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in using the total linear BJ index alone to assess the rea-
sons for ENSO amplitude biases and its future change in 
models.
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1  Introduction

One of the most important modes of natural climate vari-
ability is the El Niño Southern Oscillation (ENSO). Many 
climate models can now simulate an ENSO cycle with a 
reasonable level of fidelity, but errors persist in both the 
mean climate of the tropical Pacific and in the structure, 
frequency and magnitude of ENSO (Bellenger et al. 2013). 
The CMIP3 models (Coupled Model Intercomparison Pro-
ject, version 3), and more recently the CMIP5 models, have 
been used in many studies to assess ENSO processes and to 
investigate the impact anthropogenic climate change may 
have on ENSO, often with inconclusive results (Collins 
et al. 2010). Studies that consider alternative definitions of 
ENSO events (and extreme ENSO events) in terms of varia-
tions in precipitation, seemingly show more robust changes 
in the future, but may also be influenced by mean biases in 
models (Cai et al. 2014, 2015). Errors and biases in mod-
els can influence the characteristics of the modelled ENSO 
and its projected response under climate change. Develop-
ing a greater understanding of ENSO feedback processes 
and their relation to model biases and the uncertainty of 
long-term ENSO projections is an ongoing priority area of 
research (e.g. the CLIVAR ENSO in a Changing Climate 
Research Focus).

ENSO is governed by a suite of air-sea feedback pro-
cesses in the equatorial Pacific. As described by Bjerknes 
(1969), the development of El Niño involves weakening 

Abstract  The El Niño Southern Oscillation (ENSO) is 
governed by a combination of amplifying and damping 
ocean–atmosphere feedbacks in the equatorial Pacific. Here 
we quantify these feedbacks in a flux adjusted HadCM3 
perturbed physics ensemble under present day conditions 
and a future emissions scenario using the Bjerknes Stabil-
ity Index (BJ index). Relationships between feedbacks and 
both the present day biases and responses under climate 
change of the mean equatorial Pacific climate are investi-
gated. Despite minimised mean sea surface temperature 
biases through flux adjustment, the important dominant 
ENSO feedbacks still show biases with respect to observed 
feedbacks and inter-ensemble diversity. The dominant posi-
tive thermocline and zonal advective feedbacks are found 
to be weaker in ensemble members with stronger mean 
zonal advection. This is due to a weaker sensitivity of the 
thermocline slope and zonal surface ocean currents in the 
east Pacific to surface wind stress anomalies. A drier west 
Pacific is also found to be linked to weakened shortwave 
and latent heat flux damping, suggesting a link between 
ENSO characteristics and the hydrological cycle. In con-
trast to previous studies using the BJ index that find posi-
tive relationships between the index and ENSO amplitude, 
here they are weakly or negatively correlated, both for 
present day conditions and for projected differences. This 
is caused by strong thermodynamic damping which domi-
nates over positive feedbacks, which alone approximate 
ENSO amplitude well. While the BJ index proves useful 
for individual linear feedback analysis, we urge caution 
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of the easterly trade Winds as sea surface temperature 
(SST) warms in the eastern equatorial Pacific, rendering a 
reduced zonal SST gradient. The westerly wind anomalies 
drive weaker surface currents and upwelling, causing the 
thermocline to tilt eastward. The deepened thermocline in 
the east leads to increased SSTs which in turn reinforce 
the westerly wind anomaly, and so forth. These reinforc-
ing processes are termed the Bjerknes feedback. Con-
versely, negative SSTAs associated with La Niña, the cool 
ENSO phase, cause an opposite ocean response resulting 
in further SST cooling. The development of the Bjerknes 
Stability Index (BJ Index, Jin et  al. 2006), allows for a 
relatively simple method of quantifying these equatorial 
Pacific feedback strengths. The BJ index includes the 
damping feedback of the mean ocean currents and damp-
ing via reduced atmosphere–ocean heat flux, termed the 
thermodynamic damping. The positive feedbacks to a 
warm SST anomaly resulting from anomalous eastward 
advection in the ocean, weakening east Pacific upwelling 
and a flattening thermocline, referred to as the zonal 
advective, Ekman and thermocline feedbacks respectively, 
are also included in the BJ index. The BJ Index is derived 
from a linear stability analysis of a simplified model of 
the upper ocean and atmosphere in the Pacific (see Sect. 3 
for details).

Coupled atmosphere–ocean models still struggle to 
accurately represent ENSO and the feedbacks that control 
ENSO characteristics. ENSO amplitude and period are 
often diverse in multi-model ensembles. Here the focus is 
on the dominant positive and negative ENSO feedbacks, 
which are found in a number of studies assessing ENSO 
feedbacks in models to be areas for improvement (Guil-
yardi 2006; Lin 2007; Lloyd et al. 2009, 2012; Kim and Jin 
2010a; Bellenger et al. 2013; Kim et al. 2013).

Thermodynamic damping, the strength of the response 
of surface heat flux to sea surface temperature anomalies 
in the east equatorial Pacific, is a major source of ENSO 
diversity. This feedback is usually too weak in models and 
shows large variations in both CMIP3 and CMIP5 (Lloyd 
et al. 2009; Kim and Jin 2010a; Kim et al. 2013). This is 
often primarily related to an underestimated shortwave 
damping response caused by weak atmospheric ascent in 
response to east Pacific sea surface temperature anoma-
lies during El Niños as well as a weak response of clouds 
(Lloyd et al. 2012). Guilyardi et al. (2009) and Bony and 
Dufresne (2005) also find that the distribution of atmos-
pheric convection is important for an accurate thermody-
namic damping. Another important component of thermo-
dynamic damping is the cooling of SSTs via latent heat 
flux, which is also found to be weak in many CGCMs 
and can be linked to biases in wind speed or near surface 
humidity sensitivity in the equatorial Pacific (Lin 2007; 
Lloyd et al. 2010).

In the case of positive feedbacks, such as the zonal 
advective, Ekman and thermocline feedbacks, the strength 
of the coupling between atmosphere and ocean, e.g. the 
response of surface wind stress to sea surface temperature 
anomalies, is important. This coupling has been found to 
be generally weak in models and varies in strength between 
them (Guilyardi 2006; Lloyd et  al. 2009; Kim and Jin 
2010a; Kim et  al. 2013). The strength of this coupling is 
slightly improved in atmosphere-only models and CMIP5 
relative to CMIP3 (Lloyd et al. 2010; Bellenger et al. 2013; 
Kim et al. 2013) though the reasons behind this improve-
ment are unclear. Weak positive ENSO feedbacks in mod-
els are also related to other ocean–atmosphere feedback 
loops such as the response of ocean currents to wind stress 
anomalies, important to the zonal advective feedback, and 
the response of the thermocline slope to wind stress anoma-
lies which is a key component of the thermocline feed-
back (Lübbecke and McPhaden 2013, 2014; Graham et al. 
2014). The biases in these feedbacks can often be linked to 
errors in the mean equatorial Pacific climate. In particular, 
the cold tongue bias and weak upper ocean stratification 
common in models can coincide with weak air-sea cou-
plings (Kim et al. 2013).

Multi-model studies into the response of ENSO to cli-
mate change generally do not indicate robust responses, 
particularly when investigating ENSO amplitude and period 
(van Oldenborgh et  al. 2005; Guilyardi 2006; Merryfield 
2006; Yeh et al. 2006; Vecchi and Wittenberg 2010; Collins 
et al. 2010; DiNezio et al. 2012). However, recent studies 
using alternative metrics (e.g. precipitation as an indica-
tor of extreme El Niño events) find a projected increase in 
strong events (Cai et al. 2014, 2015). Santoso et al. (2013) 
also find a projected increase in extreme events when con-
sidering zonal SST propagation as an indicator of strong 
El Niños. These studies highlight the need to also include 
process-based metrics in ENSO analysis. It has been sug-
gested that initial mean state or the relative dominance 
of different feedbacks may have an impact on the ENSO 
amplitude response to climate change (Zelle and van Old-
enborgh 2005; Merryfield 2006; Yeh and Kirtman 2007). A 
stability analysis of CMIP3 models by Kim and Jin (2010a, 
b) also find different ENSO amplitude and ENSO stability 
responses to warmer climate conditions in that ensemble. 
Despite this inter-ensemble variation, consistent ENSO 
feedback responses were found for thermodynamic damp-
ing (becoming more negative), zonal advective feedback 
and Ekman feedback (becoming more positive) in response 
to increased CO2. These feedback responses counteract 
each other resulting in different ENSO stability (the feed-
back summation) responses in different models. Similar 
results have also been found in analyses by DiNezio et al. 
(2012) and Philip and van Oldenborgh (2006). Despite 
this, Kim and Jin (2010a, b) find that ENSO stability is 
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a good predictor of ENSO amplitude in CMIP3. In more 
recent models, ENSO stability climate change responses 
may be less diverse; Kim et  al. (2014) find that a subset 
of the CMIP5 ensemble, which they judge to most accu-
rately simulate the observed relative importance of feed-
back terms, do agree on an ENSO amplitude and stability 
response which rises then falls in later decades. However, 
the inter-ensemble link between stability and amplitude is 
less clear in CMIP5 when compared to CMIP3 (Kim et al. 
2013).

While the BJ index has proved to be a powerful tool in 
the assessment of ENSO feedback strength, an ongoing 
discussion involves the reliability and accuracy of the BJ 
index as a quantitative predictor of ENSO amplitude. Gra-
ham et al. (2014) compare the BJ index with a calculation 
of the full non-linear mixed-layer heat budget and find that 
positive feedbacks, associated with ocean processes, tend 
to be misrepresented by the BJ index. The linear calcula-
tion of atmospheric feedbacks is also known to result in 
underestimated feedback strength in the case of the short-
wave damping and the Bjerknes feedback (Jin et al. 2003; 
Timmermann et  al. 2003; An and Jin 2004; Lloyd et  al. 
2012; Bellenger et al. 2013).

One potential issue is in the area-averaging used in the 
BJ Index calculation. This involves the choice of various 
boxes, over which different variables are averaged in order 
to estimate ENSO feedbacks. CMIP models still feature 
systematic errors and biases in e.g. the distribution of SSTs, 
with the cold tongue being too cold and extending too far 
into the west. Biases are different in different models and, 
ideally, one should adjust the locations and sizes of the dif-
ferent box-averages in order to accurately capture the dif-
ferent feedback processes (see Kim and Jin 2010a, b).

One way of artificially minimising biases in models is 
to use flux adjustments. While not a way of formally cor-
recting models, the approach can be useful in understand-
ing the role of model biases on e.g. modelled variability 
or the climate change response. Here we exploit a ‘per-
turbed physics’ ensemble of models in which flux adjust-
ments are employed to prevent model drift due to radia-
tion imbalances caused by the parameter perturbations 
(Collins et al. 2011). This has the side effect that the SST 
distribution in the different model versions is relatively 
close to that observed, thus alleviating some of the issues 
of model biases. However, flux adjustment does not solve 
all problems and there are still some biases in models and 
some differences in mean state. These are exploited to 
relate errors in feedbacks to errors in that mean state. The 
use of a perturbed physics approach results in an ensem-
ble that covers a range of ENSO variability allowing for 
inter-ensemble relationships to suggest possible causes of 
feedback biases. While it does not represent the diversity of 
different mean-state errors, we consider it a stepping-stone 

to the understanding of the multi-model ensemble. If we 
can relate feedbacks to mean state errors in an ensemble 
in which model mean states are close to each other, but in 
which ENSO characteristics are quite different, this should 
aid us in the much harder multi-model problem.

Section 2 outlines the perturbed physics ensemble (PPE) 
used here as well as the reanalysis data used for com-
parison. The BJ index and its calculation is introduced 
in Sect.  3. In Sect.  4 the stability analysis results for the 
HadCM3 PPE during 1985-2015 are given in comparison 
to the reanalysis data. ENSO feedbacks are also related to 
the equatorial mean state of the PPE. The ENSO climate 
change response of the PPE is shown in Sect.  5 and pos-
sible reasons for the responses found are suggested. Sec-
tion 6 briefly assesses the relationship in the PPE between 
ENSO amplitude and atmospheric noise. Results are sum-
marised and discussed in Sect. 7 and suggestions for future 
work are given.

2 � Data

2.1 � HadCM3 perturbed physics ensemble (PPE)

The analysis carried out here uses a HadCM3 perturbed 
physics ensemble. Perturbed physics ensembles are gen-
erated from a single model and are a relatively easy way 
of producing a large ensemble, in comparison to a multi-
model ensemble, which uses a number of different models. 
Perturbed physics allows for the experiment to be con-
trolled while exploring uncertainties in processes or feed-
backs. A single model is used while values of uncertain 
parameters are perturbed. Different physical schemes can 
also be switched in and out as well as perturbing param-
eters. This approach enables sources of uncertainty in pro-
jections due to uncertain parameters (rather than model 
structure) to be found. The PPE features a fully coupled 
version of HadCM3 (Collins et al. 2011) with an interactive 
sulphur cycle. The ensemble consists of a total of thirty-
three members, which can be split into two sixteen-member 
sub-ensembles with one ensemble member having standard 
HadCM3 parameters. The first sub-ensemble features mul-
tiple perturbations to only parameters in the atmosphere 
component simultaneously (as opposed to single param-
eter perturbations). The second has perturbations to only 
schemes and parameters in the ocean component but fea-
tures standard atmosphere settings. The PPE also uses flux 
adjustment in order to avoid model drift caused by top of 
atmosphere imbalances due to perturbations and to improve 
regional climate change and feedback simulation. The flux 
adjustment varies spatially and seasonally and is computed 
during a ‘spin-up’ phase and fixed (with a seasonal cycle) 
throughout the integration of all the experiments used here. 
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Thus flux adjustments do not damp SST anomalies, as they 
do not depend on the value of the SST anomaly.

We analyse output from experiments spanning 200 years 
beginning in 1896 with historical forcings followed by the 
SRES A1B emissions scenario. This scenario describes 
a future of rapid economic growth and a peak in global 
population mid-century. Eighteen overlapping de-trended 
30 year time periods with start years staggered at 10 year 
intervals (1896–1925, 1906–1935, …, 2066–2095) are used 
when responses under climate change are analysed. Fields 
used are sea temperatures to depth of 300 m, surface zonal 
wind stress, surface zonal ocean current, surface meridional 
ocean current, upwelling ocean current, precipitation, sur-
face sensible heat flux, surface latent heat flux, shortwave 
radiation and longwave radiation.

2.2 � CMIP5 HadCM3

Comparison of the results in this study with previous stud-
ies required the use of the CMIP5 versions of HadCM3. 
CMIP5 has been designed for use in AR5 (Taylor et  al. 
2012). Monthly means of ocean temperature, surface heat 
flux, zonal and meridional ocean currents and surface wind 
stress for 1950–2000 of the historical HadCM3 runs are 
used for the calculation of ENSO feedbacks.

2.3 � Reanalyses

In order to calculate an observed value of the BJ index 
SODA 2.2.4 and OAFlux datasets are used. The SODA 
2.2.4 Simple Ocean Data Assimilation (Carton et al. 2005; 
Carton and Giese 2008) reanalysis uses an ocean general 
circulation model that is based on the Parallel Ocean Pro-
gram (POP) physics and has a resolution of 0.25° latitude 
by 0.4° longitude with 40 levels. SODA covers 1871–
2010 and version 2.2.4 uses 20CRv2 surface wind stress 
as observed surface forcing. The model is then nudged 
towards observations that include hydrographic profiles, 
moored hydrographic observations and remotely sensed 
SST data. Fields used are monthly mean values of sea tem-
perature, zonal surface wind stress, zonal ocean velocity, 
meridional ocean velocity and vertical ocean velocity in 
the calculation of the Bjerknes stability index for the time 
period 1984–2009.

The OAFlux (Objectively Analyzed air-sea fluxes, Yu 
and Weller 2007) is a 49 year analysis which uses a com-
bination of satellite data and atmospheric reanalyses to 
produce products on a 1° latitude-longitude grid. OAFlux 
provides the latent and sensible heat fluxes for the calcula-
tion of the observed BJ index here as well as sea surface 
temperature used in the calculation of the thermodynamic 
damping observed value. OAFlux data covers the time 
period of 1958–2010 though only 1984–2009 is used here 

due to the availability of shortwave and longwave radiation 
fields. OAFlux net surface heat flux is obtained by combin-
ing OAFlux sensible and latent heat fluxes with the ISCCP 
(International Satellite Cloud Climatology Project, Schiffer 
and Rossow 1983) shortwave and longwave radiation.

3 � Methods

The BJ index is derived from the linear equation for sea 
temperature anomalies averaged over the mixed layer (e.g. 
An et al. 1999), which are then area-averaged over the cen-
tral and east equatorial Pacific, the areas which are most 
relevant to ENSO-related variability. Here the mixed layer 
is taken to have a fixed depth of 50 m. This is based on a 
PPE mean mixed layer depth of 50.5 ± 4.9 m, calculated 
as the depth of SST-0.5 °C (e.g. Philip and van Oldenborgh 
2006). A number of linear approximations can then be used 
to obtain equations which form a simple linear coupled 
recharge oscillator system with growth rate IBJ such that

R represents the collective strength of various ENSO feed-
backs. As the BJ index (IBJ) represents the growth rate of 
the system, this means that for IBJ > 0 the leading mode of 
the system is linearly unstable, and when IBJ < 0, the lead-
ing ENSO mode is damped.

The first two feedbacks represent the damping feedbacks 
of mean current damping (CD) and thermodynamic damp-
ing (TD) such that

where 〈〉E represents area-averaging over the east equatorial 
Pacific (averaging bounds of longitude 180°E–280°E, lati-
tude 5°S–5°N). The overbar represents the time mean and u, 
v, w are the surface zonal, surface meridional and upwelling 
ocean current respectively. A step function, H(x), is used for 
upwelling currents such that only positive upwelling val-
ues are used (H(w̄) = 0 for w̄ < 0, H(w̄) = 1 for w̄ > 0) . 
Lx and Ly are the longitudinal and latitudinal extents of the 
area averaging region. Hm is taken to be 50  m (depth of 
mixed layer). The thermodynamic damping term, α, is cal-
culated as the slope of the east Pacific heat flux anomalies 
regressed onto east Pacific sea surface temperature (SST) 

(1)IBJ =
R

2
,

(2)R = CD+ TD+ ZA+ EK + TC.

(3)CD = −

(

�ū�E

Lx
+

�−2yv̄�E

L2y
+

�H(w̄)w̄�E

Hm

)

,

(4)TD = −α,

(5)−α = −αSW − αLW − αSH − αLH ,
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anomalies. The thermodynamic damping can be split into 
separate heat flux components; shortwave radiation (αSW), 
longwave radiation (αLW), sensible heat (αSH) and latent heat 
(αLH) fluxes. These are calculated by regressing the seasonal 
anomalies of the relevant heat flux in the east Pacific against 
east Pacific SST anomalies. In order to obtain all feedbacks 
in units of year−1 the heat flux dampings are normalised 
using the heat capacity of water (cp = 4180 Jkg−1 K−1), the 
density of seawater (ρ = 1029 kgm−3) and the mixed layer 
depth, taken fixed as 50 m. Note that the usual sign conven-
tion is for surface fluxes to be defined as positive upward. 
A positive net heat flux (from the ocean to the atmosphere) 
would lead to a cooling of SSTs. Hence the use of the nega-
tive sign in Eq. (4).

The remaining three feedbacks are the positive feed-
backs of zonal advective (ZA), Ekman (EK) and thermo-
cline (TC) feedbacks where

The Bjerknes feedback, μa, is the linear regression coef-
ficient of equatorial Pacific wind stress anomalies against 
east Pacific SSTAs. βu is found by regressing east Pacific 
zonal surface ocean current anomalies against equatorial 
Pacific surface wind stress anomalies, βw is the regression 
coefficient of east Pacific upwelling ocean current against 
equatorial Pacific surface wind stress anomalies and βh 
is obtained by the regression of thermocline slope (rep-
resented as the difference between east and west Pacific 
sea temperatures averaged from the surface to a depth of 
300  m) anomalies against equatorial Pacific surface wind 
stress anomalies. Once calculated, the feedbacks are 
summed together to obtain the total BJ index (example 
shown in Fig. 2).

Clearly, the use of area-averaging in the calculation of 
the BJ index is important and while a method for choosing 
the longitudinal extents of the area-averaging boxes exists 
(given in Kim and Jin 2010b) this is not used here as the 
use of flux adjustment in the ensemble minimises spatial 
differences between ensemble members. Instead, a fixed 
division between the east and west Pacific at longitude 
180° is chosen for all time periods and ensemble members 
with an east boundary at 80°W for east Pacific area-aver-
aging. Averaging over the full basin (e.g. for wind stress in 
calculation of μa) has the same east boundary but a west 

(6)ZA = µaβu

〈

−∂T̄

∂x

〉

E

,

(7)EK = µaβw

〈

−∂T̄

∂z

〉

E

,

(8)TC = µaβh

〈

w̄

H1

〉

E

.

boundary at 120°E. Sensitivity tests to the definitions of the 
dividing boundary of the two regions show that the main 
conclusions of the paper are not affected by these choices.

The role of atmospheric noise is also estimated in Sect. 6 
as the residual of wind stress as a function of equatorial 
Pacific SST (Philip and van Oldenborgh 2009, 2010; Philip 
et al. 2010) given as:

where τx(x, y, t) is the tropical Pacific surface wind stress 
anomaly, Ti(t) are SST anomalies area-averaged over n 
separate regions along the equator (here we choose three 
in keeping with Philip et  al. 2010), Ai(x, y) are the wind 
stress patterns corresponding to the relevant SST anomalies 
and ǫ(x, y, t) is the stochastic forcing by random wind stress 
variations or the wind stress residual unrelated to SST 
anomalies which is referred to throughout as the ‘atmos-
pheric noise’. The three averaging areas used divide the 
longitude range 140°E–280°E into three equal regions with 
latitude bounds of 5°S–5°N (Philip and van Oldenborgh 
2010). To assess the strength of the noise in the central 
equatorial Pacific the standard deviation of the area-average 
over Niño 3.4 is taken (longitude of 190°E–240°E, lati-
tude of 5°S–5°N). Other analysis for the mean Pacific cli-
mate involves area-averaging over the Niño 3 (longitude of 
190°E–240°E, latitude of 5°S–5°N) and Niño 4 (longitude 
of 190°E–240°E, latitude of 5°S–5°N) regions. For analy-
sis of zonal ocean currents Nino 3′ and Niño 4′ regions are 
also defined with the same longitude bounds as Niño 3 and 
Niño 4 but with latitude bounds of 2.5°S–2.5°N.

Error bars for area-averaged mean and standard devia-
tion in the present day time period (1986–2015) are esti-
mated using a moving block bootstrap with windows of 
10 months for mean and 36 months for standard deviation. 
Ensemble mean error is given by one ensemble standard 
deviation. Error bounds for feedbacks are based on the 
95% confidence interval for the linear least squares regres-
sion fits used in the calculation of the coefficients. This is 
calculated using the linear fit standard error and the 97.5th 
percentile of the Student t distribution. Figures showing cli-
mate change trend lines are dashed or solid to demonstrate 
insignificant or significant trends respectively. A trend is 
classed as significant if the difference between 1986–2015 
and 2065–2095 is larger than the standard deviation of the 
1895-1985 time period (referred to as ‘natural variability’).

4 � Twentieth century ENSO stability

Perturbations to both atmosphere and ocean parameters 
impact the amplitude of ENSO (Figs.  1g, 2a) with the 

(9)τx(x, y, t) =

n
∑

i=1

Ai(x, y)Ti(t)+ ǫ(x, y, t).
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standard deviation of Niño 3.4 SST anomalies ranging from 
0.5 to 1.5 °C. Later analysis using mean climate condition 
focuses on Niño 3 and Niño 4 regions as opposed to just 
Niño 3.4 used here. This is to clarify differences in the rela-
tionship between feedbacks and the east and west Pacific. 
For the case of ENSO amplitude using Niño 3 instead of 
Niño 3.4 does not alter results given here as inter-ensemble 
variations in these regions are closely related. It is found 
that ENSO amplitude bias is mixed but nineteen PPE mem-
bers show too strong ENSO amplitude; only seven PPE 
members show a weaker than observed ENSO amplitude (a 
significant bias is defined as lying outside of the reanalysis 
±95% linear fit confidence interval for BJ index calcula-
tions or ±1 moving block bootstrap error for ENSO ampli-
tude). SSTAs across the equator, not just in Niño 3.4, show 

this bias (Fig. 1g) with ocean perturbation ensemble mem-
bers favouring the strongest SSTAs. The BJ index (Fig. 2b) 
during 1986–2015 shows a positive bias for twenty PPE 
members in comparison with observations. All other PPE 
members show no significant bias. 

Here the total BJ index for the standard HadCM3 model 
is found to be 0.65 ± 0.26 year−1 (Table 1; Fig. 2) in com-
parison with a previous study by Kim et al. (2013) who find 
a HadCM3 BJ index of approximately 0.4 year−1 (approxi-
mated from the figures as the exact value is not stated in 
the text). Aside from the use of flux adjustments here, 
there are a number of differences in the methods of these 
two studies that result in slight differences in the feedback 
strengths found. This study mainly follows the original BJ 
index formula given in Jin et al. (2006), though we use the 

Fig. 1   a Mean sea surface tem-
perature (SST) averaged over 
latitude −5° to 5° (1986–2015) 
for the standard HadCM3 PPE 
member (black line), atmos-
phere (red line) and ocean (blue 
line) HadCM3 PPE means with 
shading for ±1 S.D. and SODA 
reanalysis (dashed black line), 
b same as a but for mean zonal 
surface ocean current and aver-
aged over latitude −2.5° to 2.5°, 
c same as a but for mean zonal 
surface wind stress, d same as a 
but for mean depth of 20 °C iso-
therm, e same as a but for mean 
upward net heat flux, f same as 
a but for mean precipitation, g 
same as a but for S.D. of SSTA 
anomalies. Vertical dashed lines 
show the east and west regions 
used in the calculation of the BJ 
index. Vertical solid lines show 
Niño 3 (east) and Niño 4 (west) 
regions
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Fig. 2   a ENSO amplitude as represented by the standard deviation 
(S.D.) of Niño 3.4 Sea Surface Temperature Anomalies. b The BJ 
index (BJ) and its components, mean current damping (CD), ther-
modynamic damping (TD), and zonal advective (ZA), Ekman (EK) 
and thermocline (TC) feedbacks calculated for all HadCM3 Per-
turbed Physics Ensemble (PPE) members for 1986–2015. PPE mem-
bers given by dots colored by perturbation type; black for standard 
parameters, blue for PPE members that feature perturbations to the 

ocean parameters and red for atmosphere parameter perturbations. 
Reanalysis values ±95% linear fit confidence intervals (for BJ index 
calculations) and moving block bootstrap error (for ENSO amplitude) 
are shown by the black horizontal dashed lines and grey shading. 
Ensemble means ±  1  S.D. shown by diamonds and attached error 
bars. Min/max error bars for PPE members are given along the top 
of figure

Table 1   Twentieth century 
(1986–2015 for PPE, 1984–
2009 for SODA/OAFlux) and 
twenty-first century (2066–
2095) mean SST in Niño 3 and 
Niño 4, ENSO amplitude (S.D. 
of Niño 3.4 SSTAs), BJ index, 
nean current damping (CD), 
thermodynamic damping (TD), 
zonal advective feedback (ZA), 
thermocline feedback (TC), 
and Ekman feedback (EK) for 
the reanalysis, the standard 
parameter ensemble member 
(0), the atmosphere PPE 
(members 1–16) mean (±S.D.) 
and the ocean PPE (members 
17–32) mean (± S.D)

Reanalysis and standard PPE member errors for ENSO amplitude are calculated using a moving block 
bootstrap and errors for the BJ index and components are the 95% confidence interval from the linear fits 
used in the calculation

Metric/feedback SODA/OAflux PPE 0 PPE 1–16 (atm) PPE 17–32 (oce)

1986–2015

 Mean SST N3 (°C) 25.8 ± 0.2 25.5 ± 0.1 25.4 ± 0.4 25.4 ± 0.2

 Mean SST N4 (°C) 28.6 ± 0.1 28.5 ± 0.1 28.4 ± 0.4 28.6 ± 0.2

 ENSO amp. (°C) 0.83 ± 0.10 0.99 ± 0.08 0.78 ± 0.22 1.11 ± 0.21

 BJ index (year−1) 0.22 ± 0.35 0.65 ± 0.26 0.44 ± 0.21 0.80 ± 0.27

 CD (year−1) −1.26 −0.73 −0.80 ± 0.06 −0.47 ± 0.20

 TD (year−1) −2.53 ± 0.14 −1.41 ± 0.12 −1.12 ± 0.32 −1.67 ± 0.35

 ZA (year−1) 1.20 ± 0.17 0.99 ± 0.12 0.74 ± 0.13 1.01 ± 0.35

 TC (year−1) 2.11 ± 0.26 1.61 ± 0.17 1.38 ± 0.20 1.73 ± 0.21

 EK (year−1) 0.92 ± 0.14 0.82 ± 0.10 0.67 ± 0.11 1.00 ± 0.15

Metric/feedback PPE 0 PPE 1–16 (atm) PPE 17–32 (oce)

2066–2095

 Mean SST N3 (°C) 27.3 ± 0.1 27.1 ± 0.6 27.2 ± 0.3

 Mean SST N4 (°C) 30.1 ± 0.1 30.1 ± 0.6 30.0 ± 0.2

 ENSO amp. (°C) 1.45 ± 0.10 0.95 ± 0.28 2.45 ± 0.16

 BJ index (year−1) 0.35 ± 0.50 0.25 ± 0.22 0.68 ± 0.20

 CD (year−1) −0.58 −0.62 ± 0.06 −0.33 ± 0.18

 TD (year−1) −2.01 ± 0.12 −2.02 ± 0.37 −2.19 ± 0.21

 ZA (year−1) 0.87 ± 0.11 0.94 ± 0.12 1.18 ± 0.20

 TC (year−1) 1.40 ± 0.16 1.28 ± 0.17 1.55 ± 0.14

 EK (year−1) 1.02 ± 0.11 0.92 ± 0.12 1.17 ± 0.16
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calculation of μa (the sensitivity of zonal wind stress to 
SSTA) given in Kim et al. (2013) as we feel this to be more 
consistent with recent studies (e.g. Graham et  al. 2014; 
Lübbecke and McPhaden 2013). Our analysis is consist-
ent with Graham et al. (2014), however Kim et al. (2013) 
follows the formula in Kim and Jin (2010a, b), which may 
give a different result. The main difference in the formula 
used here and the one in Kim et al. (2013) is in the calcula-
tion of the mean current damping which includes regression 
of the SSTAs at the longitudinal and latitudinal boundaries 
of the averaging box against the full box averaged SSTA as 
well as consideration of the boundary ocean current, rather 
than the full box averaged ocean current. The influence of 
mean upwelling is also not included in the alternative mean 
current damping calculation.

A large discrepancy between the analysis presented here 
and that of Kim et  al. (2013) lies in the thermodynamic 
damping, found by Kim et al. (2013) to be approximately 
0.15–0.2 year−1 for the CMIP5 version of HadCM3. Ther-
modynamic damping for the standard PPE member in this 
study is significantly larger in strength. Aside from the for-
mula differences outlined above, one of the main differ-
ences between these two studies is that the model experi-
ment design differs between them. Kim et  al. (2013) use 
the CMIP5 historical non-flux-adjusted HadCM3 run. Here 
we use a perturbed physics ensemble of HadCM3 with 
flux adjustment. Repeating the methods used here on the 
CMIP5 historical HadCM3 run gives a thermodynamic 
damping of −0.28 ± 0.06 year−1, much weaker than that 
found for the standard parameter HadCM3 PPE member 
(Table 1) in this study.

Other differences include the calculation of anomalies; 
Kim et  al. (2013) uses a 7 year smoothing as opposed to 
seasonal anomalies used here. Finally Kim et  al. (2013) 
find the separating boundary between east and west Pacific 
averaging areas by using a method based on SST EOFs, 
whereas here the boundary here is taken to be fixed at 180°. 
Therefore the feedbacks will be calculated over different 
areas in the equatorial Pacific.

Positive feedback discrepancies are smaller. Kim et  al. 
(2013) finds the HadCM3 zonal advective, Ekman and 
thermocline feedbacks to be approximately 0.3, 0.4 and 
1.2  year−1 respectively. While there are some differences 
to this for the standard PPE member, such as the stronger 
Ekman feedback and weaker zonal advective feedback 
(see Table 1), these are most likely caused by the different 
methods described above and the use of flux adjustment in 
the PPE, which improves the HadCM3 feedback strengths 
in relation to the observed BJ index. The representation of 
the relative strength of the BJ index and its components can 
be tested by correlating the six points of the BJ index and 
its components for an ensemble member with those found 
using the reanalysis. A higher correlation then indicates a 

more accurate representation of the strengths of the feed-
backs in relation to each other. The correlation between 
the components of the standard HadCM3 PPE member BJ 
index and SODA/OAFlux BJ index is increased to 0.97 in 
this analysis from 0.87 found by Kim et al. (2013). All but 
one PPE member have correlations exceeding 99% signifi-
cance using this measure (by students t test), a criteria used 
in Kim et al. (2014) to select the ‘best’ models for assessing 
projected change in ENSO stability. The root mean squared 
error (RMSE) of an ensemble member’s BJ index and com-
ponents with the reanalysis BJ index can also be used as a 
measure of accuracy (e.g. Kim et al. 2013). Here RMSEs 
range from 0.19 to 0.55  year−1 with ensemble members 
with lower RMSEs corresponding to those which show the 
higher correlations with the reanalysis BJ index and there-
fore have the more accurate relative feedback strengths. An 
important note here is that selecting the ‘best’ models in 
this ensemble, those with the lowest RMSEs (below 0.35), 
gives no significant difference in the projected response of 
the BJ index and ENSO amplitude in Sect. 5, in contrast to 
the MME case in Kim et al. (2014).

The use of perturbed physics provides a range of ENSO 
stability over the ensemble, either strengthening or weak-
ening the feedbacks, often depending on the type of pertur-
bation (e.g. perturbation to atmosphere or to ocean param-
eters). Atmosphere perturbations typically show increased 
ENSO stability (smaller or more negative BJ index) from 
the standard PPE member, with an atmosphere PPE mean 
(Table  1, PPE members 1–16) significantly different than 
the ocean PPE mean (Table 1, PPE members 17–32; 99% 
significance by a student’s t test). This is the result of 
weakened positive feedbacks and a stronger mean current 
damping in response to atmosphere perturbations. Atmos-
phere ensemble means for CD, ZA, TC and EK feedbacks 
respectively, and are all significantly below the ocean PPE 
means (99% significance by student’s t test). Ocean pertur-
bations tend to have a destabilising effect, with increased 
positive feedbacks and a weaker mean current damping for 
ocean PPE members. In contrast, thermodynamic damp-
ing is strengthened by ocean perturbations and weakened 
by atmosphere perturbations. The atmosphere PPE mean 
damping is significantly weaker than the ocean PPE mean 
damping (99% significantly different by student’s t test). 
These results show that ocean perturbations strengthen 
ocean–atmosphere feedbacks while weakening the impact 
of mean currents. Conversely, atmosphere perturbations 
strengthen the impact of mean ocean currents but weaken 
ocean–atmosphere couplings.

The strongest positive feedback is the thermocline (TC) 
feedback which shows consistently high values around 
1–2  year−1 in comparison with the other components, in 
agreement with the reanalysis. However, this feedback 
is still comparatively weak for many PPE members, the 
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reasons for which are examined in Sect. 4.1. Twenty-eight 
out of the thirty-three PPE members have a TC feedback 
significantly weaker than the observed feedback. For the 
remaining positive feedbacks, the reanalysis shows the 
strength of the zonal advective feedback as around double 
the strength of the Ekman feedback (Table 1). This is not 
the case for the HadCM3 PPE where zonal advective and 
Ekman feedbacks tend to have similar magnitudes. The 
zonal advective feedback is generally too weak (twenty-
eight PPE members significantly weaker) whereas the 
Ekman feedback shows no consistent significant biases, 
although eleven of sixteen ocean ensemble members are 
significantly stronger than the reanalysis. Thermodynamic 
damping shows the largest bias in the ensemble with nine-
teen ensemble members having thermodynamic damping 
with a magnitude less than half that of the reanalysis value. 
None of the ensemble members approach the observed 
damping rate of −2.58 ± 0.15 year−1. Again, the reasons 
for this are discussed in Sect. 4.1.

The relationship between ENSO amplitude and the BJ 
index in the PPE is somewhat weak, with a correlation 
between the two measures of only 0.41. Previous studies 
found stronger relationships (Jin et al. 2006; Kim and Jin 
2010a, b; Kim et al. 2013). For example, Kim et al. (2013) 
found a positive correlation between ENSO amplitude and 
BJ index of 0.79 in a set of CMIP3 models. However, for 
the CMIP5 models, a few outlier models weakened the rela-
tionship considerably (Kim et al. 2013). The weaker corre-
lation here is largely due to a negative correlation between 
thermodynamic damping and ENSO amplitude (−0.54), 
in contrast to previous studies which typically find weaker 
thermodynamic damping coincides with stronger ENSO 
(Lloyd et  al. 2009). The remaining dominant feedbacks 
have positive correlations with ENSO amplitude; 0.56, 0.62 
and 0.45 for zonal advective, Ekman and thermocline feed-
backs respectively (correlations are 99% significant using 
a student’s t test for zonal advective and Ekman feedback; 
95% significant for the thermocline feedback). This dis-
crepancy with previous studies and possible reasons behind 
this are discussed further in the summary.

Despite many of the dominant feedbacks being weak, in 
agreement with previous studies (Lloyd et  al. 2009; Kim 
and Jin 2010a; Kim et  al. 2013), these biases counteract 
each other to a certain degree resulting in no consistent bias 
for the full BJ index.

4.1 � Positive feedback biases in relation to mean climate

Equatorial sea surface temperatures in these flux-adjusted 
versions of HadCM3 are generally very well represented 
compared to other models (Guilyardi 2006). Mean equa-
torial Pacific temperatures are close to those observed 
(Table 1) and ENSO amplitude (standard deviation of Niño 

3.4 SSTAs) is also relatively close to observations for the 
standard parameter model. Ensemble mean SSTs remain 
close to the reanalysis along the equator (Fig. 1a) with the 
most inter-ensemble variation occurring in atmosphere per-
turbation ensemble members; ensemble standard deviation 
of mean Niño 3 SST is 0.39 °C for atmosphere perturbation 
PPE members compared to 0.23 °C for ocean perturbation 
PPE members. Note that the CMIP5 HadCM3 historical run 
has mean SST of 24.8 ± 0.09 °C and 27.2 ± 0.08 °C in the 
Niño 3 & Niño 4 areas respectively, significantly below the 
HadCM3 PPE means and the reanalysis. However, despite 
the accuracy of mean temperatures in comparison to other 
models, model errors introduce a number of biases in ocean 
currents and surface heat flux. Upwelling ocean currents 
tend to be too strong, with a PPE mean (±1 S.D.) Niño 3′ 
upwelling of 1.29 × 10−5 ± 0.06 × 10−5 ms−1 compared to 
observed upwelling of 1.00 × 10−5 ± 0.03 × 10−5 ms−1. 
The largest mean climate bias is in zonal surface ocean cur-
rents, which are strong along the equator (Fig. 1b), particu-
larly in the averaged Niño 4′ area with a PPE mean speed 
of −0.61 ±  0.07  ms−1 compared with an observed zonal 
ocean current speed of −0.35 ±  0.02 ms−1 (see Fig. 3a). 
The west Pacific also shows the most inter-ensemble varia-
tion, as shown by the ensemble standard deviation shading 
in Fig. 1b. Unlike upwelling ocean current, mean Niño 4′ 
zonal ocean currents vary depending on perturbation type 
with atmosphere perturbation ensemble members favouring 
stronger mean zonal advection (atmosphere PPE mean of 
−0.66 ±  0.05 ms−1 compared to the ocean PPE mean of 
−0.56 ± 0.05 ms−1; significantly different at 99% level by 
t test). It is this bias and diversity that has the largest link to 
positive ENSO feedback strength.

A positive correlation of 0.7 (Fig. 3a) exists between the 
zonal advective feedback and mean zonal surface ocean 
current (ū) averaged over the Niño 4′ area. This relation-
ship suggests that the strong zonal ocean current bias in the 
PPE may be a cause of the weak zonal advective feedback. 
The relationship is mainly shown by the ocean perturbation 
PPE members, highlighting the importance of ocean model 
parameters to this feedback. Referring to the original feed-
back calculation (Eq. 6) the zonal advective feedback can 
be decomposed into three components; the response of 
equatorial Pacific surface zonal wind stress to east Pacific 
SSTAs (μa), the response of east Pacific zonal surface 
ocean current to equatorial Pacific wind stress anoma-

lies (βu) and the mean zonal SST gradient 
(〈

−∂T̄
∂x

〉

E

)

. 

By examining these components, it is found that βu is the 
underlying cause of the weak total feedback represented by 
the PPE mean as 3.52 × 108 ± 0.67 × 108 mPa−1 year−1 
compared with 6.00 × 108 ± 0.5 × 108 mPa−1 year−1 in the 
reanalysis. This is also the component most strongly related 
to the total feedback with a correlation of 0.74, compared 
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to 0.68 with the mean zonal SST gradient and −0.041 for 
the sensitivity of wind stress to SSTAs. This component 
has a correlation of 0.58 with zonal ocean surface currents 
(Fig.  3b), suggesting that stronger mean ocean currents 
show less response to surface wind anomalies resulting in 
a weakened zonal advective feedback. Conversely, PPE 
members with weaker mean ocean currents show βu closer 
to the observed value. This leads to the conclusion that the 
strong mean zonal currents shown by the PPE may cause 
the weak zonal advective feedback via a reduced ocean cur-
rent—wind stress feedback.

Similarly, the thermocline feedback can also be linked 
to the mean equatorial Pacific climate. Figure 3c shows the 
positive relationship between the thermocline feedback and 
mean Niño 4′ zonal surface ocean current. By decomposing 
the thermocline feedback (Eq. 8) into the sensitivity of the 
equatorial Pacific thermocline slope to surface wind stress 
anomalies (βh), the sensitivity of equatorial Pacific wind 

stress to east Pacific SSTAs (μa) and the mean upwelling 

current 
(〈

w̄
H1

〉

E

)

, the cause of the weak feedback can be 

found in the sensitivity of the thermocline slope to surface 
wind stress anomalies, βh, which is significantly weaker in 
the PPE than the reanalysis. A possible reason for this can 
be seen in the positive relationship shown between Niño 4′ 
zonal surface ocean current and βh (Fig. 3d), which shows 
the PPE members with stronger zonal ocean currents have 
a thermocline less sensitive to surface wind stress anoma-
lies (correlation of 0.63).

Inter-ensemble variations in the remaining positive 
feedback, the Ekman feedback (Eq.  7) is similarly found 
to be linked to the zonal surface ocean current (correla-
tion of 0.61, Fig.  3e). This can be found to be caused by 
the dominating component, the upwelling ocean current 
response to zonal wind stress anomalies (βw). PPE mem-
bers with weaker zonal ocean currents demonstrate a 
stronger sensitivity of east Pacific upwelling to surface 

Fig. 3   HadCM3 PPE (1986–2015) a zonal advective (ZA, y axis) 
feedback, b the surface zonal ocean current response to surface zonal 
wind stress anomalies, βu, c Thermocline feedback (TC), d the ther-
mocline slope response to surface zonal wind stress anomalies, βh, e 
Ekman feedback (EK), and f the upwelling ocean current response 
to surface zonal wind stress anomalies, βw plotted against averaged 
Niño 4′ zonal surface ocean current (ū). PPE members given by dots 
colored by perturbation type with solid fit lines for 99% significant 

fit (by t test) and dashed fit lines for 95% significant fits also colored 
by perturbation type (black for full ensemble, red for atmosphere per-
turbations only, blue for ocean perturbations only). Reanalysis result 
shown by a cross. Correlations are printed on the figures with black 
text for the full thirty-three PPE members, red for the sixteen atmos-
phere perturbation members and blue for the sixteen ocean perturba-
tion members
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wind stress anomalies and stronger ocean currents coin-
cide with upwelling currents less sensitive to surface wind 
stress anomalies (correlation of 0.73, Fig. 3f). Weaker cor-
relations (−0.48) are also found between the Ekman feed-
back and mean Niño 3 thermocline depth via variations in 
the less dominant component of mean vertical ocean tem-
perature gradient. A correlation of −0.78 is found between 
this component and mean thermocline depth (not shown in 
figures).

The HadCM3 ensemble shows biases in the positive 
ENSO feedbacks, namely weak zonal advective and ther-
mocline feedbacks. Results suggest that the strong mean 
zonal ocean current speeds in the PPE, particularly in 
ensemble members featuring perturbations to the atmos-
phere component, suppress ocean sensitivity to surface 
wind anomalies resulting in a weak thermocline slope 

response and a weak surface ocean current response and 
subsequently reduced zonal advective and thermocline 
feedbacks.

4.2 � Thermodynamic damping biases in relation 
to mean climate

Inter-ensemble variations of thermodynamic damping are 
linked to precipitation in the west Pacific (Fig.  4a), the 
region which demonstrates the most inter-ensemble varia-
tion (Fig. 1f), such that wetter conditions encourage a larger 
thermodynamic damping response to positive SSTAs (a 
greater heat flux away from the surface per unit SST). The 
HadCM3 PPE typically has less precipitation than the rea-
nalysis in Niño 4 (though the difference is only significant 
for eleven PPE members; ten of which have atmosphere 

Fig. 4   The HadCM3 PPE (1986–2015) strength of a thermodynamic 
damping (α), b shortwave damping (αSW) plotted against mean Niño 
4 precipitation (P̄, x axis), c latent heat flux damping (αLH), and d the 
strength of shortwave damping (αSW) plotted against mean Niño 3 
SST (T̄). PPE members given by dots colored by perturbation type 
with solid fit lines for 99% significant fit (by t test) and dashed fit 

lines for 95% significant fits also colored by perturbation type (black 
for full ensemble, red for atmosphere perturbations only, blue for 
ocean perturbations only). Reanalysis result shown by a cross. Cor-
relations are printed on the figures with black text for the full thirty-
three PPE members, red for the sixteen atmosphere perturbation 
members and blue for the sixteen ocean perturbation members
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perturbations), which may be linked to the weak bias in 
thermodynamic damping as suggested by the correlation 
of 0.72 between the two. By decomposing thermodynamic 
damping into individual heat flux damping rates (Eq. 5), it 
is found that the bias is largely caused by weak shortwave 
(−αSW) and latent heat flux (−αLH) damping terms, the 
dominant components of thermodynamic damping.

Shortwave damping represents the damping due to 
decreased incoming shortwave radiation in response to 
warming SSTs during El Niño. This feedback has two 
regimes in the Tropical Pacific depending on the large-scale 
circulation. In regions of subsidence, a warm SST anomaly 
acts to reduce static stability, which breaks up marine strati-
form clouds in the area, leading to an increase of solar radi-
ation reaching the surface. This is a positive feedback that 
typically occurs at higher latitudes (Klein and Hartmann 
1993). However, in warmer tropical areas of ascent, such 
as over the warm pool in the west equatorial Pacific, a posi-
tive SST anomaly increases convective cloud cover causing 
less shortwave radiation to reach the surface and creating a 
damping feedback (Ramanathan and Collins 1991).

The shortwave radiation damping in the ensemble, 
which shows the largest bias, is found to be linked to mean 
SST and precipitation (Fig. 4c, d). There is a positive corre-
lation (0.64) between αSW and the mean SST (Fig. 4d) and 
a weaker positive correlation (0.45) between αSW and mean 
Niño 4 precipitation. So, warmer mean temperatures and 
more west Pacific precipitation are linked to a stronger east 
Pacific shortwave radiation response to positive SST anom-
alies. It is possible this is the result of a convection bias 
where cooler mean temperatures and less precipitation are 
indicative of convection occurring less often in response 
to El Niño SSTAs, with less cloud formation in the east 
Pacific during El Niños. This results in smaller negative 
shortwave radiation anomalies and a slight positive short-
wave damping regime in the far-east equatorial Pacific 
(which is not present in the observations). This causes the 
area-averaged east Pacific shortwave damping to be weakly 
negative compared with the reanalysis, as shown in Fig. 4c 
by the weak shortwave damping strength (αSW). The rela-
tionship with mean SST is particularly strong for atmos-
phere perturbation PPE members (correlation of 0.69), sug-
gesting that atmosphere parameters have the most impact 
on inter-ensemble variation of shortwave damping.

Latent heat flux damping represents the cooling due to 
increased evaporation during warmer El Niño tempera-
tures and is reliant on the specific humidity difference near 
the sea surface and on wind speed anomalies. Like short-
wave damping, latent heat flux damping is found to have a 
strong relationship with precipitation in the west equatorial 
Pacific. PPE members that show wetter conditions exhibit 
latent heat flux damping closer to observed (Fig.  4b). 
Again, this could signify a link to the representation of 

convection in the PPE. Similar to shortwave damping, the 
relationship between latent heat flux damping and precipi-
tation is particularly strong for atmosphere PPE members 
(correlation of 0.89).

The near surface humidity difference response to SSTAs 
in the east equatorial Pacific is suggested to be the domi-
nating contribution to latent heat flux anomalies in the east 
Pacific (Zhang and McPhaden 1995; Lloyd et  al. 2010; 
Lin 2007). However, in this PPE the near surface humidity 
response to SSTAs show no consistent biases in compari-
son to the observations (not shown) suggesting that a wind 
speed bias in the PPE, linked to precipitation biases, is a 
more likely cause of the weak latent heat flux damping.

Links with Niño 4 mean surface wind stress are some-
what weaker that those shown with precipitation with a 
correlation of 0.47 (95% significance) with latent heat 
flux damping. However, the Bjerknes feedback (μa—wind 
stress anomalies regressed against Niño 3 SSTA) is also 
examined in relation to the latent heat flux feedback in 
Fig. 5. The Bjerknes feedback over the tropical Pacific for 
the reanalysis (Fig. 5a) shows a positive feedback concen-
trated mainly in the Niño 4 region, demonstrating decreas-
ing winds there as the Walker circulation slows during El 
Niño in response to positive Niño 3 SSTAs. The HadCM3 
PPE mean (Fig.  5b, c) shows a south-eastward extension 
of the area of the Bjerknes feedback in comparison to the 
reanalysis, as shown by the difference between the PPE 
mean and the reanalysis in Fig. 5c. This bias shows higher 
levels of ensemble agreement; above 70% PPE members 
are within PPE mean ± 1 S.D. demonstrated by stippling. 
Figure  5d correlates the Bjerknes feedback calculated at 
each gridpoint against the area-averaged east Pacific latent 
heat flux damping and finds that the spatial biases in μa 
have an impact on the strength of the east Pacific latent 
heat flux damping. PPE members with a weaker central 
Pacific Bjerknes feedback (and a stronger positive east and 
west Pacific feedback) tend to have a weak east Pacific 
latent heat flux feedback, indicated by a negative correla-
tion in the central equatorial Pacific and positive correla-
tions further to the east and west. Therefore, winds that 
weaken too much in the east Pacific during El Niño (dem-
onstrated by a strong positive feedback), as they do in this 
PPE, reduce the evaporation in the East Pacific causing a 
weak latent heat flux anomaly resulting in weak latent heat 
flux damping.

The largest feedback bias and source of BJ index uncer-
tainty in the HadCM3 PPE is thermodynamic damping 
(Fig.  2b). By examining inter-ensemble relationships it 
appears that the representation of precipitation is a driver of 
thermodynamic variability, suggesting links to atmospheric 
convection. Both evaporation and radiative feedbacks are 
weak in the PPE and both can be linked to mean precipi-
tation strength and spatial pattern that may impact cloud 
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cover in response to SSTAs and wind speed responses 
which, in turn, affect cooling via reduced radiation and 
evaporation during El Niño.

5 � Projected ENSO response

Projected sea surface temperatures in the Niño 3 region 
for the HadCM3 PPE are shown in Fig. 6a (time series are 
found using overlapped 30-year average segments, with 
start years staggered every 10  years). Mean sea surface 
temperatures for the equatorial Pacific steadily increase 
through the twentieth century and then accelerate around 
the year 2000 in this A1B scenario. There is little variation 
in the response between ensemble members (despite the 
different climate sensitivities of the atmosphere-perturba-
tion experiments—Collins et al. 2011, Fig. 5) and the tem-
perature increase tends to be slightly larger in the far east 
Pacific than in the west (Table 1).

Time series of ENSO amplitude (standard deviation of 
detrended Niño 3.4 SSTAs in each overlapping 30-year 
segment, Fig.  6b) show that ENSO amplitude ensem-
ble means for both atmosphere and ocean PPE members 
steadily increase through the historical period and into the 
twenty-first century (see also Table 1) suggesting stronger 
El Niño or La Niña events under climate change. This 
increase in amplitude is shown to be significant (larger than 
natural variability, defined as the S.D. of the 1895–1985 
time period) for twenty-five PPE members, so is a fairly 

consistent result across the ensemble. The spread seen 
in Fig.  6b is largely due to the different baseline ENSO 
amplitudes.

Despite this increase in ENSO amplitude, the BJ index 
ensemble means show a slight decrease (significant for 
atmosphere ensemble mean, Fig.  6c), therefore a more 
stable ENSO. By examining the individual ENSO feed-
backs the reasons for this response can be found. The 
positive ENSO feedbacks for the PPE show some steady, 
though comparatively small, changes in strength over time 
(Fig. 7a–c; Table 1). Inter-ensemble correlations show that 
positive feedbacks tend to be positively related to ENSO 
amplitude, however the projected response of the dominant 
thermocline feedback shows a slight weakening (Fig. 7a). 
A weakening response of surface zonal wind stress to 
SSTAs (μa) in the east Pacific contributes to the weak-
ened thermocline feedback with eighteen of thirty-three 
PPE members showing significant negative trends over 
time (Fig.  8c). However the other dominant component, 
the thermocline slope response to surface zonal wind stress 
(βh, Fig. 8a), demonstrates significant increases in strength 
for the majority of atmosphere PPE members (greater than 
natural variability for fourteen of sixteen atm. PPE mem-
bers) weakening the response of the thermocline feedback 
for these ensemble members. Those ensemble members 
which do not show a significant response over time in βh 
are dominated by the decreasing wind stress sensitivity, μa, 
resulting in the reducing thermocline feedback. This is in 
contrast to a studies by Kim et al. (2014) and Borlace and 

Fig. 5   a Zonal surface wind stress anomalies regressed against East 
Pacific SSTAs (μ) for ERA40/SODA 2.0.2, b the HadCM3 ensemble 
mean (1986–2015), c the difference between the reanalysis and the 
PPE mean (b–a) and d the inter-ensemble correlation of area-aver-
aged east Pacific latent heat flux against μ calculated at each grid-

point. Stippling shows where the linear fit is at least 99% significant 
(a), where over 70% ensemble members are within the ensemble 
mean ± 1 S.D. (b, c) and where correlation is at least 95% significant 
(d). Niño 3 (east) and Niño 4 (west) areas are outlined with a solid 
black line. The Niño 3.4 region is shown by a dashed line
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Cai (2013) who find a thermocline feedback dominated by 
βh. 

Conversely, the zonal advective feedback shows an 
increase under climate change (Fig.  7b; Table  1). This is 
a result of the increasing response of surface zonal ocean 
currents to surface wind stress anomalies (βu, Fig.  8b) 
which shows significant positive trends for thirty-one PPE 
members with PPE means increasing from 3.24 ×  108 to 
4.68 × 108 mPa−1 year−1 (for atmosphere PPE members) 
and from 3.81 × 108 to 5.03 × 108 mPa−1 year−1(for ocean 
PPE members).

The final positive feedback, the Ekman feedback, 
also shows increases over time (Fig.  7c, Table  1). This 
response is largely a result of an increasing response of 
upwelling ocean currents to surface wind stress over time 
(Fig. 8d) with ensemble mean increases of 1.16 × 103 and 
0.29 ×  103 mPa−1  year−1 for atmosphere and ocean PPE 
members respectively. Because of these positive feedback 
responses, feedbacks relating to ocean current anomalies 
(zonal advective and Ekman) become a larger contribution 
to positive ENSO feedbacks balancing out the weakened 
thermocline influence.

The responses of μa, βh and βw are linked to the chang-
ing background climate, as they are on an inter-ensemble 
basis. Here it is found that μa, βh and βw show relationships 
with the change in mean Niño 4 zonal surface wind stress 
(correlations of −0.45, 0.43 and 0.64 respectively). This 
suggests that weakening zonal winds are linked to a weak-
ening equatorial Pacific wind stress feedback and increased 
thermocline and upwelling sensitivity to surface wind 
stress. The decreased wind stress feedback can be explained 
by the shifts in atmospheric circulation in response to a 
warmer climate. Initially the wind stress feedback spans the 
basin as the ascending branch of the Walker circulation is 
located far west. As temperatures warm, ascent shifts east-
ward and leads to the wind stress response to SST anoma-
lies to be located closer to the central Pacific and span less 
of the equatorial Pacific, resulting in a basin-wide decrease 
in wind stress sensitivity. The response of this feedback is 
found to vary in MMEs (Kim and Jin 2010a). Philip and 
van Oldenborgh (2006) suggest that while warmer mean 
SST can increase wind sensitivity to SSTAs, the more sta-
ble atmosphere can counteract this which may explain the 
variation in its projected response.

Fig. 6   HadCM3 PPE from 1896 to 2095 for a Niño 3 area-averaged 
SST, b ENSO amplitude (Niño 3.4 area-averaged S.D. of SSTAs) and 
c Bjerknes stability index. Single ensemble members are plotted by 
thin lines, the ensemble mean is plotted by thick line colored depend-
ing on ensemble member perturbation type. Reanalysis values ± 95% 
linear fit confidence intervals (for BJ index calculations) and moving 
block bootstrap error (for ENSO amplitude and mean SST) are shown 

by the black horizontal dashed lines and grey shading. PPE member/
mean lines are dashed if a change from 1986–2016 to 2065–2095 is 
no larger than natural variability (defined as the S.D. of 1896–1985). 
Time series are found using 30–year average segments, with start 
years staggered every 10 years. The result is plotted at the midpoint 
of each time segment (e.g. 1910, 1920…)
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Similarly, responses of βu and βh are mixed in MMEs 
(Kim and Jin 2010a), though Kim et al. (2014) find consen-
sus on an increase then decrease of βh in warming condi-
tions in a subset of models. PPE members showing signifi-
cant increases in βh here are those which have the strongest 
mean surface wind stress and zonal ocean currents in the 
present day time period (those which have atmosphere per-
turbations). Weakened mean westward wind stress causes a 
flatter mean thermocline as it deepens in the east and shoals 
in the west. Both of these changes have been found to cause 
an increased sensitivity of the thermocline slope to wind 
stress anomalies (Kim et  al. 2014; Philip and van Olden-
borgh 2006). Kim et al. (2014) also find that projected βh 
response is closely tied to changes in mean thermocline 
slope which in turn is linked to changes in zonal winds due 
to SST warming gradients. The diversity of the responses 
shown by different ensemble members here suggests that 
the initial mean state of the climate has an impact on the 
projected thermocline feedback in a warming climate.

While the response of the zonal advective feedback 
can be attributed to an increasing sensitivity of ocean cur-
rents to surface wind stress, the cause of this response is 
unknown as no significant relationships between the βu 
response and changing mean climate were found. Kim 
et al. (2013) suggest that the strength of βu can be linked to 

mean zonal surface winds and upper ocean temperature in 
the equatorial Pacific in coupled models and suggest upper 
ocean stratification may have an impact on zonal ocean 
current sensitivity to wind stress. Significant relationship 
is shown between the sensitivity of ocean currents to wind 
stress and mean zonal ocean current on an inter-ensemble 
basis in this study (Fig.  3c). It is possible the slowing of 
the Walker circulation and the accompanying eastward shift 
of ENSO-related variability causes a larger response of the 
weakened east Pacific surface ocean current to wind stress 
anomalies, resulting in a more effective zonal advective 
feedback.

The largest response of the BJ index components is the 
response of thermodynamic damping (Fig.  7d; Table  1). 
This increases in strength for all HadCM3 PPE mem-
bers (significant for thirty PPE members), leading to an 
increase in ENSO stabilisation. This response is con-
sistent with other studies which find increased damping 
in warmer conditions (Philip and van Oldenborgh 2006; 
Kim and Jin 2010a; Kim et  al. 2014). Out of the two 
dominant components of the thermodynamic damping, 
this response is found to be mainly caused by an increase 
in the strength of shortwave damping, with significant 
increases for twenty-nine PPE members (Fig.  7e). As 
shown in Fig. 4c, this term is sensitive to the mean Niño 

Fig. 7   HadCM3 PPE from 1896 to 2095 for a thermocline feedback, 
b zonal advective feedback, c Ekman feedback, d thermodynamic 
damping and e shortwave damping. Single ensemble members are 
plotted by thin lines, the ensemble mean is plotted by a thick line 
colored depending on ensemble member perturbation type. Rea-
nalysis values  ±  95% linear fit confidence intervals are shown by 

the black horizontal dashed lines and grey shading. PPE member/
mean lines are dashed if a change from 1986–2016 to 2065–2095 is 
no larger than natural variability (defined as the S.D. of 1896–1985). 
Time series are found using 30-year average segments, with start 
years staggered every 10 years. The result is plotted at the midpoint 
of each time segment (e.g. 1910, 1920…)
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4 precipitation, suggesting a link to convection and the 
hydrological cycle. The same is also seen under climate 
change (Fig.  9). The climate change response of short-
wave damping and equatorial Pacific precipitation are 
measured by taking the difference between 1986–2015 
and 2065–2095 values. Changes in mean Niño 4 precipi-
tation are correlated with changes in shortwave damping 
strength, showing a correlation of 0.53 significant at the 
99% level. This suggests that ensemble members that 
show a large Niño 4 precipitation response show a greater 
increase in the strength of shortwave damping. Watanabe 
et  al. (2012) also note the relationship of ENSO charac-
teristics, namely ENSO amplitude, with mean precipita-
tion in a number of PPEs and suggest this is caused by 
the amplification of coupled feedbacks in response to wet-
ter conditions, however the relationship does not hold for 
MMEs. The correlations presented here are suggestive 
of a relationship between mean precipitation and ENSO 
amplitude that is mediated through shortwave damping 
of SST anomalies. However, it is uncertain if this rela-
tionship can be extended to explain differences in multi-
model ensemble ENSO projections.

6 � ENSO amplitude in relation to atmospheric 
noise

The discrepancy between BJ index and ENSO amplitude 
both on an inter-ensemble basis and a projected response 
raises the question of the impact of atmospheric noise on 
ENSO amplitude, which is not accounted for in BJ index. 
The atmospheric noise is defined as the residual of zonal 
surface wind stress as a function of SST along the equator 
(Philip and van Oldenborgh 2009, 2010; Philip et al. 2010). 
Here we use the standard deviation of the atmospheric 
noise averaged over the central Pacific as a measure of this 
stochastic forcing (see Methods). There is a strong positive 
relationship between ENSO amplitude and atmospheric 
noise strength, both in inter-ensemble variations where a 
correlation of 0.82 is found, and in the projected responses 
over time, with a correlation of 0.79 (Fig. 10). Atmosphere 
perturbation PPE members show a larger range in the mag-
nitude of atmospheric noise (S.D. of 7.9 × 10−4 Pa com-
pared to 5.2 × 10−4 Pa for ocean perturbations), in agree-
ment with Philip et al. (2010), and show a larger correlation 
with ENSO amplitude (correlation of 0.85, Fig. 10a).

Fig. 8   HadCM3 PPE from 1896 to 2095 a thermocline slope 
response to zonal surface wind stress anomalies (βh), b zonal sur-
face ocean current response to wind stress anomalies (βu), c zonal 
surface wind stress response to SST anomalies (μa), and d upwelling 
ocean current response to wind stress anomalies (βw). Single ensem-
ble members are plotted by thin lines, the ensemble means are plot-
ted by a thick line colored depending on ensemble member pertur-

bation type. Reanalysis values ± 95% linear fit confidence intervals 
are shown by the black horizontal dashed lines and grey shading. 
PPE member/mean lines are dashed if a change from 1986–2016 to 
2065–2095 is no larger than natural variability (defined as the S.D. of 
1896–1985). Time series are found using 30-year average segments, 
with start years staggered every 10 years. The result is plotted at the 
midpoint of each time segment (e.g. 1910, 1920…)
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In the projected response PPE members showing a 
larger increase in atmospheric noise, typically ocean per-
turbation PPE members, coincide with those showing a 
larger increase in ENSO amplitude (Fig. 10b). Note that the 
ensemble mean projected difference in atmospheric noise 
amplitude is not significantly different from zero for the 
atmosphere PPE members (0.08 ±  0.67 ×  10−3  Pa). The 
strong relationships found here suggest that in the PPE 
atmospheric noise plays an important role in ENSO ampli-
tude variation, though it is unclear from this if atmospheric 
noise drives the variation in ENSO amplitude or if there is 
simply more atmospheric wind variability in models with 
higher-amplitude ENSO. However it is possible that this 
relationship may explain some of the discrepancy between 
BJ index and ENSO amplitude.

7 � Summary and discussion

We use a HadCM3 perturbed physics ensemble (PPE) to 
assess ENSO feedbacks as calculated by the BJ Index in 
historical and a future climate scenario over 1895–2095 
and relate biases and responses of feedbacks to the model 
mean state. The use of the PPE, which features the same 
model framework throughout (as opposed to a multi-model 

ensemble), allows for a more simple comparison of the 
model climate and ENSO feedbacks to establish links 
between them.

Dominant components of the BJ index, namely ther-
modynamic damping, zonal advective and thermocline 
feedbacks, are weak. In comparison to previous studies, 
the biases in the positive feedbacks in the PPE are slightly 
smaller than those found in MMEs. A possible reason for 
this is the use of flux adjustment in the ensemble which 

Fig. 9   The HadCM3 PPE projected response (2065–2095 minus 
1986–2015) of the strength of shortwave damping (ΔαSW, y axis) 
against the projected response of mean Niño 4 precipitation (ΔP, x 
axis). Each PPE member is given by a dot coloured by its perturba-
tion type, red for atmospheric perturbation, blue for ocean perturba-
tion and black for standard parameters. Correlations are printed on 
the figure with black text for the full thirty-three PPE members, red 
for the sixteen atmosphere perturbation members and blue for the six-
teen ocean perturbation members. Linear fits which are 99% signifi-
cant (by a student’s t test) are shown by solid lines. 95% significance 
shown by dashed lines

Fig. 10   ENSO amplitude against Niño 3.4 atmospheric noise (ε) for 
a the time period 1986–2015 and b the difference between 2065–
2095 and 1986–2015. Each PPE member is given by a dot coloured 
by its perturbation type, red for atmospheric perturbation, blue for 
ocean perturbation and black for standard parameters. Correlations 
are printed on the figure with black text for the full thirty-three PPE 
members, red for the sixteen atmosphere perturbation members and 
blue for the sixteen ocean perturbation members. Linear fits which 
are 99% significant (by a student’s t test) are shown by solid lines. 
95% significance shown by dashed lines
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minimises equatorial Pacific SST biases when compared 
with those shown in CGCMs used in MMEs. Significant 
difference is found between the thermodynamic damping in 
the standard parameter member of this PPE and a non flux 
adjusted version of HadCM3 which supports this. Improve-
ment in SSTA strength and spatial distribution undoubt-
edly have an impact on the ocean response during El Niño 
event development. Despite this improvement in mean SST, 
model biases still persist resulting in the feedback biases 
and diversity found here.

Feedback biases in the ensemble are caused by weak 
shortwave and latent heat flux damping in the case of nega-
tive thermodynamic damping. Damping tends to be weaker 
for atmosphere perturbation PPE members and also shows 
larger variation when atmosphere parameters are perturbed, 
particularly for shortwave damping. For the positive zonal 
advective and thermocline feedbacks, the main causes of 
ensemble bias are weak responses of ocean currents and 
the thermocline slope to wind stress anomalies in keeping 
with previous studies (Kim et al. 2013). Positive feedbacks 
also tend to be weaker for atmosphere perturbations. This 
is caused by weaker mean state contributions to the feed-
backs (reduced zonal temperature gradient and reduced 
east Pacific upwelling) and reduced ocean sensitivity. Many 
of these feedback biases can be related to biases in the 
mean state equatorial Pacific which then impacts variabil-
ity. Most importantly, the mean zonal ocean current varia-
tion and bias in this ensemble is linked to all three positive 
feedbacks, an addition to the mean climate links to ENSO 
feedbacks suggested by Kim et  al. (2013). PPE members 
with strong mean zonal advection have an ocean that is less 
sensitive to El Niño induced wind stress anomalies than in 
observations, resulting in reduced zonal advective and ther-
mocline feedbacks. Weak shortwave damping and latent 
heat flux damping, also found by Lloyd et  al. (2010) to 
be the biggest cause of thermodynamic damping biases in 
AMIP models, are found to be linked to reduced precipita-
tion. It is possible this may signify convection biases caus-
ing less cloud cover formation during El Niño (reducing 
shortwave damping) and may alter the wind speed response 
(reducing latent heat flux damping).

Understanding the impact of mean state biases on domi-
nant feedbacks also helps in understanding the response of 
the ensemble in the climate change scenario. The HadCM3 
ensemble projects a decrease in the BJ index in response 
to global warming, in contrast to the increasing ENSO 
amplitude. ENSO related variability increases in the cen-
tral Pacific, heat flux anomalies in particular become a 
lot stronger. The decrease in the BJ index results primar-
ily from a large increase in the strength of thermody-
namic damping, which almost doubles in strength for most 
ensemble members, and a reduction in the dominating 
positive feedback, the thermocline feedback. The increased 

damping is attributed to an increase in shortwave damping 
in response to warmer SSTs in the central Pacific. Rela-
tionships with precipitation (e.g. more central Pacific pre-
cipitation coincides with an increase in shortwave damping 
strength) are found here which again may suggest a link to 
the response of tropical Pacific convection; Chadwick et al. 
(2013, 2014) suggest that changes in precipitation spa-
tial pattern are dominated by shifting convergence zones. 
The previously dominant thermocline feedback shows a 
decrease in strength and the zonal advective and Ekman 
feedbacks shows a slight increase in strength. This results 
in the positive feedbacks being almost equal in strength by 
the end of the analysed emissions scenario (2066–2095). 
The response of the thermocline feedback is in contrast 
with other studies which find that ENSO amplitude varia-
tion is controlled by the thermocline feedback (Kim et al. 
2014; Borlace and Cai 2013), which in turn is governed 
by the thermocline response to equatorial zonal surface 
wind stress (βh). For the thermocline feedback here the ini-
tial mean state (as governed by perturbation type) has an 
impact on the climate change response such that ensem-
ble members featuring atmosphere perturbation (initially 
the ensemble members with least ocean sensitivity) show 
significant increases in the sensitivity of the thermocline 
to surface wind stress anomalies under climate change 
but ensemble members with ocean perturbations tend not 
to. This results in less weakening of the thermocline feed-
back for the atmosphere perturbation ensemble members as 
the increase in thermocline response to zonal surface wind 
stress (βh) tends to balance out the decreasing wind stress 
response to SSTA (μa) for these ensemble members. This 
demonstrates an importance of the mean state of the cli-
mate to ENSO feedback projection.

In contrast to previous studies which find a positive rela-
tionship between ENSO amplitude and the BJ index (Kim 
and Jin 2010a, b; Borlace and Cai 2013), a key finding here 
is that both inter-ensemble differences and climate change 
response show a weakly or negatively correlated BJ index 
and ENSO amplitude—both for present-day conditions 
and for future changes. [Note that for CMIP5 models this 
relationship also breaks down as outlier models weaken the 
relationship between BJ index and ENSO amplitude (Kim 
et al. 2013)]. There are a number of reasons why this may 
be the case.

The first of these relates to the assumption that the 
amplitude of components of the BJ index can be directly 
related and therefore can be added together to provide a 
measure of ENSO stability. The terms of the BJ index are 
approximations of the true feedbacks and rely on a num-
ber of assumptions of linearity. If these approximations 
are not directly comparable in magnitude, as assumed, 
then the sum of these feedbacks, the BJ index, cannot be 
reliably used as an approximation of ENSO amplitude, as 
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feedbacks may dominate responses when they should not 
or be masked by other feedback. This may be the case here 
where the negative thermodynamic damping dominates 
over the positive feedbacks, which alone approximate inter-
ensemble variations of ENSO amplitude relatively well 
(correlation of 0.63 between the sum of the three positive 
feedbacks and ENSO amplitude).

Secondly, the derivation of the BJ Index relies heavily 
on assumptions of linearity and neglects processes that 
lie outside of the framework from which the BJ index is 
derived. For example, we find here significant relation-
ships between ENSO amplitude and atmospheric noise 
which will not be accounted for in the BJ index calculation 
and should be considered in future work. It is known that 
a number of these linearity assumptions are not complete, 
such as the linearity of the wind stress response (Kang and 
Kug 2002; Philip and van Oldenborgh 2009; Choi et  al. 
2013) or the approximation of thermodynamic damping 
(Lloyd et al. 2010, 2012; Bellenger et al. 2013) which may 
cause inaccuracies in the BJ index (Graham et  al. 2014). 
It is also important to note that at the height of an El Niño 
event when SSTAs peak is the point at which non-linear-
ities are more likely to occur and the assumptions of lin-
earity break down. The strength of this peak is essentially 
what is measured by ENSO amplitude, whereas the BJ 
index aims to quantify the growth rate of the El Niño event 
in the lead up to this peak, when the linearity assumptions 
are more feasible, meaning that the two measures may not 
be as strongly linked as suggested in previous studies.

Bearing these caveats in mind and considering the 
results found here, the use of the BJ index as a measure 
of ENSO amplitude, either on an inter-ensemble basis or 
as a tool for assessing projected ENSO response, remains 
questionable. Despite this, the BJ index still allows for 
assessment of linear dynamics of ENSO and proves use-
ful when attempting to relate feedback bias and response 
to the background climate. Future work should focus on 
improvement of the understanding of the feedbacks that the 
BJ index attempts to approximate and ways in which these 
issues (e.g. non-linearities) can be accounted for in ENSO 
analysis e.g. use of the mixed layer heat budget by Graham 
et al. (2014).

Results here suggest that even when SST biases are 
improved (here by the use of flux adjustment) and anal-
ysis is confined to a single model framework (by use of 
a PPE) common CGCM biases (e.g. strong equatorial 
Pacific zonal ocean currents) have an impact on ENSO 
feedbacks causing persistent feedback biases, such as 
weak thermocline and zonal advective feedbacks and 
thermodynamic damping, and are a cause of uncertainty 
in projections. The representation of mean zonal advec-
tion and precipitation are found to be particularly impor-
tant. Links between heat flux feedbacks and precipitation 

are suggestive of links to the hydrological cycle, however 
the questions of whether this behaviour persists in multi-
model ensembles and what the underlying causes of this 
relationship are still remain.
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