCGTGCCC 

GGA CCCGGACCCGGACCCGGACCC 

GGT CCCGGTCCCGGTCCCGGTCCC 

GGG CCCGGGCCCGGGCCCGGGCCC 

GCA CCCGCACCCGCACCCGCACCC 

GCT CCCGCTCCCGCTCCCGCTCCC 

GCG CCCGCGCCCGCGCCCGCGCCC 
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 Introduction 

 

DNA (deoxyribonucleic acid) encodes the genetic information responsible for the functioning 

of most living organisms. The discovery of the DNA double helix in 19531 by Watson and Crick with 

the X-ray fibre diffraction data of Franklin and Wilkins immediately provided fundamental new 

insights into the nature of genetic events which revealed DNA as the molecule of life. RNA 

(ribonucleic acid), on the other hand, helps to synthesise, regulate, and process proteins; therefore it 

plays a fundamental role in performing functions within a cell. Transcription is the first step of gene 

expression which requires DNA to be copied into RNA as DNA carries the “code” for amino acid 

sequences. Studying the role of DNA in transcription has thus paved the way to understanding the 

processes of gene regulation, mutation/carcinogenesis and drug action. The advances in 

oligonucleotide research have led to the development of DNA binding anti-cancer drugs to prevent 

cell division and tumour growth.2–4 In addition to medical research, DNA has also been a molecule of 

great interest in nanotechnology. Its physical and chemical properties have led to findings such as the 

organised self-assembly of nucleic acids for molecular nanofabrication5 and a recent development 

involving molecular transport through large-diameter DNA nanopores.6 

1.1 Native DNA Structure 

 DNA is a polymer made up of repeating nucleotides (Fig. 1.1A), each of which is composed of 

a phosphate group, a deoxypentose sugar and any one of the four distinct nucleobases (Fig. 1.1B). 

The nucleobases are classified as purines; adenine (A) and guanine (G), and pyrimidines; thymine (T) 

and cytosine (C). Individual nucleoside units are joined together as a nucleic acid chain through 

phosphate groups attached to the 3’ and 5’ positions of the sugars. The 5’ and 3’ labels are used to 

emphasise chain direction. 

 

Figure 1.1: (A) The organization of repeating units in a polynucleotide chain. The rotable χ bond is indicated                                        

by a curved arrow. (B) The four bases of DNA. 
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The bond between the sugar and the base is called the glycosidic bond. The torsion angle, χ 

(Fig. 1.1A), is subject to nucleotide type and the overall structure of the DNA. When χ ranges between 

0° and 90°, the backbone is in syn conformation and if χ lies between -120° and -180°, then it is at 

anti conformation (Fig. 1.2). 

 

Figure 1.2: The syn and anti glyocosidic angle conformation for the deoxyguanosine nucleoside. 

The 5-membered sugar ring is unable to support a planar geometry and, therefore, puckers 

out of the plane at certain positions. It is possible for the sugar pucker to differ from base to base if 

deformations in the structure are induced by external factors; such as the binding of ligands. Figure 

1.3A shows the two major sugar pucker conformations; C2’-endo and C3’-endo. The pucker type is 

defined by the phase angle of pseudorotation, P and the maximum degree of pucker τm (Fig. 1.3B). P 

is between 140° and 185° in C2’-endo and between -10° and 40° in C3’-endo conformation.7  

 

Figure 1.3: (A) Two major DNA sugar puckers. (B) The five internal torsion angles in a deoxyribose ring. 

In 1952, Chargaff showed that the molar ratio of adenine was equal to thymine, and guanine 

was equal to cytosine.8,9 This led to the proposal by Watson and Crick that the purine and pyrimidine 

bases are held together by specific hydrogen bonds to form planar base pairs. In its native form, DNA 

usually exists as a double helix of two antiparallel strands, and so the two bases of the base pair arise 

from two separate strands of DNA. The sugar groups are both attached to the bases on the same side 

of the base pair. The A·T base pair has two hydrogen bonds whereas the G·C base pair has three (Fig. 

1.4A).  In theory, the bases can pair up wherever the donor and acceptor groups meet but the 

Watson-Crick base pairs are the most common form as they bring maximum stability to DNA 

structures. However, paired mismatches are possible where the purine is flipped 180° about the 

glycosidic bond to give Hoogsteen base pairs10,11 (Fig. 1.4B). 
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Figure 1.4: (A) Watson-Crick and (B) Hoogsteen hydrogen bonding in (left) A·T and (right) G·C base pairs. 

 

1.1.1 Secondary DNA Structures 

The three DNA double helix conformations originally determined from fibre diffraction were 

labelled A, B and Z-DNA (Fig. 1.5). B-DNA is the most generally accepted standard model for double 

helical DNA due to its dominance in biological cells.12 The B-DNA form is 23.7Å wide and extends 

34.0Å per ten base pairs of sequence. The double helix makes one complete turn about its axis every 

ten base pairs in solution. This frequency of twist, or helical pitch, depends largely on π–π stacking 

forces that each aromatic nucleobase exerts on its neighbour in the chain. The absolute configuration 

of the bases determines the direction of the helical curve for a given conformation. The DNA has two 

grooves (Fig. 1.5A) formed by the phosphate backbones which run the length of the polymer. In B-

DNA, the major groove is 11.7Å wide and 8.8Å deep and the minor groove is 5.7Å wide and 7.5Å 

deep. The width of a groove is defined by the distance between a phosphorus and the phosphate 

perpendicular to it, minus the Van der Waal’s radius of one phosphate (approximately 5.8Å).7 

A-DNA and Z-DNA also form helical structures but differ significantly in their geometry and 

dimensions from B-DNA. Double stranded RNA adopts the A-form. Reversible transition of B to A-

form has been shown to occur upon dehydration to protect the DNA from extreme desiccation of 

bacteria.13 Segments of DNA that proteins methylate for transcription regulatory purposes may 

adopt the Z geometry,14 in which the strands turn left-handed about the helical axis (Fig. 1.5B).15 It is 

commonly believed to provide torsional strain relief (supercoiling) while DNA transcription occurs.16 

Table 1.1 summarises the differences between these three forms of DNA. 
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Figure 1.5: (A) The two grooves of a B-DNA double helix. (B) Views of the three conformations of the double 

helix DNA (top row) along and (bottom row) down the helical axes; highlighted as black dots. All nucleotides 

have been coloured in green and the backbone chains in orange. 

 

Table 1.1: Average parameters of the three forms of DNA from single-crystal X-ray analyses.
17

 

Geometry Attribute A-DNA B-DNA Z-DNA 

Helix sense right-handed right-handed left-handed 

Repeating helix unit (no. of base pairs) 1 1 2 

Rotation per base pair (degrees) 33.6 35.9 -60.0 

Base pairs per turn 10.7 10.0 12.0 

Inclination of base pair to axis (degrees) +19.0 −1.2 −9.0 

Rise per base pair along axis (Å) 2.30 3.32 3.80 

Pitch/turn of helix (Å) 24.6 33.2 45.6 

Glycosyl angle anti anti Cytosine: anti, 

Guanine: syn 

Sugar pucker  C3'-endo O1’-endo to C2'-endo Cytosine: C2'-endo, 

Guanine: C2'-exo to C1’-exo 

Diameter (Å) 23.0 23.7 18.0 

Major groove width (Å) 13.0 11.7 7.6 

Major groove depth (Å) 2.2 8.8 10.5 

Minor groove width (Å) 11.1 5.7 4.8 

Minor groove depth (Å) 2.6 7.5 7.9 

 

Advances in DNA structural research have led to the development of DNA binding anti-

cancer drugs. DNA-reactive ligands can be carcinogens as well as chemotherapeutic agents. There are 

three classes of DNA-reactive drugs; intercalating agents, DNA-degradative drugs and alkylating 

agents.18 Nuclear DNA is the general target for all three classes of DNA-reactive drugs but cellular 

RNA and the A·T rich mitochondrial DNA may also be significant targets.19 Mitochondrial DNA may 

https://en.wikipedia.org/wiki/Ring_pucker
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be preferred for drugs that are A·T selective or drugs whose binding to DNA is restricted by 

nucleosomal structure.  

Actively transcribed regions of DNA can also be targets for some DNA-reactive molecules. 

The potent carcinogenic fungal toxin aflatoxin B1 selectively reacts with such regions20 and DNA 

strand cleavage agents such as bleomycin and neocarzinostatin, selectively cut within 

transcriptionally active regions.21 Steroids that can induce transcription may also increase the 

selectivity of DNA-reactive drugs for these regions. The binding of drugs to DNA recognition motifs of 

DNA-binding proteins such as zinc-fingers22 or helix-turn-helix23 motifs would be expected to 

modulate transcriptional control. The therapeutic opportunities offered through DNA and associated 

targets are not limited to anticancer and antiviral diseases, but they also include genetic disorders 

that result in over or under-expression of gene products and autoimmune diseases.  

 

1.2 Higher-order DNA Structures 

DNA can adopt many different secondary structures as alternative to duplexes. Moreover, it 

has the ability to exist in a wide variety of forms such as hairpin, triple-stranded helices and four-

stranded quadruplexes.24 Repetitive DNA sequences have the potential to fold into such non-B DNA 

structures  that may induce genetic instability and result in human diseases.25 Hence, the molecular 

mechanism for their genetic instability has been investigated extensively. The best studied of these 

has been the G-quadruplex. 

1.2.1 G-quadruplexes 

G-rich sequences can fold into four-stranded structures known as the G-quadruplex (Fig. 

1.6). DNA sequences which have the potential to form these structures are found in telomeric and 

gene promoter regions.26–28 The G-quadruplex has been reported to be stable at physiological 

temperature, pH and ionic strength; it has been shown to exist in human cells.29–31 Ligands binding to 

G-quadruplex have been used to inhibit telomerase and control the expression of oncogenes.32 The 

presence of guanine rich sequences in genomic DNA means that there are always complementary 

cytosine-rich sequences. Such sequences can also form four-stranded structures but as intercalated 

motifs (i-motifs). However, much less is known about the prevalence of i-motif structures in vivo. 
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Figure 1.6: Crystal structure of the human telomeric G-quadruplex (A) perpendicular to and (B) down the 

helical axes (PDB ID: 1KF1).
33

 Guanine, adenine and thymine nucleobases are green, red and yellow, 

respectively. The purple spheres denote potassium cations which help hold the G-quadruplex structure 

together. 

 

1.2.2 i-motifs 

Hemi-protonated cytosine base pairs had been identified in 196234 and formation of hairpins 

stabilised by cytosine+·cytosine (C+·C)  base pairs had been proposed in 1992.35 The identification of 

an intercalated tetramer was made by Gehring et al. in 1993 with the DNA sequence d(TCCCCC).36 

They discovered that cytosine rich sequences have the ability to form four-stranded i-motifs (Fig. 

1.7).36 Unlike the B-DNA or G-quadruplex which are held together by stacked base pairs, the i-motif is 

the only known DNA structure that consists of parallel-stranded duplexes held together through 

intercalated base pairs.  

The formation of the i-motif requires protonation of cytosine bases to form C+·C base pairs 

and in vitro studies show that i-motif structures are more stable at pH values lower than 7. Due to 

this, the hypothetical role of the i-motif in biological processes is uncertain and more effort has been 

put into the study of the G-quadruplex. There are still limited published investigations into the 

biological function of i-motif DNA and relatively few examples of i-motif binding ligands which could 

be used as probes in such investigations. However, several i-motif forming sequences  in promoter 

regions of oncogenes have been found to be stable at neutral pH37 and most recently, tracts of at least 

five cytosines have also been found to be stable at neutral pH, suggesting a possible biological 

function of the structure.38 Stabilisation of i-motifs at pH 7 in molecular crowding conditions 

mimicking physiological conditions39,40 and moreover, isolation of proteins that specifically bind to 

C-rich sequences41 have all challenged the traditional assumption that i-motifs only form at acidic pH.  
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Figure 1.7: (A) Major and (B) minor groove views of the intermolecular i-motif d(TC5) along the helical axis, as 

identified by Gehring et al. (PDB ID: 225D)
36

 Cytosines are coloured yellow and thymines are coloured blue. 

I-motifs have recently been an attractive subject for DNA nanotechnology,42–44 with the 

structure being the first ever DNA molecular motor known to be driven by pH changes.45 By altering 

pH, these sequences can reversibly fold and unfold to help power nanomachines.33 They have also 

been used in applications such as the assembly of gold nanoparticles,47,48 switches for logic 

operations49–51 and as sensors to map pH changes in living cells.52,53  

 

1.3 The DNA i-motif Structure 

The building block of the i-motif structure is a base pair involving one neutral cytosine and 

one protonated cytosine at N3 (the C+·C base pair) bonded by three hydrogen bonds (Fig. 1.8A). 

Based on NMR spectroscopy and theoretical calculations using the human telomeric i-motif forming 

sequence;54 d[(C3TA2)3C3], as a model, it has been proposed that this hemi-protonated bond may be 

described as hydrogen bonds with asymmetric double-well potentials rather than a symmetric 

hydrogen bond with a single-well potential.55 The formation of these hydrogen bonds produces a 

stronger base-pair interaction than the canonical G·C base pair.56 Hence, the base-pairing energy 

(BPE) for C+·C is 169.7 kJ mol-1, whereas the BPEs of the canonical Watson–Crick G·C and neutral C·C 

base pairs are only 96.6 and 68.0 kJ mol-1, respectively.  

                            

Figure 1.8: (A) A hemi-protonated cytosine
+
–cytosine (C

+
·C) base pair. (B) View of the C

+
·C base pair down the 

helical axis. Nitrogen, oxygen, hydrogen and phosphorus have been coloured in blue, red, white and orange, 

respectively. Carbon is coloured in both green and yellow. 
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There are two different forms of i-motifs; inter- and intramolecular. The latter involves 

cytosine tracts present in a single DNA strand. DNA bases that are not involved in cytosine 

intercalation are called “loop” regions. Intermolecular i-motifs can be further categorised into 

tetramolecular; which involves four independent DNA strands, and bimolecular; which is made up of 

two strands. In any case, the core consists of cytosine tracts that are arranged spatially as a tetramer 

composed of two parallel-stranded duplexes that are interspersed in an anti-parallel way (Fig. 1.9).  

 

Figure 1.9: Schematic diagrams of (A) tetramolecular, (B) bimolecular and (C) intramolecular i-motif structures. 

Cytosine residues are green dots and DNA bases in the “loop” regions are grey. 

 

The C+·C distance, between two N3 atoms, is 3.1Å in comparison to 3.4Å between C-C base 

pairs in B-DNA. The helical twist between adjacent C+·C pairs (12–16°) is also smaller than in the case 

of B-DNA.57 This spatial arrangement produces the existence of two broad and flat major grooves and 

two extremely narrow minor grooves. This has led to the classification of i-motif structures into two 

groups: those with the terminal C+·C base pair at the 3’ end (3’E intercalation topology), and those 

with the terminal base pair at the 5’ end (5’E intercalation topology) (Fig. 1.10).54,58 
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Figure 1.10: NMR structures of (top) the 3’E i-motif sequence d(5mCCT3CCT3ACCT3CC)
59

 (PDB ID: 1A83) and                                           

(bottom) the 5’E i-motif sequence d(CCCTA25mCCCTA2CCCUA2CCCT)
54

 (PDB ID: 1EL2). Cytosines are coloured 

yellow, thymines are in blue, adenines in red, 5-methyl-cytosine in orange and uracil in purple. 

 

1.3.1 Stability of the i-motif Structure in vitro 

The relative stability of nucleic acid structures is often measured in terms of their melting 

temperature; Tm. Tm is defined as the temperature at which half of the DNA is denatured to the single-

stranded state; induced by heating of the DNA sample. The transition is usually monitored using 

molecular absorption or circular dichroism (CD) spectroscopies. As with other nucleic acid 

structures, the stability of the i-motif depends on several factors such as the nucleotide sequence, 

ionic strength or temperature amongst many. Because the protonation of one of the cytosine bases in 

the C+·C base pairs is an absolute requirement for the formation of the i-motif structure, the pH of the 

medium plays a crucial role.  

As the pKa value of cytosine is around 4.6 (in pure water at 25°C), it would be expected that 

the formation of i-motif structures occurs at pH values lower than around 6.6.60,61 At pH values from 

4 to 7 and at 25°C, the cytosine bases are partially protonated and the DNA folds into the closed i-

motif structure. In this pH range, the stability of the i-motif is a linear function of pH.60,62 The highest 

stability of the i-motif structures occurs at pH values close to the pKa of cytosine. At higher pH values, 

the cytosine bases can deprotonate and the structure may unfold to a single-stranded form. On the 

other hand, if the pH value is too low (approximately below 3) all the cytosine bases are protonated 
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and they cannot form the hydrogen bond pattern needed for the C+·C base pair.62 G·C and A·T 

Watson–Crick base pairs are pH-independently stable in a broader pH range from 2 to 10 units. At 

37°C and 150 mM NaCl, the i-motif was reported to not form at the physiological pH of 7.4 but, 

depending on the sequence, it may form at the ischemic pH of 6.7.63 However, it has recently been 

published that intramolecular i-motif formation has been observed at neutral38,64 or even slightly 

basic pH values.65  

The folding of i-motif structures at physiological pH has also been reported in the presence of 

silver cations.66 The formation of the i-motif is strongly enthalpy driven at near-neutral pH; with 

maximum formation at pH values of 6–7, and structure degradation below pH 5.5.67 Mathur et al. 

studied the thermodynamic parameters associated with the formation of a 31-oligomer i-motif 

belonging to the c-MYC oncogene.68 At 20°C, a ΔG of -10.4 ± 0.1 kcal mol-1 was observed with 

favourable enthalpy and unfavourable entropy at pH 5.3 in 20 mM NaCl for i-motif folding. It is 

possible to determine the contribution of a C+·C base pair to the thermodynamic parameters. Using 

sequences that form both intra- and intermolecular i-motif structures, Völker et al. determined that 

the i-motif enthalpy and entropy values were larger than those corresponding to the disruption of 

base pairs in the Watson–Crick duplex.61  

Apart from pH, a fundamental factor affecting the structure and stability of the i-motif 

structure is the number of C+·C base pairs present in the folded structure. For a given pH value, the 

stability of two i-motifs differing in the number of cytosine bases in their sequences would be higher 

for the one showing a higher number of C+·C base pairs.69 I-motif forming sequences with tracts of at 

least five cytosines have recently been found to be stable at neutral pH.38 The intra versus 

intermolecular folding may also depend on the length of the cytosine tracts.44 Two stretches less than 

seven cytosine residues favour the intermolecular form, whereas longer cytosine tracts promote the 

formation of intramolecular i-motif structures with high thermal stability. DNA bases other than 

cytosine have also been found accommodated into the i-motif core. Thymidines can form 

symmetrical T·T base pairs that are nearly isomorphic with C+·C base pairs. The NMR study of 

d(5mC2TCTCTC2)4 showed that the thymine pairs at T5 positions are intercalated into the i-motif 

core.70 This is in contrast to a similar sequence, d(5mCCTCACTCC)4, which forms a dimer71 where the 

i-motif is built by intercalation of two symmetrical hairpins held together. It can be said that the 

formation of T·T base pairs, in general, stabilises the i-motif structure because of extension of the i-

motif core and decrease in flexibility.72 

The length and composition of loops is another key factor in i-motif stability. The length of 

the loops has been shown to be critical in determining the multimeric nature of the i-motif structure. 

C-rich sequences with just one base in the loops tend to form mixtures of tetra- and bimolecular i-

motifs,44 whereas longer loops favour the formation of intramolecular i-motifs.67 Intramolecular i-

motif structures were classified into two groups depending on the length of the loops.73 Class I 
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consists of the loop sizes 2:3/4:2 with four, five or six C+·C base pairs. Class II has loop sizes 

6/8:2/5:6/7 (Fig. 1.11). The midpoint of the pH-induced folding from the neutral strand for class II i-

motif structures is slightly higher at pH 6.6 than that for i-motif structures identified as class I (pH 

5.8–6.4). This was reasoned as being due to the presence of stabilising effects in longer loops. An i-

motif showing a 12-base long loop is able to form a hairpin stabilised by Watson–Crick base pairs.74 

            

 

Figure 1.11: The two classes of intramolecular i-motifs. Reprinted with permission from Brooks, T. A., Kendrick, 

S. & Hurley, L. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 277, 3459–

3469 (2011). Copyright 2017 John Wiley and Sons. 

 

Using NMR methods, it has been shown that protonation of adenine bases in the loop regions,  

when the pH is lower than 4.6, produces a conformational change involving disruption of the i-motif 

core.75 The sequence studied was a mutant fragment of the human centromeric satellite III DNA; 

d[C2AT2C2AT2C2T3C2], which folds into an intramolecular i-motif structure. Protonation of adenine 

bases hinders the formation of an A·T base pair that extends the C+·C core at pH higher than 4.6. It 

has also been observed that adenine containing i-motif structures unfold at lower temperatures.67 

Thymine base pairs can occur in the loops connecting the cytosine tracts.59 Loop interactions were of 

particular relevance in the dimeric structure of d(TC3GT3C2A)76 and d(TCGT3CGT2).64 Both cases 

showed formation of intermolecular G·T base pairs that interact to each other through their minor 

groove side, forming a G:T:G:T tetrad. The bases at the 5’ and 3’ ends of C-rich sequences that are able 

to form i-motif structures also have an influence on the stability of the i-motif structures. The study 
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of the d[C3TA2C3] and d[C3TA2C3TA2] sequences by DNA melting experiments suggests that the 

inclusion of the additional TAA segment at the 3’ end produces a change in the structure. Hence, the 

9-mer folds in a bimolecular structure, whereas the 12-mer sequence exists in two (bimolecular and 

tetramolecular) forms.77 

 The change in arrangement of neighbouring bases may also influence the stability of the i-

motif structure. It was shown that the d[A2C4]4 and d[C4A2]4 folded into different i-motif structures.78 

The first sequence adopts a unique structure showing A·A pairs stacked to C+·C base pairs whereas 

the second sequence adopts two distinct intercalation topologies (3’E and 5’E) showing well stacked 

adenosine bases to the adjacent C+·C base pairs. Using X-ray crystallography, it was shown that the i-

motif formed by the d(AC3T)4 sequence was further stabilized at one end by a three-base hydrogen-

bonding network, in which two adenines and a thymine form four hydrogen bonds via a reverse 

Hoogsteen and an asymmetric A·A base pairing.79 

 As with many other nucleic acid structures, the ionic strength of the solution has an 

influence on the stability of the i-motif structure. Nitrogenous bases are neutral throughout a wide 

pH range, from 5 to 9, approximately. The same occurs with the pentose sugar, which can only lose 

the proton at very alkaline pH values. However, at neutral pH values, DNA is a polyanion because of 

the negatively charged phosphate groups. The presence of appropriate cations, such as sodium and 

potassium balances the negative charge. Folded conformations may produce changes in the cation 

atmosphere surrounding the phosphate backbone. Moreover, in the case of the i-motif, protonation 

at N3 produces the appearance of a positive charge at the base pairs. Therefore, variations in ionic 

strength can cause conformational changes and differences in the relative stability of i-motif 

structures. In general, it has been observed that an increase in ionic strength from 0 to 100 mM NaCl 

produces a destabilization of the i-motif structure.67 The transition between single-stranded DNA 

and i-motif conformations is induced by a change in pH or ionic strength. Apart from the canonical i-

motif structure formed at acidic pH values, the formation of partially folded structures at neutral and 

slightly acidic pH values (6-7) has been proposed. It has also been suggested that the partially folded 

species coexist with the single-stranded structure at neutral pH and room temperature.80 
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1.3.2 Ligands Binding to i-motifs 

The increase in interest of G-quadruplexes as therapeutic targets and the discovery of 

proteins specifically binding to C-rich sequences have prompted studies on i-motif stabilisation using 

various ligands. Moreover, the finding of three principal i-motif forming sequences; all in promoter 

regions, have contributed to further research on i-motif stability. These three i-motifs are, namely, 

the telomeric i-motif, the c-MYC promoter i-motif and the Bcl-2 promoter i-motif.  

The human telomeric DNA is rich in cytosine and guanine. 85% of cancers have shown 

increase in telomerase activity.81,82 Stabilisation of human telomeric G-quadruplex with a range of 

ligands inhibits this activity.83 The c-MYC oncogene consists of an i-motif forming sequence in the 

nuclease hypersensitive element (NHE) III1 region.84 The c-MYC gene codes for a transcription factor 

with a wide range of functions, including regulation of cell cycle progression and cell growth.85 The 

P1 promoter region of the B-cell lymphoma-2 (Bcl-2) oncogene also consists of an i-motif forming 

sequence. Bcl-2 is over-expressed in some cancers but may be under-expressed in 

neurodegenerative diseases such as Alzheimer’s and Parkinson’s.86 The Bcl-2 transcription factor 

hnRNP LL has recently been reported as an i-motif binding protein,87 suggesting a biological role of 

the i-motif as a protein recognition site for the activation of transcription in B-cl2. 

 In 2000, Hurley et. al. reported the binding of a cationic porphyrin, TMPyP4 (Fig. 1.12), to the 

human telomeric sequences d(CCCAAT)4 and d(AATCCC)4.88 Although there was no significant 

change in the i-motif melting temperature on the addition of the ligand, modelling experiments using 

NMR structure suggested that TMPyP4 binds to the i-motif via stacking interactions at the ends of the 

structure (Fig. 1.13). TMPyP4 has shown downregulated expression of c-MYC with the G-

quadruplex,89 as well as inhibition of telomerase and tumour growth.90 Similarly, Alberti et al. 

studied the interaction of a DNA intercalating cyclic acridine dimer; BisA, with the human telomeric 

G-quadruplex and i-motif.91 They found that BisA caused a significant stabilisation of i-motif at pH 6.8 

with an increase in melting temperature of 33°C. BisA also stabilises the G-quadruplex and inhibits 

telomerase in vitro. These studies thus prompted an interest in i-motif stabilisation in order to 

investigate potential biological functions of the i-motif DNA.  

Carboxyl-modified single-walled carbon nanotubes (SWNTs) can inhibit duplex formation 

and induce human telomeric i-motif formation, even at pH 8. Stabilisation of the human telomeric i-

motif by SWNTs has been reported to inhibit telomerase, resulting in telomere uncapping, DNA 

damage response and apoptosis.92 It has been proposed that the nanotubes bind to the 5’-end in the 

major groove of the i-motif and under molecular crowding conditions, they can also induce i-motif 

formation at physiological pH.93 Ruthenium polypyridyl complexes; [Ru(bpy)2(dppz)]2+ and 

[Ru(phen)2(dppz)]2+ were also shown to bind to i-motif DNA.94 Other ligands which have been shown 

to interact with the i-motif most recently include mitoxantrone95 and thiazole orange96 (Fig. 1.12). 
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Crystal violet97 has been proposed to interact with i-motif on the ends of the DNA structure (Figures 

1.13B and 1.13C). 

 

 

Figure 1.12: Structures of some known i-motif binding ligands. 
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Figure 1.13: (A) NMR-based model of the 2:1 TMPyP4-d(AACCCC)4 complex. One C
+
-C parallel duplex is 

coloured yellow and the other red. Cytosine residues at C3 positions of two chains are white. TMPyP4 

molecules are shown in the CPK representation, where carbon is coloured green and nitrogen in blue. 

[Reprinted with permission of American Chemical Society. Oleg Yu. Fedoroff et al., Cationic Porphyrins Promote 

the Formation of i-Motif DNA and Bind Peripherally by a Nonintercalative Mechanism, Biochemistry, 39 (49), pp 

15083–15090 (2000)]. Molecular modelling diagrams showing views (B) down and (C) along the helical axes of 

the interaction of Crystal violet (CV) with an i-motif [5’-(ACCCT)4-3’]. CV is represented as a space-filling model 

showing carbon (beige) and nitrogen (blue) atoms. The i-motif is represented in ribbon form (purple). 

[Reprinted with permission of Royal Society of Chemistry. Dik-Lung Ma et al., Crystal violet as a fluorescent 

switch-on probe for i-motif: label-free DNA-based logic gate, Analyst, 136 (13), pp 2692-2696 (2011)] 

 

1.4 Biophysical Methods Applied to Nucleic Acids  

There are different approaches to study the formation and stability of DNA structures, 

including i-motifs. The first studies that demonstrated the formation of the tetrameric i-motif 

structure were made using Nuclear Magnetic Resonance (NMR) measurements.60 However, the 

assignment of NMR spectra on more complex and relevant intramolecular oligonucleotide sequences 

is much more challenging. Apart from NMR, one of the first techniques used to elucidate the i-motif 

structure was X-ray diffraction. Ultraviolet (UV) molecular absorption spectroscopy is another useful 

technique to observe the changes in protonation and stacking of the nitrogenated bases involved in 

the formation of the i-motif. I-motif structure formation can also be detected by Circular Dichroism 

(CD) spectroscopy, where the spectrum only needs to show two characteristic bands to differentiate 

it from secondary DNA or other higher order DNA structures. 
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1.4.1 UV Molecular Absorption Spectroscopy 

 UV spectroscopy refers to absorption or reflectance spectroscopy using UV light. The atomic 

orbitals of the atoms involved in a bond merge to form molecular orbitals which can be occupied by 

electrons of different energy levels. Ground state molecular orbitals can be excited to anti-bonding 

molecular orbitals. Hence, absorption measures transitions from the ground state to the excited 

state.98 The electrons in a molecule can be of one of three types: σ (single bond), π (multiple-

bond), or n (non-bonding, usually caused by lone pairs). These electrons, together with energy in the 

form of light radiation, get excited from the highest occupied molecular orbital (HOMO) to the lowest 

unoccupied molecular orbital (LUMO) and the resulting species is known as the excited state or anti-

bonding state. σ-bond electrons have the lowest energy level and are the most stable electrons. They 

require energy to be displaced to higher energy levels. As a result, the electrons generally absorb 

light in the shorter wavelengths (λ/nm) of the UV light.  

π-bond electrons have much higher energy levels from the ground state. These electrons are 

therefore relatively unstable and can be excited more easily and would require less energy for 

excitation. The electrons absorb energy in the UV region. Finally, n-electrons are of higher energy 

levels than π-electrons and can be excited by both UV and visible light. Low energy gap between the 

HOMO and the LUMO results in more easily excited electrons so that a sample can absorb longer 

wavelengths of light. Most of the absorption in UV spectroscopy occurs due to π-electron transitions 

or n-electron transitions. Based on the four types of transitions that can occur, the energy required 

for various transitions obey the following order σ-σ* > n-σ* > π-π* > n-π* (Fig.1.14). 

Conjugation of π-electrons affects their energy levels. When two double bonds are 

conjugated, the electrons in them create four molecular orbitals; two bonding and two anti-bonding. 

As a result of this, the HOMO is at a higher energy state and the LUMO is at a lower energy state. In 

order to excite this system, the energy that would be required to excite the electrons from the HOMO 

to the LUMO would therefore be reduced. As a result of this reduction in energy levels, the 

wavelength for absorption of conjugated molecules increases. 

 

Figure 1.14: Energy level diagram showing the possible electron transitions that light causes. The blue arrows 

show jumps from π-π* and n-π*orbitals. The grey arrow shows the transition from n-σ* orbitals whereas the 

dotted arrows show jumps which absorb light outside the region of the UV-Vis spectrum. 



CHAPTER 1                                     25 

__________________________________________________________________________________ 

The π-conjugated systems in DNA can thus be excited using UV light. Nucleobases absorb 

well at 260 nm and this unique feature can be used to determine the concentrations and purity of 

DNA (Fig. 1.15) by using the Beer-Lambert law: 𝐴 = 𝜀𝑐𝑙, where ε is the molar absorptivity or 

extinction coefficient. This constant is a fundamental molecular property in a given solvent and has 

units of mol-1 dm3 cm-1, c is the concentration (mol dm-3) of the absorbing species and L is the path 

length (cm) through the sample. 

 

Figure 1.15: UV spectra showing increase in absorbance of a B-DNA; d(TCGGCGCCGA), with increasing                                   

single-stranded concentration. 

 

1.4.2 Circular Dichroism Spectroscopy 

Electromagnetic (EM) radiation consists of an electric and a magnetic field that oscillate 

perpendicular to one another towards the propagating direction. Linearly polarised light occurs 

when the electric field vector oscillates in only one plane whereas circularly polarised light occurs 

when the direction of the electric field vector rotates about its propagation direction with constant 

magnitude (Fig. 1.16). Circular dichroism (CD) is the difference in absorption of left-handed 

circularly polarised light (LCP) and right-handed circularly polarised light (RCP), and it occurs when 

a molecule contains one or more chiral light absorbing groups. So, CD is: ∆𝐴 = 𝐴(𝐿𝐶𝑃) − 𝐴(𝑅𝐶𝑃), 

where absorbance (A) is a function of wavelength, λ. This can also be expressed by applying the Beer-

Lambert law as: ∆𝐴 = (𝜀𝐿 − 𝜀𝑅)𝑐𝐿, where εL and εR are the molar extinction coefficients for LCP and 

RCP light. Then ∆𝜀 = 𝜀𝐿 − 𝜀𝑅 is the molar circular dichroism. Δε is also a function of wavelength and 

is referred to as the intrinsic property of a substance. 

CD only occurs at wavelengths of light that can be absorbed by chiral molecules, including 

proteins, DNA and RNA, therefore, it can be used to differentiate the structures of biological 

molecules. Figure 1.17 illustrates the use of CD spectra to distinguish between A-, B- and Z-DNA. 

Measurements carried out in the visible and UV region of the EM spectrum monitor electronic 

transitions. 
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Figure 1.16: Linearly polarised light, right- and left-handed circularly polarised light. The E and B axes are the 

electric and magnetic fields, respectively. The k axis represents the direction of propagation. Images of right 

and left-handed circularly polarised light by Dave3457, distributed under a CC-BY 2.0 license.
99

 

 

 

Figure 1.17: CD spectra of A-, B- and Z-DNA. Reprinted with permission from Holm, A. I. S., Nielsen, L. M., 

Hoffmann, S. V. & Nielsen, S. B. Vacuum-ultraviolet circular dichroism spectroscopy of DNA: a valuable tool to 

elucidate topology and electronic coupling in DNA. Phys. Chem. Chem. Phys. 12, 9581-9596 (2010). Copyright 

2017 Royal Society of Chemistry. 

 

1.4.3 Crystallography 

The goal of crystallisation is to produce a well-ordered crystal to obtain a diffraction pattern 

when exposed to X-rays, neutrons or electrons. This diffraction pattern can then be analysed to 

determine the arrangement of atoms in a crystalline solid, including that of DNA. DNA crystallisation 

is usually carried out in aqueous solution. The likelihood of crystallisation of a DNA is influenced by 

many factors, such as sample purity, pH, DNA concentration, temperature, precipitants and additives. 

The more homogeneous the DNA solution is, the more likely that it will crystallise. Crystallisation 

occurs when a metastable supersaturated solution reaches a stable lower energy state by reduction 

of solute concentration. There are two major stages in crystallisation: nucleation and crystal growth. 

Nucleation is when the solute molecules or atoms dispersed in the solvent start to gather into stable 

clusters of a critical size which constitute the nuclei. This size is dictated by many different factors 

including temperature and supersaturation. It is during the stage of nucleation when atoms or 

molecules arrange themselves in a manner that defines the crystal structure. Crystal growth is then 

http://creativecommons.org/licenses/by/2.0/
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the subsequent increase in volume of the nuclei after reaching the critical cluster size. It is a dynamic 

process occurring in equilibrium where solute molecules or atoms precipitate out of solution and 

dissolve back into the solution.  

Vapour diffusion is the most common method of DNA crystallisation. In this method, a 

droplet containing purified DNA, buffer, and precipitant are allowed to equilibrate with a larger 

reservoir containing the same or similar buffer and precipitants but in higher concentrations. 

Initially, the droplet of DNA solution contains comparatively low DNA and precipitant 

concentrations, but as the drop and reservoir equilibrate, concentrations in the drop increase. If the 

appropriate crystallisation solutions are used for a given DNA, crystal growth will occur in the 

drop.100,101 Vapour diffusion can be carried out in either hanging drop or sitting drop format (Fig. 

1.18). Hanging drop involves a drop of DNA solution to be placed on an inverted cover slip, which is 

then suspended above the reservoir. Sitting drop crystallization requires the drop to be placed on a 

pedestal that is separated from the reservoir. Both of these methods require sealing of the 

environment so that equilibration between the drop and reservoir can occur. 

 

Figure 1.18: (Left) Sitting and (right) hanging drop vapour diffusion methods. 

Crystallographic methods depend on beam type. X-rays are most commonly used; they 

principally interact with the spatial distribution of electrons in the sample. Neutrons are scattered by 

the atomic nuclei through strong nuclear forces. Moreover, the magnetic moment of neutrons is non-

zero. They are, therefore, also scattered by magnetic fields. In many ways the principles of neutron 

and X-ray diffraction are similar (Fig. 1.19). The results of the two methods are frequently 

complementary.102  
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Figure 1.19: Steps involved in crystal structure determination. 

 

 

(a) X-ray Diffraction 

Single-crystal X-ray crystallography (XC) is one of the main methods used to determine the 

molecular structure of biological macromolecules.103 A crystal is mounted on a goniometer; an 

instrument which can be rotated at a given angle while the crystal is hit with X-rays. Diffraction 

patterns104 of regularly spaced spots are recorded on a detector (Fig. 1.20). As X-rays are a collection 

of separate waves, each wave can interfere with one another either constructively or destructively. 

Constructive interference occurs when the waves are moving in phase (ϕ) with each other (Fig. 1.21). 

Destructive interference occurs when the waves are out of phase and thus reduces the amplitude, |F|, 

of the resultant wave. Constructive interference results in diffraction patterns. 
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Figure 1.20: Single crystal X-ray diffraction; the end station of beamline I02 at Diamond Light Source Ltd. The 

crystal and diffraction pattern pictured belong to the d(CCCT)4 i-motif. 

 

 

Figure 1.21: Constructive interference between two waves defines the phase angle of α,                                                  

and a phase shift of 2π. 
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After the experimental demonstration that X-rays could be diffracted by crystals, Laurence 

Bragg derived the Bragg equation (Fig. 1.22) which is universally used as the basis for X-ray 

diffraction geometry. He showed that diffraction that can be produced by an appropriate orientation 

of a crystal in an X-ray beam can be regarded geometrically as if it were a reflection from sets of 

parallel planes passing through lattice points. The angles of incidence and reflection must be equal. 

The incoming and outgoing beams and the normal to the reflecting planes must all lie in one plane. 

To define a plane, three integers; hkl indices, are needed to specify its orientation with respect to 

three unit cell edges. The overall relationship can thus be expressed as λ = 2dhklsinϴ, where d is the 

distance between the planes.  

 

Figure 1.22: The Bragg construction for diffraction by a three-dimensional crystal structure. 

 In the diffraction experiment, the intensities of waves scattered from planes in the crystal are 

measured. The amplitude of the wave |Fhkl| is proportional to the square root of the intensity 

measured on the detector.  The only relationship between the amplitudes and phases is through the 

molecular structure or electron density. The diffraction pattern is the forward Fourier transform of 

the electron density. In mathematics, this can be defined as: 

                        𝑝(𝑥𝑦𝑧) =  
1

𝑉
∑ |𝐹(ℎ𝑘𝑙)| ∙ exp [𝑖𝛼(ℎ𝑘𝑙)] ∙ exp [−2𝜋𝑖(ℎ𝑘 + 𝑘𝑦 + 𝑙𝑧)]ℎ,𝑘,𝑙  

where V is the volume of the unit cell and αhkl is the phase associated with the structure-factor 

amplitude |Fhkl|.105 We can measure the amplitudes but the phases are lost in the experiment. This is 

the phase problem. It is this electron density equation which needs to be solved in order to reveal the 

contents of a crystal. Molecular replacement (MR) is a phasing method that uses a homology 

model.106 A sequence identity of more than 25% is usually required. The first step of MR is thus to 

find the three orientation defining parameters: ϕ, ψ, χ, of the rotation function (Fig. 1.23), where only 

the intramolecular vectors are concerned. This is followed by determining the three positional 

translation function parameters. After the six parameters are applied to all atoms in the search 

model, the positions are then transformed onto the unknown structure. 
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Figure 1.23: The rotation function can be specified by a latitude ϕ and longitude ψ through which                               

a molecule is rotated at χ. 

Then the phase αcalc(hkl) can be calculated as: F(hkl) = |Fobs(hkl)| · exp[iαcalc(hkl)], where Fobs 

is the observed structure factor.105 An electron density map can be calculated through the reverse 

Fourier transform. The generated map is biased towards the model structure and its phase angles 

and any atoms in the unknown structure which do not correspond to the model will appear very 

weakly. To improve the electron density map of the unknown, a map showing the difference between 

the initial model and that obtained from MR is produced. The differences between the structure 

factors of the unknown and a copy of the model can be written down as: 

𝐹(ℎ𝑘𝑙) − 𝐹𝑐𝑎𝑙𝑐(ℎ𝑘𝑙) = |𝐹𝑜𝑏𝑠(ℎ𝑘𝑙)| · exp[𝑖𝛼𝑐𝑎𝑙𝑐(ℎ𝑘𝑙)] − |𝐹𝑐𝑎𝑙𝑐(ℎ𝑘𝑙)| · exp [𝑖𝛼𝑐𝑎𝑙𝑐(ℎ𝑘𝑙)] 

The difference (FO-FC) map, where FO is the observed structure factor and FC is the calculated 

structure factor, can then be expressed as: 

𝑃𝑑𝑖𝑓𝑓(𝑥) =
1

𝑉
∑ (|𝐹𝑜𝑏𝑠(ℎ𝑘𝑙)| − |𝐹𝑐𝑎𝑙𝑐(ℎ𝑘𝑙)|) · exp[𝑖𝛼𝑐𝑎𝑙𝑐(ℎ𝑘𝑙)] · exp [−2𝜋𝑖(ℎ𝑘𝑙) ∙ 𝑥]

ℎ𝑘𝑙
 

The positive densities observed in the (FO-FC) map are areas in the structure which is not in the 

search model and the negative densities are areas which are not present in the unknown structure. A 

(2FO-FC) map that weighs the observations further is used additionally to remove the bias from the 

calculated electron density map more efficiently.  

The model structure obtained from MR is modified to describe the experimental data as 

accurately as possible. The refinement process, therefore, is carried out to obtain the best possible 

atomic model parameters, such as atomic positions (coordinates) and local mobility (ADP; Atomic 

Displacement Parameters or B-factors). Structural refinement depends on the quality of 

experimental data as well as the quality of the initial model used for MR. There are two ways of 

computing structure factor from atomic models; direct summation method and Fast Fourier 

Transform (FFT)-based method. Most macromolecular refinement programs use the FFT-based 

method as it is faster for macromolecules in comparison to small molecules. 



CHAPTER 1                                     32 

__________________________________________________________________________________ 

The validity of the proposed structure must then be tested by comparison of the calculated values of 

the amplitudes of the structure factors. This is done by calculating a reliability index or R-factor 

defined by: 

𝑅 =
∑ |𝐹ℎ𝑘𝑙

𝑜𝑏𝑠 − 𝐹ℎ𝑘𝑙
𝑐𝑎𝑙𝑐|ℎ𝑘𝑙

∑ 𝐹ℎ𝑘𝑙
𝑜𝑏𝑠

ℎ𝑘𝑙

 

 𝐹ℎ𝑘𝑙
𝑜𝑏𝑠 and  𝐹ℎ𝑘𝑙

𝑐𝑎𝑙𝑐 have to be scaled with respect to each other. This formula is used for 

determination of both the R and Rfree factors. The two differ in the set of reflections they are 

calculated from: R is calculated for the working set, whereas Rfree is calculated for the test set. In a 

refined macromolecular structure, Rfree is typically 2-6% higher than R. The R -factor usually ranges 

between 0.6 (when computed for a random model against an experimental data set) and 0.2 (for a 

well refined macro-molecular model at 2.5Å resolution). Small molecules of up to 1000 atoms form 

better-ordered crystals than larger molecules, thus the possibility of obtaining R-factors lower than 

0.15 are higher than for larger molecules.107  

Collaborative Computational Project, number 4 (CCP4)108 and Phenix109 are two program 

suites used for macromolecular structure determination; from data reduction to structure validation. 

CCP4 is mainly used to study X-ray data whereas Phenix is able to refine both X-ray and neutron data 

simultaneously. In contrast to X-ray diffraction, neutron diffraction is used to locate protons and 

understand hydrogen bonding in both biological and material sciences. 

 

(b) Neutron Diffraction 

Unlike X-ray crystallography, neutrons can prevent radiation damage; allowing the same 

sample which has gone through neutrons to be tested for X-ray scattering as well.110 This has paved 

the way for joint X-ray and neutron crystal structure refinement, including that of DNA111,112 and 

proteins.113 Neutron crystallography (NC) has an advantage over XC in that it is rather insensitive to 

the presence of hydrogen (H) in a structure, whereas deuterium (D), or the nuclei 1H and 2H, are 

strong scatterers for neutrons (Fig. 1.24). The greater scattering power of protons and deuterons 

means that the position of hydrogen in a crystal and its thermal motions can be determined with 

greater precision by NC. Hence, it is undesirable to work with relatively high concentration of H in a 

sample. The scattering intensity by H-nuclei has a large inelastic component, which creates a large 

continuous background that is independent of the scattering angle.  

 

http://strucbio.biologie.uni-konstanz.de/ccp4wiki/index.php?title=Working_set&action=edit&redlink=1
http://strucbio.biologie.uni-konstanz.de/ccp4wiki/index.php/Test_set
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Figure 1.24: (F calc, ϕcalc) Fourier syntheses computed at different resolutions (1, 1.5, 2 and 2.5 Å) and 

corresponding to four different cases: X-ray, neutron fully deuterated, neutron fully hydrogenated and neutron 

partially deuterated, in which the hydroxyl H (HH) of tyrosine shares its site with deuterium (DH) with an 

occupancy ratio of 0.6:0.4. Reproduced with permission of the International Union of Crystallography. Afonine, 

P. V. et al. Joint X-ray and neutron refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 66, 

1153–63 (2010). 

 

The first neutron diffraction experiments were carried out in 1945 by Ernest O. Wollan using the 

Graphite Reactor at Oak Ridge National Laboratory. NC is used in structural biology to understand 

the geometry of hydrogen bonding involved in stabilising molecules and the key roles of water 

molecules in enzymatic reactions,114–118 molecular recognition119–121 and protein folding122,123. This is 

because neutrons are extremely sensitive to protons as illustrated in Figure 1.25A by a comparison of 

the relative scattering cross-sections. Single-crystal neutron diffraction applies the scattering of 

neutrons to determine the atomic structure of a material. The technique is similar to single-crystal X-
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ray diffraction but neutrons interact directly with the nuclei of the atoms whereas X-rays interact 

primarily with the electron cloud surrounding each atom.  

The atomic scattering factors for neutrons do not vary directly with atomic number as they do for 

X-rays (Fig. 1.25B). Unlike X-ray scattering factors, neutron scattering factors cannot be calculated as 

there is no dependence of neutron scattering factors on ϴ, the Bragg angle. This is because a nucleus 

is small compared with the wavelength of neutrons whereas a cloud of extranuclear electrons is of 

the same dimensions as the wavelength of X-rays. The scattering factor for neutrons depends on the 

particular isotope and some of the neutron scattering factors are negative. When X-rays are scattered 

by atoms, there is always a phase change of 180° between the incident and scattered waves. This is 

also true when most nuclei scatter neutrons, however, there are a few of which demonstrate no 

phase change. This is why some of the neutron scattering factors have been assigned negative; hence, 

the errors in a Fourier synthesis are much greater with neutrons than with X-rays.   

 

Figure 1.25: (A) Comparison of neutron and X-ray scattering cross-sections for elements present in DNA.
124

 (B) 

Scattering length as a function of atomic weight.
125

 The two different relationships of X-rays are for low and 

high scattering angles. As nuclei are point scattering centres, neutron scattering lengths show no angular 

dependence. 

 

When neutrons are released by atomic fission, they have a very high initial velocity and a very 

small initial wavelength. In order to increase the wavelength, the neutrons have to be slowed down 

in a moderator. A beam of neutrons is weak compared with a beam of X-rays from an ordinary X-ray 

tube, and in order to get detectable diffraction effects, the neutron beam must be ten or twenty times 
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as broad as an X-ray beam. Due to this low flux of neutrons, NC requires much larger crystal samples 

in comparison to XC, preferably of at least 0.1 mm3 in size126 or very long exposure times for smaller 

crystals in order to have a measurable diffraction signal. 

Neutrons produced in a spallation source have an advantage of the availability of time-of-flight 

(TOF) diffractometers. The spallation process provides better resolution at low d-spacings (high 

angle) and is good for accurate structure refinements. It gives out higher neutron flux, which 

translates to smaller samples and faster collection times. Typically, each proton generates 10-15 

neutrons. These neutrons then pass through a moderator, often water, to reduce their energy to a 

level comparable with thermal neutrons from a reactor. Since the neutrons come in pulses their 

energy can be determined by measuring the time it takes for the neutron to hit the detector. Hence 

the spectra come out in TOF rather than 2θ. By recording the TOF information of a detected neutron, 

its wavelength can be calculated. 

 

1.5 Investigating the Stability and Structure of DNA i-motifs 

 1.5.1 UV Molecular Absorption 

UV molecular absorption spectroscopy is used to observe the changes in protonation and 

stacking of the bases involved in the formation of the i-motif. In this region, the protonation of 

cytosine residues produces hyperchromicity; increase in absorbance at wavelengths from 275 to 300 

nm, as well a shift of the maximum wavelength from 262 nm for neutral cytosine to 275 nm for 

protonated cytosine (Fig. 1.26A). Hence, the stability of the i-motif as a function of temperature and 

pH changes can be studied by monitoring of absorbance changes in 260–300 nm range. Due to the 

spectral characteristics of protonated and neutral cytosine, the shape of the thermally-induced 

unfolding of i-motif structures monitored by molecular absorption spectroscopy is pH dependent. At 

pH values higher than the pKa of cytosine, the absorbance at 295 nm decreases upon unfolding of the 

i-motif, whereas the opposite is observed at pH values lower than the pKa of cytosine. At pH values 

near the pKa, no spectroscopic changes are observed upon unfolding.67 
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Figure 1.26: (A) pH titration shift of the human telomeric i-motif: d(CCCTAA)3CCC, under UV light. As pH 

decreases, the absorbance of the i-motif shifts from 260 nm for neutral cytosine to 275 nm for protonated 

cytosine. (B) DNA melting profile of the same i-motif. The Tm value, where the two wavelengths intersect, is the 

melting temperature of the particular DNA. 

 

It is possible to determine the melting temperature, Tm, of an i-motif and consequently its 

multimeric nature using UV light (Fig. 1.26B). If the melting of an i-motif-forming oligonucleotide 

shows a concentration-independent profile, the i-motif will have intramolecular pairing, whereas, if 

the melting spectra show a concentration-dependent profile, a bimolecular or tetramolecular 

association must be considered. When the i-motif is folded intermolecularly, Tm increases with the 

concentration. 

 

1.5.2 Circular Dichroism Spectroscopy  

CD spectroscopy of an i-motif structure shows two characteristic negative and positive bands at 

260-265 and 285-290 nm, respectively (Fig. 1.27).127 Manzini et al. demonstrated the pH-induced 

formation of the human telomeric i-motif: d[(C3TA2)3C3], found in the promoter region of the k-ras 

gene.128 The stability of the i-motif with temperature or pH changes is usually studied by monitoring 

ellipticity around 285 nm. The light-driven DNA conformational switch of the human telomeric 

sequence was monitored at this wavelength to see the effects of molecular malachite green carbinol 

base, a light-induced hydroxide ion emitter.129 
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Figure 1.27: CD spectra of an i-motif from acidic to basic ionic strengths. At pH ≥ 7, the maximum                             

shifts towards 275 nm. 

 

Synchrotron radiation circular dichroism (srCD), has also been used for the study of i-motif 

structures.130,131 The advantage of srCD is the large available photon fluxes in the vacuum UV region 

where absorption is strong. This allows the exploration of excitation energy for electronic coupling 

over a broad wavelength region. CD spectra of C-rich strands at different pH values measured by 

Holm et. al. showed that the protonation state of bases determined the folding motif and as a result 

the extent of electronic coupling between bases. Different electronic couplings were found depending 

on the protonation of bases. Single strands of all protonated bases display no coupling. I-motifs have 

electronic coupling within a hemi-protonated base-pair as well as nearest-neighbour coupling along 

the strand. Single strands of all neutral bases have nearest-neighbour couplings along the strand. 

 

 1.5.3 Crystallography  

Apart from NMR, X-ray diffraction was one of the first techniques used to identify the i-motif 

structure. The crystal structure of d(C4)4, solved at 2.3Å resolution, revealed the formation of a four-

stranded molecule composed of two intercalated duplexes.132 Only six structures of i-motifs have 

been reported to date, and all are that of tetramolecular i-motifs solved using X-ray diffraction (Fig. 

1.28). These molecules showed intercalated cytosine segments that were similar in their geometry, 

even though the sequences crystallized in different space groups.133–135 Condensation of single 

molecules from solution into crystals represents a transition between distinct energetic states. In 

solution, the atomic interactions within the molecule dominate. In the crystalline state, however, 

Berger et. al. reported a set of additional packing interactions are formed between molecules in close 

contact in the lattice. This was shown in the study of the crystal structures of d(C3T)4, d(TA2C3)4, 

d(C3A2T)4 and d(A2C4)4.136  
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Figure 1.28: Crystal structures of six tetramolecular DNA i-motifs of the sequence; d(C4)4,
132

 d(C3T)4,
134

 

d(TA2C3)4,
135

 d(C3A2T)4,
133

 d(A2C4)4
58

 and d(AC3T)4
79

 with their corresponding PDB IDs. 

 

In 2014, Ming-Hon Hou et al. reported an X-ray crystal structure of an i-motif tetraplex core 

with a parallel-duplex junction as a structural motif. The DNA crystallised contained a CCG-repeat 

sequence, which shows that two d[T(CCG)3]A strands can associate to form a tetraplex structure with 

an i-motif core containing four C+·C base pairs flanked by two G·G base pairs as a structural motif. 

CCG-containing tetraplex structures were previously reported to be stabilized by intertwining i-

motifs in solution.56,69 Figure 1.29 illustrates that the structure formed by a double hairpin closely 

resembles the theoretically proposed bimolecular i-motif structure. Expansion of (CCG)n (where n = 

4, 8 or 16) trinucleotide sequences are associated with certain neurological diseases, including the 

fragile X chromosome syndrome.137  
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Figure 1.29: (A) Crystal structure of the d[T(CCG)3]A DNA strands that fold into an intercalated i-motif (PDB ID: 

4PQZ).
137

 (B) View of the structure through the wide groove. Cytosine bases are yellow, guanine bases are 

green, thymine bases are blue and adenine bases are red. 

 

1.6 Aims 

The G-quadruplex structure has been extensively studied due to its ability to form in 

vivo.90,138 The i-motif, on the other hand, had not been as widely studied because of the notion that its 

stability in acidic conditions makes it irrelevant to biological functions. However, recent findings of C-

rich sequences that form i-motifs at neutral pH38,39 and the discovery of an i-motif binding 

protein41,139, have prompted more interest in the intercalated structure. Stability of the i-motif in 

solution had been catagorised based on five C-rich oncogene sequences known to form the structure. 

A systematic study on the effect of loop length on G-quadruplex stability had been made140 but the 

same approach had not been taken on i-motifs. This thesis will largely focus on the sequence-specific 

stability of the i-motif DNA. The four main aims are as follows: 

1. Investigate the effect of loop length on the stability of i-motif structures. 

Intramolecular i-motifs usually exist in the form C2-5L1-7C2-5L1-7C2-5L1-7C2-5, where C2-5 denotes the 

cytosine stretch and L1-7 are “loop” regions containing any DNA base (L) including cytosine. It is 

known that increase in the cytosine tracts leads to increased stability of i-motifs due to the presence 

of more C+·C base pairs.141 The role of loops is to aid in intramolecular i-motif formation. Finding out 

if these loop regions contribute to structural stability could help to target C-rich sequences of specific 

loop lengths in the human genome for in vivo studies. 

2. Examine the effect of [Ru(phen)2dppz]2+ on i-motif structures with altering loop lengths. 

Among ligands that have been known to bind to i-motifs is a ruthenium polypyridyl complex, whose 

fluorescence enhances in the presence of DNA. [Ru(phen)2(dppz)]2+ (phen = 1,10-phenanthroline, 

dppz = dipyrido [3,2-a:2',3'-c] phenazine) has been reported to bind to both the human telomeric G-

quadruplex and i-motif142 and has been used as a probe for studying DNA properties.143 Addition of 
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the complex to i-motifs of differing loop lengths can provide better understanding of which loops are 

involved in ligand interaction.  

3. Investigate the effects of loop base composition on i-motif stability. 

A detailed study of loop base composition on i-motifs with a fixed number of loop length can 

help understand if particular DNA bases contribute more/less to the stability of intramolecular i-

motif structures. The results obtained from this study can provide information on whether i-motif 

stability is sequence specific and to establish factors other than pH on i-motif formation. 

4. Show how different DNA bases in the loop regions can contribute to stability. 

Six tetramolecular i-motif structures have been reported to date, with the seventh 

resembling a bimolecular i-motif. Crystallisation of more i-motif structures not only offers greater 

insight into the four-stranded structure but also aids in design of solution works based on the 

geometric parameters of the structures; such as calculating which  ligands have more probability of 

binding to the structure based on the behavior of the loop regions.  
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The Importance of Loop Length on i-motif Stability 

 

2.1 Introduction 

Cytosine-rich nucleotide sequences can fold to form intramolecular i-motifs in vivo.60 These 

sequences usually exist in the form CxLy1CxLy2CxLy3Cx, where Cx denotes the cytosine stretch and y1, y2 

and y3 are known as loop regions containing any DNA base (L) including cytosine (Fig. 2.1).  

Similarly, guanine (G)-rich sequences form G-quadruplexes,144 which are structures complementary 

to i-motifs. The G-quadruplex has been shown to exist in vivo.145 The G-quadruplex structure is 

further stabilized by the presence of a cation, with K+ cations sitting in a central channel between 

each pair of tetrads generating the most stable structures.26,146,147 

The potential intramolecular i-motif sequence was modelled after the general G-quadruplex 

sequence.148 This i-motif sequence has been defined as having four runs or tracts of three to five 

cytosine bases, and each tract separated by loop regions of DNA containing one to seven bases: C3-5L1-

7C3-5L1-7C3-5L1-7C3-5. The lengths are restrained because of the evidence to date that G-quadruplexes 

exist as short nucleic acid sequences149 and also for practical reasons; including to avoid difficulty in 

sequence searching.148 

 

Figure 2.1: Schematic representations of an intramolecular i-motif: d[(C3L3)3C3] and an anti-parallel G-

quadruplex: d[(G3L3)3G3]. Cytosine bases are yellow and guanine are green. All DNA bases in the loop regions 

are grey. The purple spheres represent potassium cations that help in G-quadruplex structure stabilisation. 

 

The G-quadruplex has garnered much interest for providing a nucleic-acid-based mechanism 

for regulating telomere maintenance,138,150 as well as for transcription,151,152 replication153,154 and 

translation.155–157 Promoter G-quadruplexes have been divided into four groups73 and solution 

studies show that the stability of these structures increases with increasing loop lengths.140 In 

contrast, there is less data on i-motifs formed in promoter complexes. I-motifs were initially 
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classified into two groups based on just the five i-motif forming sequences found in oncogenes.73 It 

was reported that loops with less than four DNA residues have lower stabilities. The effect of loop 

length on the stability of G-quadruplexes has been reported using 80 different G-rich sequences.140 

However, such a systematic study had not been made on i-motifs. To initiate a similar study, the 

effects of different loop lengths in 12 intramolecular i-motifs were investigated. 

The human telomeric i-motif DNA: d[(CCCTAA)3CCC], consists of three cytosine bases per 

tract. The study was, hence, modelled with C-rich sequences consisting of the same number of bases 

in the cytosine tract. Table 2.1 lists the C-rich sequences used, which contained an increasing number 

of thymine bases (C3TX, where x is the no. of thymine residues) within the loop region so, the 

sequence was in the form: d(CCCT(3-8)CCCT(3-8)CCCT(3-8)CCCT). C3T8 was added to the list to test i-

motif formation beyond the suggested general sequence of d[(C3-5N1-7)3C3-5]. DNA sequences were 

also designed to look into independently varying loop lengths (C3Tabc, where C is cytosine, T is 

thymine and either a, b & c = 3 or 8). These sequences were assessed for their thermal and pH 

stability using UV and synchrotron radiation CD (srCD) spectroscopy. By limiting the loop bases to 

thymine, the possibility of interaction between the bases was limited to T·T and to ensure 

consistency throughout the series of oligonucleotides. All sequences used in this study proved to 

form i-motifs as shown in section 2.3. 

       Table 2.1: Sequences used in this study, where C is cytosine and T is thymine. 

Group Name Sequence (5’→3’) 

 

 

C3TX 

C3T3 CCCTTTCCCTTTCCCTTTCCCT 

C3T4 CCCTTTTCCCTTTTCCCTTTTCCCT 

C3T5 CCCTTTTTCCCTTTTTCCCTTTTTCCCT 

C3T6 CCCTTTTTTCCCTTTTTTCCCTTTTTTCCCT 

C3T7 CCCTTTTTTTCCCTTTTTTTCCCTTTTTTTCCCT 

C3T8 CCCTTTTTTTTCCCTTTTTTTTCCCTTTTTTTTCCCT 

 

 

C3Tabc 

C3T338 CCCTTTCCCTTTCCCTTTTTTTTCCC 

C3T383 CCCTTTCCCTTTTTTTTCCCTTTCCC 

C3T833 CCCTTTTTTTTCCCTTTCCCTTTCCC 

C3T883 CCCTTTTTTTTCCCTTTTTTTTCCCTTTCCC 

C3T838 CCCTTTTTTTTCCCTTTCCCTTTTTTTTCCC 

C3T388 CCCTTTCCCTTTTTTTTCCCTTTTTTTTCCC 

 

Intramolecular i-motif formation is typically validated using three biophysical techniques. 

They are: CD spectroscopy, DNA melting and pH titrations. All three methods measure the stability of 

an i-motif forming sequence with regards to temperature and changes in pH.67,128 The biophysical 

characteristics of an intramolecular i-motif are shown in Figures 2.2 and 2.3. Tm refers to the melting 

temperature of an i-motif and the TpH value is the pH at which half of the i-motif is unfolded. 
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Figure 2.2: (A) DNA melting profiles and (B) pH titration spectra of the intramolecular human telomeric i-motif: 

d[(CCCTAA)3CCC]. The Tm and TpH values, where the two wavelengths intersect, are the melting temperature 

and transitional pH value, respectively. 

 

In their native states, the bases of DNA absorb light in the 260 nm wavelength.158 DNA 

melting involves the denaturation of DNA by increasing temperature. This results in hyperchromicity; 

the increase in absorbance in the 260 nm wavelength region with increasing number of unstacked 

DNA bases (Fig. 2.2A). As temperature increases, the four-stranded i-motif structure unfolds to a 

single-stranded (ss) sequence, resulting in an increase in absorbance due to availability of unbound 

nucleotides or π-unstacking with an aromatic residue. This effect is also seen during i-motif 

denaturation as a result of pH increment (Fig. 2.2B).159 

The pKa value of the nitrogen involved in the cytosine+-cytosine (C+·C) base pair is 

approximately 4.6 in pure water at 25°C. At pH values higher than 4.6 pKa, the absorbance at 295 nm 

wavelength decreases. This is also because of the deprotonation of the cytosine bases which results 

in the unfolding of the i-motif into ss DNA. The opposite is observed at pH values lower than the pKa 

of cytosine, therefore the transition at 295 nm under UV indicates formation/degradation of the C+·C 

tetraplex.67 Figure 2.3A shows pH titration spectra of the widely studied human telomeric i-motif. It 

shows hyperchromicity between 275 and 300 nm, and a shift of the absorbance from around 260 nm 

for neutral cytosine to around 275 nm for protonated cytosine.67 Figure 2.3B shows that under 

circularly polarised light, an i-motif reveals a maximum at 285–290 nm at pH ≤ 5.5. At pH ≥ 7, this 

maximum shifts towards 275 nm wavelength.  
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Figure 2.3: (A) pH titration shift of an i-motif forming sequence under UV light. As pH decreases, the 

absorbance of the i-motif shifts from 260 nm for neutral cytosine to 275 nm for protonated cytosine. (B) CD 

spectra of an i-motif from acidic to basic ionic strengths. At pH ≥ 7, the maximum shifts towards 275 nm. 

 

2.2 Materials and Methods 

All chemicals and oligonucleotides were purchased from Sigma-Aldrich. The concentrations 

of all oligonucleotides were calculated from the absorbance value at 260 nm using their extinction 

coefficients of the nearest neighbour model provided by the manufacturer. All experiments for each 

sequence were run in triplicates. 

2.2.1 UV Absorption Measurements  

Each solution was made in 50 mM sodium cacodylate buffer with a final DNA concentration of 1 µM 

(ss). The pathlength of the cuvettes used was 1 cm. UV absorption spectroscopy was carried out 

using an Agilent Cary 100 with a temperature controlled six cell changer. 
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(a) DNA Melting Experiments 

Oligonucleotides were dissolved in 50 mM sodium cacodylate buffer of the appropriate pH to 

a final concentration of 1 µM (ss), and were annealed by heating to 90°C and allowing them to cool 

slowly to room temperature. Absorption was recorded at 260 and 295 nm at 1°C intervals between 

20-90°C, with a temperature change rate of 1°C/min in a 1 cm pathlength quartz cuvette. 

(b) pH Titrations 

Oligonucleotides were dissolved in 50 mM sodium cacodylate at pH 8, and a spectrum 

recorded between 200-350 nm at 25°C. The pH was decreased in steps of 0.2 units with the addition 

of 2M HCl and absorption values recorded. This procedure was continued until a minimum pH of 4.5 

was achieved. pH was measured in the cuvette using a Thermo Scientific Orion Star A11 pH meter 

equipped with a small diameter pH electrode.  

2.2.2 Circular Dichroism Measurements 

Oligonucleotides were dissolved in 20 mM sodium cacodylate buffer of the appropriate pH to a final 

concentration of 200 µM (ss), and were annealed by heating to 90°C and slowly cooling to room 

temperature. CD spectra were recorded at 20°C between 180 and 350 nm wavelengths with 1 nm 

wavelength increments in a 0.01 cm pathlength cuvette on beamline B23 at Diamond Light Source.  

 

2.3 Results & Discussion 

  2.3.1 Confirmation of i-motif Formation by Circular Dichroism Spectroscopy 

CD measurements were run to validate that all the C-rich oligonucleotides used in this study 

are i-motif forming sequences. The concentration of buffer used for srCD was lowered to 20 mM to 

obtain the lowest cut off measurement in the backbone region of 180-260 nm wavelengths. The 200 

µM (ss) concentration of each DNA was used to read reasonable absorbance using 0.01 cm 

pathlength, i.e. not below or over the limit of detection in the far and near UV regions. 

At pH ≤ 5.5, all sequences revealed a maximum at 285–290 nm (Fig. 2.4), which is 

characteristic of intramolecular i-motif structures. This maximum is retained at pH ≤ 6.5 by both C3T3 

and C3T4, suggesting that the two i-motifs are more stable than the rest of the C3TX oligonucleotides. 

At pH ≥ 7, the maximum was seen to shift towards 275 nm wavelength for all oligonucleotides, which 

relates to the unstructured ss DNA.160 This is because as pH increases, the intercalated C+·C core 

unfolds to give ss DNA, hence, increasing pH decreases i-motif stability. All six of the oligonucleotides 

with increasing number of thymine residues were therefore confirmed as i-motif forming sequences.  
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Figure 2.4: CD spectra of C3Tx in 20 mM sodium cacodylate buffer at various pH values. 

 

2.3.2 Analyses of i-motif Stability using UV Absorption Spectroscopy 

The ionic strength of the buffer solution used in UV absorption measurements was 50 mM as 

studies under UV light with high levels of salt (>100 mM) are known to destabilise i-motif 

structures.67 1 cm pathlength was used in order to read reasonable absorbance, i.e. not below or over 

the limit of detection (0 ≤ absorbance ≤ 1.5) in the UV spectrometer.  



CHAPTER 2                                     47 

__________________________________________________________________________________ 

Absorbance of UV light by C3TX is sigmoidal to increasing temperature at 260 nm, until a 

maximum absorbance value is reached. Similarly, absorbance of UV light by the oligonucleotides is 

inversely proportional to temperature at 295 nm (Appendix Fig. A2.1A). The DNA melting 

temperatures in Figure 2.5 show the typical intramolecular i-motif features as expected, with 

dissociation of i-motif structures into ss DNA by heat. As loop length, or the number of thymine bases 

increases, the melting temperature decreases, except in the case of C3T3 and C3T4 where the Tm is the 

same at 57.0°C (to three significant figures). This supports the results obtained from CD 

measurements that C3T3 and C3T4 are the most stable i-motif forming sequences in the C3TX system. 

 

Figure 2.5: DNA melting profiles of C3Tx in 50 mM soidum cacodylate buffer (pH 5) at 260 nm wavelength. 

                                                                                                                                                                

Figure 2.6 shows the influence of pH on i-motifs. The titrations indicate that as pH increases, 

the degradation of i-motifs into ss DNA is favoured. This is additionally supported by the decrease in 

absorbance at 295 nm which indicates the dissociation of C+·C base pairs (Appendix Fig. A2.1B). The 

results also support the previous notion that C3T3 is the most stable of the six i-motif forming 

sequences as its structure is maintained up to pH 6.6. However, in contrast to CD and DNA melting 

experiments, C3T4 is less stable than C3T3 at pH 6.4. Table 2.2 and Figure 2.7 show that increase in 

loop length decreases i-motif stability. 

 

Figure 2.6: pH titration spectra (at 260 nm wavelength) of C3Tx in 50 mM sodium cacodylate buffer. 
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Table 2.2: Melting temperatures (Tm) and transitional pH values (TpH) of i-motif forming C3Tx oligonucleotides 

Name Sequence (5’→3’) Tm (°C) TpH 

C3T3 CCCTTTCCCTTTCCCTTTCCCT 57.0 6.6 

C3T4 CCCTTTTCCCTTTTCCCTTTTCCCT 57.0 6.4 

C3T5 CCCTTTTTCCCTTTTTCCCTTTTTCCCT 49.0 6.2 

C3T6 CCCTTTTTTCCCTTTTTTCCCTTTTTTCCCT 43.0 5.8 

C3T7 CCCTTTTTTTCCCTTTTTTTCCCTTTTTTTCCCT 39.5 5.6 

C3T8 CCCTTTTTTTTCCCTTTTTTTTCCCTTTTTTTTCCCT 36.0 5.4 

 

 

Figure 2.7: Melting temperatures (Tm) vs. transitional pH values (TpH) of i-motif forming C3Tx oligonucleotides 

 

Similarly, C-rich sequences with varying loop lengths within the same sequences (C3Tabc) also 

gave DNA melting curves and changes in pH specific to i-motifs. Figure 2.8 illustrates where the 

stabilities of these sequences lie between C3T3 and C3T8. Results obtained from (C3Tabc) i-motifs 

continued to show that sequences that have more thymine bases are least stable. When compared to 

C3T3 and C3T8, i-motifs with two loops of three thymine residues are less stable than C3T3 and i-motifs 

with two loops of eight thymine residues are more stable than C3T8. The results also show that i-

motif stability is dependent on the length of each loop. Figure 2.8A shows that change in the number 

of bases in the first and last loops, of a particular sequence length, give similar Tm values. For 

sequences containing 14 thymine residues, the difference in Tm between C3T833 and C3T338 is 1°C. For 

sequences containing 19 thymine residues, , the difference in Tm between C3T883 and C3T388 is also 

1°C. However, changes in the first and last loop lengths in terms of increased number of thymine 

residues show that addition of more thymine bases decreases i-motif stability.  C3T883 is 8°C less 

stable than C3T383 and C3T838 is 10°C less stable than C3T338. Change in length of the middle loop also 
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gives significantly different Tm values. C3T383 is 15°C more stable than C3T838. Overall, i-motifs 

containing shorter loops are more stable than those with longer loop (Table 2.3). 

 

Figure 2.8: (A) DNA melting profiles of C3T3, C3T8 and C3Tabc in 50 mM soidum cacodylate buffer (pH 5) at 260 

nm wavelength. (B) Absorbance (at 260 nm wavelength) of C3T3, C3T8 and C3Tabc in 50 mM sodium cacodylate 

buffer against pH. 

 

 

Table 2.3: Melting temperatures (Tm) and transitional pH values (TpH) of i-motif forming C3Tabc oligonucleotides 

compared with C3T3 and C3T8 

Name Sequence (5’→3’) Tm (°C) TpH 

C3T3 CCCTTTCCCTTTCCCTTTCCCT 57.0 6.6 

C3T383 CCCTTTCCCTTTTTTTTCCCTTTCCC 55.0 6.6 

C3T833 CCCTTTTTTTTCCCTTTCCCTTTCCC 51.0 6.5 

C3T338 CCCTTTCCCTTTCCCTTTTTTTTCCC 50.0 6.5 

C3T883 CCCTTTTTTTTCCCTTTTTTTTCCCTTTCCC 47.0 6.2 

C3T388 CCCTTTCCCTTTTTTTTCCCTTTTTTTTCCC 46.0 6.1 

C3T838 CCCTTTTTTTTCCCTTTCCCTTTTTTTTCCC 40.0 6.1 

C3T8 CCCTTTTTTTTCCCTTTTTTTTCCCTTTTTTTTCCCT 36.0 5.4 
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DNA melting experiments with different NaCl concentrations were also run in order to check 

for any differences in stabilities of C3T3 and C3T8 in the presence of salt. This showed a decrease in 

the stability of C3T3 by 2°C and 4°C in the presence of 50 mM and 1 M NaCl, respectively (Fig. 2.9A), 

whereas addition of the salt to C3T8 increased the long looped i-motif’s stability by 11°C (Fig. 2.9B). 

This raises the notion that longer looped C-rich sequences have higher chances of forming i-motif 

structures in vivo. 

 

Figure 2.9: DNA melting profiles of (A) C3T3 and (B) C3T8 with increasing salt concentration. λ =260 nm. 

 

2.4 Conclusions 

DNA melting experiments of C3TX gave decreasing Tm values from C3T3 to C3T8, showing that 

the stability of the i-motif structure decreases as loop length increases; a finding which is in contrast 

with statements made in the literature.73 An explanation for this observation is that as loop length 

increases, the structure gains more flexibility and therefore, stabilising interactions become weaker. 

This decrease in stability is also present in the results from the pH titration experiments, where the 

transitional pH decreases as loop length increases. Once again C3T3 shows the highest stability with 

TpH value of 6.6 whereas C3T8 demonstrated the lowest TpH value of 5.4. 
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The sensitivity of i-motifs to pH was also confirmed by CD spectroscopy. The spectra 

obtained for all C3TX oligonucleotides (Fig. 2.4, pH 5) show the characteristic maximum at 285 nm 

and minimum at 265 nm associated with i-motif formation. Data measured at pH 6.5 shows that 

these peaks are observed for C3T3 and C3T4 only. This is consistent with the TpH values measured 

using UV absorbance. CD spectroscopy data measured at pH 7.5-8 lack all the characteristic signals 

for an i-motif structure, confirming the absence of i-motif formation under basic conditions for all 

sequences. These results suggest that flexibility within loop regions is detrimental to the stability of 

the i-motif structure, and long loop regions are only stabilising if they can form additional 

intramolecular interactions that limit flexibility. 

Addition of 50 mM NaCl showed a small decrease of 2°C in the stability of C3T3 (Fig. 2.9A). 

C3T8, on the other hand, displayed an increase in stability by 11°C in the presence of salt (Fig. 2.9B). 

This again suggests that stabilising interaction within long loop regions, in this case, formation of salt 

bridges or ordering of water between the long loops by increased ionic components has led to a 

stabilisation of the loop structure, and ultimately stabilisation of the i-motif structure. These results 

confirm that the bases in the loop region are an important consideration when determining the 

stability of the structure of an i-motif forming sequence.  

In order to investigate the contribution from each loop region, a further series of sequences 

were used, in which the length of each loop was systematically altered between 3 and 8 thymine 

bases (C3Tabc). It is clear from Table 2.3 that introducing a single long loop into a short loop i-motif 

sequence, has a minimal effect on the pH stability of the structure, with C3T833, C3T383 and C3T338 

showing similar TpH values to the parent sequence C3T3. In contrast, introducing a single short loop 

into a long loop sequence, results in a significant increase in the TpH values, between C3T888 and the 

C3T883, C3T838 and C3T388 series, suggesting that the short loop could be acting to orient the 

intercalating strands together to enhance stability. The thermal stability of the mixed loop structures 

also shows changes in stability in a loop dependent manner. Alterations in length of the central loop 

leads to the most significant changes in stability; with C3T383 being 15°C more stable than C3T838. This 

finding is also supported by Reilly and co-workers who reported that change in the central loop 

affects intramolecular i-motif stability the most.161  

 The structures in which changes are made to the first and last looping region show similar 

stability irrespective of which loop is changed, although structures with two long loops are always 

less stable than those with two short loops. For example, taking C3T3 into account, the difference in 

Tm between the i-motif and C3T338 is 7°C. C3T833 is 6°C less stable than C3T3 whereas C3T383 is only 2°C 

less stable than C3T3. These results demonstrate that the important loops for stability must be the 

first and last loop, with the middle loop able to accommodate a longer sequence with minimal 

disruption to the stability.  
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In 2014, Hurley et al. reported the binding of a small molecule to the middle loop of the Bcl-2 

promoter i-motif by increasing the stability of the i-motif.41 The Bcl-2 gene is related to the evasion of 

apoptosis and its i-motif contains long loops of 8, 5 and 7 bases.162 The presence of a longer sequence 

in the middle loop will therefore be beneficial in terms of small molecule binding, as it may provide a 

unique site to distinguish between different loop sequences. It is also clear that if an i-motif forming 

sequence contains long sequences in the first or last loop region then it must have the ability to form 

additional interactions to form a more stable i-motif structure. The difference in both thermal and pH 

stability as a function of loop length also provides the opportunity to tune the temperature and pH at 

which the i-motif structure undergoes conformational change and may be useful in developing more 

sensitive i-motif based switches for nano-devices. A recent report has shown that tuning the 

sequence using different length of cytosine tracts and three to four bases in the loop regions allows 

switching over a well-defined pH range between pH 7 and 6.5.163 Using different length loops would 

allow this pH range to extend to pH 5.5, and introduce the additional parameter of heat responsive 

conformational change. Altering loop length would also have the added advantage of changing the 

distance the terminal ends of the switch can travel. 

 In conclusion, the results demonstrate that i-motif stability is clearly related to C-rich 

sequence composition. The length of the loop region is a large contributing factor to the overall 

stability of the i-motif structure, but in contrast to the widely held belief, it is not long loops that give 

the most stable structures, but short loops. In addition, the central loop is less important in providing 

stability to the i-motif structure, with the first and second loops shown to influence stability more. 

These findings suggest that in biologically relevant sequences with long loops, the sequence 

composition of the loops must be able to form interactions that reduce the influence of loop length 

and effectively mimic short loop sequences and the stability they impart. The thermal and pH 

responsiveness of different loop lengths may also be used to tuning the responsive nature of 

molecular switches based on the i-motif structural transition. 
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Stabilisation of Long-Looped i-motifs by [Ru(phen)2(dppz)]2+ 

 

3.1 Introduction  

The first i-motif binding ligand was reported in 2000 as TMPyP4, a cationic porphyrin.88 The 

compound was reported to bind to tetramolecular i-motif via stacking interactions at the ends of the 

structure.88 The study thus prompted an interest in i-motif stabilisation in order to investigate 

potential biological functions of the i-motif DNA. The discovery of an i-motif binding protein in 2014 

put forward the biologically relevant notion of the i-motif as a protein recognition site.41,87 Hurley 

and co-workers reported that a transcriptional factor named hnRNP LL recognises the B-cell 

lymphoma gene-2 (Bcl-2) i-motif to activate transcription.87 The Bcl-2 oncoprotein prevents 

apoptosis when overexpressed, and this has been linked to the development of lymphocytic cancer 

chemoresistance.164 The study further explained that the cytosine rich Bcl-2 sequence exists in a 

dynamic equilibrium between an i-motif and a hairpin structure.41 They identified two ligands; IMC-

48 (Fig. 3.1) stabilises the i-motif structure and IMC-76 destabilises the i-motif to a hairpin (Fig. 3.2). 

The study suggested that the binding site for IMC-48 is within the central loop region of the i-motif 

due to the availability of stacking interactions with thymine residues, forming a capping structure 

within the central loop. 

 

Figure 3.1: Schematic diagrams of the i-motif stabilising IMC-48 and destabilising IMC-76 ligands. 

 

In cells with high Bcl-2 expression, the hairpin stabilising compound IMC-76 decreased Bcl-2 

mRNA levels, whereas, in cells with low Bcl-2 expression, IMC-48 increased both the Bcl-2 mRNA and 

protein expression. These compounds are selective for Bcl-2 as experiments with c-MYC and VEGF i-

motifs84,165 resulted in no significant change in gene expression. The effect of IMC-76 on Bcl-2 

expression was also demonstrated in vivo which gave a 20% decrease in Bcl-2 mRNA. Therefore, the 

group showed that IMC-76 is able to compete with hnRNP LL, resulting in a reduction in the amount 

of hnRNP LL-Bcl-2 i-motif complex present. This work highlighted a possible biological function of 

the i-motif in gene expression regulation. 
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Figure 3.2: Conformational transitions and biological consequences that occur following binding of IMC-76, 

IMC-48, and hnRNP LL to the cytosine rich strand in the promoter of Bcl-2: (A) The different conformational 

states of the Bcl-2 promoter. Acidic pH favours i-motif whereas pH 6.6 has a mixture of hairpin and i-motif.                

(B) Addition of IMC-76 stabilises the hairpin and results in transcriptional repression. (C) Addition of IMC-48 

stabilises the i-motif, the RNA recognition motifs (RRM) 1 and 2 of hnRNP LL bind to the first and third loops in 

the i-motif. (D) hnRNP LL–driven changes form an alternative conformation of the C-rich strand which results in 

transcriptional activation of Bcl-2. 

 

In regard to potential therapeutic applications of DNA-ligand complexes, transition metal 

based polypyridyl complexes have been used as fluorescent probes for studying DNA properties.166 

Most of these ligands have little or no fluorescence in aqueous solution, however, upon binding to 

DNA, the ligand is in a hydrophobic environment and the solvent can no longer quench the intrinsic 

ligand fluorescence. Ruthenium polypyridyl complexes have been found to interact with single and 

double stranded DNA in solution and via crystallographic studies.167,168 Λ-[Ru(phen)2(p-HPIP)]2+ has 

been reported to stabilise the human telomeric DNA G-quadruplex and subsequently inhibit 

telomerase activity.169 [Ru(phen)2(4idip)](ClO4)2 and [Ru(bpy)2(4idip)](ClO4)2 have been able to 

induce the formation and stabilisation of telomeric G-quadruplex,170 therefore, showing potential for 

photodynamic therapy using this family of complexes.166,171 

[Ru(phen)2(dppz)]2+ (Fig. 3.3) is another polypyridyl complex whose luminescence in 

solution enhances in the presence of DNA.168 A minimum of six bases of single stranded 

oligonucleotides are needed for this complex to exhibit the “light switch” effect.172 This effect arises 

as the complex intercalates in the DNA base pairs to protect the nitrogens in dppz from water.173 A 

study adding [Ru(phen)2(dppz)]2+ to the human telomeric G-quadruplex and i-motif proposed the 

idea that the complex may stack onto the G-quadruplex ends and non-specifically bind to the i-
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motif.94 The weaker binding with the i-motif suggested that the complex may interact with the 

negatively charged sugar-phosphate backbone.  

 

Figure 3.3: Schematic representation of of (left) Λ-[Ru(phen)2dppz]
2+

 and (right) Δ-[Ru(phen)2dppz]
2+

. 

 

Chapter 2 covered the importance of loop length on i-motif stability. This chapter will focus 

on the effect of [Ru(phen)2(dppz)]2+ on i-motifs with increasing loop lengths. The i-motif forming 

sequences of the C3TX series (where x = 3 to 8) were used to initiate the project. Although it has been 

suggested that in the case of an intramolecular i-motif, the complex may interact with phosphate 

backbones,94 it was not clear where in the DNA structure this interaction may occur. The stable 

cytosine core of the intramolecular i-motif may not be prone to intercalation from ligands as 

suggested by the stacking of TMPyP4 at the ends of tetramolecular i-motif.88 Instead, 

[Ru(phen)2(dppz)]2+ may interact with the loop regions, in similarity to the case of the Bcl-2 i-motif + 

IMC-48 complex. We hypothesised that the less stable i-motifs with longer loops would be more 

accommodating to the [Ru(phen)2(dppz)]2+ complex by providing more surface area for the ligand to 

interact with the i-motif. 
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3.2 Materials and Methods 

3.2.1 Luminescence Titrations 

Fluorescence spectroscopy measurements were performed using a 1 cm pathlength quartz 

cell at 24°C. Oligonucleotides were first annealed in 50 mM sodium cacodylate buffer (pH 5.0) by 

heating to 90°C and slowly cooling to room temperature. A solution of [Ru(phen)2(dppz)]2+ (40 µM) 

was prepared in the same buffer. Concentrated stock solutions of the annealed i-motif forming 

sequences were then added until a final concentration of 80 µM ss and the emission measured at λexcit 

= 440 nm. 

3.2.2 Circular Dichroism Measurements 

Oligonucleotides were dissolved with [Ru(phen)2(dppz)]2+ in 20 mM sodium cacodylate 

buffer of the appropriate pH to give a final concentration of 100 µM of both the complex and single-

stranded DNA. The solutions were annealed by heating to 90°C and slowly cooling to room 

temperature. CD spectra were recorded at 20°C between 180 and 350 nm wavelengths with 1 nm 

wavelength increments in a 0.01 cm pathlength cuvette on beamline B23 at Diamond Light Source.  

3.2.3 DNA Melting Experiments  

UV absorption spectroscopies were carried out in triplicates using an Agilent Cary 100 with a 

temperature controlled six-cell changer. Oligonucleotides were dissolved in 50 mM sodium 

cacodylate buffer of the appropriate pH to a final concentration of 1 µM (ss) DNA to 1 µM 

[Ru(phen)2(dppz)]2+ complex, and were annealed by heating to 90°C and allowing them to cool 

slowly to room temperature. Absorption was recorded at 260 and 295 nm at 1°C intervals between 

20-90°C, with a temperature change rate of 1°C/min in a 1 cm pathlength quartz cuvette.  

3.2.4 pH Titrations 

Oligonucleotides were dissolved with [Ru(phen)2(dppz)]2+ in 50 mM sodium cacodylate at 

pH 8 to give a final concentration of 1 µM each of the DNA (ss) and the complex. A spectrum was 

recorded between 200-350 nm at 25C. The pH was then decreased by 0.2 with the addition of 2M HCl 

and absorption values recorded in the same range of wavelength. This procedure was continued until 

a minimum pH of 4.5 was achieved. pH was measured in the cuvette using a Thermo Scientific Orion 

Star A11 pH meter equipped with a small diameter pH electrode.  
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3.3 Results & Discussion 

3.3.1 Determination of rac-[Ru(phen)2(dppz)]2+ Binding to Long-Looped i-motifs  

Emission titration experiments of rac-[Ru(phen)2(dppz)]2+ (Ru) with C3TX in pH 5 showed 

that C3T7 and C3T8 gave higher luminescence intensities in comparison to when the loop length (X) is 

between three and six thymine residues (Appendix fig. A3.1). Figure 3.4 shows that like most 

polypyridyl complexes, Ru on its own showed negligible luminescence in aqueous solution but 

addition of the i-motifs resulted in the “light switch” effect. Figure 3.5 illustrates that the 

luminescence intensities of the complex with C3TX at λmax = 615 nm are highest for C3T7 and C3T8 than 

the rest of the oligonucleotides, implying that the complex may have a higher binding affinity to the i-

motif when X = 7 or 8. Since the titration studies showed that longer looped i-motifs gave maximum 

luminescence regardless of DNA:Ru ratios, the 1:1 DNA to complex ratio was used for the following 

CD and UV measurements.  

 

Figure 3.4: Fluorescence emission spectra of 40 µM rac-[Ru(phen)2(dppz)]
2+

 in the presence of 40 µM single-

stranded C3TX DNA i-motifs in 50 mM sodium cacodylate (pH 5.0). λexcit = 440 nm. 
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Figure 3.5: Fluorescence intensity of rac-[Ru(phen)2(dppz)]
2+

 vs. loop length of the C3TX i-motifs at λmax of 615 

nm. The concentration of the ruthenium complex and single-stranded C3TX  used were 40 µM. 

 

            3.3.2 Conservation of the i-motif Structure in the Presence of rac-[Ru(phen)2(dppz)]2+ 

CD spectroscopy of the C3TX sequences with rac-[Ru(phen)2(dppz)]2+ in pH 5 revealed that 

the addition of the complex didn’t disrupt the i-motif structures (Fig. 3.6). There is little difference in 

the position of the peaks between the native DNA and the DNA with added complex but the maxima 

and minima observed lie between 285–295 and 260-265 nm wavelengths, respectively, which are 

characteristic of intramolecular i-motifs. In similarity to the CD spectroscopy results of the Bcl-2 i-

motif-IMC-48 ligand complex,41 CD spectra of the C3TX sequences with the ruthenium complex 

illustrated that i-motif stabilisation by the ligand cannot be observed in individual scans but that 

addition of the complex doesn’t change the i-motif structures. 
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Figure 3.6: CD spectra of native C3TX and the oligonucletides with rac-[Ru(phen)2(dppz)]
2+

 in 20 mM sodium 

cacodylate buffer at pH 5. 

 

3.3.3 Stabilisation of C3T7 and C3T8 by rac-[Ru(phen)2(dppz)]2+ 

 Stabilisation of an i-motif by rac-[Ru(phen)2(dppz)]2+ can be determined by an increase of 

melting temperature (Tm) of the DNA in the presence of the complex. Figure 3.7 illustrates the 

melting curves observed for the C3TX i-motifs with rac-[Ru(phen)2(dppz)]2+ in a 1:1 DNA to complex 

ratio at 260 nm wavelength. In comparison to the Tm of the i-motifs on their own, the DNA melts 

showed no change in stability of i-motifs where X is three to six thymine residues long. However, 

addition of the complex to C3T7 and C3T8 increased the Tm values, hence the stability of the two i-

motif structures.  
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Chapter 2 showed that as loop length increases, the Tm value of the i-motif decreases at a rate 

of 4.7°C per thymine residue with an almost linear relationship (Table 3.1). When rac-

[Ru(phen)2dppz]2+ is introduced to the i-motifs, this rate of change in temperature is similar at 4.8°C 

from C3T3 to C3T6. However, temperature increases from C3T7 to C3T8 by 1.0°C upon addition of the 

complex. Figure 3.8 demonstrates that addition of the ruthenium complex affected the stability of 

C3T8 the most, with an increment in Tm by 8.0°C. Stability of C3T7 also increased in the presence of the 

complex by 3.5°C. The Tm values recorded thus show that rac-[Ru(phen)2dppz]2+ helps stabilise i-

motifs when X is greater than six bases.  

 

Figure 3.7: Melting curves of the six i-motif forming C3TX (x = 3 to 8) sequences in their native states and in the 

presence of rac-[Ru(phen)2(dppz)]
2+

 (1 single-stranded DNA/1 complex). The solutions were made in 50 mM 

sodium cacodylate (pH 5) and the measurements recorded at 260 nm wavelength. 
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Table 3.1: DNA melting temperatures of the i-motif forming C3TX sequences with and without rac-

[Ru(phen)2(dppz)]
2+

 (Ru) in 50 mM sodium cacodylate (pH 5).  

I-motif sequence Melting temperature, Tm (°C) ∆Tm (°C) 

no Ru with Ru 

C3T3 57.0 57.0 0.0 

C3T4 57.0 56.5 0.5 

C3T5 49.0 49.0 0.0 

C3T6 43.0 43.5 0.5 

C3T7 39.5 43.0 3.5 

C3T8 36.0 44.0 8.0 

 

 

Figure 3.8: Melting temperatures of the C3Tx i-motifs with rac-[Ru(phen)2(dppz)]
2+

 against loop length. X = no. 

of thymine residues in the i-motif loops. 

  

3.3.4 The Effect of rac-[Ru(phen)2dppz]2+ on i-motifs with Alternating Loop Lengths  

In order to further confirm that long loops are necessary for the binding of rac-

[Ru(phen)2dppz]2+ to i-motifs, the ligand was added to two i-motif forming sequences of alternating 

loop lengths; C3T383 and C3T838. From the results observed above, it was suggested that if the complex 

only helps stabilise i-motifs with loops longer than six bases, rac-[Ru(phen)2dppz]2+ would increase 

the Tm of C3T838 but not of C3T383. As expected, the DNA melts of the two oligonucleotides (Fig. 3.9) 

show that there is no difference in the Tm of native C3T383 and that of the DNA with the ruthenium 

complex, whereas, there is a 6°C increment in the Tm of C3T838 in the presence of the complex. This is 

supported by the records of measurements at both 260 and 295 nm wavelengths. This study thus 

supports the notion that longer looped i-motifs are required for the binding of rac-

[Ru(phen)2dppz]2+. 
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Figure 3.9: DNA melting curves of (A) C3T383 and (B) C3T838 in their native forms and in the presence of rac-

[Ru(phen)2(dppz)]
2+ 

(1 single-stranded DNA to 1 complex ratio) in 50 mM sodium cacodylate (pH 5). 

 

3.3.5 The effect of [Ru(phen)2dppz]2+ Enantiomers on i-motifs  

DNA melts of Λ and Δ-[Ru(phen)2dppz]2+ in the presence of the human telomeric i-motif; 

(C3TAA)3C3 and C3T838 were conducted. Figure 3.10 illustrates that there is no difference in the Tm of 

C3T838 and the human telomeric i-motif when the two enantiomers used.. 

 Luminescence melting of C3T3 with the two enantiomers showed no difference in spectra 

(Fig. 3.11) but the melting temperatures of C3T838 showed that there is a 1.0°C difference between 

use of two enantiomers and that the DNA with the Λ-enantiomer is more luminescent than the Δ. This 

is in contrast to the studies made with B-DNA where although both enantiomers can intercalate into 

the DNA structure, the Δ is known to bind more strongly and is also more emissive than its Λ 

counterpart.174,175  
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Figure 3.10: DNA melting curves of the human telomeric i-motif; d(C3TAA)3C3 (HTI) and C3T838 in their native 

forms and in the presence of Λ and Δ-[Ru(phen)2(dppz)]
2+ 

in 50 mM sodium cacodylate (pH 5). 

 

Figure 3.11: Fluorescence melting behaviours of C3T3 and C3T838 at 615 nm in the presence of Λ and Δ-

[Ru(phen)2(dppz)]
2+ 

in 50 mM sodium cacodylate (pH 5). 
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3.4 Conclusions 

As loop length increases, the i-motif gains more flexibility, and therefore stabilising 

interactions within the native structure could become weaker, enabling duplex formation.176  Using 

DNA melting techniques, addition of rac-[Ru(phen)2(dppz)]2+ to i-motifs in the C3TX series showed no 

change in stability when loop length was between three and six thymine residues. However, addition 

of the complex gave an increase in Tm of C3T7 and C3T8 by 3.5°C and 8.0°C, respectively. In similarity 

to the Bcl-2 i-motif stabilising and destabilising ligands; IMC-48 and IMC-76, CD spectra of the C3TX 

oligonucleotides with the ruthenium complex showed no significant stabilisation of the i-motifs but 

that the i-motif structures are not disrupted by the addition of the complex. DNA melts of C3T383 and 

C3T838 further agree that stability of the i-motif with longer 

loops is enhanced by the ruthenium complex. 

In chapter 2, the i-motif sequences in which changes 

were made to the first and last looping regions showed similar 

stability irrespective of which loop was changed. I-motif 

structures with two long loops were always less stable than 

those with two short loops. Changes made to the middle loop 

showed minimal disruption to i-motif stability. These results 

demonstrated that the important loops for stability must be the 

first and last loop. This is supported by a study made in 2015, 

where Sugimoto et al. reported that the first and third loop 

regions contribute to i-motif stability at neutral pH under 

molecular crowding conditions.40 Preliminary studies of adding 

rac-[Ru(phen)2(dppz)]2+ showed no effect on the stability of 

C3T383 but a 6°C increment in the Tm value was observed for 

C3T838, suggesting that the first and last loops play a role in  ligand binding. The said theory is in 

contrast to the study of a small molecule binding to the middle loop of the i-motif structure in the Bcl-

2 promoter,41 a gene related to the evasion of apoptosis. However, in order to activate transcription, 

the transcriptional factor hnRNP LL was reported to recognise the Bcl-2 i-motif by binding to the first 

and last loops.87 The Bcl-2 i-motif contains long loops of 8, 5 and 7.162 Hence, the [Ru(phen)2(dppz)]2+ 

study needs to be repeated using C3T883 and C3T388 sequences to further confirm which loop regions 

are crucial in ligand binding. As rac-[Ru(phen)2(dppz)]2+ is known to intercalate into B-DNA 

structures, the two long loops may provide an intercalation site for the ligand to bind into the i-motif 

(Fig. 3.12). 

 

Figure 3.12: Proposed binding 

scheme of [Ru(phen)2(dppz)]
2+

 to a 

long looped i-motif, in this case C3T7. 

The i-motif core is denoted by 

yellow spheres, the loops by grey 

spheres and the complex by the 

orange triangle. 
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Luminescence intensities of C3T7 and C3T8 were approximately 2.4 times higher than that of 

the rest of the i-motifs in the C3TX system. This supports the DNA melting experiments that 

[Ru(phen)2(dppz)]2+ may interact with loops that are longer than six thymine bases. Luminescence 

melting of C3T3 with the two enantiomers showed no difference in spectra but the melts of C3T838 

showed that emission of the DNA with the Λ-enantiomer is higher than that of the Δ. Traditionally, it 

is the Λ-enantiomer that has been shown to be less emissive with B-DNA in solution.175,177  

In conclusion, the results demonstrate that i-motif stability by [Ru(phen)2(dppz)]2+ is related 

to C-rich sequence composition. The length of the loop region is a large contributing factor to the 

overall stability of the i-motif structure. [Ru(phen)2(dppz)]2+ did not have an effect on short looped i-

motifs which were shown to be most stable in Chapter 2. Instead, the ruthenium complex increased 

the stability of the less stable, long looped i-motifs. This adds to the notion that an i-motif stabilising 

ligand may need to be present in order for a cytosine-rich sequence to form an i-motif under 

physiological conditions. This concept has also been previously proposed by Hurley and co-workers 

using the IMC-48 ligand with the Bcl-2 cytosine-rich sequence to form an i-motif structure.87 
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The Importance of Loop Composition on i-motif Formation 

 

4.1 Introduction 

  

Intramolecular i-motif structures have a general 

sequence in the format: C3-5L1-7C3-5L1-7C3-5L1-7C3-5, where C is 

cytosine and L is the loop region comprised of any DNA base 

including cytosine (Fig. 4.1). Chapter 2 showed that i-motifs with 

short loops exhibit the highest stability,131 however, the study 

was made using oligonucleotides containing loops of only 

thymine bases. In 2015, Sugimoto et al. reported that i-motifs 

with the first and last loops that are rich in pyrimidine are more 

stable in comparison to those with purine.40 The study was 

made using 11 oligonucleotides which showed that intrastrand 

i-motifs with two guanine or two thymine bases gave high 

stabilities. Hydrogen bonding among nucleobases have a 

stronger effect on the stability of the i-motif structures than the 

stacking of the nucleobases. 

A recent study on bimolecular i-motifs with different loop lengths and composition using 

silver nanoclusters showed that the DNA sequence 5’-CCCCATATCCCC-3’ gave the brightest emission 

of the fluorescent probe with a quantum yield of 0.78. However, the reversed template sequence 5’-

CCCCTATACCCC-3’ gave the quantum yield of 0.15,178 emphasising on the importance of the direction 

of base alignment. Although research on i-motif stability depending on loop length has been 

expanding, the role of varying DNA residues within the loop regions is still less understood. This 

chapter will focus on how loop composition is crucial in intramolecular i-motif structure stability 

using 36 C-rich sequences. The study was initially made with the idea of determining i-motif 

stabilities but results showed that loop base composition and directionality are both contributing 

factors of i-motif structure formation.   

The sequences studied were limited to four tracts of three cystosine bases and three loops 

containing three DNA bases; modelled after the C3T3 sequence in chapter 2 which gave the highest 

stability. The sequences used were in the format; d(CCCXYZCCCXYZCCCXYZCCC) (or C3XYZ), where 

X and Z are adenine, thymine or guanine and Y is any one of the four DNA bases (Fig. 4.2, Table 4.1). 

Cytosine was not included for X and Z residues as this would increase the cytosine tract length and i-

motif forming sequences with tracts of at least five cytosine bases have shown increased stability due 

to increased number of C+·C base pairs.38 All oligonucleotides were studied using UV and srCD 

spectroscopies.   

 

Figure 4.1: Schematic 

representation of an 

intramolecular i-motif of the 

sequence d[(C3L3)3C3], where C 

is cytosine and L denotes any 

DNA heterocyclic bases. 
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Table 4.1: C3XYZ sequences used in this study, where X and Z are 

adenine, thymine and guanine. Y is any of the four DNA bases.  

Group Abbreviation Sequence 5’ → 3’ 

 

 

 

 

 

C3AYZ 

AAA CCCAAACCCAAACCCAAACCC 

AAT CCCAATCCCAATCCCAATCCC 

AAG CCCAAGCCCAAGCCCAAGCCC 

ATA CCCATACCCATACCCATACCC 

ATT CCCATTCCCATTCCCATTCCC 

ATG CCCATGCCCATGCCCATGCCC 

AGA CCCAGACCCAGACCCAGACCC 

AGT CCCAGTCCCAGTCCCAGTCCC 

AGG CCCAGGCCCAGGCCCAGGCCC 

ACA CCCACACCCACACCCACACCC 

ACT CCCACTCCCACTCCCACTCCC 

ACG CCCACGCCCACGCCCACGCCC 

 

 

 

 

 

C3TYZ 

TAA CCCTAACCCTAACCCTAACCC 

TAT CCCTATCCCTATCCCTATCCC 

TAG CCCTAGCCTAAGCCCTAGCCC 

TTA CCCTTACCCTTACCCTTACCC 

TTT CCCTTTCCCTTTCCCTTTCCC 

TTG CCCTTGCCCTTGCCCTTGCCC 

TGA CCCTGACCCTGACCCTGACCC 

TGT CCCTGTCCCTGTCCCTGTCCC 

TGG CCCTGGCCCTGGCCCTGGCCC 

TCA CCCTCACCCTCACCCTCACCC 

TCT CCCTCTCCCTCTCCCTCTCCC 

TCG CCCTCGCCCTCGCCCTCGCCC 

 

 

 

 

 

C3GYZ 

GAA CCCGAACCCGAACCCGAACCC 

GAT CCCGATCCCGATCCCGATCCC 

GAG CCCGAGCCCGAGCCCGAGCCC 

GTA CCCGTACCCGTACCCGTACCC 

GTT CCCGTTCCCGTTCCCGTTCCC 

GTG CCCGTGCCCGTGCCCGTGCCC 

GGA CCCGGACCCGGACCCGGACCC 

GGT CCCGGTCCCGGTCCCGGTCCC 

GGG CCCGGGCCCGGGCCCGGGCCC 

GCA CCCGCACCCGCACCCGCACCC 

GCT CCCGCTCCCGCTCCCGCTCCC 

GCG CCCGCGCCCGCGCCCGCGCCC 

 

 

 

 

Figure 4.2: (Top) Matrix showing DNA 

bases denoting to X, Y and Z loop 

positions in cytosine-rich sequences of 

the format C3XYZ. (Below) Schematic 

representation of the intramolecular i-

motif structure in the same 

arrangement. 

 

X         Y         Z
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4.2 Materials and Methods 

All oligonucleotides were purchased from Eurogentec. The concentrations of all oligonucleotides 

were calculated from the absorbance value at 260 nm using their extinction coefficients of the 

nearest neighbour model provided by the manufacturer. All experiments for each sequence were run 

in triplicates. 

4.2.1 UV Absorption Measurements  

Each solution was made in 50 mM sodium cacodylate buffer with a final DNA concentration of 1 µM 

(ss). The pathlength of the cuvettes used was 1 cm. UV absorption spectroscopy was carried out 

using an Agilent Cary 100 with a temperature controlled six cell changer. 

(a) DNA Melting Experiments 

Oligonucleotides were dissolved in 50 mM sodium cacodylate buffer of the appropriate pH to a final 

concentration of 1 µM (ss), and were annealed by heating to 90°C and allowing them to cool slowly to 

room temperature. Absorption was recorded at 260 and 295 nm at 1°C intervals between 20-90°C, 

with a temperature change rate of 1°C/min in a 1 cm pathlength quartz cuvette. 

(b) pH Titrations 

Oligonucleotides were dissolved in 50 mM sodium cacodylate at pH 8, and a spectrum recorded 

between 200-350 nm at 25°C. The pH was decreased in steps of 0.2 units with the addition of 2M HCl 

and absorption values recorded. This procedure was continued until a minimum pH of 4.5 was 

achieved. pH was measured in the cuvette using a Thermo Scientific Orion Star A11 pH meter 

equipped with a small diameter pH electrode.  

4.2.2 Circular Dichroism Measurements 

Oligonucleotides were dissolved in 20 mM sodium cacodylate buffer of the appropriate pH to a final 

concentration of 200 µM (ss), and were annealed by heating to 90°C and slowly cooling to room 

temperature. CD spectra were recorded at 20°C between 180 and 350 nm wavelengths with 1 nm 

wavelength increments in high-throughput cell strips of 0.02 cm pathlength at beamline B23, 

Diamond Light Source.  
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4.3 Results & Discussion 

4.3.1 Analyses of DNA Stability using UV Absorption Spectroscopy 

The ionic strength of the buffer solution was restricted to the standard protocol of 50 mM because 

studies under UV light as high levels of salt (>100 mM) are known to destabilise i-motif structures.67 

For both DNA melting and pH titrations, the final concentration of each DNA used was 1 µM single-

stranded (ss) in order to read reasonable absorbance with 1 cm pathlength, i.e. not below or over the 

limit of detection in the UV spectrometer. All C3XYZ oligonucleotides showed an increase in 

absorbance at 260 nm as a result of π-unstacking and denaturation by heat. The transition at 295 nm 

indicating the degradation of C+·C tetraplex with heat was observed in all melting curves at pH 5 

(Appendix Figures A4.4-A4.6). 

Figure 4.3 shows the DNA melting curves of C3AYZ sequences where the first base in the loop 

regions is adenine. The results show that when the first and second bases in the loops are kept 

constant, and only the third base is changed, the sequences are more stable when Z is thymine and 

less stable when Z is adenine or guanine, with the exception of AGG. Out of the 12 C3AYZ sequences, 

AGG gave the highest Tm of 59°C followed by ATT with 58°C. ATT and AGG are in agreement with 

Sugimoto and co-workers’ report that the presence of two guanine and two thymine bases give high 

thermodynamic stabilities.40 

 
Figure 4.3: DNA melting profiles of C3AYZ (1 µM, ss) showing the effect of the third base in the loop (Z) on 

thermal stability when Y is (A) adenine, (B) thymine, (C) guanine and (D) cytosine.  Samples were made in 50 

mM sodium cacodylate buffer (pH 5) and the absorbance recorded at λ = 260 nm. 
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Figure 4.4A compares the DNA melting curves of all C3AYZ sequences. AGG shows the highest 

thermal stability and AGA the lowest with a 11.5°C difference in Tm between the two sequences. The 

presence of adenine bases in a 2015 study gave a decrease in Tm by approximately 7°C in comparison 

to when thymine or guanine was present instead.40 Figures 4.4B-D show that changing the second 

base (Y) to adenine, thymine or cytosine, affects the thermal stabilities by up to 3°C, whereas when Y 

is guanine, the Tm value is either the highest or the lowest of its respective groups. 

 

Figure 4.4: (A) DNA melting profiles (λ=260 nm) of all twelve C3AYZ oligonucleotides (1 µM, ss) in 50 mM 

sodium cacodylate buffer (pH 5). Y is any of the four DNA bases and Z is adenine, thymine or guanine. The three 

smaller graphs show the effect on thermal stability by the middle base (Y) when Z is (B) adenine, (C) thymine 

and (D) guanine. 

 

Figure 4.5 shows the DNA melting curves of C3TYZ sequences where the first base in the loop 

regions is thymine. In similarity to C3AYZ, the results show that when the first and second bases in 

the loops are kept constant, the sequences are more stable when Z is thymine and less stable when Z 

is guanine; with the exception of TGG which shows an almost linear relationship between absorbance 

and temperature instead of the classic sigmoidal DNA melting profile. Out of the 12 C3TYZ sequences, 

TCT gave the highest Tm of 61°C and TGG gave the lowest Tm of 51°C (Fig. 4.6A). Figures 4.6B-D also 

show that change in Y to adenine, thymine or cytosine, affects the thermal stabilities by up to 3°C. 

The Tm values are significantly lowered when Y is guanine, implying that the identity of the second 

base in the loop also contributes to thermal stability, especially when it is guanine as it has so far 

shown both stabilisation and destabilisation of the C-rich DNA sequences.  
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Figure 4.5: DNA melting profiles of C3TYZ (1 µM, ss) showing the effect of varying the third base in the loop (Z) 

on thermal stability when Y is (A) adenine, (B) thymine, (C) guanine and (D) cytosine.  Samples were made in 50 

mM sodium cacodylate buffer (pH 5) and the absorbance recorded at λ = 260 nm.  

 
Figure 4.6: (A) DNA melting profiles (λ=260 nm) of C3TYZ oligonucleotides (1 µM, ss) in 50 mM sodium 

cacodylate buffer (pH 5). Y is any of the four DNA bases and Z is adenine, thymine or guanine. The three smaller 

graphs show the effect on thermal stability by the middle base (Y) when Z is (B) adenine, (C) thymine and (D) 

guanine. 
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In agreement to both C3AYZ and C3TYZ, the results obtained from C3GYZ show that the 

sequences are more stable when Z is thymine but their stabilities are lowered when Z is either 

adenine or guanine, with the exception of GGG (Fig. 4.7). When the 12 C3GYZ sequences are 

compared amongst themselves, (Fig. 4.8A), GTT and GAT display the highest stabilities with Tm of 

65°C. The lowest Tm recorded out of the 12 oligonucleotides is 51°C for GCG. It is interesting that the 

opposite directionality of GAT gave a one of the least stable C3TYZ sequences; TAG, Tm = 52°C. The 

same can be applied for TTG with a Tm of 54°C. Figures 4.8B-D show that when Z is constant, having Y 

as guanine instead of adenine, thymine or cytosine, affects the thermal stabilities of the C3GYZ 

sequences the most.  

 

Figure 4.7: DNA melting profiles of C3GYZ (1 µM, ss) showing the effect of varying the third base in the loop (Z) 

on thermal stability when Y is is (A) adenine, (B) thymine, (C) guanine and (D) cytosine.  Samples were made in 

50 mM sodium cacodylate buffer (pH 5) and the absorbance recorded at λ = 260 nm.  

 

Overall, for all C3XYZ oligonucleotides, the middle base in the loop regions also contribute to 

changes in thermal stability. C3XYZ is thermodynamically most stable when Y is thymine and least 

stable when Y is guanine, with the exception of AGG and GGG. The Tm values of C3GYZ 

oligonucleotides are also significantly higher than those of C3AYZ or C3TYZ. In terms of thermal 

stabilities only, the C3XYZ sequences can be categorised in the order: C3GYZ > C3TYZ > C3AYZ. 
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Figure 4.8: (A) DNA melting profiles (λ=260 nm) of all twelve C3GYZ oligonucleotides (1 µM, ss) in 50 mM 

sodium cacodylate buffer (pH 5). Y is any of the four DNA bases and Z is adenine, thymine or guanine. The three 

smaller graphs show the effect on thermal stability by the middle base (Y) when Z is (B) adenine, (C) thymine 

and (D) guanine. 

 

The Tm values obtained for the oligonucleotides showed concentration-independent profiles, 

suggesting that these potential i-motif forming sequences could be intramolecular.128 pH titrations of 

all C3AYZ and C3TYZ sequences showed hyperchromicity between 275 and 300 nm and the shift in 

absorbance from around 260 nm for neutral cytosine to around 275 nm for protonated cytosine67 

(Appendix figures A4.7 to A4.9). Most of the C3GYZ sequences, on the other hand, did not show these 

i-motif characteristic features. Broader peaks with flatter maxima were observed instead. Table 4.2 

lists the Tm and TpH values of all C3XYZ sequences. Figure 4.9 shows the distribution of the C-rich 

sequences as a TpH versus Tm graph. Seven out of the twelve C3GYZ sequences lie on the most right-

hand side of the graph, illustrating high structural stabilities.  
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Table 4.2: Sequences used in this study with associated melting temperatures (Tm/°C) and transitional pH (TpH) values. 

C
3
AYZ C

3
TYZ C

3
GYZ 

Abbreviation Sequence 5’ → 3’ T
m

 (°C) T
pH

 Abbreviation Sequence 5’ → 3’ T
m

 (°C) T
pH

 Abbreviation Sequence 5’ → 3’ T
m

 (°C) T
pH

 

AAA (CCCAAA)
3
CCC 54.0 5.9 TAA (CCCTAA)

3
CCC 56.0 6.3 GAA (CCCGAA)

3
CCC 59.0 6.3 

AAT (CCCAAT)
3
CCC 55.0 6.2 TAT (CCCTAT)

3
CCC 58.0 6.3 GAT (CCCGAT)

3
CCC 65.0 6.6 

AAG (CCCAAG)
3
CCC 51.0 5.9 TAG (CCCTAG)

3
CCC 52.0 6.0 GAG (CCCGAG)

3
CCC 58.0 5.3 

ATA (CCCATA)
3
CCC 54.0 6.2 TTA (CCCTTA)

3
CCC 57.5 6.2 GTA (CCCGTA)

3
CCC 61.5 6.6 

ATT (CCCATT)
3
CCC 58.0 6.6 TTT (CCCTTT)

3
CCC 60.0 6.6 GTT (CCCGTT)

3
CCC 65.0 7.0 

ATG (CCCATG)
3
CCC 54.0 6.1 TTG (CCCTTG)

3
CCC 54.0 6.2 GTG (CCCGTG)

3
CCC 60.5 6.3 

AGA (CCCAGA)
3
CCC 47.5 5.8 TGA (CCCTGA)

3
CCC 52.0 6.3 GGA (CCCGGA)

3
CCC 52.0 5.6 

AGT (CCCAGT)
3
CCC 52.5 5.9 TGT (CCCTGT)

3
CCC 56.0 6.5 GGT (CCCGGT)

3
CCC 60.0 6.2 

AGG (CCCAGG)
3
CCC 59.0 5.2 TGG (CCCTGG)

3
CCC 51.0 5.7 GGG (CCCGGG)

3
CCC 59.0 5.0 

ACA (CCCACA)
3
CCC 53.0 5.7 TCA (CCCTCA)

3
CCC 58.0 5.7 GCA (CCCGCA)

3
CCC 58.0 6.3 

ACT (CCCACT)
3
CCC 57.5 5.9 TCT (CCCTCT)

3
CCC 61.0 6.6 GCT (CCCGCT)

3
CCC 62.0 6.6 

ACG (CCCACG)
3
CCC 53.0 6.1 TCG (CCCTCG)

3
CCC 55.0 5.9 GCG (CCCGCG)

3
CCC 51.0 5.9 
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Figure 4.9: pH transition (TpH) values against melting temperatures (Tm) of C3XYZ oligonucleotides, where X and 

Z are adenine, guanine and thymine and Y is any of the four DNA bases. 

 

 4.3.2 i-motif Structure Determination using Circular Dichroism Spectroscopy 

CD spectroscopy measurements were carried out to further investigate the effects of pH on 

the C3XYZ sequences, and to consequently confirm that the oligonucleotides formed i-motif 

structures (Fig. 4.10 and Appendix fig. A4.11 for measurements made in pH 8). The concentration of 

the buffer used for srCD was lowered to 20 mM to obtain the lowest cut off measurement in the 

backbone region of 180-260 nm wavelengths. The final concentration of each DNA used was 200 µM 

(ss) to read reasonable absorbance using 0.01 cm pathlength, i.e. not below or over the limit of 

detection in the far and near UV regions. 

C3AYZ and C3TYZ in pH 5 showed the i-motif characteristic maximum and minimum peaks at 

285-290 and 255-260 nm respectively.128 Ten out of the 12 oligonucleotides with guanine as the first 

base in the loops, however, gave a negative peak at 245 nm instead. Negative peaks at 245-250 nm 

wavelengths are associated to duplex DNA, hairpin and G-quadruplex structures.127,179 Duplex DNA 

displays a positive peak at 260 nm wavelength but the C3GYZ series either have a positive peak at 

285-290 nm or a broad positive band from 260-283 nm. The broad band at about 260–280 nm 

together with the negative peak at around 245 nm are specific to the hairpin structure.127 These 

peaks are observed for GAA, GAG and GGG. The rest of the sequences, excluding GGT and GCG, have a 

positive peak at 285-290 nm. The combination of a positive and negative band at 290 and 240 nm 

wavelengths, respectively, are observed in the CD spectra of anti-parallel G-quadruplex 

structures.127,180 Only GGT and GCG display i-motif formation. Based on the oligonucleotides that 
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showed all the expected features of an intramolecular i-motif using both UV and CD spectroscopies, 

only 26 of the C-rich sequences were able to form i-motifs. 

 

Figure 4.10: CD spectra of (top) C3AYZ, (middle) C3TYZ and (bottom) C3GYZ oligonucleotides in 20 mM sodium 

cacodylate buffer (pH 5), 20°C. Z is adenine, thymine or guanine and Y is any of the four DNA bases. 
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Tables 4.3 and 4.4 list the Tm and TpH values of all the sequences used in this study. In terms 

of thermal stability only, AGA is the least stable and TCT is the most stable i-motif forming sequence. 

Overall, GAT and GTT are the most stable DNA sequences. Regarding to transitional pH values, AGG is 

the least stable. ATT, TTT & TCT share the same TpH for the most stable i-motif forming sequences 

whereas GTT is the most stable sequence overall. In terms of both thermal and pH stabilities, the 

sequences with guanine as the first base and thymine as the last base are most stable. When only i-

motif forming C3XYZ sequences are taken into account, those containing the most number of 

pyrimidine residues are the most stable. Hence, the most stable i-motif forming sequence is TCT. 

 

Table 4.3: DNA melting temperatures (°C) of C3XYZ. X, Y and Z bases are labelled blue, orange and black, 

respectively. The sequences that didn’t show i-motif formation by circular dichroism are highlighted in pink. 

The lowest and highest i-motif Tm values are highlighted in yellow and green. The most thermally stable 

sequence is highlighted blue. 

 

 
X base 

Y base 

A T G C 

A A T G A T G A T G A T G 

54.0 55.0 51.0 54.0 58.0 54.0 47.5 52.5 59.0 53.0 57.5 53.0 

T A T G A T G A T G A T G 

56.0 58.0 52.0 57.5 60.0 54.0 52.0 56.0 51.0 58.0 61.0 55.0 

G A T G A T G A T G A T G 

59.0 65.0 58.0 61.5 65.0 60.5 52.0 60.0 59.0 58.0 62.0 51.0 

          Z base  

 

 

Table 4.4: Transitional pH values of C3XYZ. X, Y and Z bases are labelled blue, orange and black, respectively. 

The sequences that didn’t show i-motif formation by circular dichroism are highlighted in purple. The lowest 

and highest i-motif TpH values are highlighted yellow and green. The sequence with the highest TpH is 

highlighted blue. 

 

 

X base 

Y base 

A T G C 

A A T G A T G A T G A T G 

5.9 6.2 5.9 6.2 6.6 6.1 5.8 5.9 5.2 5.7 5.9 6.1 

T A T G A T G A T G A T G 

6.3 6.3 6.0 6.2 6.6 6.2 6.3 6.5 5.7 5.7 6.6 5.9 

G A T G A T G A T G A T G 

6.3 6.6 5.3 6.6 7.0 6.3 5.6 6.2 5.0 6.3 6.6 5.9 

          Z base  
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4.3.3 The Effect of Loop Base Directionality on i-motif Stability 

Change in direction of loop base alignment gave differences in both thermal and pH stabilities of the 

C3XYZ sequences. Moreover, seven of the i-motif forming sequences do not form i-motifs when their 

sequence directionality is changed. Table 4.5 lists the differences in Tm and TpH values for sequences 

with the same base composition but opposite directionality. Sequence direction is identical when X 

and Z bases are the same so 12 sequences have been excluded from comparison.  

 

Table 4.5: The differences in thermal (∆Tm) and pH (∆TpH) stabilities when the direction of base alignment is 

changed. The differences are calculated by subtracting the Tm and TpH values of oligonucleotides in column 2 

from column 1. GGT is the only i-motif forming C3GYZ sequence listed in the table.  

Sequence 5’ → 3’ Sequence 5’ → 3’ ∆Tm (°C) ∆TpH 

AAT TAA +1.0 +0.1 

AAG GAA +8.0 +0.4 

ATT TTA -0.5 -0.4 

ATG GTA +7.5 +0.5 

AGT TGA +0.5 +0.4 

AGG GGA -7.0 +0.4 

ACT TCA +0.5 -0.2 

ACG GCA +5 +0.2 

TAG GAT +13 +0.6 

TTG GTT +11 +0.8 

TGG GGT +9 +0.5 

TCG GCT +7 +0.7 

 

The lowest difference in stability were recorded for sequences where X is adenine and Z is thymine, 

with up to 1°C and 0.4 unit differences in Tm and TpH, respectively. The largest ∆Tm and ∆TpH values 

observed between i-motif forming sequences of the same base alignment were for TGG and GGT (9°C, 

0.5 pH units). The largest differences observed overall are for the i-motif forming TAG sequence and 

the non-i-motif forming GAT with ∆Tm of 13°C and ∆TpH of 0.6 units. This confirms that direction of 

sequence alignment also plays a crucial role in i-motif formation and stability. 
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4.4 Conclusions 

Results from DNA melting and pH titration experiments of the C3XYZ oligonucleotides show 

that loops that have X as guanine have the highest thermal and pH stabilities. However, only two out 

of the 12 C3GYZ sequences; GGT and GCG, formed i-motif structures as revealed by CD spectroscopy. 

Instead, GAA, GAG and GGG gave bands that are characteristic of DNA hairpins. Hairpin structures are 

thermodynamically very stable, with Tm values of at least 60°C,181 which are around the range of Tm 

values observed for sequences where X is guanine. The highest Tm recorded was for GAT and GTT 

with 65°C. Both sequences are stable to neutral or near-neutral pH. The remaining sequences had 

features that resembled the CD spectra of anti-parallel G-quadruplex structures. CD spectroscopy 

measurements need to be recorded in the presence of K+ and Na+ at pH 7 to confirm G-quadruplex 

formation. Sugimoto et al. reported that i-motif forming sequences rich in guanine gave significantly 

higher thermodynamic stabilites.40 If the structure is not of a G-quadruplex, a hypothesis can be 

raised of a possible i-motif and G-quadruplex hybrid structure (Fig. 4.11). SrCD spectroscopy also 

revealed positive bands between 180-200 nm (Appendix fig. A4.7) that appear to relate to guanine 

residues, however, less information is available on the region, with none on i-motifs until now. Only 

26 out of the 36 C-rich sequences were able to form i-motifs, implying that loop base composition has 

a vital influence on i-motif formation.  

 

Figure 4.11: Schematic diagram of the proposed GTG intramolecular G-quadruplex-i-motif structure. Cytosine, 

guanine and thymine are represented by yellow, green and blue dots, respectively. The dashed lines outline 

possible G-tetrad formation underneath the cytosine core. 

 

I-motif forming C3XYZ sequences with adenine as the first base have relatively lower 

stabilities in comparison to the rest of the sequences. These results agree with that of Sheardy and 

co-workers.182 Sequences that are rich in adenine also gave low Tm and TpH values. Presence of 

adenine bases in loops have been shown to affect the stability of G-quadruplex structures, whose Tm 

values decrease when adenine is the first base in the loop regions.183,184  The base adjacent to the 

cytosine tetraplex core is crucial in determining the stability of an i-motif structure,40 and NMR 

studies have shown that protonation of adenine at loops disrupts the i-motif core.75 This could 

explain why loops starting with adenine are less stable.  
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T-rich sequences were the most stable i-motif forming sequences, with thymine as all X, Y 

and Z bases in the loop displaying higher Tm and TpH values. The second base only resulted in Tm 

value differences greater than 3°C when Y was guanine; both stabilising and destabilising i-motif 

structures.  TGG has a low Tm value of 51°C in comparison to AGG and GGG which have higher Tm 

values of 59°C. I-motifs that were rich in purines, with the exception of GGT, proved to be less stable 

than those rich in pyrimidines. Benabou et. al. also reported that addition of purines into the first and 

third loops destabilises the i-motif structure.185 The i-motif structures with the lowest and highest 

stabilities recorded from the series were AGA and TCT, respectively. Insertion of guanine and 

thymine into an oligomeric C-rich sequence was reported to make the formation of i-motif 

unfavourable186 but the study was made on C-rich sequences with guanine residues among the 

middle positions in the loop regions. The GGT i-motif structure emphasises the notion that loop base 

position is an important factor in i-motif formation.  

This brings out the point on the importance in the direction of loop base alignment. 5’-GGT-3’ 

has the melting temperature of 60°C whereas the Tm for 5’-TGG-3’ is 51°C.  Changes in melting 

temperatures and transitional pH values brought by opposite sequence directionality can be 

observed in 11 sequences altogether. GGT, for example, may be more stable than TGG due to the 

accessibility of the loop bases to form base pairs within the i-motif structures. The positions of the 

thymine residues in the first and third loops of GGT allow room for T·T base pairing directly 

underneath the cytosine core, therefore possibly contributing to higher stability (Fig. 4.12). 

Conversely, the thymine bases in TGG are quite apart for T·T base pairs to form. This strengthens the 

notion that although stabilities result from contributions of both stacking and hydrogen bonding 

interactions,187 hydrogen bonding among bases have a much stronger effect on the stability of the i-

motif structures than the stacking of the nucleobases.40   

 

Figure 4.12: Schematic diagrams of the GGT and TGG intramolecular i-motif structures. Cytosine, guanine and 

thymine are represented by yellow, green and blue dots, respectively. The dashed lines outline possible T·T 

base pairing underneath the cytosine core. 
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In conclusion, although the study was initially carried out to understand the effects of loop 

composition on i-motif stability, the experiments conducted showed that not all C-rich sequences are 

composed of the general i-motif sequence format form the intercalated structure. The results 

demonstrate that directionality of bases in loops also need to be considered for i-motif formation. I-

motif forming sequences containing pyrimidine loops are more stable than those with purines. 

Hairpin and G-quadruplex focussed studies need to be designed in order to confirm that the C3GYZ 

sequences do form these structures. These findings can then provide insight into designing i-motif to 

hairpin/G-quadruplex switches. The results can also be used for predicting stable i-motif forming 

sequences for use in various other studies, including crystallographic trials for intramolecular  i-

motif crystal structure determination. 
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The Effect of Non-Cytosine Bases on i-motif Structure 
  

5.1 Introduction 

In 1962, Marsh et. al. solved the crystal structure of cytosine-5-acetic acid which showed that 

cytosine (C) could form a hydrogen-bonded pair with itself if the base was hemiprotonated.34 31 

years later, a four-stranded NMR structure of d(TCCCCC)4 at acidic pH was reported,36 which 

revealed two parallel duplexes intercalated to each other and held by C+·C base pairs. In 1994, the 

first crystal structure of such an intercalated DNA motif; the d(CCCC)4 i-motif, was published at 2.3 Å 

resolution.132 There are six tetramolecular i-motif crystal structures reported to date and all were 

solved between the mid- to late 1990’s using X-ray crystallography. The structures of d(CCCC)4,132 

d(CCCT)4,134 d(TAACCC)4,135 d(CCCAAT)4,133 d(AACCCC)458 and d(ACCCT)479 show intercalated 

cytosine segments that all crystallised with similar geometry. In this chapter, these structures are 

abbreviated to C4, C3T, TA2C3, C3A2T, A2C4 and AC3T, respectively. Figure 5.1 illustrates that the i-

motif structure has a flat and ribbon-shaped construction with very wide grooves along two sides 

and very narrow grooves at the ends. The DNA structures have a “zigzag” pathway of sugar-

phosphate backbones. The glycosidic torsion angles (χ) are in the anti-range, between -120° and -

180° and the sugar puckers are mixed with varying values for the phase angle of pseudorotation, P.  

Although the geometry of the cytosine core is similar for all six i-motif structures, the non-

cytosine bases in either end of the core, or the loop regions, have different folding topologies (Fig. 

5.2). The 5’-TA2C3-3’ and 5’-C3A2T-3’ DNA sequences are different only by directionality, yet the 

adenine bases in the A2 and A3 positions in first sequence and thymine in the T6 position in the 

latter sequence are flipped away from the plane of the core. The 5’-TA2 segments exhibit a novel tight 

loop in which the 5’- and 3’- ends of adjacent strands are in close proximity. This loop is stabilised by 

a Hoogsteen T1·A3 base pair which sits above the terminal C+·C base pair. On the other hand, C3A2T 

consists of two A·A mismatch pairs; an asymmetric A4·A4 base pair stacking over the terminal C+·C 

base pair, and an A5·A5 mismatch. Each mismatch is involved in an A·A·T base triple with a thymine 

from a symmetry-related i-motif. Similarly, the A2C4 structure has both adenine bases facing away 

from the cytosine core whereas AC3T and C3T have two thymine residues per i-motif molecule 

orientated away from the plane of the core. 

Table 5.1 lists the crystallisation parameters of the six structures along with their refinement 

statistics from data collected using an in-house X-ray source. C4 and AC3T are cubic crystal systems, 

C3T, A2C4 and TA2C3 are orthorhombic and C3A2T is hexagonal. Table 5.2 lists the structural 

parameters of the cytosine core, showing that there are slight differences in the intercalated site of 

the six i-motif crystals. These parameters are compared to the new i-motif crystal structures 

discussed in section 5.3. 
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Figure 5.1: Crystal structures of six tetramolecular DNA i-motifs of the sequence; C4,
132

 C3T,
134

 TA2C3,
135

 C3A2T,
133

 

A2C4
58

 and AC3T
79

. The first and seconds rows show the views of the molecules from the wide and narrow 

grooves (when rotated 90° to the right), respectively. The third row shows the top views of the molecules. 

 

 

Figure 5.2: Van der Waals representation of the six crystal tetramolecular DNA i-motifs. The base pairing 

cytosine residues are coloured in light and dark grey, adenines in yellow and thymine residues in blue. 
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Table 5.1: Crystallographic data of the six tetramolecular DNA i-motifs. Under the method section, VD stands 

for Vapour Diffusion with HD = Hanging Drop and SD = Sitting Drop techniques. ASU (refinement) stands for 

asymmetric unit. Data that were unavailable have been labelled N/A for non-applicable.  

 

Crystallisation Parameters 

DNA Sequence C4 C3T AC3T A2C4 TA2C3 C3A2T 

PDB ID 190D 191D 1CN0 294D 200D 241D 

Method VDHD VDHD VDHD VDSD VD VDHD 

pH 5.5 6.5 7.0 7.5 6.0 6.0 

Crystal size 

(mm) 

0.3 x 0.3 x 

0.3 

0.5 x 0.5 x 

1.0 

0.3 x 0.3 x 

0.1 

0.3 x 0.2 x 

0.1 

0.4 x 0.7 x 

0.3 

0.6 x 0.6 x 

0.3 

Growth period 1 month 3 weeks 1 month N/A 24 hours several days 

Data Collection 

Temperature 

(K) 

293 277 103 277 277 277 

Crystal Data 

Space Group I 2 3 C 2 2 21 I 2 3 P 2 21 21 F 2 2 2 P 62 

Unit-cell (Å) 

  

a = 82.3 

b = 82.3 

c = 82.3 

a = 28.3 

b = 44.3 

c = 50.5 

a = 93.8 

b = 93.8 

c = 93.8 

a = 35.9 

b = 52.3 

c = 76.9 

a = 59.9 

b = 81.3 

c = 26.9 

a = 32.2 

b = 32.2 

c = 52.5 

α = 90 

β = 90 

γ = 90 

α = 90 

β = 90 

γ = 90 

α = 90 

β = 90 

γ = 90 

α = 90 

β = 90 

γ = 90 

α = 90 

β = 90 

γ = 90 

α = 90 

β = 90 

γ = 120 

Refinement 

DNA 

strands/ASU 

8 4 4 8 2 2 

Resolution (Å) 8.0 - 1.8 10.0 - 1.4 15.0 - 2.2 2.5 - N/A 12.0 - 1.85 10.0 - 1.85 

Cut-off Sigma 

(F) 

2.0 2.0 2.0 2.0 1.0 2.0 

No. Reflections 

(Observed) 

8177 5013 6914 4539 2122 2285 

Completeness 

(%) 

96.0 96.0 96.3 86.5 N/A N/A 

Software X-PLOR X-PLOR X-PLOR X-PLOR X-PLOR X-PLOR 

Rwork/Rfree 0.218/NA 0.177/0.225 0.192/0.235 0.212/0.295 0.190/0.223 0.194/NA 

No. Atoms 

DNA 584 296 360 920 232 232 

Ligands 0 3 (Na
+
) 0 0 0 0 

Water 46 63 62 60 26 57 

RMS Deviations 

Bond lengths 

(Å) 

0.015 0.029 0.004 0.016 0.030 0.028 

Bond angles (°) 3.700 4.000 0.574 3.740 4.000 3.700 

 

 

 

 



CHAPTER 5                                     85 

__________________________________________________________________________________ 

    Table 5.2: The geometrical parameters of the cytosine cores in tetramolecular DNA i-motif structures. 

DNA Sequence C4 C3T AC3T A2C4 TA2C3 C3A2T 

Helix sense RH RH RH RH RH RH 

Helical twist (°) 12.4 17.1 14.5 16.6 19.7 18.3 

Average base stacking distance 

(Å) 
3.10 3.10 3.20 3.20 3.13 3.15 

Average P-P distance (Å) 

Narrow groove 7.10 7.02 8.10 6.33 6.70 7.09 

Wide groove 15.90 16.63 15.0 16.09 16.90 17.00 

Average C
+
·C distance (Å) 

N-H···O bond 2.75 2.77  2.77 2.68 2.84 2.74 

N-H···N bond 2.76  2.74  2.70 2.70 2.79 2.76 

N-H···O water bond 3.00  3.00  2.94 3.10 2.87 3.08 

 

As there was no systematic study of DNA sequences forming tetramolecular i-motifs, the 

folding topologies of non-cytosine bases in the loop regions could not be predicted. Consequently, 

there was little insight into understanding potential folding topologies in bimolecular and 

intramolecular i-motifs. The base adjacent to the cytosine tetraplex core is crucial in determining the 

stability of an i-motif structure.40 Hence, a simple system of short tetramers; d(C3X)4, where C is 

cytosine and X is any DNA base including cytosine, were tested for crystal growth.  

Crystallisation trials included those of the individual oligonucleotides on their own and with 

a mixture of the oligonucleotides. A total of seven systems were set up for crystallisation (Table 5.3). 

Five systems produced diffracting crystals, however, trials for [C4 + C3T + C3G + C3A] produced 

crystals of [C3T + C3A], giving four systems (two new) to study. No crystal growth was observed for 

C3G and [C4 + C3G]. In chapter 4, 83% of C-rich sequences that had guanine as the first base in the 

loop failed to form i-motif structures and gave CD spectra resembling hairpin and G-quadruplex 

structures instead. Therefore, it is possible that the C3G sequence does not form an i-motif. 

Table 5.3: List of DNA sequences set for crystal growth.*X-ray diffraction showed that the crystals observed for 

the mixture of all four DNA oligonucleotides of d(C3X)4 (where X = any DNA base) were that of [C3T + C3A]. 

System DNA Sequence 5’ → 3’ Crystal 

growth 

Diffraction 

observed 

Structure 

solved 

C4  CCCC Yes Yes Yes 

C3T CCCT Yes Yes Yes 

C3G CCCG No N/A N/A 

C3A CCCA Yes Yes Yes 

C4 + C3G CCCC, CCCG No N/A N/A 

C3T + C3A CCCT, CCCA  Yes Yes Yes 

C4 + C3T + C3G + C3A CCCC, CCCT, CCCG, CCCA Yes Yes No* 
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In this chapter, the structures of C4 and C3T are compared to those previously published. The 

two novel structures of C3A and [C3T + C3A] will be discussed. In contrast to the methodology of the 

previously reported structures, data collection of all crystal systems from this project were carried 

out in a synchrotron and diffraction data were collected at sub-atomic resolutions. 

 

5.2 Materials and Methods 

5.2.1 Crystallisation of the i-motifs  

Oligonuclotides were purchased from Eurogentec and purified by reverse phase HPLC. Crystals were 

grown using sitting drop vapour diffusion. Initial screening was performed using 192 crystallisation 

conditions from the Natrix HT Screen by Hampton Research and HELIX by Molecular Dimensions at 

18°C and 4°C. Each drop contained 2μl of 2mM single-stranded oligonucleotide and 2μl of the 

crystallisation solution. The drop was equilibrated against 500μl of the same crystallisation 

condition. Crystals of C4, C3T and C3A were obtained at 18°C (Appendix fig. A5.1). Table 5.4 lists the 

final crystallisation conditions. 

Table 5.4: Crystallisation conditions of C3X, where X = A, T or C. 

DNA 

Sequence 

Salt 1 Salt 2 Buffer Buffer pH Precipitant Additive 

 

C4 

Ammonium 

chloride  

(0.2 M) 

Magnesium 

chloride 

hexahydrate 

(0.01 M) 

HEPES sodium 

(0.05 M) 

 

7.0 

1,6-

Hexanediol 

(2.5 M) 

 

N/A 

 

C3T 

Lithium 

chloride 

(0.04 M) 

Magnesium 

chloride 

hexahydrate 

(0.02 M) 

Sodium 

cacodylate 

trihydrate 

(0.04 M) 

 

5.5 

2-methyl-2,    

4-

pentanediol 

(30% v/v) 

Hexammine 

cobalt(III) 

chloride 

(0.02 M) 

 

C3A 

Potassium 

chloride 

(0.2 M) 

Magnesium 

chloride 

hexahydrate 

(0.01 M) 

HEPES Sodium 

(0.05 M) 

 

7.0 

1,6-

Hexanediol 

(1.7 M) 

 

N/A 

 

C3A + C3T 

Ammonium 

chloride 

(0.2 M) 

Calcium 

chloride 

dihydrate 

(0.01 M) 

TRIS 

hydrochloride 

(0.05 M) 

 

8.5 

Polyethylene 

glycol 4,000 

(30% w/v) 

 

 

N/A 
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The C4 and C3T crystal structures previously solved will be compared to those grown in new 

conditions. The C4 crystal reported by Chen et. al. was grown in 0.1 M sodium cacodylate buffer (pH 

5.5) equilibrated against 20% MPD which was then soaked in 1 mM K2PtCl6 for 25 days to obtain a 

heavy atom difference Patterson map. The new C4 crystals were grown without any heavy atoms. The 

crystallisation conditions for the C3T structure solved by Kang and co-workers included 0.02 M 

MgCl2, 0.04 M strontium cacodylate buffer at pH 6.5, 0.12 mM spermine and 10% MPD. The new C3T 

crystals were grown in a more acidic pH of 5.5. Overall, two out of the four crystals in this project 

were grown near physiological pH. The presence of precipitant or/and additive with salt may 

contribute to molecular crowding and hence stabilise the DNA structure,39,188 giving more scope for 

the biological role of the i-motif to be discussed. 

4.2.2 Synchrotron Data Collection and Data Analysis 

Data were collected on beamline I02 at Diamond Light Source. Data collection, processing and 

refinement statistics are given in Table 5.5. In all cases, the data were processed using XDS189 and 

XSCALE with xia2.190 The structures were solved using molecular replacement with Phaser191 

through the CCP4i108 and PHENIX109 interfaces. All four structures were built using Coot192 and 

refined using phenix.refine.193  
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Table 5.5: Crystallographic Data Collection and Refinement Statistics 

Sequence C4 C3T C3A C3A + C3T 

Crystallisation Parameters 

Crystal size (μm) 40 x 40 x 40 250 x 130 x 80 250 x 200 x 100 100 x 75 x 50 

Growth period 2 weeks 24 hours 2 weeks 2 weeks 

Data Collection  

X-ray wavelength (Å) 0.9919 0.5510 0.6888 0.6888 

Exposure time (s) 0.04 0.10 0.04 0.04 

No. of images 3600 1800 3600 3600 

Space group I 2 3 P 1 21 1 C 1 2 1 P 1 

Unit-cell (Å) 

  

a = 81.57 

b = 81.57 

c = 81.57 

a = 26.05 

b = 49.48 

c = 26.03 

a = 51.08   

b = 34.42 

c = 30.80 

a = 24.19 

b = 24.20 

c = 24.93 

α = 90.00 

β = 90.00 

γ = 90.00 

α = 90.00 

β = 114.80 

γ = 90.00 

α = 90.00 

β = 146.04 

γ = 90.00 

α = 90.01 

β = 90.02 

γ = 90.05 

Data Processing *Outer shell statistics shown in parentheses 

Resolution (Å) 40.78-1.28                   

(1.30-1.28)* 

21.94-0.68                  

(1.85-0.68) 

25.54-0.66                  

(1.80-0.66) 

24.20-0.84 

(2.28-0.84) 

Rmerge (I) 0.061 (2.955) 0.072 (0.795) 0.042 (0.350) 0.059 (1.428) 

Rmeas (I) 0.062 (2.995) 0.085 (0.944) 0.047 (0.451) 0.064 (1.540) 

Rpim (I) 0.010 (0.484) 0.045 (0.504) 0.021 (0.281) 0.024 (0.574) 

Total number of 

observations 

913962 341361 268813 348627 

I/σI 32.7 (1.5) 8.0 (1.3) 20.1 (1.6) 14.7 (1.2) 

CC1/2 1 (0.567) 0.995 (0.522) 0.981 (0.876) 1 (0.473) 

Completeness (%) 99.9 (99.9) 99.1 (97.0) 82.2 (8.0) 95.0 (92.2) 

Multiplicity 39.1 (38.2) 3.4 (3.3) 5.9 (2.0) 7.1 (7.1) 

Refinement 

No. Reflections 22691 96484 43203 46581 

Rwork/Rfree (%) 12.48/15.08 15.46/17.45 19.85/20.77 21.17/21.69 

No. Atoms 

DNA 984 968 550 596 

Ligands 0 5 1 0 

Water 164 208 91 162 

Average B-factors (Å
2
) 

DNA 25.581 6.980 10.137 9.064 

Ligands - 25.956 5.527 - 

Water 40.399 30.293 19.897 21.934 

Rmsd 

Bond lengths (Å) 0.0250 0.0310 0.0170 0.009 

Bond angles (°) 2.4160 2.3207 1.6420 1.087 
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5.3 Results & Discussion 

5.3.1 C4  

The unit cell parameters of the previously published C4 (PDB ID: 190D) were reported as 

a=b=c=82.3Å. Data collected from crystals grown in new conditions gave similar unit cell parameters 

a=b=c=81.57Å and α=β=γ=90.00° in I23 space group. The structure was solved by molecular 

replacement (MR) at final Rwork/Rfree values of 0.1248/0.1508 with 5.2% of reflections reserved for 

the Rfree set. Two C4 i-motifs are modelled in the asymmetric unit, i.e. 32 nucleotides and 164 ordered 

water molecules. Figure 5.3 illustrates that parallel stranded duplexes base pair with one another, 

resulting in two very wide grooves between each i-motif molecule. The anti-parallel strands are 

adjacent to each other and face the narrow grooves.  

 

Figure 5.3: Views of the asymmetric unit of C4 looking (left) along and (right) down the helical axes. The eight 

strands have been labelled A to H with chain A base pairing with B, C-D, E-F and G-H. Water molecules are 

orange spheres. 

The average helical twist in both i-motif molecules is 13.5°, in comparison with 12.4° in 

190D. The twist allows the strongest hydrogen bonding and base stacking with the lowest amount of 

steric or electrostatic repulsion. As the new C4 has a higher angle of twist, this structure may be more 

stable than 190D. The Van der Waals representations in Fig. 5.4 show the close packing between the 

two sugar phosphate chains at the narrow ends leads to variability in the phosphorus-phosphorus 

(P-P) distances. The average intrachain P-P distance along the chains is 6.5Å and the average 

interchain P-P distance (between two adjacent chains) is 8.4Å. The B-DNA major groove is 11.7Å 

wide and the minor groove is smaller at 5.7Å.7 In the case of C4, the width of the major groove is 

16.9Å and the minor groove is 10.8Å.  
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Figure 5.4: Van der Waals model of (A) the asymmetric unit of C4 where oxygen is red, carbon is green, nitrogen 

is blue, hydrogen is white and phosphorus is orange. (B) Two chains fit in an antiparallel orientation adjacent to 

each other in the narrow groove. (C) Base stacking of the cytosine residues as viewed through the narrow 

groove. 

 

The i-motif structure is held together by intercalated cytosine tracts. The C4 structure shows 

that only the exocyclic atoms O2 and N4 are involved in stacking of the bases. The π-electron systems 

over the rings themselves are not directly involved in stacking. The average base-stacking distance 

between two cytosine residues in B-DNA is 3.4Å whereas in C4, the cytosine bases are 3.1Å apart. 

There are three hydrogen bonds that hold the C+·C base pair together (Fig. 5.5). The N3-N3 hydrogen 

bonds in the centre of the cytosine pairs have an average bond length of 2.77Å. The O2-N4 and N4-O2 

have bond lengths of 2.81Å and 2.82Å respectively. Water molecules are hydrogen bonded to the 

amino group N4 and are also found near phosphate groups, mainly bridging between the two i-motif 

molecules. 

 

Figure 5.5: (Left) The stacking of bases in the i-motif core involves only exocyclic atoms. Residues are coloured 

matching to chains E to H. (Right) Bond length parameters in a C
+
·C base pair. Carbon is green, nitrogen is blue, 

oxygen is red and phosphorus is orange. Water molecules are represented by orange spheres. The 2Fo-Fc 

electron density map is drawn at the 1σ contour level in blue. 
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The sugar puckers in DNA/RNA structures are predominately in either C3′-endo (A-

DNA or RNA) or C2′-endo (B-DNA), corresponding to the A- or B-form conformation in a duplex. Four 

of the sugar puckers in the C4 i-motifs have C3’-endo conformation and six are in the C2’-endo form 

(Appendix Table A5.1). These parameters were calculated using the DNA analysis web server 

w3DNA.194 The chi (χ) torsion angle, which characterizes the relative base/sugar orientation, has an 

average value of 235° (Appendix Table A5.2) meaning that the rings have high anti conformations.

  

Comparison with 190D 

The principal difference between the 190D and the new C4 structure is that the latter consists of 

alternate phosphate conformations (Fig. 5.6). This may be due to improved experimental approaches 

or the availability of a more ordered crystal. Two phosphates were modelled at 50% occupancy each 

in chains B (at P3; third phosphorus towards the 3’-end), C (P2, P3 ) and E (P1, P2).  

 

Figure 5.6: Alternative phosphate conformations in chains (left) E (cyan), (right) B and C (yellow) of the C4 

structure. 2Fo-Fc electron density map is drawn plotted in blue at 1σ contour level. 

 

However, both structures still share similar key features of the i-motif being a low-twist, 

right-handed helix with an average base stacking distance of 3.1Å. There are differences in P-P 

distances in both the narrow and wide grooves which are largely attributed to alternative phosphate 

conformations in the new structure. The two structures were superimposed and Figure 5.7 

illustrates the resulting difference in coordinates. Table 5.6 states the key differences between the 

two structures. 

Both Figure 5.7 and the Table 5.6 illustrate that the two i-motif structures are similar even 

though 190D was crystallised in pH 5.5 and the crystal for new structure grew in neutral pH. There is 

a difference of 3.7Å in the width of the narrow groove. This is because the average width includes the 
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larger P-P distances resulted by alternate conformations. Almost 3 times more water molecules were 

observed in the new structure, most likely due to the new C4 data collected at higher resolution. 

 

Figure 5.7: Superimposition of the new C4 structure (blue) onto 190D (cyan), showing views of the asymmetric 

unit of C4 looking into the (A) wide and the (B) narrow grooves. The parts of the structure highlighted red are 

the alternative phosphate conformations in the new structure. 

 

Table 5.6: Differences in structural parameters between 190D and the new C4 structure. 

DNA Sequence 190D C4 

Helical twist (°) 12.4 13.5 

Groove width (Å) 

Minor groove 7.1 10.8 

Major groove 15.9 16.5 

No. of Sugar Puckers 

C4'-exo 15 17 

C3'-endo 5 4 

C2'-endo 4 6 

C2'-exo 0 1 

C1'-exo 5 1 

04'-endo 3 3 

Average C+·C distance (Å) 

N-H···O bond 2.75 2.82 

N-H···N bond 2.76 2.77 

No. of waters  58 164 
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5.3.2 C3T 

The unit cell parameters for the previously published C3T structure (PDB ID: 191D) were 

reported as a=28.3Å, b=44.3Å, c=50.5Å and α=β=γ=90.00°. The new C3T crystal was initially 

identified as having the C2221 orthorhombic space group and MR gave a high Translation Function Z-

score (TFZ) of 10.9, suggesting that the initial model was in the correct orientation. The first round of 

refinement gave Rwork/Rfree values of 0.4874/0.5026. However, further refinement gave relatively 

low Rwork/Rfree values of 0.19/0.22 even though the data was collected to a resolution of 0.68Å.  

In an attempt to improve the model, the data was then reprocessed in lower symmetries C2 

and P1, in which MR with the same ensemble model gave TFZ-scores of 3.81 and 3.00, respectively. 

Subsequently, the data was processed and modelled with P21 symmetry with new unit cell 

parameters of a=26.1Å, b=49.5Å, c=26.03Å and α=γ=90.00°, β =114.8°. This gave a TFZ score of 57.4 

and the first refinement gave Rwork/Rfree of 0.2964/0.3007. Current R-values stand at 0.1546/0.1745 

with 5.2% of reflections reserved for the Rfree set, which are more appropriate considering the quality 

of the data.  

The C3T structure has the intercalated cytosine core characteristic of all i-motifs. The average 

P-P intrachain distance is 6.45Å and the average interchain P-P distance is 6.37Å. The major groove is 

16.77Å wide and the minor groove is 9.17Å wide. The average cytosine base-stacking distance is 

3.1Å. The N3-N3 hydrogen length is 2.80Å. The O2-N4 and N4-O2 bonds are 2.82Å and 2.77Å 

respectively. Out of the 12 cytidine sugar rings in the asymmetric unit, four of them have C3’-endo, six 

C2’-endo, eight C4’-exo, four C1’-exo and two O4’-endo puckers (Appendix; Table A5.3). The glycosidic 

angle χ has an average value of 235.6° (Appendix; Table A5.4) so, the rings have high anti 

conformation.  

While C4 is held entirely by C+·C base pairs the thymine residues in C3T can adopt two 

conformations. Figure 5.8A shows that one thymine residue remains stacked parallel to the plane of 

the core whereas the other is flipped away from the plane of the core where it is involved in lattice 

interactions. The O4-N3 bond length in the T·T base pair is 2.84Å and the N3-O2 bond is 2.79Å long 

(Fig. 5.9). The thymine residues play an essential role in building the lattice. A twofold screw axis is 

found perpendicular to the broad groove at the end of the molecule; this results in forming a T·T base 

pair holding molecules together along the helical axis. The other two thymine residues are not 

stacked in the molecule but have an orientation parallel to the helical axis and perpendicular to the 

wide groove. These thymine residues form stabilising interactions34,195 that build up the lattice (Fig. 

5.10).  
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The torsion angle α around the phosphate group adopts two different sets of values, one 

associated with the sugar phosphate chains that are straight and another associated with those in 

which the phosphates are rotated away from the centre of the molecule. These bent phosphate 

groups are stabilised by water bound to NH groups on the sides of the cytosine core. Water molecules 

help stabilise the cytosine core by base pairing with the N4 atoms in cytosine (Fig. 5.9). The N4 to 

water distance is approximately 2.9Å. They are hence found bridging between the i-motif molecules. 

Water molecules also stabilise the T·T base pair by interacting with both O2 and O4 atoms in the 

thymine residues. There are 3.7 times more water molecules in the new structure, which is highly 

likely, the result of improved data collection methods. 

 

Figure 5.8: Views of the asymmetric unit of C3T looking (A) along and (B) down the helical axes. Cytosine and 

thymine bases have been coloured yellow and blue respectively. The green and red spheres are magnesium 

with six coordinated water molecules. The orange spheres represent water molecules. 

 

 

Figure 5.9: (Left) The C
+
·C and (right) T-T base pairs. Carbon is green, nitrogen is blue, oxygen is red and 

phosphorus is orange. Water molecules are represented by orange spheres. The electron density map is drawn 

blue at the 1σ contour level. 
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Figure 5.10: Lattice of 191D (C2221) and the new C3T (P21) showing the packing of molecules as seen through 

the wide and narrow grooves (along the helical axes) and down the helical axes. The i-motif molecules are held 

together by the stacking of flipped thymine residues upon each other. 

 

The new C3T molecule is flat with a right-handed twist of 19.11° whereas 191D has a helical 

twist of 17.1°. The asymmetric unit consists of 32 nucleotides, 208 water molecules and five 

magnesium ions. The crystal used to obtain 191D was grown in conditions including 20mM MgCl2 

but only three Na+ were assigned as metal ions around the i-motifs. In the new structure, magnesium 

ions have been identified in the lattice surrounded by distorted octahedra of water molecules and 

phosphate oxygens in their coordination sphere (Fig. 5.11). 
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Figure 5.11: View of the asymmetric unit of C3T down the helical axes. The eight strands have been labelled A 

to H with chain A base pairing with B, C-D, E-F and G-H. The orange and red spheres represent water molecules. 

Magnesium atoms are green spheres. 2Fo-Fc electron density map surrounding [Mg(H2O)6]
2+

 is drawn at 1σ 

contour level. 

 

There are five [Mg(H2O)6]2+ complexes near the phosphate backbones. Figure 5.12 shows the 

bond length distances between the Mg2+ ion and the six waters coordinated to the metal. The first 

neutron structure of magnesium chloride hexahydrate reports an average Mg-O bond length of 

2.08Å,196,197 which is slightly longer than the Mg-O distance of 2.01Å reported here. The distances 

between the oxygen from a phosphate group (depending which one is closer), and its nearest Mg2+ 

are listed in Table 5.7. The PO–Mg2+ distances are also reported. 

 

Figure 5.12: (A) Bond length distances of the [Mg(H2O)6]
2+ 

complex in Å. (B) Distance measurements between 

the complex and its neighbouring phosphate groups. Chains A and D are coloured yellow and blue respectively. 
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Table 5.7: Distance measurements (Å) between [Mg(H2O)6]
2+ 

and its neighbouring phosphate oxygens. 

Chain neighbouring complex PO-H2O PO-Mg2+ 

A 4.11 3.12 

C 4.22 3.02 

E 4.15 2.87 

F 3.68 2.80 

H + E 3.89 2.95 

 

The positively charged magnesium complexes near the negative phosphate groups may have 

contributed to disorder in the structure. In contrast to 191D, positive densities were observed in the 

new difference map for multiple phosphate group conformations. Again, this could be due to the new 

crystallisation conditions or better X-ray source that we were able to see details of disorder which 

are not reported in 191D.  

Positive densities for alternative phosphate conformations were observed in the Fo-Fc map 

throughout half of the chains in the asymmetric unit (Fig. 5.13). Simulated annealing was also applied 

to lower high B-factors in order to lower R-factors. However, only anisotropic refinement with single 

backbone conformations was successful in lowering the R-factors. High-resolution data of the new 

C3T has allowed the modelling of hydrogen atoms in some sugar rings, however hydrogen atoms 

could not be located in water molecules (Fig. 5.13, D). 

 

Figure 5.13: 2Fo-Fc (blue) and Fo-Fc (green for positive and red for negative) electron density maps, drawn at 

1σ and 3σ contour levels, respectively. (A-B) The Fo-Fc map suggests alternative phosphate conformations. (C) 

The Fo-Fc map suggests hydrogen occupancies in the sugar rings. (D) C
+
·C base pair. Carbon is yellow, oxygen is 

red and phosphorus is orange. Water molecules are orange spheres. 
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Comparison with 191D 

When C3T and 191D are superimposed, the root mean square deviation between the atomic positions 

is 0.0284Å, showing that they are similar in terms of atomic position even though the first was 

crystallised in pH 5.5 and 191D in pH 6.5. Superimposition of one of the cores (chains A-D) onto 

191D gives an rms deviation of 1.1035 Å so, the i-motif structures alone are very similar to each 

other. Table 5.8 and Figure 5.14 illustrate the difference in coordinates and structural parameters 

between the two i-motifs. 

 

Figure 5.14: The new C4T structure (blue) and 191D (cyan) superimposed from chain A. Views of the 

asymmetric unit of C4 looking into the (A) wide and (B) narrow grooves and (C) down the helical axes. 

 

Table 5.8: Differences in structural parameters between 191D and the new C3T structure. 

 

DNA Sequence 191D C3T 

Space group C2221 P21 

Helical twist (°) 17.1 19.1 

Groove width (Å) 

Minor groove 7.02 9.17 

Major groove 16.63 16.77 

No. of Sugar Puckers   

C3'-endo 6 4 

C2'-endo 2 6 

Average C
+
·C distance (Å) 

O2-N4 2.77 2.80 

N3-N3 2.74 2.80 

N-H···O water bond (Å) 3.00 2.88 

Average T-T distance (Å)   

O4-N3 2.81 2.79 

N3-O2 2.84 2.79 

No. of waters  56 208 

No. of metal ions 3 Na
+
 5 Mg

2+
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5.3.3 C3A 

The C3A crystal has cell parameters of (a=b=24.3, c=51.1, α=β=γ=90) in the tetragonal I422 

space group. Although MR using a single strand of C3A as an initial model was successful with a high 

TFZ-score of 14.7, the refinement process failed with an error relating to a missing sigFP column 

even though the column was present. The sigFP column is related to the amplitude of the wave |Fhkl| 

which is proportional to the square root of the intensity measured on the detector. The same error 

was observed for refinement on data processed with a lower symmetry of I4. Therefore, data was 

processed in P1 space group with MR carried out using 8 strands of C3A.  

The highest possible symmetry for the particular dataset was later found to be C2. This was 

confirmed using the macromolecular phasing software; SHELX C/D/E. The data was then processed 

with xia2 in C2 space group. At the current stage of refinement, Rwork/Rfree is 0.1985/0.2077 with 

4.9% of reflections reserved for the Rfree set. The asymmetric unit of C3A consists of four 5’-CCCA-3’ 

single strands or 16 nucleotides (Fig. 5.15) and 91 water molecules. Positive density for a K+ ion was 

observed. Although not tested during data collection, X-ray fluorescence could have been used on the 

crystal to confirm the presence of the element. The current C3A structure has been modelled as 

having a single potassium ion which is 5.08Å from both of its nearest phosphate oxygens of chains A 

and B.  

 

Figure 5.15: Views of the asymmetric unit of C3A (left) along and (right) down the helical axes. Orange spheres 

represent water molecules and the purple sphere is K
+
. 

 

C3A consists of a cytosine core similar to all i-motif structures seen previously. Chain A 

undergoes base pairing with chain D and B base pairs with C by symmetry related i-motif building 

the lattice (Fig. 5.16). The average P-P intrachain distance is 6.51Å and the average interchain P-P 

distance is 6.73Å. The average P-P distance across the wide groove is 16.82Å and the distance 

between the phosphorus atoms in the narrow groove is 8.12Å. In the C+·C base pair (Fig. 5.17), the 

N3-N3 hydrogen length is 2.78Å. The O2-N4 and N4-O2 have bond lengths of 2.83Å. The glycosidic 
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angle χ has an average value of 233.9° (Appendix; Table A3) with the rings possessing high anti 

conformations. 

 

Figure 5.16: Chains A (yellow) and D (blue) base pair with each other to form a symmetry related i-motif of C3A. 

The 2Fo-Fc electron density map is drawn in blue at the 1σ contour level. (A) View of the i-motif along and (B) 

down the helical axes. 

 

 

Figure 5.17: A view of the 2Fo-Fc electron density map, drawn in blue at the 1σ contour level, surrounding the 

C
+
·C base pairs. Carbon is green, nitrogen is blue and oxygen is red. Water molecules are represented by orange 

spheres. 

  

Positive densities for alternative DNA backbone conformations were also observed for C3A 

(Fig. 5.18) where the structure was fitted with multiple phosphate group occupancies. In addition to 

the C+·C core, the i-motifs are also stabilised by adenine·adenine base pairs (Fig. 5.19). The C1’·C1’ 

distance is 12.01Å, suggesting that the base pair belongs to the cis Watson-Crick/Watson-Crick 

geometric family, where nitrogen at the N6 position of one adenine base pairs with N7 of another 

andenine.198 The average N6-N7 bond distance is 4.87Å. Figure 5.20 shows that the water molecules 

are distributed around the wide and narrow grooves and away from the core, suggesting the 

stabilising role of water in the i-motif structure. 
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Figure 5.18: 2Fo-Fc (blue) and Fo-Fc (green for positive and red for negative) electron density maps of C3A, 

drawn in 1σ and 3σ contour levels, respectively. (A) The Fo-Fc map suggests hydrogen occupancies in the sugar 

rings. (B) C
+
·C base pair. Carbon is yellow, oxygen is red and phosphorus is orange. 

 

 

 

Figure 5.19: (A) The A·A base pair. (B) Distance between the C1’ carbon atoms of two adenines. Carbon is 

green, nitrogen is blue and oxygen is red. The 2Fo-Fc electron density map is drawn in blue at the 1σ contour 

level. 
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Figure 5.20: Packing diagrams of C3A as seen down the a, b and c axes. Carbon is green, nitrogen is blue and 

oxygen is red. The red dots are water molecules in the solvent channels. 
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5.3.4 C3A + C3T 

The data obtained for [C3A + C3T] was initially modelled in a tetragonal P4212 space group but the 

map obtained after MR could not distinguish between adenine and thymine residues. The collected 

data was hence processed in P1 space group. The Rwork/Rfree currently stands at 0.2117/0.2169 with 

4.9% of reflections reserved for the Rfree set. The asymmetric unit of [C3A + C3T] consists of 32 

nucleotides and 162 water molecules. While viewing through the b axis, one of the i-motifs exposes it 

narrow groove whereas the other its major groove (Fig. 5.21).  

 

Figure 5.21: Views of the asymmetric unit of C3A + C3T (A) along and (B) down the helical axes. Chain A base 

pairs with chain D, B-C, E-H and F-G. Orange spheres represent water molecules. 

 

The [C3A + C3T] structure is right-handed with a helical twist of 19.57°. The average P-P 

intrachain distance is 6.59Å and the average interchain P-P distance is 6.71Å. The average P-P 

distance across the wide groove is 16.93Å and the distance between the phosphorus atoms in the 

narrow groove is 7.90Å. The average base-stacking distance is 3.10Å, in similarity to all i-motif 

structures visited in this chapter. The N3-N3 hydrogen length in the C+·C base pair is 2.79Å (Fig. 

5.22). The O2-N4 and N4-O2 have bond lengths of 2.83Å. The glycosidic angle χ has an average value 

of 236.1° (Appendix; Table A5.7). 

    

Figure 5.22: The C
+
·C base pairs in [C3A + C3T]. Carbon is green, nitrogen is blue and oxygen is red. Water 

molecules are orange spheres.  2Fo-Fc electron density map is drawn in blue at 1σ contour level. 
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The ends of the core are held together by Watson-Crick A-T base pairing, but the densities 

observed for the A·T base pair region, both before and after refinement, suggested that each base can 

be modelled in either densities. Figure 5.23 shows that addition of either base in any order in the A·T 

base pair is acceptable, i.e. it could exist as T·A base pair as well. The difference in Rwork/Rfree between 

the two fittings was 1.38/0.15%. A strategy was undertaken where alternative base conformations 

were added with 50% occupancy for each of the base, however, the structure building software; 

Coot,192 only allows for multiple conformations of the same base. A second strategy was applied 

where each chain was duplicated with 50% occupancy for C3A and 50% for C3T but this resulted in 

an increase in R-values due to clashes of over 200 units. Refinement was also carried out with just 

adenine or thymine, the individual base on its own, which increased the R-values and resulted in 

negative densities, therefore, dismissing the structure formation possibilities of either C3A or C3T. 

The current structure is fitted as C3A for chains A, B, E and G and C3T for chains C, D, F and H. 

 

Figure 5.23: 2Fo-Fc electron density map surrounding the A·T base pairs in [C3A + C3T], drawn in blue at 1σ 

contour level. (A) Refinement output after an A·T base pair fit. (B) Swap in the bases pre-second refinement in 

the same density. Carbon is yellow, nitrogen is blue and oxygen is red. Water molecules are orange spheres. 

 

Even though the assignment of the A·T base pairs is still in question, the structure is 75% 

complete with regards to the i-motif molecules. The output would still be the same even if the 

assignment of two bases were to switch. The average N6-O2 bond length distance in the A·T base pair 

can then be measured as 3.13Å and N1-N3 as 2.78Å (Fig. 5.24). Figure 5.25 shows Van der Waals 

representations of the i-motif. Figure 5.26 shows the packing diagrams of the [C3A + C3T] structure. 

In similarity to the last three i-motif structures discussed, the solvent in this structure is distributed 

within the grooves of the DNA, highlighting the importance of bridging water in i-motif stability. The 

nearest water molecule is 2.91Å far from both N3 in adenine and O4 in thymine in the A·T/T·A base 

pair. 
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Figure 5.24: 2Fo-Fc electron density map surrounding the A·T base pair between chains B and C of [C3A + C3T], 

drawn in blue at 1σ contour level. Carbon is green, nitrogen is blue and oxygen is red. Water molecules are 

represented by orange spheres. 

 

Figure 5.25: Van der Waals representation of the asymmetric unit of [C3A + C3]. (A) along and (B) down the 

helical axes. Yellow spheres represent the cytosine core, blue is thymidine and grey is adenine. 

Figure 5.26: Packing diagrams of [C3A + C3T] as seen down the a, b and c axes. Carbon is green, nitrogen is blue 

and oxygen is red. The red dots are water molecules. 
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5.4 Conclusions 

All i-motifs presented have a close base stacking distance of 3.10Å in comparison to the more 

familiar B-DNA stacking of 3.4Å. The base stacking in i-motifs only involves the exocyclic residues 

which may be associated with a larger overlap of the local π-electron clouds. The cytosine core for all 

i-motifs studied here are similar with the hemi-protonated N3-N3 bond distance in the C+·C base 

pairs of 2.77Å. The P-P distances are varied for all structures (Table 5.9).  

Thymidines are able to form stacking interactions so, C3T was the only structure in which a 

nucleotide was able to rotate away from the cytosine core to build up a lattice.195 The remaining 

three i-motifs have contained structures in comparison, where all bases undergo base pairing. The 

[C3T + C3A] i-motif is more closely packed than the C3A structure as the former has the shorter inter-

chain distance and narrow groove, which is where two i-motif cores face each other. Therefore, [C3T 

+ C3A] may be more stable than C3A as a Watson-Crick A·T base pair is more stabilising than a cis-

Watson-Crick/Watson-Crick A·A base pair.198 

Table 5.9: Phosphate-phosphate distances in tetramolecular i-motifs. 

Average P-P distance (Å) C3T + C3A C3A C3T C4 

Intra-chain 6.59 6.51 6.45 6.50 

Inter-chain 6.71 6.73 6.37 8.40 

Narrow groove 7.90 8.12 9.17 10.80 

Wide groove 16.93 16.82 16.77 16.90 

 

As there was no systematic study of DNA sequences forming tetramolecular i-motifs before, 

it was not possible to predict which non-cytosine base flips away from the central core. Looking at 

these results, it can be suggested that the intramolecular loop regions may not even form from anti-

parallel base pairing as it is believed to, but instead, the structure could form from parallel strands 

base pairing on either sides of the cytosine core.  

Although data collection at high resolutions was able to locate hydrogens in the sugar rings 

and in some cases, the bases, there were difficulties in refinement (in lowering the Rwork/Rfree values). 

The Fo-Fc maps of all four crystals showed positive densities for alternative DNA chain 

conformations. This positional disorder, however, did not exceed more than two equally plausible 

conformations of an affected residue. The modelled temperature factors for majority of the atoms 

were decreased using simulated annealing and anisotropic refinement was only performed in later 

stages as it obscures disorder.  

 Substitutional disorder100 was observed for [C3T + C3A], where the same electron density 

site could be occupied by both A and T bases. Two strategies were used to solve the problem: adding 

alternative base conformations with 50% occupancy for each of the base, and duplicating each chain 
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with 50% occupancy for each of the CCCA and CCCT sequences. However, the first strategy failed due 

to restrictions in the structure building software and the second approach resulted in an increase in 

R-values by ~0.25 due to clashes of over 200 units. Either way, the proposed structure is relevant as 

it stands due to the possibilities of having AT or TA base pairs on both ends of the cytosine cores. 

C4 and C3A crystals were grown in pH 7.0 whereas the [C3A + C3T] crystal was grown in pH 

8.5. The 190D C4 crystal was grown in pH 5.5 and its structure was similar to the new C4 structure. 

This implies that i-motif structures may form in physiological conditions. In terms of sugar puckering 

and base pair distances, no major structural differences were observed for the previously published 

and newly modelled structures of C3T and C3A. The new structure of C3T was solved in P21 space 

group in contrast to C2221 in 191D. It also features the presence of Mg(H2O)6
2+. More water 

molecules, which contribute heavily to the stability of the DNA backbones, were found in both 

structures in comparison to previous reports. The novel structures of [C3T + C3A] and C3A have been 

presented. 

Due to the very limited number of i-motif crystal structures reported to date, the four 

structures in this study could only be compared with each other or to the six tetramolecular 

structures present in the Nucleic Acid Database199 (NDB). The crystal structure of C3A shows that A·A 

base pairs occur on either side of the cytosine core. This is in contrast to the folding of all adenine 

bases away from the cytosine core in the A2C4 structure. NMR studies have shown that protonation of 

adenine at loops disrupts the i-motif core75 and chapter 4 showed that adenine-rich i-motifs form 

less stable i-motif structures. This may explain why the presence of more than two adenine bases 

does not result in A·A base pairs. CD spectroscopy measurements also revealed that 83% of C-rich 

sequences that had guanine as the first base in the loops formed either DNA hairpins or G-

quadruplex structures instead of i-motifs. This may explain why no crystals were obtained for C3G as 

crystallisation conditions need to be optimised for hairpin/G-quadruplex formation instead. These 

results can, therefore, be used to design i-motif forming sequences for bimolecular and 

intramolecular i-motif crystallisation.  

Gehring et. al. stated that van der Waals stabilisation between the sugar phosphate 

backbones across the narrow grooves and the opposite orientation of the carbonyl and amino group 

dipoles are two major contributing factors to i-motif stability.36 The water molecules further add to 

this stabilisation as portrayed by its bridging role; connecting individual CCCX chains in all of the four 

structures. The presence of Mg(H2O)62+ in C3T also displays stabilisation of the i-motif with the help 

of ligands. Overall, it can be said that the water ligands, in both cases, help stabilise the structure 

through phosphate interaction. However, high-resolution data was not able to locate hydrogen atom 

positions in water molecules so, water to C+·C base pair distances could not be measured as 

accurately as hoped for. 
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Neutron Crystallographic Studies of the d(C3T)4 i-motif 

 

6.1 Introduction 

Hemi-protonation of the nitrogen (N) at the N3 position in cytosine (C) is responsible for the 

formation of the intercalated i-motif structure so, C-rich oligomers are more prone to form i-motifs 

under acidic conditions. This unique property of the i-motif has enabled it to be the first DNA 

“molecular motor” driven by pH changes,42 making it an attractive subject in DNA nanotechnology. 

The location of the proton between the hemi-protonated C+·C base pairs in an i-motif crystal 

has never been determined. It is not clear if this proton resides on a single base pair or if it is shared 

equally between the two cytosine bases. Hydrogen bonding in the hemi-protonated N···H+···N moiety 

has, therefore, been described as either a symmetric hydrogen bond with a single-well potential (Fig. 

6.1A) or an asymmetric hydrogen bond defining a double-well potential with a delocalized proton 

that oscillates between the two wells (Fig 6.1B).55,200 

 

Figure 6.1: (A) Symmetric and (B) asymmetric N···H
+
···N hydrogen-bonding in the hemi-protonated C

+
·C base 

pairs of DNA i-motif. The symmetric system involves 50% of H
+
 occupancy contributed by each cytosine 

whereas the asymmetric form involves 100% hydrogen occupancy from only one protonated cytosine.  

 

NMR experimental data and quantum chemical (QM) calculations have shown that proton 

transfer between two cytosines in the human telomeric i-motif; d(CCCTAA)3CCC, is strongly 

dependent on the distance between the two N3 atoms.55 Lieblein et al. observed that for N3-N3 (in 

N···H+···N) distances smaller than 2.5Å, the H+ proton is shared between the two cytidines and is 

located precisely in the midpoint between the nitrogen atoms so, initially they assumed a symmetric 

C+·C base pair. However, they also showed that with increasing N–N distance the proton localizes at 

one nitrogen atom and undergoes fluctuations in a typical double-well potential. Moreover, H+ 

localization is slightly higher at “zigzagging” or diagonally opposite cytosine residues (Fig. 6.2). This 

was attributed to small structural asymmetries in the π-stacking of the hemi-protonated base pairs 

as well as from electrostatic repulsion. 
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Figure 6.2: Distribution of proton population at cytidine residues in the human telomeric i-motif; 

d(CCCTAA)3CCC. Reproduced with permission. Lieblein, A. L., Krämer, M., Dreuw, A., Fürtig, B. & Schwalbe, H. 

The nature of hydrogen bonds in C⋯H
+
⋯C DNA base pairs. Angew. Chemie - Int. Ed. 51, 4067–4070 (2012). 

Copyright 2017 John Wiley and Sons. 

 

Another important form of hydrogen bonding observed in all four i-motif crystal structures 

from the previous chapter was the H-bonding between water molecules and the cytosine N4 amino 

groups in the major grooves. Diffraction data of C4 and C3T revealed densities for 3 times as many 

water molecules than in the structures of the same i-motif systems published in 1994.132,134 In the 

new structures, more water molecules are found near phosphate groups in the minor grooves, 

illustrating their role in bridging i-motif molecules in both grooves. In the case of C3T, water groups 

from MgCl2(H2O)6 were also located near phosphate groups. Hence, the position of solvation water 

and ion distribution was found to be important for the structural stability of the i-motif. Although 

sub-Ångstrom data collected for three out of the four i-motif systems in the last chapter 

demonstrated the significance of water molecules in i-motif stability, it was not possible to position 

atoms in water molecules.  

Scattering of X-rays is proportional to electron density; the scattering at Bragg angle θ = 0 

from an atom is given by its atomic number so X-ray scattering increases across and down the 

Periodic Table (Table 6.1).201 This means that it is very hard to detect hydrogen (H) accurately in 

macromolecular crystallography using X-rays as it only has one electron. Neutron scattering by 

nuclei, on the other hand, has no simple pattern of scattering power in terms of the position of 

elements in the Periodic Table. Scattering length and scattering cross-section are used instead for 

neutrons and these factors vary from element to element (Table 6.1).202 The contribution of H atoms 

is half that of the heavier atoms and has a negative magnitude, whereas deuterium (D) atoms are in-

phase neutron scatterers with the scattering length of 6.7 femtometres.203 The contribution of D to 

neutron scattering is of the same order of magnitude as the contribution of atoms such as carbon, 

nitrogen or oxygen.113 This is why it is essential for crystals for neutron crystallographic studies to be 

either grown in D2O or exchanged in the medium. 
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Table 6.1: X-ray scattering factors and neutron scattering lengths of elements found in DNA.
203,204

 

Atom X-ray (electrons) Neutron (femtometres) 
1
H 1 -3.74 

2
H (D) 1 6.67 
12

C 6 6.65 
14

N 7 9.37 
16

O 8 5.80 
31

P 15 5.13 

 

Application of neutron crystallography can characterize the position of protons and the 

orientation of water molecules. Both X-ray and neutron data sets can be collected from the same 

crystal under the same conditions and refined simultaneously. This concept was pioneered in small-

molecule crystallography205 and subsequently in macromolecular crystallography.206 Following the 

data collection of d(C3T)4; abbreviated to C3T, at 0.68 Å resolution using X-rays, the system was 

studied using neutron diffraction. This chapter will focus on two main aims: 

1. To find the location (or distribution) of the proton between the hemi-protonated C+·C base 

pairs 

2. To find the role that H-bonded water can play in stabilizing the i-motif structure 

Regarding to the first aim, two methods were applied to infer the localisation of the proton in the 

C+·C base pair in the structure refinement step. The first was to add 50% occupancies of two D+ 

protons from both cytosine residues in the base pair; following the symmetric hydrogen-bonding 

scheme with a single-well potential. Secondly, 100% D+ occupancy from only one protonated 

cytosine was modelled in to mimic the asymmetric H-bonding scheme.  

 

6.2 Materials and Methods 

The d(C3T) oligonucleotide was purchased from Eurogentec and purified by reverse phase 

HPLC. C3T crystals for neutron diffraction were grown in H2O using sitting drop vapour diffusion at 

18°C. Table 6.2 lists the differences in C3T growth conditions for neutron and the X-ray studies made 

in chapter 5. The DNA was mixed with crystallisation reagent in a 1:1 ratio and equilibrated against a 

reservoir of the same reagent. In contrast to the C3T crystallisation reagent used for the X-ray study 

in chapter 4, the reagent for NC studies did not contain any LiCl as lithium has a negative magnitude 

of -1.90 femtometres.207  

The crystals grew within 24 hours with dimensions of approximately 250 x 130 x 80 μm. 

Once the crystals grew to their individual maximum volume, the mother liquor was extracted and the 

crystals were soaked in the same crystallisation reagent made in D2O. The mother liquor was 

exchanged with fresh DNA and D2O reagent every other day until a crystal volume of approximately 

~0.1 mm3 was achieved (Fig. 6.3). Each crystal was drawn into quartz capillaries with 1.5 to 2.0 mm 
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inner diameter attached to a 1.0 mL pipette. Approximately 30 uL of the mother liquor was left in one 

end of each capillary. The ends of the capillaries were sealed with beeswax.  

A C3T crystal of 0.096 mm3 volume was first used for time-of-flight (TOF) neutron diffraction 

data collection at 293 K. Data were recorded to 1.80 Å resolution using the MaNDi instrument208,209 

at the Spallation Neutron Source (SNS) in Oakridge National Laboratory (ORNL). The MaNDi 

beamline collects Laue diffraction data. In contrast to Bragg’s condition where diffraction occurs 

when path length = nλ, the Laue criterion is that diffraction occurs when the scattering vector is the 

reciprocal vector. Each diffraction spot as a result of Laue exposure corresponds to a different 

diffracting plane and a different wavelength. 

Table 6.3 lists the crystallographic data collection statistics. The ω angle was fixed at 90° for 

data collection. The crystal was held static for each image and was rotated by 20° on φ between 

images. A total of ten images were collected which were processed and integrated using the Mantid 

package.210 LAUENORM from the LAUEGEN package211 was then used for wavelength normalization 

of the Laue data and scaling between Laue diffraction images. 

 

Table 6.2: Crystallisation conditions of C3T crystals for X-ray and neutron diffraction studies.                                                                  

The crystals were grown using sitting drop vapour diffusion at 18 °C. 

 

Diffraction type X-ray Neutron 

Crystallisation Reagent 

Solvent H2O H2O 

Salts 40 mM LiCl, 20 mM MgCl2 20 mM MgCl2 

Buffer 40 mM sodium cacodylate (pH 5.5) 40 mM sodium cacodylate (pD 5.1) 

Precipitant 30% MPD 30% MPD 

Additive 20 mM [Co(NH₃)₆]Cl₃ 20 mM [Co(NH₃)₆]Cl₃ 

Crystallisation Parameters 

Method Sitting Drop Vapour Diffusion 

(SDVD) 

Crystal growth using SDVD followed by feeding 

in DNA + D2O buffer once every two days 

Temperature (°C) 18 18 

Crystal size (μm) 250 x 130 x 80 850 x 750 x 150 

Growth period 24 hours 1 month 

 

X-ray diffraction data were collected from the same crystal at 293 K using an in-house source 

at ORNL. The data were processed using the XDS189 and SCALA from the CCP4 suite.108 The initial 

neutron data refinement values at the same resolution were 0.25/0.29. The Phenix suite109 was used 

to refine the neutron and  X-ray data both individually as well as simultaneously. Model building was 

done using the molecular graphics software Coot.192  
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Figure 6.3: The process of preparing d(C3T)4 crystals for neutron data collection. (A) C3T crystals are grown in 

H2O then the mother liquor was exchanged with DNA and crystallisation reagent made in D2O. (B) Pipette tips 

were customised to fit to quartz capillaries of 1.5-2 mm inner diameter. (C) Crystals are transferred into 

capillaries via pipette suction. (D) A neutron diffraction sample with mother liquor in one end of the capillary to 

prevent the crystal from drying out, sealed with wax on either ends. (E) View of a 0.096 mm
3 

crystal inside a 

capillary with 2 mm inner diameter. 
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Table 6.3: Data-collection statistics of C3T. 

Data Collection 

Diffraction type X-ray Neutron 

Diffraction source Rigaku MicroMax-007 HF, 

ORNL 

MaNDi,  

Spallation Neutron Source, ORNL 

Wavelength (Å) 1.54 2-4 

Temperature (K) 293 293 

Detector R-AXIS IV
++

 40 SNS Anger cameras 

Crystal-to-detector distance (mm) 100 450 

Rotation range per image (°) 1 0 

No. of Images collected 150 10 

Exposure time per image 30 seconds 24 hrs 

Crystal Data 

Space Group P 1 21 1 P 1 21 1 

Unit-cell (Å) 

  

a = 26.31 

b = 50.12 

c = 26.30 

a = 26.31 

b = 50.12 

c = 26.30 

α = 90.0 

β = 114.8 

γ = 90.0 

α = 90.0 

β = 114.8 

γ = 90.0 

Data Processing *Outer shell statistics shown in parentheses 

Resolution (Å) 25.06-1.80 (1.90-1.80)* 13.64-1.79 (1.86-1.79) 

Rmerge (I) 0.083 (0.197) 0.087 (0.217) 

Rmeas (I) 0.101 (0.238) 0.105 (0.263) 

Rpim (I) 0.056 (0.132) 0.057 (0.145) 

No. of unique reflections 5809 (741) 4494 (438) 

I/σI  57 (3.3) 13.8 (5.5) 

Completeness (%) 93.6 (89.9) 76.98 (74.11) 

Multiplicity 3.1 (3.2) 2.64 (2.42) 
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6.3 Results and Discussion 

6.3.1 The Distribution of Proton in the Hemi-Protonated C+·C Base Pair 

Since the C3T crystal used for diffraction studies was grown in H2O and the buffers only exchanged 

after crystal growth was observed; partial deuteration of the DNA was expected. Refinement of C3T 

was carried out against three datasets; X-ray data alone, neutron data only and joint X-ray + neutron 

data. This section will focus on results obtained from neutron data only and joint X-ray + neutron 

refinements. The C3T X-ray structure from chapter 5 was used as the starting model for both neutron 

and joint refinements. The X-ray crystal was not perdeuterated so the presence of exchangeable H/D 

sites was accounted for during refinement. Phenix automatically determines these sites and includes 

them for constrained occupancy refinement, ensuring that the sum of the occupancies for each H and 

D pair is equal to one.113 Nonexchangeable sites remained modelled as H. Partial deuteration was 

observed in the structure with positive densities for D+ seen in six out of the 12 C+·C base pairs in the 

two C3T i-motif molecules. The Fo-Fc nuclear map shows that a proton lies in the centre of the N3-N3 

base pair (Fig. 6.4).   

 

Figure 6.4: Fo-Fc neutron scattering length density map (green) of C3T contoured at 3.0σ locates D
+
 protons 

between the two nitrogens in the N3 positions of Cytosine
+
·Cytosine base pairs. The carbon, oxygen and 

nitrogen atoms have been coloured yellow, red and blue, respectively. 

 

Two modelling methods were applied to infer the localisation of the proton in the C+·C base pair:  

1. Asymmetric D-bonding: 100% D+ occupancy from only one protonated cytosine (Fig. 6.5A) 

2. Symmetric D-bonding: 50% occupancies of two D+ protons from each cytosine in the base 

pair (Fig 6.5B)  
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Both approaches did not produce negative density in the location of the proton, initially 

suggesting that either type of D-bonding in the C+·C base pair could be correct. However, in contrast 

to the first approach, modelling in two protonated cytosines pushes the residues away from each 

other’s plane by a 25.9° angle of deviation (Fig. 6.6B) with an N3-N3 distance of 2.76Å. The atoms 

used to measure the angle are labelled in Fig. 6.5B; where the ∠deviation = 180° - ∠(N3-N3-C6). C+·C 

base pairs are planar with a maximal deviation of 18° and an N3–N3 distance of 2.6– 2.8Å.36 The 

angle of deviation is 14.1° when only one cytosine contributes to 100% D+ occupancy (Fig. 6.6A). The 

N3-N3 distance is 2.62Å when this approach is used. The first model best portrays the high-

resolution C3T structure, where the C+·C base pairs are planar. Therefore, the first modelling method, 

i.e. the asymmetric deuterium bonding, is correct. 

 

 

 

Figure 6.5: The two strategies applied for finding out the distribution of D
+
 in the hemi-protonated C

+
·C base: 

(A) 100% of D
+
 occupancy from only one cytosine. (B) 50% D

+
 occupancies from both cytosines. 2Fo-Fc neutron 

scattering length density maps are drawn in blue, contoured at 1.0σ. The green Fo-Fc map is contoured at 3.0σ. 

Carbon, oxygen, nitrogen and deuterium atoms are yellow, red, blue and white, respectively. Red arrows 

indicate the shift in cytosine planes. 

 



CHAPTER 6                                     116 

__________________________________________________________________________________ 

 

Figure 6.6: Results of modelling two protonated cytosine residues in a hemi-protonated C
+
·C base pair. One 

cytosine lies (A) 165.9° (∠deviation = 14.1°) away from the plane of another cytosine when asymmetric modelling 

is applied and (B) 154.1° (∠deviation = 25.9°) away when symmetric modelling is applied. 2Fo-Fc neutron scattering 

length density maps are drawn in blue, contoured at 1.0σ. The positive Fo-Fc map is contoured at 3.0σ in green 

and the negative Fo-Fc map is contoured at 3.0σ in red. (N3-N3-C6) angles measured are directed by red arrows 

and angles of deviation are in black. 

 

The asymmetric model and observation of deuterium atoms in the i-motif C+·C base pairs for 

the first time has allowed new bond length parameters to be recorded; the N3-D and O2-D bond 

distances (Fig. 6.7A). The N3-D bond length, in particular, can be important in finding other possible 

atoms to substitute the H+ proton which is essential for i-motif formation. I-motif folding has been 

studied for nanotechnology applications but only under acidic conditions. The newly measured bond 

distance may provide insight into possible use of other cations to help in the formation of an i-motif 

at physiological pH. 

The O4-D bond length in the symmetry-related T·T wobble base pair of C3T has also now 

been determined, including the distances between the atoms in both base pairs and the nearest 

water molecules. Figure 6.7B illustrates the tight network of the two thymine bases with two water 

molecules to form an almost rectangular grid in the same plane. This adds to the conclusion of 

chapter 5 that the presence of a base pair on either side of the cytosine core is important in forming a 

stable i-motif structure. This also correlates to the solution studies in chapter 4 where the most 

stable intramolecular i-motif forming sequences were found to be rich in thymine; d(C3ATT)3C3, 

d(C3TTT)3C3 and d(C3TCT)3C3. 
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Figure 6.7: New bond length parameters in C3T revealed by neutron diffraction. (A) The N3-D and O4-D bond 

distances in a hemi-protonated cytosine
+
·cytosine base pair. (B) The O4-D bond length in the thymine-thymine 

base pair. 2Fo-Fc neutron and electron scattering length density maps are drawn in blue and pink, respectively; 

both contoured at 1.0σ.  

 

6.3.2 The Role of Hydorgen-Bonded Water in Stabilising the i-motif Structure 

The hydrogen atoms of water molecules appear differently in X-ray and neutron maps and at 

different resolutions, with only subatomic resolution X-ray maps showing H-atom positions for very 

well ordered water molecules.113 D2O molecules can appear as various shapes in nuclear maps. The 

spherical-shaped waters (Fig. 6.8A) appear when the D atoms are smeared in space owing to random 

rotation around the O-atom position. Figure 6.8B shows a fixed water molecule having a rotational 

degree of freedom around a D-O bond axis and Fig. 6.8C shows a density suggesting fully resolved 

D2O. 

The joint X-ray + neutron refinement of the C3T structure supports the X-ray structure in that 

the position of the water molecules aid in the stability of the i-motif. H2O/D2O molecules can be seen 

to bridge the two i-motif molecules in Figure 6.9 by hydrogen-bonding to the C+·C base pairs. Two 

[Mg(H2O)6]2+ ligands were located in the joint X-ray + neutron structure but the positions of H/D in 

the waters surrounding magnesium could not be determined. 

 

Figure 6.8: Water molecules of (A) spherical, (B) cylindrical and (C) boomerang shaped densities. 2Fo-Fc X-ray 

(pink) and nuclear (blue) maps have been contoured at 1.0σ.  

 



CHAPTER 6                                     118 

__________________________________________________________________________________ 

 

Figure 6.9: Asymmetric unit of the d(C3T)4 structure. The two i-motif molecules are represented by blue sticks, 

the oxygen and H/D by red and white sticks, respectively. Water molecules for which the H/D atoms could not 

be observed are denoted by red spheres. Magnesium ions from the [Mg(H2O)6]
2+

 ligands are represented by 

green spheres.  

 

6.4 Conclusions 

Refinement of neutron data using the two methods in Figure 6.1 revealed that both routes 

position D+ deuterons without resulting in negative density; i.e. both methods are plausible. The 

difference in Rwork/Rfree between the two strategies is quite insignificant with % difference of 

0.26/1.71. However, C+·C base pairs are planar with a maximal deviation of 18° and an N3–N3 

distance of 2.6– 2.8Å.36 Although both approaches give N3-N3 distances in this region, the symmetric 

D-bonding method gives a deviation of 25.9° whereas the asymmetric route shows the two cytosine 

residues 14.1° apart from each other. It can be argued that the cytidines in the symmetric method 

may not be in plane with one another due to restraints in the refinement programme. Phenix 

developers have been contacted for help regarding the issue and to consequently confirm that the 

observations made using the symmetric approach are not a result of refinement restraints. However, 

comparison of the two methods to the high-resolution C3T X-ray data from chapter 5 indicates that 

the symmetric D-bonding method is incorrect. Moreover, Lieblein et al. reported that for N3-N3 

distances smaller than 2.5Å, the H+ proton is shared between the two cytidines and is located 

precisely in the midpoint between the N3 atoms.55 Both neutron and joint X-ray + neutron 

refinements gave an average N3-N3 distance of 2.62Å, implying that the i-motif has asymmetric H-

bonding with a double-well potential. 
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The refinements against joint X-ray + neutron data, and neutron data on its own, gave similar 

results, which was expected because the Phenix software does a Z-H normalization (where Z is any 

atom), by extending the Z-H bond towards the neutron expected length, therefore, weighing the 

refinement of H/D towards the neutron data.109 Nuclear and electron densities (on their own) show 

slight differences in atomic positions including C+·C base pair distances. This is because the neutron 

data shows where the nuclei are. So, unlike X-ray data, it shows the inter-nuclear distances; resulting 

in bonds that are 0.1-0.2Å longer. Superimposition of the 0.68Å X-ray structure onto the structure 

derived from neutron data alone illustrates that the two i-motif structures are similar. The C3T 

crystal used for neutron diffraction was partially deuterated and Figure 6.10 shows that addition of 

deuterium doesn't significantly change the i-motif structure. 

Figure 6.10: Superimposed X-ray (pink) and neutron (blue) crystal structures of C3T.  

The water molecules are represented by crosses. 

 

Table 6.4 compares the current R values from the joint refinement with refinements using X-

ray and neutron data alone. The joint refinement significantly improved the neutron Rwork/Rfree values 

by 5.39/7.58% from refinement carried out against neutron data alone. The X-ray R factors, on the 

other hand, are similar.  

Table 6.4: Rwork/Rfree (%) values of individual and joint X-ray + Neutron refinements. 

X-ray only Neutron only Joint X-ray + Neutron 

X-ray Neutron 

18.04/22.45 31.79/38.37 18.10/22.55 26.40/30.79 

 

The neutron data obtained is complete to 77% in comparison to the 76% average data 

completeness for all neutron structures currently in the PDB. Partial deuteration of C3T also 

contributed to challenges in refinement. Cancellation effects by the negative neutron scattering 

length of hydrogen could have significantly limited the interpretability of the density map around 

bonds involving H/D atoms. For example, not all hydrogen positions in water molecules could be 
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located; with none located in [Mg(H2O)6]2+ ligands. Positive densities for D+ were also seen for only 

six out of the 12 C+·C base pairs in the two C3T i-motif molecules. 

In conclusion, neutron crystallography is able to reveal H/D atom positions from 

macromolecular diffraction data. Collection of neutron data allowed new bond distances; N3-D and 

O2-D, in the hemi-protonated C+·C base pair to be measured for the first time. I-motif folding in DNA 

nanotechnology has only been studied under acidic conditions. The results obtained can thus be 

useful in finding other possible cations to replace the proton in N3···H+···N3. The interest in 

reversible formation of the i-motif structure as a switchable scaffold in DNA nanotechnology has 

been expressed by the use of various cations including gold nanoparticles and Cu2+.47,48,179 Ag+, in 

particular, has been reported to fold an i-motif forming sequence at physiological pH through 

possible N3–Ag+–N3 base pairing.66,212  

An i-motif forming sequence can potentially have three structural outputs; single strand, 

hairpin and i-motif.179 The newly measured bond distance can, therefore, provide insight into 

possible use of other cations to help achieve the three structures using the same oligonucleotide. The 

newly determined bond length parameters of the T-T base pair further supports the notion that the 

cytosine core must have base pairs on either of its side in order to form a stable i-motif structure. 
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Other i-motif Crystallisation Attempts 

 

7.1 Introduction 

Following the crystal structure determination of two new tetramolecular i-motif systems, 

d(C3A)4 and [d(C3A) + d(C3T)], crystallisation trials of the highly diffracting tetramolecular d(C3T)4 i-

motif in the presence of silver and Tilorone ligands were carried out. The two ligands have been 

reported to bind to intramolecular i-motifs in solution.66,96 Crystallisation attempts of native 

bimolecular and unimolecular/intramolecular i-motifs were also conducted. The bimolecular i-motif 

sequence d(C3TA2C3)2 was designed after the unimolecular human telomeric i-motif (HTi) sequence 

d(C3TAA)3C3. An extra 5’-TATA-3’ overhang was added to the same sequence to initiate some form of 

base pairing. The oligonucleotides used for unimolecular i-motif crystallisation include the HTi and 

the HIF-1αS-CG sequences. Overexpression of the HIF-1α gene is associated with oral squamous cell 

carcinoma and its promoter sequence i-motif structure in solution shows stability near neutral pH.37 

The rest of the oligonucleotides were selected from solution studies in Chapters 2, 3 and 4 based on 

their stabilities.  

 

      Table 7.1: List of DNA sequences set for crystal growth.  

I-motif Structure System DNA Sequence 5’→3’ 

Tetramolecular C3T CCCT 

Bimolecular 
C3TA2C3 CCCTAACCC 

TATA CCCTAACCCTATA 

 

 

 

 

 

Intramolecular 

HTi CCCTAACCCTAACCCTAACCC 

HIF-1αS-CG TCCCGCCCCCTCTCCCCTCCCC 

TCG CCCTCGCCCTCGCCCTCGCCC 

TCT CCCTCTCCCTCTCCCTCTCCC 

AGA CCCAGACCCAGACCCAGACCC 

C3T4 CCCTTTTCCCTTTTCCCTTTTCCC 

C3T5 CCCTTTTTCCCTTTTTCCCTTTTTCCC 

C3T6 CCCTTTTTTCCCTTTTTTCCCTTTTTTCCC 

C3T7 CCCTTTTTTTCCCTTTTTTTCCCTTTTTTTCCC 

C3T8 CCCTTTTTTTTCCCTTTTTTTTCCCTTTTTTTTCCC 

C3T838 CCCTTTTTTTTCCCTTTCCCTTTTTTTTCCC 
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7.2 Materials and Methods 

Oligonuclotides were purchased from Eurogentec and purified by reverse phase HPLC. 

Sitting drop vapour diffusion was the only technique used because crystallisation trials for 

tetramolecular i-motifs were negative with the hanging drop method. Initial screening was 

performed using the readily available 192 crystallisation conditions from the NATRIX HT Screen by 

Hampton Research and HELIX by Molecular Dimensions at 20°C and 4°C. Each drop contained 2 μl of 

single-stranded oligonucleotide with/without ligand or salt (Table 7.2) and 2μl of the crystallisation 

solution. The drop was equilibrated against 500 μl of the same crystallisation condition. Tables 7.2 to 

7.5 list the systems used for crystallisation attempts. All bimolecular i-motif sequences were 

annealed in 20 mM sodium cacodylate buffer at pH 5 by heating the solutions to 90°C and letting 

them cool down to room temperature. The unimolecular i-motifs were prepared in various pH 

strengths of 20 mM sodium cacodylate buffer as well as 20 mM sodium acetate buffer as per the 

human telomeric G-quadruplex crystallisation condition.33 Unimolecular oligonucleotides were both 

annealed and non-annealed before setting up for vapour diffusion. Systems which gave 

crystals/spheroids of unimolecular i-motifs are listed in Table 7.5. 

 

Table 7.2: List of tetramolecular i-motif systems set for crystal growth. DNA concentrations are for single- 

stranded oligonucleotides. Crystals which diffracted are highlighted in green. 

 

System in Sitting Drop Screen in 

Reservoir 

Temperature 

(°C) 

Crystal 

Growth 

Condition 

No. 

Diffraction 

Observed DNA Ligand 

4 mM C3T 4 mM AgNo3 HELIX 20 Yes 2-35 No 

4 mM C3T 2 mM AgNo3 HELIX 20 Yes 2-35 No 

4 mM C3T 4 mM AgNo3 NATRIX 20 No - - 

4 mM C3T 2 mM AgNo3 NATRIX 20 Yes A1 Yes 

2 mM C3T 2 mM Tilorone HELIX 20 No - - 

2 mM C3T 1 mM Tilorone HELIX 20 No - - 

2 mM C3T 2 mM Tilorone NATRIX 20 Yes A12 Yes 

2 mM C3T 1 mM Tilorone NATRIX 20 No - - 

 

Table 7.3: List of bimolecular i-motif systems set for crystal growth. All DNA solutions were prepared in 20mM 

sodium cacodylate buffer at pH 5 and annealed prior to crystallisation set-up. DNA concentrations are for 

single-stranded oligonucleotides. Crystals which diffracted are highlighted in green. 

System in Sitting Drop 

(DNA in buffer only) 

Screen in 

Reservoir 

Temperature 

(°C) 

Crystal 

Growth 

Condition 

No. 

Diffraction 

Observed 

1 mM (ss) C3TA2C3   NATRIX 20 No - - 

1 mM (ss) C3TA2C3   HELIX 20 No - - 

1 mM (ss) C3TA2C3   NATRIX 4 No - - 

1 mM (ss) TATA   NATRIX 20 Yes A12 Yes 

1 mM (ss) TATA   HELIX 20 Yes 2-2 No 
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Table 7.4: List of unimolecular i-motif systems set for crystal growth. All DNA solutions were prepared in either 

20mM sodium acetate or 20mM sodium cacodylate buffer, unless unstated. All DNA solutions were also 

annealed prior to setting up unless stated. DNA concentrations are for single-stranded oligonucleotides. 

Systems where crystal growth was observed are highlighted in yellow. 

DNA System in Sitting Drop Screen Temperature 

(°C) DNA Buffer (20mM) Ligand Salt (20mM) 

0.5 mM HTi Na acetate, pH 4.5 - NaCl HELIX 20 

0.5 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 20 

1 mM HTi  Na acetate, pH 4.5 - NaCl HELIX 20 

1 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 20 

1.5 mM HTi  Na acetate, pH 4.5 - NaCl HELIX 20 

1.5 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 20 

2 mM HTi  Na acetate, pH 4.5 - NaCl HELIX 20 

2 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 20 

0.5 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 4 

0.5 mM HTi  Na acetate, pH 4.5 - NaCl HELIX 4 

1 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 4 

1 mM HTi  Na acetate, pH 4.5 - NaCl HELIX 4 

1.5 mM HTi  Na acetate, pH 4.5 - NaCl HELIX 4 

1.5 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 4 

2 mM HTi  Na acetate, pH 4.5 - NaCl HELIX 4 

2 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX 4 

1 mM HTi  Na cacodylate, pH 5 1 mM AgNo3 NaCl HELIX 20 

1 mM HTi Na cacodylate, pH 5 1 mM AgNo3 NaCl NATRIX 20 

1 mM HTi  

(NOT ANNEALED)  

Na cacodylate, pH 5 - - HELIX 20 

1 mM HTi  

(NOT ANNEALED)  

Na cacodylate, pH 5 - - NATRIX 20 

1.5mM HIF-1αS-CG Na acetate, pH 4.5 - NaCl HELIX 20 

1.5mM HIF-1αS-CG  Na acetate, pH 4.5 - NaCl NATRIX 20 

0.75 mM TCG  Na cacodylate, pH 5 - - HELIX 20 

0.75 mM TCG  Na cacodylate, pH 5 - - NATRIX 20 

0.75 mM TCT Na cacodylate, pH 5 - - HELIX 20 

0.75 mM TCT  Na cacodylate, pH 5 - - NATRIX 20 

0.75 mM AGA  Na cacodylate, pH 5 - - HELIX 20 

0.75 mM AGA Na cacodylate, pH 5 - - NATRIX 20 

1 mM C3T7  

(NOT ANNEALED) 

- - - NATRIX 20 

1 mM C3T7  

(NOT ANNEALED) 

- - - HELIX 20 

1 mM C3T8  

(NOT ANNEALED) 

- - - NATRIX 20 

1 mM C3T8  

(NOT ANNEALED) 

- - - HELIX 20 

1 mM C3T7  Na acetate, pH 5 - NaCl HELIX 20 

1 mM C3T7  Na acetate, pH 5 - NaCl NATRIX 20 

1 mM C3T8  Na acetate, pH 5 - NaCl HELIX 20 
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Table 7.4 continued. 

DNA System in Sitting Drop Screen Temperature 

(°C) DNA Buffer (20mM) Ligand Salt (20mM) 

1 mM C3T8  Na acetate, pH 5 - NaCl NATRIX 20 

1 mM C3T7  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- HELIX 20 

1 mM C3T7  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- NATRIX 20 

1 mM C3T7  

(NOT ANNEALED)  

Na acetate, pH 4.5 - - HELIX 20 

1 mM C3T7  

(NOT ANNEALED) 

Na acetate, pH 4.5 - - NATRIX 20 

0.5 mM C3T8  Na cacodylate, pH 5 0.5 mM rac-

[Ru(phen)2dppz]
2+

 

- NATRIX 20 

0.5 mM C3T8  Na cacodylate, pH 5 0.5 mM rac-

[Ru(phen)2dppz]
2+

 

- HELIX 20 

0.5 mM C3T8  Na cacodylate, pH 5 - - NATRIX 20 

0.5 mM C3T8  Na cacodylate, pH 5 - - HELIX 20 

1 mM C3T838  Na cacodylate, pH 5 - - NATRIX 20 

1 mM C3T838  Na cacodylate, pH 5 - - HELIX 20 

1 mM C3T6  Na cacodylate, pH 5 - - NATRIX 20 

1 mM C3T6  Na cacodylate, pH 5 - - HELIX 20 

1 mM C3T5  Na cacodylate, pH 5 - - NATRIX 20 

1 mM C3T5 Na cacodylate, pH 5 - - HELIX 20 

1 mM C3T4  Na cacodylate, pH 5 - - NATRIX 20 

1 mM C3T4  Na cacodylate, pH 5 - - HELIX 20 

1 mM C3T838  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- NATRIX 20 

1 mM C3T838  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- HELIX 20 

1 mM C3T6  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- NATRIX 20 

1 mM C3T6  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- HELIX 20 

1 mM C3T5  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- NATRIX 20 

1 mM C3T5  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- HELIX 20 

1 mM C3T4 Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- NATRIX 20 

1 mM C3T4  Na cacodylate, pH 5 1 mM rac-

[Ru(phen)2dppz]
2+

 

- HELIX 20 
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Table 7.5: List of unimolecular i-motif systems where crystal growth was observed. All DNA solutions were 

prepared in either 20mM sodium acetate or 20mM sodium cacodylate buffer. All DNA solutions were also 

annealed prior to setting up at 20°C. DNA concentrations are for single-stranded oligonucleotides. Systems 

which diffracted are highlighted in red. Ru is rac-[Ru(phen)2dppz]
2+

. 

DNA System in Sitting Drop Screen Crystallisation 

Condition No. DNA Buffer (20mM) Ligand Salt (20mM) 

1 mM HTi  Na acetate, pH 4.5 - NaCl HELIX  1-8, 1-48 

1 mM HTi  Na acetate, pH 4.5 - NaCl NATRIX  E3, F6, F7, F8, F9, F10 

1.5mM HIF-1αS-CG Na acetate, pH 4.5 - NaCl HELIX 1-48 

1.5mM HIF-1αS-CG  Na acetate, pH 4.5 - NaCl NATRIX F1 

0.75 mM TCG  Na cacodylate, pH 5 - - NATRIX A9 

0.75 mM TCT  Na cacodylate, pH 5 - - NATRIX G8 

1 mM C3T4  Na cacodylate, pH 5 1 mM Ru - HELIX 2-23 

 

7.3 Results & Discussion 

7.3.1 Tetramolecular i-motifs with ligands 

Crystals of 4 mM C3T (ss) in 2 mM AgNo3 mixture were obtained in Natrix A1 in 4 days. The 

crystallisation conditions include 0.01 M Magnesium chloride hexahydrate, 0.05 M MES monohydrate 

(pH 5.6) and 1.8 M Lithium sulphate monohydrate. However, diffraction results gave the structure of 

the native DNA only, with no presence of silver ions.  

Crystals of 2 mM C3T (ss) with 2 mM Tilorone were obtained in Natrix A12 within two weeks 

of set-up. The reagent conditions include 0.01 M Magnesium sulfate heptahydrate, 0.05 M Sodium 

cacodylate trihydrate (pH 6.0) and 1.8 M Lithium sulfate monohydrate. Diffraction data were 

collected at 1.5Å resolution. The i-motif structure could be fitted in but the modelling of Tilorone on 

either ends of the DNA structure, as suggested by the difference map, gave high R-values, indicating 

that the overall model was over-fitted thus unreliable. A better ordered crystal that can diffract at 

higher resolution needs to be collected.  

7.3.2 Bimolecular i-motifs 

Two sequences; d(C3TA2C3)2 and d(C3TA2C3TATA)2, based on the human telomeric i-motif, 

were initially checked for thermal stability. The TATA segment was added to the latter sequence to 

help initiate base pairing. DNA melts under UV showed that d(C3TA2C3TATA)2 is 11°C more stable 

than the d(C3TA2C3)2 sequence (Fig. 7.1). Crystal growth was observed after three weeks of set-up 

but for only the d(C3TA2C3TATA)2 sequence (Fig. 7.2). Crystals of the longer oligonucleotide were 

collected from HELIX 2-2 and Natrix A12. The HELIX 2-2 conditions include 10 % v/v MPD, 0.005 M 

Spermine and 0.05 M HEPES (pH 6.5) whereas the Natrix A12 condition is made of 0.01 M 

Magnesium sulphate, 0.05 M Sodium cacodylate trihydrate (pH 6.0) and 1.8 M Lithium sulphate. 

Diffraction could only be observed for the crystal grown in Natrix A12 and data were collected to 

2.1Å resolution. 



CHAPTER 7                                     126 

__________________________________________________________________________________ 

 

 

Figure 7.1: DNA melting profiles of d(C3TA2C3)2 and d(C3TA2C3TATA)2 in 50 mM sodium cacodylate buffer (pH 5). 

 

 

Figure 7.2: Crystals of d(C3TA2C3TATA)2. 

 

Following data processing, the i-motif core was modelled in the resulting electron density 

map but the loop regions could not be recognised. Therefore, three more oligonucleotides based on 

the d(C3TA2C3TATA)2 sequence were purchased and set for crystal growth (Tables 7.6 and 7.7). 

Cytosine residues at positions C1, C3 and C7 were brominated to identify if the particular 

nucleobases form the i-motif core or the loop. Similarly, the thymine residue at position T4 was 

substituted with uracil (U) to check if the base lies within the loop or the intercalated centre. Crystals 

of TATA-1C3 were obtained in Natrix condition A12, however, they did not diffract. Optimisation of 

the crystallisation condition is to be carried out in order to grow more ordered crystals. 

          Table 7.6: List of bimolecular DNA sequences set for crystal growth. 

I-motif Structure System DNA Sequence 5’→3’ 

 

Bimolecular 

TATA-7CC CCCTAA(5-Br-C)CCTATA 

TATA-1C3 (5-Br-C)C(5-Br-C)TAACCCTATA 

TATA-4AA CCC(5-Br-U)AACCCTATA 
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Table 7.7: List of modified d(C3TA2C3TATA)2 bimolecular i-motif sequences set for crystal growth. All DNA 

solutions were prepared in 20mM sodium cacodylate buffer at pH 5 and annealed prior to crystallisation set-

up. DNA concentrations are for single-stranded oligonucleotides. Systems where crystal growth was observed 

are highlighted in green. 

System in Sitting Drop Screen in Reservoir Temperature Crystal Growth 

1 mM (ss) TATA-7CC  NATRIX 20°C No 

1 mM (ss) TATA-7CC  HELIX 20°C No 

1 mM (ss) TATA-1C3  NATRIX 20°C Yes but no diffraction 

observed 

1 mM (ss) TATA-1C3  HELIX 20°C No 

1 mM (ss) TATA-4AA  NATRIX 20°C No 

1 mM (ss) TATA-4AA  HELIX 20°C No 

 

7.3.3 Unimolecular i-motifs 

 High-throughput srCD spectroscopy at beamline B23 was used to test which readily 

available crystallisation conditions in the Natrix HT screen would show i-motif formation. Instead of 

crystals, spheroids with irregular sides were observed after six months of set-up. Out of the 96 

conditions, spheroids of the HTi oligonucleotide were obtained in Natrix conditions E3 and F6 to F10. 

SrCD spectroscopy also showed formation of the human telomeric i-motif in the given crystallisation 

conditions (Fig. 7.3). The information obtained from CD spectroscopy can thus be used to predict 

conditions for intramolecular i-motif crystallisation.   

Diffraction data could only be collected from the crystal grown in Natrix F9 and to 15.1Å 

resolution at best. Natrix F9 consists of 0.012M Sodium chloride, 0.08M Potassium chloride, 0.04M 

Sodium cacodylate trihydrate (pH 6.0), 50% v/v(+/-)-2-Methyl-2,4-pentanediol and 0.012M 

Spermine tetrahydrochloride.  

Additionally, crystallisation trials were also made on three of the intramolecular i-motif 

forming C3XYZ sequences; AGA, TCG and TCT. These sequences were randomly selected from a range 

of different stabilities, and as expected from solution studies which showed that AGA is the least 

stable of the three, crystal growth was observed for TCG and TCT (Fig. 7.4). Diffraction, however, was 

only observed for TCT to 20.0Å resolution. The TCT i-motif was grown in Natrix G8 which consists of 

0.08M Sodium chloride, 0.04M Sodium cacodylate trihydrate (pH 7.0), 30% v/v (+/-)-2-Methyl-2,4-

pentanediol and 0.012M Spermine tetrahydrochloride.  
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Figure 7.3: Molar ellipticity vs. wavelength graphs of the human telomeric i-motif; d(C3TAA)3C3 in the Natrix HT 

screen. I-motif formation is illustrated by blue spectra and the conditions in which crystal growth were 

observed are highlighted with blue circles.  

 

 

Figure 7.4: Graph showing the melting temperatures and transitional pH values of three C3XYZ sequences. 

Crystal growth was observed for d(C3TCG)3C3 and d(C3TCT)3C3 but not for d(C3AGA)3C3.  
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7.4 Conclusions 

Although crystals of C3T were obtained when set up with AgNo3 in a 2:1 DNA to ligand system, 

diffraction data showed no presence of silver cations. Crystals of 2mM C3T (ss) with 2mM Tilorone 

grown at pH 6, on the other hand, gave diffracted to 1.5Å resolution. The i-motif structure could be 

fitted in but the modelling of Tilorone on either ends of the DNA structure, as suggested by the 

difference map, gave high R-values indicating that the overall model was over-fitted thus unreliable. 

The refinement results suggest that data at higher resolution need to be collected. Hence, more 

ordered crystals that can diffract to resolutions higher than 1.5Å need to be collected. 

Crystalliation set up of two possible bimolecular i-motif sequences; d(C3TA2C3)2 and 

d(C3TA2C3TATA)2, gave crystals of only the latter sequence. The sequence is also more stable than 

d(C3TA2C3)2 in solution. The i-motif core was modelled in the resulting electron density map but the 

loop regions could not be recognised. Two oligonucleotides based on the d(C3TA2C3TATA)2 sequence 

with brominated cytosine residues and one uracil residue were purchased and set for crystal growth, 

however, diffraction data could not be obtained. The Natrix A12 condition from which the 

d(C3TA2C3TATA)2 crystals were used for X-ray diffraction contains no cryoprotectant and data were 

collected at the standard temperature of 100 Kelvin. This may have therefore affected the resolution 

of the data collected. The crystallisation condition needs to be optimised with cryoprotectant for 

future data collections. 

High-throughput srCD spectroscopy was used to check which Natrix conditions gave 

intramolecular i-motif formation in solution. The conditions in which crystal growth of the HTi 

sequence were observed matched the CD spectroscopy results suggesting that the two techniques 

can be quite complementary. Spheroids with irregular sides, rather than crystals, were obtained after 

six months of set-up and diffraction data could only be collected to 15.1Å resolution. 

Crystallisation trials made on three of the intramolecular i-motif forming C3XYZ sequences; 

AGA, TCG and TCT gave crystals of TCG and TCT. These sequences were randomly selected from a 

range of different stabilities, and solution studies from Chapter 4 showed that AGA is the least stable 

of the three. Therefore, DNA melts and pH titrations can also be used to determine or design stable i-

motif sequences for crystal growth trials. However, diffraction spots were only observed for TCT to 

an extremely low resolution of 20.0Å. The intramolecular i-motif crystallisation conditions need to be 

optimised further to obtain more ordered and better diffracting crystals to locate the atomic 

positions accurately. 
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Summary and Future Work 
 

Increase in number of cytosine residues in C-tracts give high i-motif stabilities.38 It has 

recently been reported that sequences with at least six cytosine tracts can form intramolecular i-

motifs.213 This thesis has shown that loop length and base composition are also important factors 

that affect i-motif stability. Forty-seven C-rich sequences were tested, with all but ten sequences 

having the ability to form i-motif structures. CD spectra of the ten sequences resembled DNA hairpin 

and anti-parallel G-quadruplex formation, emphasising the importance of loop base composition in i-

motif formation. C-rich sequences with high guanine and thymine content have been reported to 

form more stable structures40 but it is now known that loops that are rich in pyrimidines form 

thermally more stable i-motifs whereas those containing guanine may fold to form other higher-

order DNA structures instead. Moreover, the direction of loop base alignment was also shown to 

affect i-motif formation.  

Change in sequence directionality has been shown to affect i-motif stability178 but its effect 

on structural conformation had not been known. As i-motifs have always been a structure of interest 

in DNA nanotechnology, finding a sequence that can change between an i-motif and a G-quadruplex 

structure under the influence of pH or salt can contribute to a new form of “DNA switch”, which 

would garner more interest on the i-motif in biological applications. Although the stated idea may 

seem implausible, it is important to note that formation of the G-quadruplex and i-motif have always 

been proposed and shown to occur complementary to the same genetic position,73,214,215 and 

mutually exclusive formation of the two structures has been reported.216 This indicates that the 

formation of each structure may be dependent on another upon the unfolding of duplex DNA. The G-

quadruplex in retinoblastoma susceptibility genes (Rb), whose complementary C-rich sequence 

forms an i-motif, adopts an antiparallel structure,214 adding more interest to the G-quadruplex 

formation of C3GXY sequences observed in CD spectra. 

Group II i-motifs containing less than four bases in the loop regions were reported to have 

low stabilities,73 however, tests on intramolecular i-motifs with increasing thymine residues showed 

that i-motifs with shorter loop lengths are more stable. Altering loop lengths within individual i-

motifs showed that the first and last loops (in i-motifs containing three loop regions) are important 

in defining i-motif stability. The intercalated structures have significantly lower melting 

temperatures when they have longer loops (from 57°C in C3T3 to 36°C in C3T8), however, these 

structures can be stabilised in the presence of [Ru(phen)2dppz]2+. The ruthenium polypyridyl 

complex did not significantly affect the thermal stabilities of C3T3 to C3T6 (only by 0.5°C for C3T4 and 

C3T6 individually) but it increased the Tm values of C3T7 and C3T8 by 3.5°C and 8°C, respectively. 

Interaction between the complex and the two structures was confirmed by luminescence titrations; 

where luminescence intensities of rac-[Ru(phen)2dppz]2+ at λmax = 615 nm were highest for C3T7 and 

C3T8. This implies that the complex has higher binding affinity to long-looped i-motifs. Furthermore, 
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experiments using enantiomers of the complex showed that the Λ-enantiomer is more luminescent 

than the Δ in the presence of an i-motif. The opposite is observed in B-DNA where Δ is known to bind 

more strongly and is also more emissive than its Λ counterpart.174,175 Tests with different Λ-

polypyridyl complexes need to be taken to find out if  this family of complexes uniquely bind to DNA 

i-motifs. 

Experiments can be carried out on the C3TX oligonucleotides using other known i-motif 

binding ligands, to investigate if the ligands favour binding to longer looped i-motifs. I-motif 

formation under physiological conditions have been shown by molecular crowding,39,217 ligand66,95 

and protein binding.41,87,218 If i-motif formation of C-rich sequences with longer loops are shown to 

occur through ligand binding, then targeting such sequences in the human genome can open doors to 

more potential biological functions of the four-stranded structure. 

The X-ray crystal structure of C3A shows that A·A base pairs occur on either side of the 

cytosine core. This is in contrast to the folding of all adenine bases away from the core in the A2C4 

structure. NMR studies have shown that protonation of adenine at loops disrupts the i-motif core75 

and chapter 4 showed that adenine-rich i-motifs form less stable i-motif structures. This information 

can thus be used to design better sequences for i-motif crystallisation. In comparison to the 

previously solved structures of C4 and C3T, the new crystal structures showed approximately three 

times as many water molecules and DNA backbone disorders. These differences may be attributed to 

the use of different instruments. Three out of the four C3X sequences crystallised in pH 7 and 8.5, 

showing more potential of i-motif formation under physiological conditions. 

Neutron diffraction of only three DNA structures have been reported to date, making C3T the 

third DNA and the first i-motif structure to be studied using neutron crystallography. Refinement 

methods applied to the study of the i-motif showed that occupancy of the D+ deuteron is contributed 

by only one cytosine; confirming that the C+·C base pair has asymmetric H-bonding. The new distance 

parameters obtained from neutron studies can be used to find other possible cations to replace the 

proton in N3···H+···N3. As an i-motif forming sequence can potentially have three structural outputs; 

single strand, hairpin and i-motif,179 the newly measured bond distance can provide insight into 

possible use of other cations to help achieve the three structures from the same sequence.  

Following the crystal structure determination of two new tetramolecular i-motifs, 

crystallisation trials of bimolecular and unimolecular i-motifs have been conducted. Diffraction data 

of the human telomeric seuquence d(C3TA2)3C3 and the bimolecular sequence d(C3TA2C3TATA)2 

were collected at 15.1 and 2.1Å resolutions, respectively. However, optimisation of the crystallisation 

conditions is to be carried out in order to grow more ordered crystals. Additionally, crystallisation 

trials were also made on three of the intramolecular i-motif forming C3XYZ sequences; AGA, TCG and 

TCT. As expected from solution studies in Chapter 4, crystal growth was observed for TCG and TCT 

but diffraction was only observed to 15.1Å resolution.  
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The information obtained from UV and CD spectroscopic experiments can be used to 

optimise better crystallising conditions for both inter- and intramolecular i-motifs.  C-rich sequences 

that can form very stable i-motifs can be designed and predicted for crystal growth. The results 

obtained agree that solution studies and crystal growth can be complementary techniques. The 

results can also be used to create crystallisation reagents that are more suited to forming bimolecular 

and intramolecular i-motif crystals.  
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Appendix 

 

A1. Chapter 1 – N/A 

 

A2. Chapter 2 

             

Figure A2.1: (A) DNA melting profiles (pH 5) and (B) effect of pH on C3TX i-motifs in 50 mM sodium cacodylate buffer at 295 

nm wavelength. 

 

            

Figure A2.2: DNA melting profiles of C3Tabc in 50 mM soidum cacodylate buffer (pH 5) at 295 nm wavelength. 



APPENDIX                                     150 

__________________________________________________________________________________ 

A3. Chapter 3 

 

 

Figure A3.1: Fluorescence emission spectra of rac-[Ru(phen)2(dppz)]
2+

 (40 µM) upon the addition of C3TX i-motifs (0–80 µM) 

in sodium cacodylate (50 mM, pH 5.0). Inset: fluorescence intensity of the complex vs. the i-motifs at λmax of 615 nm. 
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Figure A3.2: CD spectra of d(C3TX)3C3 with rac-[Ru(phen)2(dppz)]
2+

 in 20 mM sodium cacodylate buffer at pH 5 and 8. 
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Figure A3.3: CD spectra of d(C3TX)3C3 with rac-[Ru(phen)2(dppz)]
2+

 in 20 mM sodium cacodylate buffer at pH 8. 
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Figure A3.4: Melting curves of the six i-motif forming C3Tx (x = 3 to 8) sequences with rac-[Ru(phen)2(dppz)]
2+ 

in 50 mM 

sodium cacodylate (pH 5) at (A) 260 nm and (B) 295 nm wavelengths. 
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Figure A3.5: CD melts of (top) native C3T3 and (bottom) the oligo in the presence of rac-[Ru(phen)2(dppz)]
2+ 

in 50 mM 

sodium cacodylate (pH 5). 
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Figure A3.6: pH titration shift of (top) C3T3 and (bottom) C3T838 with rac-[Ru(phen)2(dppz)]
2+

 in 20 mM sodium cacodylate. 

 

A4. Chapter 4 

 

Figure A4.1: DNA melting profiles (RAW data) of C3AYZ (1 µM, ss) where A is adenine, Y is either one of the four DNA bases, 

and Z is adenine, guanine or thymine.  Samples were made in 50 mM sodium cacodylate buffer (pH 5) and the absorbance 

recorded at λ = 260 nm.  
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Figure A4.2: DNA melting profiles (RAW data) of C3TYZ (1 µM, ss) where T is thymine, Y is either one of the four DNA bases, 

and Z is adenine, guanine or thymine.  Samples were made in 50 mM sodium cacodylate buffer (pH 5) and the absorbance 

recorded at λ = 260 nm.  

 

 

Figure A4.3: DNA melting profiles (RAW data) of C3GYZ (1 µM, ss) where G is guanine, Y is either one of the four DNA bases, 

and Z is adenine, guanine or thymine.  Samples were made in 50 mM sodium cacodylate buffer (pH 5) and the absorbance 

recorded at λ = 260 nm.  
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Figure A4.4: DNA melting profiles of C3AYZ (1 µM, ss) showing the effect of varying the third base in the loop (Z) on thermal 

stability when Y is is (A) adenine, (B) thymine, (C) guanine and (D) cytosine.  Samples were made in 50 mM sodium 

cacodylate buffer (pH 5) and the absorbance recorded at λ = 295 nm.  

 

Figure A4.5: DNA melting profiles of C3TYZ (1 µM, ss) showing the effect of varying the third base in the loop (Z) on thermal 

stability when Y is is (A) adenine, (B) thymine, (C) guanine and (D) cytosine.  Samples were made in 50 mM sodium 

cacodylate buffer (pH 5) and the absorbance recorded at λ = 295 nm.  
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Figure A4.6: DNA melting profiles of C3GYZ (1 µM, ss) showing the effect of varying the third base in the loop (Z) on thermal 

stability when Y is is (A) adenine, (B) thymine, (C) guanine and (D) cytosine.  Samples were made in 50 mM sodium 

cacodylate buffer (pH 5) and the absorbance recorded at λ = 295 nm. 
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Figure 4.10: pH titration shift of d(CCCXYZ)3CCC, (where X = adenine), by UV absorption. 

 

                           
Figure A4.7: pH titration profiles of C3AYZ, 25°C. 
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Figure 4.12: pH titration shift of d(CCCXYZ)3CCC, (where X = thymine), by UV absorption. 

 

 

 
Figure A4.8: pH titration profiles of C3TYZ, 25°C. 
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Figure A4.9: pH titration profiles of C3GYZ, 25°C. 
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Figure A4.10: Synchrotron Radiation Circular Dichroism spectra of C3XYZ oligonucleotides in pH 5, recorded  

between 180 to 350 nm wavelengths at 20⁰C.  
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Figure A4.11: Synchrotron Radiation Circular Dichroism spectra of C3XYZ oligonucleotides in pH 8, recorded between 180 to 

350 nm wavelengths at 20⁰C. 
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A5. Chapter 5 

 

Figure A5.1: Crystals of (A) C4, (B) C3T, (C) C3A and (D) [C3T + C3A]. 

 
Figure A5.2: Views of the asymmetric unit of C4 looking into the (A) wide and (B) narrow grooves and (C) down the helical 

axes. The 2Fo-Fc electron density map is drawn in blue at the 1σ contour level. The chains coloured green base pairs with 

the ones in yellow and the blue chains base pair with red. The orange spheres represent water molecules. 
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Figure A5.3: 2Fo-Fc (blue) and Fo-Fc (green and red) electron density maps of C4, drawn at 1σ and 3σ contour levels, 

respectively. The Fo-Fc map suggests alternative phosphate conformations in chain E. Carbon is yellow, oxygen is pink, 

phosphorus is grey and hydrogen in white. 

 

Figure A5.4: Views of the asymmetric unit of C3T looking into the (A) wide and (B) narrow grooves and (C) down the helical 

axes. The 2Fo-Fc electron density map is drawn in blue at the 1σ contour level. 
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Figure A5.5: Van der Waals model of the asymmetric unit of C3T as seen through the (A) major and (B) minor grooves. (C) 

View of the i-motif down the helical axes. Yellow spheres are cytosine residues, blue are thymines and green + red are 

[Mg(H20)6]
2+

molecules. 

 

 
Figure A5.6:  Views of the asymmetric unit of C3T looking (1) into the wide groove, (2) down the helical axes and (3, 4) 

through the narrow grooves. The eight strands have been labelled A to H with chain A base pairing with B, C-D, E-F and G-H. 

The orange and red spheres represent water molecules and the green spheres are Mg
2+

.  
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Figure A5.7: Views of the asymmetric unit of C3A (A) along and (B) down the helical axes. The 2Fo-Fc electron density map is 

drawn in blue at the 1σ contour level. Orange spheres represent water and the purple sphere is K
+
. 

 
Figure A5.8: Van der Waals representation of the asymmetric unit of C3A (A) along and (B) down the helical axes. The 

yellow spheres are cytosine, grey are adenine and purple is potassium. 

 

Figure A5.9: Lattice of C3A as seen down the a and b axes. (A, C) Each of the four strands are coloured individually to show 

how the chains are packed. The orange dots are water molecules. (B, D) Cytosine residues are represented in yellow and 

adenine in grey.  
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Figure A5.10: Views of the asymmetric unit of C3A + C3T (A) along and (B) down the helical axes. The 2Fo-Fc electron density 

map is drawn in blue at the 1σ contour level. Orange spheres represent water molecules. 

 

 

Figure A5.11: A single [C3A + C3T] i-motif surrounded by electron density map; drawn in blue at 1σ contour level. Views of 

the i-motif (A) along and (B) down the helical axis. 
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Figure A5.12: Lattice of [C3A + C3T] as seen down the (A) a and (B) b axes. The orange dots are water molecules.  
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Table A5.1: Sugar pucker pesudorotation angles, sugar pucker type and closest DNA conformation for C4.                                            

CX is the cytosine position in 5’-C1C2C3C4-3’. 

 

 

 

 

 

Chain Base 

Phase angle of 

pseudorotation Sugar Pucker 

Closest DNA 

conformation 

A 

  

  

  

C1 31.0 C3'-endo A-DNA 

C2 42.0 C4'-exo - 

C3 148.0 C2'-endo B-DNA 

C4 65.2 C4'-exo - 

B 

  

  

  

C1 164.7 C2'-endo B-DNA 

C2 72.0 O4'-endo - 

C3 54.8 C4'-exo - 

C4 51.7 C4'-exo - 

C 

  

  

  

C1 160.1 C2'-endo B-DNA 

C2 53.6 C4'-exo - 

C3 43.7 C4'-exo - 

C4 45.6 C4'-exo - 

D 

  

  

  

C1 25.4 C3'-endo A-DNA 

C2 31.4 C3'-endo A-DNA 

C3 37.6 C4'-exo - 

C4 166.0 C2'-endo B-DNA 

E 

  

  

  

C1 -6.5 C2'-exo - 

C2 63.0 C4'-exo - 

C3 117.6 C1'-exo - 

C4 91.4 O4'-endo - 

F 

  

  

  

C1 164.4 C2'-endo B-DNA 

C2 70.5 C4'-exo - 

C3 62.5 C4'-exo - 

C4 43.9 C4'-exo - 

G 

  

  

  

C1 158.6 C2'-endo B-DNA 

C2 90.4 O4'-endo - 

C3 58.7 C4'-exo - 

C4 39.4 C4'-exo - 

H 

  

  

  

C1 28.9 C3'-endo A-DNA 

C2 38.4 C4'-exo - 

C3 40.4 C4'-exo - 

C4 54.6 C4'-exo - 
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Table A5.2: Conformational analysis of d(C4)4 as calculated by DNATCO version 2.2. 

step_ID NtC CANA δ ε ζ α1 β1 γ1 δ1 χ χ1 confal nearest_NtC Δδ Δε Δζ Δα1 Δβ1 Δγ1 Δδ1 Δχ Δχ1 sδ sε sζ sα1 sβ1 sγ1 sδ1 sχ sχ1

A_DC1_DC2 AA02 AAA 84.3 200 278.3 302.2 178 60.6 78.6 230 237.4 76 AA02 -3.4 -2.5 3.8 8.7 16.7 6.4 -8.9 -13.9 -7.3 94.1 98.6 97.2 74.6 46.6 73 61.7 55.7 83.6

A_DC2_DC3 NANT NAN 78.6 181.7 280.7 193.7 179.4 184.2 136.4 237.4 235.8 0 BB03 -65.9 5.5 5.2 28.2 15.2 11.4 -9.6 -1.7 4 0 90.3 91.8 17.4 56.1 66.6 66.9 99.2 95.2

A_DC3_DC4 NANT NAN 136.4 212.5 288.6 133.3 165.8 179.8 78.5 235.8 246.7 0 BB03 -8.1 36.3 13.1 -32.2 1.6 7 -67.5 -3.3 14.9 68 1.2 58 10.3 99.4 85.8 0 97.1 50.9

B_DC5_DC6 NANT NAN 148.9 242.6 267 81.5 200.8 202.7 85 239.1 243.2 0 BA10 13.7 42.9 48.9 -23.3 -28.6 8.3 -2.9 -18.7 48.2 62.5 0 1.9 44.3 20.8 86.4 96.3 46.1 0

B_DC6_DC7 NANT NAN 85 191.8 271.5 163 168.1 193 91.7 243.2 233.6 0 AA01 2.8 -2.2 -19.3 14.1 -24.6 11.2 4.6 38.2 45.4 90 98.5 13.9 58.5 7.7 50.3 75.2 0 0

B_DC7_DC8 NANT NAN 91.7 135.7 36.9 148.4 127.8 160.5 79.1 233.6 230.3 0 AA01 9.5 -58.3 106.1 -0.5 -64.9 -21.3 -8 28.6 42.1 29.7 0 0 99.9 0 8.3 42.3 0 0

C_DC9_DC10 NANT NAN 147.1 280.3 233.1 62.1 225.3 199.3 77.8 237.9 235.7 0 BA13 5 48.9 37.6 -12.1 -6.2 3.3 -11.5 -28.3 36.5 88.4 0 4.4 70 90.2 97.4 59.9 10.3 0

C_DC10_DC11 AA02 AAA 77.8 190.2 275.7 289.2 177.9 69.7 71.2 235.7 238.9 64 AA02 -9.9 -12.3 1.2 -4.3 16.6 15.5 -16.3 -8.2 -5.8 59.5 70.2 99.7 93.1 47 15.8 19.8 81.6 89.3

C_DC11_DC12 NANT NAN 71.2 181.2 277.7 191.6 199.5 163.7 81.1 238.9 232.2 0 AA01 -11 -12.8 -13.1 42.7 6.8 -18.1 -6 33.9 44 19.6 59.3 40.3 0 82.2 16.6 61.6 0 0

D_DC13_DC14 AA02 AAA 82.4 193.9 277.1 300.3 175.5 62.9 80 229.1 232.9 72 AA02 -5.3 -8.6 2.6 6.8 14.2 8.7 -7.5 -14.8 -11.8 86.2 84.1 98.7 83.6 57.6 56 71 51.5 62.6

D_DC14_DC15 AA02 AAA 80 190.7 282 298.7 185.7 58.8 80.6 232.9 237.6 73 AA02 -7.7 -11.8 7.5 5.2 24.4 4.6 -6.9 -11 -7.1 73.1 72.2 89.4 90.1 19.6 85 74.8 69.3 84.4

D_DC15_DC16 NANT NAN 80.6 194.6 291 245.8 134.2 162.7 146.2 237.6 237.8 0 BB13 -62.6 8.8 0.4 29.4 30.7 1.8 -0.5 -14.3 18.9 0 75.1 100 5.3 4.6 98.7 99.9 46.4 26.3

E_DC17_DC18 AA02 AAA 104.2 228.6 280.9 306.5 166.8 62.6 77.7 227.9 237.2 58 AA02 16.5 26.1 6.4 13 5.5 8.4 -9.8 -16 -7.5 23.7 20.4 92.2 52 92 58.2 55.7 46.1 82.8

E_DC18_DC19 NANT NAN 77.7 178.9 282.2 195.1 188.9 173.5 118.6 237.2 235.3 0 AA01 -4.5 -15.1 -8.6 46.2 -3.8 -8.3 31.5 32.2 47.1 76.1 48.3 67.6 0 94.1 68.6 0 0 0

E_DC19_DC20 NANT NAN 118.6 211 293.2 162.7 141.5 175.9 103.4 235.3 238 0 BB03 -25.9 34.8 17.7 -2.8 -22.7 3.1 -42.6 -3.8 6.2 1.9 1.7 37 98.3 27.5 97 0 96.2 89

F_DC21_DC22 NANT NAN 144.6 234.2 272.2 111 186.9 190.7 85.6 233 238.9 0 BA10 9.4 34.5 54.1 6.2 -42.5 -3.7 -2.3 -24.8 43.9 80.2 4.7 0 94.4 3.1 97.1 97.6 25.6 0

F_DC22_DC23 AA02 AAA 85.6 199.8 273.1 292.1 171.8 66.9 77.5 238.9 236.3 80 AA02 -2.1 -2.7 -1.4 -1.4 10.5 12.7 -10 -5 -8.4 97.7 98.3 99.6 99.2 73.9 29 54.4 92.7 78.9

F_DC23_DC24 NANT NAN 77.5 191.3 278.6 171.3 175 176.3 87.8 236.3 228.4 0 AA01 -4.7 -2.7 -12.2 22.4 -17.7 -5.5 0.7 31.3 40.2 74.3 97.7 45.5 25.8 26.6 84.7 99.3 0 0

G_DC25_DC26 NANT NAN 139.1 213.3 291.2 142.8 164.2 182.7 95.3 232.5 239.1 0 BB03 -5.4 37.1 15.7 -22.7 0 9.9 -50.7 -6.6 7.3 84.3 0 45.7 32.3 100 73.6 0 88.9 85

G_DC26_DC27 NANT NAN 95.3 194.4 282 161.1 161 179.3 87.6 239.1 236.8 0 AA01 13.1 0.4 -8.8 12.2 -31.7 -2.5 0.5 34.1 48.6 9.9 99.9 66.4 66.9 1.4 96.6 99.7 0 0

G_DC27_DC28 NANT NAN 87.6 188.7 276.3 170.4 184.3 173.2 81.9 236.8 228.9 0 AA01 5.4 -5.3 -14.5 21.5 -8.4 -8.6 -5.2 31.8 40.7 67.5 91.4 32.9 28.7 74.2 66.7 69.5 0 0

H_DC29_DC30 AA02 AAA 81 202.3 279.9 298.1 181.6 62.4 80 229 233.2 72 AA02 -6.7 -0.2 5.4 4.6 20.3 8.2 -7.5 -14.9 -11.5 78.9 100 94.4 92.1 32.3 59.7 71 51.1 64.1

H_DC30_DC31 AA02 AAA 80 194.6 282.3 297.7 179.5 60.9 79.1 233.2 237.1 75 AA02 -7.7 -7.9 7.8 4.2 18.2 6.7 -8.4 -10.7 -7.6 73.1 86.4 88.6 93.4 40.4 70.9 65.1 70.7 82.3

H_DC31_DC32 AA02 AAA 79.1 196.4 284.7 286.5 179.7 75.8 74.4 237.1 233.6 62 AA02 -8.6 -6.1 10.2 -7 18.4 21.6 -13.1 -6.8 -11.1 67.6 91.7 81.3 82.7 39.6 2.8 35.2 86.9 66.1  
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Table A5.3: Sugar pucker pseudorotation angles, sugar pucker type and closest DNA conformation for C3T. 

Chain Base Phase angle of   Sugar Pucker Closest DNA 

    pseudorotation    conformation 

A C1 160.0 C2'-endo B-DNA 

  C2 108.1 C1'-exo - 

  C3 86.7 O4'-endo - 

B C1 165.4 C2'-endo B-DNA 

  C2 42.7 C4'-exo - 

  C3 40.9 C4'-exo - 

C C1 31.8 C3'-endo A-DNA 

  C2 17.6 C3'-endo A-DNA 

  C3 40.8 C4'-exo - 

D C1 177.4 C2'-endo B-DNA 

  C2 109.9 C1'-exo - 

  C3 58.5 C4'-exo - 

E C1 158.3 C2'-endo B-DNA 

  C2 108.9 C1'-exo - 

  C3 87.7 O4'-endo - 

F C1 166.2 C2'-endo B-DNA 

  C2 42.9 C4'-exo - 

  C3 40.8 C4'-exo - 

G C1 32.8 C3'-endo A-DNA 

  C2 17.2 C3'-endo A-DNA 

  C3 41.4 C4'-exo - 

H C1 176.1 C2'-endo B-DNA 

  C2 109.2 C1'-exo - 

  C3 55.3 C4'-exo - 
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Table A5.4: Conformational analysis of C3T as calculated by DNATCO version 2.2. 

step_ID NtC CANA δ ε ζ α1 β1 γ1 δ1 χ χ1 confal nearest_NtC Δδ Δε Δζ Δα1 Δβ1 Δγ1 Δδ1 Δχ Δχ1 sδ sε sζ sα1 sβ1 sγ1 sδ1 sχ sχ1

A_DC1_DC2 NANT NAN 138.5 210.9 290 136.5 166.7 197.1 111.2 234.5 239.6 0 BB03 -6 34.7 14.5 -29 2.5 24.3 -34.8 -4.6 7.8 80.9 1.7 51.3 15.8 98.4 15.8 0 94.4 83.1

A_DC2_DC3 NANT NAN 111.2 204.7 292.8 166.6 147.4 176.3 93.5 239.6 239.2 0 AA01 29 10.7 2 17.7 -45.3 -5.5 6.4 34.6 51 0 69.4 97.9 42.9 0 84.7 57.6 0 0

A_DC3_DC4 AA02 AAA 93.5 196.2 279.6 291 178.3 58.9 84.1 239.2 229 81 AA02 5.8 -6.3 5.1 -2.5 17 4.7 -3.4 -4.7 -15.7 83.7 91.1 95 97.6 45.3 84.4 93.2 93.5 43.6

B_DC5_DC6 AA02 AAA 80.7 188.8 276.1 301.4 181.8 61.9 88 232.1 232 71 AA02 -7 -13.7 1.6 7.9 20.5 7.7 0.5 -11.8 -12.7 77.2 64.5 99.5 78.5 31.6 63.5 99.8 65.6 58.1

B_DC6_DC7 AA02 AAA 88 209.4 284.5 292.8 175.9 62.7 79.8 232 231.4 75 AA02 0.3 6.9 10 -0.7 14.6 8.5 -7.7 -11.9 -13.3 100 89.5 82 99.8 55.8 57.4 69.7 65.1 55.2

B_DC7_DC8 AA02 AAA 79.8 191.3 288 295.9 182.6 60.5 79.4 231.4 241.3 71 AA02 -7.9 -11.2 13.5 2.4 21.3 6.3 -8.1 -12.5 -3.4 71.9 74.6 69.6 97.8 28.9 73.7 67.1 62.3 96.2

C_DC9_DC10 NANT NAN 151.8 210 291.3 155.5 154.3 180.9 110 245 239 0 BB03 7.3 33.8 15.8 -10 -9.9 8.1 -36 5.9 7.2 73.1 2.1 45.3 80.3 78.3 81.5 0 91 85.4

C_DC10_DC11 NANT NAN 110 202.7 274.3 156.3 160.4 180.9 81.4 239 242.4 0 AA01 27.8 8.7 -16.5 7.4 -32.3 -0.9 -5.7 34 54.2 0 78.6 23.7 86.3 1.2 99.6 64.6 0 0

C_DC11_DC12 NANT NAN 81.4 200.7 65.8 63.8 172.8 48.2 143.9 242.4 221.9 0 NS05 -72.2 -41.7 -11.3 0.6 -4.2 -15.3 6.9 5.2 -26.7 0 0 23 99.8 51.1 8.7 0 79.8 0

D_DC13_DC14 NANT NAN 148.2 276.4 246.2 73.3 217.3 189.4 79.4 222.5 232 0 BA13 6.1 45 50.7 -0.9 -14.2 -6.6 -9.9 -43.7 32.8 83.2 0.9 0 99.8 58.2 90 68.4 0 1.8

D_DC14_DC15 AA02 AAA 79.4 202.1 279.8 294.5 181.9 54 73.8 232 237.7 75 AA02 -8.3 -0.4 5.3 1 20.6 0.2 -13.7 -11.9 -7 69.5 100 94.6 99.6 31.3 100 31.9 65.1 84.8

D_DC15_DC16 NANT NAN 73.8 198.6 62.6 72.5 161.6 53.5 142.8 237.7 232.3 0 NS05 -79.8 -43.8 -14.5 9.3 -15.4 -10 5.8 0.5 -16.3 0 0 8.9 56.7 0 35.2 2.6 99.8 0

E_DC17_DC18 NANT NAN 139.2 211.6 289.2 135.6 167.1 198.5 110.3 234.5 239 0 BB03 -5.3 35.4 13.7 -29.9 2.9 25.7 -35.7 -4.6 7.2 84.8 1.5 55.1 14 97.9 12.7 0 94.4 85.4

E_DC18_DC19 NANT NAN 110.3 204.3 293.6 166 146.8 177.2 93.2 239 238.7 0 AA01 28.1 10.3 2.8 17.1 -45.9 -4.6 6.1 34 50.5 0 71.3 95.9 45.4 0 89.1 60.6 0 0

E_DC19_DC20 AA02 AAA 93.2 197.2 279.5 291.5 177.4 59.3 83.8 238.7 228.6 81 AA02 5.5 -5.3 5 -2 16.1 5.1 -3.7 -5.2 -16.1 85.2 93.6 95.1 98.5 49.2 81.9 92 92.1 41.8

F_DC21_DC22 AA02 AAA 80.8 189 275.8 301.3 181.4 62.1 89.2 232.7 232.7 72 AA02 -6.9 -13.5 1.3 7.8 20.1 7.9 1.7 -11.2 -12 77.7 65.3 99.7 79 33.1 62 98.3 68.4 61.6

F_DC22_DC23 AA02 AAA 89.2 209.5 282.6 295.1 175.8 61.2 79.9 232.7 230.5 77 AA02 1.5 7 8.1 1.6 14.5 7 -7.6 -11.2 -14.2 98.8 89.2 87.8 99 56.2 68.7 70.3 68.4 50.7

F_DC23_DC24 AA02 AAA 79.9 191.1 288.8 295.3 182.6 61.6 78.4 230.5 241 69 AA02 -7.8 -11.4 14.3 1.8 21.3 7.4 -9.1 -13.4 -3.7 72.5 73.8 66.6 98.8 28.9 65.7 60.4 58.1 95.5

G_DC25_DC26 NANT NAN 152.3 209.4 293.1 156.4 154.1 180.8 109 244.7 238.8 0 BB03 7.8 33.2 17.6 -9.1 -10.1 8 -37 5.6 7 70 2.5 37.4 83.4 77.5 81.9 0 91.8 86.1

G_DC26_DC27 NANT NAN 109 201.9 275.7 156.7 159.1 180 83.1 238.8 242.5 0 AA01 26.8 7.9 -15.1 7.8 -33.6 -1.8 -4 33.8 54.3 0 82 29.9 84.9 0 98.2 80.6 0 0

G_DC27_DC28 NANT NAN 83.1 200.6 64.5 63.6 173.6 48.1 144.1 242.5 221.6 0 NS05 -70.5 -41.8 -12.6 0.4 -3.4 -15.4 7.1 5.3 -27 0 0 16.1 99.9 64.4 8.4 0 79.1 0

H_DC29_DC30 NANT NAN 148.1 277.4 245.2 72 216.6 190.2 80 223 231.5 0 BA13 6 46 49.7 -2.2 -14.9 -5.8 -9.3 -43.2 32.3 83.7 0.7 0 98.8 55.1 92.2 71.6 0 2

H_DC30_DC31 AA02 AAA 80 202.1 280 293.8 181.6 54.3 73.6 231.5 237.3 75 AA02 -7.7 -0.4 5.5 0.3 20.3 0.1 -13.9 -12.4 -7.4 73.1 100 94.2 100 32.3 100 30.8 62.8 83.2

H_DC31_DC32 NANT NAN 73.6 199.2 62 73.1 161.6 53.6 143.1 237.3 232 0 NS05 -80 -43.2 -15.1 9.9 -15.4 -9.9 6.1 0.1 -16.6 0 0 7.2 52.6 0 35.9 1.7 100 0  
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Table A5.5: Conformational analysis of C3A as calculated by DNATCO version 2.2. 

step_ID NtC CANA δ ε ζ α1 β1 γ1 δ1 χ χ1 confal nearest_NtC Δδ Δε Δζ Δα1 Δβ1 Δγ1 Δδ1 Δχ Δχ1 sδ sε sζ sα1 sβ1 sγ1 sδ1 sχ sχ1

A_DC1_DC2 NANT NAN 148.7 250.8 253.2 92.4 209.5 195 83.1 232.9 235.7 0 BA10 13.5 51.1 35.1 -12.4 -19.9 0.6 -4.8 -24.9 40.7 63.4 0 13.1 79.4 46.8 99.9 90.2 25.3 0

A_DC2_DC3 AA02 AAA 83.1 187.4 270.8 301.1 176.2 59.1 80.8 235.7 233.9 76 AA02 -4.6 -15.1 -3.7 7.6 14.9 4.9 -6.7 -8.2 -10.8 89.4 58.7 97.3 80 54.4 83.2 76.1 81.6 67.5

A_DC3_DA4 AA02 AAA 80.8 200.2 278 314 186.4 36.2 86.7 233.9 245.1 66 AA02 -6.9 -2.3 3.5 20.5 25.1 -18 -0.8 -10 0.4 77.7 98.8 97.6 19.7 17.8 8.3 99.6 73.9 99.9

B_DC1_DC2 NANT NAN 149.2 252.7 252 89.3 211.5 196.7 82.5 232.1 235.7 0 BA10 14 53 33.9 -15.5 -17.9 2.3 -5.4 -25.7 40.7 61.2 0 15 69.7 54.1 98.9 87.7 23.2 0

B_DC2_DC3 AA02 AAA 82.5 187.1 271.5 299.9 175.4 62 86 235.7 233.1 77 AA02 -5.2 -15.4 -3 6.4 14.1 7.8 -1.5 -8.2 -11.6 86.7 57.5 98.2 85.3 58 62.7 98.6 81.6 63.6

B_DC3_DA4 NANT NAN 86 216.6 252.7 49.2 215 284.4 134.4 233.1 250.6 0 BB02 -54.4 23.1 6.6 17.5 20.9 -13 -15.3 -19.3 -2.8 0 13.5 87.6 48.1 49.4 65 15.4 42.1 98.3

C_DC1_DC2 NANT NAN 149.4 258.2 248.4 83.1 215.2 199.2 83.2 231.9 235.9 0 BA13 7.3 26.8 52.9 8.9 -16.3 3.2 -6.1 -34.3 36.7 76.8 18.5 0 82.5 49 97.6 86.6 3.6 0

C_DC2_DC3 AA02 AAA 83.2 187.8 270.1 302.3 175.5 59.1 82.2 235.9 234 77 AA02 -4.5 -14.7 -4.4 8.8 14.2 4.9 -5.3 -8 -10.7 89.8 60.4 96.2 74.1 57.6 83.2 84.3 82.4 68

C_DC3_DA4 AA02 AAA 82.2 202.5 275.2 315.2 186.8 34.5 101.6 234 248.7 58 AA02 -5.5 0 0.7 21.7 25.5 -19.7 14.1 -9.9 4 85.2 100 99.9 16.2 16.8 5.1 29.8 74.3 94.8

D_DC1_DC2 NANT NAN 149.5 256.5 249.8 84.5 214.2 198.5 82.9 232.5 235.5 0 BA10 14.3 56.8 31.7 -20.3 -15.2 4.1 -5 -25.3 40.5 59.9 0 19 53.9 64.2 96.5 89.4 24.2 0

D_DC2_DC3 AA02 AAA 82.9 187.4 271.1 301 176.5 58.9 81.6 235.5 233.4 77 AA02 -4.8 -15.1 -3.4 7.5 15.2 4.7 -5.9 -8.4 -11.3 88.5 58.7 97.7 80.4 53.1 84.4 80.9 80.8 65.1

D_DC3_DA4 NANT NAN 81.6 199.6 277.3 317.7 192.8 24.1 113.9 233.4 265 0 AB01 -4.6 6.7 -6.1 18.6 13.1 -30.9 -27.9 12.3 10.4 76.3 90.7 89.6 34.1 60.3 0 0 72.8 75.9  
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Table A5.6: Sugar pucker pesudorotation angles, sugar pucker type and closest DNA conformation for [C3A + C3T].                                            

CX is the cytosine position in 5’-C1C2C3A4-3’and 5’-C1C2C3T4-3’. 

 

 

Chain Base 

Phase angle of 

pseudorotation Sugar Pucker 

Closest DNA 

conformation 

A 

  

  

  

C1 166.4 C2’-endo B-DNA 

C2 57.8 C4’-exo - 

C3 37.5 C4’-exo - 

A4 29.2 C3’-endo A-DNA 

B 

  

  

  

C1 167.0 C2’-endo B-DNA 

C2 59.3 C4’-exo - 

C3 36.9 C4’-exo - 

A4 28.5 C3’-endo A-DNA 

C 

  

  

  

C1 166.8 C2’-endo B-DNA 

C2 58.3 C4’-exo - 

C3 37.3 C4’-exo - 

T4 24.2 C3’-endo A-DNA 

D 

  

  

  

C1 166.9 C2’-endo B-DNA 

C2 59.3 C4’-exo - 

C3 37.7 C4’-exo - 

T4 23.8 C3’-endo A-DNA 

E 

  

  

  

C1 167.6 C2’-endo B-DNA 

C2 58.9 C4’-exo - 

C3 38.1 C4’-exo - 

A4 28.8 C3’-endo A-DNA 

F 

  

  

  

C1 166.6 C2’-endo B-DNA 

C2 58.9 C4’-exo - 

C3 37.6 C4’-exo - 

T4 28.5 C3’-endo A-DNA 

G 

  

  

  

C1 165.5 C2’-endo B-DNA 

C2 58.7 C4’-exo - 

C3 37.7 C4’-exo - 

A4 25.4 C3’-endo A-DNA 

H 

  

  

  

C1 167.1 C2’-endo B-DNA 

C2 58.1 C4’-exo - 

C3 37.3 C4’-exo - 

T4 25.8 C3’-endo A-DNA 
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Table A5.7: Conformational analysis of [C3A + C3T] as calculated by DNATCO version 2.2. 

step_ID NtC CANA δ ε ζ α1 β1 γ1 δ1 χ χ1 confal nearest_NtC Δδ Δε Δζ Δα1 Δβ1 Δγ1 Δδ1 Δχ Δχ1 sδ sε sζ sα1 sβ1 sγ1 sδ1 sχ sχ1

A_DC0_DC1 NANT NAN 144 215.9 289.8 149 162.9 161.3 86.3 233.6 237.2 0 BB03 -0.5 39.7 14.3 -16.5 -1.3 -11.5 -59.7 -5.5 5.4 99.9 0 52.3 55 99.6 66.2 0 92.1 91.5

A_DC1_DC2 AA02 AAA 86.3 189.4 268.1 301.2 178.3 60.1 84.1 237.2 237.6 80 AA02 -1.4 -13.1 -6.4 7.7 17 5.9 -3.4 -6.7 -7.1 99 67 92.2 79.5 45.3 76.6 93.2 87.3 84.4

A_DC2_DA3 AA02 AAA 84.1 198.8 271.7 304.2 171.3 58.7 81.6 237.6 232.7 83 AA02 -3.6 -3.7 -2.8 10.7 10 4.5 -5.9 -6.3 -12 93.4 96.9 98.5 64.2 76 85.6 80.9 88.7 61.6

B_DC1_DC2 NANT NAN 144.2 217.1 287.8 146 165.2 163.8 86.3 235.1 236.8 0 BB03 -0.3 40.9 12.3 -19.5 1 -9 -59.7 -4 5 99.9 0 61.9 43.4 99.8 77.6 0 95.8 92.7

B_DC2_DC3 AA02 AAA 86.3 189.2 267.8 301.5 178.5 59.5 83.8 236.8 237.6 80 AA02 -1.4 -13.3 -6.7 8 17.2 5.3 -3.7 -7.1 -7.1 99 66.2 91.5 78.1 44.5 80.6 92 85.8 84.4

B_DC3_DA4 AA02 AAA 83.8 196.3 274 301.8 174.3 59.3 81.7 237.6 233.1 82 AA02 -3.9 -6.2 -0.5 8.3 13 5.1 -5.8 -6.3 -11.6 92.3 91.4 100 76.6 62.9 81.9 81.5 88.7 63.6

C_DC1_DC2 NANT NAN 144.4 216.7 287.5 146.1 166.3 163.5 85.1 234 236.6 0 BB03 -0.1 40.5 12 -19.4 2.1 -9.3 -60.9 -5.1 4.8 100 0 63.3 43.8 98.9 76.3 0 93.2 93.2

C_DC2_DC3 AA02 AAA 85.1 189.2 268.2 302.2 178.8 59 84.1 236.6 238.1 80 AA02 -2.6 -13.3 -6.3 8.7 17.5 4.8 -3.4 -7.3 -6.6 96.5 66.2 92.4 74.6 43.2 83.8 93.2 85.1 86.4

C_DC3_DT4 AA02 AAA 84.1 196.6 274 300.9 172.3 62.8 81.4 238.1 230 79 AA02 -3.6 -5.9 -0.5 7.4 11 8.6 -6.1 -5.8 -14.7 93.4 92.2 100 80.9 71.8 56.7 79.7 90.3 48.3

D_DC1_DC2 NANT NAN 144 216.9 287.5 146.7 165.8 163.5 85.5 234.7 236.4 0 BB03 -0.5 40.7 12 -18.8 1.6 -9.3 -60.5 -4.4 4.6 99.9 0 63.3 46 99.4 76.3 0 94.9 93.8

D_DC2_DC3 AA02 AAA 85.5 189.2 267.8 300.7 177.2 60.7 84.9 236.4 236.1 80 AA02 -2.2 -13.3 -6.7 7.2 15.9 6.5 -2.6 -7.5 -8.6 97.5 66.2 91.5 81.8 50 72.3 96 84.3 78

D_DC3_DT4 AA02 AAA 84.9 198.6 268.6 305.9 170.3 60.1 81.9 236.1 230.6 79 AA02 -2.8 -3.9 -5.9 12.4 9 5.9 -5.6 -7.8 -14.1 95.9 96.5 93.3 55.2 80.1 76.6 82.6 83.2 51.2

H_DC1_DC2 NANT NAN 144.2 217 287.1 145.8 166.9 163.5 84.9 234.7 236.4 0 BB03 -0.3 40.8 11.6 -19.7 2.7 -9.3 -61.1 -4.4 4.6 99.9 0 65.3 42.7 98.2 76.3 0 94.9 93.8

H_DC2_DC3 AA02 AAA 84.9 188.6 268.1 303.6 178.2 58.3 84.3 236.4 238.4 80 AA02 -2.8 -13.9 -6.4 10.1 16.9 4.1 -3.2 -7.5 -6.3 95.9 63.7 92.2 67.4 45.7 87.9 94 84.3 87.5

H_DC3_DT4 AA02 AAA 84.3 197.5 273.3 302.9 171.8 61.2 81.5 238.4 231 81 AA02 -3.4 -5 -1.2 9.4 10.5 7 -6 -5.5 -13.7 94.1 94.3 99.7 71 73.9 68.7 80.3 91.2 53.2

G_DC1_DC2 NANT NAN 143.8 217.4 287 145.5 168 163.3 85.2 233.7 235.6 0 BB03 -0.7 41.2 11.5 -20 3.8 -9.5 -60.8 -5.4 3.8 99.7 0 65.7 41.6 96.5 75.4 0 92.4 95.7

G_DC2_DC3 AA02 AAA 85.2 188.7 267.6 302.4 178.2 59.2 84.2 235.6 237.8 79 AA02 -2.5 -13.8 -6.9 8.9 16.9 5 -3.3 -8.3 -6.9 96.7 64.1 91 73.6 45.7 82.5 93.6 81.2 85.2

G_DC3_DA4 AA02 AAA 84.2 197.4 273.1 302.7 172.8 59.8 81.7 237.8 232 82 AA02 -3.5 -5.1 -1.4 9.2 11.5 5.6 -5.8 -6.1 -12.7 93.7 94.1 99.6 72.1 69.6 78.6 81.5 89.3 58.1

E_DC1_DC2 NANT NAN 144.4 216.6 287.1 145.3 167.2 164 84.9 234.4 236.5 0 BB03 -0.1 40.4 11.6 -20.2 3 -8.8 -61.1 -4.7 4.7 100 0 65.3 40.8 97.8 78.5 0 94.2 93.5

E_DC2_DC3 AA02 AAA 84.9 188.5 268.6 301.1 178.8 60.2 84.7 236.5 237.7 80 AA02 -2.8 -14 -5.9 7.6 17.5 6 -2.8 -7.4 -7 95.9 63.3 93.3 80 43.2 75.9 95.3 84.7 84.8

E_DC3_DA4 AA02 AAA 84.7 198.2 271.9 302.4 171.7 60.4 81.5 237.7 231.2 82 AA02 -3 -4.3 -2.6 8.9 10.4 6.2 -6 -6.2 -13.5 95.3 95.8 98.7 73.6 74.4 74.5 80.3 89 54.2

F_DC1_DC2 NANT NAN 143.5 218 285 142 169.9 166 85.5 233.8 236.4 0 BB03 -1 41.8 9.5 -23.5 5.7 -6.8 -60.5 -5.3 4.6 99.4 0 75.1 29.7 92.2 86.6 0 92.7 93.8

F_DC2_DC3 AA02 AAA 85.5 188.7 268 301.7 178.2 59.9 84.3 236.4 237.3 80 AA02 -2.2 -13.8 -6.5 8.2 16.9 5.7 -3.2 -7.5 -7.4 97.5 64.1 91.9 77.1 45.7 77.9 94 84.3 83.2

F_DC3_DT4 AA02 AAA 84.3 198.3 272.4 303.1 171.2 61.1 81.3 237.3 231 81 AA02 -3.4 -4.2 -2.1 9.6 9.9 6.9 -6.2 -6.6 -13.7 94.1 96 99.1 70 76.5 69.4 79.1 87.6 53.2  
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