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Data assimilation is often performed in a perfect-model scenario, where only errors

in initial conditions and observations are considered. Errors in model equations are

increasingly being included, but typically using rather ad hoc approximations with

limited understanding of how these approximations affect the solution and how these

approximations interfere with approximations inherent in finite-size ensembles.

We provide the first systematic evaluation of the influence of approximations to

model errors within a time window of weak-constraint ensemble smoothers. In

particular, we study the effects of prescribing temporal correlations in the model

errors incorrectly in a Kalman smoother, and in interaction with finite-ensemble-size

effects in an ensemble Kalman smoother.

For the Kalman smoother we find that an incorrect correlation time-scale for addi-

tive model errors can have substantial negative effects on the solutions, and we find

that overestimating of the correlation time-scale leads to worse results than under-

estimating. In the ensemble Kalman smoother case, the resulting ensemble-based

space–time gain can be written as the true gain multiplied by two factors, a linear

factor containing the errors due to both time-correlation errors and finite ensemble

effects, and a nonlinear factor related to the inverse part of the gain. Assuming that

both errors are relatively small, we are able to disentangle the contributions from

the different approximations. The analysis mean is affected by the time-correlation

errors, but also substantially by finite-ensemble effects, which was unexpected. The

analysis covariance is affected by both time-correlation errors and an in-breeding

term. This first thorough analysis of the influence of time-correlation errors and

finite-ensemble-size errors on weak-constraint ensemble smoothers will aid further

development of these methods and help to make them robust for e.g. numerical

weather prediction.
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1 INTRODUCTION

Data assimilation (DA) combines incomplete and imperfect

sources of information of a system to obtain a better esti-

mate of that system, including uncertainties. These sources

– models and observations for example – can be represented

as random variables with given probability density functions

(pdfs). The reader is referred to e.g. van Leeuwen et al. (2015)

and Ash et al. (2017), for recent introductions.

The general solution to the DA problem is given by Bayes’

theorem (Bayes and Price, 1763):

p(x|y) = p(y|x)p(x)
p(y)

(1)

In Equation 1 the background information of the state vari-
ables is contained in the prior pdf p(x). Observations become

available over time and their information – on at least a sub-

set of the state variables – is contained in the likelihood

p(y|x). The posterior pdf p(x|y) – the probability of the state
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variables given the observations – is the result of multiplying

prior and likelihood. The denominator p(y) is the marginal

pdf of the observations and does not depend on the state vari-

ables. Hence, DA can be regarded as a multiplication problem

involving different sources of information.

We seldom work with pdfs in practice because, as soon as

the dimension of the system is larger than (say) 3, we have

difficulty storing and propagating full pdfs. Most DA meth-

ods rely on estimating statistics of the posterior pdf and are

based – to different degrees – on assumptions of Gaussianity

in the error sources. Most methods are optimal when the evo-

lution of the system and the observation process are linear.

Variational methods like 4D-Var (Le Dimet and Talagrand,

1986; Talagrand and Courtier, 1987) work with the mode of

the posterior pdf, whereas methods based on the Kalman filter

(KF; Kalman, 1960; Kalman and Bucy, 1961) and its ensem-

ble implementations (e.g. the EnKF; Evensen, 1994; Burgers

et al., 1998) work with the first two moments.

DA often works with systems that evolve in time. This time

dependence can be handled in two ways. Filters update the

state variables only at the observed times, whereas smoothers

update whole trajectories of the state variables in a given

assimilation window, using simultaneously all the observa-

tions available during that time frame. In this work we focus

on the latter.

Consider that the true evolution of the system is generated

by a true model, and that the forecast step of the DA process is

generated by a forecast model. If these two models perfectly

match, we say we work in a strong-constraint (SC) framework.

This situation reduces the smoothing problem to searching

for the initial conditions of the assimilation window. In geo-

sciences, however, there is always a mismatch between the

true model and the forecast model. This mismatch is called

model error, and it can arise from the discretization of the

underlying partial differential equations describing the sys-

tem, the parametrization of processes that cannot be explicitly

resolved, the lack of knowledge of some physical processes,

and many other sources. The reader is referred to Howles

et al. (2017) for a further discussion. Sometimes model error

is small enough to be ignored compared to other uncertainties,

but this is not always the case.

Model error can be simulated in different forms within the

DA forecast step. It can be inserted as a random additive term

at every given number of model time steps, or as a random

multiplicative factor in the tendencies of the model equations

(Palmer et al., 2009). More indirect ways include using differ-

ent parametrization schemes for different ensemble members,

which means we can sometimes represent model error even

without clearly knowing its statistics. Including any existing

model error is particularly important in ensemble forecasting,

since it is needed to produce a good estimate of the actual

forecast uncertainty.

Even when it is present in the DA forecast step, model

error is often not treated explicitly in the DA analysis step

(e.g. Bonavita et al., 2016). Treating model error in the DA

analysis step is known as weak-constraint (WC) framework;

the reader is referred to Sasaki (1970) and Tremolet (2006) for

an introduction. A WC smoother poses a considerably harder

problem for several reasons. Firstly, model error statistics are

often unknown, and although some methods have arisen to

estimate them (e.g. Todling, 2015; Zhu et al., 2018), this is

a challenging task. Secondly, the size of the control variable

and the computational expense of the problem is larger than in

the SC case. This is because not only the initial conditions but

intermediate jumps need to be estimated as well. To reduce

this burden one can consider “effective” model errors over a

large number of time steps (Tremolet, 2006).

Since specifying the correct model error statistics is not

trivial, it is important to understand the consequences of using

an incorrect time-autocorrelation of the model error in a WC

smoother. This is a question we aim to answer in this paper.

Under linear model evolution and linear observation opera-

tors, the problem we study is equivalent to the inner loops of

an ensemble of WC 4D-Vars with perturbed predicted obser-

vations and additive model errors for each trajectory. Since

the (full) nonlinear problem is often solved as a sequence of

successively linearized problems, our results are also relevant

for the nonlinear case.

For many dynamical systems of interest, the

background-error covariance used in the prior p(x) evolves

with time. One way to find a time-evolving estimator of this

covariance is to use an ensemble, as in the case of ensemble

Kalman filters; Vetra-Carvalho et al. (2017) give a review

on the implementation of several different flavours. Further-

more, the use of hybrid ensemble-variational methods has

grown in the last years, and these are seen by many as a path-

way to the future for e.g. numerical weather prediction. The

reader is referred to Goodliff et al. (2015) and the references

therein for an overview.

As discussed, sample information is important in many DA

methods, but the finite-sized nature of an ensemble method

introduces error. Besides the direct sampling (Monte-Carlo)

error, there is a more subtle indirect sampling error which

comes from the use of sample covariance statistics in the gain

required in the analysis step of the smoothers. These issues

were recognised by Houtekamer and Mitchel (1998) and anal-

ysed by van Leeuwen (1999), and studied in more detail

by Sacher and Bartello (2008) and Furrer and Bengsston

(2007) in the filtering setting. In this paper we identify

and quantify the effects of both direct and indirect sam-

pling errors in the ensemble Kalman smoother. Furthermore,

we study the interactions between these finite-size sample

effects and the errors arising from incorrect specification

of the temporal-correlation, or memory, of the model error.

This is done within a single (forecast/assimilation) time win-

dow. Future work will explore the effect of cycling, and the

extension into nonlinear systems.

The paper is structured as follows. In section 2 we derive

the exact analysis solution for a time window of the ensemble

smoother in the presence of autocorrelated additive Gaussian
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model error. For an exponential autocorrelation memory

function, we illustrate the propagation of information from

observations inside the assimilation window. This exact solu-

tion serves as benchmark for the work in section 3 where we

introduce two sources of imperfection: a mis-specification of

the autocorrelation memory of the model error, as well as the

use of finite-size ensembles. Section 4 illustrates the differ-

ence between direct and indirect sampling errors arising from

an ensemble using numerical examples. Section 5 provides a

summary and conclusions. This work is heavy in equations.

To aid the reader we have underlined the most important

expressions which often have significance throughout the

whole work.

2 KALMAN SMOOTHER WITH
TEMPORAL-CORRELATED MODEL ERROR

Let us consider a system akin to that of Howles et al. (2017),

although our ultimate purpose is different. We denote the

state variable at t = 0 as x0 ∈ Nx . This random variable

x0 follows a multivariate Gaussian distribution (MGD) x0 ∼
N
(
𝝁

0,b
x ,B

)
, where 𝝁

0,b
x ∈ Nx is its mean, B ∈ Nx×Nx

is its covariance matrix, and the superscript b stands for

background. Over one time step the state variable evolves as

xt = M(t−1)→txt−1 + vt. (2)

The linear operator M(t−1)→t ∈ Nx×Nx has the property

Mt1→t3 = Mt2→t3 Mt1→t2 (3)

for 0 ≤ t1 < t2 < t3. The variable vt ∈ Nx is the model

error jump at time step t. This random variable has a MGD

vt ∼ N (0,Q), with mean 0 ∈ Nx and model error covariance

matrix Q ∈ Nx×Nx . The model error jumps can be correlated

in time:

Cov(vi, vj) = 𝜙 (|i − j|, 𝜔)Q, (4)

where 0 ≤ 𝜙 ≤ 1 represents the memory, |i− j| is the absolute

difference between time steps i and j, and 𝜔 is a characteristic

memory time-scale of the system. The function 𝜙 takes the

value 1 when |i−j| = 0, and decreases monotonically towards

0 as |i − j| increases. We keep our work general for any func-

tion 𝜙 that fulfils these two conditions, but for more specific

examples we use an exponentially decaying memory:

𝜙 (|i − j|, 𝜔) = e
− |i−j|

𝜔 . (5)

Observations are taken every Δobs time steps. The lth obser-

vation yl ∈ Ny is obtained as:

yl = Hlxt + 𝜼l, (6)

where Hl ∈ Ny×Nx is the lth linear observation operator, and

𝜼l ∈ Ny is the observational error. This random variable

follows a zero-mean MGD 𝜼l ∼ N (0,R), where R ∈ Ny×Ny

is the observational-error covariance. The random variables

x0, 𝜼 and vt are assumed to be statistically independent of each

other.

FIGURE 1 Schematic illustration of the evolution of a state variable

throughout an assimilation window, showing the initial conditions at t = 0,

deterministic evolution (solid lines), and model error jumps (dashed lines).

The top row shows the case of independent model errors (zero temporal

correlation), while the bottom row shows the case of fixed model errors

(perfect temporal correlation) [Colour figure can be viewed at

wileyonlinelibrary.com]

For brevity in the derivations, we consider the time window

t = {0, 1, · · · , 𝜏 − 1, 𝜏} to contain only one observation at t =
𝜏, i.e. at the end of the time window. This can be generalized

to L observation in two ways. The first is to realise that – in the

case of linear model and observation operators – observations

at different times can be assimilated sequentially. This is akin

to the serial EnKF of Whitaker and Hamill (2002). In the case

of assimilating all observational times at once, the following

derivations are still valid when using the extended expressions

of the Appendix.

The collection of model error jumps can be written as one

long vector v1∶𝜏 ∈ 𝜏Nx :

v1∶𝜏 =
[
(v1)T, (v2)T, · · · , (v𝜏)T

]T
. (7)

This random variable follows a MGD v1∶𝜏 ∼N
(
0,Q1∶𝜏), with

mean 0 ∈ 𝜏Nx and covariance Q1∶𝜏 ∈ 𝜏Nx×𝜏Nx , which is

a block-matrix in which each element contains Q multiplied

by a memory coefficient. It is helpful to write Q1∶𝜏 as the

Kronecker (outer) product:

Q1∶𝜏 = 𝚽1∶𝜏 ⊗ Q, (8)

where 𝚽1∶𝜏 ∈ 𝜏,𝜏 is a Toeplitz matrix of memory coeffi-

cients:

𝚽1∶𝜏 =

⎡⎢⎢⎢⎢⎣
1 𝜙(1, 𝜔) · · · 𝜙(𝜏 − 2, 𝜔) 𝜙(𝜏 − 1, 𝜔)

𝜙(1, 𝜔) 1 · · · 𝜙(𝜏 − 3, 𝜔) 𝜙(𝜏 − 2, 𝜔)
⋮ ⋮ · · · ⋮ ⋮

𝜙(𝜏 − 2, 𝜔) 𝜙(𝜏 − 3, 𝜔) · · · 1 𝜙(1, 𝜔)
𝜙(𝜏 − 1, 𝜔) 𝜙(𝜏 − 2, 𝜔) · · · 𝜙(1, 𝜔) 1

⎤⎥⎥⎥⎥⎦
(9)

It is useful to note two limiting cases:

(i) The zero-memory case occurs when 𝜔 → 0, yielding

𝜙(|i− j|, 𝜔) = 0 ∀ |i− j| > 0. Then 𝚽1∶𝜏 becomes the identity

matrix, and Q1∶𝜏 becomes a block-diagonal with Q in each

diagonal block-element. This corresponds to completely inde-

pendent model error jumps. This is shown schematically in

the top row of Figure 1.

(ii) The infinite-memory case occurs when 𝜔 → ∞, yield-

ing 𝜙(|i − j|, 𝜔) = 1 ∀ |i − j|. Then 𝚽1∶𝜏 becomes a matrix

wileyonlinelibrary.com
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of ones, and Q1∶𝜏 becomes a block-matrix with Q in every

block-element. This corresponds to fixed model error jumps.

This is shown schematically in the bottom row of Figure 1.

2.1 The weak-constraint Kalman smoother

Now we describe the process performed by the WC Kalman

smoother over one time window. Consider the extended con-

trol variable z0∶𝜏 ∈ (1+𝜏)Nx containing initial conditions and

model error jumps:

z0∶𝜏 =
[
(x0)T, (v1∶𝜏)T

]T
(10)

The posterior pdf p(z0∶𝜏 |y) is simply:

p(z0∶𝜏 |y) = p(y|z0∶𝜏)p(z0∶𝜏)
p(y)

, (11)

where the prior p(z0∶𝜏) is a MGD z0∶𝜏 ∼ N
(
𝝁

0∶𝜏,b
z ,D0∶𝜏

)
with mean 𝝁

0∶𝜏,b
z ∈ (1+𝜏)Nx :

𝝁
0∶𝜏,b
z =

[
𝝁

0,b
x

𝝁
1∶𝜏,b
v

]
=
[
𝝁

0,b
x
0

]
(12)

and covariance matrix D0∶𝜏 ∈ (1+𝜏)Nx×(1+𝜏)Nx . This matrix

can be written in blocks as:

D0∶𝜏 =
[

B 0
0 Q1∶𝜏

]
. (13)

For later reference we note that we can formulate the

problem in terms of the state variables x𝜏 too via:

x𝜏 = M0∶𝜏z0∶𝜏 (14)

where M0∶𝜏 ∈ (1+𝜏)Nx×Nx is the block-matrix

M0∶𝜏 =
[
M0→𝜏 ,M1→𝜏 ,M2→𝜏 , · · · ,M(𝜏−1)→𝜏 , I

]
(15)

This equation exploits the linearity of the model, showing

that each model error jump propagates independently of the

rest of the variables to the end of the assimilation window

where the observation is located. It allows us to write the like-

lihood p(y|x0∶𝜏) in terms of z0∶𝜏) as p
(
y|z0∶𝜏). Note that y is

given, so the likelihood as function of HM0∶𝜏z0∶𝜏 is given by

N (y,R). It is useful to compute the first two moments of x𝜏,b

as:

E[x𝜏,b] = M0∶𝜏𝝁0∶𝜏,b
z

Var[x𝜏,b] = M0∶𝜏D0∶𝜏 (M0∶𝜏)T
(16)

Performing the product in Equation 11 and doing some

factorizations allows us to write the posterior as:

p(z0∶𝜏 |y) ∝ exp
[
−1

2
(z0∶𝜏 − 𝝁

0∶𝜏,a
z )T

(
A0∶𝜏

z
)−1 (z0∶𝜏,a − 𝝁

0∶𝜏,a
z )

]
.

(17)

Therefore, the posterior pdf is:

z0∶𝜏 |y ∼ N
(
𝝁

0∶𝜏,a
z ,A0∶𝜏

z

)
, (18)

with 𝝁
0∶𝜏,a
z ∈ (1+𝜏)Nx defined as

𝝁
0∶𝜏,a
z =

(
I − K0∶𝜏

z HM0∶𝜏)𝝁0∶𝜏,b
z + K0∶𝜏

z y (19)

and A0∶𝜏
z ∈ (1+𝜏)Nx×(1+𝜏)Nx defined as

A0∶𝜏
z =

(
I − K0∶𝜏

z HM0∶𝜏)D0∶𝜏 . (20)

K0∶𝜏
z ∈ (1+𝜏)Nx×Ny is the Kalman gain in the

extended-variable space:

K0∶𝜏
z = D0∶𝜏 (M0∶𝜏)T HT

(
𝚪𝜏

)−1
, (21)

where 𝚪𝜏 ∈ Ny×Ny is the total covariance in observation

space at the end of the assimilation window:

𝚪𝜏 = HM0∶𝜏D0∶𝜏 (M0∶𝜏)T HT + R. (22)

Finally, we note that in this Gaussian case 𝝁
0∶𝜏,a
z is also the

minimizer of the cost function of the problem:

 (z0∶𝜏 ) =1

2

(
z0∶𝜏 − z0∶𝜏,b)T (D0∶𝜏)−1 (z0∶𝜏 − z0∶𝜏,b)

+ 1

2

(
y − HM0∶𝜏z0∶𝜏)T R−1

(
y − HM0∶𝜏z0∶𝜏) ,

(23)

which is nothing else but the minus logarithm of the numera-

tor of Equation 11. This solution is standard knowledge (e.g.

Jazwinski, 1970; Howles et al., 2017). What follows, how-

ever, is our contribution. We examine in detail the effect

that temporal correlation of model error has on the analy-

sis values over the whole time window. We will study the

solution in both initial condition-model jump space and in

state-trajectory space.

2.2 Solution in terms of initial conditions and model
error jumps

We now separate the components of the solution into those

related to x0 and those related to v1∶𝜏 . We start by expanding

Equation 22 as:

𝚪𝜏 = HB𝜏HT + H𝚲𝜏HT + R, (24)

with B𝜏 ∈ Nx×Nx and 𝚲𝜏 ∈ Nx×Nx defined as:

B𝜏 = M0→𝜏B
(
M0→𝜏

)T
,

𝚲𝜏 = M1∶𝜏Q1∶𝜏 (M1∶𝜏)T
.

(25)

B𝜏 ∈ Nx×Nx results from the evolution of B, and 𝚲𝜏 ∈
Nx,Nx is the effective contribution of the model error. Explic-

itly, 𝚲𝜏 is a double sum:

𝚲𝜏 =
𝜏∑

i=1

𝜏∑
j=1

Mi→𝜏Q(Mj→𝜏)T𝜙 (|i − j|, 𝜔) . (26)

Using the short-hand notation M̃𝜏 =
∑𝜏

j=1 Mj→𝜏 we can

write the two limits:

lim
𝜔→0

𝚲𝜏 =
𝜏∑

j=1

Mj→𝜏Q(Mj→𝜏)T, lim
𝜔→∞

𝚲𝜏 = M̃𝜏Q
(

M̃𝜏
)T

.

(27)

These limits show that when 𝜔, and hence the memory,

increases, the contribution of model error to the total covari-

ance contains more terms and is expected to be larger. This, of

course, is not surprising as a larger memory means that each

random jump is felt long into the future.
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The gain can be written as K0∶𝜏
z =

[(
K0

x
)T

,
(
K1∶𝜏

v
)T
]T

,

where the first component

K0
x = B

(
M0→𝜏

)T HT
(
𝚪𝜏

)−1
(28)

acts on x0 and the second

K1∶𝜏
v = Q1∶𝜏 (M1∶𝜏)T HT

(
𝚪𝜏

)−1
(29)

on v1∶𝜏 . K1∶𝜏
v is a block-matrix K1∶𝜏

v = [(K1
v)T (K2

v)T · · ·
(K𝜏

v)T]T with the jth block-element Kj
v ∈ Nx×Ny being

Kj
v = Q

(
𝜏∑

i=1

(
Mi→𝜏

)T
𝜙(|i − j|, 𝜔))HT

(
𝚪𝜏

)−1
. (30)

Once more, the two limits of interest are:

lim
𝜔→0

Kj
v = Q

(
Mj→𝜏

)THT
(
𝚪𝜏

)−1
, lim
𝜔→∞

Kj
v =

(
M̃𝜏

)T

HT
(
𝚪𝜏

)−1
.

(31)

In the zero-memory case, only one term in the sum

(30) remains and it is different at every time step. In the

infinite-memory case, all terms in Equation 30 have the same

coefficient𝜙 = 1, and Kj
v is exactly the same for all time steps.

With these expressions for the gains, we can formulate the

full solution to the problem. We define d ∈ Ny as departures

of observations from evolved background:

d = y − HM0→𝜏𝝁0,b. (32)

The analysis mean can then be written:

𝝁
0∶𝜏,a
z =

⎡⎢⎢⎢⎣
𝝁

0,a
x

𝝁
1,a
v
⋮

𝝁
𝜏,a
v

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
𝝁

0,b
x + K0

xd
K1

vd
⋮

K𝜏
vd

⎤⎥⎥⎥⎦ , (33)

and the analysis covariance becomes:

A0∶𝜏
z

=
⎡⎢⎢⎢⎣
(I − K0

xHM0→𝜏)B −K0
xHM1→𝜏Q · · · −K0

xHQ
−K1

vHM0→𝜏B (I − K1
vHM1→𝜏)Q · · · −K1

vHQ
⋮ ⋮ ⋱ ⋮
−K𝜏

vHM0→𝜏B −K𝜏
vHM1→𝜏Q · · · (I − K𝜏

vH)Q

⎤⎥⎥⎥⎦ .
(34)

2.3 Solution in terms of state variables

We now express the solution in terms of the state variables at

different times:

x0∶𝜏,a =
[
(x0,a)T (x1,a)T · · · (x𝜏,a)T

]T
. (35)

We can compute xt,a = M0∶tz0∶t,a as

xt,a = (I − Kt
xH)xt,b + Kt

xy, (36)

where xt,b = M0→tx0,b. We introduce the new gain Kt
x which

acts directly on xt as

Kt
x = M0→tK0

x +
t∑

j=1

Mj→tKj
v. (37)

The second term actually contains a double sum:

t∑
j=1

Mj→tKj
v =

( t∑
j=1

𝜏∑
i=1

Mj→tQ(Mi→𝜏 )T
)

HT
(
𝚪𝜏

)−1
. (38)

Finally we compute the first two moments of xt,a. The

mean is

𝝁
t,a
x = (I − Kt

xH)𝝁t,a
x + Kt

xy (39)

and the covariance

At
x =

(
I − Kt

xH
) (

Bt + 𝚲t) , (40)

where Bt and 𝚲t are defined as in Equation 25 but for a

general t.

2.4 Illustration in the scalar case

The effect of the temporally correlated model errors, encoded

in 𝜙 (𝜔), on the assimilation results can be analysed in more

detail in the univariate case. This will allow us to gain an

understanding of the relative order of magnitude of the dif-

ferent contributions. Let the error variances be b2, q2 and

r2 for background, model, and observational errors, respec-

tively. We observe directly and the model is a constant m
inside the assimilation window. A value of m = 0 maps any

state variable to zero. Values in 0 < m < 1 constitute com-

pressions of the state variable, the case m = 1 is the identity,

and m > 1 is an expansion. Negative values have the same

behaviour, but the difference is that they cause the state vari-

able to alternate signs in consecutive time steps. Hence, we

only consider m ≥ 0. We will analyse the results for the zero-

and infinite-memory cases, which apply for any 𝜙 (𝜔). In the

finite non-zero 𝜔 cases, we have to specify the exact memory

dependence. We restrict ourselves to exponential-memory

dependences here.

For the scalar case the model operators are just powers of m:

M0∶𝜏 =
[
m𝜏 , m𝜏−1, m𝜏−2, · · · , m1, 1

]
. (41)

The scalar versions of Equations 22, 28 and 30 are

K0
x = m𝜏b2

𝛾2
𝜏 (m, 𝜔)

, Kj
v =

q2

𝛾2
𝜏 (m, 𝜔)

𝜏∑
i=1

m𝜏−i𝜙(|i − j|, 𝜔)
(42)

for j = {1, 2, · · · , 𝜏}, in which

𝛾2
𝜏 (m, 𝜔) = m2𝜏b2 + q2𝜆2

𝜏(m, 𝜔) + r2, (43)

and we used the notation:

Q1∶𝜏 = q2𝚽𝜏 , B𝜏 = m2𝜏b2, 𝚲𝜏 = q2𝜆2
𝜏(m, 𝜔). (44)

The zero-memory and infinite-memory cases are given as

lim
𝜔→0

Kj
v

q2

𝛾2
𝜏 (m, 0)

m𝜏−j, lim
𝜔→∞

Kj
v

q2

𝛾2
𝜏 (m,∞)

(
1 − m𝜏

1 − m

)
.

(45)

Note that in the latter case the gain is exactly the same for all

time steps.
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(a) (b)

FIGURE 2 Effective contribution (as a multiple of q2) of the model error to the total covariance at the time of the observation for an assimilation window of

(a) 𝜏 = 2 and (b) 𝜏 = 4 time steps. This is shown for an univariate setting, and as function of the model m (horizontal axis) and the auto-correlation memory 𝜔

of the model error (vertical axis), in the case an exponential memory. The value m = 1 is shown with a yellow line. Note that we are plotting the logarithm of

𝜆2(m, 𝜔) [Colour figure can be viewed at wileyonlinelibrary.com]

The effect of the time-correlation of model error resides in

the factor

𝜆2
𝜏(m, 𝜔) =

𝜏∑
i=1

𝜏∑
j=1

m2𝜏−(i+j)𝜙(|i − j|, 𝜔). (46)

Using
∑J

j=1 arj−1 = a(1 − rJ)(1 − r)−1 (a property of geomet-

ric sums), the limits of zero-memory and infinite-memory of

Equation 46 become

lim
𝜔→0

𝜆2
𝜏 =

1 − m2𝜏

1 − m2
≤ lim

𝜔→∞
𝜆2
𝜏 =

(1 − m𝜏)2

(1 − m)2
, (47)

where clearly the second expression is larger than the first,

except for 𝜏 = 1 in which case 𝜆2
𝜏(m, 𝜔) = 1 in both limits.

As function of m we have:

• When m → 0, 𝜆2
𝜏(m, 0) → 1 and 𝜆2

𝜏(m,∞) → 1.

• When m → 1, 𝜆2
𝜏(m, 0) → 𝜏 and 𝜆2

𝜏(m,∞) → 𝜏2, i.e. the

increase in memory leads to an increase of the compound

model error variance.

• When m → ∞ (so m large), 𝜆2
𝜏(m, 𝜔) → ∞ and the

leading-order term is m2(𝜏−1).

For an exponentially decaying memory, we use Wolfram
Mathematica to get a closed-form expression

𝜆2
𝜏,exp(m, 𝜔, 𝜏)

=
e1∕𝜔

(
2m𝜏e𝜏∕𝜔−m2𝜏−1 + 2m

(
m2𝜏−1

m2−1

)
sinh(1∕𝜔)

)
(e1∕𝜔 − m)(me1∕𝜔 − 1)

.

(48)

The natural logarithm of Equation 48 is plotted in Figure 2

as a function of m (horizontal axis) and 𝜔 (vertical axis) for

(a) 𝜏 = 2 and (b) 𝜏 = 4. The vertical yellow line indi-

cates m = 1. It is clear that 𝜆2
𝜏,exp grows as 𝜏 grows. For a

fixed 𝜔, 𝜆2
exp grows exponentially as m grows. For a fixed m,

𝜆2
exp grows as 𝜔 grows – as expected from Equation 47 – but

the growth is slow. In fact, there is a sharp transition around

𝜔 = 1 for m ≤ 1. In contrast, for m > 1 the effect of 𝜔

on 𝜆2
exp is smaller. Evaluating Equation 48 for m = 1 ren-

ders an undetermined form (0 ÷ 0) and one must take a limit.

For the exponential-memory case, we substitute 𝜆2
𝜏,exp from

Equation 48 into Equation 42 to get

Kj
v,exp =

q2

𝛾2
𝜏,exp

(
e(j−𝜏)∕𝜔

1 − e1∕𝜔m
− m𝜏e(1−j)∕𝜔

e1∕𝜔 − m

− m𝜏+1−j(e2∕𝜔 − 1)
(e1∕𝜔 − m)(1 − e1∕𝜔m)

)
. (49)

When the solution is expressed in terms of the state vari-

ables, we need the scalar version of Equation 37 – i.e. the gain

acting on xt– which now becomes

Kt
x =

m𝜏+tb2

𝛾2
𝜏 (m, 𝜔)

+
q2

𝛾2
𝜏 (m, 𝜔)

t∑
j=1

𝜏∑
i=1

m𝜏+t−(i+j)𝜙(|i−j|, 𝜔), (50)

which has the following two limits:

lim
𝜔→0

Kt
x =

m𝜏+tb2

𝛾2
𝜏 (m, 0)

+
q2

𝛾2
𝜏 (m, 0)

m𝜏−t(1 − m2t)
1 − m2

,

lim
𝜔→∞

Kt
x =

m𝜏+tb2

𝛾2
𝜏 (m,∞)

+
q2

𝛾2
𝜏 (m,∞)

(1 − mt)(1 − m𝜏)
(1 − m)2

.

(51)

and substituting again 𝜆2
𝜏,exp from Equation 48 into

Equation 37 we have explicitly

Kt
x,exp=

m𝜏+tb2

𝛾2
𝜏,exp

+
q2e1∕𝜔{mt(e−𝜏∕𝜔+ e−t∕𝜔) − e(t−𝜏)∕𝜔 − m2t}

𝛾2
𝜏,exp(e1∕𝜔 − m)(e1∕𝜔m − 1)

+
q2e1∕𝜔 {m2t+1 sinh(1∕𝜔)+ m(1− e2∕𝜔)e−(2t+1)∕𝜔}

𝛾2
𝜏,exp(e1∕𝜔 − m)(e1∕𝜔m − 1)(m2 − 1)

.

(52)

In the univariate case, 0 ≤ K ≤ 1 (for all gains). As

K grows, the influence of the observation on the analysis

increases.

For illustration we choose an assimilation window with 𝜏 =
3 time steps and variances b2 = 5, q2 = 0.25 and r2 = 0.1. In

Figure 3 we plot the gains (a–d) Kj
v,exp and (e–h) Kt

x,exp. Each

column shows a different time step from (a, e) t = 0 to (d, h)

t = 3. In each panel we plot the gain for every combination

wileyonlinelibrary.com
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3 Impact on the model error of the assimilation of an observation at the end of an assimilation window of 𝜏 = 3 time steps for the univariate case, a

model m (horizontal axes) and an auto-correlation memory 𝜔 (vertical axes). These results correspond to the exponential memory case. (a) to (d) show the

gains for the initial condition, and for the different model jumps. (e) to (h) show the gains for the initial conditions and the actual state variables at the

different times. By construction, in this case the gains must be between 0 and 1. For gain values closer to 0 the analysis is closer to the background, while for

gain values closer to 1 the analysis is closer to the observations [Colour figure can be viewed at wileyonlinelibrary.com]

of m (horizontal axis) and 𝜔 (vertical axis), with both axes

plotted in logarithmic scale. In green areas the observation

has more influence on the analysis than the background, and

in pink areas the opposite happens.

Figure 3 reveals several properties:

(a) The effect of observations is more efficiently communi-

cated to past time-steps when the memory 𝜔 is large.

(b) The largest impact of the observation occurs at the obser-

vation time.

(c) We see a different behaviour for compressive m < 1 and

expansive m > 1 models, and for those close to persistence

with m = 1.

We investigated different combinations of values for

the variances, and the general behaviour was similar. For

example, in Figure 4 we plot the case for b2 = 4, q2 = 4 and

r2 = 1. Since we increased the observational variance, the

impact of the observation is smaller on all panels.

2.4.1 Analysing the gains
In the final section on the univariate case, we shed some more

light on the behaviour of the gains K0
x , Kt

x (0 < t < 𝜏) and K𝜏
x .

The summary of this analysis is given in Figure 5, which also

includes the limiting expressions of these gains as m, 𝜔 and 𝜏

change.

These analytical results on the dependence on m can be

understood as follows. Schematically, we can write

Kt
x =

Cov(t, 𝜏)
Cov(𝜏, 𝜏) + R

. (53)

In general, the numerator of Kt
x arises from the covariance

between the state at time t and the state at observation time

𝜏. This covariance consists of two terms, the propagation of

the background covariance from time 0, and the accumulated

propagated model errors. The denominator consists of the

total propagated state error at observation time, and the obser-

vation errors. The former consists again of a part related to

the background covariance at time 0 propagated to time 𝜏, and

the accumulated propagated model errors.

For small m, most terms in the numerator will be small,

since they are proportional to some positive power of m. There

is one model error term that is not propagated, and that term

is proportional to 𝜙(|𝜏 − t|, 𝜔), which is small for 𝜔 < 1. The

denominator is dominated by terms that do not contain propa-

gation, specifically the observation error and the model error

in the last model time step. Combining numerator and denom-

inator, we see directly that the gain will be small. This means

that observations at the end of a window have small influence

on the state at other times when m is small. This is simply

because the propagated state covariance will be very small at

observation time, so the propagated state is much more accu-

rate than the observation. An exception is when 𝜔 is large, in

wileyonlinelibrary.com
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4 As Figure 3, but with different values for the background-error, model-error, and observational-error covariances. Since r2 increased, the

observation has a lesser impact on the initial conditions and state variables at intermediate time steps [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

(c)

FIGURE 5 Schematic showing some limiting values of Kt
x, i.e. the impact of the observation in the model variables (a) at the initial time, (b) at some

intermediate time in the assimilation window, and (c) at the end of the assimilation window, as a function of the model m (horizontal axes) and the

autocorrelation memory of the model error 𝜔 (vertical axis). This figure explains qualitatively the behaviour of Figures 3 and 4, but the limiting values shown

here are valid for a general temporal-correlation function

wileyonlinelibrary.com
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which case 𝜙(|𝜏 − t|, 𝜔) → 1, and the propagated error of the

state is not small compared to the observation, so the observa-

tion can have an influence on the state, as shows in the figures.

For large m, the largest terms in the expression for Kt
x are

those that contain the propagation of the background covari-

ance all the way to the observation time. The term in the

numerator has m to the power 𝜏+t, but the denominator has m
to the power 2𝜏, and hence, again,the gain will be small. This

means that observations at the end of a window have small

influence on the state at other times when m is large. Although

the observation is much more accurate than the propagated

state, the propagation of the innovation backwards in time, i.e.

in the direction where the model contracts, leads to a small

influence.

3 INEXACT TIME CORRELATION AND
FINITE ENSEMBLE SIZE

We have discussed the effect of temporally correlated model

error has on a time window of the Kalman smoother. In this

section we consider the effect of two sources of imperfection:

an incorrectly prescribed memory time-scale for the model

error, and covariance information coming from samples with

a finite-ensemble size.

3.1 Errors from inexact time autocorrelation

Assume that we know Q exactly, but we do not know the real

memory time-scale 𝜔. Hence, the DA forecast model uses a

guess 𝜔g, and the model error used in the DA is the result of

this mis-specification. While 𝚽1∶𝜏 has functions 𝜙(|i− j|, 𝜔),
the guess 𝚽1∶𝜏

g has functions 𝜙(|i − j|, 𝜔g). Their difference

𝝐1∶𝜏
Φ ∈ 𝜏×𝜏 is

𝝐1∶𝜏
Φ = 𝚽1∶𝜏

g −𝚽1∶𝜏 (54)

and

Q1∶𝜏
g − Q1∶𝜏 = 𝝐1∶𝜏

Φ ⊗ Q. (55)

We need a measure of the “magnitude” of the difference

𝝐1∶𝜏
Φ relative to the “magnitude” of 𝚽1∶𝜏 . We use the metric

𝜎2
𝜖𝜙

= ‖𝝐1∶𝜏
Φ (𝚽1∶𝜏)−1‖, (56)

where the norm ‖.‖ is the maximum eigenvalue. Finding the

analytical dependence of Equation 56 on 𝜔 and 𝜔g is not sim-

ple. Hence, we have resorted to a numerical experiment to

illustrate the behaviour of 𝜎2
𝜖𝜙

(
𝜔,𝜔g, 𝜏

)
as function of the

mis-specification of the memory term. Results are shown in

Figure 6 for an assimilation window of size 𝜏 = 10, using an

exponential-memory function. This figure is generated in the

following manner:

• We choose an 𝜔 to produce a matrix 𝚽1∶𝜏 .

• We choose an 𝜔g to produce a guess matrix 𝚽1∶𝜏
g .

• We evaluate Equations 54 and 56. The resulting value is

saved.

• We repeat these steps for every pair
(
𝜔,𝜔g

)
, and we

populate a matrix.

FIGURE 6 Relative magnitude of the difference between a guess

model-error temporal-correlation matrix 𝚽1∶𝜏
𝜔 , and the real model-error

temporal-correlation matrix 𝚽1∶𝜏 in the exponential memory case for an

assimilation window of size 𝜏 = 10. The largest eigenvalue is shown as a

function of the real memory 𝜔 (horizontal axis) and the guess memory 𝜔g

(vertical axis). The solid lines are the contours: {0, 0.2, 0.4, 0.6, 0.8, 0.1}.

Note that the values do not only depend on the difference 𝜔g − 𝜔 [Colour

figure can be viewed at wileyonlinelibrary.com]

The resulting matrix is plotted for different values of𝜔 (hor-

izontal axis) and of 𝜔g (vertical axis). The colour bar spans

the interval 0 (dark purple) to 1 (light blue), and everything

above 1 is plotted in white. Black lines show the contours

corresponding to 𝜎2
𝜖𝜙

= {0, 0.2, 0.4, 0.6, 0.8, 1.0}. This figure

shows that having 𝜔g < 𝜔 results in larger 𝜎2
𝜖𝜙

than the

contrary situation. Hence underestimating the temporal cor-

relation time-scale leads to larger errors then overestimating

it. In general, there is a large region in which the magnitude

is smaller than unity. The value does not simply depend on

the difference |𝜔 − 𝜔g| or the ratio 𝜔∕𝜔g, but their individ-

ual values as well. We performed experiments with different

values of 𝜏 and they yielded similar results, so they are not

included.

The corresponding analysis mean and covariance

react to the mis-specification of the memory scale as

follows. Interestingly, both z0∶𝜏,b and z0∶𝜏,b
g share the same

expectation:

E
[
z0∶𝜏,b] = E

[
z0∶𝜏,b

g

]
= 𝝁

0∶𝜏,b
z (57)

and the only difference is in the covariances:

D0∶𝜏
g = Cov

[
z0∶𝜏,b

g

]
=
[

B 0
0 Q1∶𝜏

g

]
(58)

and the rest of the problem is the same. This means that we

have the posterior pdf:

z0∶𝜏,a
g |y ∼ N

(
𝝁

0∶𝜏,a
z,g ,A0∶𝜏

z,g

)
(59)

wileyonlinelibrary.com
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with 𝝁
0∶𝜏,a
z,g ∈ (1+𝜏)Nx and A0∶𝜏

z,g ∈ (1+𝜏)Nx×(1+𝜏)Nx defined as:

𝝁
0∶𝜏,a
z,g =

(
I − K0∶𝜏

z,g HM0∶𝜏)𝝁0∶𝜏,b
z + K0∶𝜏

z,g y,
A0∶𝜏

z,g =
(
I − K0∶𝜏

z,g HM0∶𝜏)D0∶𝜏
g .

(60)

with

𝚪𝜏
g = HM0∶𝜏D0∶𝜏

g

(
M0∶𝜏)T HT + R,

K0∶𝜏
z,g = D0∶𝜏

g

(
M0∶𝜏)T HT

(
𝚪𝜏

g

)−1
.

(61)

Therefore, substituting 𝚽1∶𝜏 with 𝚽1∶𝜏
g renders a different

D0∶𝜏
g ,𝚪𝜏

g and K0∶𝜏
z,g , and these are combined in a nonlinear fash-

ion to produce guess analysis solutions. The differences with

the exact solutions in Equation 12 are not simple to analyse.

Before doing so let us first consider the noise introduced by

finite-size ensembles.

3.2 Direct and indirect errors coming from ensemble
statistics

Consider an ensemble of Ne elements sampled from the

background pdf N
(
𝝁

0∶𝜏,b
z ,D0∶𝜏

)
. The neth member is

z0∶𝜏,b
ne

=
[

x0,b
ne

v1∶𝜏,b
ne

]
(62)

One can generate a sample 𝜼ne
from the observational error

pdf N (0,R). Following Burgers et al. (1999), but perturbing

the observational departure from the background instead of

the observations for statistical consistency, we find

dne
= y − (Hx𝜏

ne
+ 𝜼ne

) (63)

where we have again, but now for each ensemble member

x𝜏
ne

= M0∶𝜏z0∶𝜏,b
ne

. One can then apply Equation 19 using the

sample expressions (62) and (63) to get

z0∶𝜏,a
ne

= z0∶𝜏,b
ne

+ K0∶𝜏
z dne

. (64)

Note that Equation 64 uses the exact gain K0∶𝜏
z . The asso-

ciated neth cost function uses the true covariance D0∶ø:

ne
(z0∶𝜏)

= 1

2

(
z0∶𝜏 − z0∶𝜏,b

ne

)T(
D0∶𝜏)−1

(
z0∶𝜏 − z0∶𝜏,b

ne

)
+ 1

2

{
y−

(
HM0∶𝜏z0∶𝜏+ 𝜼ne

)}TR−1
{

y−
(
HM0∶𝜏z0∶𝜏+ 𝜼ne

)}
.

(65)

A collection of Ne values constructed using Equation 64

constitute a sample from the posterior pdf N
(
𝝁

0∶𝜏,a
z ,A0∶𝜏

z

)
,

with the moments defined as in Equations 19 and 20. Clearly,

the estimators coming from any finite-size ensemble con-

structed in this way will have direct, i.e. Monte-Carlo, sam-

pling errors.

Now we discuss the more subtle indirect sampling errors.

These come from using the sample estimator Be instead of

B in the computation of the analysis values. This is a natural

step of the Kalman filter/smoother and it helps in incorporat-

ing flow-dependent information since this covariance matrix

usually evolves in time and it is often impossible to compute

it exactly. In this case, the associated cost function is iden-

tical to Equation 65 but with D0∶𝜏 replaced by D0∶𝜏
e . This

block-matrix is

D0∶𝜏
e =

[
Be 0
0 Q1∶𝜏

]
(66)

This leads to an ensemble-based total covariance

𝚪𝜏
e = HM0∶𝜏D0∶𝜏

e

(
M0∶𝜏)T HT + R (67)

and an ensemble-based gain

K0∶𝜏
z,e = D0∶𝜏

e

(
M0∶𝜏)T HT

(
𝚪𝜏

e

)−1
. (68)

Then one can construct each analysis member as

z0∶𝜏,a
ne

= z0∶𝜏,b
ne

+ K0∶𝜏
z,e dne

, (69)

where we emphasize that the empirical gain K0∶𝜏
z,e has been

used. An ensemble constructed in this manner will have both

direct and indirect sampling errors. This indirect sampling

error is taken into consideration, for instance, in the creation

of the EnKF-N of Bocquet et al. (2014). From now on, we will

use z0∶𝜏,a
ne

as defined in Equation 69 and not in Equation 64.

3.3 Effects of the two sources of imperfection

We now combine the two sources of imperfection and per-

form a more detailed examination if their consequences.

From the last two subsections recall that the subindex g

indicates variables related to the guess model error Q1∶𝜏
g ,

whereas the subindex e indicates variables related to the sam-

ple covariance Be. It is clear that some elements will have two

subindices, for example K0∶𝜏
ge .

For each ensemble member we decompose z0∶𝜏,b
g,ne

and dg,ne

as the sum of this expectation and a perturbation:

z0∶𝜏,b
g,ne

= 𝝁
0∶𝜏,b
z + 𝜻

0∶𝜏,b
g,ne

dg,ne
= d + 𝜹g,ne

(70)

where 𝜻
0∶𝜏,b
g,ne

is a sample from N
(
0,D0∶𝜏), d defined as in

Equation 32 and the perturbation 𝜹g,ne
is

𝜹g,ne
= −

(
HM0∶𝜏𝜻0∶𝜏,b

g,ne
+ 𝜼ne

)
(71)

Hence, we can write the (imperfect) analysis value for each

ensemble member z0∶𝜏,a
g,ne

as:

z0∶𝜏,a
g,ne

=
(
𝝁

0∶𝜏,b
z + K0∶𝜏

z,ged
)
+
(
𝜻

0∶𝜏,b
g,ne

+ K0∶𝜏
z,ge𝜹g,ne

)
. (72)

The first parenthesis is the update for the means, while

the second parenthesis is the update for the perturbations.

The empirical gain K0∶𝜏
z,ge appears in both. The structure of

Equation 72 makes it difficult to disentangle the contributions

from the two sources of error. To proceed we follow what

van Leeuwen (1999) and Sacher and Bartello (2005) did for

the EnKF. We express Dge as a departure from the exact D0∶𝜏 :

D0∶𝜏
ge = D0∶𝜏 + 𝝐0∶𝜏

D =
(

I + 𝝐0∶𝜏
D

(
D0∶𝜏)−1

)
D0∶𝜏 (73)
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Explicitly 𝝐0∶𝜏
D ∈ (1+𝜏)Nx×(1+𝜏)Nx is the block-matrix:

𝝐0∶𝜏
D =

[
Be − B 0

0 Q1∶𝜏
g − Q1∶𝜏

]
=
[
𝝐B 0
0 𝝐1∶𝜏

Φ ⊗ Q

]
(74)

The sample covariance Be is a random matrix. Since x0,b

has a MVG pdf, Be follows a Wishart distribution with Nx −1

degrees of freedom. 𝝐B ∈ Nx×Nx is also a random matrix,

but it can have both positive and negative values in its entries,

and its distribution is not simple. 𝝐1∶𝜏
Φ is not random since it

comes from a wrong prescribed time-scale 𝜔g.

We can write the ratio 𝝐0∶𝜏
D

(
D0∶𝜏)−1

as a block-matrix :

𝝐0∶𝜏
D

(
D0∶𝜏)−1 =

[
𝝐BB−1 0

0
(
𝝐1∶𝜏
Φ (𝚽1∶𝜏)−1

)
⊗ INx

]
, (75)

where we have used the mixed-product property of the Kro-

necker product to get the bottom-right element. This property

states that if A, B, C and D are matrices of such size

that one can form the matrix products AC and BD, then

(A ⊗ B) (C ⊗ D) = (AC)⊗(BD) (e.g. Golub and Loan, 1983;

Horn and Johnson, 1991).

The sample-based total covariance at the end of the assim-

ilation window 𝚪𝜏
ge is

𝚪𝜏
ge = 𝚪𝜏 + 𝚪𝜏

g𝜖 =
(

I + 𝚪𝜏
g𝜖

(
𝚪𝜏

)−1
)
𝚪𝜏 , (76)

where 𝚪𝜏
g𝜖 = HM0∶𝜏𝝐0∶𝜏

D

(
M0∶𝜏)T HT is the contribution from

the sampling error. Finally the ensemble-based gain K0∶𝜏
z,e can

be written as

K0∶𝜏
z,ge =

(
I + 𝝐0∶𝜏

D
(
D0∶𝜏)−1

)
K0∶𝜏

z

(
I + 𝚪𝜏

g𝜖

(
𝚪𝜏

)−1
)−1

(77)

Therefore the ensemble gain is a the real gain multiplied by

two factors. The left factor contains the error in the construc-

tion of the covariance matrix De, and the right factor contains

the respective error in the total covariance 𝚪𝜏
ge at the time of

the observation.

3.4 Small error approximations

Every expression has been exact up to this point. To continue

we require an approximation: we consider that the Be is “not

too far” from B, and that 𝜔g is “not too far” from 𝜔. To be

more precise:‖𝝐0∶𝜏
D

(
D0∶𝜏)−1 ‖ ≪ 1, ‖𝚪𝜏

g𝜖

(
𝚪𝜏

)−1 ‖ ≪ 1. (78)

We perform a Taylor expansion for the right factor (inverse)

in Equation 77, and use Equation 78 to neglect all terms after

the linear:(
I + 𝚪𝜏

g𝜖

(
𝚪𝜏

)−1
)−1

= I−𝚪𝜏
g𝜖

(
𝚪𝜏

)−1 +

(‖𝚪𝜏
g𝜖

(
𝚪𝜏

)−1 ‖2
)
.

(79)

Substituting this into Equation 77 we have

K0∶𝜏
z,rmge ≈

(
I + 𝝐0∶𝜏

D
(
D0∶𝜏)−1

)
K0∶𝜏

z

(
I − 𝚪𝜏

g𝜖

(
𝚪𝜏

)−1
.
)
(80)

After performing the products and ignoring the term pro-

portional to 𝝐0∶𝜏
D

(
D0∶𝜏)−1 𝚪𝜏

g𝜖(𝚪𝜏)−1, the empirical gain K0∶𝜏
z,ge

can be approximately decomposed into the sum of two com-

ponents:

K0∶𝜏
z,ge ≈ K0∶𝜏

z + K0∶𝜏
z,g𝜖. (81)

K0∶𝜏
z is the exact gain defined in Equation 21 and K0∶𝜏

z,g𝜖 is the

gain arising from the errors (both from sampling and incorrect

memory). Explicitly this is

K0∶𝜏
z,g𝜖 = 𝝐0∶𝜏

D
(
D0∶𝜏)−1 K0∶𝜏

z − K0∶𝜏
z 𝚪𝜏

g𝜖

(
𝚪𝜏

)−1
. (82)

K0∶𝜏
z,g𝜖 has two terms; both are contractions of the real gain

K0∶𝜏
z by factors 𝝐0∶𝜏

D

(
D0∶𝜏)−1

and 𝚪𝜏
g𝜖(𝚪𝜏)−1 respectively. For

the latter ratio we have:

𝚪𝜏
g𝜖(𝚪𝜏)−1

=
(
HM0∶𝜏𝝐0∶𝜏

D (M0∶𝜏)THT
)(

HM0∶𝜏D0∶𝜏(M0∶𝜏)THT+R
)−1
,

(83)

so for general H, it is not trivial to determine which of the two

terms in Equation 82 is larger.

Substituting Equation 81 into Equation 72 yields an approx-

imate expression for the analysis value of each ensemble

member. It it formed of three terms:

z0∶𝜏,a
g,ne

≈ 𝝁
0∶𝜏,a
z + 𝜻

0∶𝜏,a
g,ne

+ K0∶𝜏
z,g𝜖

(
d + 𝜹g,ne

)
. (84)

The first term in Equation 84 is the exact analysis mean:

𝝁
0∶𝜏,a
z = 𝝁

0∶𝜏,b
z + K0∶𝜏

z d, (85)

which is equivalent to Equation 19. The second term is the

direct sampling error:

𝜻
0∶𝜏,a
g,ne

= 𝜻
0∶𝜏,b
g,ne

+ K0∶𝜏
z 𝜹g,ne

, (86)

which is necessary to have correct probabilistic characteristics

for the ensemble. 𝜻
0∶𝜏,a
g,ne

is a realization of a random variable

with pdf N
(
0,A0∶𝜏

z,g
)
. The guess analysis covariance is

A0∶𝜏
z,g =

(
I − K0∶𝜏

z HM0∶𝜏)D0∶𝜏
g . (87)

A0∶𝜏
z,g contains the exact gain, which means that the reduc-

tion in uncertainty due to the DA step is correct. The only

source of error is the incorrect time-scale 𝜔g in D0∶𝜏
g . Finally

we have the indirect sampling errors

K0∶𝜏
z,g𝜖

(
d + 𝜹g,ne

)
, (88)

which are formed of two terms: one linear and one a nonlinear

product.

These expressions allow us to calculate the imperfections in

the analysis mean and covariance. Since both K0∶𝜏
z,ge and K0∶𝜏

z,g𝜖
are constant for all members of a given ensemble, the sample

mean is given by

z̄0∶𝜏,a = 𝝁
0∶𝜏,a
z + �̄�

0∶𝜏,a
g + K0∶𝜏

z,g𝜖
(
d + �̄�g

)
, (89)

where the overbar denotes the arithmetic average. The sam-

ple covariance A0∶𝜏
z,ge = CovNe

(
z0∶𝜏,a

g,1∶Ne

)
is more complicated

to compute. In a finite-size sample the observational-error

covariance Re = R+𝝆 is not exact – this comes from perturb-

ing Hx𝜏 in Equation 63 – and spurious correlations between
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TABLE 1 Additive elements of the approximate ensemble analysis mean and covariance in the small
error approximation

Exact Direct sampling Indirect sampling Indirect sampling

part error error (linear) error (nonlinear)

z̄0∶𝜏,a
ge 𝝁0∶𝜏

z +�̄�0∶𝜏,a
g +K0∶𝜏

z,g𝜖d +K0∶𝜏
z,g𝜖 �̄�g

A0∶𝜏
z,ge A0∶𝜏

z +
(
I − K0∶𝜏

z HM0∶𝜏) 𝝐0∶𝜏
D −K0∶𝜏

z,g𝜖HM0∶𝜏D0∶𝜏 −
(
HM0∶𝜏𝝐0∶𝜏

D

)T (𝚪𝜏
)−1 HM0∶𝜏𝝐0∶𝜏

D

state variables and observations 𝚺ge = CovNe

(
z0∶𝜏,b

g,1∶Ne
, y1∶Ne

)
can arise. The full expression for A0∶𝜏

z,ge is:

A0∶𝜏
z,ge=

(
I− K0∶𝜏

z,geHM0∶𝜏)(D0∶𝜏+𝝐0∶𝜏
D )

(
I− K0∶𝜏

z,geHM0∶𝜏)
+K0∶𝜏

z,ge(R+𝝆)
(
K0∶𝜏

z,ge

)T +
(
I − K0∶𝜏

z,geHM0∶𝜏)𝚺ge

(
K0∶𝜏

z,ge

)T

+K0∶𝜏
z,ge𝚺ge

(
I− K0∶𝜏

z,geHM0∶𝜏)T. (90)

The inexact Re does not participate in the gain; it only

appears in the direct sampling effect. We consider that we

have either a second-order exact sampling scheme (Pham,

2002) or a large-enough sample such that both 𝝆 → 0
and 𝚺ge → 0. With these assumptions, several terms in

Equation 90 are null (or at least negligible). If we take the

remaining terms, substitute K0∶𝜏
z,ge from Equations 81 and 82,

and keep only leading-order terms, we can express A0∶𝜏
z,ge

approximately as a departure from the true A0∶𝜏 :

A0∶𝜏
z,ge ≈ A0∶𝜏

z + A0∶𝜏
z,g𝜖, (91)

with the exact part found in Equation 20, and the error part is

A0∶𝜏
z,g𝜖 =

(
I−K0∶𝜏

z HM0∶𝜏)𝝐0∶𝜏
D −K0∶𝜏

z,g𝜖HM0∶𝜏D0∶𝜏

−𝝐0∶𝜏
D

(
M0∶𝜏)THT

(
𝚪𝜏

)−1HM0∶𝜏𝝐0∶𝜏
D . (92)

The first term in Equation 92 is direct sampling error. It

corresponds to the reduction of 𝝐0∶𝜏
D due to the action of the

exact gain. The second and third terms are indirect sampling

noise. The second term is the a reduction of D0∶𝜏 due to the

use of the inexact part of the gain, and it is linear in 𝝐0∶𝜏
D . The

last term is quadratic in 𝝐0∶𝜏
D and is called in-breeding, to be

discussed later.

3.5 Behaviour of the sample estimators

Table 1 summarizes the additive elements of the approximate

ensemble analysis mean and covariance in the small error

approximation. We separate the exact part and the direct and

indirect sampling errors.

Both estimators have an exact part and errors coming from

both sampling (direct and indirect) and the mis-specification

of the memory. The errors arising from 𝝐0∶𝜏
Φ are not random,

and hence do not depend on sample size. The random vari-

ables �̄�
0∶𝜏,a
g and �̄�g have zero expected value but incorrect

covariances A0∶𝜏
z,g ∕Ne and 𝚪𝜏

g∕Ne respectively due to the guess

for the temporal correlations denoted by g. The presence of

K0∶𝜏
z,g𝜖d causes a bias because of the dependence on 𝝐0∶𝜏

Φ . If 𝝐B

were not random, but instead were fixed as a result of an incor-

rect static estimator of B, it would have similar consequences

as 𝝐0∶𝜏
Φ .

In the last part of this section we consider 𝝐0∶𝜏
Φ = 0 (correct

memory), and focus only on the behaviour of random errors

coming from 𝝐B as Ne grows. We take the expected value

E
[
z̄0∶𝜏,a|𝜔g=𝜔

]
= 𝝁

0∶𝜏,a
z +E

[
�̄�

0∶𝜏,a
]
+E

[
K0∶𝜏

z,𝜖
]

d+E
[
K0∶𝜏

z,𝜖 �̄�
]
.

(93)

The first term in Equation 93 is the exact value, and the

second has zero expected value E
[
�̄�

0∶𝜏,a
]
= 0 ∈ (𝜏+1)Nx .

The third term also has zero expected value. This can be seen

by writing explicitly:

E
[
K0∶𝜏

z,𝜖
]
= E

[
𝝐0∶𝜏

D
] (

D0∶𝜏)−1 K0∶𝜏
z − K0∶𝜏

z E
[
𝚪𝜏
𝜖

] (
𝚪𝜏

)−1
,

(94)

where both E
[
𝝐0∶𝜏

D

]
= 0 ∈ (1+𝜏)Nx×(1+𝜏)Nx and E

[
𝚪𝜏
𝜖

]
= 0 ∈

Ny×Ny . For the latter we can see this explicitly via:

E
[
𝚪𝜏
𝜖

]
= HM0∶𝜏

[
E [𝝐B] 0

0 0

] (
M0∶𝜏)T HT = 0 ∈ 

Ny×(1+𝜏)Nx .

(95)

Finally, we are left with the expected value of the nonlinear

product E
[
K0∶𝜏

z,𝜖 �̄�
]
:

E
[
K0∶𝜏

z,𝜖 �̄�
]
= −E

[
K0∶𝜏

z,𝜖 HM0∶𝜏 �̄�
0∶𝜏,b

]
− E

[
K0∶𝜏

z,𝜖 �̄�
]
. (96)

The second term is zero since K0∶𝜏
z,𝜖 and �̄� are statistically

independent. Hence

E
[
K0∶𝜏

z,𝜖 �̄�
]
= E

[
K0∶𝜏

z,𝜖
]

E [�̄�] = 0. (97)

We can write the first term of (96) as:

E
[
K0∶𝜏

z,𝜖 HM0∶𝜏 �̄�
0∶𝜏,b

]
= E

[(
𝝐0∶𝜏

D
(
D0∶𝜏)−1K0∶𝜏

z −K0∶𝜏
z 𝚪𝜏

𝜖

(
𝚪𝜏

)−1
)

HM0∶𝜏 �̄�
0∶𝜏,b

]
,

(98)

which is not an easy expression. An application of Basu’s

theorem (Basu, 1955) states that if z̄ and 𝚺z are the sam-

ple mean and sample covariance coming from a MGD, they

are statistically independent (e.g. Ghosh, 2002). Hence the

expected value of their product is the product of their expected

values. However, in Equation 98 we have the expected value

of products involving transformations of both �̄�
0∶𝜏,b

and Be,

so the validity of independence may depend on the particular

structure of the matrices involved.

After the previous examination, we can finally state that

E
[
z̄0∶𝜏,a|𝜔g=𝜔

]
= 𝝁0∶𝜏

z − E
[
K0∶𝜏

z,𝜖 HM0∶𝜏 �̄�
0∶𝜏,b

]
, (99)
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which implies that small sampling errors can only produce

bias through the nonlinear product K0∶𝜏
z,𝜖 HM0∶𝜏 �̄�

0∶𝜏,b
. Accord-

ing to the knowledge of the authors, this has not been noticed

in the literature before, and is also true for ensemble Kalman

filters when the time dimension is disregarded. In the exper-

iments discussed in the next section we show that this effect

can be substantial, and much larger than the estimated error

covariances.

The expected value of the sample analysis covariance is:

E
[
Az

e|𝜔g=𝜔
]
=A0∶𝜏

z +
(
I − K0∶𝜏

z HM0∶𝜏)E
[
𝝐0∶𝜏

D
]

− E
[
K0∶𝜏

z,𝜖
]

HM0∶𝜏D0∶𝜏

− E
[
𝝐0∶𝜏

D
(
M0∶𝜏)T HT

(
𝚪𝜏

)−1 HM0∶𝜏𝝐0∶𝜏
D

]
.

(100)

We know that both E
[
𝝐0∶𝜏

D

]
= 0 and E

[
K0∶𝜏

z,𝜖
]
= 0. How-

ever, the last term is quadratic in 𝝐0∶𝜏
D so its expected value is

not zero. Therefore

E
[
Az

e|𝜔g=𝜔
]
=A0∶𝜏

z −E
[
𝝐0∶𝜏

D
(
M0∶𝜏)T HT

(
𝚪𝜏

)−1 HM0∶𝜏𝝐0∶𝜏
D

]
,

(101)

which shows that in-breeding (the last term) leads to a con-

sistent underestimation of the real analysis covariance, a

result previously found to hold for ensemble Kalman filters

(Houtekamer and Mitchell, 1998; van Leeuwen, 1999; Sacher

and Bartello, 2005).

4 ILLUSTRATION WITH A NUMERICAL
EXPERIMENT

In this simple example we illustrate the difference between

direct and indirect sampling errors. We use a one-step assim-

ilation window and estimate initial conditions and one model

jump. In this case the temporal correlation errors play no role.

No cycling is performed in this experiment.

We let the size of the system be Nx = 250, H = I, M = mI,

B = b2I, R = r2I, Q = q2I. The total covariance becomes

𝚪 = 𝛾2I, with 𝛾2 = m2b2 + q2 + r2. We let all variances be the

same b = q = r = 1, and m = 1. Let the prior mean of x0 be

𝝁0,b = 0. For simplicity we use an observation with the same

value in all components: y = 3, where 3 ∈ Nx is a vector

with a 3 in every position. The exact posterior moments are:

𝝁
0∶1,a
z =

[
𝝁

0,a
z

𝝁
1,a
𝜈

]
=
[

1
1

]
, A0∶1

z

[
A0,0

z A0,1
z

A1,0
z A1,1

z

]
=

[
2

3
I − 1

3
I

− 1

3
I 2

3
I

]
.

(102)

We generate samples of solutions with different sizes, from

Ne = 6 to 6000 members, and we do this in two ways:

• First, we use the real B to generate the corresponding gains.

In this case all the sampling errors are direct.

• Second, we use the sample estimator Be for the creation of

the gains. In this case, the solutions should both direct and

indirect sampling errors.

For each sample size we evaluate the quality of the sample

estimators z̄0∶1
z and A0∶1

z,Ne
with respect to the analytical values

given by Equation 102. We do this in the following way:

• The means. Both expected values 𝝁
0,a
z and 𝝁

1,a
z should be

1 for each one of the Nx = 250 components of the vector,

so for each ensemble we take the 250 components of the

sample mean and compute the following percentiles: {10,

25, 50, 75, 90}.

• The covariances. A0∶1
z is formed of four blocks: A0,0

z , Az,

A1,1
z and A0,1

z =
(

A1,0
z

)T

. Given our settings, the matri-

ces are diagonal and constant in their diagonals. For each

ensemble we compute A0∶1
z,Ne

and we separate the elements

into four groups: the diagonal of Aa
00

(the mean of 250 ele-

ments), the diagonal of Aa
𝜈𝜈 (the mean of 250 elements),

the diagonals of Aa
0𝜈

and Aa
𝜈0

(the mean of 500 elements)

and the rest (the mean of 249,000 elements). For each one

of the groups we compute the same 5 percentiles.

Figure 7 shows the results of this experiment. Each panel

shows a different statistic – (a, b) the means and (c)–(f) the

different elements of the covariance matrices. For each panel,

the horizontal axis is the ensemble size (in logarithmic scale),

and the vertical axis is the value of the estimator. The thick

grey line indicates the analytical value in each panel. The blue

lines represent the percentiles resulting from using B in the

gains, and the red lines represent those resulting from using

Be in the gains.

It is clear that the blue estimators only contain direct

sampling errors. The spread of the percentiles is symmetric

around the expected value, and this spread reduces consis-

tently as the ensemble size increases. The red estimators, on

the contrary, present a more complicated behaviour. Looking

at the means, there is some bias in the estimation for up to

Ne ≈ 500, and it has different sign for and 𝝁
0,a
z and 𝝁

1,a
z , and

the estimators have large spread. After Ne ≈ 500, the spread

of the estimator becomes symmetric. This behaviour comes

from the nonlinear product K0∶𝜏
z,𝜖 HM0∶𝜏 �̄�

0∶𝜏,b
, which presents

a serious bias for small and moderate sample sizes.

In Figure 7c–e, we have the diagonal elements of the

analysis covariance blocks. In this case the bias in the esti-

mation of the values is again substantial when using Be.

In particular we see small spread but large bias in the

estimators (slightly larger for A1,1
z ), which reduces slowly

as the sample size grows. This is due to the in-breeding

term 𝝐0∶𝜏
D

(
M0∶𝜏)T HT

(
𝚪𝜏

)−1 HM0∶𝜏𝝐0∶𝜏
D . The off-diagonal

elements (Figure 7f) show no bias in the estimation, proba-

bly because cross-products of the random matrix elements are

uncorrelated.

5 SUMMARY AND DISCUSSION

Model errors have been ignored in atmospheric data assim-

ilation far too long. Efforts have been made to correct this
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(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 7 Finite ensemble-size effects in the weak-constraint 4D-Var

problem solutions, showing values for the mean (a) at time zero and (b) at

the end of the assimilation window, time one. (c)–(f) show the values for

different elements of the analysis covariances. The thick grey line indicate

the analytical values in each panel. The blue lines represent the percentiles

resulting from using B in the gains, whereas the red lines represent those

resulting from using Be in the gains. Note the strong biases in means and

diagonal elements in the covariance matrix in the case of an ensemble

background covariance [Colour figure can be viewed at wileyonlinelibrary.

com]

in special cases, but it is important to have a basic under-

standing of the effect of a more general form of model error.

In this work we have provided the first systematic explo-

ration of the solution over one time window of the (ensem-

ble) Kalman smoother in the presence of temporal-correlated

model errors, and the consequences of assuming a guess
correlation time-scale that is inaccurate.

We have provided exact expressions for the analysis mean

and covariance for very general time correlation functions

in the model errors. In the univariate case, we performed a

deeper exploration of the information flow from observations

at the end of the assimilation window to the model variables at

different time steps. This information flow is strongly depen-

dent of the magnitude of the model (compressing, identity or

expanding) and the magnitude of temporal correlation in the

model error.

We have then moved to situations in which our knowledge

of the temporal correlations in the model errors in imper-

fect. First, we considered using a guess for the model error

memory, as this is the case often encountered in practice.

For instance, fully independent model errors (zero memory)

are often represented as fixed by intervals, or fixed in the

whole assimilation window (infinite memory). This is done to

reduce the computational expense of the problem (Tremolet,

2006). We derived exact expressions for the biases introduced

this way, and found that this practical solution can lead to seri-

ous errors in the obtained solutions, and an overestimation of

the temporal correlations in the model error leads to worse

results than an underestimation.

Next we formulated the exact solution for each ensemble

member in the case of an finite-size ensemble. We identified

the direct and indirect sources of sampling error. The direct

sampling errors arise even when using the exact B in the com-

putation of the gain in the problem. The indirect sampling

errors come from the effect of using Be in the computation of

the gain. In particular, we find that the ensemble-based gain

is the exact gain left- and right-multiplied by two factors:

K0∶𝜏
z,ge =

(
I + 𝝐0∶𝜏

D
(
D0∶𝜏)−1

)
K0∶𝜏

z

(
I + 𝚪𝜏

g𝜖

(
𝚪𝜏

)−1
)−1

.

The left factor comes from the error in the joint

background-model error statistics, while the right factor

comes from error in the total covariance. For small errors in

both the background and the model error specification, we

are able to create an approximate expression for the analysis

value for each ensemble member. In this expression we iden-

tify the exact solution, direct errors, indirect linear errors, and

indirect nonlinear errors.

Finally we computed the finite-size sample analysis

mean and sample analysis covariance. We showed that the

mis-specification of the model error memory leads to a wrong

analysis covariance, and to the presence of a bias in the anal-

ysis sample mean. The sampling errors vanish as the sample

size tends to infinity, but this occurs slowly because of a non-

linear product and can lead to a bias in the ensemble mean in

small-to-moderate sample sizes, which has not been reported

before. In the case of the covariance, the mis-specification of

the memory leads to a bias, and the sampling errors do not

vanish, instead they tend to a negative offset of the analy-

sis covariance. This is the so-called in-breeding which leads

to underestimation of covariances. Although some of these

results had been established for the EnKF, this is the first

time this is explored within a smoother, and it is done while

also exploring the interaction with mis-specified model error

temporal correlations.

It is important to remember that the Kalman smoother

and its ensemble approximation (EnKS) are sequential algo-

rithms. This is, the solution to the problem includes applying

these algorithms serially on subsequent time windows. This

paper has analysed the behaviour over one window, as the

wileyonlinelibrary.com
wileyonlinelibrary.com
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extension to multiple windows is straightforward (in the lin-

ear case). We have assumed that the true model has temporal

error correlations, but the observations do not.

It is true that we only consider these correlations inside

the time window and ignore temporal correlations over the

boundary of two time windows. In principle one could update

the trajectories in the previous window when observations

in the new window become available. Another approach is

to use overlapping windows (e.g. Bocquet and Sakov, 2014,

provide a discussion). Nonetheless, the trajectories in the lat-

est window would not be affected, since the starting point

– the state of the system given all observations up to the

start of the window – does not change. Therefore, improv-

ing trajectories in previous windows would not be useful

when the emphasis is on forecasting, so the results of this

paper are especially important for that case. If the empha-

sis is on reanalysis then ignoring temporal correlations over

window boundaries would become important if the temporal

correlations are long compared to the window length.

Our next step will be to move to more realistic systems,

for instance in the presence of nonlinear model operators and

observational processes. In these cases the effect of cycling

is not straightforward, and this will be explored in detail. Our

experiments will use a system similar to that of Bonavita et al.
(2016), but with additive model error instead of multiplica-

tive one (in first instance). Since the solution of the nonlinear

problem is a recursion of linearized problems, the results of

this paper will provide guidance, but it is clear that many more

numerical simulations will be needed in that case.
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APPENDIX

THE CASE OF L OBSERVATIONAL TIMES IN
A TIME WINDOW

In this appendix we generalize Equation 23 – i.e. the expres-

sion for the WC Kalman smoother with correlated model

errors – to the case when more then one observation time is

present in the assimilation window. In this general case we

can write the cost function over an assimilation window as


(
z0∶𝜏) =1

2

(
z0∶𝜏 − 𝝁

0,b
z

)T

D−1
(

z0∶𝜏 − 𝝁
0,b
z

)
+ 1

2

L∑
l=1

(
yl − Hx𝜃l)T R−1

(
yl − Hx𝜃l) . (A1)

The sum in the second term corresponds to the L observa-

tional times. The analysis values of the state variable are

obtained as

z0∶𝜏,a = argmin
z0∶𝜏


(
z0∶𝜏) , (A2)

which in this linear case corresponds to the Kalman equation

for the mean. Applying this equation requires writing

Equation A1 in a compact form. Let us define the extended

observations y1∶L ∈ LNy as

y1∶L =
[(

y1
)T · · ·

(
yL)T

]T

, (A3)

the extended observation operator H1∶L ∈ LNy×LNx as the

rectangular block-matrix

H1∶L =
⎡⎢⎢⎢⎣
H 0 · · · 0
0 H · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · H

⎤⎥⎥⎥⎦ , (A4)

and the extended observation covariance R1∶L ∈ LNy×LNy as

the block-diagonal matrix

R1∶L =

[R · · · 0
⋮ ⋱ ⋮
0 · · · R

]
. (A5)

Now, Equation A1 can be written as


(
z0∶𝜏) =1

2

(
z0∶𝜏 − 𝝁

0,b
z

)T

D−1
(

z0∶𝜏 − 𝝁
0,b
z

)
+ 1

2

(
y1∶L− H1∶Lx𝜃(1∶L))T

×
(
R1∶L)−1(y1∶L−H1∶Lx𝜃(1∶L)) . (A6)

All that remains is to express the variables at the times of

observations x𝜃(1∶L) in terms of z0∶𝜏 . This requires applying

Equation 14 in each line of the following block vector:

x𝜃(1∶L) =
⎡⎢⎢⎢⎣

x𝜃

x2𝜃

⋮
xL𝜃

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

M0∶𝜃z0∶𝜃

M0∶2𝜃z0∶2𝜃

⋮
M0∶L𝜃z0∶L𝜃

⎤⎥⎥⎥⎦ . (A7)

We can write Equation A7 in a compact form:

x𝜃(1∶L) = M̃0∶𝜃Lz0∶𝜏 . (A8)

This can be done if we define the operator M̃0∶𝜃L ∈
LNx×(𝜏+1)Nx as a block-matrix:

M̃0∶𝜃L =
⎡⎢⎢⎢⎣

M0→𝜃 M(1,𝜃)∶𝜃 0 · · · 0
M0→2𝜃 M(1,𝜃)∶2𝜃 M(𝜃+1,2𝜃)∶2𝜃 · · · 0

⋮ ⋮ ⋮ ⋱ ⋮
M0→(L−1)𝜃 M(1,𝜃)∶(L−1)𝜃 M(𝜃+1,2𝜃)∶(L−1)𝜃 · · · 0

M0→L𝜃 M(1,𝜃)∶L𝜃 M(𝜃+1,2𝜃)∶L𝜃 · · · M((L−1)𝜃+1,L𝜃)∶L𝜃

⎤⎥⎥⎥⎦ ,
(A9)

where M((i−1)𝜃+1,i𝜃)∶j𝜃Nx×𝜃Nx is a modified version of

Equation 15. It can be written explicitly as

M((i−1)𝜃+1,i𝜃)∶j𝜃

=
[
M(i−1)𝜃+1→j𝜃M(i−1)𝜃+2→j𝜃 · · ·Mi𝜃−1,→j𝜃Mi𝜃→j𝜃] .

(A10)

We are finally ready to write Equation 23 for the case of L
observational instances in the time window:


(
z0∶𝜏) =1

2

(
z0∶𝜏 − 𝝁

0,b
z

)T

D−1
(

z0∶𝜏 − 𝝁
0,b
z

)
+ 1

2

(
y1∶L−H1∶LM̃0∶𝜃Lz0∶𝜏

)T(
R1∶L)−1

×
(

y1∶L−H1∶LM̃0∶𝜃Lz0∶𝜏
)
. (A11)

This equation is solely in terms of z0∶𝜏 . Therefore, all the

expressions in sections 2.2 and 2.3 hold if one replaces the

elements {y,H,M0∶𝜏} with {y1∶L,H1∶L, M̃0∶𝜃L} respectively.
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