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ABSTRACT: There is an increasing demand for biocompat-
ible materials in biomedical applications. Herein, we report a
modified α-helical decapeptide segment from the cardiac
troponin C, which self-assembles into fibers with a secondary
β-sheet structure. These fibers cross-link via a novel
supramolecular threading mechanism which results in an
atypical stiff hydrogel (G′ ≈ 13 kPa). In this work, we provide
a first insight into the understanding of such remarkable cross-
linking mechanism, which will aid in the development of new
biomaterials with unique properties.
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Peptide-based hydrogels are a type of biomaterial that have
attracted considerable interest because they provide the

opportunity to introduce a large variety of functionality within
a biocompatible framework. Hydrogel formation originates
from the hierarchical self-assembly of peptides, driven by intra-
and intermolecular noncovalent interactions. The self-assembly
motif consists of fibrils/fibers, usually with a β-sheet secondary
structure, entangled in a three-dimensional macroscopic
network that traps water molecules.1 Fibril entanglement has
an important effect in the mechanical properties of a hydrogel
(i.e., highly entangled peptides fibrils lead to stiffer gels).2 In
practice, the amino acid sequences of most peptide forming
hydrogels are either artificially designed or naturally derived.
Naturally derived peptides are preferred from a biocompati-
bility perspective; however, when pursuing a particular
application, a modification of the native peptide sequence
may be required.
We recently synthesized a 23-residue peptide (1) (Figure 1)

that self-assembled into fibers with a β-sheet secondary
structure and formed hydrogels at acidic pH. Interestingly, 1
is derived from an α-helical sequence of the human cardiac
protein troponin C.3 Furthermore, the amino acid sequence of
1 comprises regions containing alternating hydrophobic and
hydrophilic amino acids similar to those in designed β-sheet
peptide hydrogels.1 However, in 1 there are also residues that
break the aforementioned residue alternations further high-
lighting their importance for understanding the mechanism of

hydrogel formation in 1. Toward this end, we set out to
determine if there is a shorter segment within 1 that drives
hydrogel formation and if this can be achieved at physiological
pH, an important characteristic when pursuing biological
applications. We focused our attention on the decapeptide
K17NEFKAAFDI26 (2) (Figure 1), as this contains alternating
hydrophobic/hydrophilic residues (except for Ala23); it has an
even number of acidic (Glu19 and Asp25) and basic (Lys17,21)
amino acids, which might lead to formation of hydrogels at
neutral pH (calculated pI = 4.14 and 6.56 for 1 and 2,
respectively)4 and it contains two phenylalanine residues which
are known to favor assembly through π−π interactions.5

Peptide 2 was successfully synthesized (Figure S1) via
automated Fmoc solid phase peptide synthesis protocols.
Peptide 2 formed weak hydrogels at concentrations ≥5 wt % in
a pH range between 3.8 and 4.8, that is similar to the pH range
in which formation of gels of 1 was observed. However, one
would have expected 2 to form hydrogels near to neutral pH,
as noted above. Therefore, peptides 2a and 2b (Figure 1 and
Figures S2 and S3) were prepared to gain further insight on the
effect of the terminal charged groups on hydrogel formation.
Peptide 2a contains a C-amidated terminal residue and peptide
2b comprises N-acylated and C-amidated termini residues.

Received: March 7, 2018
Accepted: June 19, 2018
Published: June 19, 2018

Letter

Cite This: ACS Biomater. Sci. Eng. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acsbiomaterials.8b00283
ACS Biomater. Sci. Eng. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
A

U
C

K
L

A
N

D
 o

n 
Ju

ly
 6

, 2
01

8 
at

 0
1:

16
:0

3 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

http://pubs.acs.org/doi/suppl/10.1021/acsbiomaterials.8b00283/suppl_file/ab8b00283_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsbiomaterials.8b00283/suppl_file/ab8b00283_si_001.pdf
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsbiomaterials.8b00283
http://dx.doi.org/10.1021/acsbiomaterials.8b00283


Both peptides (2a, 2b) formed hydrogels at concentrations
≥2.5 wt % in a pH range between 3.8 and 5.5, thus showing
that the terminal charged groups have little effect on
hydrogelation. This result suggests that the acidic side chains
of 2 prevent peptide assembly when deprotonated at neutral
pH possibly due to unfavorable electrostatic interactions. This
problem was specifically attributed to Asp25, given its isolation
from the rest of the ionic amino acids in the peptide chain
(Glu19, Lys17,21) (Figure 1). To address this issue, we set to
replace Asp25 in 2b. Substitution of Asp25 with hydrophobic
amino acids, such as Ala, Leu, etc., was not considered as these
will alter the alternating hydrophobic and hydrophilic amino
acids requirement for hydrogel formation. Thus, considering
that one of our goals is to form hydrogels at physiological pH
we prepared peptide 3 (Figure 1 and Figure S4) where Asp25

was substituted with His, a residue with an imidazole side
chain with a close to neutral pKa (∼6). Furthermore, His
attracted our attention given that it is an amino acid that has
been poorly studied in the field of peptide hydrogels.
Peptide 3 formed clear hydrogels within 5−15 min of

sample preparation at a 1 wt % concentration in 50 mM buffer
in the pH-range 5.8−8.0 (calculated peptide pI = 8.77) but
failed to form gels at concentrations lower than 0.5 wt %.
Furthermore, hydrogel formation was not affected by the
presence of physiologically relevant inorganic salts, such as
NaCl (75 mM), MgCl2 (25 mM), and CaCl2 (25 mM), but
gelation slowed down (gels form after 48 h of sample
preparation at RT) in the presence of divalent transition
metals (e.g., ZnCl2 25 mM) (Figure S5A). The latter result was
attributed to metal coordination by the His residues, which in
turn might force the peptide into a conformation that alters the
assembly process.6 Interestingly, in another experiment, we
observed that a gel preformed in the absence of salts remained
intact after being in contact with a solution of CuSO4 250 mM
for 24 h. The divalent copper ion forms strong coordination
complexes with His residues, hence the fact that hydrogel 3
remains intact in the presence of Cu2+ highlights the important
role of His in peptide assembly (Figure S5B).7

Rheology was used to study the viscoelastic properties of the
hydrogels described herein. A series of time sweep experiments
at constant shear strain (γ = 0.2%) and angular frequency (ω =
6 rad s−1) were carried out first at 37 °C. A large strain step (γ
= 1000%) followed after each experiment in order to
determine the recoverability of the system. The time sweep
experiments showed the formation of gels, which are
characterized by an elastic module (G′) significantly larger

than the viscous module (G′’), for 2 (5 wt %), 2a (2.5 wt %),
2b (2.5 wt %), and 3 (1 wt %) with a G′ of 15, 300, 1000, and
∼13 000 Pa, respectively (Figure 2 and Figures S6−S9). It is

important to note that the G′ of hydrogel 3 is ∼3-fold larger
than that of 1 (G′ ≈ 3.9 kPa)3 and it is larger than that of many
other analogue systems reported in the literature.1 Further-
more, only hydrogels 2b and 3 presented shear-thinning
properties, suggesting that N and C-terminal capping is
necessary to warrant the regeneration of the supramolecular
structure.
Next, a series of temperature sweep ramp (25−50 °C)

experiments were performed in order to determine the thermal
stability of the hydrogels. Peptide hydrogels 2a, 2b, and 3
presented a thermoreversible behavior characterized by an
increase in G′ when decreasing temperature, while an opposite
trend was recorded with an increase in temperature (Figure 2
and Figures S6−S9). A similar behavior has been reported for
other peptide hydrogels, where increases in G′ appear to be

Figure 1. Peptide sequences discussed in this work.

Figure 2. Storage modulus (G′) of 1 wt % peptide 3 hydrogel in 50
mM Tris buffer pH 7.4 as a function of time (6 rad.s−1, 0.2% strain).
Region I, II, and III correspond to time sweep at constant
temperature experiments and region IV corresponds to a temperature
ramp experiment. Vertical dashed lines indicate the time point when a
large strain step (γ = 1000%) was applied.
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driven by an increase in conventional interfibrillar cross-links.8

The change in G′ with temperature was larger for peptide 3
(up to 4-fold) than for 2a and 2b (up to 2.5-fold), and this
could be attributed to immobilization of a larger number of
fibers per cross-link for the threaded fibers relative to the single
fibril/fiber nanostructure. An angular frequency sweep experi-
ment at constant shear strain (γ = 0.2%) showed that both G′
and G″ are independent of the frequency, up to 10 rad s−1 for
2 (Figure S10) and up to 100 rad s−1 for 2a, 2b and 3 (Figures
S11−S13). The linear viscoelastic regime of the system was
stablished from shear strain amplitude sweep experiments (ω =
6 rad s−1), which showed a constant G′ and G″ up to γ = 1%
for all the peptide hydrogels (Figures S14−S17).
Finally, we demonstrated that exposure of hydrogel 3 to a

CuSO4 solution as described before, did not have a negative
effect on the stiffness of the gel, but rather increased it. (Figure
S18).
The secondary structure of hydrogel 3 was assessed by

FTIR. The IR spectrum of a 1 wt % gel of 3 in H2O showed a
peak at 1614 cm−1 (Figure 3) and a shoulder at 1622 cm−1

(determined after fitting the IR signal to two Gaussian curves,
Table S1), which agrees with a β-sheet structure.9 Importantly,
the IR spectrum of 3 in D2O did not show a significant shift
(1624 and 1616 cm−1) relative to the peaks observed in H2O
(Figure S19), which suggests that these absorption bands
correspond to vibrations of the amide groups in the peptide’s

backbone and not to the amide of Asn18 or of the CC in the
imidazole ring of His25.10 Hence, the two signals observed in
the FTIR were assigned to β-sheet assemblies with different
twist angles.11 The additional signal observed at ∼1671 cm−1

arises from a strong contribution from trifluoroacetate
counterions.12 The IR spectra of 2, 2a, and 2b in D2O showed
a signal at 1615 cm−1 and a shoulder at 1630 cm−1 but of lesser
intensity than those of 3 (Figure S20), thus confirming a β-
sheet structure.
As mentioned before, peptide 3 did not form gels at

concentrations lower than 0.5 wt %, this was evidenced by a
decrease of β-sheet structural contribution in the FTIR
spectrum (Figure 3). Furthermore, the circular dichroism
spectrum of a hydrogel of 3 exhibited positive signals at 205
and 240 nm and a negative signal at ∼220 nm (Figure S21),
which were attributed to n→ π το π→ π* aromatic transitions
and a β-sheet structure, respectively. However, the peak at
∼220 nm was not observed for 0.1 and 0.5 wt % solutions of 3,
which suggests a predominant random structure.13

Transmission electron microscopy (TEM) images of 3
showed a fibrillar structure typical of peptide hydrogels (Figure
4 and Figure S22). Remarkably, the TEM images exhibited
what appears to be a fiber threaded into another fiber, a feature
that has not been reported to date to the best of our knowledge
in the peptide hydrogel field. In TEM images of samples
prepared from a diluted solution of 3 (100-fold dilution from a
0.75 wt % solution) (Figure 4) the threaded fiber appeared
twisted with a maximum diameter of 12.0 ± 0.8 nm and a pitch
of 149.0 ± 1.1 nm. The TEM image showed that the threading
fiber was composed of two intertwined protofibrils with a 5.4 ±
0.2 nm diameter and with an average interfibril separation of
3.4 ± 0.6 nm. This space is wide enough to fit a fiber
composed of a bilayer of assembled β-sheet strands, which
have a reported width of 2.7 nm.14 Additionally, the fiber
diameter at the point where the fibers thread was wider (14.6
± 0.3 nm) than the average diameter in the remaining sections
of the fiber (12.2 ± 1.2 nm), which again agrees with the
presence of a threaded fiber (Figure S23). Cryo-TEM images
of 3 (Figure S24) showed similar features to those observed in
TEM.
By way of contrast, TEM images of 2a showed individual

twisted fibrils with a diameter of 3.6 ± 0.7 nm (Figure S25)
and 2b showed an untwisted laminated fiber morphology with

Figure 3. Transmission FTIR spectrum of a hydrogel of 3 at 1.0 (solid
black line) and at 0.5 (dashed black line) wt % in H2O. The cyan and
red dotted traces correspond to Gaussian plots fitted to the IR peak of
3 at 1 wt %.

Figure 4. (Left) Transmission electron micrographs of a 100-fold diluted sample of 0.75 wt % hydrogel of 3 stained with 2% uranyl acetate, a =
12.0 ± 0.8 nm and b = 14.6 ± 0.3 nm (threading point). The black scale bar corresponds to 50 nm. (Right) Intensity vs q plot of the SAXS profile
at room temperature of a hydrogel of 3 prepared at 1 wt % in buffer. (Plot inset) log I(q) vs log q plot of the Porod region of the SAXS profile.
Dashed tangential lines have been added to highlight the presence of peaks.
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fibrils with a diameter of 3.9 ± 0.2 nm (Figure S26). Individual
fibers of 2 prepared from diluted samples could not be
observed, which can be explained by the very high peptide
concentration (<5 wt %) of peptide required for gel formation,
something that leads to heavily stained aggregates. Moreover, it
is important to keep in mind that TEM images are 2D
projection images of the sample hence a 3D interpretation is
not straightforward, and that the sample preparation required
for TEM imaging (dilution, surface deposition and drying or
freezing) especially with negative staining may alter sample
morphology relative to the one in the solution state.15 Hence,
to validate the atypical morphologies of 3 observed in TEM we
proceeded to study the structure of a hydrogel of 3 at 1 wt %
by SAXS. A plot of the scattering intensity, I, as a function of
the scattering vector, q, in logarithmic scale is shown in Figure
4. Based on the TEM images we depict fibers of 3 as thin rods.
In this context the threading fibers will be rods widening in
those sections where fiber threading occurs. Hence, the SAXS
profile was fitted to the Guinier-Porod model which is
particularly suited for the analysis of asymmetric objects
(e.g., rods).16,17 A diameter of 116.2 ± 2.0 Å (Rg = 41.1 ± 0.7
Å) was calculated (see the Supporting Information), which is
close to the average diameter of the fibers observed in TEM.
Additionally, three broad peaks were detected in the Porod
region of the I/q plot. These peaks were more clearly observed
when the SAXS data was represented in a log I(q) vs log q
graph (inset plot in Figure 4). Using the position of the peaks’

maximum (q) and the Bragg law (d= 2π/q) three distances
corresponding to 65.8, 40.6, and 25.7 Å were calculated.15

The 65.8 Å distance comes close to the sum of the length of
the peptide in an extended β-sheet conformation and the width
of a bilayer of stacked β-sheets. Interestingly, the 65.8 Å
distance also comes near to half the width of the threading
fiber in the threading zone (14.6 ± 0.3 nm), in accord with the
presence of the threading point observed in TEM (Figure 4).
The second peak (40.6 Å) approximates the in-plane length of
the 10-amino-acid peptide in the extended β-sheet con-
formation (38.6 Å) (Figure 5A, C), which is close to the
diameter of the single fibrils observed in TEM. The value of
25.7 Å is attributed to a strand distance repeat which is
consistent with a cross- β-sheet structure.18 Interestingly, a
diameter of 77.9 ± 3.0 Å (Rg = 27.6 ± 1.0 Å) was calculated
(see the Supporting Information), when SAXS data of a
hydrogel of 3 at 5 wt % was fitted to the Guinier-Porod model
described before (Figure S27). Furthermore, in this case no
other signals were observed in the Porod region. The 77.9 Å
diameter approximates half the length of the threading fiber in
the threading zone indicated above. Thus, we conclude that
the supramolecular threading is the major morphology in the
macro network at high peptide concentration, hence
suggesting that threading is a concentration-dependent
phenomenon.
X-ray diffraction of a dried hydrogel sample of 3 presented

reflections at 4.7 and 9.8 Å (Figure S28), which are
characteristic of β-sheets and represent the interstrand spacing

Figure 5. Model of fibril formation for peptide 3. (A) Two stacked (top) and three adjacent unshifted antiparallel β-sheets (bottom). (B) Two
stacked (top) and three adjacent antiparallel shifted β-sheets (bottom). Stacked and adjacent β-strands are viewed along the fibril axes and through
an axis perpendicular to the fibril axis, respectively. Relevant residues’ interactions are enclosed in dotted red ovals. (C) Top view of a longer fibril.
(D) Schematics of fibrils threading a fiber. Figures A−D are represented at different scales. The peptide backbones are rendered as ribbons, and
atoms colored as follows: nitrogen (dark blue), oxygen (red), and carbon (light blue).
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and the spacing between β-sheets stacked in a bilayer within
the fibril, respectively.19 Another reflection at 3.8 Å was also
observed, which has been previously assigned to the Cα−Cα

spacing of twisted β-sheets.20

Considering the structural information discussed herein, we
propose the following molecular model of fibril formation of 3.
First, the 9.8 Å reflection observed in XRD agrees with the in-
plane distance of a bilayer of planar β-strands (Figure 5A),
stacked by intermolecular interactions of residues in the
hydrophobic face of the amphiphilic peptides. Second, we
propose that the peptide adopts an antiparallel β-sheet
arrangement with an interstrand distance of 4.7 Å (Figure
5A). We envision that a parallel structure will align the
positively charged Lys17,21 residues of adjacent parallel strands,
thus creating a strong unfavorable electrostatic repulsive
interaction. Moreover, it is worth noting that an antiparallel
organization will still lead to an unfavorable electrostatic
interaction between the Lys21 residues of adjacent β-sheets.
Thus, we suggest that such unfavorable interaction will be
reduced by a registry shift between adjacent antiparallel β-
sheets. This β-strand displacement not only separates the Lys21

residues but it also increases the number of possible
interactions among the Phe residues present in the hydro-
phobic face of the peptide bilayer (Figure 5B).
A model for fiber threading is more complex to elucidate.

Our suggestion is as follows. We propose that peptide 3
initially self-assembles into fibrils which hierarchically interact
to form a fiber. Two scenarios could explain fiber threading:
(1) two sets of intertwining fibrils cross paths and hence
threading occurs (interthreading) or (2) there is a nascent
fibril/fiber formation from within the spacing between two
intertwining fibrils (intrathreading). The fact that threaded
fibers were observed in TEM images of highly diluted samples
of peptide 3 hydrogel supports the intrathreading mechanism,
because the probability of two fibers crossing paths should be
minimal under high dilution. However, fibers that were in the
process of intertwining were also observed in TEM (Figure
S22), hence the interthreading mechanism cannot be
discarded.
At this point, one can conclude that fibril supramolecular

threading is a contributor for the high stiffness of hydrogel 3,
especially when considering the relatively low stiffness of 2b
where fibril-threading was not detected. Unlike their polymeric
counterparts, where chemical or physical cross-linking confers
the elastic properties of gels, the presence of topological
interactions among fibrils/fibers and or branching nodes in
peptide hydrogels has been recognized as the feature that leads
to gel formation.21,22 In this work, we uncovered another type
of cross-linking phenomena, fiber threading, which emerges as
a possible tool to enhance the mechanical properties of the
typically soft peptide hydrogels. More work is underway to
better understand the molecular basis that drives fibril
threading. Such a knowledge could facilitate discovery of
biomaterials possessing stiffness that is optimum for biological
applications.
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