
Parallel Data Analysis for

Atmospheric Science

PhD in Atmosphere, Oceans and Climate
Department of Meteorology

Matthew Jones
April 2018

Declaration

I confirm that this is my own work and the use of all material from other sources has been

properly and fully acknowledged.

- Matthew Jones

i

Abstract
Data sizes are growing in atmospheric science, as climate models increase to higher resolu-

tions to improve the representation of atmospheric phenomena, and larger numbers of ensem-

ble members are used so as to better capture the variability in the atmosphere. New methods

need to be developed to handle the increasing size of data – traditional analysis scripts often in-

efficiently read and process data, leading to excessive analysis times. Research into large data

analysis often focuses on providing solutions in the form of software, or hardware, rather than

providing quantitative results on what factors can reduce performance in an application. This

thesis quantitatively investigates these factors in the software-hardware stack, in order to make

decisions how to handle large data sizes during application development and data manage-

ment. This is done in the context of an atmospheric science workflow in a high-performance

computing environment.

A major bottleneck in analysis in atmospheric science is reading data. Two of the primary

factors which are commonly known to affect the read time are the read pattern, and the read

size. These factors are found in this work to reduce the read rate by up to 10-50 times for poor

combinations. Other factors which could affect the read rate for atmospheric analysis include:

the programming language, the libraries used, and the file layout.

NetCDF4 is one of the most commonly used data formats in atmospheric science, and the

Python library netCDF4-python is one of the main interfaces used. As part of the NetCDF4

file format, there are options for chunking (multidimensional tiling), and inbuilt compression,

which can be used to improve read and write performance from the files. It was found that

at peak performance the netCDF4-python library performs 40% worse than the underlying C

NetCDF4 library. With respect to chunking and compression, poor combinations of chunking,

and inbuilt compression, were found to reduce the performance by over 100 times.

One solution to reduced performance, or a way to reduce analysis times on large datasets,

is to run applications in parallel. It is important to understand how, on a particular platform,

application relevant parallel reads will scale in order design an efficient application. The par-

allel scaling of the JASMIN super-data cluster was analysed. The investigation methodology,

and conclusions from the investigation can be applied to other platforms.

A case study was used to apply the results from this work in a real atmospheric science

workflow – a space-time spectral analysis technique. It confirmed that these results do indeed

apply to real workflows.

ii

Acknowledgements

A great deal of thanks is due to my supervisors: Bryan Lawrence, Jon Blower, and Annette

Osprey. You have my deepest gratitude.

There are many other people who have supported me throughout this PhD, and without

their support it would not have been possible. You know who you are.

iii

Contents

1 Introduction 1

1.1 Thesis structure . 5

1.2 A note on file sizes and read rates . 5

2 Background 7

2.1 Atmospheric science model performance . 7

2.2 Categorisation as a method to analyse performance 8

2.3 Measuring I/O performance . 9

2.4 Atmospheric science data . 12

2.4.1 HDF5 . 15

2.4.2 NetCDF4 . 16

2.5 Parallelisation . 16

2.5.1 Strong and weak parallel scaling . 17

2.5.2 Amdahl’s Law and Gustafson’s Law . 17

2.5.3 Flynn’s Taxonomy . 18

2.5.4 Parallel computing models . 18

2.6 Factors affecting I/O performance . 20

2.6.1 Data access from a HDD . 21

2.6.2 Read patterns with multidimensional arrays 22

2.6.3 Multidimensional tiling . 22

2.6.4 Compression . 23

2.7 Parallel data analysis in a HPC environment . 24

2.7.1 Compute cluster . 24

2.7.2 Parallel file systems . 26

2.8 Alternative approaches to handling big data . 27

iv

Contents Contents

2.9 Summary . 29

3 NetCDF4 Performance on HPC Parallel File Systems 30

3.1 Methodology . 31

3.1.1 Testing Domain . 32

3.1.2 Read patterns . 34

3.1.3 Testing algorithm . 35

3.1.4 Test files . 35

3.1.5 Repeats . 36

3.1.6 Deeper analysis . 36

3.2 Baseline read performance . 37

3.3 NetCDF4 read performance . 41

3.4 Conclusions . 47

4 NetCDF4 Chunking and Compression Read Performance 50

4.1 Method . 52

4.1.1 Chunking performance . 53

4.1.2 Compression performance . 55

4.1.3 File conversions . 57

4.2 Chunking performance . 57

4.2.1 Results . 57

4.2.2 Discussion . 60

4.3 Compression performance . 61

4.3.1 Results . 61

4.3.2 Discussion . 64

4.4 Layout conversion . 64

4.4.1 Results . 65

4.4.2 Discussion . 65

4.5 Conclusions . 66

5 Parallel Reads from a NetCDF4 File to Improve Read Performance 69

5.1 Method . 71

5.1.1 Testing data . 71

v

Contents Contents

5.1.2 Parallel scaling . 73

5.1.2.1 Measurements . 74

5.1.3 MPI collective Method . 74

5.2 Parallel read scaling on JASMIN . 75

5.2.1 Results . 75

5.2.2 Discussion . 79

5.3 Collective I/O with MPI-IO and NetCDF4 . 82

5.3.1 Results . 82

5.3.2 Discussion . 82

5.4 Conclusions . 84

6 Application to Atmospheric Science Workflow - Space-Time Spectral Analysis 88

6.1 Space-Time Spectral Analysis . 89

6.1.1 Relevance of STSA . 90

6.1.2 Example of STSA use . 91

6.1.3 Suitability as a case study . 91

6.2 Quantitative workflow analysis . 92

6.3 Method . 93

6.4 Results . 94

6.5 Discussion . 97

6.6 Conclusions . 100

7 Conclusions and Further Work 102

7.1 Summary and conclusions . 102

7.2 Related work . 108

7.3 Further work . 112

Bibliography 114

A Platforms 122

A.1 JASMIN (Panasas) . 122

A.2 ARCHER (Lustre) . 124

A.3 RDF (GPFS) . 124

A.4 Comparing the three platform’s filesystems . 124

vi

Contents Contents

B Tools 126

B.1 NetCDF4 C library . 126

B.2 MPI . 126

B.3 MPI-IO . 126

B.4 Nccopy . 126

B.5 Python libraries . 127

B.5.1 NumPy . 127

B.5.2 netCDF4-python . 127

B.5.3 H5py . 127

B.5.4 H5netcdf . 127

B.5.5 Jug . 128

C Code 129

C.1 Chapter 3, 4, and 5 . 129

C.1.1 Program to read using C from ’plain’ binary files 129

C.1.2 Program to read using C from NetCDF4 files 131

C.1.3 Program to read using Python from ’plain’ binary files 134

C.1.4 Program to read using Python from NetCDF4 files 135

C.2 Chapter 6 . 136

C.2.1 Read only test program . 136

C.2.2 Test program including STSA calculations 137

vii

Chapter 1

Introduction

The volume of data is growing in atmospheric science, as climate models increase to higher

resolutions to improve the representation of atmospheric phenomena, and larger numbers of

ensemble members are used so as to better capture the variability in the atmosphere. New

methods need to be developed to handle the increasing size of data – traditional analysis

scripts often inefficiently read and process data, leading to excessive analysis times. In order

to make decisions on how to handle the large data sizes during application development and

data management, quantitative analysis of the factors which affect data analysis throughput

in atmospheric science in a high-performance computing environment are needed.

In general, there are four major stages to a workflow when analysing data in atmospheric

science:

• First is accessing data. For smaller or medium sized datasets, it is often possible to down-

load data to a local machine.

• Second is data exploration, important to assess suitability of a dataset for the investiga-

tion, and to plan the investigation. Usually this is only on a subset of the data in which,

even with large datasets, the volume of the data often is not problematic.

• Third is the development of the analysis application. This involves testing, which is often

on a subset of the dataset, and will involve many iterations in development, meaning a

large number of reads. This stage could also be skipped if existing applications exist from

previous investigations.

• Implementing the analysis application on the whole dataset and gathering results is the

final stage. This will often include multiple different implementations, for example: mul-

1

Chapter 1. Introduction

tiple ensemble members, multiple time periods, or even multiple datasets (e.g. climate

simulation output, and reanalysis data).

With very large datasets, transferring data to the user is not always an efficient option. In-

stead, running applications local to a data storage and processing facility is a more efficient

solution. One such example of this is the JASMIN (Joint Analysis System Meeting Infrastruc-

ture Needs) super-data cluster.

Data exploration is inherently less data intensive than the final application, due to

analysing only a subset of the data. However, any increase in duration due to inefficient reads

or writes, is compounded with larger data sets.

Similarly to data exploration, because application development only requires a subset of

data, it is not affected by inefficient reads and writes to the same extent as the final appli-

cation. However, development and testing requires many repeated calculations, and read

and write operations, meaning that any reduction in performance is compounded by larger

datasets. With regards to the potential for existing applications being used, the processing al-

gorithms may not be suitable for use with very large data, or could be significantly improved

to provide acceptable run times. Bespoke applications or libraries, designed to analyse very

large datasets are a good alternative to writing applications. However, analysis can often be

too specific, or specialised for this approach to be valid, therefore, an application needs to be

developed. Without prior quantitative knowledge on the factors which can affect analysis ap-

plications, providing acceptable performance can become a very time consuming task, and

development can become constrained by trial and error. This can significantly lengthen the

development process, taking up time which could otherwise be used for further analysis, or

results interpretation.

Research into large data analysis generally focuses on providing a solution in the form of a

library, software middleware, or hardware to improve performance. The motivation for these

studies is that data analysis on large data is a problem and will become more of a problem,

generally with little quantitative evidence. For those with experience handling and analysing

large data, the problem is obvious, as are the implications for analysis as we progress into

the exascale. The aforementioned prior quantitative knowledge on the factors which affect

analysis is a gap in the research, and the focus of the work presented in this thesis. This

knowledge is often gathered through experience, and trial and error, so the usefulness for this

study is clear – circumventing pitfalls due to combinations of effects which provide very poor

2

Chapter 1. Introduction

performance, and eliminating a large proportion of trial and error, will reduce development

time and enable more science to be done.

In atmospheric science, little work has gone into understanding, quantitatively, how the

software-hardware stack can affect analysis workflows. Weather and climate models are com-

plex and much work has gone into what can affect their performance (Section 2.1) – the per-

formance of analysis applications could be investigated in a similar way.

Reading and writing data is a major bottleneck for analysing data in atmospheric science

(Méndez et al., 2013; Gao et al., 2011). This problem is only going to become compounded as

data gets larger, due to increasing temporal and spatial resolutions needed to more accurately

represent the physics and dynamics in models; and increased ensemble sizes, needed to more

accurately capture uncertainty in the chaotic systems (Balaji, 2015).

Traditionally, analysis of atmospheric science data has been done in serial, although that

is now changing. Serial data analysis on very large datasets can be problematic for a number

of reasons. Firstly, large datasets mean that the random access memory (RAM) may not be

large enough to hold the data during calculations. Secondly, analysis can take a long time

to complete, slowing down the workflows and meaning some tasks can become impractical.

Many different factors can affect how long an analysis program takes to run, such as:

• the time to read or write data, which is heavily affected by the data size,

• the analysis algorithm,

• the organisation of the data,

• and the hardware and software used.

Running analysis in parallel can alleviate problems with long run times and running out of

RAM. When using multiple nodes in parallel, the RAM from each node can be used, increasing

the amount of RAM proportional to the number of nodes. The I/O and compute can also be

split amongst the nodes, decreasing the total time for the parallel program to run. There are

complications to consider when designing parallel programs, any of which can contribute to

an efficient or inefficient program. These include:

• the parallel decomposition of the problem,

• the dimensional dependencies of the algorithm,

3

Chapter 1. Introduction

• the load balance for the I/O, computations, and RAM,

• the platform architecture and settings,

• and the inter-processor communication needed for the algorithm.

These factors can make writing an efficient parallel program difficult for many analysis tasks.

Large datasets in atmospheric science are often stored in an archive, or filesystem of a data

centre. This data is generally produced by some form of model or simulation, so is written

once and read from many times, by many different users. Typically, reading data dominates

other factors for performance of applications (Childs et al., 2005). Factors which can specifically

affect the read rate for an algorithm include:

• the layout and format of the data (including multidimensional tiling, and compression),

• the read pattern of the algorithm,

• and the language and libraries used.

The combination of these factors produces a large, complex, and interdependent problem.

Although these factors are interdependent, it is necessary to understand the individual effects

on performance before their combination can be understood. This thesis investigates the con-

tributing factors which can affect the read rate for serial and parallel atmospheric science data

analysis scripts. The work approaches the effects on the read rate from the point of view of

a user of a high performance computing (HPC) platform, rather than analysing the peak per-

formance of a system. The peak performance is not always useful to know when designing

analysis programs, because the system performance is often quoted as a system wide perfor-

mance, and the peak theoretical performance of a platform is often not representative of a real

workflow. For example the theoretical I/O bandwidth may not be achievable. For climate and

weather models, Balaji et al. (2017) discussed that, for example, flops (floating point opera-

tions per second) is not a useful metric for examining performance of earth-system models,

instead they proposed more relevant domain specific metrics, such as simulated years per day.

In a similar way, identification and quantification of realistic factors affecting data analysis in

atmospheric science would be more relevant to users than system level benchmarks.

There are three investigations in this thesis: 1) the effect of the read pattern, software, and

data type on the read rate, 2) the effect the layout of the data has on the read rate, and 3) the

4

Chapter 1. Introduction 1.1. Thesis structure

scaling of the parallel read rate for multiple different situations. The final part of the investi-

gation in this thesis is to implement the results from the first three investigations into a case

study; affirming whether the results are valid in more realistic situations, and so applicable to

the general users of HPC platforms. The JASMIN super-data cluster (Lawrence et al., 2012) is

used throughout the thesis, as an exemplar HPC platform for data analysis (other platforms

are used in sections of the thesis to provide a broader sample base).

1.1 Thesis structure

Chapter 2 contains the background required for the rest of the thesis, including: parallel com-

puting concepts, factors affecting I/O performance, and discussion of parallel filesystems. The

relation of these factors to atmospheric science is discussed, as well as alternative approaches to

big data analysis. Chapter 3 contains the investigation of the performance of NetCDF4-python

and the underlying libraries that it uses, as well as the effect read sizes and read patterns have

on the read rate. Chapter 4 investigates how multidimensional tiling and compression affect

the read rate. Chapter 5 investigates parallel scaling when reading NetCDF4 files on a parallel

file systems. Chapter 6 combines work from the previous chapters in a case study, to ascertain

whether the optimal parameters discovered the previous chapters are applicable to a real-life

work flow. Then conclusions are drawn in Chapter 7, with discussion on how the thesis re-

lates to other studies, and a discussion of channels for future work is included. Appendix A

provides a more detailed look at the platforms used in the thesis than that in the background

chapter. Appendix B describes the tools and libraries used for the testing scripts. Finally, Ap-

pendix C contains the main code for the testing scripts used.

1.2 A note on file sizes and read rates

Throughout this thesis, both base 10 (e.g. MB) and base 2 (e.g. MiB) units are used. Table 1.1

shows the size of each unit in bytes and the size difference. Where both are used care has gone

into making sure the units are reported correctly. Rates in this thesis are always reported in

base 10 units. Base 2 units are used for reporting file sizes where the files created for testing

were in in base 2. So that the reported file sizes are easier to read on both graphs and in the

text, the base 2 units are retained, as opposed to converting to base 10 and reporting the file

sizes rounded to a number of decimal places (this also means the file sizes reported are exact

5

Chapter 1. Introduction 1.2. A note on file sizes and read rates

as opposed to rounded for the sake of reporting in base 10).

Table 1.1: The sizes in bytes of base 10 and base 2 units.

Base 10 Base 2 Difference (B)
1 KB = 103 B 1 KiB = 1024 B 24
1 MB = 106 B 1 MiB = 10242 B 48,576
1 GB = 109 B 1 GiB = 10243 B 73,741,824
1 TB = 1012 B 1 TiB = 10244 B 99,511,627,776

6

Chapter 2

Background

In this chapter, overarching concepts important to this thesis are discussed, along with alter-

native approaches to big data analysis.

A useful way of analysing the performance of a system is to categorise similar algorithmic

patterns to predict performance (Section 2.2). I/O is a major bottleneck in atmospheric science

so it is important to understand how to measure I/O performance (Section 2.3), as well as why

data size is a problem in atmospheric science (Section 2.4). One way to improve performance

of analysis applications in atmospheric science is to run them in parallel. This means that par-

allelism needs to be understood (Section 2.5), along with what factors affect I/O performance

(Section 2.6). In order to understand the results from investigating application performance,

the platforms which analysis is performed on need to be understood (Section 2.7). There are

many other valid approaches to dealing with atmospheric big data, some of which are outlined

in Section 2.8.

2.1 Atmospheric science model performance

Having useful measurements of performance is an important aspect of understanding perfor-

mance. The performance of climate and weather models is an important area of research, due

to not only the computationally intensive nature of the simulations – due to increasing res-

olution, complexity, and increasing ensemble sizes – but also the importance of the research

providing scientific input to global policy decisions; for example the IPCC AR5 report (Stocker,

2014).

Having a useful set of realistic metrics to assess the cost of running a global model is in-

7

Chapter 2. Background 2.2. Categorisation as a method to analyse performance

credibly useful. Balaji et al. (2017) propose a set of metrics that are representative of the actual

performance of the models. For example, flops are not always a useful metric, whereas the

number of simulated years per day is a much more relevant. Developing a similar set of per-

formance metrics for data analysis would allow better profiling of data analysis applications.

The first stage of this is to identify the areas where performance is affected.

2.2 Categorisation as a method to analyse performance

Characterisation of patterns in data can be used to gain an understanding of a system. Like-

wise, characterisation of different patterns in data analysis can help understand those applica-

tions. Similar algorithms can then be grouped by their characteristics, and then analysed for

the best way to implement the applications for use with big data. Future applications which

fit into the same groups could be solved in a similar way, making it easier to efficiently write

those programs.

The Berkeley Dwarves provide a way of looking at parallel HPC applications on multicore

processors (Asanovic et al., 2006). With a similar aim, but with a focus on data analysis, the

Big Data Ogres were proposed (Jha et al., 2014). The Ogres provide four key facets to aid the

understanding of big data analysis. These are:

1. the problem architecture facet,

2. the execution features facet,

3. the data source and style facet,

4. and the processing facet.

The problem architecture describes the way in which the problem has to be solved, for instance

in a pleasingly (or ebarrassingly) parallel way, using shared memory, or machine learning

(these will be discussed in Section 2.5.4). The execution features describe limiting factors, such

as the I/O balance with the compute, and the limitations imposed by big data (discussed in

Section 2.6). The data source and style facet describes the data itself, such as whether it is

binary file format or a database, or the source of the data. The final facet, processing, describes

the specifics of the algorithm, such as search and query, graph algorithms, and local and global

machine learning.

8

Chapter 2. Background 2.3. Measuring I/O performance

The Ogre’s facets can be more specifically applied to work in atmospheric science. Exam-

ples of how each facet could describe problems in atmospheric science:

1. Problem architecture, for example, could be a pleasingly parallel problem involved with

retrieval over images, or could be a machine learning algorithm clustering atmospheric

phenomena.

2. The execution features depend heavily on the algorithm, especially the balance between

I/O and computation time (I/O-CPU balance), the data size, and the number of different

fields required for the analysis.

3. The data source and style would typically be binary data for climate analysis or weather

forecasting, but could be other data types, such as CSV files, images, or a proprietary

data type.

4. The processing algorithm describes the specifics of the algorithm, for example, the spe-

cific clustering, or tracking algorithm.

In order for categorisation to be useful, an understanding and quantification is required

for the factors which affect the performance. With analysis of large data sets in atmospheric

science, typically I/O is a major bottleneck (Balaji, 2015).

2.3 Measuring I/O performance

Note that, throughout this thesis only reads will be discussed because data analysis on large

data sets in atmospheric science is generally executed on data stored in an archive, which was

produced by a numerical model. This means that reads are significantly more dominant than

writes in most cases. Read performance can be quantified in different ways. Those discussed

here are:

• read rate,

• bandwidth,

• I/O operations per second (IOPS),

• and throughput.

9

Chapter 2. Background 2.3. Measuring I/O performance

The read rate measures the speed of the operation and is defined as the amount of data

transferred per second, for example if 600 MB were transferred in one minute the read rate

would be 10 MB/s. The bandwidth is the maximum potential performance limited by the

hardware being used. The minimum bandwidth in a system will constrain the total bandwidth

available, for example if a filesystem has a bandwidth of 10 GB/s, but the local area network

has a bandwidth of 1 GB/s, the network would limit the maximum rate. Note that this is a

theoretical limit imposed by the hardware, which may not be achievable in reality. IOPS (I/O

operations per second) describes the rate of which I/O operations can occur, including both

reads and writes. This is also a theoretical limit, and hardware often quotes maximums for

reads and writes, for sequential (where the next I/O operation is the neighbouring piece of

data) and random (where the next I/O operation is not the neighbouring piece of data) – the

random IOPS is lower than the sequential IOPS. Finally, the throughput is defined as the IOPS

multiplied by the size of the I/O operation, meaning to improve performance either the read

size, or the IOPS needs to increase.

Benchmarking applications can be used to assess the I/O performance of a system, and this

can be used to help understand how an analysis application would perform. Four different

applications will be discussed here, however, none of these quantitatively assess where in the

software-hardware stack performance is being affected, only the overall results – this provides

motivation for the work in this thesis.

On Linux based systems, a simple way to profile I/O is using the dd utility1. dd measures

the read and write times and uses arguments to vary parameters, outputting the wall time

(real-world time from start to finish for the application) and the respective read or write rate.

It allows the size of the buffer to be varied. This controls the size of the individual reads

and writes, for example a 1 GB read could have a buffer size of 1 MB, meaning 1000 reads

were executed. The advantage and disadvantage of dd is its simplicity, as it only enables one-

dimensional read and writes of binary data, and has no inbuilt way to assess parallel reads.

IOR2 is a parallel benchmarking application, which allows much more control than dd,

giving options including: the file type (including NetCDF, and HDF – see Section 2.4), the

number of parallel tasks, the buffer size, and the number of files per task. This allows the

performance on parallel file systems, and HPC clusters to be assessed, and so predict how

1https://linux.die.net/man/1/dd
2https://github.com/LLNL/ior/blob/master/doc/USER GUIDE

10

Chapter 2. Background 2.3. Measuring I/O performance

parallel applications would perform. This is still a relatively simple benchmark however, and

so may not be truly representative of the performance for scientific applications. An example

of IOR results from JASMIN are shown in Figure 2.1.

IOR can be used to synthetically and accurately model applications (Shan et al., 2008). The-

oretically, the arguments of IOR can be used to replicate the I/O of an application to measure

how it would perform on a system without having to run the application, saving time. How-

ever, the opinion of some studies is that it can be difficult to relate the IOR arguments to real

applications (Borrill et al., 2007; Lawrence, 2014).

Figure 2.1: I/O scaling results from JASMIN using IOR measuring total bandwidth (y-axis, in
GB/s) scaling with number of shelves (See Appendix A). Figure from Lawrence (2014)

Benchio3 was designed to give a more flexible benchmark which is more applicable to

scientific analysis than IOR (Lawrence et al., 2017). Firstly, it provides more control of the

parallel decomposition to more accurately represent read patterns in applications. Secondly,

it is less opaque than IOR, enabling more conclusions to be drawn about what is affecting

the I/O rate. Finally, benchio is able to use three-dimensional data, meaning it is much more

relevant for scientific applications.

MADbench2 (Borrill et al., 2009) is an application derived benchmark, developed from

analysis of the cosmic microwave background (electromagnetic radiation which can provide

information on the early universe). It provides more information than the previous bench-

marks discussed above, including the time spent in CPU based calculations, and the I/O time.

It allows adjustment of the scale of the benchmark, parallelisation, and system specific settings.

The aim of this benchmark was to measure and compare the performance of systems rather

than predict quantitatively how other applications would perform.

3https://github.com/EPCCed/benchio

11

Chapter 2. Background 2.4. Atmospheric science data

Instead of measuring the performance of applications directly, statistical modelling can be

used to predict the performance of the applications by identifying important elements of the

access path. Schmid and Kunkel (2016) showed that artificial neural networks can more accu-

rately predict performance than a linear model, where linear models are not a valid method of

performance analysis.

2.4 Atmospheric science data

For a given analysis problem, the data size affects the number of floating point and I/O op-

erations, each of which can increase the run time. Higher fidelity models and observations,

and larger ensemble sizes produce larger amounts of data, all of which needs to be analysed.

For example CMIP6 is expected to produce 10-20PB of data (Cinquini et al., 2014), compared

to CMIP5 which produced around 3 PB (Liu et al., 2015). As the data size becomes larger, the

analysis problem becomes more difficult.

Higher spatial resolutions provide a number of benefits for atmospheric models. Firstly,

high horizontal and vertical resolutions mean that atmospheric phenomena and topography

are more accurately represented (demonstrated in Figure 2.2), improving the accuracy of mod-

els. Secondly, with higher resolutions less parametrisation (representing phenomena with pa-

rameters when they are not resolvable) is needed, potentially improving the accuracy of mod-

els. For instance, at higher resolutions (around 1km) convection is resolvable.

Higher temporal resolutions are often required to ensure stability with higher resolution

models. Also, higher temporal resolutions can resolve phenomena more accurately. Quite

often, not all timesteps are outputted from the model – either timesteps are skipped when

saving the data, or an average is calculated over a time period, and the result saved. Higher

temporal resolutions are needed when analysing models if fast moving phenomena are being

studied, such as gravity waves.

Ensembles are used to capture variability in chaotic systems. Each ensemble member has

slightly different initial conditions, so each will have a different representation of the atmo-

sphere. The variability in the atmosphere is more accurately represented by having a larger

number of ensemble members, but this also means there is more data to analyse.

The volume of data in atmospheric science is a problem since I/O is a major bottleneck

(Méndez et al., 2013; Gao et al., 2011). With traditional, serial analysis programs which are

12

Chapter 2. Background 2.4. Atmospheric science data

often either made for a very specific task, or are legacy programs which were used for analysis

on smaller data sets, the program may not complete the analysis in a timely manner. The latter

is an obvious problem, but the former is a problem from a productivity standpoint – having

to wait a long time for analysis to finish degrades productivity. Analysis programs taking less

time, and producing results faster also means that more science can be done.

Before discussing an example of why big data is a problem in atmospheric science, the

nomenclature of the resolution of atmospheric models needs to be described. Figure 2.2 shows

an example of the nomenclature used with climate models to describe the resolution (this

nomenclature is used for the MetOffice Unified Model, other models may use different nomen-

clature). Nx describes the horizontal resolution according to the formula [2x, 3x/2], for instance

N216 has 532 longitude points, and 324 latitude points, N512 has 1024 longitude points and

768 latitude points, and N2048 has 4096 longitude points and 3072 latitude points – the number

of points for all the resolutions in Figure 2.2 is shown in Table 2.1 (plus N2048). The number of

levels in the model is then describe by an L followed by a number, i.e. L80 has 80 vertical levels,

and L180 has 180 vertical levels. This is combined to give a spatial description of the model,

e.g. N512L180 would have dimensions (in height, latitude, longitude order) of [180,768,1024]

– this order is used in the thesis to describe the slowest to fastest varying dimension.4

Table 2.1: Number of latitude and longitude grid points for each resolution.

Resolution Longitude Latitude Size in MB
N48 96 72 0.055
N96 192 148 0.22

N216 512 324 1.33
N512 1024 768 6.3

N1024 2048 1536 25
N2048 4096 3072 100

As an example of why data volume is a problem for atmospheric analysis, consider the

following when analysing stored data (most analysis in atmospheric science is done post run-

time, when the data is stored in an archive, or analysis platform). In the first case consider

results from an atmospheric simulation run for 1 year with a 6 hourly timestep and a middling

resolution of N216L80, meaning the dimensions are [1440x80x324x512]. This means the dataset

has a size 152 GB with each element an 8 byte floating point numbers. At peak read rate of

1GB/s (the approximate theoretical maximum for a serial process on JASMIN (Lawrence et al.,

4Longitude values for the first latitude value and height value are contiguous on disk, followed by the next set
of longitude values for the next latitude value and first height value, as shown in Figure 2.7.

13

Chapter 2. Background 2.4. Atmospheric science data

(a) N48 (b) N96

(c) N216 (d) N512

(e) N1024

Figure 2.2: Representation of Europe in the different resolution models as part of a global
model. Blue denotes sea, and the other colours denote the elevation of land.

2012)), this read would take around 152 seconds. At a realistic inefficient read rate of ap-

proximately 10MB/s (from the investigation into read performance in Chapter 3), this would

increase to 253 minutes – a significant increase but not unreasonable.

Now consider the same analysis on high resolution N512L180 hourly data, with dimen-

sions of [8640x180x768x1024] – 9.8TB in size. At the 1GB/s read rate it would take 163 minutes

to read the data, however at 10MB/s it would take 11.3 days to read the data - obviously

impractical. At even higher resolution this problem would be compounded. As well as resolu-

tion, when analysing ensembles this must be multiplied by the number of ensemble members.

There are a number of ways to potentially improve the read rate: identifying where there

14

Chapter 2. Background 2.4. Atmospheric science data

are factors influencing the read rate (Section 2.6), implementing the analysis in parallel (Section

2.7), along with other techniques discussed in Section 2.8.

One of the most widely used data formats in atmospheric science is the Network Common

Data Format (NetCDF)5. Figure 2.3 shows an example of the proportion of data stored in the

JASMIN workspaces. NetCDF4 is built on HDF5 (Hierarchical Data Format version 5). (Note,

NetCDF3 is an older format of NetCDF not built on HDF5, and does not allow chunking (see

Section 2.4.1) so is not investigated in this thesis, for a comparison between NetCDF3 and 4

performance see Welch et al. (2010)).

 1-9B
 10-99B

 100-999B
1-9kB

10-99kB
100-999kB

1-9MB
10-99MB

100-999MB
1-9GB

10-99GB
100-999GB

1-10TB
0

1,000

2,000

3,000

4,000

5,000

6,000
Volume (TB): All

bundle
code
figs
hdf
nc
other
pp
txt
wmo

Figure 2.3: Data stored at JASMIN on the group work spaces (June 2017), split into the file
size(x-axis), total volume (y-axis), and the composition from different file types. (B.Lawrence,
personal communication) Note, the histograms are stacked.

2.4.1 HDF5

HDF5 is a versatile, portable data format which can be used to store large data sets, and it

allows the use of chunking and compression6. Chunking (an implementation of multidimen-

sional tiling) allows files to be reorganised on disk to improve read rates for different access

patterns (Welch et al., 2010) – discussed in Section 2.6.3. Chunking can improve the perfor-

mance of partial I/O (when only sections of the file are being read) (Rew, 2013). This is be-

5https://www.unidata.ucar.edu/software/netcdf/
6https://support.hdfgroup.org/HDF5/

15

Chapter 2. Background 2.5. Parallelisation

cause, in order for partial I/O to be most efficient the data selected must be contiguous on

disk, which chunking allows. The chunks can be compressed to reduce the size of data on disk

– compression is discussed in Section 2.6.4. Chunking and compression can have a large effect

on the read rate (Bartz et al., 2015).

2.4.2 NetCDF4

NetCDF4 is popular in the scientific community because it is a self describing, platform in-

dependent binary file format. NetCDF4 allows the use of zlib compression (Lee et al., 2008)

which allows sections of the file to be compressed and accessed individually (in this case the

sections are chunks) – compression is discussed in more detail in Section 2.6.4. zlib compres-

sion provides a good balance between compression ratio and compression speed (Liu et al.,

2015) without losing accuracy in the data (lossless compression). The data size is reduced so

less data is read from disk, meaning the time to read the file could decrease (Miller, 2015), but

obviously this data will then need to be uncompressed on the processing node, meaning there

is a balance between increased read rate due to fewer bytes being read, and the extra compu-

tation required to uncompress the data. The compression of NetCDF4 requires the data to be

chunked so the interplay between chunking and compression could have a significant effect

on the read rate. The author is not aware of any literature which looks at how the interplay

between compression and chunking affects the read rate.

2.5 Parallelisation

Running an algorithm in parallel means splitting an algorithm into sections and running these

sections on multiple processors. If these section are run simultaneously they are concurrent.

This may be done because of the volume of work (calculations or I/O) in the algorithm, or

because a single node does not having enough memory to process the data required (utilising

multiple nodes can increase the effective memory available for the algorithm). Parallelising an

algorithm into multiple tasks can reduce the time for an algorithm to complete. Parallelisation

on multiple nodes also means utilising more network interface cards (NICs), increasing the

available I/O bandwidth; so that if the I/O is run in parallel, the I/O time can be reduced.

This last point is important as it is well known that I/O is a major bottleneck for analysis in

atmospheric science, serial data processing is no longer an optimum solution (Balaji, 2015),

16

Chapter 2. Background 2.5. Parallelisation

and concurrent reads are crucial for high speed reads (Lofstead et al., 2011).

2.5.1 Strong and weak parallel scaling

Strong and weak scaling is an important concept for analysing results with parallel application

performance. Strong scaling is where the size of the problem stays fixed, but the number of

concurrent tasks is increased. Weak scaling is keeping the size of the problem per task the

same, but the total size of the problem increases with the number of tasks. An example of the

difference can be demonstrated when reading data to test the I/O scalability of a system. In the

strong scaling case a single task could read from a 1 GB file, then two tasks would either read

half the file each, or two 500 MB files – keeping the total size the same. In the weak scaling case,

with two tasks, each would read from a 1 GB file – the total size of the problem has doubled.

2.5.2 Amdahl’s Law and Gustafson’s Law

In its simplest sense, parallel computing is purely using more than one processor to complete

a task. However, the proportion of a workflow which must be executed in series limits the

available speedup (the parallel algorithm’s time to complete divided by serial algorithm’s time

to complete). With a fixed problem size this is described by Amdahl’s law, which gives an

upper, theoretical, limit on how much a task can be sped up, depending on how much must

be executed in serial. The maximum speedup of a task is described by:

R(P)/R(1) =
1

S + (1 − S)/P
(2.1)

where R(P) is the rate of completion of a task using P processors and S is the fraction of the

time spent doing tasks in serial (Amdahl, 1967). In an idealised situation using an infinite

number of processors, the maximum speedup is maximum 1/S, so for example for a process

in which 10% must be done in serial, the maximum speed up is 10 times.

Gustafson’s Law does not assume a fixed problem size (strong scaling), and instead as-

sumes that as the computational power of a system increases, more work will be done (weak

scaling) (Gustafson, 1988). This gives no limit to the possible speedup when the problem size

increases.

17

Chapter 2. Background 2.5. Parallelisation

2.5.3 Flynn’s Taxonomy

Flynn’s taxonomy is a classification scheme for central processing units (CPUs). There are four

classifications, which are described by the number of instruction or data streams are being

used, this is shown in Table 2.2. SISD (single instruction multiple data) is where a single pro-

cessing unit (PU) receives a single instruction stream from memory and a single data stream,

giving a single operation at a time; an example of this would be old single core personal com-

puters (PCs). MISD (multiple instruction single data) describes when multiple instructions

streams operate on the same data. MISD is generally used for fault tolerance, where all results

from the instruction stream must agree. SIMD (single instruction multiple data) describes a

computer in which a single instruction stream works on different streams of data working in

parallel to process data faster with no parallelisation of the instruction stream. An example of

SIMD would be a graphics processing unit (GPU). MIMD (multiple instruction multiple data)

on the other hand, parallelises the instruction stream and the data stream, an example of which

would be a modern PC or cluster. (Flynn, 1972)

Table 2.2: The four types of computer architecture according to Flynn’s taxonomy.

Single instruction stream Multiple instruction streams
Single data stream SISD MISD

Multiple data streams SIMD MIMD

MIMD can be further divided into SPMD (single program multiple data), and MPMD (mul-

tiple program multiple data). These two roughly describe different techniques to parallelise

workflows: either as a single program executing on different sections of data, to process the

data faster, which could also be described as data parallel or domain decomposition; or multi-

ple different programs where sections of the workflow are split between processors, this could

also be called task parallel (Blank and Nickolls, 1992). Typically, data parallelisation is the dom-

inant form of parallelisation on modern computers (MIMD type) (Hager and Wellein, 2010).

Typically, most applications, however, will use a combination of data and task parallelism.

2.5.4 Parallel computing models

During the discussion on Big Data Ogres in Fox et al. (2014)(the key facets were discussed in

Section 2.2), there were five computing models described (the problem architecture facet). It

is important to discuss the relevance of these computing models for the work in this thesis.

These are:

18

Chapter 2. Background 2.5. Parallelisation

• classic MapReduce,

• iterative Map-Collective,

• iterative Map-communicative,

• pleasingly (or embarrassingly) parallel,

• and shared memory .

The MapReduce and pleasingly parallel models are shown in Figure 2.4. All of these in terms

of Flynn’s taxonomy would, for most workflows, be classed as SPMD, or data parallel.

Figure 2.4: Representation of the three families of MapReduce, plus pleasingly parallel (or map
only). From Fox et al. (2014) (Figure 2).

The first family of MapReduce is commonly known as classic MapReduce; it was the orig-

inal version of MapReduce introduced by Google (Dean and Ghemawat, 2008). In this version

of MapReduce the input data or input files are split and sent to map functions which then

perform some algorithm, which, for example, could be a sort or search algorithm. The results

from the map stage are then sent to the reduce stage where a function typically will summa-

rize the results from the map stage, or could merge values to give a smaller set of results.

Typically MapReduce is used for analysis tasks such as web based big data, but there has been

some work on how to extend this to scientific data (see Section 2.8 for a discussion on some

approaches).

The other two families of map reduce are iterative Map-Collective and iterative Map-

Communication. The former uses a collective stage to gather data and recast it out for another

iteration of the algorithm. A common implementation of this would be in clustering, where

data is collected into regions over a number of iterations, becoming more accurate after more

iterations of the algorithm. Map-Communication has the communication included as part of

19

Chapter 2. Background 2.6. Factors affecting I/O performance

the processing algorithm (before the reduce) and is also iterative. An example of the use of this

would be for solving graph algorithms.

Pleasingly (or embarrassingly) parallelism is in many ways similar to MapReduce, but with

no reduce stage. Like the map stage of MapReduce, the input data is split between processors

and these processors implement an algorithm. There is no communication between processors.

Shared memory is a technique that allows multiple processors to access a large pool of

memory, negating the need for explicit communication between the processors, because they

can all access data in the memory.

2.6 Factors affecting I/O performance

Many factors can affect the read performance of analysis. Figure 2.5 depicts factors which can

affect the read performance, and from what area of the software-hardware stack they originate.

The I/O time is affected by the size of the data, the software, the bandwidth defined by the

hardware, and the access pattern to the data. The size of the data and the system settings

are generally not adjustable by the user implementing the analysis – the system options, such

as stripe width, are sometimes configurable but often users do not configure them. It is well

known that access patterns and data organisation have a large impact on I/O rate and can

dominate other costs in analysis (Childs et al., 2005). How the software and hardware, and the

tunable parameters chosen either by the user or the system administration, interact can also

have a large impact on the I/O rate and therefore affect the workflow.

Figure 2.5: Factors which can affect the read rate for a program. The blue boxes show in which
section of the software-hardware stack each factor is contained.

The relationship between the indexing in the logical data array and the data layout on disk

20

Chapter 2. Background 2.6. Factors affecting I/O performance

can have a significant effect on the read rate. Before going into detail about access patterns, it

is useful to discuss how data is accessed on a hard disk drive (HDD).

2.6.1 Data access from a HDD

Data is stored on disk as a one-dimensional stream of bytes. The relation between the logical

order in array space and file space is depicted in Figure 2.6. When the file system requests data

from a storage disk, the read head is moved to the correct distance from the centre of the disk

so that the correct track on the disk is selected – the track is the path covered by the read head

as the disk rotates. The time for this movement of the read head to the track is called the seek

time. Once the head is on the correct track, it needs to wait for the data to move under the

head, this time is known as rotational latency. The total time to access the data on the disk is

the sum of these two times. The initial part of data read from the sector is the header (a sector

being the smallest amount of data that can be read or written to disk) and the last part of the

sector is the trailer. A header defines the start of the sector and contains metadata about the

sector. The trailer defines the end of the sector and contains error correcting code for the sector.

This is not to be confused with the header for a file, which can contain metadata on the file.

A file is composed of many sectors. The mapping between files and sectors is controlled by

the file system. A file is composed of many of these sectors, which, in an idealised situation or

clean disk, are stored in order (in practice files will be fragmented, or spread, throughout the

disk). (Silberschatz et al., 2013)

Figure 2.6: Relationship between the logical layout of the data in array space (left), and file
space (right). The fastest varying dimension is labelled ’Dim 1’.

Data is stored as a one-dimensional stream of bytes, so understanding how this translates

to multidimensional data is important. In the array order, the fastest varying dimension (x

in the examples here) sits contiguous on disk for the first value of y, z, and t. The next set of

x values, for the second y value and first z and t, lies next on disk. Once y has reached its

maximum value then z will increase, and so on until the end of the data array. This is shown

21

Chapter 2. Background 2.6. Factors affecting I/O performance

in Figure 2.7(a) (in this example there are 4 x, 2 y, 2 z, and 2 t values).

2.6.2 Read patterns with multidimensional arrays

The read pattern can have a significant effect on the read rate. Figure 2.7, and 2.8 shows an

example of how the read pattern affects the read rate. With the ’normal’ laid out file, the x-t

read would be a non-sequential read, which severely reduces the read rate. One technique

to avoid this would be to rearrange the data in the file, either by changing the layout of the

files (Dong et al., 2013), or by using multidimensional tiling (Section 2.6.3). By optimising the

read rate for one read pattern, the read rate for other read patterns can be handicapped. One

strategy to avoid this is to store multiple versions of the data. This is not an ideal solution,

however, because it increases data storage costs, although compression can reduce this cost by

reducing the data volume. Compression of data could also increase the read rate because of

less data being read from disk (Baker et al., 2014).

(a)

(b)

Figure 2.7: Demonstration of the effect of multidimensional tiling to the logical layout of a file
in 1D. The blue colour shows an x-y read and red shows an x-t read. (a) shows the normal
layout of the file with no chunking applied – x varying first, then y, z, finally t until the end of
the array. (b) shows a layout with a chunk shape that contains all x and t – x varies, then t, then
y, z until the end of the file. This means that a read in x-t space will read significantly faster in
(b) than (a), but the x-y read will be slower.

2.6.3 Multidimensional tiling

Multidimensional tiling is where the logical order of the array is maintained, but the order of

bytes on disk is changed, depicted in Figure 2.9. An example of this would be in Figure 2.7

22

Chapter 2. Background 2.6. Factors affecting I/O performance

Figure 2.8: Same as Figure 2.6, but with the red box showing how a slice in array space relates
to the access pattern in file space.

– when the tiling has changed the order of the file to [z,y,t,x], the arrays are still indexed as

[t,z,y,x]. This is a trivial example, but keeping the logical array indexing the same is important

in cases where the chunking does not just change the order of the dimensions. For instance,

the tiles could be small hypercubes a tenth of the size of each dimension; if this changed the

way to index the array it would significantly complicate analysis scripts. The flexibility of

multidimensional tiling allows the performance of many different read patterns to improve,

but at the cost of the performance of others. An implementation of multidimensional tiling is

HDF5’s chunking.

Figure 2.9: Same as Figure 2.6, but with multidimensional tiling applied to the file, giving
four chunks. The layout is changed so the access pattern in the red box is contiguous in file
space. The yellow boxes show where the file size has been increased because of the mismatch
between the tile shapes and the array dimensions.

2.6.4 Compression

Compression reduces the size of data by using an algorithm to discover patterns in the data,

so that the file can be represented as repetitions of patterns in the file; reducing the amount

of bytes it takes to represent it. There are many different types of compression algorithm,

which fall into two main groups, either lossy, or lossless compression. Lossless compression

compresses the data without losing any accuracy in the data. Lossy compression however does

reduce the accuracy of the data: it identifies unimportant information and removes it from the

data (Huang et al., 2016).

Compression can be broadly grouped in to three categories based on how it is imple-

mented. The first method treats the data as a one-dimensional stream of bytes with no knowl-

23

Chapter 2. Background 2.7. Parallel data analysis in a HPC environment

edge of the data itself. The algorithm then identifies redundancy in the byte stream. This

method is generally not very effective with floating point numbers. The second method in-

troduces some prior knowledge about the data type, so is more effective with floating point

numbers. However, the floating points are still treated as a one-dimensional array, so it does

not perform well with scientific data, where redundancy is often in higher dimensions. The

third method applies more prior knowledge about the data, including the relationships be-

tween the dimensions. This allows redundancy to be identified along multiple dimensions,

which allows greater levels of compression for scientific data. However, this method is slower.

It is well known that floating points do not compress particularly well with lossless com-

pression (Hübbe et al., 2013). An example of a lossy compression method could reduce the

accuracy of the data, removing non-scientific, essentially random, data by reducing the signif-

icant digits of the data and so reducing the number of bits needed to store the data when con-

verted to integers using a scale and offset (Zender, 2016) (reducing the accuracy of the floating

point numbers is not suitable for every work flow, for example, budget studies). Bit grooming

is an example of this method, and is similar to the more well known method, ’bit shaving’. Bit

shaving converts the floats to integers by multiplication by the number of decimal places, then

sets numbers beyond the number of significant digits (nsd) to 0 (Caron, 2014); introducing er-

rors as an underestimation of the true values. Setting the bits to 1 instead overestimates the

true values. Bit grooming alternates between 1s and 0s giving a better estimation of the true

value (Zender, 2016). The data is still stored as floats in the NetCDF4 file, so not reducing the

size of the file – it needs to be compressed in order to gain the benefit of reducing the number

of significant digits. This method can improve the effectiveness of NetCDF4 compression.

2.7 Parallel data analysis in a HPC environment

A HPC data analysis cluster is composed of, generally, two components: a processing cluster,

and a parallel file system. Each are connected via a high-speed network, and can consist of

homogeneous (all the same), or heterogeneous (not all the same) nodes.

2.7.1 Compute cluster

Processing nodes in a HPC compute cluster are connected to each other via a network, and

to a filesystem. Each node consists of one or more multicore processors with memory which

24

Chapter 2. Background 2.7. Parallel data analysis in a HPC environment

all cores can access. Comparing a personal computer (PC) and a HPC cluster (Figure 2.10), a

PC consists of typically one multicore processor, and HDD (or other drive), which are directly

mounted, whereas the connections to the storage system in a HPC cluster are over a network.

Access to a HPC cluster is usually by a batch queuing system, allowing jobs to be submitted to

be processed.

(a) Simplified PC (personal computer) architcture

(b) Simplistic schematic of a HPC cluster with parallel file system. The processing
cluster is on the right composed of processing nodes, and the file system is on the
left composed of storage nodes and hard disks. NB a processing node consists of
RAM and a processor.

(c) Hadoop type cluster

Figure 2.10: Comparison between a typical PC, and a HPC cluster (a) and (b), and a parallel
filesystem and distributed filesystem (b) and (c). Lines denote direct mounting, and arrows
denote a network.

25

Chapter 2. Background 2.7. Parallel data analysis in a HPC environment

2.7.2 Parallel file systems

A parallel file system consists of multiple storage nodes connected to a network, designed

to store large volumes of data, with fast (often parallel) access, while also providing a global

shared namespace for directories and files. The shared global namespace allows access of

the data without the user needing information about which specific nodes or disks the data is

stored on – this is handled via metadata in the filesystem. A distributed filesystem (an example

of which is Hadoop, shown in Figure 2.10) is also designed to store large volumes of data for

fast access. The differences are that:

• On a distributed file system, each file is stored on a single node, whereas on a parallel

file system a file can be split over multiple nodes.

• With a distributed file system, the storage is often, but not always, directly mounted to

the processing nodes, whereas a parallel file system will be separate from the processing

nodes.

To determine how a file is split between disks and nodes, a RAID (redundant arrays of in-

dependent disks) algorithm is often used to ’stripe’ the data (see Figure 2.11) – note RAID

algorithms are also used in non-parallel filesystems where multiple disks are used. Both RAID

and parallel filesystems can be used to improve I/O performance.

Figure 2.11: Same as Figure 2.6, but with striping applied to the file. In this example, the file
is split between two disks in a round-robin style, where alternate stripes are stored on each.
(Note, this example shows RAID0 because no redundancy is included.)

A RAID algorithm can offer improved access speed or redundancy for data, depending on

the type. The most important types of RAID algorithms to discuss here are RAID 0, RAID 1,

and RAID 5. RAID 0 is where the files are ’striped’ across multiple disks to improve the trans-

fer rate – striping is where the blocks (small elements of the file) are spread across multiple

disks. RAID 0 does not provide any redundancy. RAID 1 is where the disks have a mirrored

copy. This provides strong redundancy, and increased access speed, but is expensive for large

26

Chapter 2. Background 2.8. Alternative approaches to handling big data

volumes of data. RAID 5 uses the same striping idea as RAID 0, but with redundancy pro-

vided by distributed parity. Parity is a system which can be used to detect errors in data and

reconstruct it (Silberschatz et al., 2013).

The way the data is distributed in a parallel file system can have a large effect on I/O per-

formance. The data distribution will depend upon the parallel file system settings, including

RAID, stripe width (size of the stripes), and a minimum file size for striping. A logical file is a

stream of bytes, in a parallel file system this is split amongst multiple nodes, and where each

section of the file is stored is controlled by a manager node, transparently to the user. The dis-

tribution is often a round-robin distribution as shown in Figure 2.11. Using multiple storage

nodes enables greater maximum achievable bandwidth to the data, however, the performance

could also be affected by the relationship between the read and the stripe width – performance

is best when the read matches the stripe width – and likewise, multidimensional tiling will

interact with the striping.

More specific details on the platforms used in the thesis are included in Appendix A.

2.8 Alternative approaches to handling big data

The aim of this thesis is not to compare different approaches to parallel data analysis, but to

provide quantitative knowledge about factors which affect the I/O performance in a workflow;

to provide more general information for developers of software and users of HPC clusters.

However, there are many projects looking to improve parallel analysis. Some are outlined

here.

Parallel libraries, particularly in Python, attempt to implement parallelism with minimal

effort for the user. For example, DistArray7 aims to have a similar API to the Python library

NumPy (popular array based data processing library), but to parallelise operations by using

distributed arrays. Another library, Dask8, represents parallel computations as a task graph,

with each operation represented as a node, and the vertices describing how the operations

interact. A task scheduling algorithm then implements the graph in parallel.

Middleware (software which sits between the application and operating system), can be

used to improve the I/O speed either by implementing the I/O in parallel (MPI-IO 9), continu-

7http://docs.enthought.com/distarray/
8https://dask.pydata.org/en/latest/
9http://beige.ucs.indiana.edu/I590/node86.html

27

Chapter 2. Background 2.8. Alternative approaches to handling big data

ously characterising I/O patterns to improve the parallel access (Darshan 10), or separating the

I/O from the application allowing the same script to be run on different platforms efficiently

(ADIOS 11).

ADIOS is middleware which allows an application to decouple from the platform I/O (Lof-

stead et al., 2008). ADIOS provides a system to describe the data and platform specific factors

outside the application through a simple configuration file, meaning that a single application

can be effective on multiple platforms. ADIOS also has the ability to use BP (binary packed)

files, which gives beneficial performance for reads along multiple dimensions (not normally

the case, see Section 2.6) for data with greater than two dimensions with large files (Lofstead

et al., 2011). This could solve many of the problems for large data analysis in atmospheric

science, if a similar technique was applied to NetCDF4 files.

MapReduce and Hadoop are commonly used in BigData analysis in fields other than at-

mospheric science. Their advantage is that they easily allow large scale parallelisation across

clusters (Dean and Ghemawat, 2008). However, for scientific data, the MapReduce model may

not work well because of the mismatch between the logical layout of the data in dimension

space, and the physical layout on disk. Buck et al. (2011) aimed to provide metadata about

the dimensionality of the data to the Hadoop framework in order to improve its performance

with scientific data. Another approach to using Hadoop for processing scientific data is to

provide HPC levels of performance to Hadoop-like workflows (Jha et al., 2014). Spark12 is an

adaptation of Hadoop which reduces I/O operations by keeping data in memory. SciSpark

is an extension of Spark to scientific data (Palamuttam et al., 2015), which could give signifi-

cant benefits to big data analysis in atmospheric science. H5Spark (Liu et al., 2016) is another

similar approach of using Spark with atmospheric data.

Along with the more general tools and approaches above, another way of providing good

performance for big data analysis is to create bespoke applications, or software suites. This

allows any complicated programming to be implemented by software engineers, in order to

free up scientists to focus on scientific analysis. An example of this is OODT (Mattmann et al.,

2006). Some other technical solutions are described in Schnase et al. (2016) and Crichton et al.

(2012).

In the concluding chapter of this thesis, the results from Chapters 3-6 are compared with

10http://www.mcs.anl.gov/research/projects/darshan/
11https://www.olcf.ornl.gov/center-projects/adios/
12https://spark.apache.org/

28

Chapter 2. Background 2.9. Summary

other relevant approaches from literature, some of which are not discussed here.

2.9 Summary

There are many factors which can affect the performance of an application. The key bottleneck

to analysis application performance for atmospheric big data is the read rate. Generally, the

work which has been discussed in this chapter assesses how an application will perform on

a specific system, or provide some ways of dealing with large data sets. What is not quanti-

tatively investigated is how each layer of the software-hardware stack would affect an appli-

cation. This is crucial in order to make application design decisions before development and

assess how categories of analysis would perform. This thesis provides the first steps to this:

when considering the analysis which needs executing, what factors affect performance, and so

what design decisions should be made to avoid poor performance. Figure 2.12 shows which

factors affecting read performance are being analysed in each chapter of the thesis.

Figure 2.12: Different factors that can affect read performance, with the different colours show-
ing what chapter in the Thesis they are investigated in: green is Chapter 3, red is Chapter 4,
and orange is Chapter 5. White boxes are not investigated.

29

Chapter 3

NetCDF4 Performance on HPC Parallel

File Systems

NetCDF4 (see Section 2.4.2) is frequently used in atmospheric science (See Figure 2.3), as is

Python. The NetCDF4-python library is a very commonly used interface to NetCDF4 files with

Python, and other libraries are often built using it. An important aspect of NetCDF4, which

also makes it popular, is the ability to chunk and compress the data (see Section 2.4.2, and

Chapter 4). The performance studies investigating NetCDF4 mainly focus on the performance

compared to NetCDF3 (Lee et al., 2008), or as part of another library. An important first step

in investigating the effect on read rate from the software stack, is to establish the baseline

performance (meaning the best possible serial performance) when using netCDF4-python and

NetCDF4 files. As far as the author is aware there are no published studies which investigate

the performance of NetCDF4 in a serial implementation on HPC parallel file systems.

Analysing the performance of NetCDF4 for typical scientific workflows is critical, and is

the first stage in determining the effect on the read rate of chunking, compression, and parallel

reads.

The aims of this chapter are to:

• Evaluate the performance effect of using NetCDF4-python, and assess the reasons

for any reduction in performance.

• Evaluate the effect on the read rate for different read patterns and read sizes.

Knowledge of any effect on performance from factors outlined in the aims will enable de-

cisions to be made on what combination of factors gives the best compromise for read rate for

30

Chapter 3. NetCDF4 Performance 3.1. Methodology

large data sizes, and for different read patterns. Also, this knowledge will enable the identifica-

tion of bottlenecks in the I/O pipeline and whether the effect can be mitigated, or the problem

solved. The results from this chapter will provide a comparison for investigations into chunk-

ing and compression (Chapter 4), parallel reads from NetCDF4 files (Chapter 5), and the effect

on read rate for realistic workflows (Chapter 6).

Literature on the performance of NetCDF4 generally looks at the performance compared to

previous versions of the library, with performance examples of new features (Lee et al., 2008).

They do not assess the performance which would be seen from a typical user’s perspective.

The reason for this is that each work flow is very different and there is not a general solution

for every work flow and machine architecture.

The contributions from this chapter are:

• Quantitative read rate analysis from NetCDF4 files under a typical HPC analysis envi-

ronment for atmospheric science.

• Comparison between the performance of the NetCDF4 C library and the netCDF4-

python library.

• An evaluation of serial NetCDF4 performance on three UK atmospheric science HPC

platforms: JASMIN, ARCHER, and the RDF, each of which has a different type of parallel

file system (see Appendix A for details).

This chapter has been published in Jones et al. (2016), copies of which are available on

request.

3.1 Methodology

Performance is affected by different layers of the software stack shown in Figure 3.1. The

yellow shaded boxes show the variables being investigated in this chapter, and the grey boxes

show the variables tested in Chapter 4. The variables for each test are summed up in Figure

3.2. These variables are ones which a scientist wanting to do analysis can easily change, or are

factors which could affect the performance further up the stack.

31

Chapter 3. NetCDF4 Performance 3.1. Methodology

Figure 3.1: The left image shows the software stack for applications built on NetCDF4-python.
The netCDF4-python library relies on python (some of which is written in C) and the C
NetCDF library. C interfaces with the operating system (OS) which interfaces with the par-
allel file system to access the NetCDF4 data files. The right image depicts the NetCDF4 data
format. NetCDF is built on HDF5, which is a type of binary file. Boxes shaded in yellow are
being tested in this chapter, and areas shaded in grey will be covered later in the thesis.

Figure 3.2: Testing domain for this chapter, each box showing the variables, and each group
showing the category they lie in.

3.1.1 Testing Domain

The main investigation in this chapter is into the effect using netCDF4-python has on the read

rate. In addition, the file type and language were varied in order to identify any reduction

in performance in the software stack, this being necessary to localise the cause of any impact

on performance. Multiple file systems were used (by execution on different platforms) not as

a comparison between platforms, but to provide a wider test base to strengthen conclusions.

However, it is also a useful comparison to ascertain whether there is any difference in perfor-

mance between the platforms.

There are factors which can be varied in the OS and parallel file system related to how the

file system handles the data (storage location, and strip width for example), and how the OS

32

Chapter 3. NetCDF4 Performance 3.1. Methodology

caches data. This is a complex optimisation problem requiring specialist knowledge not within

the skill set of a typical user, and not within the scope of this thesis – also, the user may not

always have permission to change these parameters, or if they do, they may not want to.

The most basic level in the software stack was used to quantify the baseline performance

for each system, which was tested so that when more complex layers are added the effect on

performance can be attributed to a specific layer. This means that the cause of any change in

the performance can be discerned. The most basic test from the software stack (Figure 3.1) is

to read the plain binary file using C using the POSIX read functions, fseek() and fread().

Python is the final layer in complexity when reading from a plain binary file; the native Python

functions f.read() and f.seek() were used.

To affirm that the C program was performing correctly the dd 1 program, a simple Linux

utility written in C, was used to read the plain binary files. The dd read testing showed very

similar results to the C program reading from a plain binary file (the results for reads using dd

are not shown), showing the C program behaved correctly.

NetCDF4 is built on HDF5 which allows the file to be compressed and chunked. For the

work in this chapter the most basic form of a NetCDF4 file was used – a one-dimensional

unchunked and uncompressed field. The netCDF4-python library is built on the C NetCDF4

library so the performance of the latter needed to be evaluated, in order to evaluate the perfor-

mance of the python library.

NetCDF4-python is not the only Python library that can read NetCDF4 files. To provide

more information about whether any effect on the performance is caused by the combination

of Python and NetCDF4, or whether it was caused by the netCDF4-python library itself, the

h5netcdf (Hoyer, 2015) library was also used.

Different platforms were used to provide a larger testing base so that the results are more

widely relevant, and any potential system specific bottlenecks could be determined. Three

different parallel file systems on three different platforms available to the atmospheric science

community were tested on: JASMIN (Lawrence et al., 2012) which uses a Panasas file system2;

ARCHER (Henty et al., 2015) which uses a Lustre file system3; and the RDF 4 which uses a

GPFS file system5. For a more detailed discussion on the details of these platforms and file

1https://linux.die.net/man/1/dd
2http://www.panasas.com/
3http://lustre.org/
4http://www.archer.ac.uk/documentation/user-guide/
5https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs welcome.html

33

Chapter 3. NetCDF4 Performance 3.1. Methodology

systems, refer to Appendix A.

3.1.2 Read patterns

Non-sequential reads are well known to have a detrimental effect on the read rate (Childs et al.,

2005; Blower et al., 2013). It is important, however, to establish, quantitatively, how the read

rate is affected on the platforms that tests were run on.

Three read methods were evaluated: sequential reads, striding reads, and random reads.

Examples of the sequential and striding reads are shown in Figure 3.3. The sequential reads

access the whole file contiguously (that is in the order stored in the file), reading sections of

a given read buffer size until the whole file is read. The buffer sizes used started at 512B

and doubled up to the largest block size of 1GiB – a complete file read for each buffer size

comprised a single experiment. The striding read has the same process except it reads one

section of the given buffer size then skips three, repeating this pattern until the end of the

file. For the random reads, a set of one hundred uniformly distributed random numbers were

generated for the read offsets, the read is then performed for the required buffer size, e.g. 1

GiB. This number of reads was chosen to keep the chance of re-reading a section of the file

from cache low (reading from cache would artificially increase the read rate, because it would

be read from cache or memory). The random reads differ from the other reads in that the

direction of the seek is not always forward and the size of the strides through the file vary.

Figure 3.3: Examples of a sequential read (left) and a striding or striding read (right). The top
images show what the read would look like in two-dimensional array space, and the bottom
images show how the read corresponds to the read pattern through the one-dimensional file
space. The grey shows the first read and the black shows the second read.

The sequential reads were designed to simulate a best case scenario where the read from

the file is contiguous – a read where the bytes in the file are stored next to each other. The

striding reads are designed to simulate a read which is not contiguous in the file with a regular

stride pattern through the file. This is representative of a slice through a dimension which is

34

Chapter 3. NetCDF4 Performance 3.1. Methodology

not stored contiguously in the file (where there are two or more dimensions), see Figure 3.3

and Section 2.6. Striding reads are a common read pattern in atmospheric science analysis.

The random reads simulate a worst case scenario, where the direction of the seeks through the

file are not consistent, and neither is the distance of the seek.

3.1.3 Testing algorithm

Pseudo code examples of each read from plain binary files is included below. See Appendix C

for the full code.

Sequent ia l read

f = open (f i lename)

f o r number of b u f f e r s u n t i l end of f i l e :

data = f . read (b u f f e r s i z e)

Hopping read

f = open (f i lename)

r e a d o f f s e t = 0

f o r number of b u f f e r s u n t i l end of f i l e :

f . seek (r e a d o f f s e t)

data = f . read (b u f f e r s i z e)

r e a d o f f s e t = r e a d o f f s e t + 4∗ b u f f e r s i z e

Random read

f = open (f i lename)

r e a d o f f s e t s = genrandof fse t s (length =100)

f o r o f f s e t in r e a d o f f s e t s :

f . seek (o f f s e t)

data = f . read (b u f f e r s i z e)

3.1.4 Test files

For the binary tests using C and Python, a plain binary file consisting of random numbers

was created on each system using the Linux dd command. To avoid disk buffering as much

35

Chapter 3. NetCDF4 Performance 3.1. Methodology

as possible, the file size was set to be over twice the size of the RAM of the system. The file

size on all platforms was 256GiB (275GB). The plain binary file was read using fseek() and

fread() in C and f.seek() and f.read() in Python.

The netCDF4-python library was used to create the NetCDF4 files for testing. The file, as

with the plain binary files, was created to be over twice the size of the RAM on the compute

nodes. The file size on each platform was 257GiB, and the file contained a single 1D contiguous

(not chunked) variable consisting of 8 byte floating point random numbers. Each read size,in

bytes, was converted into a number of 8 byte floating point numbers to stream from the file

on each read with files indexed by element – the plain binary file was indexed by bit, but the

NetCDF4 file was indexed by array element.

3.1.5 Repeats

To gain a better understanding of the variability involved, tests were repeated between three

and five times. Ideally more repeats would have been run, but this was not possible due to

the time intensive nature of the tests. However, useful conclusions can be drawn with the

number of repeats using the mean and the standard deviation to obtain an understanding of

the variability.

3.1.6 Deeper analysis

A few different methods were used to gain a deeper understanding of what was going on in

the results.

The balance of CPU and wall time is important to understand what is happening when the

libraries read the NetCDF4 file. The CPU time is the terminology that will be used throughout

for any time which work is being done on the processor. The clock functions from C and

Python report the current processor time. Using this, the time elapsed for the CPU processing

instructions can be timed. When the processor is idling waiting for data, for example, the

processor time will not increase, but the wall time will. This work assumes that the majority

of the time difference between the wall and CPU time accounts for I/O latency – the time for

the data to be read from disk. For the C testing program the POSIX function clock6 was used,

and in the Python testing program the function clock was used from the time library7. This

6http://pubs.opengroup.org/onlinepubs/009695399/functions/clock.html
7https://docs.python.org/2/library/time.html

36

Chapter 3. NetCDF4 Performance 3.2. Baseline read performance

can be used to determine whether the program is waiting on I/O from the file system.

The Linux utility strace was used to gain more information about the system calls, in-

cluding the size of each I/O call and the time taken for the system calls.

3.2 Baseline read performance

Baseline performance was investigated using C and Python reading from plain binary files for

each system in the following sections.

JASMIN

Figure 3.4 shows the plain binary read performance using C and Python on the Panasas plat-

form. The Python rate is lower at higher read buffer size (above 16MiB) than the C results -

30% at 1GiB buffer size. The profiles of the striding read with C and Python are very similar

throughout the whole range of read buffer sizes starting off with very low read rates, increasing

to around 400MB/s at 512MiB . The variability of the C reads is much higher than the python

reads from 128MiB and above. The variability for the remaining read buffer sizes for each re-

mains low. The random read profile increases in a similar way to the hopping reads, although

with much higher variability when using C. It is not clear what has caused this variability.

The Python striding and random test were not run on the other platforms because of the

general similarity between the C read rate and the python read rate from plain binary files on

JASMIN, and for the sequential reads on the other platforms, only the C program was used to

measure striding and random reads – because of the very long run times at such low buffer

sizes.

ARCHER

The results for the plain binary reads on the Lustre platform are shown in Figure 3.5. The

results are similar to the Panasas results, differing at low buffer size for the random reads with

a more gradual slope up to peak performance, and an increase in performance above 64MiB for

the sequential reads. The striding reads also have a higher read rate than would be expected

from the JASMIN results above 256KiB.

37

Chapter 3. NetCDF4 Performance 3.2. Baseline read performance

Figure 3.4: Average read rate (diamonds) and one standard deviation (error bars) for the tests
reading from a binary file on the Panasas platform. Grey lines show the results using C and
black lines show the results using Python. The first graph shows the sequential reads, second
shows hopping reads, and bottom shows random reads.

(a) (b)

(c)

Figure 3.5: Results from ARCHER showing the read rate from the C scripts reading from plain
binary files

RDF

The results for the C plain binary reads on GPFS are shown in Figure 3.6. The profile for the

sequential reads is similar to the Panasas results, albeit at higher bandwidth because of the

38

Chapter 3. NetCDF4 Performance 3.2. Baseline read performance

Infiniband used on the GPFS platform compared to 10Gb/s Ethernet in Panasas. The vari-

ability for the hopping reads is high which makes the profile more difficult to interpret. It is

interesting however that the average striding reads are consistently higher than the random

reads.

(a)

(b)

(c)

Figure 3.6: Results from the RDF using a C program to read from plain binary files.

Discussion

All of the results between different platforms have similar characteristics. At low buffer size for

the sequential results on JASMIN, below 4-8KiB, there is a significant hit in performance; likely

due to the reads being smaller than disk sector size which reduces read rate, although this has

not been verified. For all platforms the sequential reads are the fastest, which is expected

because it is a contiguous read on disk, and being the easiest for the file system to anticipate

the next read request from the program.

39

Chapter 3. NetCDF4 Performance 3.2. Baseline read performance

All the random reads and striding reads have similar profiles, showing the same gradual

increase in read rate and have a lower read rate, interpreted as the effect of having to seek

through the file. Because of the faster reads at larger buffer sizes, the effect of this is reduced

due to larger reads. On JASMIN the small difference between the random and striding reads

show that the size and direction of the seek does not have much of an effect on the read rate.

The variation of the random reads is much higher than the other reads; likely due to the possi-

bility of hitting caches because of the random nature of the read. The small difference between

the striding and random reads and the shape of the profile implies that the size of the read has

more of an impact in the read rate than the direction or size of the stride.

The results here compare well with that of others: the profile shape for the sequential reads

for all platforms agrees with the results from Bartz et al. (2015). The expected bandwidth on the

Lustre platform is around 500MB/s (Henty et al., 2015) which agrees with our results, and the

peak read rate on JASMIN is similar to performance results (personal communication, Bryan

Lawrence). The variation in the non-sequential reads compared to the sequential reads is also

seen in Schmid and Kunkel (2016).

For all of the results there are two stand out patterns with increasing read size. The first is

for the sequential reads which very quickly rise to a level maximum and stay roughly constant

for the remainder of the read size, this shape will be referred to as a flat profile. The second

pattern seen in the striding and random reads more gradually increases, peaking at larger read

sizes, this will be referred to as a steadily increasing profile. Using these two terms, the results

are summarised in Table 3.1.

The main conclusions from this section are as follows:

• The different read patterns have a very large effect on the read rate, with a lesser effect

at larger buffer sizes. The cause of this is likely to be because of seeking through the

file, which does not happen to the same extent in the sequential reads, therefore not

decreasing the read rate. Alternatively, the file system could be successfully reading

ahead for the sequential reads, but not for the striding and random.

• The read rate drops significantly at very small buffer size which agrees with results from

Bartz et al. (2015).

• There is very little difference between C and Python when reading plain binary files.

40

Chapter 3. NetCDF4 Performance 3.3. NetCDF4 read performance

Table 3.1: Summary of results when reading from ’plain’ binary files.

Platform Language Read Pattern Resulting Profile Peak Rate (MB/s) Notes
JASMIN C Sequential flat 500
JASMIN C Striding steady increase 500
JASMIN C Random steady increase 500
JASMIN Python Sequential flat 500
JASMIN Python Striding steady increase 400
JASMIN Python Random steady increase 500
ARCHER C Sequential flat 750 increase above 32MiB
ARCHER C Striding different 600 sudden increase

around 256KiB
ARCHER C Random steady increase 500
ARCHER Python Sequential flat 600
RDF C Sequential flat 800
RDF C Striding steady increase 600 much lower peak

than sequential
RDF C Random steady increase 600 much lower peak

than sequential
RDF Python Sequential flat 800

• The read rate profiles between the different platforms were similar, but different in mag-

nitude due to bandwidth differences.

3.3 NetCDF4 read performance

The following sections show the results for the read performance when using NetCDF4 files

on each system using the same conditions as the previous section, but reading from NetCDF4

files.

JASMIN

To investigate the effect of NetCDF, the experiment from the previous section was repeated

using the C NetCDF library and the netCDF4-python library. Figure 3.7 shows the results.

The C results look similar to the results when reading from a plain binary file – same peak

performance and profile. A reduction in performance is seen in the Python profile for read

block sizes less than 64K. Testing using the Linux utility strace8 showed that the reduced rate

is caused by the netCDF4-python library reading a minimum of 64KiB per read, even when

less was requested. The peak performance for the Python library was almost 40% worse than

8https://linux.die.net/man/1/strace

41

Chapter 3. NetCDF4 Performance 3.3. NetCDF4 read performance

the C library at the 1MiB buffer size, then reduced further at larger read sizes to 150 MB/s,

around 75% worse than the C read rate.

(a) (b)

(c)

Figure 3.7: Results from JASMIN using netCF4-python (black) and the C NetCDF4 library
(grey).

h5netcdf

To determine whether the drop in performance when using the netCDF4-python library was

due to the combination of the NetCDF4 file format and Python, or whether it was due to

the library, another library was used. h5netcdf is built on the Python library h5py, which

reads HDF5 files, and extends the h5py library to also be able to read NetCDF4 files using the

same syntax as the netCDF4-python library. This meant it was an ideal library substitute for

netCDF4-python.

The results are shown in Figure 3.8. The peak performance is greater than when using

netCDF4-python and much closer to the Python plain binary results and the tests using the

C programs. The same slow initial ramp up in the read rate is seen on the h5netcdf results

and this is due to the same reason as the netCDF4-python results – the libraries always read

at least 64KiB of data from the file, likely due to a buffer in the libraries, or interaction with

the 64KiB Panasas stripe width. The performance at larger read sizes is much closer to Python

reading from a plain binary file, not showing the same significant reduction in performance as

42

Chapter 3. NetCDF4 Performance 3.3. NetCDF4 read performance

netCDF4-python.

(a) (b)

(c)

Figure 3.8: h5netcdf read rate results when using JASMIN. The diamonds with solid lines show
the netCDF4-python results, and the squares with dashed lines show the h5netcdf results.

ARCHER

The majority of the results from ARCHER when using NetCDF4 are similar to the JASMIN

results (Figure 3.9), showing the same drop in netCDF4-python performance at larger buffer

size. The rise in performance to around 700 MB/s at 1 GiB read size for the NetCDF4 C library

is also seen when reading from the plain binary files.

Figure 3.9: Results from ARCHER using the C NetCDF4 library (grey) and the netCDF4-
python (black)

43

Chapter 3. NetCDF4 Performance 3.3. NetCDF4 read performance

RDF

The results from the RDF are similar to the JASMIN results in that the performance profile for

the netCDF4-python library is very similar (shown in Figure 3.10). The C library results are

very variable, as with the C results from plain binary files, which is likely due to other users

working on the RDF. This means, taking into account the variability the results, the perfor-

mance when reading from plain binary files and NetCDF4 files is likely to be similar as when

using C. When reading from NetCDF4 files using netCDF4-python the same humped profile

is seen with a significantly reduced peak performance, with the peak at around 1MiB, as other

platforms.

Figure 3.10: Results from the RDF using the C NetCDF4 library (grey) and the netCDF4-python
(black)

CPU time vs. wall time

To further investigate the reasons for the reduced performance, the time the CPU spent pro-

cessing instructions was measured using the POSIX and Python clock functions. The results

from this are shown in Figure 3.11. For the all reads except when using NetCDF4-python, the

general pattern is that above 4KiB to 16KiB the total time for the program (wall time) is much

greater than the CPU time. This is indicative of a read which is waiting for the I/O system

rather than CPU work. The assumption here is that the time spent during system calls (i.e.

non CPU, or user time) is mostly spent on I/O. From using strace to analyse the system calls it

can be said with confidence that this is true – the read calls take over 99% of the time reported

time from strace. For the NetCDF4-python reads, the CPU time dominates, increasing the total

time above what is seen from the I/O bound time of the other reads. This means that the reads

using netCDF4-python could be CPU bound. This is also due to the library, as is shown by the

difference in pattern between the netCDF4-python results and the h5netcdf results - if the in-

creased CPU time was attributed purely to Python and NetCDF4, the h5netcdf reads would be

44

Chapter 3. NetCDF4 Performance 3.3. NetCDF4 read performance

CPU bound as well. Therefore, the netCDF4-python library is CPU bound and this is caused

by how the library is written.

To summarise, the CPU limited behaviour explains the significantly reduced read rate for

netCDF4-python compared to the other tests – those being I/O limited.

(a) C binary (b) Python binary

(c) C NetCDF4 (d) NetCDF4-python

(e) h5py

Figure 3.11: Comparison between average wall time and CPU time for the different sequential
read tests on JASMIN. Black bars show wall time, and grey bars show CPU time, note that the
bars overlap.

Discussion

For all Python read rates, there is a reduction at larger read buffer sizes (much more severe for

netCDF4-python). This reduction is caused by more time being spent processing instructions

(CPU time) compared to the C library, as shown by the CPU time results in Figure 3.11.

Another element in the software stack for netCDF4-python is Numpy (Figure 2.5). To elim-

45

Chapter 3. NetCDF4 Performance 3.3. NetCDF4 read performance

inate Numpy as a factor in the performance drop, a test was run using Numpy to read the plain

binary files. This gave similar results to the Python profile in Figure 3.4, indicating that the sig-

nificantly lower read rate seen in the netCDF4-python results was not caused by Numpy. A

more in depth look at the library is required to determine the reason for the drop in perfor-

mance.

The striding reads with netCDF4-python follow a similar profile to the sequential reads, al-

beit with much higher variability and are similar to the C striding read until 16MiB where the-

larger reads have a more significant effect. The random C profile looks similar to the Python,

and the other Panasas results, with the netCDF4-python results performing worse, particularly

at large buffer size.

Similar to the baseline results reading from plain binary files, there were stand out profiles.

In addition to the flat and steadily increasing profiles, a humped profile was introduced for

the results when using netCDF4-python; consisting of peak around 1MiB, with the read rate

reducing for larger reads. The NetCDF4 results are summarised in Table 3.2

Table 3.2: Summary of results when reading from NetCDF4 files.

Platform Language Read Pattern Resulting Profile Peak Rate (MB/s) Notes
JASMIN C Sequential flat 500
JASMIN C Striding steady increase 450
JASMIN C Random steady increase 500
JASMIN Python Sequential humped 300
JASMIN Python Striding humped 250
JASMIN Python Random steady increase 200
JASMIN h5netcdf Sequential near humped 500
JASMIN h5netcdf Striding steadily increasing 500
JASMIN h5netcdf Random steadily increasing 450
ARCHER C Sequential flat 700 increase above 32MiB
ARCHER Python Sequential humped 300
RDF C Sequential flat 1000 high variability
RDF Python Sequential flat 500

The main conclusions from this section are as follows:

• The C NetCDF4 read performance is very similar to read performance when reading

plain binary files using C and Python.

• Using netCDF4-python the performance is lower generally, but is significantly reduced

at buffer size of 8 MiB and higher.

• Peak read rate for sequential reads using netCDF4-python is at around 1MiB buffer size.

46

Chapter 3. NetCDF4 Performance 3.4. Conclusions

3.4 Conclusions

The effect on performance in the NetCDF4 software stack was identified by running tests using

C and Python when reading from plain binary files and NetCDF4 files. The drop in read rate

performance was found to be due to the netCDF4-python library, and not due to either Python

or the NetCDF4 file format.

Returning to the aims of the chapter the first aim was:

• Evaluate the performance effect of using NetCDF4-python, and assess the reasons

for any reduction in performance.

The netCDF4-python library performance was compared to that of the C NetCDF4 library

and another Python library (h5netcdf). It was found that:

• The netCDF4-python library performs less efficiently than the other tests, giving a lower

read rate, which was especially prevalent at small (less than 64KiB) and large (greater

than 8MiB) buffer sizes, with peak performance at a buffer size of about 1MiB. This drop

in read rate could have a significant performance impact on analysis scripts which use

netCDF4-python.

• There is little difference between the performance of C reading from plain binary files,

Python reading from plain binary files, and C reading from NetCDF4 files.

The second aim of this chapter was:

• Evaluate the effect on the read rate for different read patterns and read sizes.

As part of the comparison between the different libraries and file formats, different read

patterns and read sizes were tested. The results from this showed:

• The read pattern has a large effect on the performance of a read, meaning that any seek-

ing done in an analysis script is very expensive. Therefore, keeping as many reads as

possible contiguous on disk is very important. The striding pattern performed better for

larger read sizes, so keeping the read requests large helped with the throughput – the

fewer IOPS with non-sequential reads were compensated for by the larger buffer size

(see Section 2.3 for details).

• The read size had most impact at small buffer sizes (less than 4-8 KiB for C when using

NetCDF4 and not using it, and when reading from plain binary files with Python, and

47

Chapter 3. NetCDF4 Performance 3.4. Conclusions

less than 64 KiB for Python reading from NetCDF4 files), and for netCDF4-python at

larger buffer sizes over 8 MiB.

These results could have implications in the design of analysis scripts, and choices made

when deciding what order to store the dimensions, and what chunking specification to use in

NetCDF4. The buffer size of around 1MiB may be the most efficient size for reads and chunk

sizes. Also, avoiding any reads of less than 64KiB would benefit performance. The results also

show that sequential reads are significantly more efficient, meaning that for analysis scripts

to be most efficient, as much of the reading done from a file should be contiguous. Another

important implication is that NetCDF4 is read at the same rate as plain binary files when using

C. This means that there is no apparent disadvantage to reading from NetCDF4 files from the

point of view of the read rate.

The results from the netCDF4-python portion of this chapter are summarised in Figure

3.12. With the maximum rate from the C tests shown at the top of about 500 MB/s. The

reads are then split into sequential and non-sequential. The striding and random reads are

combined into the non-sequential reads; random reads are not generally a directly applicable

read pattern for atmospheric science, and the profiles were similar. The two reads combined

can give a range that the non-sequential reads could be.

Figure 3.12: Summary of the performance results from the chapter. The rates were estimated
from the results in this chapter, taking a range of values from the relevent graphs.

48

Chapter 3. NetCDF4 Performance 3.4. Conclusions

This chapter assumes a very simplistic view of a NetCDF4 file. In general atmospheric

science data will be multi-dimensional, and may be chunked (for faster alternative access pat-

terns), or compressed (to reduce the impact of storing large data sets). The next chapter deals

with these complications, looking at the read performance for four dimensional chunked and

compressed NetCDF4 files.

49

Chapter 4

NetCDF4 Chunking and Compression

Read Performance

The previous chapter investigated and quantified the read performance from NetCDF4 files

with different read patterns, particularly when using the netCDF4-python library. The data in

atmospheric science typically contains more than a single dimension (particularly when stored

in NetCDF4 files). One method of improving access for reads along the dimension which is

not the fastest varying, is to change the order of data in the file by shuffling sections of data in

to a different order, while keeping the same logical order in the dimensions of the file. This can

be achieved via a process called chunking with NetCDF4 (and HDF5) files (see Section 2.4.2).

This chapter looks to quantify the effect chunking and compression has on the read rate on

HPC clusters with parallel file systems (using JASMIN as a typical example).

In general, matching the chunk shape with the read will provide the best possible perfor-

mance from chunking (Lee et al., 2008). This, however, would give poor performance for the

other read patterns, for example, if rechunking data to provide fast reads for an x-t read slice,

the x-y read would be significantly worse compared to an unchunked or x-y chunked file. It

is possible that a compromise can be made for access along different dimensions, as has been

previously shown on a HDD (Rew, 2013). The results from Rew (2013) showed a performance

increase of around 100 times for a time series read from contiguous (unchunked) data which

favours spatial reads. However, the spatial read was then around 100 times worse. While the

speedup for the time series is good, with large data sets the reduction in read rate for the spa-

tial read could have a very large impact in the workflow for spatial data analysis. Part of the

investigation in this chapter is to assess whether this behaviour is the same on a parallel file

50

Chapter 4. Chunking and Compression
Read Performance

system.

There are two aims for the chunking sections of this chapter. The first is to quantify, for

the tested reads and chunk specifications, how the read rate is affected. The second aim is to

assess whether there is a compromise with the chunk specification on a parallel file system to

benefit a striding read, while also giving a passable read rate for the compromised sequential

read. The importance of the second aim is that if the file can be chunked in a way that gives

acceptable read rate for two different reads, then only one version of the file needs to be stored

rather than two – this assumes that the aim of the data being stored is to give relatively good

read rates for multiple users reading from data in an archive with different workflows.

An alternative to chunking is to store multiple version of the file and compress them. Com-

pression can be highly beneficial for a HPC environment, by reducing the time and storage in-

volved with data storage and access (Chasapis et al., 2014). The two files could take the same

or less space than a single uncompressed file, giving multiple different workflows a good read

rate. This leads to the second investigation in this chapter – how does compression affect the

read rate?

Reducing the size of the file on disk would mean that the time to get that section of data

to memory could be reduced (less bytes to read), but this compressed data then needs to be

unpacked increasing the work for the processors. To compress NetCDF4 files they need to be

chunked. This leads to an interaction between chunking and compression. This is complicated

because each compressed chunk needs to be read into memory in its entirety before being

uncompressed, which could lead to unwanted data being read and uncompressed.

Compression reduces the size of data by using an algorithm to discover patterns in the

data, so that the file can be represented as repetitions of patterns in the file which reduces the

amount of bytes it takes to represent a file. NetCDF4 uses deflate data compression, which uses

the zlib compression algorithm (Lee et al., 2008), allowing sections of the file to be compressed

and accessed individually (in this case these sections are chunks). It provides a good balance

between compression ratio and compression speed (Liu et al., 2015). Because the data size is

reduced, reading less data from disk could mean that the read rate of the file could increase

(Miller, 2015), but obviously this data will then need to be uncompressed on the processing

node, meaning there is a balance between increased read rate due to fewer bytes being read,

and the extra CPU required to uncompress the data. This chapter investigates the compression

difference and read rate from the default NetCDF4 zlib compression, and the Bit Grooming

51

Chapter 4. Chunking and Compression
Read Performance 4.1. Method

method (from Zender 2016, discussed in Section 2.6.4). The first part of the compression inves-

tigation in this chapter is to implement the compression on real climate data and measure the

compression ratios. The second part then investigates the read rate from these files.

It could be faster to take data in one chunk shape with a poor read rate, and reformat

into another before analysis. This is an important section of the investigation in this chapter,

because it could be faster for the work flow to reformat the data before executing an analysis,

rather than perform an inefficient read – but this needs quantifying, since it is not discussed in

the relevant literature.

An alternative to changing the data to suit multiple use cases would be to stage the data

so that only one version of the data is archived, but the data (which could be a subsection of

the data) that the user reads is stored in a temporary space. This could be done using burst

buffering (to give a faster read rate), or read by the file system while the user is queuing.

Another solution could be to simply read the data into a machine with very large memory,

though this might be impractical due to memory costs. Neither of these alternatives are being

tested in this thesis because they are architecture dependant.

The aim of this chapter is to:

• Quantitatively evaluate the effect that chunking and compression have on the read

rate, and therefore the overall workflow.

The results in this chapter are an important stepping stone in the greater picture of in-

vestigating factors which can affect performance of atmospheric data analysis applications; in

which chunking and compression can have a huge effect.

4.1 Method

There are three parts to the investigations in this chapter, which are depicted in Figure 4.1.

The following sections discuss the methods for each. For each test, four-dimensional files were

used to be more representative of atmospheric data (time, height, latitude, and longitude di-

mensions) than the one-dimensional files in Chapter 3. A side benefit of this is to affirm that the

results from Chapter 3 in terms of idealised read patterns are relevant in higher dimensional

data.

52

Chapter 4. Chunking and Compression
Read Performance 4.1. Method

Figure 4.1: Scope of the testing in this chapter.

4.1.1 Chunking performance

To test the effect of chunking on the read rate, files with different chunking specifications

needed to be created. The following files were created using the nccopy utility1 from an

unchunked file with dimensions [430,430,430,430] – giving a 274 GB file, which was signifi-

cantly larger than the size of RAM on the processing nodes. Equal dimensions were used to

try and make analysis of the performance easier, by keeping the reads along different dimen-

sions the same size. Both chunk and read shapes are described in this work by the dimensions

which they contain, for example x-y describes where the shape would be [1,1,430,430] from

the files, containing all the data from the latitude and longitude points for a single time and

height.

• Chunk shape A – unchunked. This provided a baseline to compare the read rate to the

NetCDF4 sequential read rate from Chapter 3, and should give fast contiguous reads

(e.g. x-y maps).

• Chunk shape B – with equal dimensions ([43,43,43,43]), similar to the NetCDF4 default

chunking scheme, but as a multiple of the array dimensions. This specification will prob-

ably not perform very well on large data sets, but multi dimensional hyper cube shaped

chunks smaller than the dimension lengths could give a compromise between different

read patterns (Rew, 2013).

1http://www.unidata.ucar.edu/software/netcdf/docs/netcdf utilities guide.html

53

Chapter 4. Chunking and Compression
Read Performance 4.1. Method

• Chunk shape C – 15.8KB chunk size chunked as [1,1,43,43]. The reason for this chunk

specification is that small chunks can represent a good compromise in read rate for dif-

ferent read patterns (Rew et al., 2010). Four of these chunks fit into the 64 KB file system

stripe width (see Appendix A), which should provide better read rate than D.

• Chunk shape D – 16.2KB chunk size chunked as [1,1,45,45]. Four of these chunks are

larger than file system stripe width (64KB), and three are significantly smaller. This

would likely decrease the read rate when compared with chunk shape C, because of

the incompatibility between the chunk size and stripe width.

• Chunk shape E – xy chunks [1,1,430,430]. This would be fast for xy read, but how does

this read compare with the unchunked read rate? Also, how are the other read shapes

quantitatively affected?

• Chunk shape F – xt chunks [430,1,1,430]. This will be faster than default chunking for xt

reads, but how much faster? How does this affect xy and xyt reads (xt contiguous, y next

fastest varying dimension)?

• Chunk shape G – xyt chunks [430,1,430,430]. X-y-t reads are contiguous in this chunking

scheme, as are x-y reads, with x-t reads having smaller strides through the file compared

with the contiguous data. Therefore, how will it affect xy and xt reads?

Along with the chunk shapes, three different read shapes were used. These are outlined

below:

• x-y reads – a sequential read along contiguous data in an unchunked file. This is a com-

mon read pattern when analysing data from atmospheric models. It also provides the

baseline read rate (from unchunked files) for comparison.

• x-t – a strided read in unchunked files. The expected performance will be poor from the

unchunked files but better from the x-t chunked files. This is the read pattern from the

space-time spectral analysis case study in Chapter 6.

• x-y-t – this is a larger read than the x-y read, so from unchunked files the read rate should

be lower than the x-y read (as shown in Chapter 3 for serial netCF4-python reads). Anal-

ysis based on this read pattern could be to do with time analysis on maps, or latitudinal

averages on x-t reads.

54

Chapter 4. Chunking and Compression
Read Performance 4.1. Method

It is useful to visualise the comparison between the chunk shape and the read shape in

order to estimate how the read will perform. This is shown in Figure 4.2, depicting the four-

dimensional data in two dimensions. For each grid, the horizontal axis shows x and y varying,

and the vertical axis shows z and t varying.

All the tests in this chapter were run on JASMIN, using Python and the netCDF4-python

library. The file tested on was [430,430,430,430] (t,z,y,x) giving a file size of 255GiB for all chunk

shapes except chunk D which had a file size of 277GiB. The increase in file size is due to the

chunk shape in D not being a multiple of the file dimensions, which causes the file to take up

extra space on disk. Along with the read rate, the balance between wall time and CPU time

(measured by the Python clock function) was measured to gain more information in a similar

way to in Chapter 3 (see Section 3.1.6 for details on the CPU time and clock).

4.1.2 Compression performance

For the compression performance testing, real data was used from a high resolution climate

simulation. The reason for this was that randomly created numbers would likely not compress

as well as real data – real data has patterns in it. An uncompressed version of the file was used

to provide a baseline comparison with the compressed files, for compressed size and read rate.

Three files were created using the NetCDF4 deflate compression algorithm.

An argument can be passed to the algorithm to define the level of compression from 1,

being the least compressed and the quickest, to 9 being the most compressed and slowest.

The three files were created using deflate levels 1, 4 and 9 to cover the whole range. The

different deflate levels were not expected to make any difference in the size of the compressed

file (Zender, 2016), but were created to repeat the results. A file was also created using the Bit

Grooming method described in the Section 2.6.4, which should give a smaller file than when

using purely the deflate algorithm. The most extreme level of significant digit reduction was

used to test what would be expected for the best compression possible.

A similar test set up was used as for the chunking testing with multiple read patterns and

chunk shapes, but with a reduced number of chunking specifications. Only default chunks

and x-y chunks were tested to compare between the performance when no chunking decision

had been made (giving default chunking) and when the chunking had been designed for a

specific kind of access, maps in this case. Three different reads were tested: x-y reads, x-y-t

reads, and x-t reads. The x-y would give good performance from the x-y chunked files, used

55

Chapter 4. Chunking and Compression
Read Performance 4.1. Method

Figure 4.2: Visualisation of the reads compared to the chunk specifications. The read shapes
are down the left hand side and shown by the blue shading, and the chunk shapes are across
the top shown by the red boxes. Only the first read and the first chunk is shown. For each
image, the axes contain two varying dimensions, the horizontal axis shows x varying then y,
and the vertical axis shows z and t varying. As an example, consider xt reads from the default
chunk shape. As depicted in the diagram the data has dimensions [3,3,3,3], the first xt slice
can be described by the slice [0:3,0,0,0:3], where colons denote a range of values, where 0 is
the first index. The xt read can then be pictured as shading all the data for all x values and
t values, for the first y and z. The default chunking shape is a fraction of each dimension, as
an example here the chunk shape is [2,2,2,2] – not a realistic representation of default chunk
size, only used for the example depictions here. The first read is shown by the blue shaded
region and the first chunk is shown by the red boxes. The effectiveness of the read can then be
predicted by looking at the overlap, in this case the read rate would be poor.

56

Chapter 4. Chunking and Compression
Read Performance 4.2. Chunking performance

to compare the compressed performance to the uncompressed performance for reads with a

good read rate. The x-y-t read and x-t read were used to assess whether compression could

provide increased performance for those reads.

4.1.3 File conversions

The final section of investigation in this chapter is to measure the time to convert from one

chunk shape to another, and from compressed to uncompressed files. The reason for this was

that in an overall workflow it may be faster to convert from one chunkshape to another before

reading the file, rather than read from an ineffectively chunked file. To evaluate this the time

to convert is needed. The copying was done using the nccopy utility2.

Only a subselection of the testing files in this chapter was used to get a general idea of the

time to convert, which were: unchunked files, default chunked files, x-y chunked files, and x-t

chunked files. Converting between every different combination of files would have been too

time and computing resource intensive.

4.2 Chunking performance

This section measures the read rate for different read patterns from files with different chunk-

ing schemes.

4.2.1 Results

Figure 4.3 shows the resulting read rate from the combinations of read rate and chunk shapes

shown in Figure 4.2. As expected, when the chunk specification and read pattern match, the

read rate is higher i.e. xt-F, xy-E, and xyt-G. The rate for xy-A is particularly high because the

xy read pattern is optimal through the contiguous file. The rate for xyt-G is not as high because

of the larger read – the serial netCDF4-python testing showed that the performance drops at

buffer sizes above 1MiB and the buffer size here is 636MB.

For the x-t read, all the reads were poor except the matching chunk shape, confirming that

this is a particularly poor read pattern, and hard to compensate for. Chunk shape F gives poor

performance for the xy reads, because of the read shape badly matching the chunk shape, as

shown in Figure 4.2.

2http://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Nccopy.html

57

Chapter 4. Chunking and Compression
Read Performance 4.2. Chunking performance

Chunk shape C, the 15.8 KB chunk, improves the xt reads compared to the unchunked file,

but not by much – approximately 3 MB/s. For chunk C and D the xy read pattern has better

performance than the xyt and xt reads because the xy read is more contiguous on disk than the

other reads for these chunk shapes. Chunk shaped D performs worse than C in general, with

less difference seen for the x-t read.

Figure 4.3: Read rate for different combinations of chunk shape and read pattern with no
compression. The colour and the first number in each box shows the mean for the tests, the
number in () shows the number of repeats which finished, and the number in [] shows the
maximum read rate from the test. White boxes with < 7 show where the test did not finish
due to a very slow rate - the rate at this time limit would have been 7 MB/s.

CPU-wall time balance is shown in Figure 4.4. For x-y reads the fastest reads are from

chunk shapes A, C, and E with approximately one third to half of the time spent in CPU time.

For chunk shape B, the time is significantly higher because of the mismatch between read and

chunk shape, and the time is spent mainly in CPU time. For chunks D and G, the increased

time for the read is shown as non-CPU time. In the case of D this is due to the chunk being

mismatched with the stripe width, therefore increasing the I/O latency.

For the x-t reads, chunk shape A shows only a small proportion of CPU time because of the

heavily strided read through the file. C and D show a much higher proportion of CPU time

than the x-y reads because the read spans many more chunks.

For x-y-t reads with unchunked, xy chunked, xyt chunked, and 15.8KB chunks the CPU

time is less than half the wall time, and these all have relatively low times compared to the

other chunk specifications. For the default style chunk shapes, the CPU time is a much higher

58

Chapter 4. Chunking and Compression
Read Performance 4.2. Chunking performance

(a)

(b)

(c)

Figure 4.4: Wall time - CPU time balance for xy (a), xt (b), and xyt (c) reads for all chunk shapes.
Y axis shows time (lower is better).

59

Chapter 4. Chunking and Compression
Read Performance 4.2. Chunking performance

proportion of the wall time – this indicates that when the chunk shapes are badly designed it

can have a significant impact on the read rate, which is CPU side rather than caused by the file

system – as expected. The comparison between the 15.8KB chunk and 16.2KB chunk shows the

impact of having chunks which fit well, or not, into the Panasas stripe width. The overhead

of this is very high; the wall time is significantly higher than the CPU time for this result,

meaning that the program was having to wait for the I/O showing that the limiting factor is

in the filesystem – in this the 16.2 KB chunks create a mismatch between the read sizes and the

filesystem striping.

4.2.2 Discussion

In general, the results from this chapter are qualitatively consistent with respect to a priori

expectations. The results from this chapter show that when increasing the number of dimen-

sions the results from Chapter 3 still apply, when taking into consideration whether the reads

are sequential or not.

Table 4.1 summarises the results from this investigation.

Read shape Best chunk shape Effect on rate Worst chunk shape Effect on rate
xy xy 20% reduction xt > 50× worse
xt xt 48× better default/xy/xyt >10% decrease

xyt xy 2× better 16.2KB 4× worse

Table 4.1: Summary of the chunking read rate results. The effect on the read rate for best and
worst chunk is compared to the unchunked read rate.

The results from this section compare well to the advice from the NetCDF4 blog (Rew,

2013) – using small chunk sizes does indeed improve the read rate for multiple access patterns

while reducing the rate of previously effective read patterns, the results from Rew (2013) show

a much larger speed up than what has been measured here. This could be partly because the

slow reads are not as bad on the JASMIN parallel file system as on a single HDD. For large

data sets, reducing the speed of previously efficient reads may not be a good solution to speed

up reads from non-optimal read patterns.

The results investigating the wall time and CPU time balance (Figure 4.4), show that de-

pending on the combination of read and chunk shape in the file, the time increase is either

spent as CPU time, or waiting for the I/O system (majority wall time). With the unchunked

files, for slow reads, the dominant factor is the wall time. The reason for this being that the

program is waiting for I/O, caused by the striding pattern of the read through the file. The

60

Chapter 4. Chunking and Compression
Read Performance 4.3. Compression performance

wall time is the dominant factor for other reads when the read is from a single chunk or the

entirety of multiple chunks for the same reason, i.e. xy reads from C, D, E, and G (more promi-

nent in the slower reads); xyt reads from C, D, E, F, and G. The CPU time is the major factor

where the read is from partial chunks which also spans multiple chunks, i.e. xy reads from B;

xt reads from C, and D; xyt reads from B. This therefore needs to be taken into account when

deciding on the chunk shapes for a file.

For the xyt reads and xy reads from files with the chunk specification C and D (15.8 KB,

and 16.2 KB chunks respectively), the decrease in read rate was shown in the wall time rather

than the CPU time. This indicates that the reduction in read rate is indeed due to the mismatch

between the chunk size and the stripe width. The increase in read time for C and D with the x-t

reads is due to only part of the data from each chunk being needed for each read over multiple

chunks, as discussed above.

4.3 Compression performance

This section measures the compression ratios and read performance from NetCDF4 files when

using the deflate compression algorithm, and when using the bit grooming method to improve

the compression ratio.

4.3.1 Results

Table 4.2 shows the achieved compression ratios with the NetCDF4 deflate algorithm, and

when the data has been compressed in conjunction with the bit grooming algorithm. The

highest level of bit grooming was implemented to show the best compression which can be

achieved – in reality the level of bit grooming would need to be decided upon for each indi-

vidual workflow depending on the analysis. The compression ratio for all the of the NetCDF4

files compressed without bit grooming achieved around 23% compression with the resulting

size being about 60GB. Bit grooming enable almost double the amount of compression, reduc-

ing the file size down to 39 GB.

Figure 4.5 shows the read rate for different combinations of read shape and compression

level for an x-y chunked file. As expected from the chunking results, the uncompressed file

reads have the same pattern as the chunking results with the xy read being fastest and xt

being slowest. When the file is compressed the read rate drops. The different levels of zlib

61

Chapter 4. Chunking and Compression
Read Performance 4.3. Compression performance

Table 4.2: Observed compression ratio for the different compression methods used. Chunking
was left at default. Compression ratio displayed as the percentage of the original file size
(compressed/uncompressed x 100).

Compression Type File size (GB) Compression Ratio (%) Resulting Size (GB)
No compression 275 100 275
Deflate lvl 1 275 23 64
Deflate lvl 4 275 22 61
Deflate lvl 9 275 22 60
Bit Grooming nsd = 1 275 14 39

compression do not affect the performance, because the uncompression algorithm is the same

in each case and the size of the compression file is similar, therefore reading the same amount

of data from disk. The read rate for the bit groomed files was similar if not slightly lower

than the standard zlib compressed files. A similar pattern is seen with the compressed default

chunked data (Figure 4.6), with reduced read rates when the file is compressed, however the

reduced read rate meant that more tests had a read rate lower than 7 MB/s and did not finish.

Figure 4.5: Read rate for x-y chunked file with different read shapes for different levels of
compression. The colour and the first number in each box shows the mean for the tests, the
number in () shows the number of repeats which finished, and the number in [] shows the
maximum read rate from the test. White boxes with < 7 show where the test did not finish
due to a very slow rate - the rate at this time limit would have been 7 MB/s or less.

The comparison between the wall and CPU time for the tests which finished are shown in

Figure 4.7. The compression level does not make a significant difference to the read time so is

not shown. For the x-y reads from x-y chunk shaped files, the increase in time is shown to be

in the CPU time, so not due to the file system. For the xyt reads from xy chunk shaped files

62

Chapter 4. Chunking and Compression
Read Performance 4.3. Compression performance

Figure 4.6: Read rate for default chunked file with different read shapes for different levels of
compression. The colour and the first number in each box shows the mean for the tests, the
number in () shows the number of repeats which finished, and the number in [] shows the
maximum read rate from the test. White boxes with < 7 show where the test did not finish
due to a very slow rate - the rate at this time limit would have been 7 MB/s. N/A shows that
the tests were not run for the bit groomed files with default chunking.

the CPU time is more similar. With the xyt reads from the default chunked files, the wall time

is about 4-5 times higher for the compressed file than the uncompressed file, mainly shown in

CPU time.

Figure 4.7: Wall time - CPU time balance for reads from compressed and uncompressed files.
X-axis shows which read and chunk shape was used. Note, bars overlap

63

Chapter 4. Chunking and Compression
Read Performance 4.4. Layout conversion

4.3.2 Discussion

The effect of compression on the read rate is summarised in Table 4.3.

Table 4.3: Summary of the compression results from this chapter.

Chunk shape Read shape Compression effect on the read rate
xy xy 30% reduction
xy xt DNF
xy xyt no observed effect

default xy >50% reduction
default xt DNF
default xyt 85% reduction

The compression ratios from the results in this chapter were similar to results from Zender

(2016). In all cases, reading from the compressed files slowed down the read, and the smaller

file size of the bit groomed files did not significantly affect the read rate. When reading x-y

and x-y-t slices from the file, the additional time due to compression was small compared to

when reading from the default chunked file, where the the time is approximately 4-5 times

longer from the compressed file. The reason for this is the entire chunk need to be read to be

uncompressed. With the default chunking, the required data from the chunk is only a portion

of the file, compared to the xy chunks where the entire chunk is required; meaning that for the

default chunk, time is wasted reading and uncompressing non-required data.

The read rate for x-y reads from x-y chunked files is lower than the uncompressed files by

around 100 MB/s. The argument above for the reduced read rate for default files does not

apply here, because the whole file is used; the extra CPU time for the compressed read must be

purely from uncompressing the file. The x-y-t read from the x-y chunked file is slower because

the read spans multiple chunks – therefore striding through the file

Comparing the different NetCDF4 deflate (zlib) compression levels, it is unsurprising that

the read rate is the same from files with each level of compression considering the files were

the same size. Also, the uncompression algorithm is the same regardless of the level of com-

pression, so the CPU overhead to uncompress would be the same for each case.

4.4 Layout conversion

A possibly important part of a workflow could be to convert from one chunking format to

another - as shown in the previous sections, both compression and chunking can provide very

64

Chapter 4. Chunking and Compression
Read Performance 4.4. Layout conversion

poor read rates. This section measures the time taken to convert from one chunking scheme to

another.

4.4.1 Results

Table 4.4 shows the time to convert between different chunk shapes. The rate of conversion

between default chunking and an unchunked file is high compared to the other results. The

conversion rate from the compressed default files is lower, but still the second highest rate. As

expected from the low read rate of x-t reads from x-y chunk shapes, the conversion between x-

y chunks and x-t chunks is very low. It is significantly faster to convert from x-y to unchunked,

then unchunked to x-t.

Table 4.4: Effect rate of conversion between different chunking formats.

Start End Method Mean rate (MB/s)
Unchunked Default nccopy 22
Default x-y nccopy 12
Unchunked x-t nccopy 25
x-y Unchunked nccopy 24
Default Unchunked nccopy 178
x-y x-t nccopy < 1 (Job killed after 64 hours)
x-t Unchunked nccopy 27
Default compressed Unchunked nccopy 28
x-t compressed Unchunked nccopy 11

4.4.2 Discussion

The results from this section enable an estimate for conversion between chunking schemes.

Another interesting result from this section is that it is faster to convert an x-y chunked file

to an unchunked file, then to an x-t chunked file, than it is to convert the x-y chunked file to

an x-t chunked file – by at least 12 times (x-y to unchunked 24 MB/s, but double the amount

of work so twice the time, giving 12 times faster). This indicates that the nccopy utility is not

doing the conversion in the most efficient way. It is also faster to convert a default chunked

file to another chunk specification via an unchunked file.

Similarly to the previous section, conversion from compressed data takes significantly

longer - a compressed default chunked file to unchunked uncompressed file, takes 6-7 times

longer than when starting with an uncompressed version of the file. This is due to having to

read and uncompress the whole whole chunk to access a subset of it.

65

Chapter 4. Chunking and Compression
Read Performance 4.5. Conclusions

4.5 Conclusions

The effect of chunking and compression on the read rate is summarised in Figure 4.8. This

extends the figure from the previous chapter showing the NetCDF4-python read rate results.

The main points from this figure are that if the file is chunked and the reads match the chunk

shape the performance is comparable to sequential reads from an unchunked file – this is

not surprising as reading the entire chunk is effectively a sequential read from the file. Also,

if the file is compressed and the whole chunk is required, the performance is similar to the

unchunked, uncompressed sequential read.

The alternative cases are when the file is chunked and the data required for the algorithm

is only a partial chunk. In the uncompressed case there is an overhead in the library because

the entire chunk is not required. The performance is similar to the non-sequential read perfor-

mance from an unchunked file, determined by the read size. When the file is compressed and

the entire chunk is not required, the library still has to read and uncompress the entire chunk,

which has a large impact on performance. Despite not quantifying the exact performance re-

duction of these two cases, the important point for this work is that it detrimentally affects the

read performance – in the compressed case, significantly.

Figure 4.8 also includes the time taken to reformat data if the read is not optimal for the

data’s chunk specification. The exact additional time depends heavily on the work flow, so

whether it would be worth doing would need to be determined for each workflow individ-

ually. In general the more times the data is read in an inefficient format, the more useful

reformatting the data would be.

Returning to the aim of this chapter:

• Quantitatively evaluate the effect that chunking and compression have on the read

rate, and therefore the overall workflow.

The results show that, at least for the experiments in this chapter, an acceptable compromise

with the chunk size is not found. The example read patterns were chosen to represent two

different analysis types in atmospheric science, one looking at analysis of maps (xy read), and

one looking at time series analysis (xt read). The third read xyt represents where the secondary

direction of analysis in each example scenario is along the t and y dimensions respectively.

These results show that reading a larger section of data from the file where the secondary

dimension of analysis is pre-emptively read from disk, could be a good solution to achieving

66

Chapter 4. Chunking and Compression
Read Performance 4.5. Conclusions

a good read rate within analysis code.

An interesting result is that when the chunk shape and read shape are not matched, and

the read is spread over multiple chunks the additional time is shown as CPU time rather than

in the file system. Contrarily, when the read is either from non-chunked data or from a single

chunk the additional time is shown as non-CPU time (wall time much higher than CPU time),

indicating that an improvement in the file system speed would increase the performance.

The investigation into conversions between chunk shapes in files, show that going from

compressed default to unchunked, then unchunked to a different format could be good strat-

egy compared to direct conversion between formats. Converting to another chunk shape

would give a good read rate for an application. Of course this means there would be some

overhead involved, but if the read is executed more than once, for instance when developing

an analysis script, then the total overhead of this one read would be small. This approach

would also be beneficial when intermediate storage was used such as with burst buffers, or if

the workflow included adaptive reformatting of data. This method would be even faster if the

initial data was uncompressed on disk, but because of the size of data this may not be possible.

In terms of analysing very big data, the fastest read rate is desirable. Because of this, using

chunking to compensate for different read patterns is not a good solution because it reduces the

read rate, while not significantly improving the read rate for multiple different read patterns.

On the current JASMIN platform, the best way to provide a high read rate for multiple read

patterns in serial, would be to have multiple versions of a file. Obviously, this significantly

increases the cost of storing data, so is not a good solution. Two options to improve the read

rate could be used: adaptively creating new version of files which provide improved access

speed, whilst only storing one version of the file; or to use a burst buffering system.

Some of the results here show that the performance is significantly reduced depending on

the read pattern and whether the file is chunked or compressed. However, the reduced perfor-

mance could be compensated for by implementing the workflow in parallel. The next chapter

quantifies the parallel scaling which would be seen by a typical user on the JASMIN super-

data cluster, so that experiments can be undertaken in the following chapter combining all the

factors that have been investigated in this thesis. This is to determine whether the reduced

performance of chunking, compression, and inefficient read patterns can be compensated for

by executing the workflow in parallel, and what level of parallelisation is required to achieve

this.

67

Chapter 4. Chunking and Compression
Read Performance 4.5. Conclusions

Figure 4.8: Summary of the performance results from the chapter, extending the results shown
in Figure 3.12. The results from this chapter showed an similarity with results from Chapter 3,
in that: where the whole chunk is read the read rate was similar to the sequential reads from
an unchunked file, and were a partial chunk is read the read rate was similar to the striding
read rate although towards the low side of the estimate.

68

Chapter 5

Parallel Reads from a NetCDF4 File to

Improve Read Performance

By using parallel techniques, it is possible to increase the read rate by utilising multiple net-

work interface cards (NICs) on processing nodes, therefore reducing the overall read time for

an application or workflow. This could compensate for reduced performance due to chunk-

ing, compression, and mismatched read patterns. In order to make sensible parallelisation

decisions, it is important to understand how the parallel read rate scales for real workflows.

The JASMIN super-data cluster will be used as an exemplar HPC analysis platform, to quan-

tifiably investigate the parallel scaling of workflows using NetCDF4 files.

Figure 2.1 showed the scaling of the JASMIN platform using IOR to measure the total band-

width of the storage. This is obviously useful from the standpoint of assessing total system

performance and comparing file systems. However, this is not useful from the standpoint of a

user designing an application – the data they are using might only be stored on a single shelf

as is the case in this chapter (see Appendix A for details on the JASMIN platform). In addi-

tion to this, there are other factors which could affect the performance of the application so

this peak system performance may never be reached. In order to assess what factors affect the

performance of a parallel application (as was done with a serial application in Chapters 3 and

4), the typical parallel scaling of the platform needs to be assessed – not the peak system wide

performance – therefore, the aims for this work are:

69

Chapter 5. Parallel Reads
to Improve Read Performance

The aims of this chapter are to:

• Assess the parallel scaling of the JASMIN super-data cluster for application realis-

tic reads.

• Investigate whether MPI collective reads can improve non-sequential read perfor-

mance on JASMIN.

The results from the NetCDF4 performance serial read chapter, showed that the peak per-

formance with a single task was around 500 MB/s for binary files when using C and Python,

and when using C to read NetCDF4 files, and around 300 MB/s for NetCDF4-python. How-

ever, the theoretical bandwidth to a single node is 1250 MB/s (Lawrence et al., 2012). There-

fore, to determine whether the read rate to a single node can be improved, multiple cores were

utilised for the first part of the testing. The second part of the testing measures the scaling

for parallel reads across multiple nodes for typical analysis scripts. In both cases, testing was

conducted using C and netCDF4-python because of the difference in performance observed in

Chapter 3.

Figure 5.1 shows three different approaches to reading when using an HPC architecture.

The first shows a serial read from the parallel file system. The second shows a parallel read

either using multiple, independent tasks, or using MPI-IO in independent read configuration.

The third approach depicts how a collective read using MPI-IO works. MPI-IO can use collec-

tive, or cooperative, I/O which means they can take advantage of a two phase read strategy

(Li et al., 2011), where the data is read from disk in an efficient way, then redistributed among

the processing nodes for the application (del Rosario et al., 1993).

As an example of the different read strategies in Figure 5.1, imagine three files each with

red, green, and yellow blocks. To process the data, each of three nodes requires a single colour

of block. In the independent read, each node does a partial read of the file. In the collective,

two phase read, each node reads the whole section of multiple colours and then rearranges the

blocks between the nodes so that each has the required data. The collective read can often be

faster in some cases – the example here is too simple to benefit from a collective read.

The tests in the first part of this chapter use an MPI harness to submit multiple jobs con-

currently for independent reads, without using a parallel I/O library. Parallel I/O can be

implemented using MPI-IO, which can be used through the NetCDF4 C library, but is not im-

plemented in the netCDF4-python library. The second part of this chapter use MPI-IO to test

70

Chapter 5. Parallel Reads
to Improve Read Performance 5.1. Method

Figure 5.1: Depiction of a serial read, a simple parallel read treating each processing node
as independent, and a collective two-phase read using MPI-IO. The Collective read has two
stages, the first being a fast sequential read from disk to each node, then reorganisation among
the nodes for the required data. The green arrows on this figure represent the fact that each
read from the parallel filesystem is not a simple serial read.

independent and collective reads to improve the performance of striding reads.

5.1 Method

Figure 5.2 depicts the testing parameters for the two different investigations in this chapter.

The reasons behind the parameters are described in the following sections, along with more

detail on the testing algorithms.

5.1.1 Testing data

There are three different sets of data used for the testing in this chapter. These are depicted in

Figure 5.3. The first is a number of 256 GB files equal to the number of parallel tests, and large

enough so that a single file cannot fit into the RAM of the nodes used in testing. The second,

used to test reads from a single file, was just a single 256 GB file. Finally, a set of sixteen, 16

GB files was used to contrast the read rate from reading from a single file, and splitting this

file into smaller chunks. All of the files were one-dimensional, unchunked, and uncompressed

NetCDF4 files containing random numbers. All the data was stored on the same shelf (see

71

Chapter 5. Parallel Reads
to Improve Read Performance 5.1. Method

Figure 5.2: Testing domain for this chapter. From left to right is the slowest to fastest varying
test variables.

Section A.1), and extrapolation from Figure 2.1 shows the maximum read rate for parallel tests

on mulitple nodes is expected to be around 5-10 GB/s.

Figure 5.3: Sets of test files for each style of test in this chapter. The examples here show how
the data is arranged for 6 tasks. The first row shows six, 256 GB files, the second shows a single
256 GB file split into six pieces, and the final row shows six, 16 GB files.

72

Chapter 5. Parallel Reads
to Improve Read Performance 5.1. Method

5.1.2 Parallel scaling

The results from Chapter 3 showed that the peak performance of netCDF4-python was about

200MBs less than the C NetCDF4 library performance. This difference in performance means

that investigating the parallel scaling of both libraries was important. The main investigation

was whether the same peak performance can be obtained for C and Python, and at what level

of parallelisation does it occur.

Another result from Chapter 3 affecting the design of the method in this chapter was the

drop in performance for netCDF4-python at larger read sizes above 8MiB. To test any differ-

ence in scaling between larger reads with netCDF4-python, 1MiB and 1GiB reads were tested.

1MiB was chosen because it was the peak performance for netCDF4-python, and 1GiB because

of the reduction in read rate at this size. The two different read sizes were also tested with C

where there should be no difference in performance.

The results from Chapter 3 showed that the theoretical bandwidth to a single node of 1.25

GBs on JASMIN was not reached with any of the tests, with a maximum rate of 500 MB/s seen.

To investigate what percentage of this bandwidth can be achieved, single node tests were run.

The nodes used for testing had a maximum of 16 cores, therefore giving a maximum for the

concurrent tasks on a single node.

To test how competition for node bandwidth affected the performance, different levels of

multiple core per node parallelism were used. These were: single core per node, four cores

per node, and 12 cores per node. This competition could be from one user, as is the case here,

multiple users working from the same storage shelf, or other users working on the same node.

The tests were performed using the same basic read code as for the NetCDF4 serial per-

formance tests. For the parallelisation, a simple MPI harness was used to launch multiple

independent instances of the same script, each reading from its own 256 GB file.

In contrast to the NetCDF4 serial tests in Chapter 3, these tests were not run exclusively on

the nodes1. This was partly due to queue times, but also to give a more accurate representa-

tion of the performance of a typical analysis workflow. During testing the queue times were

significantly longer when multiple exclusive nodes were requested, which would be an ineffi-

cient use of time for a real analysis workflow given that, during initial testing (not shown), the

exclusive and non exclusive read rates were comparable.

1Exclusive node use means that no other users can run jobs on the node. On JASMIN this is an option within
the batch queuing system. This is not always an option on HPC platforms.

73

Chapter 5. Parallel Reads
to Improve Read Performance 5.1. Method

5.1.2.1 Measurements

For all results in this chapter the tests were repeated between three and five times.

Performance was quantified by measuring a mean aggregate read rate, which was calcu-

lated by taking the average time across all tasks. The rate was then calculated by dividing total

aggregate data by average time to give an average rate. Therefore the rate is defined as:

r̄ =
xtot
t̄

,

where r̄ is the mean aggregate read rate, xtot is the total data read across all tasks, and t̄ is the

mean time across all tasks. Strictly speaking, the aggregate read rate would be calculated from

the maximum time for each experiment; the total read would not be finished until the longest

running task finishes. The mean task was used however because there is inherent variability

in the read rate due to many factors (some of which were discussed in Section 2.6).

The aggregate rate is displayed against the number of cores used and the number of nodes

used, to give slightly different perspectives on the performance. The individual times for each

task were used to calculated the read rate assuming that all the tasks were reading at this rate,

which was then used to estimate the range for the results.

The variation in the results were analysed using box plots where the time to completion on

each core was used to calculate the aggregate rate which would be observed if all cores were

performing at the same read rate. The box plots are calculated using the matplotlib (Python

library) boxplot() function, showing the median, upper and lower quartile, the range, and

outliers in the data.

5.1.3 MPI collective Method

The second section of testing in this chapter was to investigate whether collective reads with

MPI-IO would be of beneficial use on JASMIN. To test collective reads, a non-sequential read

was needed. The striding read pattern from Chapter 3 was chosen. Sequential reads were also

run, so as to get an idea of the overheads involved with running collective reads – collective

reads should have no benefit for sequential reads.

Serial tests were run to draw comparisons with the serial read rate results. The striding

code reads one section then skips three, so the parallel tests for the collective reads were par-

allelised using four concurrent tasks to read the whole file. Two different parallel tests were

74

Chapter 5. Parallel Reads
to Improve Read Performance 5.2. Parallel read scaling on JASMIN

used, one on a single node using four cores, and another on four nodes with a single core used

on each. MPI-IO independent and collective reads can then be compared with the non-MPI-IO

reads from the parallel scaling results.

The NetCDF4 C library was used to implement tests using parallel reads (Python was not

used because the netCDF4-python library does not implement the parallel capability of the C

library). All these tests read from a single file and are tested for sequential and striding reads –

it is expected that collective reads increase performance of striding reads, but not for sequential

reads.

The sequential read test read a quarter of the file on each core, i.e. the first read the first

quarter, the second read the second quarter and so on. The striding tests used the same striding

code as for NetCDF4 performance, so read one section, and skipped three. When 4 tasks were

running, the first read from the start of the file, the second started from one buffer in and read

in the same “skip three” pattern. In this way the whole file was read.

5.2 Parallel read scaling on JASMIN

This section tests the performance and scaling of parallel reads on the JASMIN super-data

cluster. The aims of this section are to: test single node parallel scaling, and test multinode

parallel scaling.

5.2.1 Results

Figure 5.4 shows the results when running multiple concurrent tasks on a single node.

• For C using the NetCDF4 library reading from multiple 256 GB files, the performance

increases up to a maximum of 1200 MB/s at 12 concurrent tasks, then the performance

reduces. This is close to the theoretical bandwidth of 1250 MB/s.

• This read rate then reduced at 16 tasks by almost 200 MB/s.

• Testing showed that there was no difference in performance between reads of 1 MiB and

1 GiB when using the C program, as expected, so the results for the 1 GiB buffer size are

not shown.

• The 1 MiB read using netCDF4-python have peak performance of approximately 850

MB/s at 6 concurrent tasks. The rate then reduces by about 50 MB/s at 8 tasks, and

75

Chapter 5. Parallel Reads
to Improve Read Performance 5.2. Parallel read scaling on JASMIN

continued to reduce.

• Up until 6 tasks all tests from Figure 5.4 performed similarly to each other for the 1

MiB buffer when reading from multiple files, for increased numbers of tasks only the C

program reading from multiple 256 GB files showed a higher read rate.

• When reading from a single file, there was no performance benefit obtained through

increasing the number of concurrent tasks, the read rate staying at approximately 200

MB/s.

Small files (16 GB) were used to test the scaling for a smaller scale workflow, and compare

with the lack of improvement in the read rate for a single 256GB file on a single node. For one

to eight tasks, the rate scales similarly to when the 256 GB files were used. Interestingly the

mean read rate then drops by approximately 300 MB/s for 16 tasks, however the maximum

read rate for 12 and 16 tasks is more similar to when reading from 256 GB files, indicating that

this reduction in the mean could be due to slow reads due to competition on the nodes with

other users at the time of testing.

For the 16 GB file reads the large range, with high maximum rate for 4 and 8 nodes was

due to a single particularly fast and uncharacteristic read compared to the rest of the results

for that test instance; this could have been caused by hitting a buffer or cache – harder to avoid

with smaller files.

Results using multiple nodes are shown in Figure 5.5. The bars on these graphs show the

range (max and min) of the read rate, giving an estimation of the variability of the read, and

what range of rates could be expected in real workflows. The results for 1 MiB reads for C

and netCDF4-python have similar profiles, with the 1 GiB netCDF4-python reads showing a

similar but more slowly increasing rate with increased parallelism e.g. for one task per node

with 16 tasks, C and Python for 1 MiB buffers the read rate is around 3700 MB/s, whereas the

1 GiB Python buffer read rate is approximately 2000 MB/s. In all cases, increasing the number

of concurrent tasks increases the rate with diminishing returns, i.e. sub linear scaling.

For the C single task per node test, the number of nodes was increased as far as the queu-

ing system would allow, and the rate reached a maximum of 6000 MB/s at 52 tasks. The

performance in a number of places for all the results is lower than what would be expected

for consistently increasing performance, caused by low rate outliers (shown in Figure 5.7) re-

ducing the average, e.g. C 1 MiB on task per node at 24 tasks. For the 1 GiB netCDF4-python

76

Chapter 5. Parallel Reads
to Improve Read Performance 5.2. Parallel read scaling on JASMIN

(a) (b)

(c)

Figure 5.4: Results from the tests conducted on a single node with increasing numbers of
concurrent tasks. (a) shows the comparison between C and Python reading from NetCDF4
files with a 1 MiB buffer size. (b) shows the comparison when using Python reading from
NetCDF4 files for 1 MiB and 1 GiB reads. (c) shows the comparison using C reading from
NetCDF4 files when reading from multiple 256 GB files (red), a single 256 GB file (magenta),
and multiple 16 GB files (cyan). The upper and lower whiskers on the bars show the maximum
and minimum rates.

buffer tests were not extended past 48 concurrent tasks due to very large queuing times with

the batch queuing system, and the performance showing the same pattern as the 1 MiB buffer

tests but with a smaller magnitude.

As shown by the results in Figure 5.5, when using four cores per node the read rate scales in

a similar way as when using a single task per node, but at lower read rates. Having four cores

per node allowed the number of concurrent tasks to be increased up to 92 concurrent tasks

achieving a rate of approximately 7000 MB/s (the batch queue did not run jobs with more

than around 50 nodes requested). This rate is around what was expected from extrapolation of

Figure 2.1. The 12 cores per node speedup also scaled similarly with increasing tasks but with

further reduced read rate, therefore, the test was only run for the C 1 MiB reads because of the

77

Chapter 5. Parallel Reads
to Improve Read Performance 5.2. Parallel read scaling on JASMIN

(a) C 1 MiB (b) netCDF4-python 1 MiB

(c) netCDF4-python 1 GiB (d) C reading from a single file

Figure 5.5: Read rate results scaling with the number of parallel tasks. Green shows where
there was one task per node, red show 4 tasks per node, and magenta shows 12 tasks per
node. (a) shows the results when reading from multiple NetCDF4 files using C with a 1 MiB
buffer size, (b) shows results when reading using netCF4-python from multiple files with 1
MiB buffer and (c) with 1 GiB buffer, and (d) shows results using C when reading from a single
NetCDF4 file. The upper and lower whiskers on the bars show the maximum and minimum
rates.

time intensive nature of the tests (long queue times for requesting 12 out of 16 cores per node).

The read rate can also be considered with respect to the number of nodes used rather than

the number of concurrent tasks – shown in Figure 5.6. This shows that the rate per node is

increased when more cores are being utilised as the parallelisation is increased.

Box plots showing the variation for each set of results are shown in Figure 5.7. For the

single node tests, the variation is relatively constant with increasing tasks, compared to the

multiple node tests. For the multiple node tests the variation increases with more nodes.

78

Chapter 5. Parallel Reads
to Improve Read Performance 5.2. Parallel read scaling on JASMIN

(a) C 1 MiB (b) netCDF4-python 1 MiB

(c) netCDF4-python 1 GiB (d) C reading from a single file

Figure 5.6: Parallel scaling with respect to the number of nodes used. Green shows where there
was one task per node, red show 4 tasks per node, and magenta shows 12 tasks per node. (a)
shows the results when reading from multiple NetCDF4 files using C with a 1 MiB buffer size,
(b) shows results when reading using netCF4-python from multiple files with 1 MiB buffer and
(c) with 1 GiB buffer, and (d) shows results using C when reading from a single NetCDF4 file.

5.2.2 Discussion

The results show that the netCDF4-python library cannot attain the same total bandwidth as

the C library on a single node basis. The netCDF4-python results are limited by the time spent

processing CPU instructions (CPU time), whereas the C performance is limited by the I/O

speed (shown in Chapter 3). When utilising multiple nodes, the lower maximum rate would

only affect the total aggregate read rate as long as the number of tasks per node does not exceed

six. For both cases the maximum read rate is achieved before the maximum number of cores

per node. This shows that at a certain point the competition on the node out weighs the benefit

for further parallelism. Its is also worth noting that the read rate when using 12 cores with the

C program utilises 95% of the node bandwidth, showing that almost the whole bandwidth of

the node can be used.

79

Chapter 5. Parallel Reads
to Improve Read Performance 5.2. Parallel read scaling on JASMIN

(a) C 1 MiB. Left to right: single node, 1 core per node, 4 cores per node, and 12 cores per
node.

(b) netCDF4-python 1 MiB. Left to right: single node, 1 core per node, and 4 cores per node.

(c) netCDF4-python 1 GiB. Left to right: single node, 1 core per node, and 4 cores per node.

(d) Single file reads with C. Left to right: single node, 1 core per node, and 4 cores per node.

Figure 5.7: Box plots showing range of the results used for the averages in the previous result
plots. (a) shows the results for C reading from NetCDF4 files, (b) shows the results using 1 MiB
reads using netCDF4-python, and (c) uses shows 1 GiB reads using netCDF4-python. The red
line shows the median, the box shows the upper and lower quartiles, the whiskers show the
range of the data, and the plus symbols show calculated outliers.

80

Chapter 5. Parallel Reads
to Improve Read Performance 5.2. Parallel read scaling on JASMIN

When using netCDF4-python and a single node, the maximum read rate was the same for

both read sizes, but achieved at different numbers of concurrent tasks. This shows that when

working in parallel, the lower read rate for the larger buffer does not affect the maximum

achievable read rate.

When considering the utilisation of the node, an important result from the single node

testing is that the peak performance is not maintained once the peak has been reached when

adding further parallel tasks – caused by competition for resources. This could be important if

charged by time for the use of a platform.

Despite multiple node parallelism showing a significantly higher read rate, parallelism on

a single node could still be useful. Parallel programs on a single node can be simpler to write

because they share memory (no communication), and the read rate can be doubled in the case

of the C NetCDF4 library, and almost tripled in the case of 1 MiB netCDF4-python reads by

utilising more concurrent read tasks.

When using Python, the differences between the 1 GiB and 1 MiB buffer size performance

was around 60%. This is due to the reduced performance of larger reads from NetCDF4 files

with netCDF4-python. However, the difference when more nodes are utilised is reduced be-

cause of the file system becoming the limiting factor for the read rate rather than the read rate

on each node.

In Figure 5.5, the different number of concurrent tasks per node indicate how the scaling

could work when multiple users are reading from the same shelf in the filesystem. For exam-

ple, consider users utilising one core per node each across multiple nodes. With four users

reading from the same shelf, the read rate for each user would be shown by the four cores per

node curve in Figure 5.5.

Variation in read rate could have a large impact in the performance of an application. This

is shown by the variation in the results shown in Figure 5.7. Many factors could play into

the performance variation, the largest of which is probably down to running on nodes with

other users – particularly with NetCDF4-python which is possibly limited by CPU work (as

opposed to waiting for I/O). In a workflow where all read tasks must complete before the

application moves on, the low rate outliers will have a significant effect on performance of

the application. However, if a tool was used where each job can run more than one task in

succession (for example the jug Python library, see Appendix B), the low performance outliers

would not have as much effect on the overall application performance. Assuming that there

81

Chapter 5. Parallel Reads
to Improve Read Performance 5.3. Collective I/O with MPI-IO and NetCDF4

are less workers than tasks to run (each worker runs a task, then moves onto the next task),

the variation has less impact on the application performance; if one task is running slowly the

other workers can compensate.

5.3 Collective I/O with MPI-IO and NetCDF4

5.3.1 Results

The results for reads using MPI-IO in independent and collective read configuration are shown

in Figure 5.8. When using the independent MPI-IO read, the rate increases almost four times

when using one task per node on four nodes. However, when using four tasks on a single

node the read rate drops to approximately a third of the rate.

For the one task on one node and one task per node on four nodes, the collective reads

perform worse than the independent reads. When working on a single node with four tasks,

the collective read is faster than the independent read.

The striding reads perform worse than the sequential reads when working with one task

on one node (comparing red and blue for the first set of bars), to a similar magnitude as in

Chapter 3. Also for the striding reads, when using a single task per node on four nodes the

performance is double compared to a single task on a single node – interesting because the

sequential reads have around 4 times the performance increase. Comparing one task on one

node and four tasks on one node for the striding reads, the independent read rate drops by

about 200 MB/s, whereas the collective read rate is more similar in each case.

The only performance increase seen when using collective I/O is when working on a single

node with four tasks. For the sequential and striding reads there is about a 60% improvement

in the read rate for the sequential read and more for the striding reads compared to indepen-

dent I/O.

5.3.2 Discussion

The performance of collective reads improved the performance compared to the independent

reads when working on one node, but not when working on four nodes. This could be due

to overhead with inter-node communication when using multiple nodes, which does not exist

when working on a single node.

82

Chapter 5. Parallel Reads
to Improve Read Performance 5.3. Collective I/O with MPI-IO and NetCDF4

Figure 5.8: Results for the read rate comparing MPI-IO independent and collective reads for
different parallel configurations from a single file. The red bars show sequential when using
the independent MPI-IO read, the magenta bars show the sequential reads when using col-
lective MPI-IO, the blue bars show the striding read when using independent MPI-IO, and
the cyan bars show the striding reads when using collective MPI-IO. The x-axis shows which
combination of nodes and tasks were used.

83

Chapter 5. Parallel Reads
to Improve Read Performance 5.4. Conclusions

The performance with four tasks on a single node is less than was expected for the indepen-

dent reads when compared with the reads not using MPI-IO – 540 for one node with one task,

dropping to 190 for four tasks on one node. For the single file reads without MPI-IO in Figure

5.4 this drop is not expected. Note that the values are within the variation seen for one task,

so the reduced performance may be due to variation. Alternatively, this drop in performance

could be due to contention between the tasks on the same node. This could however indicate

that there might be some overhead associated with the MPI-IO independent reads when using

multiple tasks reading from the same file and working in parallel on a single node.

The benefit for collective reads was only seen when working on a single node (comparing

red and purple bars for the third set of bars in Figure 5.8), however, this was a lower rate than

when working in serial. When using multiple nodes, there is little reason to use MPI-IO to

increase the read rate from a single file. Therefore, to improve the read rate in the most effi-

cient way, multiple nodes should be used without MPI-IO on JASMIN. Even for striding reads

where the performance increase was expected, there was no benefit in using collective I/O

across multiple nodes. This is likely due to the communication between nodes on JASMIN

not being designed primarily for MPI applications as, for example, with Infiniband based plat-

forms (see Appendix A). This comes with the caveats that this is true for these tests on this

platform, but may not necessarily transfer to other systems, and does not consider the poten-

tial need to write in a workflows, where MPI-IO can be of benefit.

5.4 Conclusions

The aims for this work were:

• Assess the parallel scaling of the JASMIN super-data cluster for application realis-

tic reads.

The number of concurrent tasks and the number of nodes were used in different combina-

tions to assess the scaling. The main conclusions from this were:

• From multiple files, the read rate increases with the number of tasks.

– For multiple nodes, the read rate increases to a maximum of around 7 GB/s, re-

stricted by the shelf bandwidth. The results agree with extrapolation of results from

IOR testing on JASMIN (Lawrence, 2014).

84

Chapter 5. Parallel Reads
to Improve Read Performance 5.4. Conclusions

– On a single node, the bandwidth maximum is reached before the maximum number

of nodes was used when considering the read size that gave peak performance with

each library. This could reduce the performance of an application if too many tasks

per node are used.

• There was no benefit to parallelising the application for reading from a single file on a

single node, but there was an increase when using multiple nodes and reading from a

single file.

• When reading from multiple nodes, the best scaling for number of concurrent tasks is

seen when one task per node is used. The results for scaling when multiple tasks are used

per node also mean that if multiple users are running on the same nodes the performance

hit would be negligible compared to other factors affecting read performance (e.g. read

size, read pattern).

• The reduction in performance when using NetCDF4-python can be easily overcome

through the use of multiple tasks on multiple nodes (scaling was similar for this and

C).

• Investigate whether MPI collective reads can improve non-sequential read perfor-

mance on JASMIN.

MPI-IO was used in independent and collective modes on one and multiple nodes to as-

sess whether there was a benefit to using it for the kinds of workflows simulated here. The

conclusion was:

• On JASMIN there is no real reason to use MPI-IO for workflows similar to those that

were simulated here. It should be noted, however, that for other workflows it may be a

valid solution.

Some advice for reads can be drawn from the results in this chapter. Firstly, when reading

from a single file, to see any increase in the read rate, multiple nodes are required. Additionally,

only one user using a node compared to multiple users reading from the same shelf does not

seem to have a very large impact to the read rate compared to other factors (20% drop from one

task per node to four tasks per node at 32 concurrent tasks Figure 5.5(a)), even when reading

from the same shelf the greatest impact to the read rate would be about a factor of 2. This

85

Chapter 5. Parallel Reads
to Improve Read Performance 5.4. Conclusions

means that exclusively requesting the use of a node would not be worth the extra queue time.

Finally, the benefit of faster reads needs to be compared with the amount of potential overhead

for communication. For high communication jobs, it may be better to work on a single node,

and in this case a collective read could benefit the workflow if the read is striding in nature.

The results from this chapter are summarised in Figure 5.9. The main point from this fig-

ure is that the scaling from multiple nodes is similar whether reading from one file or many.

If reading from a single node the read rate is obviously limited by the bandwidth, however

when reading from multiple files the rate is limited because of the CPU overhead when using

netCDF4-python. When reading from a single file, there is no perceivable benefit to executing

the read in parallel.

These results are likely to look very different if a burst buffer system was in effect – data

layout could be changed when read into the buffer, and the read speed to the buffer would be

significantly faster compared to the read rate to the storage.

The next chapter implements the results from this chapter, using the results to design the

parallelisation of a particular workflow, and understand the resulting performance.

86

Chapter 5. Parallel Reads
to Improve Read Performance 5.4. Conclusions

Figure 5.9: Summary of the performance results from the chapter. Speedup values are estimate
from the graphs in this chapter.

87

Chapter 6

Application to Atmospheric Science

Workflow - Space-Time Spectral

Analysis

The aim of this chapter is to apply the work from the previous chapters into an atmospheric

science workflow: testing the case study algorithm with different levels of parallelisation, to

confirm that the parallel scaling results from Chapter 5 are relevant when working with a

real work flow. The testing presented in this chapter used the netCDF4-python library, so the

results of Chapter 3 were used to interpret the read rates in this chapter. The chunking and

compression results of Chapter 4 were used to make decisions about which kinds of files to

use in the testing of the case study. The computational overhead when using compressed files

was also tested in the more realistic circumstances of this chapter.

88

Chapter 6. Application to Atmospheric
Science Workflow 6.1. Space-Time Spectral Analysis

The aims of this chapter are:

• Assess whether parallelisation can counteract the inefficient layout of data on disc.

This will be tested by reading the data from multiple different file layouts.

• Investigate whether running an algorithm in parallel and asynchronously, reduces

the overall time for an application to run compare to running it synchronously,

when computational work is added.

• Chapter 4 showed that compression adds additional CPU work. Investigate

whether this additional CPU overhead significantly affect the completion time for

the algorithm.

The work flow used for this work was a space-time spectral analysis (STSA). The next

sections: describe the STSA algorithm (Section 6.1), describe the relevance of it in atmospheric

science (Section 6.1.1) with an example of its use (Section 6.1.2), and discuss its suitability as

a case study for this chapter (Section 6.1.3). The algorithm is investigated in more detail in

Section 6.2. The method is outlined in Section 6.3, with results in Section 6.4, discussion in

Section 6.5, and conclusions in Section 6.6.

6.1 Space-Time Spectral Analysis

Space-time spectral analysis (STSA) is a method for analysing waves in the atmosphere

(Hayashi, 1982). It uses wavenumber-frequency relations to analyse the atmospheric waves

and can determine the propagation of the different frequency waves – either eastward, west-

ward, or stationary. The STSA algorithm is outlined in Figure 6.1.

STSA consists of taking a longitude-time slice of the data – normally a longitude circle with

a long enough time series to capture the required phenomena. After slicing, the next stage is

to compute a fast Fourier transform (FFT) along the longitudinal dimension to get the spatial

Fourier coefficients. Then a time analysis technique is computed along the time dimension on

each of the Fourier coefficients. The method is determined by the specific analysis technique.

Three methods which can be used are a time lag auto correlation method, a discrete Fourier

transform method, and the maximum entropy method (Hayashi, 1982). For the tests here

the Hayashi method (Hayashi, 1971) is used, consisting of a Fourier transform along the time

89

Chapter 6. Application to Atmospheric
Science Workflow 6.1. Space-Time Spectral Analysis

dimension. The sine and cosine coefficients from the FFTs are used to compute the stationary,

eastward, and westward travelling waves. These two FFTs constitute the most CPU intensive

part of the algorithm. These calculations are typically executed for slices for varying latitude

and height which are then averaged. The average when the analysis is discretised along the

latitude and height contains inter-node communication, which would complicate the analysis,

so is not included.

STSA algorithm

freq,wn
2D

freq,wn
2D

freq,wn
2D

Extract
4D field
from disk t,z,y,x

Subsection of y and z

Divide along latitude
and height

 t,x
2D

 t,x
2D

 t,x
2D

z

STSA
t

x

A) FFT

B) Time
analysis

C) Separate into
eastward
westward and
stationary waves

Average
across
latitude
and
height if
needed

freq,wn

2D

(v)

(ii)

(iii)

(iv)

(i)

(vi)

 t,x
2D

 t,x
2D

 t,x
2D

y

4D

For each 2D slice

freq,wn
2D

freq,wn
2D

freq,wn
2D

z

y

Figure 6.1: Visual description of STSA algorithm.

6.1.1 Relevance of STSA

STSA is a widely used technique because it can be used to analyse waves in the atmosphere.

One use of STSA is to identify waves in observations and models. On the former, one example

of the use of STSA is to link near-equatorial convection with specific large scale atmospheric

waves (Yang et al., 2003), or being used to identify waves from the outgoing longwave radi-

ation (Jiang-Yu and Zai-Zhi, 2008). On the latter, STSA can be used to identify the types of

waves which appear in a model (Hayashi and Golder, 1977). STSA can also be used to ex-

90

Chapter 6. Application to Atmospheric
Science Workflow 6.1. Space-Time Spectral Analysis

amine whether atmospheric phenomena appear in models. For instance, the quasi-biennial

oscillation (QBO) is thought to be important in the correct modelling of atmospheric global

circulation in models (Lawrence, 2001); STSA can be used to examine the reasons for the QBO

being accurately represented (for example Yang et al. 2011).

6.1.2 Example of STSA use

Jiang-Yu and Zai-Zhi (2008) used STSA on out-going longwave radiation (OLR) data from

observations to identify waves associated with the tropical intraseasonal oscillation (ISO). ISO

has been recognised as a significant factor in local weather and global climate, and can be

related to the Indian monsoon. The variability in the synoptic1 variability in the tropics can

be related to large scale convection, for which OLR can be used as a proxy. Jiang-Yu and Zai-

Zhi (2008) aimed to show that spectral analysis of OLR can be a useful diagnostic tool for

identifying and investigating tropical waves.

Figure 6.2 shows some results from Jiang-Yu and Zai-Zhi (2008). The main results shown

in this figure are:

• the large ratio for the Kelvin waves show that they were dominant over the time period

investigated,

• and there were significant peaks in the ISO period, indicating that it was predominant

for the time period – as observed in synoptic conditions, therefore observable in the OLR

observations.

The spectra can then be filtered and the FFTs reversed to isolate waves of interest. The results

from Jiang-Yu and Zai-Zhi (2008) show that the OLR observations can be used in conjunction

with STSA to identify the predominant waves over a period of time. More generally, that STSA

is a useful tool which can be used to better understand phenomena – in this case the observed

ISO and convectively coupled tropical waves from the spectral analysis can be used to identify

the signature dominant waves for ISO.

6.1.3 Suitability as a case study

STSA is a good case study for a number of reasons:

1Synoptic scale being of order 1000km – in the extra-tropics this would relate to extra-tropical cyclones.

91

Chapter 6. Application to Atmospheric
Science Workflow 6.2. Quantitative workflow analysis

Figure 6.2: Ratio of power spectra in the wavenumber-frequency domain for a set of results
from Jiang-Yu and Zai-Zhi (2008) (Figure 2). The darker the shading, the more significant the
wave is, and the boxes show waves which were filtered in the results.

• The x-t slice is an inefficient striding read in typical [t,z,y,x] file format (see Chapter 4 for

more details).

• FFTs are very strongly communicative so typically do not perform well when distributed,

meaning that the best way to perform the FFT is when the array is in a single memory

space. This means the easiest way to discretise the algorithm is along the latitude and

height dimensions, where only averages are computed.

• For other examples of STSA that do not use an FFT along the time dimension, they

will generally use some sort of time lagged auto-correlation which also depends heavily

on communication along the time axis, therefore would similarly benefit from being in

shared memory.

6.2 Quantitative workflow analysis

The previous section discussed the STSA algorithm in detail. Using the main points in the

algorithm, the potential performance can be analysed. The data used in the testing for this

investigation was from a N512L180 (see Section 2.4) simulation – the spatial dimensions were

92

Chapter 6. Application to Atmospheric
Science Workflow 6.3. Method

[180,768,1024] ([height, latitude, longitude]).

A longitude-time slice read from standard CF organised files is a very I/O intensive read.

For the high resolution N512L180 hourly data, an x-t slice for 400 days is around 80MB, which

consists of about 8KB striding reads. From Chapter 3, the estimated read rate for this is around

40 MB/s. With splitting the read between 16 nodes along the latitude direction (assuming a

final average along latitude) the read would be around 3.8GB for each tasks with 48 latitude

values. At 40MB/s this would take around 1.5 minutes to read - not in itself a problematic

time, but long enough to demonstrate speed up. At the peak sequential read from JASMIN

(500MB/s) this read would be reduced to 7.5s - showing there could be some significant im-

provement from reorganising the data.

FFTs scale n log n (Cooley and Tukey, 1965). Increasing the number of FFTs (not the length

of the FFT) will linearly increase the time for the algorithm to complete when the algorithm

works in serial. Therefore, to significantly increase the compute time for the algorithm, a long

time series is used so the compute time has more chance to be a limiting factor in the algorithm

compared to the I/O. Note that when implementing STSA algorithms, the time series can be

split into multiple smaller time series which would scale as m(n log n), where m is the number

of FFTs. Therefore, the longer time series will contain a greater number of calculations.

When running the parallelisation asynchronously (e.g. using jug – see Appendix B) there

could be some overlap when one node is running the I/O and another is computing the FFTs.

This could reduce the overall time for the algorithm to run.

6.3 Method

The testing algorithm was discretised into 16 parts, split along the latitudinal (y) dimension.

The Python library jug (see Appendix B) was used to enable the parallelisation. Jug works by

creating a pool of tasks, from which tasks are removed by workers. The levels of parallelistion

used in this testing was:

• a serial test,

• a completely parallel test where all 16 tasks are run simultaneously,

• and an in between test using 4 tasks.

When 16 workers were created, the algorithm ran all 16 tasks simultaneously. When 1 task

93

Chapter 6. Application to Atmospheric
Science Workflow 6.4. Results

was used the algorithm was run in serial. Finally, when 4 workers were used, the first four

tasks were run simultaneously, then when a worker finishes a task it started the next task in

the queue. This may enable the asynchronous overlap discussed in the previous section.

The testing algorithm had the following steps (see Appendix C for the full code):

• Read x-t slice from file. Which consisted of:

– The parallel split was be along the y dimension [768], with 16 workers.

– Each worker looped through the 48 latitude dimensions, and also through the

height dimension to execute the read.

– Each file was 10 days long, so for simplicity in the workflow (only using a single file)

some of the height data was used to artificially increase the length of the time di-

mension of the resulting file which effectively turned a 10 day time series into a 400

day time series, and so increased the amount of CPU work for the FFTs significantly.

• The ’IO’ version of the tests stopped there.

• For ’CPU’ versions of the test, the STSA algorithm was then computed as described in

Section 6.1. rfft was used as the FFT algorithm.

• The parallel jobs were on different nodes because the tests in Chapter 5 showed that read-

ing from the same file on the same node had no increase in read rate, whereas reading

from multiple nodes did.

For most instances of each test, the test was repeated five times so that the confidence of the

mean could be calculated using a 95% confidence interval, along with the mean and standard

deviation. In cases where the confidence interval was not calculated, five iterations of the test

could not be completed due to the time intensive nature of the tests.

6.4 Results

The results from the case study implementation are summarized in Table 6.1, along with Fig-

ures 6.3-6.6.

The total wall times for each different implementation of the case study are shown in Fig-

ure 6.3. As expected, the time for each reduced with more concurrent workers (showing the

94

Chapter 6. Application to Atmospheric
Science Workflow 6.4. Results

Table 6.1: Results from applying different techniques to case study. Each average and STD
calculated from 16 results. Equivalent read rate would be the read rate if the wall time was just
reading the file. All results shown to 2 s.f.

Test type File type Concurrent Wall time (s) Avg wall per Avg cpu per Equivalent read
workers task (s) (STD) task (s) (STD) rate (MB/s)

IO unchunked 1 5600 350 (170) 35 (4.5) 11
IO unchunked 4 1600 340 (130) 37 (9.0) 39
IO unchunked 16 380 290 (71) 36 (7.8) 160
CPU unchunked 1 5900 370 (25) 170 (14) 10
CPU unchunked 4 1800 400 (76) 160 (34) 33
CPU unchunked 16 680 390 (46) 160 (41) 89
IO default 1 11000 680 (82) 660 (81) 5.6
IO default 4 2700 620 (60) 600 (59) 22
IO default 16 900 640 (100) 620 (100) 67
CPU default 1 12000 810 (130) 790 (130) 5.0
CPU default 4 3300 750 (160) 730 (160) 18
CPU default 16 1200 860 (210) 830 (200) 48
IO xt 1 230 14 (4.6) 8.5 (3.5) 270
IO xt 4 93 21 (9.4) 7.0 (2.6) 650
IO xt 16 21 21 (6.7) 6.9 (0.80) 2700
CPU xt 1 1000 63 (23) 56 (22) 59
CPU xt 4 430 95 (48) 87 (46) 140
CPU xt 16 210 110 (51) 96 (48) 290

parallelism – 16 workers means totally parallel, 1 means totally serial). For example, the run

time for the unchunked I/O only test reduced from about 5500s to 500s, around an 11 times

speedup. The default chunking I/O only test also had about 10-11 times speed up. The results

for the compressed files showed similar behaviour when using the x-t chunk scheme without

compression – the read was fast and the STSA calculations added extra time onto the job – in

both cases being much faster per task than any other test combination (Figure 6.4). The default

chunking files with compression add a significant amount of time to the read, being about 5-6

times the uncompressed read (Figure 6.4). Note that some of the tests were excluded due to

excessive run times.

Figure 6.4 shows the breakdown of average times for each individual task consisting the

tests. The results show wall time and CPU time (from Python clock function, see Section 3.1.6

for more details on CPU time and clock). This work assumed that when the wall time was

significantly higher than the CPU time the program was idling waiting for I/O. This meant

that the unchunked data reads were limited by the I/O bandwidth, whereas the other reads

were limited by time spent processing CPU instructions (CPU time). Unsurprisingly, the fastest

reads were from the x-t chunk shaped files (chunking matches read shape).

95

Chapter 6. Application to Atmospheric
Science Workflow 6.4. Results

Figure 6.3: Average total wall time for each test. The purple bars show the read only tests, the
blue bars show the tests including STSA, the top labels show which file type was being used,
and the x-axis shows the number of parallel workers. Note, no results for default chunking
compressed files for IO tests at 1, or 4 workers, and for the CPU tests due to excessive run
times.

Figure 6.4: Average time per task with CPU and wall time for each test. The purple bars show
the wall time for the read only tests, the red bars show the CPU time for the read only tests,
the blue bars show the tests including STSA, the cyan bars show the CPU time for the tests
including the STSA, the top labels show which file type was being used, and the x-axis shows
the number of parallel workers. Note that the bars overlap. Also note that, no results for
default chunking compressed files for IO tests at 1, or 4 workers, and for the CPU tests at 16
workers.

96

Chapter 6. Application to Atmospheric
Science Workflow 6.5. Discussion

The CPU test results consistently added CPU time to the results of around 100-150s per task

(Figures 6.3 and 6.4). This added CPU time for the default and xt chunking increased the total

time for each task. For the default chunking reads this was because the read was bound by the

work on the CPU in the library, and for the xt chunking the wall time increased because the

read was so fast and was dominated by the extra CPU work. The wall time for the unchunked

files was not significantly increased because the read was bound by the filesystem.

Figure 6.5 shows the same information as Figures 6.3 and 6.4, but contains 95% confidence

intervals for the job wall time and task wall time. The main point from these graphs is that

the confidence intervals for the task wall time for each test were either overlapping or very

close, for example the horizontal lines on the purple squares overlap showing that the mean

for the task wall time on the unchunked I/O only test could have been the same for each level

of parallelisation.

6.5 Discussion

The approximate 11 times speed up between 1 and 16 workers (Figure 6.3) was what was

expected from the speed up results when using NetCDF4 on multiple nodes in Chapter 5. The

results in Chapter 5 were based around weak scaling, but the results in this chapter were for

strong scaling, so it gives confidence that the results are similar for both. (Strong and weak

scaling are explained in Section 2.5.1)

For the tests with STSA included, the results are similar for the unchunked 16 worker test,

and the x-t chunked 1 worker test (approximately 700-1000s – Figure 6.3). This leads to two

possible workflow strategies. Firstly, that by reorganising the data in the file (chunking in this

case but could be dimension reorganisation) similar speedup can be achieved compared to

when parallelising the file into 16 tasks, meaning there is more benefit to reorganising the data

– parallelising the algorithm is more difficult than changing the data layout. The other strategy

is the opposite – by having one copy of the data in unchunked format, a similar level of speed

up can be achieved as when reorganising the data, but without having multiple versions of

the file. As to which approach is correct depends on the situation – if storage is the limiting

factor, then obviously having a single version of the file is much better, as long as parallelising

the algorithm is relatively straightforward. Of course, one could argue that by changing the

data layout and parallelising the algorithm you can even further decrease the run time. This

97

Chapter 6. Application to Atmospheric
Science Workflow 6.5. Discussion

Figure 6.5: Total wall time against task time for each test, with the bars showing the 95%
confidence interval. The legend shows which symbol belongs to each test, for example, the
smallest purple squares are the read only tests from unchunked files with 1 worker. Each file
is shown in its own graph.

98

Chapter 6. Application to Atmospheric
Science Workflow 6.5. Discussion

Figure 6.6: The distribution of results for each test. The red dots show the mean, the red line the
median, the outside of the blue box shows the upper and lower quartile, the lower whiskers
show the lower quartile minus 1.5 times the interquartile range (IQR), the upper whiskers
show the upper quartile plus 1.5 time IQR, and the crosses show potential outliers. This is all
calculated automatically using matplotlib’s boxplot function. The labels on the x-axis show
what the test composition was for each box and whisker.

99

Chapter 6. Application to Atmospheric
Science Workflow 6.6. Conclusions

final approach is the most beneficial if low run times, or low computing resource costs2 are the

main priority.

The significantly lower run time when using xt chunked files with xt reads compared to

the other tests is expected, and is comparable with the results from Chapter 5 (using matching

read and chunk shapes significantly benefits the read). Likewise the poor performance with

the default chunking is also expected. However, these results do reinforce that the results from

Chapter 5 are applicable to the more realistic workflow in this chapter.

The read times from compressed default chunked files were around 5-6 times slower than

the uncompressed files (Figure 6.3). This was due to having to read the entire chunk into

memory to uncompress it – to uncompress the file the entire chunk is read and uncompressed

irrelevant of how much of the data is required, thus drastically increasing the time to retrieve

the required data when it is only a small proportion of the chunk. For the xt chunked file this

was not a problem because all the data in the chunk was required – there is still an overhead

to uncompress the data, but it is not significant compared to the other reads.

The speed up for parallelising the workflow should have been almost linear considering

the average task times when accounting for the confidence of the mean (Figures 6.4 and 6.5).

However, the average wall times for the whole job scaled sub linearly. This indicates that the

variation in the timing for each task had an impact in the total run time for the job.

6.6 Conclusions

The space-time spectral analysis workflow was implemented in a variety of different ways to

investigate how it was affected by: chunking, compression, and parallelisation; the interaction

between these factors; and the relation to the idealised tests from Chapters 3-5 of the thesis.

The main conclusions from this chapter are:

• Parallelisation can compensate for poor chunking decisions, but good chunking deci-

sions can provide the same speed improvement as parallelisation.

• Compression can provide some benefits for reduced space in storage with only a small

amount of overhead for uncompression when the data from the entire chunk is required,

but if the chunks are inefficient for the read, the performance hit can be huge.

2What would also need to be considered here the balance between the cost of storage and the cost of processing
time.

100

Chapter 6. Application to Atmospheric
Science Workflow 6.6. Conclusions

Relating the results back to the aims of the chapter which were:

• Assess whether parallelisation can counteract the inefficient layout of data on disc.

This will be tested by reading the data from multiple different file layouts.

It was found that parallelisation is very effective in counteracting inefficient data layout.

• Investigate whether running an algorithm in parallel and asynchronously, reduces

the overall time for an application to run compare to running it synchronously,

when computational work is added.

This is not clear from these results because the extra work introduced from calculating

spectra in this work flow may not have introduced enough extra work to tell. Contrarily, for

this workflow, there is no benefit from running the parallelisation asynchronously.

• Chapter 4 showed that compression adds additional CPU work – does this addi-

tional CPU overhead significantly affect the completion time for the algorithm?

In the case where the required data from a chunk is the entire chunk, CPU time performing

compression only adds a small overhead. However, when the data required is only a fraction

of the chunk, the overhead can be huge.

The results from this chapter agreed well with results from the previous chapters. Firstly,

the speedup with parallel execution of around 11 times with 16 parallel tasks agreed with

the scaling curves in Chapter 5. This is encouraging for both sets of results, showing that

the idealised tests in Chapter 5 showed a good approximation of the speedup expected in a

realistic workflow.

The default chunking performed worse than the unchunked for this read pattern, which

was unsurprising considering the mismatch between the read shape and the chunk shape.

The difference was also consistent with the results in Chapter 4, but it was important to repeat

to show that even in the more realistic case in this chapter that the default chunk specification

provides poor read rates. The results in this chapter also showed the important huge increase

in time when using compressed default chunking. The increase in read time when using xt

shaped chunks was more consistent with the results in Chapter 4. This showed the importance

of having knowledge about how the workflow relates to the organisation of the data.

101

Chapter 7

Conclusions and Further Work

Data volume is increasing in atmospheric science and new techniques are required to analyse

it. There are some new libraries, middleware, and hardware solutions to handling big data

in scientific domains. However, for atmospheric scientists developing or upgrading analysis

scripts for a specific task, these solutions may not be viable. Therefore, knowing the quantita-

tive effects of different layers in the software hardware stack on performance, is paramount for

developing efficient applications. Throughout this thesis, different factors affecting the read

rate for typical data analysis in atmospheric science were analysed. This chapter will sum-

marise the results and draw overall conclusions of the work. The second part of this chapter

discusses the work in the context of other projects, and the final part discusses further work.

7.1 Summary and conclusions

In Chapter 3, the effect of language, file type, read patterns, and read sizes, were investigated.

The aims for Chapter 3 were:

• Evaluate the performance effect of using NetCDF4-python, and assess the reasons

for any reduction in performance.

• Evaluate the effect on the read rate for different read patterns and read sizes.

The main conclusions from this chapter were, firstly, that the reduction in the read rate

when using the netCDF4-python library is caused by the library (at least for that version of the

library, see Appendix B for version details), therefore there was no reduction in performance

compared to the C library performance due solely to Python or by using the NetCDF4 file type.

102

Chapter 7. Conclusions and Further Work 7.1. Summary and conclusions

Secondly, non-sequential reads cause a significant reduction in read performance, probably

due to the inability of the filesystem to correctly read ahead in the file. The reduction in read

rate due to striding reads is greater than the difference between the netCDF4-python and the

C NetCDF4 library. Therefore, despite the performance issues with netCDF4-python it is not

the most important factor, meaning the use of netCDF4-python may not be as detrimental as it

first seems. The results from the effect on the read rate of chunking and compression (Chapter

4), reinforce this.

In Chapter 4, the effect of NetCDF4 chunking and compression on the read rate was inves-

tigated. The aim from this chapter was:

• Quantitatively evaluate the effect that chunking and compression have on the read

rate, and therefore the overall workflow.

A number of conclusions were drawn about how the interaction between chunking and

compression can have a serious detrimental impact in the read rate from NetCDF4 files, if bad

decisions are made about both. Firstly, there is no acceptable compromise whereby chunk-

ing can provide good read rates for multiple read patterns for multidimensional atmospheric

data, at least with the current technology being used on JASMIN (and probably similar on

other HPC platforms). The reduction in read rate for the compromised read is too great (50 to

100 times worse), whilst only providing a minor improvement for the targeted read patterns.

Secondly, compression with the deflate algorithm can reduce the size of NetCDF4 files by ap-

proximately four times. Compression does, however, add an overhead to the read: for chunk

shapes which are read in their entirety, the overhead is small, but when only a section of the

chunk is required, the overhead is very large due to having to read and uncompress the entire

chunk.

Chapter 5 investigated the parallel scaling of the JASMIN super-data cluster in terms of a

typical user’s analysis script from atmospheric science. The aims were:

• Assess the parallel scaling of the JASMIN super-data cluster for application realis-

tic reads.

• Investigate whether MPI collective reads can improve non-sequential read perfor-

mance on JASMIN.

The first major conclusion from this chapter was that it is possible to estimate the potential

103

Chapter 7. Conclusions and Further Work 7.1. Summary and conclusions

achievable bandwidth for a single user, and multiple users, working off the same shelf in the

file system, for multiple and single node parallelism. Secondly, if working from a single file

on a single node, there is no performance increase for running multiple concurrent tasks on

JASMIN. In addition, there is no benefit to using collective reads on the JASMIN platform.

More testing would be required on other platforms to generally assess the benefit of MPI-IO

collective reads for data analysis in atmospheric science.

The final chapter, Chapter 6, applies the investigation from Chapters 3, 4, and 5, into a

realistic atmospheric science workflow.The aims were:

• Assess whether parallelisation can counteract the inefficient layout of data on disk.

Tested by reading the data from multiple different file layouts.

• Investigate whether running an algorithm in parallel and asynchronously, reduces

the overall time for an application to run compare to running it synchronously,

when computational work is added.

• Chapter 4 showed that compression adds additional CPU work. Investigate

whether this additional CPU overhead significantly affects the completion time

for the algorithm.

The application of different chunk shapes, compression, and different levels of concur-

rency, show that parallelism can compensate for poor chunking decisions, and good chunking

decisions can provide similar speedup to running multiple concurrent tasks. However, poor

chunking decisions and compression can be disastrous for performance. The STSA workflow

in this chapter did not contain as high a proportion of compute to I/O as originally thought,

so it was not possible to make conclusions as to whether asynchronous reads would benefit

atmospheric science analysis. Another interpretation of this statement is that the I/O is still

the major bottleneck for atmospheric science workflows, agreeing with Balaji (2015). Another

important implication of this chapter is that the flow charts created from the other chapters

can be used to estimate the read rate for realistic workflows.

Figure 7.1 shows the aggregation of the flowcharts from Chapter 4, and Chapter 5. This

flow chart can be used to estimate the read rate for an application on JASMIN, when given

knowledge about the read, such as: read pattern, read size, and data layout, along with esti-

mated speedup through parallelisation. Similar flowcharts could be made for different plat-

104

Chapter 7. Conclusions and Further Work 7.1. Summary and conclusions

forms using a similar methodology. However, more investigation is needed to quantify the

effect of the factors in the red boxes. As an example of the use of this flow chart, consider the

STSA algorithm with data stored in an unchunked file. Following the flow chart in Figure 7.1,

the data is unchunked with a non-sequential read pattern. Next, the read size is calculated

from the sequential part of the slice, in this case, 1024 8 byte floats, meaning an 8 KB read,

giving a read rate less than 50 MB/s. The total size of the data involved in the analysis is

approximately 60 GB. Therefore, this read will take at least 1200 s – in reality, the x-t read is

more like 10 MB/s giving a read time more like 6000 s, which is much closer to the observed

time. This approximate figure is useful to compare the read rate which could be achieved by

parallelising the workflow, or chunking the file into x-t shaped chunks. The conversion to x-t

shaped chunks would improve the runtime from around 100 mins, to approximately 3 min-

utes, for which the benefit would increase the more times the application is run. This trade-off

obviously needs to be carefully considered, but from a productivity point of view, and with

some foresight, the 33 times speedup could be advantageous. This is also without considering

further speedup through implementing the analysis in parallel – also, the file conversion could

very easily be done in parallel reducing the time to convert between chunk shapes.

As a second example workflow accumulating the results from the NetCDF4 and chunking

investigations to determine whether reformatting data is the correct solution for a workflow,

consider the following:

• An STSA workflow working with one year of N512L180 data. The array order [t,z,y,x]

gives fast (500MB/s) x-y reads and poor (8 MB/s) x-t reads (Figure 4.3).

• This resolution of [8640, 180, 768, 1024] gives a 9.8TB dataset.

• To read the entire dataset at around 500 MB/s (Figure 3.7) it would take around 5 hours.

• To give fast x-t reads the data is required to be in effectively [z,y,t,x] order. This can either

be done via chunking, or rearranging the dimension order in the file.

• Assuming that either can be done in memory for free and saved at the same rate that

it was read (not unreasonable from the results in Figure 2.1 showing the read and write

rates scaled similarly on JASMIN), it would take about 10 hours to convert the data.

(Comparing this to the results from Table 4.4, 10 hours gives an effective rate of 250

MB/s, and converting from unchunked files to x-t chunked files was at 25 MB/s. This

105

Chapter 7. Conclusions and Further Work 7.1. Summary and conclusions

difference is explained by nccopy not performing the conversion in sequential reads and

writes)

• Relating this time to the read time for a single x-t slice at 8 MB/s, gives 4.5s.

• However, the workflow for STSA is to average over y and z. So at 8 MB/s reading x-t

slices from the [t,z,y,x] dataset would take 320 hours (13.3 days).

• The results from Chapter 4 showed that an x-y-t slice was much faster to read at 145

MB/s. Which means reading the 9.2 TB dataset in 18.8 hours.

• Now, returning to the [z,y,t,x] file, the x-t read could be executed at around 400 MB/s

meaning the read would take approximately 6 hours.

Adding the conversion time, 10 hours, to the new read time, 6 hours, gives a total of 2 hours

less than reading the original file with x-y-t slices, and 20 times less than reading with x-t

slices. This estimate however assumes serial reads. Now considering the results from the

parallel scaling investigation:

• The bandwidth from a single shelf on JASMIN was approximately 7 GB/s (Figure 5.5).

• This is 14 times faster than the serial rate, giving a total time for the combined conversion

and subsequent read of approximately 70 minutes, at around 80 concurrent tasks (Figure

5.5).

• For the x-y-t reads from the original file, at linear scaling it would take 48 nodes to attain

7 GB/s – but Figure 5.5 shows that linear scaling is not achieved, so it would take many

more nodes than the above case with conversion. However, the runtime could potentially

be reduced to approximately 20 minutes.

• For the original x-t read, linear scaling implies that at least 300 tasks would be required

to attain 7 GB/s.

This discussion shows that, despite achieving a similar serial time for the rearranged file and

the x-y-t read pattern from the original file, the rearranged file is parallelised over fewer tasks

to a reasonable run time (around an hour). The preferred approach depends on the level of

parallelisation available. Parallelising the x-t read to an acceptable run time would not be

practical however. A caveat of this thought experiment is that it is assumed that the conversion

106

Chapter 7. Conclusions and Further Work 7.1. Summary and conclusions

of data order in the file, either through chunking or otherwise, is free – the conversion results

from Chapter 4 show that when using the nccopy utility, there is, in practice, a significantly

higher overhead.

The major contributions of this thesis which have not previously been quantified are as

follows:

• The methodology in this thesis has provided a framework to develop an estimation of

read rates for typical workflows in atmospheric science. In particular, this thesis has

provided estimate effects on the read rate for:

– non-sequential read patterns,

– the netCDF4-python library,

– NetCDF4 chunking and compression, and the combination of the two,

– and the scaling of different parallel configurations on JASMIN.

• Demonstration that bad combinations of compression and chunking can severely detri-

ment the read rate from NetCDF4 files.

• Demonstration that NetCDF4 chunking cannot provide an acceptable compromise for

multiple read patterns from the same file.

• Demonstration that, on JASMIN, using multiple parallel tasks on a single node does not

improve the read rate.

• Demonstration that parallelisation can compensate for poor read patterns, but good read

patterns can provide the same speedup as parallelisation.

The limitations for this work are as follows:

• Only a limited number of repeats were run for all tests (between three and five generally).

More results would reinforce the conclusions and gain a better idea of the mean and

variability. Due to the nature of this kind of testing being very time intensive, and in most

cases not being able to run multiples of the tests due to potential conflict for resources, it

was only possible to run a limited number of tests. However, useful conclusions can still

be drawn on the results from this thesis.

107

Chapter 7. Conclusions and Further Work 7.2. Related work

• While interesting results were found from the STSA application, the results from Chap-

ters 3 through 5 were only applied to that workflow. Applying the same approach to

other workflows would further test the usefulness of the methodology.

• No filesystem parameters were varied throughout any of the testing, since users gen-

erally may not, or are not able to, change these settings (as described in Chapter 2).

However, the results could potentially have a large impact on the read performance for

applications.

7.2 Related work

In Chapter 3, the importance of sequential read patterns was demonstrated. There are at least

three techniques which can be used to improve the poor performance of non-sequential reads

beyond the investigation in Chapter 4. They consist of:

• read prediction or prefetching (within the filesystem),

• preloading data (within layers above the file system, e.g. middleware or extra hardware),

• and data layout.

The lower IOPS with random or striding reads could be mitigated by accurate read prediction

or prefetching in the filesystem. In a simple sense, this would entail using an algorithm to

predict future reads from an application. He et al. (2013) demonstrate that using a pattern pre-

diction algorithm (using a virtual filesystem) can reduce I/O latency by up to three times, and

was much more effective than Linux readahead. With better prediction of reads, the difference

between the sequential reads and striding reads in Chapter 3 would reduce. Jiang et al. (2013)

also used a prefetching method and showed some speedup, and Byna et al. (2008) showed

improved read rate when using a layer they developed for the MPI-IO library. All these cases

show promise for implementing some form of prefetching on the HPC systems used in atmo-

spheric science (e.g. JASMIN). Some of the levels of speedup demonstrated in these studies

were not enough for smaller striding reads to match the performance of the sequential reads,

needing 10 to 100 times speedup for the striding reads. He et al. (2013) demonstrated 3 times

speedup, Jiang et al. (2013) showed 1.2-1.6 times speedup, and Byna et al. (2008) showed a

maximum of 1.25 times speedup.

108

Chapter 7. Conclusions and Further Work 7.2. Related work

Figure 7.1: Cumulation of the results from all chapters in the thesis, into a flowchart model.

109

Chapter 7. Conclusions and Further Work 7.2. Related work

Similar in some ways to prefetching, preloading data either predicts what data is required

and reads it ahead of time, or reads data using an intermediate stage. A burst buffer is gener-

ally located between the parallel filesystem and the HPC compute cluster. This intermediate

storage can provide faster access and read rates than the main parallel filesystem. Another ben-

efit of a burst buffer system could be that the data once read onto the burst buffer nodes, could

be rearranged or reformatted to enable fast reads from the main filesystem, and faster trans-

fers to the processing nodes. This would obviously be beneficial looking at the results from this

thesis. An example of this method is BurstMem (Wang et al., 2015), which is an example of a

burst buffer system. BurstMem showed significantly improved performance over a non-burst

buffer system (over twice the bandwidth in some cases). This improved performance, along

with the potential to reorganise data in the burst buffer, could significantly reduce the runtime

for the STSA application in Chapter 6. This would give similar performance to, if not better

than, the x-t chunked file (fastest read) while only storing one version of the data, thus keeping

storage costs low. However, BurstMem does not currently support NetCDF and HDF5 files, so

has limited usefulness in Atmopsheric science.

Another way of mitigating poor performance due to inefficient read patterns is to change

the layout of the data on disk. Chapter 4 showed that simply using HDF5 chunking gives

beneficial results for a single read pattern, but not multiple read patterns. Some studies which

aim to solve this problem include:

• using the SDS framework (Dong et al., 2013),

• using PLFS to interface between the physical filesystem and a logical file view from an

application,

• using the ADIOS BP file format,

• and using the Ceph filesystem to improve random access speed.

The SDS framework improves the performance of multiple read patterns by automatically

reformatting data by analysing read patterns of applications, and automatically selects the best

version of the dataset for a given application using metadata. This shows clear benefits with

regard to reading of the reorganised data being 50 times faster. This is a similar speedup to

the chunked files results from Chapter 6 (around 30 times faster comparing unchunked and

x-t chunked files), with similar overhead (each requires multiple files). However, the SDS

framework does this automatically and transparently to the user.

110

Chapter 7. Conclusions and Further Work 7.2. Related work

PLFS is a virtual filesystem which allows a mapping between the physical data and a vir-

tual file which can have a different data order, giving a similar effect to HDF5 chunking. He

et al. (2013) showed significant improvement when using PLFS to provide this mapping. How-

ever, it does not seem to provide any benefits that chunking does not.

The ADIOS BP format (see Section 2.8), organises data on disk to provide fast access for

multiple read patterns (Lofstead et al., 2011). This gives similar benefits to having multiple

chunked files, without the storage overhead. Applying this file type and data distribution to

the STSA, the BP file format could provide around 20 times speedup, which is very similar

to the speedup shown when comparing the unchunked files and x-t chunked files in Table

6.1. However, it is a specific format which would lose the benefits of NetCDF, such as its well

established metadata conventions and tools.

Ceph is an object store based file system like Panasas and Lustre (see Appendix A). Un-

like those two however, it removes the file allocation tables (metadata describing where files

are stored) in favour of using an algorithm to locate data, significantly reducing metadata ac-

cess time. The data across the object stores is also randomly distributed (Weil et al., 2006) as

opposed to using a round-robin distribution which favours reading chunks in storage order.

These two factors could significantly improve the performance of non-sequential read patterns.

The distribution of data involves striping (see Section 2.7.2), which Chapter 4 showed can in-

teract poorly with chunking. One way to avoid this would be to not chunk the NetCDF4 data,

however this would eliminate the option of the inbuilt compression in the NetCDF4 library.

Despite this drawback, using Ceph could be very beneficial to atmospheric science workflows,

giving a similar level of speedup to ADIOS BP files, while still using NetCDF4.

The compression results from Chapter 4 give similar compression ratios to Kunkel (2017)

which showed 40-70% compression ratios for mixed scientific data (including NetCDF4 files)

with zlib compression. Kunkel (2017) showed that the decompression speed for these files was

around 20 times slower than the observed bandwidth. The results from Chapter 4 show that

the overhead for compressed NetCDF4 files, where the read matches the chunk shape, was

around two thirds the uncompressed read rate. However, when the reads consist of multi-

ple whole chunks, the overhead was negligible. This shows the importance of making good

chunking decisions when compressing data. The reads from Kunkel (2017) likely included

reads where the read shape and chunk shape were mismatched, increasing the mean uncom-

pression time.

111

Chapter 7. Conclusions and Further Work 7.3. Further work

There are three European projects which aim to improve exascale data analysis: ESiWACE

(Centre of Excellence in Simulation of Weather and Climate in Europe)1, SAGE2, and NEXTGe-

nIO 3. Part of the ESiWACE project involves developing software to handle analysis of large

data sets. One interesting aspect of this work is on the fly rearrangement of data to improve

subsequent access speeds to data sets, i.e. after the data has been accessed the first time, the

access pattern is analysed, and the data reorganised to improve the read performance for sub-

sequent reads. SAGE aims to utilise a storage hierarchy with object stores to improve I/O

performance, along with supporting software. NEXTGenIO aims to bridge the gap between

storage and compute using non-volatile memory (NVRAM), by designing appropriate hard-

ware and software to take advantage of NVRAM.

Most of the studies discussed in this section, make the assumption that large data analy-

sis is a problem. However, they do not seek to quantify the problem, and instead focus on

providing solutions. While this is a valid approach to the problem, it is targeted to those who

have already encountered problems associated with big data analysis. Quantifying the fac-

tors which affect the performance of data analysis makes scientists aware of which of these

factors could affect their application, and avoidance of these problems can save time during

development. The results in this thesis have quantified many of these factors.

7.3 Further work

There are five avenues of further work which would expand upon the work in this thesis.

Firstly, implementing more case studies would affirm the performance results in Figure 7.1.

Three further case studies were identified which could provide useful results. The case studies

were: k-means clustering, cyclone tracking, and a global energy or moisture budget. Clus-

tering is a method of grouping data into different categories, which requires an iterative algo-

rithm, differentiating it from the STSA case study significantly. Cyclone tracking is a method of

finding the trajectories of a cyclone through data from simulations or satellite data, by search-

ing through fields for specific circumstances, and connecting them between timesteps to form

a trajectory. Global budget studies involve evaluating many different fields, and processing

a large amount of data, including finite difference calculations; creating strong dimensional

1https://www.esiwace.eu/
2http://www.sagestorage.eu/
3http://www.nextgenio.eu/

112

Chapter 7. Conclusions and Further Work 7.3. Further work

dependencies in the data fields.

Secondly, investigating the reasons involved with the reduced performance due to partial

reads of chunks in NetCDF4 files (when compressed and uncompressed) would be useful.

Also, it would be useful to quantify in more detail the time involved with reformatting files for

different read patterns. This would give a more complete picture of the effect on the workflow.

Thirdly, the creation of similar flowcharts for other HPC platforms with different filesys-

tems (ARCHER, and the RDF) would be useful. Firstly, this would confirm that the method in

this thesis is more widely applicable. Secondly, having the performance modelled for different

platforms would be useful for users working on those platforms.

Adaptively changing the layout of data in the file to provide more efficient access to a

specific application would drastically improve the read performance. This could either be

done after the first run of an application (i.e. once the algorithm has learnt how to format

the data for the application), while the user is in a batch queuing system waiting to run (the

user would provide prompts to the system to tell it how to format the data), or this could be

done when moving data into a burst buffer (discussed below). All of these approaches would

improve the read rate without having to permanently store multiple version of the file, also

with little overhead for the user.

Finally, there are other types of architecture which could improve the I/O performance

compared to a HPC parallel file system, such as using burst buffers, using a Hadoop-type

cluster (see Section 2.7.2), or using an alternative filesystem such as Ceph. A burst buffer en-

ables the data to be staged onto high speed storage, typically solid state, reducing the overall

read rate, especially when accessing the data multiple times. For certain workflows Hadoop

and MapReduce could be the right solution for a workflow depending on the data distribution

and layout. Ceph reduces the amount of metadata required for a filesystem by eliminating the

file allocation table, and randomly distributes the striped data (as opposed to Panasas which

uses a round-robin type distribution). Both of these attributes could improve the performance

of reads, particularly non-sequential reads with random data distribution (it could provide

similar speedup to the ADIOS BP file format). Using the methodology in this thesis could ex-

amine whether these architectures would be broadly beneficial for workflows in atmospheric

science.

113

BIBLIOGRAPHY

Amdahl, G. M., 1967: Validity of the single processor approach to achieving large scale com-

puting capabilities. Proceedings of the April 18-20, 1967, spring joint computer conference, ACM,

483–485.

Asanovic, K., et al., 2006: The landscape of parallel computing research: A view from berkeley.

Tech. Rep. UCB/EECS-2006-183, EECS Department, University of California, Berkeley. URL

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html.

Baker, A. H., et al., 2014: A Methodology for Evaluating the Impact of Data Compres-

sion on Climate Simulation Data. Proceedings of the 23rd International Symposium on High-

performance Parallel and Distributed Computing, 203–214, doi:10.1145/2600212.2600217, URL

http://doi.acm.org.ezproxy.lib.utexas.edu/10.1145/2600212.2600217.

Balaji, V., 2015: Climate Computing: The State of Play. Computing in

Science & Engineering, 17 (6), 9–13, doi:10.1109/MCSE.2015.109, URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7274265.

Balaji, V., et al., 2017: CPMIP: measurements of real computational performance of Earth sys-

tem models in CMIP6. Geoscientific Model Development, 10 (1), 19.

Barton, E. and A. Dilger, 2015: High Performance Parallel I/O, chap. 8, 91–106. CRC Press.

Bartz, C., K. Chasapis, M. Kuhn, P. Nerge, and T. Ludwig, 2015: A Best Practice Analysis of

HDF 5 and NetCDF- 4 Using Lustre. High Performance Computing, Springer International

Publishing, 274–281.

Blank, T. and J. R. Nickolls, 1992: A grimm collection of mimd fairy tales. Frontiers of Massively

Parallel Computation, 1992., Fourth Symposium on the, IEEE, 448–457.

114

Bibliography

Blower, J., A. Gemmell, G. Griffiths, K. Haines, A. Santokhee, and

X. Yang, 2013: A Web Map Service implementation for the visual-

ization of multidimensional gridded environmental data. Elsevier, URL

http://centaur.reading.ac.uk/31396/12/ncWMS paper EMS 2013.pdf, doi:

10.1016/j.envsoft.2013.04.002 ¡http://dx.doi.org/10.1016/j.envsoft.2013.04.002¿.

Borrill, J., L. Oliker, J. Shalf, and H. Shan, 2007: Investigation of leading HPC I/O performance

using a scientific-application derived benchmark. Proceedings of the 2007 ACM/IEEE Confer-

ence on Supercomputing (SC ’07), doi:10.1145/1362622.1362636.

Borrill, J., L. Oliker, J. Shalf, H. Shan, and A. Uselton, 2009: HPC global

file system performance analysis using a scientific-application derived bench-

mark. Parallel Computing, 35 (6), 358–373, doi:10.1016/j.parco.2009.02.002, URL

http://www.sciencedirect.com/science/article/pii/S0167819109000271.

Buck, J. B., N. Watkins, J. Lefevre, C. Maltzahn, and S. Brandt, 2011: SciHadoop : Array-

based Query Processing in Hadoop Categories and Subject Descriptors. Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage and Analysis, 66.

Byna, S., Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, 2008: Parallel i/o prefetching using

mpi file caching and i/o signatures. Proceedings of the 2008 ACM/IEEE conference on Super-

computing, IEEE Press, 44.

Caron, J., 2014: Compression by Bit-Shaving. URL http://unidata.ucar.edu/

blogs/developer/entry/compression by bit shaving.

Chasapis, K., M. F. Dolz, M. Kuhn, and T. Ludwig, 2014: Evaluating Power-Performance Ben-

efits of Data Compression in HPC Storage Servers. International Conference on Smart Grids,

Green Communications and IO Energy-aware Technologies.

Childs, H., E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whitlock, and N. Max, 2005: A

contract based system for large data visualization. Visualization, 2005. VIS 05. IEEE, IEEE,

191–198.

Cinquini, L., D. Crichton, A. Braverman, L. Kyo, T. Fuchs, and M. Turmon, 2014: Dawn: A

simulation model for evaluating costs and tradeoffs of big data science architectures. AGU

Fall Meeting Abstracts, Vol. 1, 03.

115

Bibliography

Cooley, J. W. and J. W. Tukey, 1965: An algorithm for the machine calculation of complex

fourier series. Mathematics of computation, 19 (90), 297–301.

Crichton, D. J., et al., 2012: Sharing Satellite Observations with the Climate-Modeling Commu-

nity: Software and Architecture. IEEE Software, 29 (5), 73–81, doi:10.1109/MS.2012.21, URL

http://ieeexplore.ieee.org/document/6133265/.

Dean, J. and S. Ghemawat, 2008: MapReduce: simplified data process-

ing on large clusters. Communications of the ACM, 51 (1), 107–113, URL

http://dl.acm.org/citation.cfm?id=1327492.

del Rosario, J. M., R. Bordawekar, and A. Choudhary, 1993: Improved parallel I/O via a two-

phase run-time access strategy. ACM SIGARCH Computer Architecture News, 21 (5), 31–38,

doi:10.1145/165660.165667.

Dong, B., S. Byna, and K. Wu, 2013: Expediting scientific data analysis

with reorganization of data. 2013 IEEE International Conference on Cluster

Computing (CLUSTER), IEEE, 1–8, doi:10.1109/CLUSTER.2013.6702675, URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6702675.

Flynn, M. J., 1972: Some Computer Organizations and Their Effectiveness. IEEE

Transactions on Computers, C-21 (9), 948–960, doi:10.1109/TC.1972.5009071, URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5009071.

Fox, G. C., S. Jha, J. Qiu, and A. Luckow, 2014: Towards an understanding of facets and ex-

emplars of big data applications. Proceedings of the 20 Years of Beowulf Workshop on Honor of

Thomas Sterling’s 65th Birthday, ACM, 7–16.

Gao, K., C. Jin, A. Choudhary, and W. K. Liao, 2011: Supporting computational data model

representation with high-performance I/O in parallel netCDF. 18th International Conference

on High Performance Computing, HiPC 2011, doi:10.1109/HiPC.2011.6152746.

Gustafson, J. L., 1988: Reevaluating amdahl’s law. Communications of the ACM, 31 (5), 532–533.

Hager, G. and G. Wellein, 2010: Introduction to High Performance

Computing for Scientists and Engineers. CRC Press, 356 pp., URL

http://books.google.com/books?hl=en&lr=&id=rkWPojgfeM8C&pgis=1.

116

Bibliography

Hayashi, Y., 1971: A Generalized Method of Resolving Disturbances into Progressive and

Retrogressive Waves by Space Fourier and Time Cross-Spectral Analyses. Journal of the

Meteorological Society of Japan. Ser. II, 49 (2), 125–128, doi:10.2151/jmsj1965.49.2 125, URL

https://www.jstage.jst.go.jp/article/jmsj1965/49/2/49 2 125/ article.

Hayashi, Y., 1982: Space-time spectral analysis and its applications

to atmospheric waves. J. Meteor. Soc. Japan, 27 (11), 156–171, URL

https://140.208.31.101/bibliography/related files/yh8201.pdf.

Hayashi, Y. and D. Golder, 1977: Space-time spectral analysis of mid-latitude disturbances

appearing in a GFDL general circulation model. Journal of the Atmospheric Sciences, URL

https://gfdl.noaa.gov/bibliography/related files/yh7701.pdf.

He, J., J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun, 2013: I/O Accel-

eration with Pattern Detection. HPDC ’13 Proceedings of the 22nd international symposium on

High-performance parallel and distributed computing, 25–36, doi:10.1145/2462902.2462909.

Henty, D., A. Jackson, C. Moulinec, and V. Szeremi,

2015: Performance of Parallel IO on ARCHER. URL

http://www.archer.ac.uk/documentation/white-papers/parallelIO/

ARCHER wp parallelIO.pdf, 1–13 pp.

Hildebrand, D. and F. Schmuck, 2015: High Performance Parallel I/O, chap. 9, 91–106. CRC Press.

Hoyer, S., 2015: github/shoyer: Pythonic interface to netCDF4 via h5py. URL

https://github.com/shoyer/h5netcdf.

Huang, X., Y. Ni, D. Chen, S. Liu, H. Fu, and G. Yang, 2016: Czip: A Fast

Lossless Compression Algorithm for Climate Data. International Journal of

Parallel Programming, 44 (6), 1248–1267, doi:10.1007/s10766-016-0403-z, URL

http://link.springer.com/10.1007/s10766-016-0403-z.

Hübbe, N., A. Wegener, J. M. Kunkel, Y. Ling, and T. Ludwig, 2013: Evaluating lossy compres-

sion on climate data. Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics), 7905 LNCS, 343–356, doi:10.1007/978-

3-642-38750-0 26.

117

Bibliography

Jha, S., J. Qiu, A. Luckow, P. Mantha, and G. C. Fox, 2014: A Tale of Two Data-Intensive

Paradigms: Applications, Abstractions, and Architectures. Big Data (BigData Congress),

2014 IEEE International Congress on, 645–652, URL http://arxiv.org/abs/1403.1528,

1403.1528.

Jiang, S., X. Ding, Y. Xu, and K. Davis, 2013: A prefetching scheme exploiting both data layout

and access history on disk. ACM Transactions on Storage (TOS), 9 (3), 10.

Jiang-Yu, M. and W. Zai-Zhi, 2008: Actual Tropical Waves Identified by the Wavenumber-

Frequency Spectrum Analysis during Boreal Summer. Chinese Physics Letters, 1506, URL

http://iopscience.iop.org/0256-307X/25/4/092.

Jones, M., J. Blower, B. Lawrence, and A. Osprey, 2016: Investigating read performance of

python and netcdf when using hpc parallel filesystems. International Conference on High Per-

formance Computing, Springer, 153–168.

Kunkel, J., 2017: SFS: A Tool for Large Scale Analysis of Compression Characteristics. Tech.

Rep. 4, Deutsches Klimarechenzentrum GmbH, Bundesstrae 45a, D-20146 Hamburg.

Lawrence, B., 2014: Jasmin – a data analysis environ-

ment, URL http://home.badc.rl.ac.uk/lawrence/static/

2014/10/07/Lawrence JASMIN.pdf, NERC ICT Current Awareness.

Lawrence, B., C. Maynard, A. Turner, X. Guo, and D. Sloan-Murphy, 2017: Partnership for Ad-

vanced Computing in Europe Parallel I/O Performance Benchmarking and Investigation on

Multiple HPC Architectures. URL http://www.prace-ri.eu/IMG/pdf/WP236.pdf.

Lawrence, B. N., 2001: A gravity-wave induced quasi-biennial oscillation in

a three-dimensional mechanistic model. Quarterly Journal of the Royal Me-

teorological Society, 127 (576), 2005–2021, doi:10.1002/qj.49712757608, URL

http://doi.wiley.com/10.1002/qj.49712757608.

Lawrence, B. N., V. Bennett, J. Churchill, M. Juckes, P. Kershaw, P. Oliver, and M. Pritchard,

2012: The JASMIN super-data-cluster. arXiv:1204.3553v1.

Lawrence, B. N., et al., 2013: Storing and manipulating environmental big data with JASMIN.

IEEE Big Data 2013.

118

Bibliography

Lee, C., M. Yang, and R. Aydt, 2008: NetCDF-4 Performance Report. Tech. rep., 1–22 pp. URL

https://www.hdfgroup.org/pubs/papers/2008-06 netcdf4 perf report.pdf.

Li, H., Y. Ruan, Y. Zhou, J. Qiu, and G. Fox, 2011: Design Patterns for Scientific Ap-

plications in DryadLINQ CTP. in Proceedings of The Second International Workshop on

Data Intensive Computing in the Clouds (DataCloud-2) 2011, The International Conference

for High Performance Computing, Networking, Storage and Analysis (SC11), 12–18, URL

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.9577.

Liu, J., E. Racah, Q. Koziol, and R. S. Canon, 2016: H5spark: Bridging the i/o gap between

spark and scientific data formats on hpc systems. Cray User Group.

Liu, S., X. Huang, H. Fu, G. Yang, and Z. Song, 2015: Data Reduction Analysis for Climate

Data Sets. International Journal of Parallel Programming, 43 (3), 508–527, doi:10.1007/s10766-

013-0287-0, URL http://link.springer.com/10.1007/s10766-013-0287-0.

Lofstead, J., M. Polte, G. Gibson, S. Klasky, K. Schwan, R. Oldfield, M. Wolf, and Q. Liu,

2011: Six degrees of scientific data: Reading Patterns for Extreme Scale Science IO.

Proceedings of the 20th international symposium on High performance distributed computing -

HPDC ’11, ACM Press, New York, New York, USA, 49, doi:10.1145/1996130.1996139, URL

http://dl.acm.org/citation.cfm?id=1996130.1996139.

Lofstead, J. F., S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, 2008: Flexible IO and

integration for scientific codes through the adaptable IO system (ADIOS). Proceedings of

the 6th international workshop on Challenges of large applications in distributed environments -

CLADE ’08, ACM Press, New York, New York, USA, 15, doi:10.1145/1383529.1383533, URL

http://dl.acm.org/citation.cfm?id=1383529.1383533.

Mattmann, C. A., D. J. Crichton, N. Medvidovic, and S. Hughes, 2006: A software

architecture-based framework for highly distributed and data intensive scientific ap-

plications. Proceeding of the 28th international conference on Software engineering - ICSE

’06, ACM Press, New York, New York, USA, 721, doi:10.1145/1134285.1134400, URL

http://portal.acm.org/citation.cfm?doid=1134285.1134400.

Méndez, S., D. Rexachs, and E. Luque, 2013: A Methodology to characterize the parallel I /

O of the message-passing scientific applications. Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications (PDPTA)., 8.

119

Bibliography

Miller, M., 2015: Silo: A Genrral-Purpose API and Scientific Database. High Performance Parallel

I/O, Prabhat and Q. Koziol, Eds., CRC Press, chap. 21, 249–258.

Palamuttam, R., R. M. Mogrovejo, C. Mattmann, B. Wilson, K. Whitehall, R. Verma,

L. McGibbney, and P. Ramirez, 2015: SciSpark: Applying in-memory distributed

computing to weather event detection and tracking. 2015 IEEE International Confer-

ence on Big Data (Big Data), IEEE, 2020–2026, doi:10.1109/BigData.2015.7363983, URL

http://ieeexplore.ieee.org/document/7363983/.

Rew, R., 2013: Chunking Data: Why it Matters. URL

http://www.unidata.ucar.edu/blogs/developer/entry/

chunking data why it matters.

Rew, R., C. J. Caron, E. Hartnett, and D. Heimbigner, 2010: December. Advances in the NetCDF

Data Model , Format , and Software.

Schmid, J. and J. Kunkel, 2016: Predicting i/o performance in hpc using ar-

tificial neural networks. Supercomputing Frontiers and Innovations, 3 (3), URL

http://superfri.org/superfri/article/view/105.

Schnase, J. L., et al., 2016: Big Data Challenges in Climate Science: Im-

proving the next-generation cyberinfrastructure. IEEE Geoscience and Re-

mote Sensing Magazine, 4 (3), 10–22, doi:10.1109/MGRS.2015.2514192, URL

http://ieeexplore.ieee.org/document/7570342/.

Shan, H., K. Antypas, and J. Shalf, 2008: Characterizing and predicting the I/O

performance of HPC applications using a parameterized synthetic benchmark. Pro-

ceedings of the 2008 ACM/IEEE conference on Supercomputing, IEEE Press, 42, URL

http://dl.acm.org/citation.cfm?id=1413370.1413413.

Silberschatz, A., P. Baer Galvin, and G. Gagne, 2013: Operating System Concepts. 9th ed., Wiley.

Stocker, T., 2014: Climate change 2013: the physical science basis: Working Group I contribution to the

Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University

Press.

120

Bibliography

Wang, T., S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu, 2015: BurstMem: A high-

performance burst buffer system for scientific applications. Proceedings - 2014 IEEE Interna-

tional Conference on Big Data, IEEE Big Data 2014, 71–79, doi:10.1109/BigData.2014.7004215.

Weil, S. A., S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, 2006: Ceph:

a scalable, high-performance distributed file system. Proceedings of the 7th symposium

on Operating systems design and implementation, USENIX Association, 307–320, URL

http://dl.acm.org/citation.cfm?id=1298455.1298485.

Welch, B., M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka, and B. Zhou,

2010: White Paper Scalable Performance of the Panasas Parallel File System. 6th USENIX

Conference on File and Storage Technologies (FAST ’08), 1–22, May.

Yang, G.-Y., B. Hoskins, and J. Slingo, 2003: Convectively Coupled

Equatorial Waves: A New Methodology for Identifying Wave Struc-

tures in Observational Data. Journal of the Atmospheric Sciences, 60 (14),

1637–1654, doi:10.1175/1520-0469(2003)060¡1637:CCEWAN¿2.0.CO;2, URL

http://journals.ametsoc.org/doi/abs/10.1175/1520-0469(2003)060

<1637:CCEWAN>2.0.CO;2.

Yang, G.-Y., B. J. Hoskins, and J. M. Slingo, 2011: Equatorial Waves in Opposite QBO

Phases. Journal of the Atmospheric Sciences, 68 (4), 839–862, doi:10.1175/2010JAS3514.1, URL

http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3514.1.

Zender, C. S., 2016: Bit Grooming: Statistically accurate precision-preserving quanti-

zation with compression, evaluated in the netCDF Operators (NCO, v4.4.8+). Geo-

scientific Model Development Discussions, (April), 1–18, doi:10.5194/gmd-2016-63, URL

http://www.geosci-model-dev-discuss.net/gmd-2016-63/.

121

Appendix A

Platforms

This Appendix contains details on the three HPC platforms used in the thesis. All three were

used for Chapter 3, and only JASMIN was used in the other chapters.

A.1 JASMIN (Panasas)

The JASMIN platform (see Figure A.1) at the Science and Technology Facilities Council (STFC)

uses a Panasas storage system (Lawrence et al., 2013) . The Panasas sub-system (see Figure

A.2) is composed of bladesets, each containing shelves, that in turn contain blades, each made

up of two disks. The blades are connected to the shelf via 1Gb/s ports, and the shelves used

connected to the network via one 10Gb/s port. This describes the initial JASMIN storage

implementation, JASMIN1, which was used for the tests in the thesis. In JASMIN2, the newer

section of the filesystem, the shelves are connected via a 2 10Gb/s connections. The compute

cluster is composed of nodes, with each connected to the storage system and to each other via a

non blocking 10Gb/s network. The Panasas file system handles how the objects are physically

stored on disk and the most efficient way to access them, i.e. giving the shortest possible

access time (Welch et al., 2010). This gives a theoretical bandwidth to a single processing node

of 1.25GB/s. The compute nodes used here have 128GB RAM. In Panasas, files can be striped

using the RAID6 method, in which a large file is split across multiple blades (small files are

copied) with included redundancy (Silberschatz et al., 2013). This means that the file can be

read from multiple different blades increasing the read performance, theoretically, by a factor

of the number of blades and bladesets. The manager nodes have the metadata to where and

how the files are stored (Welch et al., 2010).

122

Appendix A Platforms

Figure A.1: Representation of the JASMIN platform. Adapted from Lawrence et al. (2013)

Figure A.2: Representation of the Panasas filesytem. Figure from Welch et al. (2010).

123

Appendix A Platforms

A.2 ARCHER (Lustre)

The ARCHER platform (a Cray XC30) uses a high performance Lustre file system (depiction in

Figure A.3). The compute nodes used have 64GB RAM, and are connected by the Cray Aries

interconnect1. Lustre is an open source parallel file system which uses many object storage

servers with metadata servers to store data (Barton and Dilger, 2015). The object storage tar-

gets are connected to object storage servers which are all connected to the network, and there is

a manager node which is connected to all the object storage severs. Metadata servers are con-

nected directly to the network, and to the object storage serves via the manager node (Barton

and Dilger, 2015).

A.3 RDF (GPFS)

The UK Research Data Facility (UK-RDF) HPC platform uses GPFS (General Parallel File Sys-

tem), with Infiniband connections between the storage and compute nodes. The compute

nodes used have 128GB RAM. Filesystem metadata is stored on high speed hard disk drives

(HDDs), with the data stored on HDDs in four storage arrays 2. GPFS is a parallel file system

that can increase bandwidth by exploiting multiple network shared disks (Hildebrand and

Schmuck, 2015). The storage for GPFS is connected to network shared disk servers, which are

connected to the network which is in turn connected to the processing nodes (Hildebrand and

Schmuck, 2015).

A.4 Comparing the three platform’s filesystems

There are a few differences between the Lustre, GPFS, and Panasas files systems. In terms of

how files are stored, there are two methods used here – either block based storage, or object

based storage. With storage blocks, the block only contains the data itself – it contains no

metadata. On the other hand, an object in an object store has the data, metadata about the

object, and a global identifier. With both block-based, and object-based storage striping can

be used (see Section 2.7.2) – the files are composed of multiple objects or blocks, which can be

stored on separate disks.

1http://www.archer.ac.uk/documentation/user-guide/
2http://www.archer.ac.uk/about-archer/hardware/

124

Appendix A Platforms

Figure A.3: Representation of a Lustre filesystem. Figure from http://lustre.org/about/

The second difference between the files systems is how metadata servers function. Meta-

data is needed in order to know where data is stored in the parallel file system. I/O requests

from applications are required to query a metadata node before being able to executing reads

or writes. This means that the metadata query part of a read could be a significant bottleneck

with many users accessing the same file system, or as the filesystem grows in size. In GPFS and

Panasas, the metadata servers are involved with file I/O operations (e.g. disc allocation, and

data striping), as well as pathname and permissions checks. The metadata server on Lustre,

on the other hand, are only involved with pathname and permissions checks in an attempt to

avoid scalability bottlenecks on the metadata server. Note that, in all cases, once data has been

located, the I/O operations do not have to pass through the metadata node, meaning the only

bottleneck is the acquisition of the metadata, and with more metadata nodes the bottleneck is

likely to be lower. Panasas in general has a metadata server to storage device ratio of around 1

to 10, as is the case with JASMIN. ARCHER has one metadata node per filesystem (with more

recent versions of LUSTRE more metadata servers can be used). The RDF has two metadata

nodes (the configuration of GPFS is very flexible are more could potentially be used in other

implementations).

125

Appendix B

Tools

This section contains descriptions of the libraries used in the thesis.

B.1 NetCDF4 C library

The NetCDF4 C library1 enables reading and writing to NetCDF4 files and the creation of files.

Version 4.4.0 was used.

B.2 MPI

MPI is a message passing system which allows tasks to communicate during run time.

B.3 MPI-IO

MPI-IO2 was developed to provide I/O support for MPI. It supports a number of different

I/O modes, including independent and collective I/O (see Chapter 5), and with blocking and

non-blocking I/O – this decides whether multiple tasks can access data at the same time.

B.4 Nccopy

Nccopy3 is a utility which enables the copying of NetCDF4 files, with the ability to change its

settings (such as chunking or compression).

1https://www.unidata.ucar.edu/software/netcdf/docs/
2http://beige.ucs.indiana.edu/I590/node86.html
3http://www.unidata.ucar.edu/software/netcdf/workshops/2011/utilities/Nccopy.html

126

Appendix B Tools

B.5 Python libraries

The following sections contain descriptions Python libraries were used throughout the thesis,

along with which version of the library was used.

B.5.1 NumPy

NumPy4 is a library which allows fast calculations on arrays by implementing said calcula-

tions in C rather than natively in Python. It is a fundamental package for other applications

because of the speed benefit it applies, and the powerful inbuilt functions, such as statistical

calculations, array broadcasting and reshaping, and Fourier transforms. Version 1.13.0 was

used.

B.5.2 netCDF4-python

NetCDF4-python5 is the Python interface to the C NetCDF4 library above. Version 1.2.9 was

used, a new version not yet released, 1.3.0, could significantly improve striding read perfor-

mance6.

B.5.3 H5py

H5py7 is a Pythonic interface for reading HDF5 files. This library was not directly used in this

work, but the h5netcdf library is built on this one.

B.5.4 H5netcdf

h5netcdf8 uses the h5py library to read from NetCDF4 files, circumventing the NetCDF4 C

library. The library claims to provide faster performance than the the netCDF4-python library,

and the results from Chapter 3 back this claim up. Version 0.4.0 was used.

4http://www.numpy.org/
5https://pypi.python.org/pypi/netCDF4?
6https://github.com/Unidata/netcdf4-python/blob/master/Changelog
7http://www.h5py.org/
8https://pypi.python.org/pypi/h5netcdf/

127

Appendix B Tools

B.5.5 Jug

Jug9 was produced as a simple way to write easily parallel programs in Python and is partic-

ularly good for embarrassingly parallel problems. Embarrassingly parallel problems are ones

in which processes can be immediately and easily split into independent parts which can be

executed in parallel. Any workflow that has repeatable sections that do not depend on each

other could be easily parallelised using jug. Some examples of this could be calculating spatial

analysis for individual timesteps and calculating time based analysis at individual points in

space. Jug works by creating a pool of tasks to be executed, and a number of workers to run

these tasks – this means that the tasks can be run asynchronously, and any number of tasks

and workers can be created, not necessarily the same number. It is possible in a jug script to

have multiple pools of tasks and data can flow through them. This can enable a gathering of

the data after a pool is finished to move onto another task. In order to ensure that the previous

pool is finished barriers can be used in the script to pause the progress until everything before

the barrier is finished. Jug is a flexible library which can be used for many different work flows

which do not require communication between the tasks. All the control (e.g. which tasks have

been run) and data is controlled via a directory jug creates on the file system. Version 0.9.6 was

used.

9https://jug.readthedocs.io/en/latest/

128

Appendix C

Code

This section contains the code which was used to run tests in the thesis. It is broken down

chapter by chapter and only contains the main bulk of the testing scripts, the excluded scripts

are mainly to do with file creation, and submission; the latter enabling concurrent running of

the scripts on the cluster.

C.1 Chapter 3, 4, and 5

C.1.1 Program to read using C from ’plain’ binary files

Written by Jon Blower, with adaptations by the author. Used in Chapter 3.

include <s t d i o . h>
include <s t d l i b . h>
include <time . h>
include <sys/ s t a t . h> /∗ Only p r e s e n t on POSIX s y s t e m s I t h i n k ∗/
include <sys/time . h>

double rand2 () ;

i n t main (i n t argc , char ∗argv [])
{

char ∗ f i l e name ; /∗ Name o f t h e f i l e t o r e a d ∗/
FILE ∗ f i n ; /∗ F i l e p o i n t e r f o r t h e i n p u t f i l e ∗/
o f f t f i l e s i z e ; /∗ S i z e o f t h e i n p u t f i l e ∗/
s t r u c t s t a t s t b u f ; /∗ Wil l h o l d s t a t s a b o u t t h e i n p u t f i l e ∗/

char random ; /∗ i f we ’ r e r e a d i n g from random p o s i t i o n s in t h e f i l e , 0 o t h e r w i s e ∗/
i n t random read count ; /∗ The number o f b u f f e r s r e q u e s t e d in a random r e a d ∗/
o f f t ∗o f f s e t s ; /∗ I f r e a d i n g randomly , we ’ l l p r e c a l c u l a t e an a r r a y o f random o f f s e t s ∗/
i n t b u f f e r s i z e ; /∗ Number o f b y t e s t o r e a d in a s i n g l e o p e r a t i o n ∗/
char ∗b u f f e r ; /∗ B u f f e r t o h o l d b y t e s r e a d from t h e f i l e ∗/
unsigned long long b u f f e r s r e a d ; /∗ The number o f b u f f e r s a c t u a l l y r e a d ∗/
s i z e t bytes read ; /∗ The b y t e s r e a d in a s i n g l e r e a d o p e r a t i o n ∗/
unsigned long long t o t a l b y t e s r e a d ; /∗ The t o t a l number o f b y t e s r e a d ∗/

i n t i ; /∗ Loop c o n t r o l v a r i a b l e s ∗/
i n t done ;

c l o c k t c p u t i m e s t a r t ; /∗ Used t o g e t CPU t ime s p e n t r e a d i n g t h e f i l e ∗/
c l o c k t cpu time end ;
double cpu time spent ;

s t r u c t t imeval w a l l t i m e s t a r t ; /∗ Used t o measure wal l−c l o c k t ime s p e n t r e a d i n g t h e f i l e ∗/
s t r u c t t imeval wal l t ime end ;
double wal l t ime spent ;

double r e a d r a t e ; /∗ Average d a t a r e a d r a t e in megabyt e s p e r w a l l c l o c k s e c o n d s ∗/

random = ’ s ’ ; /∗ Assume we ’ r e r e a d i n g s e q u e n t i a l l y u n l e s s we f i n d o t h e r w i s e ∗/
/ / s rand (t ime (NULL)) ; /∗ Seed t h e random number g e n e r a t o r ∗/

129

Appendix C Code

srand (1) ;

/∗ Check t h e r e a r e enough command−l i n e arguments ∗/
i f (argc < 3 | | argc > 5) {

f p r i n t f (s tderr , ”Usage : r e a d f i l e <f i lename><b u f f e r s i z e in bytes> [r | s |h] [count i f random]\n”) ;
e x i t (EXIT FAILURE) ;

}

/∗ Read t h e command−l i n e arguments ∗/
f i l e name = argv [1] ;
i f (s s c a n f (argv [2] , ”%d” , &b u f f e r s i z e) <= 0) {

f p r i n t f (s tderr , ” I n v a l i d b u f f e r s i z e %s\n” , argv [2]) ;
e x i t (EXIT FAILURE) ;

}
i f (argc > 3) {

/∗ Third argument i s a c h a r a c t e r i n d i c a t i n g i f r e a d s s h o u l d be random , s e q u e n t i a l o r hopp ing ∗/
s s c a n f (argv [3] , ”%c ” , &random) ;
i f (random != ’ r ’ && random != ’ s ’ && random != ’h ’) {

f p r i n t f (s tderr , ”Must be \”r\” , \”s\” or \”h\” , found %s\n” , argv [3]) ;
e x i t (EXIT FAILURE) ;

}
}
i f (random == ’ r ’) {

/∗ We need a count ∗/
i f (argc < 5) {

f p r i n t f (s tderr , ”Must input a count when performing random reads\n”) ;
e x i t (EXIT FAILURE) ;

}
i f (s s c a n f (argv [4] , ”%d” , &random read count) <= 0) {

f p r i n t f (s tderr , ” I n v a l i d read count %s\n” , argv [4]) ;
e x i t (EXIT FAILURE) ;

}
}

/∗ C r e a t e b u f f e r o f t h e r i g h t s i z e ∗/
p r i n t f (” Buf fer s i z e = %d bytes\n” , b u f f e r s i z e) ;
b u f f e r = (char∗) malloc (s i ze of (char) ∗ b u f f e r s i z e) ;
i f (b u f f e r == NULL) {

f p r i n t f (s tderr , ” Error a l l o c a t i n g b u f f e r of s i z e %d bytes ” , b u f f e r s i z e) ;
e x i t (EXIT FAILURE) ;

}

/∗ Find t h e s i z e o f t h e f i l e , us ing c o d e from
h t t p s : / / www. s e c u r e c o d i n g . c e r t . o rg / c o n f l u e n c e / d i s p l a y / c / FIO19−C.+Do+not+use+ f s e e k %28%29+and+ f t e l l %28%29+t o +compute+ t h e +

↪→ s i z e + o f +a+ r e g u l a r + f i l e ∗/
i f ((s t a t (f i le name , &s t b u f) != 0) | | (! S ISREG (s t b u f . st mode))) {

f p r i n t f (s tderr , ” Error g e t t i n g s i z e of f i l e %s\n” , f i l e name) ;
e x i t (EXIT FAILURE) ;

}
f i l e s i z e = s t b u f . s t s i z e ;
p r i n t f (” F i l e s i z e : %l l u bytes\n” , f i l e s i z e) ;

i f (random == ’ r ’) {
/∗ P r e c a l c u l a t e t h e a r r a y o f o f f s e t s , s o we don ’ t c o s t CPU t ime dur ing t h e r e a d o p e r a t i o n

(I ’m not s u r e t h i s r e a l l y makes a d i f f e r e n c e , we c o u l d p r o b a b l y compute t h e s e on t h e f l y) ∗/
o f f s e t s = (o f f t ∗) malloc (s i ze of (o f f t) ∗ random read count) ;
i f (o f f s e t s == NULL) {

f p r i n t f (s tderr , ” Error a l l o c a t i n g space f o r %d p r e c a l c u l a t e d random o f f s e t s\n” , random read count) ;
e x i t (EXIT FAILURE) ;

}
for (i = 0 ; i < random read count ; i ++) {

o f f s e t s [i] = rand2 () ∗ f i l e s i z e ;
/∗ Uncomment t h e l i n e be low t o s i m u l a t e s e q u e n t i a l r e a d as a t e s t ∗/
/ / o f f s e t s [i] = i ∗ (o f f t) b u f f e r s i z e ;

}
}

/∗ Open t h e f i l e ∗/
f i n = fopen (f i le name , ” r ”) ;
i f (f i n == NULL) {

f p r i n t f (s tderr , ” Error opening f i l e %s\n” , f i l e name) ;
e x i t (EXIT FAILURE) ;

}

/∗ Turn o f f u n d e r l y i n g b u f f e r i n g used by f r e a d ()
(Although I don ’ t t h i n k i t makes much d i f f e r e n c e) ∗/

setvbuf (f in , NULL, IONBF , 0) ;

/∗ I n i t i a l i s e count v a r i a b l e s ∗/
b u f f e r s r e a d = 0 ;
bytes read = 0 ;
t o t a l b y t e s r e a d = 0 ;

/∗ Make a n o t e o f t h e t ime ∗/
gett imeofday (& w a l l t i m e s t a r t , NULL) ;
c p u t i m e s t a r t = c lock () ;

/∗ Now r e a d t h e d a t a from t h e f i l e ∗/
i f (random == ’ s ’) {

/∗ Read s e q u e n t i a l l y from t h e s t a r t u n t i l t h e end o f t h e f i l e ∗/
p r i n t f (”Reading whole f i l e s e q u e n t i a l l y . . . \ n”) ;
while (! f e o f (f i n)) {

bytes read = fread (buffer , s i ze of (char) , b u f f e r s i z e , f i n) ;
b u f f e r s r e a d ++;
t o t a l b y t e s r e a d += bytes read ;

}
} e lse i f (random == ’ r ’) {

/∗ Read t h e s p e c i f i e d number o f t i m e s from random p o s i t i o n s w i t h i n t h e f i l e ∗/
p r i n t f (”Reading data from f i l e randomly . . . \ n”) ;

130

Appendix C Code

for (i = 0 ; i < random read count ; i ++) {
/ / p r i n t f (” O f f s e t s [%d] = %l l u\n ” , i , o f f s e t s [i]) ;
/∗ Seek t o t h e precomputed o f f s e t ∗/
i f (fseeko (f in , o f f s e t s [i] , SEEK SET) < 0) {

f p r i n t f (s tderr , ” Error seeking to %l lu , abort ing due to i n t e r n a l e r r o r\n” , o f f s e t s [i]) ;
e x i t (EXIT FAILURE) ;

}
/∗ Now r e a d a b u f f e r from t h i s l o c a t i o n ∗/
bytes read = fread (buffer , s i ze of (char) , b u f f e r s i z e , f i n) ;
b u f f e r s r e a d ++;
t o t a l b y t e s r e a d += bytes read ;

}
} e lse {

/∗ Read in a ” hopping ” p a t t e r n r e a d i n g a b l o c k and then s k i p p i n g t h r e e b l o c k s ∗/
p r i n t f (”Reading f i l e in \”hopping\” pat tern . . . \ n”) ;
done = 0 ;
while (! done) {

/∗ Read a b u f f e r ∗/
bytes read = fread (buffer , s i ze of (char) , b u f f e r s i z e , f i n) ;
b u f f e r s r e a d ++;
t o t a l b y t e s r e a d += bytes read ;
/∗ Sk ip t h r e e b u f f e r s ’ worth o f d a t a ∗/

i f (fseeko (f in , b u f f e r s i z e ∗ 3 , SEEK CUR) < 0) {
f p r i n t f (s tderr , ” Error in seek , abort ing due to i n t e r n a l e r r o r\n”) ;
e x i t (EXIT FAILURE) ;

}
i f (bytes read < b u f f e r s i z e) {

done = 1 ;
}

}
}

/∗ Note t h e t ime a g a i n . ∗/
cpu time end = clock () ;
gett imeofday (& wall t ime end , NULL) ;

/∗ C a l c u l a t e t h e wal l−c l o c k and CPU t ime s p e n t ∗/
cpu time spent = (double) (cpu time end − c p u t i m e s t a r t) / CLOCKS PER SEC ;
wal l t ime spent = (double) (wal l t ime end . tv usec − w a l l t i m e s t a r t . tv usec) / 1e6 +

(double) (wal l t ime end . t v s e c − w a l l t i m e s t a r t . t v s e c) ;

/∗ C a l c u l a t e t h e r e a d r a t e in MB p e r s e c (1 0 ˆ 6 b y t e s p e r w a l l c l o c k s e c o n d) ∗/
r e a d r a t e = t o t a l b y t e s r e a d / (wal l t ime spent ∗ 1e6) ;

/∗ Output s t a t i s t i c s a s comma s e p a r a t e d v a l u e s ∗/
/∗ F i l e s i z e (b y t e s) | B y t e s r e a d | B u f f e r s i z e (b y t e s) | No . b u f f e r s | Seq or random | CPU t ime (s) | Wall t ime (s) |

↪→ Read r a t e (MB/ s) ∗/
p r i n t f (”%l lu ,% l lu ,%d,% l lu ,%s ,% f ,% f ,% f\n” ,

f i l e s i z e ,
t o t a l b y t e s r e a d ,
b u f f e r s i z e ,
buf fe rs read ,
random == ’ r ’ ? ”random” : (random == ’ s ’ ? ” s e q u e n t i a l ” : ”hopping”) ,
cpu time spent ,
wal l t ime spent ,
r e a d r a t e

) ;

/∗ C l o s e t h e f i l e ∗/
f c l o s e (f i n) ;
f r e e (b u f f e r) ;
i f (random == ’ r ’) {

f r e e (o f f s e t s) ;
}
return 0 ;

}

/∗ Return a random number be tween 0 . 0 and 1 . 0 i n c l u s i v e .
Must s e e d t h e random number g e n e r a t o r b e f o r e t h i s i s c a l l e d . ∗/

double rand2 ()
{

return (double) rand () / (double)RAND MAX;
}

C.1.2 Program to read using C from NetCDF4 files

Adapted from C.1.1 by Annette Osprey, and the author. This was used in Chapter 3, and
Chapter 5.

include <s t d i o . h>
include <s t d l i b . h>
include <time . h>
include <sys/ s t a t . h> /∗ Only p r e s e n t on POSIX s y s t e m s I t h i n k ∗/
include <sys/time . h>
include <netcdf . h>

define ERRCODE 2
define ERR(e) {p r i n t f (” Error : %s\n” , n c s t r e r r o r (e)) ; e x i t (ERRCODE) ;}

double rand2 () ;

131

Appendix C Code

i n t main (i n t argc , char ∗argv [])
{

char ∗ f i l e name ; /∗ Name o f t h e f i l e t o r e a d ∗/
i n t ncid ; /∗ Id o f n e t c d f f i l e ∗/
i n t dimid ; /∗ Id o f d imens i on ”dim1” ∗/
s i z e t dimlen ; /∗ S i z e o f t h e d imens i on (number o f e l e m e n t s in d a t a v a r i a b l e) ∗/
i n t varid ; /∗ Id o f d a t a v a r i a b l e t o be r e a d from f i l e ∗/
i n t r e t v a l ; /∗ Return c o d e used t o c h e c k s t a t u s o f n e t c d f f u n c t i o n c a l l s ∗/

char random ; /∗ i f we ’ r e r e a d i n g from random p o s i t i o n s in t h e f i l e , 0 o t h e r w i s e ∗/
unsigned long long random read count ; /∗ The number o f b u f f e r s r e q u e s t e d in a random r e a d ∗/
s i z e t ∗o f f s e t s ; /∗ I f r e a d i n g randomly , we ’ l l p r e c a l c u l a t e an a r r a y o f random o f f s e t s ∗/
i n t b u f f e r s i z e ; /∗ Number o f b y t e s t o r e a d in a s i n g l e o p e r a t i o n ∗/
double ∗b u f f e r ; /∗ B u f f e r t o h o l d d a t a r e a d from t h e f i l e ∗/
unsigned long long b u f f e r l e n ; /∗ Number o f e l e m e n t s in b u f f e r (= b u f f e r s i z e / 8) ∗/
unsigned long long num buffers ; /∗ The number o f b u f f e r s t o be r e a d in ∗/
unsigned long long t o t a l b y t e s r e a d ; /∗ The t o t a l number o f b y t e s r e a d ∗/
unsigned long long pos ; /∗ P o s i t i o n o f d a t a t o be r e a d ∗/
s i z e t s t a r t [1] ; /∗ S t a r t l o c a t i o n f o r e a c h netCDF r e a d ∗/
s i z e t count [1] ; /∗ S i z e o f e a c h netCDF r e a d ∗/

i n t i ; /∗ Loop c o n t r o l v a r i a b l e s ∗/

c l o c k t c p u t i m e s t a r t ; /∗ Used t o g e t CPU t ime s p e n t r e a d i n g t h e f i l e ∗/
c l o c k t cpu time end ;
double cpu time spent ;

s t r u c t t imeval w a l l t i m e s t a r t ; /∗ Used t o measure wal l−c l o c k t ime s p e n t r e a d i n g t h e f i l e ∗/
s t r u c t t imeval wal l t ime end ;
double wal l t ime spent ;

double r e a d r a t e ; /∗ Average d a t a r e a d r a t e in megabyt e s p e r w a l l c l o c k s e c o n d s ∗/

random = ’ s ’ ; /∗ Assume we ’ r e r e a d i n g s e q u e n t i a l l y u n l e s s we f i n d o t h e r w i s e ∗/
srand (time (NULL)) ; /∗ Seed t h e random number g e n e r a t o r ∗/

/∗ Check t h e r e a r e enough command−l i n e arguments ∗/
i f (argc < 3 | | argc > 5) {

f p r i n t f (s tderr , ”Usage : r e a d f i l e <f i lename><b u f f e r s i z e in bytes> [r | s |h] [count i f random]\n”) ;
e x i t (EXIT FAILURE) ;

}

/∗ Read t h e command−l i n e arguments ∗/
f i l e name = argv [1] ;
i f (s s c a n f (argv [2] , ”%d” , &b u f f e r s i z e) <= 0) {

f p r i n t f (s tderr , ” I n v a l i d b u f f e r s i z e %s\n” , argv [2]) ;
e x i t (EXIT FAILURE) ;

}
i f (argc > 3) {

/∗ Third argument i s a c h a r a c t e r i n d i c a t i n g i f r e a d s s h o u l d be random , s e q u e n t i a l o r hopp ing ∗/
s s c a n f (argv [3] , ”%c ” , &random) ;
i f (random != ’ r ’ && random != ’ s ’ && random != ’h ’) {

f p r i n t f (s tderr , ”Must be \”r\” , \”s\” or \”h\” , found %s\n” , argv [3]) ;
e x i t (EXIT FAILURE) ;

}
}
i f (random == ’ r ’) {

/∗ We need a count ∗/
i f (argc < 5) {

f p r i n t f (s tderr , ”Must input a count when performing random reads\n”) ;
e x i t (EXIT FAILURE) ;

}
i f (s s c a n f (argv [4] , ”%d” , &random read count) <= 0) {

f p r i n t f (s tderr , ” I n v a l i d read count %s\n” , argv [4]) ;
e x i t (EXIT FAILURE) ;

}
}

/∗ C r e a t e b u f f e r o f t h e r i g h t s i z e ∗/
p r i n t f (” Buf fer s i z e = %l l u bytes\n” , b u f f e r s i z e) ;
b u f f e r l e n = b u f f e r s i z e /8; /∗ use t h i s v a r i a b l e f o r n e t c d f r e a d s which a r e in e l e m e n t s ∗/
b u f f e r = (double∗) malloc (s i ze of (double)∗b u f f e r l e n) ;
i f (b u f f e r == NULL) {

f p r i n t f (s tderr , ” Error a l l o c a t i n g b u f f e r of s i z e %d bytes ” , b u f f e r s i z e) ;
e x i t (EXIT FAILURE) ;

}

/∗ Open t h e f i l e and g e t t h e d a t a v a r i a b l e i d − assuming t h i s i s c a l l e d ” var ” ∗/
i f ((r e t v a l = nc open (f i le name , NC NOWRITE, &ncid)))

ERR(r e t v a l) ;
i f ((r e t v a l = n c i n q v a r i d (ncid , ” var ” , &varid)))

ERR(r e t v a l) ;

/∗ Find t h e d imens i on o f t h e d a t a v a r i a b l e − assuming t h i s i s c a l l e d ”dim1” ∗/
i f ((r e t v a l = nc inq dimid (ncid , ”dim1” , &dimid)))

ERR(r e t v a l) ;
i f ((r e t v a l = nc inq dimlen (ncid , dimid , &dimlen)))

ERR(r e t v a l) ;
p r i n t f (”Data s i z e : %l l u bytes\n” , dimlen∗8) ;

i f (random == ’ r ’) {
/∗ P r e c a l c u l a t e t h e a r r a y o f o f f s e t s , s o we don ’ t c o s t CPU t ime dur ing t h e r e a d o p e r a t i o n

(I ’m not s u r e t h i s r e a l l y makes a d i f f e r e n c e , we c o u l d p r o b a b l y compute t h e s e on t h e f l y) ∗/
o f f s e t s = (s i z e t ∗) malloc (s i ze of (s i z e t) ∗ random read count) ;
i f (o f f s e t s == NULL) {

f p r i n t f (s tderr , ” Error a l l o c a t i n g space f o r %d p r e c a l c u l a t e d random o f f s e t s\n” , random read count) ;
e x i t (EXIT FAILURE) ;

}
for (i = 0 ; i < random read count ; i ++) {

132

Appendix C Code

o f f s e t s [i] = rand2 () ∗ (dimlen−b u f f e r l e n) ;
/∗ Uncomment t h e l i n e be low t o s i m u l a t e s e q u e n t i a l r e a d as a t e s t ∗/
/ / o f f s e t s [i] = i ∗ (o f f t) b u f f e r s i z e ;

}
}

/∗ I n i t i a l i s e p o s i t i o n and count v a r i a b l e ∗/
pos = 0 ;
count [0] = b u f f e r l e n ;

/∗ Make a n o t e o f t h e t ime ∗/
gett imeofday (& w a l l t i m e s t a r t , NULL) ;
c p u t i m e s t a r t = c lock () ;

/∗ Now r e a d t h e d a t a from t h e f i l e ∗/
i f (random == ’ s ’) {

/∗ Read s e q u e n t i a l l y from t h e s t a r t u n t i l t h e end o f t h e f i l e ∗/
p r i n t f (”Reading whole f i l e s e q u e n t i a l l y . . . \ n”) ;
num buffers = dimlen / b u f f e r l e n ;
p r i n t f (”Reading %d b u f f e r s\n” , num buffers) ;
for (i = 0 ; i < num buffers ; i ++){

s t a r t [0] = pos ;
i f ((r e t v a l = nc get vara double (ncid , varid , s t a r t , count , &b u f f e r [0])))

ERR(r e t v a l) ;
pos = pos + b u f f e r l e n ;

}
t o t a l b y t e s r e a d = num buffers ∗ b u f f e r s i z e ;

} e lse i f (random == ’ r ’) {
/∗ Read t h e s p e c i f i e d number o f t i m e s from random p o s i t i o n s w i t h i n t h e f i l e ∗/
p r i n t f (”Reading data from f i l e randomly . . . \ n”) ;
p r i n t f (”Reading %d b u f f e r s\n” , random read count) ;
for (i = 0 ; i < random read count ; i ++) {

s t a r t [0] = o f f s e t s [i] ;
i f ((r e t v a l = nc get vara double (ncid , varid , s t a r t , count , &b u f f e r [0])))

ERR(r e t v a l) ;
}
t o t a l b y t e s r e a d = random read count ∗ b u f f e r s i z e ;

} e lse {
/∗ Read in a ” hopping ” p a t t e r n r e a d i n g a b l o c k and then s k i p p i n g t h r e e b l o c k s ∗/
p r i n t f (”Reading f i l e in \”hopping\” pat tern . . . \ n”) ;
num buffers = (dimlen / b u f f e r l e n) / 4 ;
p r i n t f (”Reading %d b u f f e r s\n” , num buffers) ;
for (i = 0 ; i < num buffers ; i ++){

s t a r t [0] = pos ;
i f ((r e t v a l = nc get vara double (ncid , varid , s t a r t , count , &b u f f e r [0])))

ERR(r e t v a l) ;
pos = pos + b u f f e r l e n ∗4;

}
t o t a l b y t e s r e a d = num buffers ∗ b u f f e r s i z e ;

}

/∗ Note t h e t ime a g a i n . ∗/
cpu time end = clock () ;
gett imeofday (& wall t ime end , NULL) ;

/∗ C a l c u l a t e t h e wal l−c l o c k and CPU t ime s p e n t ∗/
cpu time spent = (double) (cpu time end − c p u t i m e s t a r t) / CLOCKS PER SEC ;
wal l t ime spent = (double) (wal l t ime end . tv usec − w a l l t i m e s t a r t . tv usec) / 1e6 +

(double) (wal l t ime end . t v s e c − w a l l t i m e s t a r t . t v s e c) ;

/∗ C a l c u l a t e t h e r e a d r a t e in MB p e r s e c (1 0 ˆ 6 b y t e s p e r w a l l c l o c k s e c o n d) ∗/
r e a d r a t e = t o t a l b y t e s r e a d / (wal l t ime spent ∗ 1e6) ;

/∗ Output s t a t i s t i c s a s comma s e p a r a t e d v a l u e s ∗/
/∗ F i l e s i z e (b y t e s) | B y t e s r e a d | B u f f e r s i z e (b y t e s) | No . b u f f e r s | Seq or random | CPU t ime (s) | Wall t ime (s) |

↪→ Read r a t e (MB/ s) ∗/
p r i n t f (”%l lu ,% l lu ,%d,% l lu ,%s ,% f ,% f ,% f\n” ,

dimlen∗8 ,
t o t a l b y t e s r e a d ,
b u f f e r s i z e ,
num buffers ,
random == ’ r ’ ? ”random” : (random == ’ s ’ ? ” s e q u e n t i a l ” : ”hopping”) ,
cpu time spent ,
wal l t ime spent ,
r e a d r a t e

) ;

/∗ C l o s e t h e f i l e ∗/
i f ((r e t v a l = n c c l o s e (ncid)))

ERR(r e t v a l) ;
f r e e (b u f f e r) ;
i f (random == ’ r ’) {

f r e e (o f f s e t s) ;
}
return 0 ;

}

/∗ Return a random number be tween 0 . 0 and 1 . 0 i n c l u s i v e .
Must s e e d t h e random number g e n e r a t o r b e f o r e t h i s i s c a l l e d . ∗/

double rand2 ()
{

return (double) rand () / (double)RAND MAX;
}

133

Appendix C Code

C.1.3 Program to read using Python from ’plain’ binary files

Written by the author. Used in Chapter 3.

! / usr / b in / env python2 . 7

import os
import sys
import numpy as np
from time import time , c lock
from numpy . random import random

def hop read (fpath , b l o c k s i z e , f i l e s i z e) :
”””
Hopping r e a d mode : r e a d s one b l o c k s i z e th en s k i p s t h r e e t i m e s t h e b l o c k s i z e .

: param f p a t h : pa th t o t h e f i l e
: param b l o c k s i z e : s i z e o f t h e b l o c k s t o r e a d
: param f i l e s i z e : t o t a l s i z e o f t h e f i l e
: r e t u r n : w a l l t i m e : w a l l t ime f o r t h e t o t a l r e a d
: r e t u r n : c p u t i m e : cpu t ime f o r t h e t o t a l r e a d (on windows sys t em t h i s w i l l a l s o be w a l l t ime)
: r e t u r n : t o t a l b y t e s r e a d : t o t a l number o f b y t e s r e a d from t h e f i l e
: r e t u r n : b u f f e r s r e a d : t o t a l number o f b l o c k s r e a d from t h e f i l e
”””

num buffers = np . f l o o r (f i l e s i z e / b l o c k s i z e)
hop size = 4
wal l t ime = time ()
cpu time = clock ()
t o t a l b y t e s r e a d = 0L
b u f f e r s r e a d = 0
f = open (fpath , ’ rb ’)
r e a d one b u f f e r , s k i p t h r e e th en r e a d t h e nex t
for i in np . arange (0 , num buffers , hop size) :

f . seek (i∗b l o c k s i z e)
bytes read = len (f . read (b l o c k s i z e))
t o t a l b y t e s r e a d += bytes read
b u f f e r s r e a d += 1

f . c l o s e ()

wal l t ime = time ()−wall t ime
cpu time = clock ()−cpu time

return wall t ime , cpu time , t o t a l b y t e s r e a d , b u f f e r s r e a d

def rand read (fpath , b l o c k s i z e , f i l e s i z e , block num) :
”””
Random r e a d mode : r e a d t h e s p e c i f i e d number o f b l o c k s from t h e f i l e a t random p o s i t i o n s .
Uses uni form random numbers .

: param f p a t h : pa th t o t h e f i l e
: param b l o c k s i z e : s i z e o f t h e b l o c k s t o r e a d
: param f i l e s i z e : t o t a l s i z e o f t h e f i l e
: param block num : number o f b l o c k s t o r e a d from f i l e
: r e t u r n : w a l l t i m e : w a l l t ime f o r t h e t o t a l r e a d
: r e t u r n : c p u t i m e : cpu t ime f o r t h e t o t a l r e a d (on windows sys t em t h i s w i l l a l s o be w a l l t ime)
: r e t u r n : t o t a l b y t e s r e a d : t o t a l number o f b y t e s r e a d from t h e f i l e
: r e t u r n : b u f f e r s r e a d : t o t a l number o f b l o c k s r e a d from t h e f i l e
”””
G e n e r a t e random numbers
r a n d s t a r t s = [np . c e i l (x) for x in random (block num)∗ f i l e s i z e]
f rand = open (’ rand nums ’ , ’ a ’)
print >> f rand , r a n d s t a r t s
f rand . c l o s e ()
wal l t ime = time ()
cpu time = clock ()
t o t a l b y t e s r e a d = 0L
b u f f e r s r e a d = 0

f = open (fpath , ’ rb ’)
for i in r a n d s t a r t s :

f . seek (i)
bytes read = len (f . read (b l o c k s i z e))
t o t a l b y t e s r e a d += bytes read
b u f f e r s r e a d += 1

f . c l o s e ()
wal l t ime = time ()−wall t ime
cpu time = clock ()−cpu time

return wall t ime , cpu time , t o t a l b y t e s r e a d , b u f f e r s r e a d

def seq read (fpath , b l o c k s i z e , f i l e s i z e) :
”””
S e q u e n t i a l r e a d mode : r e a d s whole f i l e s e q u e n t i a l l y .

: param f p a t h : pa th t o t h e f i l e
: param b l o c k s i z e : s i z e o f t h e b l o c k s t o r e a d
: param f i l e s i z e : t o t a l s i z e o f t h e f i l e
: r e t u r n : w a l l t i m e : w a l l t ime f o r t h e t o t a l r e a d
: r e t u r n : c p u t i m e : cpu t ime f o r t h e t o t a l r e a d (on windows sys t em t h i s w i l l a l s o be w a l l t ime)
: r e t u r n : t o t a l b y t e s r e a d : t o t a l number o f b y t e s r e a d from t h e f i l e
: r e t u r n : b u f f e r s r e a d : t o t a l number o f b l o c k s r e a d from t h e f i l e

134

Appendix C Code

”””
num buffers = f i l e s i z e / b l o c k s i z e
t o t a l b y t e s r e a d = 0L
wal l t ime = time ()
cpu time = clock () # r e t u r n s cpu t ime on l inux , w a l l t ime on windows
f u l l b l o c k r e a d = True
f = open (fpath , ’ rb ’)
while f u l l b l o c k r e a d :

f o r i in np . a ra ng e (n u m b u f f e r s) : # ˜ ˜ ˜ change t o w h i l e
bytes read = len (f . read (b l o c k s i z e))
f u l l b l o c k r e a d = bytes read == b l o c k s i z e
t o t a l b y t e s r e a d += bytes read

f . c l o s e ()

wal l t ime = time ()−wall t ime
cpu time = clock ()−cpu time

return wall t ime , cpu time , t o t a l b y t e s r e a d , num buffers

def main (fpath , read mode , b l o c k s i z e , block num) :

Find t h e s i z e o f t h e f i l e
f i l e s i z e = f l o a t (os . path . g e t s i z e (fpath))

i f read mode == ’ s ’ :
read time , cpu time , bytes read , num buffers = seq read (fpath , b l o c k s i z e , f i l e s i z e)
print read mode = ’ s e q u e n t i a l ’

e l i f read mode == ’ r ’ :
read time , cpu time , bytes read , num buffers = rand read (fpath , b l o c k s i z e , f i l e s i z e , block num)
print read mode = ’random ’

e l i f read mode == ’h ’ :
read time , cpu time , bytes read , num buffers = hop read (fpath , b l o c k s i z e , f i l e s i z e)
print read mode = ’ hopping ’

e lse :
r a i s e ValueError (’ Read mode e r r o r .\n\tUsage : python r e a d f i l e . py f i lename s | r |h b l o c k s i z e [randnum]\n ’)

r a t e = (bytes read/read time) /1000∗∗2

print ’%d,%d,%d,%d,%s ,%f ,%f ,% f ’ % (f i l e s i z e , bytes read , b l o c k s i z e , num buffers , print read mode , cpu time , read time ,
↪→ r a t e)

i f name == ’ main ’ :
Usage : python r e a d f i l e . py f i l e n a m e readmode b l o c k s i z e randnum
i f len (sys . argv)<3:

r a i s e ValueError (’ Not enough arguments .\n\tUsage : python r e a d f i l e . py f i lename s | r |h b l o c k s i z e [randnum]\n ’)
fpath = sys . argv [1]
read mode = sys . argv [2]
b l o c k s i z e = long (sys . argv [3])
i f len (sys . argv) == 5 :

block num = i n t (sys . argv [4])
e lse :

block num = None

i f read mode == ’ r ’ and block num == None :
r a i s e ValueError (’ Needs number of b u f f e r s f o r random mode.\n\tUsage : python r e a d f i l e . py f i lename s | r |h b l o c k s i z e [

↪→ randnum]\n ’)

main (fpath , read mode , b l o c k s i z e , block num)

C.1.4 Program to read using Python from NetCDF4 files

Written by the author. Used in Chapters 3, 4, and 5.

! / usr / b in / env python2 . 7

import sys
import numpy as np
from netCDF4 import Dataset
from time import time , c lock

def seq read 1d (f id , num elements) :

f = Dataset (f id , ’ r ’)
var = f . v a r i a b l e s [’ var ’]

num reads = var . shape/num elements

bytes read = 0
s t a r t = time ()
cpu time = clock ()
for i in xrange (num reads) :

i n d s l i c e 0 = long (i∗num elements)
i n d s l i c e 1 = long (i∗num elements+num elements)
bytes read += 8∗ len (var [i n d s l i c e 0 : i n d s l i c e 1])

cpu time = clock () − cpu time
wal l t ime = time ()−s t a r t
r a t e = bytes read/wal l t ime

print ’%s ,%s ,%s ,%s , sequent ia l ,%s ,%s ,%s ’\

135

Appendix C Code

% (var . shape [0]∗8 , bytes read , num elements∗8 , num reads [0] , cpu time , wall t ime , r a t e /1000∗∗2)

def hop read 1d (f id , num elements) :

f = Dataset (f id , ’ r ’)
var = f . v a r i a b l e s [’ var ’]

num reads = var . shape/num elements

bytes read = 0
s t a r t = time ()
cpu time = clock ()
for i in xrange (0 , num reads , 4) :

i n d s l i c e 0 = long (i∗num elements)
i n d s l i c e 1 = long (i∗num elements+num elements)
bytes read += 8∗ len (var [i n d s l i c e 0 : i n d s l i c e 1])

cpu time = clock () − cpu time
wal l t ime = time ()−s t a r t
r a t e = bytes read/wal l t ime

print ’%s ,%s ,%s ,%s , hopping ,%s ,%s ,%s ’\
% (var . shape [0]∗8 , bytes read , num elements∗8 , num reads [0] , cpu time , wall t ime , r a t e /1000∗∗2)

def rand read (f id , num elements , rand num) :

f = Dataset (f id , ’ r ’)
var = f . v a r i a b l e s [’ var ’]

r a n d s t a r t s = [i n t (np . c e i l (x)) for x in np . random . random (rand num) ∗(var . shape−num elements)]
i f r a n d s t a r t s <0:

r a n d s t a r t s = 0

bytes read = 0
s t a r t = time ()
cpu time = clock ()
for ind1 in r a n d s t a r t s :

ind2 = i n t (ind1+num elements)
bytes read += 8∗ len (var [ind1 : ind2])

cpu time = clock () − cpu time
wal l t ime = time ()−s t a r t
r a t e = bytes read/wal l t ime

print ’%s ,%s ,%s ,%s , random,%s ,%s ,%s ’\
% (var . shape [0]∗8 , bytes read , num elements∗8 , rand num , cpu time , wall t ime , r a t e /1000∗∗2)

def r e a d f i l e 1 d (f id , readmode , readsize , rand num) :
R e a d s i z e in e l e m e n t s
num elements = np . c e i l (reads ize / 8 .)

i f readmode == ’ s ’ :
seq read 1d (f id , num elements)

e l i f readmode == ’h ’ :
hop read 1d (f id , num elements)

e l i f readmode == ’ r ’ :
a s s e r t rand num != None , ’ For random read the number of reads needs to be s p e c i f i e d ’
rand read (f id , num elements , rand num)

i f name == ’ main ’ :
f i d = sys . argv [1]
readmode = sys . argv [2]
reads ize = f l o a t (sys . argv [3])
i f len (sys . argv) == 5 :

rand num = i n t (sys . argv [4])
e lse :

rand num = None

r e a d f i l e 1 d (f id , readmode , readsize , rand num)

C.2 Chapter 6

C.2.1 Read only test program

Written by the author.

! / usr / b in / env python2 . 7

I m p o r t s
from netCDF4 import Dataset
import numpy as np
from jug import TaskGenerator , b a r r i e r
from sys import argv
from time import time , c lock

F i l e name depend ing on t e s t f i l e
fname = ’/group workspaces/jasmin/hiresgw/vol1/mj07/ I O t e s t i n g f i l e s /comp test u c1bg . nc ’ # argv [1]

136

Appendix C Code

open f i l e
nc = Dataset (fname)
var = nc . v a r i a b l e s [’u ’]

i n p u t s
jworkers = argv [1]

@TaskGenerator
def r e a d s e c t i o n (r e a d s t a r t) :

Get t e s t number
r u n f i l e = open (’runnum ’ , ’ r ’)
t e s t = i n t (r u n f i l e . read () . s t r i p ())
r u n f i l e . c l o s e ()

s t a r t t i m e r
s t a r t t i m e = time ()
s t a r t c l o c k = c lock ()
data = np . zeros ([2 4 0∗4 0 , 4 8 , 1 0 2 4])
i o t i m e = time ()
i o c l o c k = c lock ()
var i s d i m e n s i o n e d (2 4 0 , 180 , 768 , 1024)
we ’ r e d i v i d i n g y=768 i n t o 16 t a s k s , e a c h with 48 l a t members .
for io in range (4 0) :

n i s an i n d e x i n t o l a t i t u d e ,
i i s an i n d e x i n t o t h e f i l e t o f i n d t h o s e l a t i t u d e s
we s t r i d e through us ing h e i g h t a s an e x t r a pseudo t ime
d imens i on . . . t o make l o n g e r FFTS (n e a r l y f o u r y e a r s)
for n , i in enumerate (range (r e a d s t a r t , r e a d s t a r t +48)) :

we r e a d 40 x48x (2 4 0 , 1 , 1 , 1 0 2 4) so 240 l o n g i t u d e c i r c l e s
48 x40x (240 x1024x8 b y t e s p e r r e a d 2MB with 240 r e a d s
i n t e r n a l l y t o f i l l t h e b u f f e r s i n c e on ly x i s c o n t i g o u s)
data [io ∗24 0 : (io +1)∗240 ,n , :] = var [: , io , i , :]

io end = time ()−i o t i m e
io c lockend = clock ()−i o c l o c k
c p u s t a r t = time ()
cpu clock = c lock ()
s h o u l d do f f t o v e r l o n g i t u d e f i r s t , but we do t ime
h e r e f o r h i s t o r i c a l r e a s o n s and i t doe sn ’ t m a t t e r b e c a u s e
t h i s i s on ly a t imi ng t e s t .
s tg1 = np . f f t . f f t (data , a x i s =0)
then i t s h o u l d be f f t o v e r t ime (but we do l o n g i t u d e . . . but heh !)
s tg2 = np . f f t . f f t (stg1 , a x i s =2)
cpu end = time ()−c p u s t a r t
cpu clockend = clock () − cpu clock
l o g f i l e = open (’ output . csv ’ , ’ a ’)
print >> l o g f i l e , ’%s ,CPU,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ’ % (t e s t , fname , jworkers , r e a d s t a r t , time ()−s t a r t t i m e , c lock ()−

↪→ s t a r t c l o c k , io end , io c lockend , cpu end , cpu clockend)
l o g f i l e . c l o s e ()

@TaskGenerator
def s t a r t t i m e (innum) :

r u n f i l e = open (’runnum ’ , ’ r ’)
new = i n t (r u n f i l e . read () . s t r i p ()) +1
r u n f i l e . c l o s e ()
r u n f i l e = open (’runnum ’ , ’w’)
print >> r u n f i l e , new
r u n f i l e . c l o s e ()
w a l l f i l e = open (’ wal l t imes ’ , ’ a ’)
print >> w a l l f i l e , ’%s , s t a r t :%s ,CPU,%s ,%s ’ % (new , time () , fname , jworkers)
w a l l f i l e . c l o s e ()

@TaskGenerator
def endtime (innum) :

r u n f i l e = open (’runnum ’ , ’ r ’)
t e s t = i n t (r u n f i l e . read () . s t r i p ())
r u n f i l e . c l o s e ()
w a l l f i l e = open (’ wal l t imes ’ , ’ a ’)
print >> w a l l f i l e , ’%s , end:%s ,CPU,%s ,%s ’ % (t e s t , time () , fname , jworkers)
w a l l f i l e . c l o s e ()

map(s t a r t t i m e , [1])

b a r r i e r ()

t a s k s t a r t s = np . arange (1 6)∗48

map(r e a d s e c t i o n , t a s k s t a r t s)

b a r r i e r ()

map(endtime , [1])

C.2.2 Test program including STSA calculations

Adapted from C.2.1 with STSA calculation code written by Bryan Lawrence.

! / usr / b in / env python2 . 7

I m p o r t s
from netCDF4 import Dataset

137

Appendix C Code

import numpy as np
from jug import TaskGenerator , b a r r i e r
from sys import argv
from time import time , c lock

F i l e name depend ing on t e s t f i l e
fname = ’/group workspaces/jasmin/hiresgw/vol1/mj07/ I O t e s t i n g f i l e s /comp test u c0 . nc ’ # argv [1]

open f i l e
nc = Dataset (fname)
var = nc . v a r i a b l e s [’u ’]

i n p u t s
jworkers = argv [1]

Using Bryan ’ s h a y a s h i c o d e from h t t p s : / / b i t b u c k e t . o rg / b n l a w r e n c e / s t s a l i b / s r c / 7 d 0 1 e 6 8 9 f 0 c 7 d d 0 c 4 f 9 b 8 4 8 a f 6 b a 6 b 1 8 5 d 8 4 7 7 b 7 /
↪→ h a y a s h i . py? a t =m as t e r&f i l e v i e w e r = f i l e−view−d e f a u l t

def farm x (array) :
’ ’ ’ Find and remove t h e z o n a l mean o f an a r r a y ’ ’ ’

mm=np . mean(array , a x i s =1)
newaxis ? makes t h e one d i m e n s i o n a l mean two d i m e n s i o n a l so a b r o a d c a s t works
return array−mm[: , np . newaxis] ,mm

def a b f t (s e r i e s ,∗∗kw) :
’ ’ ’ Return t h e c o s i n e and s i n e c o e f f i c i e n t s o f a F o u r i e r Trans form
in a , b n o t a t i o n ’ ’ ’
f f =np . f f t . r f f t (s e r i e s ,∗∗kw)
a=np . r e a l (f f)
b=np . imag (f f)
return a , b

def hayashi (array) :
’ ’ ’ Th i s method c a l c l u a t e s t h e e a s t w a r d and westward power from
a d a t a s e t which has be en c o n s t r u c t e d by s t a c k i n g l o n g i t u d i n a l
s e c t i o n s i n t o an array , so t h a t i t has a s h a p e someth ing l i k e :

(3 6 5 , 1 8 0) − f o r 365 i n s t a n c e s o f 180 l o n g i t u d i n a l p o i n t s .

The c o d e i s b a s e d on my Hayashi01 code , which i t s e l f has t h e
f o l l o w i n g r e f e r e n c e s :

Venne T h e s i s p 26
Hayashi , 1971 , J Met Soc 49 , p 127
Me, Appendix 2 , p a g e s 2 2 7 . . . ’ ’ ’

f i r s t remove t h e d a i l y z o n a l means
array , dayzm=farm x (array)

next , we need t o c a l c u l a t e f f t s t o g e t t h e s p a t i a l f o u r i e r c o e f f i c i e n t s
c , s= a b f t (array)

#now we need t o remove t h e mean in t h o s e
c , cm=farm x (c)
s , sm=farm x (s)

#now do t h e F o u r i e r Trans f o rms
BigA , BigB= a b f t (c , a x i s =0)

SmallA , SmallB= a b f t (s , a x i s =0)

s t a t i o n a r y =np . s q r t (cm∗∗2+sm∗∗2)/2

n2=array . shape [1]/2

−−
In t h e F o r t r a n e r a I used t h e s e , even though t h e y weren ’ t ” r i g h t ” ,
a c c o r d i n g t o my a n a l y s i s , but p r o b a b l y an a r t i f a c t o f t h e f f t
r o u t i n e s I used then (and c h e c k e d with t e s t s a t t h e t ime) .
Eastward=np . s q r t ((BigA−SmallB)∗∗2 + (−BigB−SmallA)∗∗2) / 2
Westward=np . s q r t ((BigA+SmallB)∗∗2 + (BigB−SmallA)∗∗2) / 2
Now in 2012 , my v e r s i o n s (which f o l l o w) p a s s u n i t t e s t s wi th numpy f f t ,
so happy t o g o t t o someth ing I have a l g e b r a f o r :
#
Eastward=np . s q r t ((BigA+SmallB)∗∗2 + (BigB−SmallA)∗∗2) /2
Westward=np . s q r t ((BigA−SmallB)∗∗2 + (BigB+SmallA)∗∗2) /2
#
−−

return s t a t i o n a r y , Eastward , Westward

@TaskGenerator
def r e a d s e c t i o n (r e a d s t a r t) :

Get t e s t number
r u n f i l e = open (’runnum ’ , ’ r ’)
t e s t = i n t (r u n f i l e . read () . s t r i p ())
r u n f i l e . c l o s e ()

s t a r t t i m e r
s t a r t t i m e = time ()
s t a r t c l o c k = c lock ()
data = np . zeros ([2 4 0∗4 0 , 4 8 , 1 0 2 4])
i o t i m e = time ()
i o c l o c k = c lock ()
var i s d i m e n s i o n e d (2 4 0 , 180 , 768 , 1024)
we ’ r e d i v i d i n g y=768 i n t o 16 t a s k s , e a c h with 48 l a t members .
for io in range (4 0) :

n i s an i n d e x i n t o l a t i t u d e ,
i i s an i n d e x i n t o t h e f i l e t o f i n d t h o s e l a t i t u d e s
we s t r i d e through us ing h e i g h t a s an e x t r a pseudo t ime
d imens i on . . . t o make l o n g e r FFTS (n e a r l y f o u r y e a r s)

138

Appendix C Code

for n , i in enumerate (range (r e a d s t a r t , r e a d s t a r t +48)) :
we r e a d 40 x48x (2 4 0 , 1 , 1 , 1 0 2 4) so 240 l o n g i t u d e c i r c l e s
48 x40x (240 x1024x8 b y t e s p e r r e a d 2MB with 240 r e a d s
i n t e r n a l l y t o f i l l t h e b u f f e r s i n c e on ly x i s c o n t i g o u s)
data [io ∗24 0 : (io +1)∗240 ,n , :] = var [: , io , i , :]

io end = time ()−i o t i m e
io c lockend = clock ()−i o c l o c k
s t a r t cpu t i m e r s
c p u s t a r t = time ()
cpu clock = c lock ()
s t a t i o n a r y = 0
Eastward = 0
Westward =0
for i in range (4 8) :

stat ionarytmp , Eastwardtmp , Westwardtmp = hayashi (data [: , i , :])
s t a t i o n a r y += stat ionarytmp
Eastward += Eastwardtmp
Westward += Westwardtmp

t a k e mean f o r e a c h
s t a t i o n a r y = s t a t i o n a r y /48.
Eastward = Eastward /48.
Westward = Westward /48.
end cpu t i m e r s
cpu end = time ()−c p u s t a r t
cpu clockend = clock () − cpu clock
l o g f i l e = open (’ output . csv ’ , ’ a ’)
print >> l o g f i l e , ’%s ,CPU,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ’ % (t e s t , fname , jworkers , r e a d s t a r t , time ()−s t a r t t i m e , c lock ()−

↪→ s t a r t c l o c k , io end , io c lockend , cpu end , cpu clockend)
l o g f i l e . c l o s e ()

@TaskGenerator
def s t a r t t i m e (innum) :

r u n f i l e = open (’runnum ’ , ’ r ’)
new = i n t (r u n f i l e . read () . s t r i p ()) +1
r u n f i l e . c l o s e ()
r u n f i l e = open (’runnum ’ , ’w’)
print >> r u n f i l e , new
r u n f i l e . c l o s e ()
w a l l f i l e = open (’ wal l t imes ’ , ’ a ’)
print >> w a l l f i l e , ’%s , s t a r t :%s ,CPU,%s ,%s ’ % (new , time () , fname , jworkers)
w a l l f i l e . c l o s e ()

@TaskGenerator
def endtime (innum) :

r u n f i l e = open (’runnum ’ , ’ r ’)
t e s t = i n t (r u n f i l e . read () . s t r i p ())
r u n f i l e . c l o s e ()
w a l l f i l e = open (’ wal l t imes ’ , ’ a ’)
print >> w a l l f i l e , ’%s , end:%s ,CPU,%s ,%s ’ % (t e s t , time () , fname , jworkers)
w a l l f i l e . c l o s e ()

map(s t a r t t i m e , [1])

b a r r i e r ()

t a s k s t a r t s = np . arange (1 6)∗48

map(r e a d s e c t i o n , t a s k s t a r t s)

b a r r i e r ()

map(endtime , [1])

139

