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Abstract

Skeletal muscle is a highly compliant organ system that is composed of muscle fibres,
nerves, sensory cells, blood vessels and connective tissue. A central concept of skeletal
muscle biology is the existence of an inverse relationship between muscle fibre size and its
oxidative capacity which has been used to explain why small fibres are oxidative and large
fibres glycolytic. However, sturdiness of this relationship is unknown. In order to investigate
the rigour of this relationship we made use of a genetic model that enhances oxidative
metabolism, mediated by estrogen-related receptor gamma (Erry) (a constitutively active
orphan nuclear receptor belongs to the ERR subfamily), and the hypertrophic background of
Myostatin (a member of the Transforming Growth Factor beta (TGF-B) superfamily that is
negatively regulating skeletal muscle mass development) null (Mtn'/') mice. We show that
superimposition of Erry on the Mtn”" background results in hypertrophic muscle that

displays a high oxidative capacity (Mtn”"/Erry’®*

), thus violating the inverse relationship
between muscle fibre cross-sectional area and its oxidative capacity. Thereafter, we
examined the canonical view that there is a high number of satellite cells (skeletal muscle
resident stem cells) in oxidative muscles. Surprisingly, | found that hypertrophic oxidative
muscle fibres from Mtn'/'/ErryTg/+ mice showed a deficit in the number of satellite cells.
Unexpectedly, the lower population of satellite cells in the hypertrophic oxidative model is
not associated with a lower regenerative capacity. We also examined the relationship
between muscle fibre phenotype (size and metabolism) and components of its force
transducer apparatus that consists of both extracellular matrix (ECM) and dystrophin-

glycoprotein complex (DGC). Interestingly, | showed that levels of ECM and DGC entities can

be influenced by muscle fibre phenotype.

Observations of this work firstly, challenge the notion of a constraint between skeletal
muscle fiber size and oxidative capacity, secondly, indicate the important role of the
microcirculation in the regenerative capacity of a muscle even with low population of
satellite cells, and thirdly, show that the metabolic properties of a muscle fibre are a critical

factor to regulate the levels of ECM and DGC proteins.
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Introduction

1.1. Muscle tissue

Muscle tissue is one of the four primary types of body tissues, together with epithelial,
connective and nervous tissues. Muscle cells are highly specialized for contraction; it
produces movement within certain organs and the body as a whole. There are three types
of muscle tissues can be uniquely identified by functional characteristics and the basis
morphological features. The structure of each type is adapted to its physiological role. These

muscle types are, cardiac muscle, smooth muscle and skeletal muscle (Mesher, 2010).

Cardiac muscle cells develop from splanchnic mesoderm surrounding the endocardial heart
tube, and myoblast cells adhere one to another by a special attachment that later develops
into an intercalated disc (Sadler, 2012). The cells are relatively small, although a few cardiac
cells may have two or more nuclei; a typical cardiac muscle cell has a single centrally located
nucleus. The cardiac muscle is striated not voluntary that found specifically in the heart to
provide the force required for circulating blood around the body. It contracts at a steady
rate set by the heart’s pacemaker (Marieb, 2008). The intercalated discs are responsible to
stabilize the relative positions of adjacent cells and maintain the three-dimensional
structure of the tissue (Figure 1.1). Furthermore, the more longitudinal portions of each disc
have multiple gap junctions, which provide ionic continuity between adjacent cells. Building
on this, tightly knit bundles of cardiac cells and its interwoven organisation provides for a
characteristic wave of contraction that leads to wringing out of heart ventricles (Martini,

2006).

Smooth muscles are constituents of internal organs and blood vessels. Smooth muscles for
dorsal aorta and large arteries are derived from lateral plate mesoderm and neural crest
cells, in the coronary arteries, smooth muscles originated from proepicardial cells and
neural crest cells. Moreover, smooth muscles in the wall of the gut and gut derivatives are
derived from a splanchnic layer of lateral plate mesoderm. Only sphincter and dilator
muscles of the eye pupil and muscle tissue in the mammary and sweat glands are derived
from ectoderm (Sadler, 2012). Smooth muscle cells are relatively long and slender with a
single centrally located nucleus. They are nonstriated and involuntary cells, and their
contraction mechanism is performed by calcium interacting with calmodulin, a calcium-

binding protein (Mesher, 2010). Both intermediate and thin filaments of smooth muscles
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insert into dense bodies, this attachment is essential to transmit contractile force to
adjacent cells. Smooth muscle cells control the distribution of blood and regulate the blood
pressure. Extensive layers of smooth muscle cells in the walls of digestive tract play an
essential role in moving materials along the tract. Furthermore, contraction and relaxation
of smooth muscle in respiratory system can alter the diameter of respiratory passageways.
In addition, layers of smooth muscles in the walls of urinary and reproductive systems’

organs, enable these organs to move their contents from one part to other (Martini, 2006).

Skeletal muscle is the most abundant tissue in the human body constituting 40-50% of the
total body mass. It is essential for voluntary movement through its attachment points to the
skeleton. In addition, skeletal muscle is involved in a number of involuntary actions such as
breathing and swallowing (Bannister, 1995). Skeletal muscles vary in their size, shape,
attachments and relative myosin isoform proportion. They range from extremely tiny
strands like the stapedius muscle in the middle ear, to the gluteus maximus being the
largest muscle is an example of the range of different sized muscles in the body. They are
capable of producing various motions, such as the extra ocular muscle of the eye which
performs fine contracting motion, as well as gross movement in large muscles like
guadriceps muscle of the thigh (Williams, 1999). There is also a huge disparity in skeletal
muscles shape, the Oblicularia oculi are circular, whereas the sartorious that stretches along
the thigh length is very long. As a result of these variations exhibited by skeletal muscle, it
has been documented to have many important functions within the body: (1) Maintain
posture and body position, skeletal muscles responsible for balancing the body above the
feet during walk as a result of skeletal muscles tension. (2) Support soft tissues, the floor of
the pelvic cavity and an abdominal wall formed from layers of skeletal muscle. (3) Produce
skeletal movement, contractions of skeletal muscle moves the bones of the skeleton by
pulling the tendons. (4) Guard entrances and exits of the mammalian orifices. (5) Maintain
body temperature via heat production (Martini, 2006). Muscle fibres have a dynamic
structure capable of changing their phenotypes in term of size and composition in response
to environmental and physiological challenges such as mechanical loading or unloading,

hormonal alteration and ageing (Pette and Staron, 2001).

23
S. S. Omairi, PhD 2018



Introduction

Figure 1.1. Structure of three muscle types, Cardiac, Smooth and Skeletal muscles

(Martini, 2006)
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1.2. Skeletal muscle

1.2.1. Structure of skeletal muscle

1.2.1.1. Macroscopic anatomy of skeletal muscle

Skeletal muscle is made up of parallel bundles of long, cylindrical, and multinucleated cells
that show cross-striations, each cell contains hundreds of oval nuclei just internal to the
basement membrane (Figure 1.1). Multinucleation of skeletal muscle results from the fusion
of multiple myoblast cells during myogenesis. The peripheral location of nuclei in skeletal
muscle cells is an important feature to distinguish these cells from cardiac and smooth
muscles, both of which have central location nucleus. Moreover, contractile proteins within
the individual muscle fibre allow for powerful contractions and also give the striated
appearance of the muscle. The contraction in skeletal muscle is voluntary and controlled by

somatic motor innervation (Williams, 1999).

Skeletal muscle is comprised of different tissues such as blood vessels, nerve fibres and a
substantial amount of connective tissue. Each muscle is served by one artery, one or more
vein and one nerve, usually all of these components enter and exit near to the central part
and branch profusely through its connective tissue sheath (Marieb, 2008, Gumerson and
Michele, 2011). The whole mass of each muscle that formed from regular bundles
surrounded by a dense layer of collagen called the epimysium. The epimysium separates the
muscle from surrounding tissues and organs and is connected to the deep fascia. From the
epimysium, there are thin septa of connective tissue extended and surrounding the bundles
of fibres within a muscle, this connective tissue around each bundle or fascicle called
perimysium. Within fascicles there is a delicate connective tissue layer termed the
endomysium, surrounds the individual muscle fibre and interconnect adjacent muscle fibres
(Figure 1.2). The epimysium, perimysium and endomysium come together at both ends of
muscle to form a bundle known as a tendon or a broad sheet called an aponeurosis.
Tendons usually attach skeletal muscle fibres to the bone. Force generated by skeletal
muscle contraction transmitted via tendon to cause bone movement. The blood vessels and
the nerve supply generally enter the muscle together and follow the same branching

pattern through the perimysium as well as endomysium (Martini, 2006).
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Figure 1.2. Skeletal muscle arrangement (Mescher, 2010)

1.2.1.2. Microscopic appearance of skeletal muscle

Sarcolemma

membrane)

Mitochondrion

Skeletal muscle fibre is a highly specialised structure filled with predominantly filament

proteins that comprise myofibrils, the contractile apparatus of the tissue. The myofibrils

align longitudinally and form series of contractile units called sarcomeres (Aidley, 1998).
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Each sarcomere consists of (1) thick filaments, (2) thin filaments, (3) proteins that stabilize
the positions of thick and thin filaments, and (4) proteins that regulate the interaction
between thick and thin filaments (Martini, 2006). The interaction between thick and thin
filaments of sarcomere is responsible for muscle contraction. It has been shown that the
sarcomeres within the myofibrils are demarcated by a dense line called Z- line. The region
between the Z- line can be divided into light area consisting of the thin actin protein
filaments which called (I-band), and the dark area which mainly comprises the thick myosin
protein filaments (A-band) which has a central lighter area called H-Zone. This central area is
bisected vertically by a dark line called M-line (Figure 1.3). In addition, there are cross
bridges projected from myosin filaments to establish the contraction with the actin
filaments. During muscle contraction, the filaments slide over each other pulling the Z- discs
together and shortening the length of the muscle (Sciote and Morris, 2000). Each myosin
molecule consisted of two rod-like tails woven around each other and terminates into two
globular heads. These heads contain ATPase enzyme that hydrolyses ATP molecules to
generate energy require for contraction, as well as contain actin binding sites to link
together and forming cross bridges. On the other hand, thin filaments are formed by two
twisted strands of actin polymer, as well as regulatory proteins such as tropomyosin and
troponin. Troponin composed of three polypeptides, Tn-l which act as myosin binding
inhibitory, Tn-T which helps the binding of tropomyosin to actin, and Tn-C which bind to

calcium ions (Marieb, 2008).

1.2.1.2.1. Transverse tubule system and sarcoplasmic reticulum

In large muscle cells, the signal causes a contraction of peripheral myofibrils before those
more centrally positioned. In order to get a simultaneous contraction of all muscle cell
regions, the signal has to be distributed rapidly throughout the cell interior. The sarcolemma
has a transverse tubule (T-tubule) system that through invaginations penetrates throughout
the myofibre to form a complex network of narrow tubes extending to the sarcoplasm, and
encircles every myofibril near the sarcomere (Mescher, 2010). As the T-tubule have same
properties of muscle sarcolemma, so electrical impulses conducted by the sarcolemma

travel along the T-tubules into the cell interior, which in turn provide a uniform muscle
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contraction. In the same line of thought, the T-tubules are short and broad in a cardiac

muscle, while smooth muscle has no T-tubules.

Connectin Titin Thin Thick Thick Thin
filaments filament filament filament filament filament

Sarcomere

j——————— Sarcomere ———|

Thin filament M line

Thick filament

Aband : I band

' Z disc Mine Z disc
: H zone
——1 band —+ Aband 1 band —

Figure 1.3. Sarcomere structure (Mescher, 2010)
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Wherever transverse tubules encircle myofibrils, the tubules are linked to the membrane of
sarcoplasmic reticulum (SR), which a specialised endoplasmic reticulum of skeletal muscles
that consist of a network of membrane passages. Adjacent to opposite sides of each T-
tubule, there are expanded terminal cisternae of sarcoplasmic reticulum, a pair of small
cisternae of sarcoplasmic reticulum plus T-tubule is known as a triad. In spite of a tight
binding of the two cisternae, their fluid contents are completely separate and distinct. In the
cardiac muscle cell, the sarcoplasmic reticulum lacks terminal cisternae, whereas it forms a

loose network throughout the sarcoplasm of smooth muscle cells (Martini, 2006).

1.2.2. Skeletal muscle physiology

1.2.2.1. Mechanism of contraction

Resting sarcomeres show partial overlap of thick and thin filaments. Increase in amount of
overlap between the filaments triggered by sliding of thin and thick filaments on each other,
which lead to muscle contraction. Muscle contraction occurs following the discharge of a

motor neuron at the neuromuscular junction (Mescher, 2010).
A neuron stimulates a muscle fibre through orderly steps:

1- Arrival of an action potential. When the neuronal signal arrives to nerve presynaptic
terminal at the neuromuscular junction, an action potential propagates leading to calcium
ion flow in the extracellular fluid which in turn causes release of acetylcholine (ACh) into the
synaptic cleft as a result of permeability of the synaptic terminal membrane that induced by

the action potential (Marieb, 2008).

2- ACh binds at the motor end plate. The released ACh molecules bind to their sarcolemma
nicotinic receptors. This binding induces the permeability of motor end plate to sodium ions
that present in a high concentration in the extracellular fluid, whereas its concentration is
very low inside the cell. The Na' ions influx into the sarcoplasm lasts until

acetylcholinesterase (AChE) enzyme eliminates ACh from its receptors (Martini, 2006).

3- Development of the action potential in the sarcolemma. Inrushing of Na*ions depolarize
the sarcolemma. The action potential then spreads throughout the myofibrils via
depolarization of sarcolemma T-tubules system which pass transversely into the muscle cells

and surround each myofibril forming a membranous network with the sarcoplasmic
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reticulum and end at flattened terminal cisternae which released the Ca®* at the junction

between the A and | bands of each sarcomere (Burkitt, 1993) (Figure 1.4).

1.2.2.2. Contraction cycle

In the resting sarcomere, myosin head charged with energy that is going to be used to
power contraction. At the beginning of the contraction cycle, myosin head split ATP
molecule and store the energy released in the process. ADP and phosphate which are
products of ATP molecules breakdown, remain bound to the myosin head. During muscle
contraction, membrane depolarization activates voltage-sensing Ca’* channels in the T-
tubules that in turn activates ryanodine receptor 1 (RyR1) on SR membrane to release Ca”.
Subsequently, rise level of Ca?* in muscle cytoplasm which is essential for contraction
process (Andersson and Marks, 2010). The Ca** ions then bind to troponin-C. This binding
weakens interrelate of troponin, tropomyosin and actin complex, that causes tropomyosin
to be displaced, so exposing of myosin binding sites on the actin filaments. This permits the
formation of cross-linkages between actin and myosin through sliding of thin on thick
filaments producing contraction. Following contraction, Ca®* ions are releasing from
troponin and actively pumped back into the sarcoplasmic reticulum. Then the active sites of
actin are re-covered by tropomyosin, resulting in the release of myosin-actin binding hence

causing muscular relaxation (Ganong, 2005) (Figure 1.4).

It has established that Ca®* storage, release and re-uptake require feedback control through
the sarcoplasmic reticulum (SR). In fact, there are three Ca” proteins regulate these tasks.
Firstly, luminal calcium-binding protein that is required for calcium storage. Secondly, sarco
(endo) plasmic reticulum calcium release channels for calcium release. Finally, sarco (endo)
plasmic reticulum Ca?* ATPase pump (SERCA) for calcium re-uptake. The proper calcium
storage, release and re-uptake are important for efficient skeletal muscle contraction and
relaxation (Rossi and Dirksen, 2006). A single stimulus-contraction-relaxation sequence in a
muscle is called Twitch. Twitch varies in its duration depending on the muscle type, location,
internal and external environmental conditions. A single twitch can be divided into three
phases: (1) The latent period. During this period, the action potential sweeps across the
sarcolemma and the sarcoplasmic reticulum release Ca®'ions. (2) The contraction phase. As

the tension rise, calcium ions are binding to troponin, active sites on thin filaments are being
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exposed, and cross-bridge interactions are occurring. (3) The relaxation phase. During this
phase, calcium levels fall, active sites are covered by tropomyosin, and the number of active
cross-bridges is decreased. Thereby tension falls to resting levels (Martini, 2006). When
stimuli are delivered slowly enough, the tension in the muscle will relax between successive
twitches. On the contrary, the high frequency delivered stimuli, the sarcoplasmic reticulum
does not have time to reclaim the Ca®* ions, which eliminates the relaxation phase and
resulting in tetanic contraction due to twitches overlap. Such case, the contracting tension
in the muscle remains constant in a steady state, and this is the maximal possible

contraction (Martini, 2006).
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