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Abstract

The discovery of flux controlled memristors (Memory Resistor) by Leon Chua in 1971 as
the missing element relating flux to charge, opens up possibilities for the development of a
novel class of dielectrics over the coming years. With memristive components there is a
departure from linearity; and components exhibit nonlinear characteristics. These properties
enable the memristive elements to be used for the successful modeling of a number of physical
devices and systems. The Bond Graph is one of graph theory modeling techniques, whose
graphical description directly reveals the allocation and management of energy in the system
(storage and dissipation) as well as the interconnection structure through which internal and
external power exchange occurs via power ports. The graphical expansion of bond graph with
the causal relationships among the system variables leads into a formulation of different types
of mathematical models such as Port-Hamiltonian Systems. Incorporation of memory based
elements leads to circuits with far more complex behaviour than normal dielectrics display.
System dynamics may be studied using differential algebraic models arising from descriptor
representations of the derived Port-Hamiltonian systems through Bond graph analysis.

A derivation of unique generic Input-State-Output Port-Hamiltonian (ISO PHS)
formulation from Bond graph representation of memristive circuits is proposed, which is
suitable for simulation as well as providing engineering insight through analysis. In the
proposed framework, the dissipation field splits into resistive and memristive parts in order to
derive the Input-State-Output Port-Hamiltonian expressions and discuss different classes of
systems of the proposed framework. Applications of the generic bond graph ISO PHS
formulation using case studies with a memristive element are presented as examples of the
proposed analysis. Consistency of the formulation is shown with transfer function formulations
as well as with hybrid systems modelling. The nonlinear bond graph port-Hamiltonian
methodology has applications in nonlinear network analysis and enables the formulation of

input-output models of complex components embedded in non-linear circuits and systems.
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Chapter 1: INTRODUCTION

11 Background

Modelling and simulation are of fundamental importance to the engineering design
process. Design engineers need to provide an accurate mathematical description of systems
with adequate flexibility in their specifications to expedite the design process. Most frequently,
the mathematical models of systems contain different hardware components. The ability to
accurately model these types of systems is therefore a necessity within the engineering

community.

In standard R, L, and C system analysis, voltage and current vectors satisfy linearly
independent relations (Kirchhoff’s voltage and current laws). There is also a single variable
relation between flow (current), effort (voltage), generalized momentum (flux) and generalized
displacement (charge); these are related by an analysis method called Bond Graph theory (BG),
which provides a domain-independent graphical description of the dynamic behaviour of
physical systems. The approach enables systems from different domains (electrical,
mechanical, hydraulic, acoustical, thermodynamic, material) to be described in the same

framework. Bond graph analysis is based on energy and energy exchange.

Port-Hamiltonian system is a framework that provides the geometric description of
network models of physical systems. It turns out that port-based network models of physical
systems immediately lend themselves to a Hamiltonian description. There has been a relatively

recent interest in port-Hamiltonian systems and their connection with bond graph models.



There are additional variables associated with memory-based circuits. The discovery of
flux controlled Memristor (Memory-Resistor) by Leon Chua in 1971 as the missing element
relating generalized momentum with generalized displacement promises the development of a
new class of novel nano-dielectrics over the coming years. The memristor properties
incorporation in circuits containing R, L and C components leads to circuits with far more
complex ‘emergent’ behaviour than normal dielectrics display. From a modelling perspective,
such circuits can also mimic dielectric responses of biological materials such as dielectrically
excited membranes and neurons. Owing to the non-linearity associated with the response of
memristive components, their dynamics need to be studied further. Using differential algebraic
models arising from descriptor representations derived from Bond Graph analysis associated

with the underlying circuit topology is the focus of this project.

1.2 Statement of Problem

The Hamiltonian structure offers a systematic approach for the analysis of the resulting
dynamics[1]. A unifying geometric and compositional framework for modelling complex
physical network dynamics as port-Hamiltonian systems from bond graphs was presented in
many research studies, as mentioned in the literature and as illustrated in Figure 1.1. This
combination with graph theory, and its applications in control theory systems is a very
promising way forward for further research. On the other hand, an extension of the existing
port-Hamiltonian formalism with the inclusion of generalised memristive elements is proposed
also by many researchers such as Jeltsema [2]. Besides being a resistive element, a memristor
also exhibits dynamics, and as a result, the state space manifold is augmented by the states

associated with the memristive elements.

The view that there are physical phenomena that justify the introduction of a memristor
to be added to the small set of fundamental bond graph elements has not been shared by most
members of the bond graph community. Furthermore, as the literature shows, many studies
have been conducted using the memristor as a port-Hamiltonian element. In addition, several
studies as mentioned in next chapter propose the use of the port-Hamiltonian formalism for
generalised bond graph analysis. However, there has been to the author’s knowledge, only one
study mentioning the memristor as a bond graph element[3], without presenting an explicit

formulation. This work will focus on providing this connection between memristive elements



particularity memristor devices and bond graph modelling as one of the bond graph
fundamental elements with port Hamiltonian formulation to formulate the resulted descriptor
equations. The work bridges the gap between causal bond graph formulations and port-

Hamiltonian formulations of nonlinear systems with the presence of the memristive behaviour.

Port-Hamiltonian
System

Port-Hamiltonian with Derivation of
Memristive Elements Port-Hamiltonian from
Bond Graph

Port Hamiltonian Formulation Of
Memristive Systems Using A Bond
Graph Analysis

Figure 1.1 The connection between Memristor, Bond graph and Port Hamiltonian

formulation (aim of research)

Figure 1.1 shows that previous research was conducted to describe the memristor as a port
Hamiltonian element and also the studies to extract port Hamiltonian formulation from bond
graph modelling are considered sufficient in a certain way. However, there is a lack-of
connection between bond graph and memristive elements; to be able to analyse the memristor

in a new domain.

1.3 Study Aims

The project aims are to introduce a new method to analyse memory-based circuit elements
using a bond-graph approach. The proposed methodology will be able to directly obtain
mathematical description for memristive systems enabling behavioural simulation of
memristors in an object-oriented manner. Thus, the next question is how we could adopt the




developed bond graph in control theory as bond graph depends on the power flowing in the

structure. So, the next aim is to express the resulting output into state space models and extract

Input-State-Output port Hamiltonian formulation models as energy. The power flow is a

common variable with the bond graph, which can be used to gain a better understanding of the

system behaviour.

1.4 Research Objectives

The following objectives were set at the beginning of this study:

1.

Carry out a survey of the current literature on memristive elements and the different circuit
analysis for analyzing memristive systems, in particular bond graph approach; and then, to

discuss the ability to formulate the output in the port Hamiltonian formulation.

. Find solutions to networks consisting of complex interconnections of both conventional and

memory-based circuit elements.

. Derive a formulation of the memristor as a bond graph element, assuming that the storage

elements are linear and in integral causality.

. Attempt to design a simulation library using the SIMULINK/MATLAB programming

environment, to simulate the bond graph analysis using memristive elements.

. Derive port-Hamiltonian system equations from bond graph analysis, to be used to model,

analyse, and simulate memristive networks.

. Investigate the advantages and limitations in the non-linear formulation of bond graph

analysis and Port-Hamiltonian systems using different system classes.

. Derive transfer function for memristive system from bond graph.

. Derive a generic formulation of descriptor for the memristive bond graph and the resulted

port Hamiltonian expression without any assumptions to explore different types of systems.

. Explore some new application areas of memristive networks, their use as memory elements,

as classifiers, as elements to emulate the function of superconducting circuits and as models

of neuromorphic circuits.

10. Formulate an expression for hybrid memristive systems with application.



1.5 Contribution of The Thesis

There are several novel aspects presented in this thesis:

e The use of memristor device as a bond graph element and propose a new system junction
structure.

e Derivation of a new state space expression of memristive system from bond graph.

e The adaptation of the resulted nonlinear bond graph into port Hamiltonian formulation.

e The work bridges the gap between causal bond graph approach and port-Hamiltonian
formulations of nonlinear systems with the presence of the memristive behaviour.

e The use of the proposed junction structure matrix in deriving transfer function for
memristive system using bond graph.

e Attempt at linearizing non-linear memristive bond graph.

e Building a bond graph library by adding memristor building block.

e Derivation of an expression for hybrid sytems that consist of memritor devices including
the use of controlled junctions.

e The unique, implicit or explicit system equation derived from the memristive bond graph
and describing different system classes.

1.6 Thesis Outline

This thesis is structured around six main topics: Introduction, literature review on
memristor foundation, bond graph analysis approach and port-Hamiltonian formulation
background, the provision of new investigations into using bond graph algorithms within
memristive systems, the analysis of results and their formulation into port-Hamiltonian
framework then applying it to case studies, and finally the generation of conclusions and the

provision of directions for future work. The chapters are organised as follows:

Chapterl gives a brief research background about the problem and discusses the methods
adopted to do the research. The aims and objectives of this research are presented in this chapter

as well.

Chapter 2 presents a literature review, which focuses on some previous studies related to the
development of memristor theory and manufacturing as well as current simulation

environments. Moreover, some information related to bond graph analysis, the foundations,



generalisation, and relevance to simulations is provided. This approach further examines the
possibility of using the Port-Hamiltonian system formulation to simulate memristive systems.
The derivations from bond graph are mentioned in this chapter, relating memristor
representations with bond graph and port-Hamiltonian formalism discussing a simulation

environment using MATLAB/Simulink for simulating memristors.

Chapter 3 focuses on the theoretical proposal of memristive elements by Leon Chua, then a
review of some previous studies related to discussing the features of memristive elements. It
will be followed by a short list of some unique properties as well as a few applications to justify
the significance of the element to be incorporated into the circuit analysis.

Chapter 4 gives a background to the current methods, used to analyse memristor systems,
reviewing various circuit analysis methods such as standard methodologies (Nodal and Mesh
analysis). Following these methods, an introduction is given to the state-space formulation and
some modern development based on port theory. As bond graph analysis is a unified platform
for all physical systems, that will be used to adopt memristor as a bond graph element. Then,
the theoretical and technical background of the proposal is introduced for incorporating
memristor in bond graph and introducing unique Junction structure matrix for such nonlinear
systems. After this, a linearization attempt on the resulted bond graph will be discussed as well.
Furthermore, a new proposal is introduced to calculate directly the transfer function for
memristive systems as an important part of control theory. Finally, a memristor mathematical
model in MATLAB/SIMULINKTwm is built that enables the study of the dynamic behaviour of

a memristive system within bond graph environment.

Chapter 5 introduces the Dirac structure representation of port-Hamiltonian systems to obtain
the basic idea of modelling the port-Hamiltonian system. Then the possibility of using the Port-
Hamiltonian system formulation is examined for simulating memristive systems and the
derivation from bond graph, relating memristor representations with bond graph and port-
Hamiltonian formalism. An expression is then defined describing Input-state-output port-
Hamiltonian systems (1ISO PHS) with memristive elements using a nonlinear BG formulation

with application in two case studies.

Chapter 6 presents in more detail the theoretical consideration of implicit and explicit states

space model descriptors. This chapter proposes a new method for constructing a system with



memristive elements in bond graph modelling platform. The generic nonlinear bond graph of
systems with memristive elements is then investigated without any assumptions to reduce the
mathematical complications. This is used to derive an explicit equation describing all possible
modes of operation to obtain models in the form of Input-State-Output Port-Hamiltonian
Systems from causal nonlinear bond graph models. Furthermore, six different classes of
nonlinear memristive systems are explored to obtain state space formulations and then extract

port Hamiltonian expressions for most of the classes.

Chapter 7 presents several case studies to practically demonstrate the proposed bond graph
method presented in the previous chapter, and show that a memristor has a natural place in bond
graph circuit analysis. The proposed approach is investigated in the neuromorphic field by using
Hodgkin-Huxley neuron model, and linear integrated circuits presented by operational
amplifier circuits, as well as Josephson junction as a sensor building block. A proposal of the
non-linear gains and loss diodes in dielectric circuits can be replaced with memristor elements
and apply the analysis, using memristive circuits with a gyrator, and the effect of memristor in
a circuit with coupled resistors. In this chapter, also a general hybrid bond graph with memristor

IS investigated as a further area for study.

Chapter 8 provides a summary of the project’s outcomes and some concluding remarks.

Moreover, recommendations for possible further developments and future work are mentioned.



Chapter 2: LITERATURE REVIEW

2.1 Introduction

This research brings together several fields and ideas and consequently a variety of topics
that were reviewed in the literature. Circuit analysis methods are briefly reviewed as the
foundation for the chosen bond graph method used for constructing a systems model in the
current work. Then the foundations of the bond graph, the development and simulation software
are reviewed in some detail. As this work bridges the gap between memristor elements with
bond graph, the discovery of memristor elements is then addressed. The attempts of
manufacturing different device that claim to be as close as Chua memristor behaviour is stated,
with software simulations that mimic the memristor characteristics. The incorporation of bond
graph methodology with memristors will be analysed according to its energy and how it will be
formulated in the form of port-Hamiltonian formulation. The origins of this formulation and its
connection with bond graph from one side and with memristor in the other side will be reviewed
next.

This research, however, focuses on memristive system analysis using bond graph and the
resulted output formulated in port-Hamiltonian equations, that can be extracted directly from
bond graph, itself. This shows that as far as the author knowledge there is no research done in
that field.



2.2 Circuit Analysis

It is generally accepted that circuit theory started with the formulation, of Gustav
Kirchhoff’s current and voltage laws in 1845. This general formulation establishes stability
conditions of the currents and voltages that occur in a circuit. The innovative efforts, in the
early 1800s, of Volta, Ampére, Ohm, Faraday, Henry, Siemens, and later Maxwell led to rules
that outline the current-voltage relations of circuit elements, which at that time were the resistor,
inductor, and capacitor. Kirchhoff’s laws, together with the definitions of circuit elements,
constitute the foundation of circuit theory. Everything about circuits: analysis methods, analytic
properties, theoretical limitations, design techniques, can be derived from first principles based
on these laws and definitions. In 1881, Maxwell, put circuit analysis within a more
mathematical foundation. He introduced node equations and mesh equations to define circuits
by a set of maximally independent linear equations. Gilbert [4] was perhaps the first to introduce
the new approach to oil and gas wells, but Mach, Proano, and Brown [5], and then Brown [6]
popularised the concept, this is now typically referred to as nodal analysis within the oil and
gas industry. Though mesh equations are applicable only to planar circuits, node equations with
the modification that came later, can be used to describe any circuit and are the ones adopted
in all circuit simulation programs today. This approach is currently known as modified nodal
analysis. As circuits grew in size and complexity (at least by 19th century standards), the idea
of “equivalent” circuits as a means to simplify circuit analysis became attractive. Thévenin
showed in 1883 that a linear circuit across a pair of terminals, can be represented by an

equivalent circuit involving a single voltage source in series with a resistor or an impedance.

In 1926, Norton extended the idea for a new representation consisting of a current source
in parallel with an impedance to compute the transient response of circuits when the excitation
IS a pulse. Heaviside, in 1880-87, introduced operational calculus, which led to the
representation of voltages and currents as complex variables as alternating current became the
standard mode of generating and distributing electricity at the turn of the 20th century,
Steinmetz came up with the idea of using complex numbers to represent voltages and currents
in the sinusoidal steady state. The concepts of impedance, transfer function, magnitude and
phase enabled, and circuits to be analysed entirely in the frequency domain using complex

algebra. Inspired by Brune’s work, Darlington in 1939 derived the necessary and sufficient



conditions for a rational function to be realizable as the transfer function of a lossless two-port

terminated in a one-ohm resistor.

The nonlinear circuit theory is more recent, and has at its centre the properties and the
study of non-linear devices as well as the development of new analytical techniques. Efforts
have been made to develop computational algorithms to simulate and design very-large-scale
integrated (VLSI) circuits, both small-signal and large-signal, linear and nonlinear. The
popularization of the personal computer, the Internet, the cellular phone and personal
entertainment devices, owes much to the work of circuit theorists who developed efficient and
reliable computational tools to help engineers design complex circuits that “work the first time”.
The next frontier, as far as circuit theory is concerned, seems to be the design of circuits that
operate in the GHz or even Terahertz (THz) range, and the harnessing of properties of nonlinear

circuits in a more systematic manner.

2.3 The Memristor (Memory-Resistor) Element

2.3.1 History on The Memristor Discovery

There are only three independent two-terminal passive circuit elements: the resistor R,
the capacitor C and the inductor L. However, when Leon Chua in 1971 introduced the general
nonlinear mathematical relations describing the dynamics of this device, he put the basis for
linking the charge g that flowed through a circuit with the flux ¢ in the circuit so that, dp =M
dg which is now known as the standard equation for the memory resistor or memristor. It is
worth noting, however, that this concept was mentioned even before Leon Chua‘s publication
on the Memristor in 1971, by Professor Widrow from the University of Stanford [7], in 1960.
He was the one who developed a new circuit element and named it the —Memristor. A
memristor is made from a device with three-terminals, two of them have a controlled
conductance, with the control provided by a third terminal. In 1968, Argall published a paper
with the title -“Switching phenomena in titanium oxide thin films”[8], which shows similar
results to that of the memristor model proposed by Stanley Williams and his team from HP lab

forty years later.

During the 1960's, Prof. Chua, from Purdue University established the first

mathematical principles of nonlinear circuit theory. His work is considered to have led him in
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1971, to make a prediction of the need for the introduction of a fourth fundamental circuit
element [9], which is characterised by relating the charge and flux linkage with each other (there
was no element linking them before that time). He introduced the concept that a 'memristive
device' has a state variable (or variables), indicated by w, that describes the physical properties
of the device at any time.

After this announcement in 1976, Chua and Kang published another paper entitled-
“Memristive devices and systems” [10]. That work takes a broader view to the theory of
memristor and memristive systems by proposing a memristive elements family, which is
extended to memcapacitor and meminductor elements. This approach exposed other
behavioural characteristics of memristor but at that time this was just based on mathematical
analysis that was not supported by the capabilities of the physical devices manufactured at the

time.

About twenty years later, some efforts to manufacture a real memristor with regards to
Chua’s Memristor theory was made in 1990 [11], by Thakoor et al., to establish a tungsten-
oxide variable-resistance device electrically reprogrammable. It is not clear if this memristor
has any links with Chua‘s Memristor [9]. Then four years later, in 1994, Buot and Rajgopal
published an article titled-“Binary information storage at zero bias in quantum-well diodes”
[12]. This paper recognised current—voltage features of the memristor in quantum-well diodes.
It is currently believed that no straightforward relevance to Chua‘s memristor could be made in
that work [9]. Beck etal., of IBM*‘s Zurich Research Laboratory in 2000, defined a regenerated
resistance switching effects in thin oxide films [13]. This memristor has the same hysteretic

characteristics of these switches which are similar to the memristor proposed by Chua.

In 2001, Liu et al. [14], from the Space Vacuum Epitaxy Centre at the University of
Houston, presented during the “non-volatile memory” conference held in San Diego,
California, the significance of oxide bilayers to obtain high-to-low resistance ratio. Apart from
each of the devices cited above, it is thrilling to spot that between 1994 and 2008 there were
several devices developed with a function comparable to that of the memristor, but only the HP
scientists were successful in bonding their work with the memristor hypothesized by Chua [15].
Currently manufactured memristive devices are based on the postulations found in the original
work by Chua. It is also motivating to note that there are devices with similar behaviour to a
memristor mentioned by Krieger et al., in 2001 [16], Liu et al., 2006 [17] ,Waser and Masakazu,

11



2007 [18], and Ignatiev et al., 2008 [19]. Other research groups have proposed different
memristor implementations. Nearly few implementations follow a metal-insulator-metal
(MIM) structure, such as in 2010 [20] another memristor device have been combined of two-
terminal chalcogenide based devices containing Ge2Ses and Ag. While in the same year [21],
a research was presented to model the memristor using the bipolar and unipolar resistive-
switching modes in NiO cells concept. After that, Hafnium oxide-based resistive memory
devices on copper bottom electrodes was studied by [22]. Then in March 2012, a team of
researchers from HRL Laboratories and the University of Michigan announced the first
functioning memristor array built on a CMOS chip [23]. In 2017 [24] a demonstration of a fully
foundry-compatible memristor, it is all-silicon-based and self-rectifying that negates the need
for external selectors in large arrays with a p-Si/SiO2/n-Si structure. But before this year, a
memristor with the simple structure of Ta/viologen diperchlorate terpyridyl-iron polymer (TPy-
Fe)/ITO is fabricated to simulate the functions of the synapse, which is considered as the basic

unit for learning and memory.

2.3.2 Memristor Foundation as Nano-Element

Thirty-seven years after Leon Chua‘s proposal, in 2008 the memristor in a device form
was manufactured by Stanley Williams and his team in the Information and Quantum Systems
(1QS) Lab at HP. Dmitri Strukov, Gregory Snider, Duncan Stewart, and Stanley Williams, of
HP Labs, published an article [25], identifying a connection between the two-terminal
resistance switching behavior observed in nanoscale systems and Chua's memristor. They
proposed the model that is described in detail in chapter three of this thesis. Other types of
memristor were claimed to be developed by other researchers, such as Erokhin and Fontana,
who claimed to have developed a polymeric memristor [26] preceding the titanium-dioxide
memristor developed by Williams* group.

Since the declaration of Williams’ group, many studies to examine the major features of
the memristor and its applications in different circuit designs have been proposed. In 2009,
Pershin and his colleagues published an article [27] recognising memristive behavior in
amoeba's learning. A major breakthrough was made in January 2009, when Jo et al., of the
University of Michigan published an article [28] discussing an amorphous-silicon—based

memristive material as having to be integrated within CMOS devices. Subsequently scientists
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at NIST [29] reported that they had invented a non-volatile memory using a flexible memristor
that is both inexpensive and low-power. This has catapulted the subject at the forefront of the

21% century electronic revolution.

2.3.3 Memristor Simulations

The literature on memristor models in various simulation environments has shown a similar
growth in attention. Many memristor models have been written for simulation and
characterization of memristor and memristor-based systems. Diverse programming
environments and languages such as SPICE, Verilog-A, MATLAB, and Simulink have been
used for these purposes. For example, in [30] [31] [32] [33] [34] [35] [36][37], SPICE models
have been presented to capture simple behavior of the memristor. MATLAB and Simulink
models are also presented in [38][39][40][41][42], enabling behavioural simulation of
memristors in an object oriented manner. Verilog-A simulations have been presented in [41]
[43][44]. In addition, a few memristor emulator designs were presented in [45] [46] [42]and
in MATLAB/simscape [47].

2.3.4 Incorporation of Memristors in Circuit Analysis

The analysis of circuits that combine memristive elements started after Chua published his
paper in 1971 [9]. Lam, in 1972 presented a paper titled- “formulation of normal form
equations of nonlinear networks containing memristors, and coupled elements” [48], he
analysed RLCM network using Kirchoffe’s current law (KCL) and Kirchoffe’s voltage law
(KVL). In 1979, Hajj and Skelboe, discussed a piecewise-linear network analysis for RLCM
network [49]. Modelling of some semiconductor devices with large signal excitation was
proposed by Sansern in 1979 in his doctoral thesis from Durham University. His model
verified the capability of calculating diode behaviour by employing modified Bessel functions
together with nodal analysis.

Thirty years later, Itoh and Chua in 2008 applied KCL and KVL laws on the circuit’s nodes
and presented in state space form, a fourth-order canonical memristor oscillator [50]. In 2010,
a modified nodal analysis was applied on nano-scale memristor circuits formulating the circuit

into a first-order differential-algebra equations (DAE), by Yu and Fei [51]. During the same
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year an HP memristor mathematical model for DC and periodic signals was proposed by
Radwan et al. [52].

In 2011, Talukdar and his colleagues established a state space model of a memristor based
Wien "A' oscillator considering a nonlinear ion drift within a memristor [53] and recently also
a state space analysis of memristor based series and parallel RLCM circuits was carried further
in [54][55]. Then Belousov and Liman in 2011, suggested an analysis of meminductor and
memcapacitor circuit [56]. In 2011, Riaza presented several semistate or differential-algebraic
models arising in nodal analysis of nonlinear circuits including memristors [57], and Torsten
et al. presented in the European conference of circuit theory and design 2011, a novel
approach to describe and analyse memristive circuits based on a Volterra series representation
of the essential time functions of the circuit [58].

During 2012, a coupled electromagnetic field circuit model was simulated and familiarised
by using the modified nodal analysis by Baumanns through her PhD dissertation [59]. In the
same Yyear, Valeri and Kirilov applied Kirchhoff’s laws in a series circuit formed from two
memristors and a voltage source [40]. In 2012, Zhi-Jun and Yi-Cheng, proposed a novel
inductance-free nonlinear oscillator circuit with a single bifurcation parameter. This circuit
composed of a twin-T oscillator, a passive RC network, and a flux-controlled memristor, then
an analysis was performed by solving a system of first-order differential equations [60].

Kaji and Chua in 2013 published a paper on the composite characteristics of the parallel
and serial connections of memristors [61]. Subsequently, Kaji et al. from Chonbuk National
University in 2013, investigated the relationships between flux, charge and memristance of a
diverse range of composite memristors in parallel and series connection assuming different
polarity [62]. Lately, the generation, analysis, and circuit implementation of a new memristor
based chaotic system based on the application of KVL laws was presented by Li, Huang, and
Guo [63]. A new method was proposed in 2016 by Corinto [64][65] based on introducing a
comprehensive analysis method mainly based on Kirchhoffe flux and charge laws to

investigate the nonlinear behavior of memristor circuits in the flux—charge (¢, q)-domain.

2.4 Bond Graph Framework
2.4.1 Bond Graph Theory Foundation

In the 19th century, Kelvin and Maxwell both observed that a wide range of phenomena

give rise to similar forms of equations, finding analogies between heat flow and electric force
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and between dynamic lines of force and fluid streamlines. In 1959, Paynter of MIT, worked on
engineering projects including hydroelectric plants, analog and digital computing, nonlinear
dynamics, and control. Through that, he actively proposed that similar forms of equations are
generated by dynamic systems in a wide diversity of domains (such as electrical, fluid, and
mechanical). Paynter unified the concept of an energy port into his methodology, and that led
to the invention of bond graphs. Since then, his group and many others have developed the
basic concepts of bond-graph modelling into a mature methodology. He published his work in
1961 under the title-“Analysis and Design of Engineering Systems” by M.I.T. Press [66]. Later
on, many researchers like Karnopp, Rosenberg, Margolis, and Breedveld [67] worked on
extending this modelling technique to power hydraulics, mechatronics, and general
thermodynamic systems and recently to electronics and nonenergetic systems like economics

and queuing theory.

2.4.2 Bond Graph Theory and Methodology

The Karnopp-Rosenberg book in 1975 [68] is remarkable because it is the first text to
be totally dependent on bond graphs as a method of representing systems topology. Bond graphs
provide an appropriate description for systems with multiport components and energy
transduction processes. Therefore, electromechanical, electrothermal, or thermodynamic
systems can be described and analysed through a unified notation and procedures. Before 1975,
and more specifically in 1968, Karnopp and Rosenberg published their first paper [69] on bond
graphs entitled-“Power bond graphs: a new control language”. This is considered the
fundamental text upon which more recent work is based. Then in 1969 Karnopp [70] presented
a paper discussed transformations both in terms of equations and bond graph elements, and
applications in vibration analysis, electrical machine theory, and analytical mechanics. In
1971, Rosenberg advocates a novel technique for systematically generating state-space
equations for multiport systems. This method is based upon a bond graph representation of the
system and causal manipulation of the field equations [71]. In 1972, Brown investigated two
types of bond graphs which incorporated Lagrange’s equations and variables encountered in
systems described in terms of energy and power [72]. Dixhoorn then related these equations to
the domain of engineering, and on quantitative physical laws. For this work Dixhoorn is

generally considered as a pioneer for model builders [73]. Bell and Martens prepared a

15



comparison between linear graphs and bond graph in the modelling process in 1974 [74].
Rosenberg in 1975, developed a unified database for support of engineering systems design

providing a succinct, flexible data base for linear and nonlinear, static and dynamic models.

An algorithm is presented by Breedveld, which enables one to determine the nature of
the equilibrium state of a system with constant inputs by direct inspection of its bond graph
representation. This algorithm was presented in 1984 [75], in the J. Franklin Inst., a journal that
has hosted most of the important advances in the bond graph subject area. Also in 1984 a
solution of algebraic loops and differential causality in mechanical and electrical systems was
proposed at the IASTED Applied Simulation and Modelling Conference in California by

Granda.

Subsequently, in 1986, Breedveld, proposed a systematic procedure to eliminate an
unambiguous notation to formalise bond graph models [76]. Then Beaman and Rosenberg, in
1987, investigated additional structures that might be put on bond graphs in order that (1) all
bond graphs have physical relation and (2) all physical realizations have bond graphs [77].

In 1989, the definition of a bond graph was formally given and its structure in a new
way, as an object accomplished by constructing a vector space, called the bond space of the
bond graph. This new definition was proposed by Birkett and Roe, [78] [79]. In order to avoid
a significant limitation in the standard bond graph notation for modelling systems, the extended
bond graph notion was developed which is described by vector and tensor-valued quantities,
this extended notation was presented by Ingrim and Masada, in 1990 [80]. A paper was
published in 1992, by Cellier, introducing new concepts for modelling complex physical
systems through classified bond graphs which can include arbitrary non-linearities. An
introduction of a software tool that Brown developed can be used to implement these
categorised non-linear bond graphs [81]. In 1990, Brown stated in his paper [82] “The more
difficult portions of models of physical systems often are appropriately approached through the
use of Lagrange's or Hamilton's equations. It is seen that such a region can be integrated into
a conventional bond graph with a simple macro symbol, a more reticulated Hamiltonian bond
graph, or in many cases a highly reticulated Lagrangian bond graph”. This paper is the first
relating bond graph with port-Hamiltonian system. Then Linkens discussed the application of
network thermodynamics to the life sciences which gave the promise that bond graph
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methodology would prove attractive to biologists and engineers and accelerate the use of its

mathematical modelling in the life sciences [83].

Then in 1995, Gawthrop introduced, a bond graph representation of model-based
observer control to provide a convenient framework for the design of controllers in the physical
domain [84]. Vidojkovic' and Mladenovic' published a paper in 1999 [85], that deals with bond
graph modelling of dynamic systems, the features of the bond graph elements and a new way
forward enabling the modelling of a system represented by bond graphs. Also, the advantages
of bond graph modelling are reported.

The concepts postulated within the generalised bond graph formalism are important in
the derivation of port-Hamiltonian systems. This generalisation was proposed by Golo et al., in
2000 [86], they present in their paper both a Generalised Bond Graph (GBG) and a Generalised
Junction Structure (GJS). At the same time Karrnopp, Margolis, and Rosenberg, published one
of the important references for bond graph analysis which is titled- “System Dynamics:
Modelling and Simulation of Mechatronic Systems”. After five years, In 2005, Vink from the
University of Glasgow linked bond graph modelling with control [87].

In 2009, Prof. Borutzky published a series of books discussing the bond graph
methodology, providing new insight in bond graph analysis [88]. Daou et al. [89], proposed
operators such as integrators and differentiators based on resistive, inductive and capacitive
components, introducing four different configurations of RLC based circuits that may produce
a fractional behavior, this approach helped in analysing complex RLC networks having an
emergent behaviour with bond graph.

In the case of nonlinear circuits, Rai and Umanand, proposed a bond graph model which
does not assume any linearity constraints. The model hides the complexity of nonlinearity from
the user of the model by developing a model of an induction machine that includes the
nonlinearities in the system [90]. This approach, which might provide linearization through
approximations can occasionally be used to relate the bond graph approach with nonlinear

devices and elements.

In 2011, Borutzky edited the seminal work “Bond Graph Modelling of Engineering
Systems Theory: Applications and Software Support”. This multi-author book reflects the

present state of the art in bond graph modelling of engineering systems with respect to theory,
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applications and software support. In 2011, Denman and Tahar [91], introduced a study that
demonstrated a methodology for formally verifying safety properties of analogue circuits. In
the proposed approach, system equations are automatically extracted from a SPICE netlist by

means of energy-conservative bond graph models.

In 2012, Adriana et al., presented a method for analysis of electrical circuits with more
than four circuit loops, for direct current (DC) circuits or alternating sine wave current circuits
[92]. A PhD thesis submitted by Margetts at the University of Bath, Department of
Mechanical Engineering in 2013 [93], titled-“A Hybrid bond graph method” presents a more
recent account of simulation as well as provides engineering insight through the analysis
presented. In 2014, Nufiez-Hernandez et al. [94], published a paper titled- Analysis of
Electrical Networks Using Phasors: A Bond Graph Approach”. A so-called phasor bond graph
is built up by means of two-dimensional bonds, which represent the complex plane. Impedances
or admittances are used instead of the standard bond graph elements. A procedure to obtain the
steady-state values from a phasor bond graph model is presented in their paper. Also in 2014,
Sharma and Sharma [95], used a unified approach to bond graph that gives the opportunity to
simulate both existing and new systems without having to remodel the entire system each time.
In addition, Margetts [96] suggested an approach to develop a general method for adoption by
practicing engineers, which is intuitive, adheres to the principles of idealized physical
modelling and facilitates both structural analysis and efficient simulation.

Finally, bond graph representations of hybrid system models, were proposed by
Borutzky, in 2015 [97], the work addresses the modelling abstraction of fast dynamic state
transitions by casting them as instantaneous discrete state changes, the work also surveys
various bond graph representations of hybrid system models. A procedure to linearize a class
of non-linear systems modelled by bond graphs was also proposed by Avalosa and Orozcob,
in 2015 [98], the approach enables one to obtain the linearization of a class of non-linear
physical systems using bond graphs. Also, a junction structure of a non-linear bond graph
considering of linearly dependent and independent state variables is also described in their
work. A new proposal to model a time-varying switch dynamic in bond graph presented in [99]

for further improvement of the bond graph modelling method.
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2.4.3 Developments in Bond Graph Simulation Approaches

The modelling and simulation of physical systems using bond graph for analysis and
evaluation of their dynamic behaviour are important steps in the design and control of systems.
Rosenberg, in 1973, presented the ENPORT program which is a realization of the bond graph
reduction algorithm [100]. It is based on modelling of linear multiport systems transformed to
state-space form using algorithms taking into account operational causality. From the state-
space equations, dynamic responses are obtained using the matrix exponential technique,
thereby allowing the direct digital simulation of linear multiport models. Then, in 1973 Martens
suggested, a formulation to derive a system of mixed first-order differential/algebraic equations,
whose solution is facilitated by approximating the derivatives by a linear combination of past
and present solution derived by implicit nonlinear algebraic equations which are solved using
Newton iterative procedure [101].

Many years later, in 1981, Karnopp identified a unique feature in bond-graph
techniques: they provide the modeler with a graphical representation of the causality relations
in a system. This enables the modeler to use causal information to create simulation programs
for nonlinear systems, even when some variables cannot readily be expressed in equation form
[102]. This realization helped Beukeboom et al., in 1985, to write the TUTSIM simulation
program for continuous dynamic systems. The program accepts (nonlinear) block diagrams,
bond graphs or a free mix of both [103]. Many programs have been written by researchers to
simulate bond graph, another example is the work by Brocnink and Twilhaar, in 1985 who
wrote CAMAS (A Computer Aided Modelling, Analysis And Simulation) [104].

Then Broenink, produce SIDOPS a bond graph based modelling language [105].
Zalewski and Rosenberg, in 1986, made a distinction of connector types; namely, bonds,
activated bonds, and signals [106]. And in 1990, Zeid, proposed several simple models based
on creating macros that represent physical components; this approach simplifies model-
building and can be applied to linear and nonlinear systems described by bond graph [107].
Also, Nolan, discussed the scope for algebraic and symbolic analysis of bond graphs in the
context of modelling and analysis of complex dynamical systems. The work includes a

description of a prototype suite of symbolic programs [108].

In 1995, the problem of describing variable structure models in a compact, object-

oriented technique is revisited and analysed from the perspective of bond graph modelling
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using DYMOLA programming environment by Cellier et al. [109]. By 1997, Broenink
presented a bond graph model library implemented in MODELICA [110]. MODELICA is a
new language for physical systems modelling with main objective to facilitate exchange of
models and simulation specifications. Granda and Reus [111], investigated the ability to use
bond graph modelling technology with MATLAB and its toolboxes, a package oriented to
matrix state variable formulation and control system design. The combination of CAMP-G and
MATLAB is a new tool useful in generating symbolic equations of motion and symbolic system
matrices and symbolic transfer functions. Then in 2002, [112] discussed the role of bond graph
modelling and simulation in mechatronics systems using an integrated software tool CAMP-G,
MATLAB-SIMULINK. The approach explores the bond graph technique as a modelling tool
to generate state space models or non-linear models together with software tools. CAMP-G
(Computer Aided Modelling Program with Graphical input) has been developed in order to
generate computer models automatically and have them integrated with MATLAB-
SIMULINK as simulation tools.

In 2006, Wiechula presented a thesis that included genetic programming grammars for
bond graph modelling and for direct symbolic regression of sets of differential equations. He
also proposed a bond graph modelling library suitable for programmatic use and a symbolic
algebra library specialized to this [113]. A Modelica Library for MultiBond Graphs and its
Application in 3D-Mechanics was presented by Zimmer [114]. In addition to Modelica, there
are also CAMAS [115], and MOSAIC [116], programming environments that simulate bond
graphs.

In 2011 an application by Calvo et al. was developed in Simulink, this allows
engineering students to learn easily and quickly about dynamic systems behaviour through the
bond graph method [117]. Furthermore, Jing [118] suggested some practical techniques for
MATLAB/SIMULINK as applied to system simulation. The simulation can be easily adjusted
to the variation of the working conditions. The design and test of the system are thus made more

convenient.

In 2012, Sargaa et al. [119] presented a paper that differed from the classical method,
in that the equations for individual components are created first and then the simulation scheme
is derived from a bond graph diagram basis of the system, using a step-by-step procedure. In

2013, two new kinds of models called hybrid bond graph model and average bond graph model
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were proposed. The two models are all derived from basic theory of the bond graph modelling,
but they differ in the control mode of the circuit switch analysed. Firstly, two kinds of bond
graph models are analysed, and are built in the GME (Generic Modelling Environment)
software. Then, they are automatically converted to a MATLAB diagram model through
MATLAB software [120]. Margetts’ thesis enables the simulation as well as provides additional
engineering insight for hybrid systems. This new method features a distinction between

structural and parametric switching [93].

In 2014, Calvo et al. [121] presented an educational application, developed in
MATLAB, which allows engineering students to learn easily and quickly about dynamic
systems behaviour through the bond graph method. This application uses the SIMULINK
library of MATLAB, which has proven to be an excellent choice in order to implement and
solve the dynamic equations involved. Another model established in MATLAB/Simulink, with
the same mechanism is built in the AMESim software package. Simulation results can be
compared with those obtained from the proposed bond graph method [122]. Then a dimensional
analysis conceptual modelling (DACM) [123] framework was introduced in 2016 for a

conceptual modelling mechanism for lifecycle systems engineering.

2.5 Port- Hamiltonian Approach

2.5.1 Introduction to Port- Hamiltonian Theory

The hypothesis of port-Hamiltonian frameworks unites different traditions in physical
systems modelling and analysis. The subject has naturally evolved from work by Paynter in the
late 50s based on port-based Dirac formalism. A second origin of port-Hamiltonian systems
theory is through geometric mechanics as developed by Arnol’d [124]; Abraham and Marsden
[125]; Marsden and Ratiu [126]; Bloch [127]; Bullo and Lewis [128]. In this approach, the
Hamiltonian formulation of established mechanics is formalized in a geometric manner. The
essential standard of geometric mechanics is to represent Hamiltonian elements in a coordinate-
free way utilizing a state space endowed with a simplistic or Poisson structure, together with a
Hamiltonian function representing energy. This geometric method has led to a sophisticated
and influential theory for the analysis of the complex dynamical characteristics of Hamiltonian

systems, displaying their intrinsic features, such as symmetries and conserved quantities, in a
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transparent way. Also infinite-dimensional Hamiltonian systems have been successfully cast
into this framework by Olver [129].

Finally, a third pillar underlying the framework of port-Hamiltonian systems are
through advances in systems and control theory, emphasizing dynamical systems as being open
to interaction with the environment, and as being subject to control through interaction, this
subject is also known as behavioural control theory. The description and analysis of physical
subclasses of control systems have roots in electrical network synthesis theory. Its geometric
formulation was especially pioneered in Van der Schaft [130], in Crouch and van der Schaft
[131] in Nijmeijer and Van der Schaft [132]; and in Bullo [128]. This works discusses
developments, especially with regard to the analysis and control of nonlinear mechanical

systems.

The reduction of the order of physical dynamic models has been a subject of discussion
and research for Hamiltonian systems [133]. Reduced systems are important for modelling,
analysis and control. The properties of controllability and observability are known to be
important for an adequate input output behavior. Such properties have been studied in [134]. In
2000, Port-controlled Hamiltonian systems with dissipation paved the way towards a theory for
control and design of nonlinear physical systems and the structural properties of these systems
are discussed by Van der Schaft [135].

In 2004, Van der Schaft, discussed the structural properties of port-Hamiltonian
systems, in particular the existence of Casimir functions and their implications for stability and
stabilization. Furthermore, it was shown how passivity-based control results from
interconnecting the plant port-Hamiltonian system with a controller port-Hamiltonian system,
leading to a closed-loop port-Hamiltonian system [136]. A similar approach, in 2006 Talasilaa,
Clemente-Gallardoc, and Van der Schaft, obtained a discrete model either by discretizing a
smooth model, or by directly modelling at the discrete level itself [137].

In 2006, Van der Schaft [138], further stated that the theory of port-Hamiltonian systems
provides a framework for the geometric description of network models of physical systems. It
turns out that port-based network models of physical systems immediately lend themselves to

a Hamiltonian description. This motivated the definition of Hamiltonian systems with algebraic
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constraints. As a result, any power-conserving interconnection of port-Hamiltonian systems

again defines a port-Hamiltonian system.

In 2013, Schdberl and Siuka, introduced the port-Hamiltonian system representation
where they pay attention to two different scenarios, namely the non-differential operator case
and the differential operator case regarding the structural mapping, the dissipation mapping and
the input/output mapping [139]. Van der Schaft, introduce the basic starting point of port-
Hamiltonian systems theory in network modelling, considering the overall physical system as
the interconnection of simple subsystems, mutually influencing each other via energy flow. As
a result of the interconnections algebraic constraints between the state variables commonly
arise. This leads to the description of the system by differential-algebraic equations (DAES)
[140].

In 2014, Van der Schaft and Jeltsema present an up-to-date survey of the theory of Port-
Hamiltonian systems, emphasizing novel developments and relationships with other
formalisms. Port-Hamiltonian systems theory yields a systematic framework for network
modelling of multi-physics systems. Examples from different areas show the range of
applicability. While the emphasis is on modelling and analysis, the last part provides a brief

introduction to control of port-Hamiltonian systems.

Finally, in 2015, Castafios et al., discussed implicit representations of finite-dimensional
port-Hamiltonian systems from the perspective of their use in numerical simulation and control
design. Implicit representations arise when a system is modelled in Cartesian coordinates and
when the system constraints are applied in the form of additional algebraic equations (the
system model is in a DAE form). Such representations lend themselves better to sample-data
approximations. An implicit representation of a port-Hamiltonian system is given and it is
shown how to construct a sampled-data model that preserves the port-Hamiltonian structure
under sample and hold [141]. A new algebraically and geometrically defined system structure

in [123] is derived to extend the port Hamiltonian formulation for descriptor systems.

2.5.2 Port Hamiltonian Model Dynamics Derivation from Graph Theory
From a modelling perspective a port-Hamiltonian methodology for systems analysis

originated from the theory of port-based analysis of bond graphs as pioneered by Paynter in the
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late 1950s [66]. At the core of this approach lies the recognition that energy exchange is the
’lingua Franca’ between physical domains, and by identifying ideal system components
capturing the main physical characteristics (energy-storage, energy-dissipation, energy-routing,
etc.) The network dynamics can be established, provided that certain controllability and
observability restrictions are fulfilled. Historically port-based modelling comes along with an
insightful graphical notation emphasizing the structure of the physical system as a collection of
ideal components linked by edges capturing the energy-flows between them. In analogy with
chemical species, these edges are called bonds, and the resulting graph is called a bond graph.
Motivated by electrical circuit theory the energy flow along the bonds is represented by pairs
of variables, whose inner product equals power. Typical examples of such pairs of variables (in
different physical domains) are voltages and currents, velocities and forces, flows and
pressures, etc. A port-Hamiltonian formulation of bond graph models can be found in Golo et
al.[142]. Port-based modelling can be seen to be a further abstraction of the theory of “across

and through variables” in the network modelling of physical systems.

In 2002, Macchelli showed that the port-Hamiltonian formulation may be generalized
in order to cope with bond graph parameter systems. Classical infinite dimensional models are
presented in this new formulation [143]. Subsequently, in 2003, Golo et al. discussed new
mathematical formulation of bond graphs. It was shown that the power continuous part of bond
graphs, the junction structure, can be associated to a Dirac structure and that the equations
describing a bond graph model correspond to a port Hamiltonian system [142].

In 2006, Donaire and Junco discussed an interpretation in the bond graph domain which
is of relevance to the energy shaping and interconnection and damping assignment control
methods, developed for the well-known Port-Controlled Hamiltonian systems with dissipation.
In order to have a stable equilibrium at a prespecified state, the energy function is modified by
adding storage elements to the bond graph such that the closed loop system energy has a

minimum at that state [144].

In 2005, the dissertation by Vink presented some new aspects of bond graph modelling
in control, which were relevant to closed loop bond graph representations. In particular, the
physical model based framework of bond graph modelling addresses Backstepping Control,
Model Matching Control and Energy Shaping in Stabilization Control. Even though these

control design methodologies are quite different on an analytical level, it is shown that the
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feedback designs allow for closed loop bond graph models. Concepts of passivity and the port-
Hamiltonian structure of bond graphs play a leading role throughout the thesis. Various detailed

examples impart the essential results [87].

In 2009, a derivation of Input-State-Output Port-Hamiltonian Systems from bond graphs
is presented by Donaire and Junco. The work presents methods to obtain models in the form of
Input-State-Output Port-Hamiltonian Systems from causal nonlinear bond graph models. This
is done first by establishing equivalences among key variables in both domains through the
comparison of the expressions of the stored system energy in both formalisms. Later, with the
help of the general field representation of bond graphs and its associated standard implicit form,

the functions characterizing this class of Port-Hamiltonian Systems are provided.

Finally, in 2014, [145] Glad proposed modelling of dynamic systems from first
principles which can be made of similarities between different domains. The approach leads to
the concepts of bond graphs and, more abstractly, to port-controlled Hamiltonian systems. The
class of models is naturally extended to differential algebraic equations (DAE) models. Then
Van der Schaft published a research paper in Systems & Control Letters [146] connecting

between graph theory, symmetric Laplacian matrix and port Hamiltonian formulation.

2.6 Memristor Analysis Using Port-Hamiltonian Formulations

In 2010, Jeltsema and van der Schaft [147] reported that the port-Hamiltonian modelling
framework may be extended to a class of systems containing memristive elements and
phenomena. First, the concept of memristance was generalised so it can be placed within a port-
Hamiltonian framework. Second, the underlying Dirac structure was augmented with a
memristive port. The inclusion of memristive elements in the port-Hamiltonian framework

turns out to be almost as straightforward as the inclusion of resistive elements.

In 2012, a Port-Hamiltonian Formulation of Systems With Memory, was proposed by
Jeltsema and Doria-Cerezo [148], the work considered memristors, meminductors, and
memcapacitors and their properties as port-Hamiltonian systems. The port-Hamiltonian
formalism naturally extends the fundamental properties of the memory elements beyond the

realm of electrical circuits.
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In 2013, in a paper titled-“DAEs in Circuit Modelling: A Survey”, Riaza presented a
detailed discussion of memristive devices (memristors, memcapacitors and meminductors),
exposing their great potential impact in electronics in the near future. The work also addressed
how to accommodate them in differential-algebraic models [149]. Some dynamical aspects in
circuit theory in which DAEs play a role were also investigated.

In 2015, Machado [150] proposed fractional order junctions of the memristors and of
higher order elements and broadened the scope of variables and relationships embedded in the
development of models. This paper proposes a new logical step, by generalizing the concept of
junction. Classical junctions interconnect system elements using simple algebraic restrictions.
Nevertheless, this simplistic approach may be misleading in the presence of unexpected
dynamical phenomena and requires inclusion of additional “parasitic” elements. Nevertheless,
the algebraic restrictions are providing new opportunities to introduce in the formulation
behavioural control theory. Caravelli and Barucca [151] in 2017, constructed an exactly
solvable circuit of interacting memristors and study its dynamics and fixed points. They use the

Lyapunov function as a Hamiltonian to calculate the exact model.

2.7 The Memristor As a Bond Graph Element

One of the motivations of this project, is probably that there is as far of the author
knowledge only three research papers that mentioned memristor as a bond graph element. This
proposition was made first by Oster and Auslander in 1972, in their paper “The memristor: a
new bond graph element”. In their work they defined Chua’s memristor in electrical circuits,
and then they proposed it as a new bond graph element, on an equal footing with R, L, and C
elements providing some unique modelling capabilities for simulating nonlinear systems [3].
These works are paving the way for memristive elements to be systematically described under
a port-Hamiltonian formalism associated to bond graph representations. Later, one of this thesis
published work was in proposing bond graph analysis approach as a new method to analysis
memristive systems by including the memristor as one of bond graph analysis elements, in
CNNA conference in 2016 [152]. And also recently was mentioned in the proposed mechanism
for describing DNA information perspective based on the bond graph and the memristor

concepts [153].
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2.8 Summary

What becomes clear from bond graph developments in modelling especially with regard
to nonlinear memristive bond graph is that, barley developments have been made as most of
bond graph developers prefers to use memristor emulators to gain the same result, however this
is not an efficient and direct analysis to such systems. Memristor complement the standard bond
graph elements, in a graphically intuitive way, and generate a concise, usable mathematical model
with studying all behavioural aspects of memristor, as the future is for the charted nano devices to

proliterate further, not the conventional devices currently in use.

There has been a body of work on the analysis of systems into port Hamiltonian formulation.
Exploitation of energy within the system and application are well-documented for the standard bond

graph, but have not yet been extended to the memristive systems bond graph.

27



Chapter 3: INTRODUCTION TO
MEMRISTIVE ELEMENTS

3.1 Introduction

The discovery of flux controlled memristor (Memory Resistor) by Leon Chua in 1971 as
the missing element relating flux to charge, opens possibilities for the development of a novel
class of dielectrics over the coming years. In the standard RLC circuit analysis, it is common
in linear independent relations (Kirchhoff’s voltage and current laws) to establish circuit
dynamics. With memristor (resistor with memory) components there is a departure from
linearity and systems exhibit nonlinear characteristics. These properties enable the use of
memristive elements to be used for the successful modelling of several physical devices and
systems. This chapter will introduce the memristor and memristive system fields, starting with
a brief background on memristor theory and some of the proposed models to describe its
behavior. This is followed by a short overview of some applications to justify the significance

of the element and the advantages of incorporation this device in circuit analysis.



3.2 Theoretical Definition of The Memristor

Although in standard circuit analysis, voltage and current vectors satisfy linearly
independent relations (Kirchhoff’s voltage and current laws), there are also single additional
variable relations as shown in Figure 3.1 between flow (current) and effort (voltage), as well as
a relation between generalized momentum (flux) and generalized displacement (charge), which
are associated with mem-based circuits. Different modelling approaches that are of relevance
when considering the use of these elements to describe the dynamics of physical systems in a

system framework can be adopted.

As declared by Chua [9], the fourth element (Memristor) need to be considered to relate

the magnetic flux (¢) with charge (q) using a simple expression:
op =Moq (3.2)
Memristance (M) is very similar to resistance, with the exception that it depends on a

relation between the charge g and the flux ¢ through that component. As the charge and current

are linked through the standard expression a@—?: i, a memristor state then depends on the

history of the current passing through it. This marks the memristor to be performed similarly to
aresistor with memory. For that reason, it is considered to be a non-linear element. A memristor

was proposed to be a fundamental circuit element.
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Figure 3.1 Inter-relations between individual RLCM elements and corresponding notations.
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A memristor can be controlled by either flux, which is called a flux-controlled
memristor or by a charge where it is called charge-controlled memristor. The non-linear

expression relating the current i (t) and the voltage v (t), for a charge-controlled memristor is:

v(t) = M (@)i(t) (3:2)
For the flux-controlled memristor:
i(t) =W (@)v(t) (3:3)
The memristance and the memductance respectively [9] are defined as follows:
M (q) = 0p(a)/ &g (3.4)
and
W () =0q(p)/ 0¢ (3.5)

The factor (0¢(q) / 6q) in (3.4) represents the hysteresis loop of the memristor which is shown

in Figure 3.2. The non-linear relation between current and voltage is due to the change in the
resistance of the device. To generate the figure below a MATLAB program was written to
simulate the operation of a memristor based on the HP lab model [25]. However, the device
does not store any energy, at zero voltage no current passes through it. Figure 3.3 shows that
because of the non-linearity the voltage and current wave for a memristor device does not have
a linear phase difference between the voltage and the current, during a single cycle. In contrast,
one can see the current phase being a head of the voltage phase in parts of the cycle and trailing

in the other parts of the cycle.

Current (mA)

Voltage (V)

Figure 3.2 Memristor symbol and hysteresis loop 1-V curve simulation of HP lab model [2] with @ =0.5 rad/s,

input sinewave voltage of amplitude= 1.5V, and the specifications are: Ron=100 Q and Ror=16x10%Q
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Figure 3.3 Zero phase shift between the voltage and current
memristor.

The main characteristic for most of the memristor-based applications is the long-term
memory effect of the device, where its last state after the electrical bias is removed is preserved.
Theoretically speaking, a device relating the current to the voltage is still considered as a
memristor even in cases when there is a lack of long-term memory effect, as long as a pinched

hysteresis is observed [154].

3.3 Memristive Elements

There are four basic variables that are fundamental in circuit analysis these are current,
voltage, charge and magnetic flux. These variables are linked in six different ways as shown in
Figure 3.4. One of the relations is the memristance which relates flux to charge. Chua [10]
extended the concept of memristance into a broader class known as memristive systems, this
contain inductive and capacitive elements with memory, (called meminductors and
memcapacitors respectively). A generalised description of memristive relations may be

mathematically assumed for this class of devices as:

v=M(w,i)i (3.6)
and
Z—\iv = f(w,i) (3.7)

where w is the internal state of the system. A memristor based on the above relations is
considered as a special case of memristive systems, as shown in Figure 3.4.
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Figure 3.4 The three basic electrical elements and their extended memristive system:

memristor, meminductor, and memcapacitor.

3.3.1 Memcapacitance
In a similar fashion to the memristor relationship, memcapacitance (memory capacitor)

is based on the non-linear relation between the integral of charge and voltage. Let & = _[ q(t)dt

and o= j V,(t)dt denote the integral of charge and flux [155]. The memcapacitance (Cw) is

given from:
do
Cu () =222 (39)
@
The general mathematical model for memcapacitive elements is defined as:
q(t) = Cy (x, Ve, V(1) (3.9)
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x=f(x,V,,1) (3.10)
where Cy is the memcapacitance and x is an internal state variable. The above equation is

denoted to charge controlled memcapacitor. The voltage controlled type will be described as:

v(t) = C 7y (. Ve, () (3.11)

x=f(x,q,1) (3.12)
As one of the special characteristics that memristive elements known of, is the hysteresis loop

[156], in memcapacitor case a MATLAB program written to simulate this behaviour using the
model in [157][158], the resulted g-v curve is shown in Figure 3.5.

A0

0.5

qity C
o

0.5

V(v

Figure 3.5 Memcapacitor symbol and hysteresis loop, with 1.5 sine wave applied voltage and

different w =0.1, 1, 2 and 10 rad/s, memcapacitor specifications are: Cmin=10~, Cmax=10-% and

Cinitial=100° F.
3.3.2 Meminductance

Similarly to the above, the relation between the charge q(t) and time integral of flux o(t)
[155] as written:

L(q) = —dﬁt(f) (3.13)

where p(q) is the differential function of g. In 2009 [159] a general mathematical model for

meminductive elements defined by the current controlled meminductive system:

o(t) = Ly (x,1,0)i() (3.14)
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x= f(xi,t) (3.15)
where L, called meminductance. For the flux-controlled meminductive system the
mathematical model is:

i(t) =L (X, 0, t)o(t) (3.16)

x=f (X1 (3.17)
with L™ being the meminductance inverse. Considering the relation between the flux and the

current, meminductor as all memristive family has a pinched hysteresis behaviour. Following

[158], the corresponding g-v curve of mem-inductive component is shown in Figure 3.6.
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Figure 3.6 Meminductor symbol and hysteresis loop, with 1V sine-wave applied voltage and

different @ =0.5, 1 and 10 rad/s, the meminductor specifications are: Lmin=102and Lmax=20"3 H.

3.4 Device Models

In order to be capable to integrate memristive components into analysis, simulation and
design of an application, different models that meet certain criteria are needed. For that purpose,
several models have been proposed. In this section, the main memristor models will be reviewed
as assuming a variety of window functions.
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3.4.1 ldeal Model

Leon Chua introduced the first ideal device of memristor in a research paper [9] at IEEE
Transactions on Circuit theory, with two values of resistance. In order to analyse this device in
a realistic circuit incorporation an emorphas devise is shown in Figure 3.7(a). This is connected

with a memristor to obtain a reasonable model. The g-¢ curve of memristor is as shown in
Figure 3.7(b), the flux (¢) increased linearly up to a certain value, the device then switches to
another resistance value. Then after the flux falls and reaches the same threshold it reverts to
the same resistance obtained originally. This threshold is fixed with respect to the g-¢ relation,

and influences the hysteresis parameters of the memristor.
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Figure 3.7 (a) An emorphas circuit with memristor device introduced by Chua.(b) its characteristic [1]

3.4.2 Dopant Drift Model

In their paper “The missing memristor found” [25] Strukov, Williams and others from
HP labs proposed that nanotechnology may be used to build such devises, further more they
proposed a simple physical model with a simple equations that satisfies memristor

characteristics. This memristor model displayed the most similar behaviour to that of Chua
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memristor response. The device comprises of a very thin film of titanium dioxide (TiO>) as
shown in Figure 3.8. This thin film is sandwiched between two platinum (Pt) contacts and, one
side of TiO2 is doped with oxygen vacancies. The oxygen vacancies are positively charged ions.
Thus, there is a TiO2 junction where one side is doped and the other side is undoped over a total
length D.

These devices comprise of doped low resistance and undoped high resistance regions
[160]. The physical structure and the equivalent circuit model are shown in Figure 3.8 and
Figure 3.9 [161]. This model maintains the increase of the resistance in one direction of current
and decreases the resistance in the other direction. When the applied potential is removed then

the memristor remains in its last state, i.e. a memristor possesses resistive memory.
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Figure 3.8 The thin film of titanium dioxide (TiO2) [11]. There are two layers in the titanium

dioxide film. The semiconductor thin film has a certain length, and consists of two layers of titanium
dioxide films. One is highly resistive pure TiO (undoped layer), and the other is filled with oxygen
vacancies, which makes it highly conductive (doped layer). The state variable w represents the width
of the doped region (TiO layer). The doped region has low resistance while that of the un-doped
region is much higher

Figure 3.9 shows the simple geometrical structure of the doped layer w at this stage it was

necessary to present a mathematical descriptor model to explain the nonlinear response.

W ’J\JQ:T
O—ll Doped |Undoped I—- AN\

Ron ROf‘f

D
Figure 3.9 Structure of memristor reported by HP and its equivalent model [272]
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There is a region with a high intensity of dopants having low resistance Ron, and the
remainder has a low dopant density and considerable higher resistance Rotr. By applying an
external voltage source, the boundary between the two areas will move causing the dopant

charge to drift. Equation (3.18) and (3.19) describe this behavior mathematically:

v(t) = M (w, i)i(t) (3.18)
M(w,i){Ron [@} Roﬁ( —@ﬂ (3.19)

ow(t) _( 4Ron |

pe —( 5 jl(t) (3.20)

where R, is the ON resistance for an entirely doped device, and R is the OFF resistance for
a whole undoped device, the total thickness of the device is represented by D and the thickness
of the doped region isW and g, is the average ion mobility. The above expressions for HP
model memristor will be the model used later through the thesis to calculate memristance value
(M). Integration of equation (3.20), leads to

w(t) = 41, ~2 () (3.21)

By substituting equation (3.21) into equation (3.19), the memristance equation will be:

R
M (@) = R [1— s q(t)j (322)

And the current-voltage relation of memristor will be:
u(t)

i(t)= > (3.23)
Ry \/1— £ fu(et

rD2

where u(t) is the supply voltage and r=Ro / Ron.

3.4.3 Linear Model

The previously described model is called the linear dopant drift model. But in physical
devices that are memristor manufactured, some nonlinearity in ionic transport appears this

slows down the drift velocity at the thin film. This nonlinearity might be modelled by applying
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the function f(x) in the relation (3.24) which is so-called window function, introduced by

Joglekar [162] to the drift velocity equation,( after assuming x = % ). It follows that:

ow Ry
— ~ 4O (3.24)

3.4.3.1 Window Function
Window functions are introduced to approximate the nonlinear behavior of memristor
into a linear one, and they are a function of the state variable. Many proposals were introduced
to define the window function, one of these functions was defined by Strukov et al. [25] which
is defined as:
w(l—w)
D?

f(w) = (3.25)

The boundary conditions are f(0)=0 and f (D) =(1— D/D) ~ 0, this function assumes that

when the memristor is driven to the lower and higher states, there is no change in the terminal
state driven by an external field [30], which might be considered as fundamental problem in

window functions.

In 2009 [36] a slightly different window function was proposed as shown:

w(D —-w)

tW) =—7

(3.26)

when w— 0 andw— D, f (w) — 0 which are the conditions of the function boundary. For the
two-mentioned function, the nonlinear behaviour of memristor is approximated when the
memristor in not at the terminal states, which mean w=0 andw=D. This is a problem in
functionality of window functions. Therefore, Joglekar and Wolf [162] considered this problem
and proposed a new window function that address the nonlinearity and approximately linear
behaviour within the boundaries 0 <w> D. They can control their function by an additional

parameter(p), which is called control parameter. This window function was written as:

f(x)=1-(2x-1)* (3.27)
Where p is a positive integer. This control parameter, controls the linearity of the model, where

it becomes more linear as p increases. Figure 3.10 shows Joglekar and Wolf window function

with different values of p.
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Figure 3.10 Window function f(x) of Joglekar and Wolf for different values

As shown in research done by [163][164][165][166][167], that there is usability in memristance
model as the vacancy drift is highly nonlinear when it is close to the both boundaries of the
device. Therefore, it will be assumed through the thesis that this window function will be used

to maintain the stability of the device.

3.4.4 Nonlinear Model

Another model for memristor proposed by Yang et al.[164] is the exponential model,
as the nonlinear model of William doesn’t account the nonlinearity of the large electric field

within a memristor. Yang used the following equation

| =x"Bsinh(aV)+ y(exp(V) 1) (3.28)
where a, f3, y, x are fitting constants and n is a free parameter. Figure 3.11 shows an experimental
and model 1-V curves which illustrate that at the Off-state, the 1-V curve behaves similar to a
PN junction (the exponential part), while at the On-state the curve follows a tunnelling process

(sinh part). The state equation is modelled by the following nonlinear equation:
x = asinh(bv) f (x,1) (3.29)

where f(x,i) can be any window function.
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Figure 3.11 Experimental (solid) and modelled (dotted) switching I-V curves. The red curves represent
50 experimental switching loops traversed as figure-of-eights, the traces show a high degree of
repeatability. The blue curve is a lower current experimental switch loop that demonstrates the multipl
resistive states of the device. The I-V trace of the device in the ON state exhibits a symmetric sinh-like
curve, and the OFF state shows an asymmetric rectifying curve similar to the origin state [164].

3.4.5 Quantum-Tunnelling Model

There are several behavioral and circuit models based on the quantum tunneling effect to
model memristor behavior as presented in the literature[168][169][170][171][172][173]. The
guantum tunneling effect is related to the resistance change of memristance. Figure 3.12 shows
the device structure, which depends on the conducting channel of T;O2« by creating a barrier of
quantum tunnel with contacted metal. Oxygen vacancies (dopant) drift is responsible for the
variation in tunnel width. Regarding the displacement distance in this device, it is much smaller
than other proposed models and it has a high ratio of ON/OFF controlled by the change in the
tunnel width. Although models that use the phenomena of quantum tunneling give a more
realistic behaviour of memristance, the simple drift model of HP labs is used widely in circuit
simulations due to simplicity and satisfactory accuracy.

|+

Platinum l

tunnel barrier (w)

TiO2 TiO2x
(insulator) (conducting channel)

Platinum

Figure 3.12 Structure of the memristor quantum tunnelling model [273]
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3.5 Properties of a Memristor

In this section, several of memristor properties are discussed to show the innate
characteristics of a memristor which are giving it the attractive future upon CMOS devices for

the electronics community:

3.5.1 Non-volatility

One of the unique characteristics of memristor is that it remembers the last state of the
internal state w(t), for a signal have been applied from -co to current time instant t. If the input
signal is removed, the resistance of device freezes and does not change until an input signal is
applied again [174]. With this property and the high integration density of about 100 Gbits/cm
speed, memristor achieved to be higher few times in speed than the technologies of the current

flash memory advances [175].

3.5.2 Dynamic Response

In a memristor, the boundary of the internal state variable (x) changes as the input
amplitude changes. If the applied signal reaches to its peak value, the boundaries then reach to
maximum or minimum limits [176] and the device either switchs from ON to OFF state or vice
versa. This behaviour as well as the hysteresis characteristic and the nonlinearity that a
memristor known to have, are reasons for its unique dynamic response [177]. These features
are valuable in developing many applications such as programmable threshold comparators,

Schmitt triggers and frequency relaxation oscillators [178].

3.5.3 High Density

Before the physical evolution of the memristor in 2008, researchers presented a storage
medium insulating layer in a resistive switching application for high density memory circuits
[179][180][181]. After the memristor concept was realized, it became a promising candidate to
replace resistors in that storage layer, due to the very small size of the device fabricated by HP
which had device dimensions of 30nm x 30nm. So, Chen [182] proposed a memristor device

that can have the same function as well as a high density of about 100 Gbits/cm? [29] and very
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low energy, in return to existing flash memory. Which gives a motivation to incorporate

memristors in high speed non-volatile memories.

3.5.4 Fast Switching
Using the equation given in [183] one can calculate the switching rate of a memristor:
D?Ry

t, =— 9% 3.30
- Zyv Roanc ( )

where, t.,, is the switching time, £, ion mobility, D is device dimension and Vqc is external bias

voltage. The observed memristor switching time was in the range of picoseconds when
switching from ON to OFF state or the reverse. Due to small dimension and high ion mobility,

memristors can be used as a very fast switching nano-device.

3.5.5 CMOS Compatibility

Reconfigurable CMOS logic circuits have been produced with the integration of a
memristor using nanotechnology. The memristor act as switches in a network and connecting
memristor to CMOS gate-level logic components [184] is possible. Another compatibility due
to the small size of memristor is the ability to be combined with MOSFETS to produce a low

power applications [184].

3.5.6 Low Energy Consumption

In [184] it was reported that the memristor consumed energy when switching from low
to high resistance or vice versa, and they found that the energy consumed was of the order of
femto-Joules, opening up new possibilities for more efficient computing than current transistors

used nowadays.

3.6 Applications of Memristors

Memristor small dimension and low power dissipation, gives the potential to enhance and

develop integrated design area. Due to these special properties, some of the wide range of
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designs that integrated memristor in digital, analog and neuromorphic applications, will be

discussed below.

3.6.1 Non-Volatile Random Access Memory ( NVRAM )

As the memory devices should consume small physical area and low power, memristor

IS seen to be penitential in digital memory applications. A single memristor have the ability to

store one state of information either a ( 1 or 0 ) which corresponds to ( Ronand Rost) by driving

the memristor resistance to its lowest and highest resistance values[185]. The usual topology

for such memory architecture is the crossbar connections, which has vertical and horizontal

traces, and memristor will connect horizontal trace with a vertical at each intersection point as

illustrated in Figure 3.13.
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Figure 3.13 Crossbar memory system of 3x4 bits [186]

Two memristors are used as the fundamental cell of Figure 3.13 as shown in Figure 3.14. The

basic function of the mesh network above is obtained, by forcing memX into the memristor
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high resistance for logic 0 and the memY will be in its lowest resistance while the opposite for
logic 1 [186].

SX
i
memxX

—-IL outM

memY

SYI

Figure 3.14 Fundamental cell for crossbar memories with two memristors [186]

Because of simplicity of a memristor-based array crossbar structure and each memory cell
occupies a few nanometres, they are currently being explored as the future replacement for the
current CMOS-based memories and Solid State Drives (SSD) [187][188].

3.6.2 Programmable Gain Amplifier

Using memristors in the design of analog circuits instead of the conventional memory
circuits such as MOSFETS, is one of the challenges that face circuit designers. One of these
analog circuits is a programable gain amplifier, which was presented by Shin et al. [189]. This
amplifier consists of variable resistor replaced by a memristor. The advantage of using a
memristor is that the amplifier gain and resistance value can be programmed to the required

value. A simple diagram of programmable gain amplifier is shown in Figure 3.15

VDO
M3 M4
| #l:

Vin

V¥ )ibias

Figure 3.15 Memristor based programmable gain amplifier [39]
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3.6.3 Memristor Circuit for Emulating Function of Bio-Inspired Computing
Another promising application of memristors is attempting to mimic biological brain
synapsis and its complex work. The information flows inside neurons and is transferred by the
ions flowing through the membrane, the conductance of the synapses increase or decrease due
to the influx or outflux of ions. Attempting to simulate such complex networks with benefit the
development of Al. Few work [190][191][192][193] discuss emulating the neuron and synapse

using memristor-CMOS components, as shown in Figure 3.16.

memristor synapse
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Figure 3.16 Memristor application as a synapse. (a) Schematic of using memristors as synapses

between two neurons. The enlarged diagram show the schematics of the two-terminal and layered
structure of the memristor. (b) A crossbar configuration of a CMOS neuromorphic array with memristor
[190]

The above illustration of the unique memristor properties and its applications, shows
the importance of memristors in the future of nanodevice as a replacement for the current
memory devices and the fourth fundamental device. Therefore, because of also the nonlinearity
characteristic, memristor circuits are also considered nonlinear circuits. So, from theoretical
point of view the currents and voltages distribution in memristor circuits with one or more
memristors and different parameters is interesting from engineering prospective. Investigations
using different analysis methods in analysing memristive circuits is one of the main challenges
of this project. This can also give us an idea of the extent of nonlinearity of the memristor
circuit. Other difficulties are to include mathematical knowledge to cope with the complex

theoretical analysis of the memristor circuits, in order to gain a deeper insight and understanding

45



of the behavior of different RLCM networks and perform mathematical analysis for different

network configurations.

3.7 Summary

In this chapter, a review of memristor using theoretical definition introduced first by Chua
with the proposed memristive elements, was presented. This facilitates the choice of memristors

modelling with simulation to HP lab proposed memristor, memcapacitor and meminductor.

Several signature properties and applications that leverage on the memristor have been
reviewed. The non-linear dynamic behaviour of the device and the memory characteristic can

be exploited to serve as a memory element or as a programmable dynamic load.

This chapter demonstrated that memristor can be used in many solutions requiring
scalability, functionality and energy efficiency in any conventional circuit. Although it has
these potentials, more efforts are required towards the evaluation of a device’s state as well as
resolve issues related with the programming. Yet, there is great progress made in the more
reliable fabrication and the realistic modelling of their dynamics as an affordable device in the
same level of electronic components used in circuits design. From this point of view and to the
knowledge of the author of this thesis there is a lack of clarity in circuit theory analysis
assuming the behaviour of an ideal memristor, which is the motivation of this work, which aims

to propose an alternative analysis method, as introduced in the next chapter.
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Chapter 4: BOND GRAPH ANALYSIS

4.1 Introduction

With the increasingly important role of modelling and simulation in the engineering design
field, models need to be more accurate as it is not satisfactory to model sub systems in isolation,
since they interact and produce related dynamics. That raises the need to model different physical
systems in one modelling platform. This will be introduced in this chapter by introducing Bond
graph analysis.

Recent studies have discussed the analysis and modelling of electric circuits with
memristive elements. This chapter presents, a review of some of the standard methodologies
developed during the first half of last century, namely Nodal and Mesh analysis, which model
the circuit by relating the output with the input by a set of equations [194]. Following these
methods, State-space formulation and some modern developments are also presented based on
port theory as Port-Hamiltonian systems and graph theory (diagraphs) represented by Bond
graph analysis. Although almost all real physical systems behave in a non-linear fashion, a
memristor might act within a certain operating range approximately as a linear model, assuming
the principle of linearization. Relating the outcomes with control theory analysis and extracting

of the transfer function by linearizing a nonlinear bond graph is then addressed.



4.2 Methods of Analysis

4.2.1 Kirchhoff’s Voltage Law

One of the first basic laws is Kirchhoff’s Voltage Law (KVL) [195], that deals with the
conservation of energy around a closed circuit path. From the theory point of view, the division
of currents and voltages in memristor circuits combined of two or more memristors having
different parameters motivates to analyse it using the KVL method. This also gives us a
knowledge about nonlinearity of the memristor circuit. The relation of memristor is used to
model memristor circuit with two memristors and voltage source [196], this is done by applying
the current-voltage relationship of equation (3.2) in the circuit of Figure 4.1.
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Figure 4.1 Two memristors and sine wave circuit

Dependence batween EMF, voltage drops, cument and tima

- r . . T r T r
ol ——1_ _|_ LA __L__Jd___L__1.4
I I : . I I 1
[ 1 || ¢® | 1
2‘“]"«"|—TN—“7- — ut e it ik s o
15 ,"TI/ I ;\I || — w2 | 1 r’/
z N T e e
G 1) SR NN ' N SO S Sy
&z A | A | I | LhO
" C5_rl.{l__J.r_..r:’_l__‘“__-.L\:“'_J.___l___J.__J___ N
= I 1 I ] I ]
R i D N T Y P N R B Coy
3 I I | ' I 1 i i 1
f._"_. | | 1 i3 | 1 f|f’:\?| 1
e e e A Hte el ety P Bl e
- I I I R I [T I
= . P —— =+ =
£ I I I I \ I I /A I
S sk L1 AN __ Lo_al o __1_
I I I I I ] I ]
O S NN 77
s
I I I I I I I I I
e s el it it el el Aol -t Eenfidond et st
1 1 ] 1 1 T ] 1 k
o 0.2 0.4 0.8 0.8 1 1.2 1.4 1.8 1.8
Time, [sec]

Figure 4.2 The curves of the electrical quantities - e, the voltage drop u,
the voltage drop uz and the current i(t) in dependence of time [3]

After applying KVL, the circuit is examined at a circular frequency @ =4 rad / s and e
= 2.7V, as shown in Figure 4.2. It is apparent that the current over the memristor is almost non-
sinusoidal. The voltage drop us is higher than voltage drop uz. As the resistances of the first

memristor My is greater than the resistances of the second memristor Mz, the first memristor is
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more non-linear than the second memristor. That is due to the point that the deviation of the
resistance of My is from  Ront = 200 Q to Roriz = 60 k Q but for the resistance of the second
memristor, Mz is only from Ron2 = 100 Q to Roz = 16 k Q. This analysis shows that the
examined circuit is slightly nonlinear and this nonlinearity is more visible at low frequencies
[163].

4.2.2 Nodal Analysis

Nodal analysis is a commonly known method of analysing electrical circuits. The aim of
using this method is to identify each node voltage in the circuit by applying Kirchhoff’s current
law (KCL) [197]. Kirchhoff’s current law states that: for any electrical circuit, the algebraic
sum of all the currents at any node in the circuit is equal to zero. If there are n nodes and a
reference node were selected, the remaining nodes can be numbered from Vi to Vh.1. If the
admittance between nodes i and j is Yij, then nodal equations can be written as [198]:

YV YV, 4+ Y, V= Z l,
(4.1)

YoVy + Yo Vp ot Y V=D 0
where m =n-1, Vi, V2 and Vi are voltages from nodes 1, 2, ..., n with respect to the reference
node. Equation (4.1) can be represented in matrix form as:
YV =1 thenV =Yl 4.2)
Nodal analysis method becomes more used for solving large-scale circuits for two
reasons. The first is the elimination of nonplanar networks to avoid the tree-graph theory for

setting the equations. The other reason is that the number of equations is smaller with nodal

analysis, but this also has some limitations [194].

4.2.2.1 RLCM Circuit Analysis Using Nodal Analysis
The use of Nodal analysis method to analyse RLC circuit by adding memristor as a new

element will be analysed in this section. The best way to show such analysis is by applying
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nodal analysis on RLCM circuit. A good circuit example is the canonical Chua’s oscillator with

a flux controlled memristor [50] shown in Figure 4.3.

v Flux-controlled
memristor

Figure 4.3 Canonical Chua’s oscillator circuit with a flux controlled memristor
By applying the nodal method to the nodes, A and B of the circuit the equations obtained are:

=1, —I (4.3)
Vo=V, =V (4.4)
I, =—ly+1, (4.5)

with integrating the above equations with respect to time t, to develop a set of equations that
define the relation between the two fundamental circuit variables which is the charge and flux.

The resulted equations are:

0, =0,-0(¢p) (4.6)
D=0, = (4.7)
0, =-0;+0q, (4.8)

where q =j'i(t)at and (p:J.v(t)at. By solving these equations:

0, =0, +04(¢) (4.9)
d, = +0d, +q(p) (4.10)
»=9¢ (4.11)
P, =@+, (4.12)

Then substituting o, _ i = Clﬁ,% =i, =C, %,% =i;,and s _ i,=Gv, with the
dt ot dt ot dt dt
o, o0p, 6(03 ais oq(p) . .
arameters—=Vv,, —%=Vv,, —=Vv,=L—, and W(¢)=——"2 into equations (4.3-
p P v o 2 o 3 ot (@) P q (

4.5), recasting them into a differential equation using only charge and flux as revealed next.
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4.2.3 Bond Graph Analysis

Bond Graph method models [66] the flow of power energy and co-energy within the
system components taking into consideration system interconnections. In this method, the
conjugate variable relationships in every branch in the system are described by the flow of the
power through the system. Table 4.1 defines the terminology and the interconnection
constraints, as ports that belong to the same domain can be connected by a bond. It shows the
conventional domains with the corresponding flow, effort, generalised displacement, and
generalised momentum. An advantage of bond graph analysis is that it can account for power
and energy transfer in different transduction domains enabling the modelling of
electromechanical, or physicochemical systems using a unified framework. Bond graph may be
unfamiliar to many readers who have a background in analog system modelling as bond graph
was commonly used in mechanical framework as the origin of the bond graph was introduced
first in mechanical systems modelling.
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Table 4.1 conventional domains with corresponding flow, effort, and generalised displacement and momentum.

; q=/fdt p=ledt
e
Generalized Generalizes
flow effort .
displacement momentum
r=Judt
) i u g=/idt Magnetic Flux
Electromagnetic .
Current Voltage Charge Linkage
) v x=[vdt
Mechanical _ F ) p=[Fdt
) Velocity Displacement
translation Force Momentum
w 6=wdt b=]T dt
Mechanical Angular T Angular Angular
rotation velocity Torque displacement momentum
Ir=[pdt
_ 9 p V=[pdt
Hydraulic/ Momentum of a
) Volume flow Pressure Volume
pneumatic flow tube
fsS
T S=[fsdt
Entropy
Thermal Temperature Entropy
flow
fN
U N=]fN dt
) ) Molar
Chemical Chemical Numbers of moles
. flow
potential

4.2.3.1 Power Bonds and Conjugate Variables

The flow of power from one system to another is depicted by an arrow as shown in

Figure 4.4, and this arrow is called a power bond. The energy in bond graph framework is

substituted by two variables the (flow and effort). In the electrical domain flow (f) represents

the current (i) and the effort (e) represents the voltage (u), where one of these variables describe

the cause and the other describes the effect. The product of flow and effort has the units of

power [117].

power = flow x effort = voltage x current

(4.17)
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Figure 4.4 shows half of an arrow power bond, symbolising the power flow from point A to

point B.
A B

f
Figure 4.4 Bond graph power bond
4.2.3.2 Bond Graph Junctions

Power bonds might join with each other by two types of junctions, “0” Junction and “1”

junction. For the 0-junctions, the conditions satisfied for the flow and effort are stated below:

z fIOWinput = Z ﬂowoutput (4.18)
effort; oy = effortin, = ... =efforty, n =efforty g =efforty e, =... =effortypy o (4.19)
2 flow sum equal to zero
. fith=fL+f
0 3 efforts are equal
61 = 62 = 63 = 64
4

Figure 4.5 0-junction bond and conjugate variables relations

Moreover, for the 1-junction flow and effort follow these two rules:

D effort . = effort, (4.20)
ﬂOWinputl = ﬂOWinputZ Tz ﬂOWinput n=— ﬂOWoutputl = ﬂOWoutputZ T ﬂoWoutput n (4.21)
2 effort sum equal to zero

61=62+e3

flows are equal
h=H=/

Figure 4.6 1-Junction bond and conjugate variables relations
4.2.3.3 1- Port Elements

One-port element is an element addressed through one power bond. It is divided into

two groups, passive and active. The passive element is an element does not generate power

53



source such as resistors, capacitors and conductors [95] and active elements are the flow and

effort power sources. Each type of 1-port element will be discussed next.

4.2.3.3.1 Resistor
Resistors (R) dissipate the energy as known in electrical circuits, and the flow related to

the effort by a static relation as shown in equation (4.22) below:

e=Rf (4.22)
The power is given by
power =ef =Rf? (4.23)
e
R
f

Figure 4.7 Resistor bond symbol

Figure 4.7 shows the half arrow pointing towards R, which means the power is inflowing to R.
In the case of a resistor either the flow is the cause and the corresponding will be the effort, or

the effort is the cause and the correspondence will be the flow.

e
I: L
f

Figure 4.8 Resistor bond symbol

4.2.3.3.2 Capacitors

Capacitors (C) are elements that store and give out energy without loss. The elements
relate effort and charge (q) which is the time integral of flow as shown in equation (4.24). In
Figure 4.9, the flow will be the cause and the consequence is the effort in the case of a capacitor.

a=[f@et (4.24)
e:C’lj f(t) ot=Cq (4.25)
e
C
f

Figure 4.9 Capacitor bond symbol
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4.2.3.3.3 Inductor

Inductors or inertia (1) are type of another energy storage elements in electrical circuits.
An inductor relates the flow with the flux (p), which is the time integral of the effort as
illustrated in the equations below with the symbol of inductor bond. For the inductor, the effort
will be the cause and the result is the flow.

pzjeat,sz‘l_[eatzL‘lp (4.26)

e
I:L

Figure 4.10 Inductor bond symbol

4.2.3.3.4 Effort and Flow Sources
Effort (Se) and flow (Sf) sources are the active one-port element in bond graph analysis
which create action in the system. They are represented by the half arrow pointing away from

them toward the junction.

e e
Se Sf
f f
Figure 4.12 Effort source bond symbol Figure 4.12 Flow source bond symbol

4.2.3.4 2-port Element
There are also two additional basic types of 2-port elements, these are transformers (TF) and

gyrators (GY), and will be discussed briefly next:

4.2.3.4.1 Transformers

Transformers do not store or dissipate or convert power, they only transmit the power
with a proper scaling factor. They relate flow to flow and effort to effort. As shown in Figure
4.13, m is the transformer modulation ratio while 1 and 2 are the two-port address.

& TF__© e;=m ey
f1 m fa fi=mf,

Figure 4.13 2-port element: Transformers
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4.2.3.4.2 Gyrators
A gyrator translates effort to flow and flow to effort without scaling as shown in Figure
4.14. Here d is the gyrator modulation ratio. Combining two gyrators in series is equivalent to

one transformer [199].

& Gy & e=d f;
f, d f fi=d e,
Figure 4.14 2-port element: Gyrators

4.2.3.5 Power Flow Diagrams
The next step is to join the element bond in a junction and assign their power flow. This
can be illustrated best through an example. The first example is for an electrical circuit of

common flow, as shown in Figure 4.15 with the corresponding bond graph.

R

\IJ_
R

C N .
Se 8) Se 1——> 1L

T C

Figure 4.15 Series RLC circuit example and the corresponding bond graph

The second example is a circuit with a common effort and the resulting bond graph is shown in
Figure 4.16.

R

|

Se — >0 ——L

See)RgL CT L

C
Figure 4.16 Parallel RLC circuit example and the corresponding bond graph
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4.2.3.6 Causality
Causality is one of the essential functions in a bond graph, as it assigns the directions of

flow and effort of the bond. Figure 4.17 shows the directions of the flow and effort according

to causality.

Causality Marks
e e

f f
Figure 4.17 Causality marks for two different bonds

There a fixed causality as in power sources, transformers and gyrator [200]. The corresponding

causality is shown below in Figure 4.18.

SF |———~ SE—

| TF | or = TF ——==
gy — o —gy ——=

Figure 4.18 Fixed causalities as in power sources, transformers and gyrators

In addition to the fixed causality, there are preferred causalities for capacitor and inductors
because there are two possible causality mark assignments. These assignments are either
integral or differential causalities. For the C and L, they have an integral or differential
relationship between the conjugate variables and the causality mark depends on the specified

relation. Figure 4.19 demonstrates the causality mark assignment related to each relationship.

The last bond graph element places equivalent causality assignment as the resistor. The relation
between the conjugate variables are either integral or differential and the relation is simply

linear at all time. The causality mark assignment for the resistor is shown in Figure 4.20.
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C | f
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<« & dv,
5 f i e
dt
Lt
e T
—> 1 L
I Lee= f=1p p[
<« f ] PR
L | e
e
o dfy
« 4Lt
dt
Figure 4.19 The causality marks related to deferential and integral relationship graph
R | e,
—€ e =Rf
<« f f
1 f
- —>
<«—8© 1 R
o f e

Figure 4.20 Resistor causality marks for different relations

As shown in Figure 4.5, now there is a need to add the causality assigned to each of the
junction’s types. For the connection bond of 0-junction which shares the same effort, the causal

assignment is rearranged according to the element that is determined by the source of flow or
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effort. In each O-junction, there is only one bond that is responsible for supplying effort as it is

shown in Figure 4.21

2 Flow sum equal to zero

| 1 0 | —fthtfi=f

Efforts are equal

e1 =6, =e3=¢ey,

Figure 4.21 0-junction bond and conjugate variables relations with causality
The other type of junction bond is the 1-junction. The rules that the 1-junction must satisfy are
that all flows are equal, and the efforts sum is equal to zero. With reference to Figure 4.6, the
resulted causality configuration will be as shown in Figure 4.22. In 1-junction, there is only one

bond that supplies the junction with the flow [201].

2 Effort sum equal to zero

1 | 1 3 | €2=€é3—¢€

Flows are equal
fi=h=%

Figure 4.22 1- junction bond and conjugate variables relations with causality marks

As a full illustration of bonds, junctions and causality, a simple example is shown for
the circuit of Figure 4.23a. The first step in bond graph modelling is to convert the circuit into
its corresponding bond graph as shown in Figure 4.23b. It is better to assume that the causality
of capacitor and inductor are of integral causality unless these one port elements are forced to
be in a differential causality. There are a few steps that can be followed to assign in every
system causality. These steps define a procedure called the Sequential Causal Assignment
Procedure (SCAP)[202][203]. This procedure allows for assigning the causality to the overall
bond graph, it consists of the following steps:
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1)

2)
3)
4)
5)
6)

7)
8)

9

First assign the causality for the sources (Se, Sf ) and then extend it to the 0 and 1-junctions

taking into consideration the constraints applying on them. Continue the causality
assignment to the TF and the GY .
Repeat the previous step until all the sources have the causality assigned on them.

Assign the integral causality to the storage elements (1, C) and continue as in step 1.

Repeat the above until causality is established for all of the storage elements.
At this point, the causality has been assigned to all bonds.
If, however, any bonds without causality remain in the bond graph choose a resistive
element without causality assigned to it arbitrarily. Then repeat from step 1.
Step 5 is repeated until all resistive elements obtain causality.
Any unassigned bond is chosen and causality is assigned to it. Then, follow the process as
in step 1.
Repeat the above until all the unassigned bonds have causality. After completing step 8 all

bonds will contain their causality.

L R
c —— R§
(a)
I: L C:C I: L C:C
2 5 2 5

R: R: R: R, R:R1 R: Rz
(b)

Figure 4.23 (a) Electrical circuit example. (b) The corresponding bond graph with causality marks
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4.2.4 Bond graph Equation Formulation

One of the bond graph analysis goals is to obtain state space representation form. There are

a few steps that can be followed to obtain such form of equations as discussed in Figure

4.23[204].
1. The first step is to assign the integral causality for L and C elements.

2. Determine the appropriate state variables for L and C ( p and q respectively).

P2 ds
fa=7 es =

3. Find the answer to the two important questions for solving bond graph:

(1) What do the elements give to the system?

Se:e =E
L:fzz%
R:e;=R f;=Rf,

: q
C.eszé’

R,:e,=R,f,=¢
(2) What do the causal elements receive from the system?

L:e,=p,=E—e,—e,=E—R,f,—e,=E—R, 2%

L C
. e e p, q
—f—f _f—f_6_f_5_FPo U
q5 5 4 6 2 R6 2 R6 L RGC

By answering these two questions, all system equations will be identified automatically.

4.2.5 State-Space Formulation

(4.27)
(4.28)

(4.29)
(4.30)
(4.31)

(4.32)

(4.33)

In 1965, the first seminal paper to discuss the state variable approach was published by

Kuh and Kotler [205]. This work proposed a topological theoretical base to obtain the state

equations of linear networks. A set of state variables, input and output related by differential

equations are used to produce a mathematical model of circuits, which is called the state space

formulation [206]. If x is denoted as the state variable, u is the input, and y as the output of an
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electrical system, then the linear system of n first-order differential equations can be expressed

as follows:
X = Ax+ Bu (4.34)

This equation is referred to as the state space formulation, where x (t) is the state variable, u (t)
represents the input vector and X is the derivative of x or each element of the input vector, with
A and B are the system matrix and input matrix respectively. The output expressed by the

output equation as a function of the state variable and the excitation sources is:

y =Cx+ Du (4.35)

where y is the output vector for the system, C is the output matrix and D is the feed-forward
matrix representing the amount of input energy that has not interacted with the system. For
many physical systems, the D matrix is a Null matrix and (4.35) is reduced to y = Cx [206]. A
general procedure for obtaining state space equations consisting of four steps is mentioned in
[207].

4.2.6 Examples of State- Space Equation
4.2.6.1 1% Order Circuit

To obtain the state equation, the procedure steps are applied on a simple circuit example,

as in Figure 4.24. The interesting variable here is the voltage of the capacitor as a storage

element (Vc). If Vc is denoted as x then x = N, , by applying KVL, the resulted equations are
stated below:
Vr

Figure 4.24 1st order RC circuit example
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oV

b (O =i =1, () =C—¢ =Cx (4.36)
Then formulating resistor voltage
V. (t) =Ri (t) = RCx (4.37)
And applying KVL to the circuit
Vi, =Vi +V; =RCx+x (4.38)
Rearranging equation (4.38)
x:-é%x+§%wn (4.39)

and the output is the same voltage of capacitor which is x.
y=X (4.40)

WhereAz—i ,B=i ,C=1andD=0
RC RC

4.2.6.2 Higher Order Circuit
A higher order circuit example is that of a 2" order circuit as shown in Figure 4.25. This
circuit consists of two capacitors which determine the order of the circuit, and by applying the

procedure steps, the resulted state-space form is obtained as follows:

VR, X VR2 X
W—F——
1 1

R1 Cy a R ¢, “-Ve

u(t)

Figure 4.25 2nd order RC circuit example

. ov
L(t)=C—
NQ) o

— % (4.41)

By solving the circuit using nodal analysis.

(4.42)

Bk W ORI (4.43)
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ove, _ %, oVve,

Then substituting P ,, and =X, into equations (4.42) and (4.43), it results in:

1 1 1 1

— X, ——Uu(t)+—x,—Xx,+C, x, =0 4.44

R YR (t) R MR Ok (4.44)
1 1
—X,——X+C, x, =0 4.45
RZ 2 R2X1 2 "2 ( )

Then rearranging equations (4.44) and (4.45) according to the derivative variables:
R +R, 1 ult 1

X, = + + X 4.46
= RRC TR TER (449
X, =— L X, + L X, (4.47)

RZCZ CZRZ
B R +R, 1 1
RC, CR
| Rllz Lo D} CR, [u(t) (4.48)
X - 2 0
2 CR,  CR,

y=X, (4.49)

By rearranging again the above equations, the state space parameters are obtained as follows:

. R, . 1
pzz_T3 pz_EQ5+E (4.50)
1 1

Jo=+— P, ——— 4.51

=+ Pap o (451)
R1
P, L C ||p| |1

= + E 4.52

T {qj M e
° L R,C

4.3 Memristor As a Bond Graph Element

Oster in 1972 introduced the memristor as the new bond graph elements [3], after
Chua’s announcement of conceptualizing the fourth element [9]. Oster presented two types of

memristor (M), a charge controlled memristor where e=M(q)f and a flux controlled

memristor where f =W (¢)e. The corresponding memristor power bond and causality are
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shown in Figure 4.26. Memristors cannot be considered as energy storage element because they

have the same behaviour as resistors.

I —
@) (b)

Figure 4.26 Memristor bond and causality (a) Charge controlled memristor
(b)Voltage controlled memristor

The memristor is a peculiar element, it is dissipative, but at the same time, it is a dynamic
element requiring the specification of an initial value. It should be taken into consideration that
the state space will be three-dimensional not two-dimensional as expected for RLC circuit, and

that is due to the calculation of the state variable (w) of memristor.

Almost all books and research papers did not discuss the analysis of bond graph with
Memristor. Wolfgang Borutzky stated in his book [88] “Even in the fourth edition of their
renowned textbook [208], Karnopp, Margolis and Rosenberg note that “no element will relate
p and q”. While interesting and occasionally useful, memristors can be represented in terms
of other elements to be introduced later, so the memristor will not be considered to be a basic
element.”. So, one of this project’s challenges is to consider the memristor as the basic fourth
element of bond graph analysis. A simple RLCM circuit example shown in Figure 4.27 will be
solved to give a brief understanding of how to analyse the bond graph with the existence of

memristor.
R

L C
—{

Figure 4.27 Series RLCM circuit example

The extracted bond graph with the related causality will be denoted as follows:
l:L R:R
2

5
Se—— 1H4—~1

3 6

C:.C M
Figure 4.28 The corresponding bond graph with causality for Figure 4.27 circuit
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The system equations that represent this bond graph are derived as:

Se:g =E
) J;
Cie,=—
3T c

R:eS:Rf5:Rf2:R%

MR:es =M(qs) fs =M (0s) f, :M(%)%

P, =€ =€ —€, —€ =el—e3—e5—e6:E-%—% P2 —
Is="f3=1; :%
where
M (6) = Ron () + Ry (1= 5)

4.4 Junction Structure Matrix

M (qs)%

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

A vectorised description of a physical system analysed with bond graph is shown in

Figure 4.29. This description is demonstrated below as a block diagram based on the energy

conservation of a junction structure according to the information flow within the system.

Se, Sf
w

II X | Junction [—— | C

iy (|

Structure ———*

Zd_pemmmmmmnees

Do

Di

R

Figure 4.29 General structure of a causal bond graph
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In the above general junction structure, the storage-field has been partitioned into two fields
according to the integral or derivative causality assignment. This structure is defined as the BG-
Standard Implicit Form (BG-SIF). Here Xi = [Xi1, Xiz2, . . . ,Xin]" is the state vector in integral
causality, and Xq = [Xd,1, Xd2, . . . ,Xd-n] " contains the energy variables in differential causality.
Zi=[zix, Ziz, . . ., Zin] " and Zg = [Zd,1, Zd,2, - - - , Za,n] " coNtain the co-energy variables associated
with Xi and Xq. Di and D, containing the effort and flow variables entering and exiting from
resistances. U contains the efforts and flow variables imposed by the sources. It is assumed that

the system contains n-1 storages.

The derivative of the general implicit form is based on a general form of (4.61). The
standard form of a bond graph will be devided into an external and internal power bonds. In
this section, the bond graph was divided so that it can be used in formulation suited to computer
implementation. To obtain the junction structure matrix many steps should be followed as will

be discussed below. Every multi-port within the junction structure can have its constitutive

O | [Jdu |G
{ho}_[\lﬂ JJLJ (4.61)

In this case, go is the external bond output variables, hois the internal bond output variables,

relation written as:

gi is the external bond input variables, h; is the internal bond input variables, which are directly

extracted from Figure 4.29. goand gi will contain the system variables as shown:

X z
7 X

g,=| °| andg=|" (4.62)
\" u

where for the source field u and v are the output and the input variable respectively. For storage
field, xiis integral causal input variable, x4 and zqare the differential causality input and output
variables. After solving matrix (4.61) to obtain go and substituting hi=P ho, the result will be the

junction structure matrix:

9% ZI:Jn+‘]12P(|_‘]22P)_1~]21)] [oF (4.63)

After calculating the junction structure matrix, one can rearrange the junction structure matrix

in an order similar to (4.64) and the corresponding matrix relation is:
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O X N

(4.64)

O
«
%
g
»
8
»
g
CO

4.4.1 Detailed Steps for Obtaining Junction Structure Matrix

From an augmented bond graph, using a step by step procedure for junction structure
matrix generation. In this section a bond graph is branched into sub-divisions. Every multi-port
within the junction structure can have its constitutive relation to be written in an equation (4.61)

[204]. Here the model of a simple system is taken as the starting point, as shown in Figure 4.30

Cs

\ |
sflﬁOﬂ GY lﬁ 1
4L 8

Figure 4.30 Junction structure matrix example

By observing this bond graph, it can be seen that bonds 1,2,3,4,7, and 8 are the external bonds
and also that bonds 5 and 6 are the internal bonds. Thus, for extracting each junction relations
matrix, the first junction under investigation is the O-junction. In this junction, the input
variables are f1, e, f3, f4 and fs, and the output variables will be es, f2, €2, esand es. The resulted

relation matrix for the O- junctions is:

e] [o 1 0 o o]ff,
f,l |1 0 -1 -1 —-1|e,
e,|=|0 1 0 0 o0 f, (4.65)
e,| |01 0 0 o0ff,
e |01 0 0 o] f]

For further explanation on how to calculate (4.65), the outputs €;,€;,€, and &; are given the
effort from €, because C; is the supply of the effort into the junction. In addition, in the O-

junction all the efforts are equal, meaning € =€, =€; =€, =€. Then, the output f, can be
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obtained from the O-junction flow equation which states that the summation of the flow equals
zero,so fy="f,+ f3+f,+f5 then f,=1f-f;—f,—f.

Now, we observe the 1 junction, and the input variables are fg, €; and g, while the
output variables are €, f; and fg. The resulted matrix for the 1 junction will be as follows:

£,1 [o 0 1][e,

fg|=]10 0 1| e (4.66)
€ 1 1 0] fg

To explain how the matrix is obtained, the outputs f; and fg are supplied from fs. As one of

the 1- junction properties is that all flows are equal, the output € will be calculated from the
1- junction effort equation, which states that the summation of the efforts are equal to zero, so
66 = 67 + e8 .

For the gyrator junction, the input variables are €5 and €, thus, the output variables are

f-and fg. The corresponding matrix for the gyrator junction is:

f 1
s|_| 0 Lries (4.67)
fg 1/r 0 || &

The flow output in this matrix is from the gyrator equations, &; =Ifs and e; =rfs . After

analyzing the system and determining the corresponding matrix for each junction in the system,

we will arrange the supplied matrices into the form of matrix (4.61) as shown below:

‘el fo1 0 0 000 00 0]f]
fal 11 0 -1 -1 0 0-1 00 0f&
& |01 0 0 000 00 0flfs
U|&| |01 0 0 0 00 0 0 0} fsl
f2] lo o 0o 0 000 0 0 1€
fe| |00 0 0 000 00 18 (4.68)
Ju Jip
es| |01 000000 0 0]Ffs
h,/ fs| [0 0 0 0 0 00 0 1/r O | & |h
f;| |0 0 0 0 0 00 0 1/r 0 | e
& | /00001 11 0 0 0|f
L J4 = J21 J22 -L
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As h; is a reordered form of h, then we can eliminate h; by substitutingh, = Ph, . Matrix P can
be written as:

fs]1 [0 1 0 0]fes
&|_[1 00 0ff 4.6
& | [0 0 0 1] f '
fo| [0 0 1 0] e

P

After solving matrix (4.63) to obtain go and substituting hi=P h, for the above example the

resulting junction structure is:

01 0 0 0 0]
el |1 0 -1 -1 -1 L]
f r r e
'lo1 00 0o o7
€| fa
e |01 0 0 0 o0 (4.70)
4 4
f.1 |0 % 0 0 0 0|e
_f8_ 1 _e8_
0 -0 0 0 0

4.4.2 Junction Structure Matrix with Memristive Elements

Standard postulations in BG theory where power is expressed as the product of effort
e(t) and flow f(t) are adopted and the same is applicable to state variables, momentum p(t) and
displacement q(t). As proposed in [98], bond graph model contains linear and nonlinear
dissipation fields that can be decomposed into dissipation fields split into two parts (linear and
nonlinear), storage fields (C and I), as well as source fields associated with effort and flow (Se
and Sf), and junction structures (denoted by JS) composed of transformers TF, gyrators GY. In
this section, a new general junction structure model for systems that contain memristive
elements is proposed, which is the general flow of information within such systems as shown
in Figure 4.31.
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Source fields

(Se, Sf)
f
u(t) Dl
Storage Z,;;(I) Junction | Dissipatio
fields D)(1)| n fields

A

XD structure

) Do | (R, M)

X 1 0 1,TF,
z(t) GY) DM (1)

Figure 4.31 Structure of a causal bond graph

where

e Xi = [Xi1, Xi2, . . . ,Xin]" is the state vector in integral causality.

®Xd = [Xd,1, Xd.2, - . . ,Xd,-n] T contains the energy variables in differential causality.

e 2i=[zi1,Zi2,...,Zin] and za = [Zd1, Zd2, . . ., Zd,-n] " contain the co-energy variables associated
with X; and Xg.

o D! and D} are the linear vectors containing the power variables entering and exiting from
resistances.
e DM and D)" are vectors containing the power variables entering and exiting from memristive

field.

e u contains the effort and flow variables imposed by the sources.

Dissipation as an input variable is seen as mentioned before, to be composed of two elements:
linear D/ and nonlinear D/. Similar expressions of D, D) can be used to denote dissipation

as an output variable. The general implicit matrix of the model has been derived using bond
graph theory:

k, = Jk, (4.71)
Where k, :[)‘(i (t) D/(t) DM() z, (t)]is the output of the junction structure and
K; =[zi(t) D) DM(@) u(t) g (t)} is the input of the junction structure. After assuming

a few conditions, the general structure matrix of such systems will be proposed as:
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[ z(t) ]

Xi (t) Sll s12 S13 S14 S15 DI (t)
D! (t S. S 0 S 0 ’
&4( : o * D, (t) 4.72)
DM (t) S, 0 0 S, 0 0(t)
z,(t) S, 0 0 0 © 5. (1)
L “d i

Some of the assumed properties of (4.72) are: Si1 and Sz are skew-symmetric matrices;
S, ==S,, andS,, =-S], imply that all storage elements are linear; S,, =0 as no storage
elements are determined by sources in deferential causality; S,, =S,; =S, =0 because by
definition the dependent state variables are functions for only integral causality state and the
system inputs; S,; =S, = S,, =0 as there are no coupled resistors; S, =S, =0 is assumed to

be in the preferred integral causality.

4.5 Formulation of Bond Graph Equation into State-Space Form
The form of the state space equation needed to be derived from bond graph is in the form

of:

%(t) = AX(t) + Bu(t) (4.73)

where X(t) is the derivative of energy variable, thus it consists of p for the inductor element

and ¢ for the capacitor elements. u is the vector that contains flow or effort sources.

The state space equation will be calculated referring to matrix (4.64). The derivative has
been based on the method provided by Donaire [209], assuming D(I)(t) = LDiI, where L is a

matrix that consists of the dissipation field, and this matrix is a diagonal positive and invertible

matrix. Then z(t) = Fx(t), describe the behaviour of the storage elements in integral causality
within the network, with F is a positive diagonal matrix of storage field. And x, (t) = Gz, (t)

describing the behaviour of the storage elements in derivative causality within the network with

G as a positive diagonal matrix of storage field.

With the general matrix previously presented in section 4.4 in conjunction with the

causally constrained bond graph that will yield a DAE-system, the differential equations are
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derived under a suitable assumption to define a general expression for a system with integral
and derivative causalities. The equation is produced after substituting lines three and two from
matrix (4.64) into the first line. The final expression for all the storages and dissipation elements

in the expression will be formulated as follows:

(1 —8,,GS;, F)X(1) =[ S, + SHL( = SuL) 'Syt [Fx(t) +[ SHL(I —SHL) 'Sy +S,, Ju)  (4.74)

the obtained expression is formulated into the state-space form X = Ax+Bu.

4.5.1 Derivation of The Unique State-Space Formulation of Bond Graph

Equation with Memristive Elements

For a system combined with memristor elements, the system will be considered as a
class of nonlinear system because of the memristor behaviour, which can be obtained by
dividing the dissipation field (as the memristor is an element that dissipates energy) into linear
dissipation, respectively the input and output dissipation, which is a mixture of efforts e(t) and

flows f(t), and non-linear dissipation. In the case of memristor system, the non-linear
dissipation will be denoted by D™ and D)" . The systems with memristor can be modelled by

bond graph with a junction structure defined as in (4.75):

The constitutive relations of the elements in the derivation of a system containing linear
storage  elements  are: z(t) = Fx(t), x4 (t) = Gzq (t), D} (t) = LD, and D} (t) = M (x)DM (1),
where x(t) is an integral causal input variable, X, () is the differential causal input variable, and

M(x) denotes memristance and it is a diagonal matrix of coefficients M(x) or M}(x) depending
on the type of control for whether it is charge of flux control memristor or not. Substituting

these constitutive relations into (4.72), it follows that:

. [ x (1) ]
X (t) S11 F S12 L 813 M S14 SlSG D_I (t)
D! (t S,F S.,L 0 S 0 \
':/I( ) — 21 22 24 DiM (t) (475)
Di () S3lF 0 0 834 0 u(t)
z,(t) S,F 0 o 0 0| .
d 41 i Zd (t) |
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The form of state space equation needs to be derived for systems with memristive elements in
the form of (4.73). By looking at row four of equation (4.75), an expression for z,(t) in terms

of the other elements in the system is derived:
24 (t) = SyuF x(t) = 24(t) = Sy4FX(t) (4.76)
And from row three, an expression for D" (t) in terms of x(t) and u(t) in the system can be
expressed as:
DM (t) = S FX(t) + Sa,u(t) (4.77)
Then deriving D} (t) from the matrix above:
D (t) = S1FX(t) + S5, LDj (1) + Spau(t) = D (t)(1 —SyoL) = Sy FX(t) +Sp0u(t)  (4.78)
Finally, an expression from the first row for the derivative of the state variables is obtained as:
X(t) = Sy, FX(t) + Sy, LD! +S;sM (X)DM (t) + Sy,u (t) + 545G za (t) (4.79)

Substituting (4.76),(4.77), and (4.78) into (4.79) leads to the general implicit state equation:
EX(t) = [ 1y + SipL(1 = S5L) S+ S13M (0S50 | FX) +[SiaL (1 ~SppL) S +515M (1055, + 5y, Jut)  (4.80)

where E = (I - $;5GS,,F) . Equation (4.80) is consider as a state space equation in the general

form Ex(t) = Ax(t) + Bu(t) .

4.6 Transfer Function Derivation

One of the most common and useful methods of representing a system is by its transfer
function of complex variables [210]. A rational function between the input and the output for
finite dimensional systems may be used to describe systems of a very high order or systems
described with partial differential equations. The numerator and denominator give the poles and
zeros of the system and can be used to identify system dynamics, estimate stability margins

through Bode plot or Nyquist diagrams. An input-output description of a system is essentiall
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for systems to be characterised by the response. In this section, another interesting method of

using the bond graph theory will be considered to derive transfer function.

4.6.1 Transfer Function Using Bond Graph Matrices

This section investigates the exploitation and analysis techniques used specifically on
bond graphs. This includes both standard bond graph and bond graph incorporating memristive
elements, and their relationship to classical systems control theory. The information included
in the state equation of a system is analogous to the structural analysis s in control engineering.
The implicit or explicit state space equation(s) from the bond graph can be manipulated into
various forms and used to obtain information about the system. Although this is not strictly an
analysis of the bond graph, it is imperative that the bond graph can yield equations suitable for
this kind of analysis. This method can identify and avoid some of the difficulties that face other
methods with loop or nodes technique of network analysis to accommodate certain multi-ports.

The most direct method to derive the transfer function model [204] is to replace the
dynamic store's relation by the equivalent Laplace transform. Then, eliminating variables to

obtain the required transfer function as in:

Fs)=2 (4.81)
u
To do so, the system junction structure needs to be derived with differential causality as shown:

i wa SWu SWr Xi
V |=| Sx Sw Sw || U (4.82)

Di SDix SDiu SDiD0 Do

W

Then eliminating the unwanted vector of v, and assembling the output variable into y vector to get:

y Syx - Sy Syr Xi
W | = SWx SWu SWr u (483)
Di SDix SDiu SD.D Do

i~o

with constitutive relation of storage field is:
% =Z W =Y, w; (4.84)

and differentiating it and then taking the Laplace transform of equation(4.84):
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Xi :Yi SWl (485)
where s is a diagonal matrix of Laplace operator and S is for the submatrices of the junction

structure matrix. Substitute (4.85) the constitutive relation D, (t)=LD, into (4.83), to

eliminate X, and D, :

y S nyS S yu S yr L w
w |=|S,Ys S, SuL |lu (4.86)

The resulting general transfer function of systems using bond graph technique will be:

F(s)=P+Ms(l -Ns)™'Q (4.87)

where, M =(Syx —Syp, L(Spp, L—1)"Sp,)Y (4.88)
N = (Syx =S, L(Spp, L= 1) *Sp, )Y (4.89)

P=S,,—S,5 L(Spp L—1)"Sp, (4.90)

Q =Sy —Sup, L(Spp, L—1)"Sp,, (4.91)

4.6.2 Memristive Elements Transfer Function from Bond Graph

From the method presented in the previous section, an interest to derive a unique transfer
function of memristive systems from bond graph is raised. This section, addresses a new and
direct formulation of transfer function to represent systems with memristive elements. This

derivation can be found by using the same proposal that each dissipation field is divided into

linear dissipation D and D, respectively, and non-linear in the case of memristor system, the

non-linear dissipation will be denoted by DiM and DQ" . Then the proposed junction structure
matrix of memristive elements with differential causality will be:

Fw(t) | Sy S Siz S || X() ]
D! (t S,y S, S, S, |l Dt
’:A( ) _| P21 92 923 O '\c;( ) 4.92)

D" (t) Sy Sz Sgz Sy || Dy (1)

L v(®) Si Sgp Ssz Su L u(t) |
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First, assign the output variables in a vector y(t) then delete vector v(t)

oy ] | S Sk Sz St |[ x()
w(t) Su S S Su || Do)

D; (t) i Sy S S; Su || Do (1) (@%)
DM (M) | Sy Sy Ss Sa L UM |
The constitutive relation of storage field is:
X=Z"'w=Yw (4.94)
After differentiating and taking the Laplace transform of equation(4.84):
X =Ysw (4.95)

where s is a diagonal matrix of Laplace operator. Substitutes (4.95) and the constitutive relation
D! (t)=LD/, D" (t)=M(x)D" (t) into (4.93), to eliminate X; and D, :

y(t) Slan 5112|_ Sll3|\/I Sl14 W(t)
w(t) | | S,Ys S,L S,M S, || Di(t)
DI() | |S,Ys S,L SzM S, || DM(t)
DY(t)| |S,Ys S,L S,M S, | u()

(4.96)

Equation (4.97) is obtained by solving the system according to y(t) :
y(t) = (Si1YsKyg + Sip (K5 KgKyg + K5 'K, ) + 85 (KgKyg + K7) + S )u(t) (4.97)

The resulting mathematical transfer function will be in the form of:

t _ _
% = S111Y5K10 + Sllz(Ks 1K3K10 +Ks 1K4) + SllS(KGKlO +K7)+ S114 (4.98)

where K, = (1-S5sM) ™, K, =(1-S,,L), Ky = K3LS,; + K, 'LS,5K 'MS .,
K, = K5'LS 5K IMS,, + K5 1LS,, , Kg =1 KSLKIMS,, , K = KT 'MS,; + K 'MS,, KK,
Ky = Ki " MS3 K5 K, + K tMSg, , Kg = Sp + S1,K5 Ky +S13Ks, Kg = S1,K5 K, + 513K + Sy,
and Ky = (1-YsKg) YsKy .

A modified example shown in Figure 4.32 from [204], serves to illustrate the above
proposed procedure. For the bond graph in Figure 4.32a, it is with preferred integral causality,

so for the derivation of the system transfer function it is needed to force the storage elements to

be in a deferential causality state as shown in Figure 4.32b.
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Figure 4.32 (a) Bond graph with integral causality. (b) Bond graph with differential causality.

sf | 1

From the bond graph with differential causality the junction structure constitutive relation is:

f] [0 1 0 0 Oe
e, |-1 0 n -1 0 f,
f,[=[0 -n 0 0 1|e (4.99)
f| |0 1 0 0 Ofle
e [0 0 1 0 Off]

Let the output vector be y=[e, e5]T. Then, eliminate €, from (4.99) and transform (4.99)

into the form of (4.93), with the output vector. The resulting matrix will be:

o [0 0 1 0 0

e2 0 0 0 1 0e]

f5 0 1 0 0 Off

®I=|-1 0 n -1 0} e, (4.100)
fj 0 -n 0 0 1fe

L'lo 1 0 0 Off]

s 0 1 0 0]

. foo] 4 17 ., fo] . To 0 0 0 0
Si1 = 0 0’512: Ovslsz 1’514: Ovsllz 0’812: n,313= _11514: ol

equation for the storage field is:
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]

And the constitutive equation for the dissipation and memristive fields will be:
e, =R, f, (4.102)
e =M f; (4.103)

After applying (4.98) to adopt the transfer function for the above example, the transfer function

expression will be:

R (R7n%)
Yt ? " (R,SC,n? —sC, +5Lg + MsC, +5C,sL) (4.10)
u(t) (MRyn) |
(RySCyn? —SC; + 5L + MsC; +5C,5sL)

4.7 Bond Graph Linearization

Although almost every physical system has nonlinearities, the behavior around a certain
point of equilibrium can be approximated by a linear model. The reason for approximating such
systems is simple. Therefore, systematic linear control methods can be applied [211]. A system
is linearized around an operating point, and it is useful to analyse the behaviour of the system.
The newly derived equations are assumed to be valid around a small region of the equilibrium
points [212]. One of the linearization applications is the small-signal stability analysis when the
system maintains synchronism at small disturbance[212]. There are many other methods and
applications that can be found in many research papers as mentioned in the literature of chapter

two.

An important bond graph property is the determination of the causal path, where the
properties of the system structure such as observability and controllability are allowed to be
defined. This is applied beneficially in [98]. A linearized bond graph of the physical system
around equilibrium point was proposed by considering a non-linear bond graph with linearly
dependent and independent state variables and non-linear resistors through a procedure to build
a linearized bond graph from a non-linear one. Small perturbation techniques that enable small
non-linear terms to be vanishingly small have been well developed by the non-linear control
theory community to assist with stability analysis. As discussed by Avalos and Orozco, it is

appropriate to adopt such an approach to the analysis in a BG framework.
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Such Lemma may be stated in linearizing a bond graph to define new causal paths that

construct a linearized bond graph, by obtaining an additional term. As in the form:
() = f(x@)u®)  xt)=x (4.105)

where x(t) is the state variable and u(t) is the input. If equation (4.105) is solved for a nominal

input a(t) and initial state X, to obtain a unique nominal solution, one can consider that

u(t) =u(t)+uy,(t) (4.106)
Xy = X+ Xo5 (4.107)

where they are appropriately small fort >1;, so the corresponding state will be:

X(t) = X(t) + X, (t) (4.108)

A state equation of a class of non-linear systems is modelled by bond graphs of the form:

E(X)x(t) = A(X)x(t) + B(x)u(t) + H(x,u) (4.109)
where E(x), A(x), and B(x) are state dependent matrices and H(x,u) is the state nonlinear

elements. The linearized expression for the system is:
X5 (1) = AyX, (t) + B,uy, (t) (4.110)

where A; and B; are the partial derivative matrices of the nominal trajectory and X; and uyis

the distance to the nominal equilibrium point. Then following section discusses the procedure

presented where by Avalos and Orozcob a linearized nonlinear bond graph is obtained.

4.7.1 Linearized Bond Graph of Systems with Memristor Elements.

In order to create a linear model of systems of non-linear memristive represented in bond
graph, the junction structure of systems with memristors that was proposed in section 4.4.2 will
be used in the linearization procedure, with a storage in a preferential integral causality as
shown in Figure 4.31, by referring to equation (4.75) in section 4.5.1, the general implicit state

equation is:

. -1 -1
EX(D) = [ Sy1 + SoL(1 ~SppL) Sy +S1gM (0S| Fx(t) + [SipL (1 = S5L) ™S +513M (X)S54 + Sy Jut)
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where E = (I - S,;GS,;F) . By rearranging the above equation to be as (4.109) format, the above

system is solved according to the procedure mentioned in [98].

An application example of the proposed linearization procedure on Hodgkin and Huxley
neuron model [152] was presented by the author of this thesis at CNNA 2016; 15th International
Workshop on Cellular Nanoscale Networks and their Applications Conference, in Dresden,

Germany.

The equivalent electrical model of the nerve cell membrane in the Hodgkin-Huxley neuron
with two memristor elements is shown in Figure 4.33 [213], with the corresponding bond graph

in preferential integral causality. The key vectors of this bond graph are:

e f
x=¢; X=f;; z=¢; D {:} Dy :Ls} Di = fu; Dy =€y
7 7

Inside

!

L S MER# c Ij 1
-

TeTe T
ENa 1 6 8
; M |9;1 & Ex E1

—— Qutside

Figure 4.33 Hodgkin-Huxley model and the corresponding Bond graph

The resulted junction structure matrix will be as in equation (4.111):

[ f,] 0O -1 1 -1 0 0 0]fe,|
e 1 0 0 0 01 0ff,
el |-1 0 0 0 1 0 O} f,
& |=/1 0 0 0 0 0 1| f, (4.111)
f, 0 0 1 0 0O0 Ofe,
f, 0 1 0 0 0O Ofe
' fo] [0 0 0 1 0 0 0fey]

81



1 00 )

0 01
defined constitutive relations are: F=1/C, L=1/R, M(x) =diag{1/M(f1), 1/M(fs)}. Applying the
linearization method, the resulting state space for the linear bond graph for Hodgkin-Huxley
can be expressed in the following form:

()? a) oH (x a)

. oH
EX, (1) = X;(0)+ us (1) (4.112)
with K is constant and, the result expression will be:
K 1) = st M () + S5 a“g(x)} S0+ [%} U0 (4113)

A Bond Graph linearization procedure is used to model the memristive behaviour of the
Hodgkin-Huxley neurone. This has applications in other models of a neurone [214] and

eventually in nanoscale neuromorphic chip design.

Furthermore, the proposed analysis should find new uses in other practical examples
extending the range of applications of RLCM networks using BG theory. Future examples will
extend the applications of non-linear BG theory as originally proposed by Karrnopp and
Rosenberg in 1963 [208].

4.8 Bond Graph Simulation

One of the engineering concerns is to build a mathematical model that describes the
dynamic behaviour for a system with the effect of different parameters that has an influence on
the system. These systems are usually represented by partial differential equations. Bond graph
technigue became one of the useful methods to overcome such difficulties in the mathematics
[215] to analyse different physical fields in a common platform. Different software and
languages where introduced to simulate bond graph and simulation build a dynamic system
model [216] as discussed previously in the literature review of chapter two. Some of this
commercial software allow working directly with Bond Graph concepts as CAMP-G, TUTSIM
and BONDLAB.
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One of these software are MATLAB and SIMULINK™ they are used in this research as
a suitable choice and familiar environment for multidomain simulation and Model-Based
Design for dynamic and embedded systems. With the customised set of block libraries in
SIMULINK and the integration with MATLAB, they provide a possible tool to build a bond
graph SIMULINK model. A procedure to modulate bond graph using SIMULINK was
proposed by Calvo in 2011[117], this procedure will be modified in the next section.

4.8.1 Bond Graph with Memristor Simulation

One of the aims of this project is to represent the memristor as a bond graph element.
This section does not aim to develop bond graph method as presented first by Paynter [66], but
tries to add a new element to its library. As the Memristor is a nonlinear element the circuit
will, as a result, be a nonlinear circuit. In chapter three the memristor was assumed to be in its
linear region to solve the systems theoretically. When building a Simulink model, there is a

problem with the state variable calculations.

After previous discussions about Bond Graph method, this section explains how to use
the benefits of SIMULINK to set up and solve the equations that manage system behaviour
[117]. The procedure consists of converting the real model into a Bond Graph Model and then
translating it to the SIMULINK block diagrams as can be seen in Figure 4.34 [117]. These
allow researchers to represent causal lines of the Bond Graph method. In order to understand
the physical and mathematical concepts involved in dynamic systems, the block diagram of

Simulink creates a better compression of the physical behaviour of the system.

R EFFORT FLOW ——b
M r
R L J— EFFORT FLOW j—o
v
C EFFORT FLOW f——
Real Circuit BG Model Simulink Model Dynamic Behavior

Figure 4.34 Circuit simulation steps using Simulink
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The first step in this simulation is to build a library that consists of the basic element
blocks used as bond graph elements according to the relations in (4.22) (4.25) (4.26) and (3.2).
for the resistor, capacitor, inductor and memristor with charge-controlled respectively. The

library user interface is shown below:

g bondgraph_element * - Simulink academic use - olEN
File Edit View Display Diagram Simulation Analysis Code Tools Help
G Ee-E - @4®b = - [b > @~ il
bondgraph_element
@® |["a|bondgraph_element b -
@
=l LOW EFFORTp JFLow EFFORTf +
- ‘
= RESISTOR. BOND Add L
&= CAPACITOR BOND g XY Gragh
=)
O 3 EFFORT FLOW N F13] 3
Signal To Workspace
INERTIA BOND MEMRISTOR BOND Generator
+
w RO
[ Aaal Clock
»
Ready 100% oded3

Figure 4.35 Bond graph elements library
Figure 4.35 shows the main window ot Simulink to build the new elements to the library. As it

can be seen a very few blocks are needed to generate bond graph model.

e Sources library: such as Time, Constant and Signal Generator, they allow the user to
supply the system with power which serve as either as a flow or effort sources.

¢ Math Operation library: such as Add, Divide, Product, they represent the 0-junction
or 1-junction operation within the system.

e Sinks library: XY Graph and To Workspace. These blocks allow an interface to
observe the system dynamics.

e Bond Graph element: represent the main BG elements of 1-port and 2- port types on

the flow and effort variables.

This procedure is described in details in [117]. It is necessary to present a mathematical model
of memristor and explain the intelligibility of the simulation. The model used in this simulation
subsystem is based on the model from [40]. The memristor is seen as a two-terminal devices as

it builds as a box of one input of effort and one output of flow. Regardless of the limitation of
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the design of being near to the actual device, Simulink is suitable for model construction of
memristor within a circuit. Figure 4.36 shows a functional memristor model. These blocks
reflect the mathematical model of HP lab model in section 3.4.4, with Rott =16000, Ron =100

[&B)
EFFORT I
..... -
ntegrator
=} o T |
e ; 2Nuy = -
. - Delta_R n
Lyl s
= - To Workspace Add4  Can
[ Bl Q_0
Binhphuong1 * =
) Divide4 | "

‘0 Workspace1

1

F

Binhphuong

Divide7

Figure 4.36 Memristor model in Simulink [34].

and D=1x10".

One of the advantages of simulating bond graph is the possibility of modelling systems of
various fields (electrical engineering, hydraulics, mechanics etc.). The system also
distinguishes physical values and units, implicitly, and allows the user to work with other
Simulink components. This simulation enables the interpolation of the power bonds with
causality into a directional effort and flow from either point A or B, as a definition of causal
stroke demonstrated in Figure 4.37 which shows half of an arrow power bond, symbolising the
power flow from point A to point B according to causality. The following steps are performed

in the process [119]:
A—>B A——iB

Figure 4.37 Bilateral signal flows between ports and definition of the causal stroke
First, circle all nodes. Then expand all bonds into bilateral signal flows according to the
assigned causality as in Figure 4.38. According to the assigned causality, the relations of each
node are written in block diagram form. The resulted block diagram for the simple series RLC

circuit in Figure 4.34 after following the above steps is shown below in Figure 4.38
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Figure 4.38 Bond graph block diagram with signal direction

The network topology is then linked to a Simulink model as shown in Figure 4.39. The

response of this circuit is measured by applying a step function to the system. The

corresponding response is shown in Figure 4.40.

RESISTOREBOND

EFFORT FLOW pt—

IMEETIIA BOND -

To Wirlzpacs

EFF(RT FLOW

MEMFISTOR BEOND

EFF(RT FLOW pg—

CAPACITOR BOND

Figure 4.39 Simulink model of bond graph RLCM series circuit

20 30 40 50 60 70 80 90 100

Time ()

Figure 4.40 Time domain response of Figure 4.39 Simulink model
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Another way of simulating memristor in bond graph analysis is by constructing the state space
matrices model [217][53]and writing them into a state space block at the Simulink library as
shown in Figure 4.41. this could be considered as a future work to building a complete bond

graph library that contains different models of memristor.

x' = Ax+Bu % I:]
| y =Cx+Du
Step State-Space Scope

Figure 4.41 State space Simulink model for bond graph analysis

4.9 Summary

A Dbrief description of a bond graph model has been given to show the possibility of
modelling systems of various fields (electrical engineering, hydraulics, mechanics etc.). The
system also distinguishes physical values and units implicitly. Bond graph is introduced
together with the standard methodology for obtaining the state space formulation from the point
of view of nonlinearity when adding memristor elements to a system. It has been given the
possibility to consider the memristor as a bond graph basic element, and in this way it was
shown that there is the ability to create nonlinear bond graph by splitting the dissipation field
into two types of fields one for linear resistors and the second for memristors.

The Standard Implicit form and energy properties of BG models were used to obtain a
direct formulation for systems with memristive elements, as the matrices of the BG Standard
Implicit form can be obtained algorithmically, and incorporated in creating a simulation
platform it can be seen as the enabling step of a procedure for BG technique. This is worth of
attention from an engineering point of view because, on the one hand, as a network-type
representation technique, the BG method use interconnection topology of technical systems and
provides an object-oriented modelling tool, and, on the other hand, avoids employing classical
analytical methods that, in some cases, may show formulation difficulties.

The concept of transfer function was an important part of classical control theory It was

introduced via the Laplace transform which also was used to calculate response of linear
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systems which raise the need to follow a linearization procedure. It is noticeable that, there is a
possibility to generate complex models from simple ones and the possibility to change the
model parameters in order to obtain different results. Researchers do not need to have a deep
knowledge of differential equations with bond graph to develop the expressions that represent
the behaviour of the system and solve them.
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Chapter 5: PORT-HAMILTONIAN SYSTEMS

5.1 Introduction

Port- Hamiltonian systems theory formulates a descriptive geometry for physical system
models, that have input and output ports which are connected with the external environment
[87]. This concept originated in the theory of port-based modelling from a modelling
perspective as pioneered by Henry Paynter in the late 1950s [66]; Then, it was further developed
by Breedveld [218][219]. Historically, port-Hamiltonian approach was used with mechanical
systems and as time went by it was adopted in electrical networks [220]. The port-Hamiltonian
description offers a systematic framework for analysis, control and simulation of complex
physical systems, for lumped-parameter as well as for distributed-parameter models. It is
considered an important class of models for nonlinear physical systems by concentrating on the
mathematical description of a network representation of energy-conserving physical systems
modelled by methods such as bond graph method, with the graphical nature of bond graph (BG)
models and the derivation of port-Hamiltonian system from it [221][220][222], There are
common physical foundations and functions in both formalisms, which they are included in the
state variables, their derivatives and the energy gradient. Then, with the help of the general
field-representation of bond graphs and its associated standard implicit form, the Input-State-
Output PHS [209], this were developed is one of the PHS classes. In ISO-PHS, the
interconnection, dissipation and input/output matrices, as well as their properties, have the

possibility to be expressed in terms of bond graph parameters.

By taking advantage of passivity properties in port-Hamiltonian formulation [223], the
addition of controlling subsystems to this approach is developed to comply with the general
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system behaviour, and this feature models, simulates, and analyses complex systems described
by the interconnections. Such analysis is applicable to systems that contains both conventional
and memory circuit elements[148], and allows for natural extensions to memory element
fundamentals beyond the electric circuits.

Furthermore, the framework is extended to model systems with memristive elements,
after generalising the concept of memristance into the same level of port-Hamiltonian ports
[147]. The inclusion of memristive elements in the existing port-Hamiltonian formalism
possibly may lead to new ideas for controller synthesis and design. Moreover, several control
design methodologies are available that can be directly applied to such port-Hamiltonian
descriptions of complex nonlinear systems. The aim of this chapter is to provide a conceptual
theoretical framework based on the investigations to model nonlinear systems with the
inclusion of memristive elements and their properties in the port-Hamiltonian modelling
framework in bond graph modelling terms. As far as the researcher is aware, this is the first
study to undertake such an analysis. The extension of the port-Hamiltonian framework to
include memristive systems extends the basic memristor concept to a much broader class of

dynamical systems.

5.2 From Junction Structures to Dirac Structures

In the previous chapter, the theory of bond graph for modelling physical systems into
port-based network model was shown [97]. This modelling consists of energy-storing elements,
resistive elements and power-continuous elements like transformers, gyrators, 0- and 1-
junctions. These elements are linked by bonds, each carrying a pair of flow and effort variables,
whose product is equal to the power through the bond. The key concept in the formulation of
port-based network models of physical systems as a port-Hamiltonian system is the geometric

notion of a Dirac structure as shown in Figure 5.1[1]. It is a subspace of the space of flows f

and efforts e such that for every pair ( f, €) in the Dirac structure. The power (e X f) is equal

to zero, which is one of the basic concepts in bond graph junction structure, and each of the 0-

junctions and 1-junctions are power-conserving, as illustrated below:

ef+e,f,=0 (5.1)
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from this common structure element, a port Hamiltonian system formulation can be expressed

in bond graph elements.

5.3 Geometric Definition of a Port-Hamiltonian System

As mentioned previously, physical systems are described by the interconnection of
power-conserving that can be defined by Dirac structure D [224] and in general, a port-
Hamiltonian system can be represented as in the structure of Figure 5.1 [147]. The central idea
of the geometric definition is the notion of a Dirac structure, D. A basic property of any Dirac
structure is power conservation where the Dirac structure links the various port variables. The
energy-storing elements S and the energy dissipating (resistive) elements R are linked to the
central interconnection (energy-routing) structure D. This linking takes place via pairs (f, ) of
vectors of flow and effort variables. These vectors of flow and effort variables are called ports,
and the variables f, e are called the set of port variables. The total energy vector variables x for
the energy elements, with specifying the constitutive relations of the energy elements by their
individual stored energies, will lead to the first definition of Hamiltonian as the total energy (or

Hamiltonian) H(x).

dissipation

Figure 5.1 Dirac structure of port-Hamiltonian system

Here, the vector of flows for energy storing elements is given by X, and the vector of efforts is

given by %—H(x), and with the energy storing elements satisfying the total energy balance of
X

the system. Then, flows and efforts of the energy-storing elements are interconnected by

f, ==X (the minus sign is included to have a consistent power flow direction) and e, = aa—H (x)
X

by substitution of these interconnection constraints into the specification of the Dirac structure
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D, that is, (f,, e, f, e)e D , this will lead to a dynamic system called a port-Hamiltonian

system [219]. Port-based modeling and, possibly large-scale physical systems are structured
from the interconnection of three types of ideal components, which are: (1) energy-storing
elements, (2) energy-dissipating (resistive) elements, and (3) energy-routing elements, as will

be described next.

5.3.1 Energy- Storage Port

The energy-storing port element (s) corresponds to all the energy-storing elements of
the system. The port variables associated with the internal storage port will be denoted by (fs,
es), where fs and es are vectors with their product fg xeg denoting the total power flowing into
the Dirac structure from the energy elements. They are interconnected to the energy storage of
the system, which is defined by a finite-dimensional state space manifold X’ with coordinates
X, together with a Hamiltonian function H:X —‘R denoting the energy [140]. The
corresponding flow variables are given by the rate X of change of the state variables. This is

accomplished by setting.

f, =X (5.2)
oH
& = a(X) (5.3)

Hence, the power at the energy storage port can be written as:

)
H (x) =(%(x)j x=e{ f (5.4)

5.3.2 Resistive Port

The port element R corresponds to internal energy dissipation (due to friction,
resistance, etc.), and the port variables are defined by (fz, €r). In general, a resistive relation will

be a subset

with the property that for all (fr, er) satisfying (5.5) [140]. In many cases, it may be restricted

to linear resistive relations (note that some nonlinearities can be captured in the description of
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the resistive port of the Dirac structure, such as the memristive port elements). This means that

the resistive port variables (fr, er) satisfy linear and nonlinear relations.

5.3.3 External Ports

Port variables fp, ep, denote the interaction port of the system, for modelling the
interaction with other system components or the environment. The power delivered or extracted
from the interaction port equals f, xe,, referred to as the supply rate [140].

The general Dirac structure can be expressed as a linear relation between all the port
variables that satisfy the power conservation property as below:

el fo+eqpfa=epfp (5.6)

5.3.4 Memristive Port

To complete the family of existing fundamental electrical circuit elements: the resistors,
inductor, and capacitor are needed, in the port-Hamiltonian framework. A memristive port will
be described later in addition to the generalised concept of memristance [147] to fit with the
definitions of the port-Hamiltonian framework. The basic properties of the memristor as a

dissipation element but with nonlinear behaviour are added to the Dirac structure as a sub port

of dissipation port as shown in Figure 5.2, with port variables (f,,, €y ) .

storage dissipation

memristive

Figure 5.2 Port-Hamiltonian system with a single dissipative port containing
memristors and linear [147]
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5.4 Port-Hamiltonian Systems Theory
General Hamiltonian system is specified by considering the constraints on the various
port variables imposed by the Dirac structure[138], that is:
(fs.eq, fr.er, feec, f, ,6) € D (5.7
The expressions of inputs and outputs in Hamiltonian formalism, are generally given in the

following form[225]:

o
4= o (a, p) (5.8)

s__oH

p= aq (q, p)+B(q)u (5.9)
_gT(mH

y=B"(q) P @, p) (5.10)

Here, B(q) is the input force matrix, with B(q)u denoting the generalized forces resulting from
the control inputsue®R. A major generalization of the class of Hamiltonian systems is to

consider systems which are described in local coordinates as[226]:

oH
x=[I(X)]=— () +g(x)u
OX (5.11)

oH
y=9"(x)—(x)
OX
where X is the energy variable vector that consists of (g, p), u and y are the input and output

port power port variable. The input vector is modulated by matrixg(x), and it also defines the
output vector y.

J(x)==3T(x) (5.12)

J(x) is the skew-symmetric matrix with entries depending smoothly on X, which

reveals the power-conserving interconnection structure, and x= (xl, xn) are local

coordinates for an n-dimensional state space manifold & . Owing to the skew-symmetry of J,

the energy-balance%_'(x(t)) =u(t)" y(t) is easily obtained, showing that (5.11) is lossless if

H > 0. We call (5.11) with J satisfying (5.12) a port-Hamiltonian system with structure

matrix J(x) and Hamiltonian H. From the structure matrix J(x) one can directly extract
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useful information about the dynamical properties of the system, since it is directly related to
the modelling of the system.
A basic property of port-Hamiltonian systems is the energy balancing property

oH

E(X(t» =u(t)" y(t) . Physically this corresponds to the fact that the internal interconnection

structure is power-conserving ( because of skew-symmetry of J (x) ), which is equal to the

externally supplied power u(t)" y(t), where u and y are the power-variables of the ports defined

by g(x).

5.4.1 Input-State-Output Port-Hamiltonian

An important special case of port-Hamiltonian systems as defined above, is the class of
input-state-output port-Hamiltonian systems (ISO PHS) [140], where there are no algebraic
constraints on the state space variables, and the flow and effort variables of the resistive, control
and interaction port are split into conjugated input-output pairs, which occurs if: (1) there are
no algebraic constraints between the state variables, (2) the external port variables can be split

into input and output variables, and (3) the resistive structure is linear and of input-output form.

This class of systems, in the usual input-state-output format is x = f (x, u), y=h(x, u), and
provides a natural starting point for the development of control strategies.
Consider now a port-Hamiltonian system where the composition of the Dirac structure

D and the linear resistive structure R satisfies the Input-state-output port-Hamiltonian systems

(without feedthrough terms) and which are of the form:

%=[000-RMIZ-(9+9(u
X (5.13)

. oH
y=¢ (X)E(X)

where X is the energy variable, u and y are the input and output port power port variable. The

input vector is modulated by g(x), and it also defines the output vectory. J (x)=-J" (x) isthe

skew-symmetric matrix, which reveals the power-conserving interconnection structure, while

R(X) is the dissipation matrix and it is a symmetric matrix.
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5.4.2 Resistors, Inductors, and Capacitors as Port-Hamiltonian Input—Output

Systems

One of the attractive aspects of the port-Hamiltonian formalism is that a power-
preserving interconnection between port-Hamiltonian systems results in another port-
Hamiltonian system with composite energy, dissipation, and interconnection structure
(modularity property) [135]. One can adopt this concept to pursue further analysis of more
complex systems. In the case of a port-Hamiltonian system containing energy storage elements,

the structure of all these energy storage elements is identical.

A resistor is described by the relationship of current and voltage; an inductor by that of
current and flux, and a capacitor by that of voltage and charge. Hence, from a port-Hamiltonian

perspective, a resistor can then be considered as a static input—output system of the form

> R=y=y(u) (5.14)
which is just a generalized version of Ohm’s law in which u and y represent either voltage and
current. On the other hand, the structure of all energy storage elements is identical. Therefore,
by assuming the constitutive relation y = y(x) of any storage elements may be combined with

the port-Hamiltonian energy structure, as shown in Figure 5.3. Furthermore, it can be

characterized by an input u, an output y, and a physical state x.

Figure 5.3 General structure of an energy storage element

Equation (5.15) provides the resulting energy function

H(x)= ,Xf y(s)os (5.15)

X

where Xo is an initial state. From Figure 5.3 and (5.15) a general port-Hamiltonian system can

be defined as:
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X=u

oH (5.16)
= &(X)

Ds: y

which depends on the input, state, and output. For the inductor element, which stores magnetic

flux and the output is current:

¢5|_ =VL
DL oH (5.17)
| = L
L= %, (&)
and for the capacitor in which store charge and the output is voltage:
q= |c
2C: oH¢ (ac) (5.18)
VC -
e

5.4.3 Passivity of Port-Hamiltonian Systems

The concept of passivity, which is used in the analysis of port Hamiltonian formulation
can be described by power and energy conservation of physical systems [222]. Where the
energy system has no physical meaning, this property is used successfully in a large class of
systems characterization [227]. The state space approach incorporates the passivity definition,

where the external energy is an input to the system related to the system stored energy [228].

A particularly appealing feature of a port-Hamiltonian system of the form (5.13) is that,

because of skew-symmetry of J(x), the energy flow of the circuit satisfies:

H (x) =uTy{%(x)} R(x)%(x) (5.19)

expressing that the power absorbed by the inductors and the capacitors equals the power

supplied to the circuit via the external port minus the power dissipated by the resistors.

5.4.4 Control of Port- Hamiltonian Systems with Dissipation

Recall the well-known result that the standard feedback interconnection of two passive

systems again is a passive system; a basic fact which can be used for various stability and
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control problems [229], and also consider the interconnection of the plant (5.13) with another
port-controlled Hamiltonian system with dissipation. One of the attractive aspects of the port-
Hamiltonian formalism is that a power-preserving interconnection between port-Hamiltonian
systems results in another port-Hamiltonian system with composite energy, dissipation, and
interconnection structure (modularity property). The generic port-Hamiltonian system in (5.20)
can be considered as a controller perspective. The derivative of states and output are given
from[135]:

XC = [‘JC(XC) - RC(X )] %l;('c (Xc) + gc(Xc)uc
C: ¢
(5.20)
Ye = gcT (Xc) ach (Xc)
X

This is regarded as the controller system of Figure 5.4, via the standard feedback
interconnection system with u, =-Y_, U, =Y, asitis the relations between the input and output

, when Hc is assigned the function of controller to plant H1 [230].

Figure 5.4 A feedback interconnection of two port-Hamiltonian subsystems.

The port-Hamiltonian of the combined system H; +H, is also a port-Hamiltonian system, with
a closed loop form given from:

M %)
m:{al(xl)—&(xo gl(xi)gJ(xc)} 0%, (5.21)
Xc _gc(xc)ng (Xl) ‘]c(Xc)_ Rc(xc) %(X )

ox. ¢

C

Port-Hamiltonian formalism naturally extends the fundamental properties towards the memory
elements beyond the realms of electrical circuits. This formulation was applied to systems with

memristive behaviour by Jeltsema in 2012 [2].

98



5.5 Port-Hamiltonian with Memory Systems

Memory elements can be represented in the port-Hamiltonian framework by exploiting
the property of passivity of port Hamiltonian systems [147]. The description of memory

elements as direct feedback elements in the port Hamiltonian framework is as follows (5.13),

gives:
u, = f
Xy =0 (5.22)
Ym =
Then, the port Hamiltonian system matrices will be as:
J(x)=0
R(x)=0 (5.23)
g(x) =1

and the resulting expression for the charge-modulated memristor will be described as follows:

Xy = Uy (5.24)
Yvm = Hy +M (X )uy (5.25)
Xy,

where X,, is the state of the memory element, u,, and Y,, are the input and output variables.

M (x,,)is the memristance and H,, represents the stored energy in the memristor. As the

memristor is considered as a non-storage element, it is defined as a null Hamiltonian, which

will be discussed in the next section. The charge control memristor was defined previously with

f =i and €=U, where the current is the input variable, U,, , and Y,, is the output voltage,
with X,, corresponding to the charge. The flux- modulated memristor is obtained by letting

u, =€, y,=f and X, =¢.

5.5.1 Memristive Port: Generalised Definition

The port-Hamiltonian modelling framework was further extended by a research paper
by Jeltsema and van der Schaft [147], where new expressions in port Hamiltonian formulation
were proposed. A generalized concept of memristance with other generic elements of port
Hamiltonian frame work is developed to fit the definition of port Hamiltonian framework.
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One can take into consideration the two types of memristor (flux controlled and charge

controlled memristor), The charge-controlled memristor is defined withx; =q, f =i and
€=U in the electric domain. Here, X; € y, represents the integrated vector of flow and

X, € %, Is the integrated vector of effort which can be written as:
X =f and x,=e (5.26)
Then the relation is:
Xe =% (X¢) (5.27)
When constituting a multi-port X; controller when interpreting this relation within an effort
equation, the result will be:
e=M;(x¢)f (5.28)

Then, a generalized memristance (charge-controlled) will be expressed as:

a)ze (Xf)

f

M, (X,) = (5.29)

For the flux controlled type, the parameters are defined with X; =¢, f =u and e=i. By
using the expressions of integrated flow and effort mentioned above, this will yield a memristor
with multi-port xe -controlled:

f=M,(x,)e (5.30)

The generalized memristance (flux controlled) is:
8)’if (Xe)
0%,

Me (%) = (5.31)

Equations (5.28) and (5.30) reflect both relationships of charge and flux controlled memristor,
In a similar fashion to the storage and dissipation elements, the port-Hamiltonian energy

structure is shown in Figure 5.5.
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€ / Xe |dAg | Xf d f
dx, dr

Figure 5.5 General structure of memristor element

The constitutive relations for both types of the memristor will be:

X, = OA ;) (%) [resp., X; = oA () (Xe)] (5.32)
axf aXe

where Ar and Ae are the memristive action function and related by:
Ac(X)+AX) = XX, (5.33)
Figure 5.5 shows the general form of memristor port Hamiltonian formulation, which is
called integral causal form where the flow can be considered as input and the effort as output,
or the effort is the input and the flow will be the output. Clearly, since both an integration and
a differentiation are involved, similar to the resistor, it is causally neutral. Memristor does not
store integrated flow or integrated effort; they hold the amount of integrated flow or integrated

effort that passed their port.

5.5.2 Memristors as Port-Hamiltonian Systems: The Null-Hamiltonian
The memristance structure M can be described by an X, controlled constitutive
relationship, where the generalised memristance is:
M, (x;)=M{(X,) (5.34)
A key observation of memristive elements is that it is a non-energetic port Hamiltonian system
with a direct feed through term. Let H,, : X, — 0; the memristor dynamics will be:

X, = fy,

DI oH
M eM:axM (X )+ M (%) fy,,

f

(5.35)
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where the memristive port variables f,, and €, can be considered as the inputs and outputs,

respectively, the non-energy expression follows from:
oH,, (x;)=0 (5.36)

for all x; € ;, e, =0 when f,, =0 regardless of the internal state x;. From the properties

noticed of memristor (discussed in chapter three for both charge and flux controlled memristor),
then u=0o0ri=0 regardless of the values of q or ¢ which are responsible for the memory
effect. This feature is called ‘no energy discharge property’[231][232], which is unlike an

inductor or a capacitor, because a memristor does not store energy. For this reason, H,, is

referred to as the ‘null-Hamiltonian’. A memristive port can be generally represented by an

implicit port-Hamiltonian system (with null-Hamiltonian) of the form as:

P :{Xf = (5.37)

5.5.3 Memristive Port-Hamiltonian Control

In order to incorporate a modulated memristor element into the closed- loop dynamics,
inspired by [233], the key idea is to define a desired target dynamics with the methodology
discussed by Jeltsema. A novel example of applying this methodology to a circuit that
incorporates memristive elements is presented. This example is an electrochemical model of
the brain based on the non-linearity of the memristor. Some of these ideas have been discussed
from a single neuron perspective since the 60’s [234] and 70’s [235]. An equivalent electrical
model of the nerve cell membrane in the Hodgkin-Huxley neuron was presented in [213]. This

was based on two memristive elements as shown in Figure 5.6.

Inside

!
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Figure 5.6 Hodgkin-Huxley neuron model
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One can consider individual branches in this circuit to derive generic expressions as shown in

Figure 5.7. T
o

r——
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E

|
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|
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Figure 5.7 Modified Hodgkin-Huxley neuron model circuit

This can be used in a power-preserving feedback interconnection context as in Figure 5.8.

Figure 5.8 Hodgkin-Huxley neuron model circuit represented as a
interconnection of port-Hamiltonian subsystems

The capacitor then will be described by the port-Hamiltonian subsystem:

q= Ic
s, _ oH (@) (5.38)
L =—%
09

The resistor and memristor equations are: |, =V, /R andl,, =V,, / M(X). The interconnected

circuit of Hodgkin-Huxley neuron model is used as a feedback to make use of the modularity

property of the Port-Hamiltonian framework. These relations are given by
0c = lc =—lg = lyna — l- Combining the latter with the port characterizations given above,

and using the expression in (5.21) it follows that:
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. 1 1 1loHe [1 1 1
v H = || En, (539)
L R Mya M Jdde [Ri Mya My
R, *] S k2

5.6 Formulating Port- Hamiltonian Models of Physical Systems
Over Bond Graph

The common physical foundations of port Hamiltonian systems and bond graph
modelling, and the interest of applying port Hamiltonian control synthesis methods with the
support of bond graph technique with the equivalence between Dirac structures and generalized
junction structures [86], motivated the research leading to the results presented in this section.

5.6.1 Input-State-Output Port-Hamiltonian Systems from Bond Graph

Port Hamiltonian systems and bond graph modelling have common foundations and are
comparable with processes that take place in different physical systems. Starting as a common
function between port Hamiltonian and bond graph formalism, the total energy and the
corresponding stored energy in the system will be the key variables. These variables in port
Hamiltonian formulation are the state variable, their derivative and energy gradients and in
bond graphs they are the input and output of storage elements. In [225] it was shown that the
equations obtained from bond graphs can be mapped to Port-Hamiltonian System (PHS)
formulations. PHS formulations preserve the process of energy exchange between storage,

dissipation, source and junction structures.

To establish the link between the BG and the PCHS formalism, a derivation was
published by Alejandro Donaire in his paper [209], by establishing equivalences among key
variables in both domains through the comparison of the expressions of the stored system
energy in both formalisms. Later, with the help of the general field representation of bond
graphs and its associated standard implicit form, and following the SCAP- procedure mentioned
in chapter four (considered to derive bond graph) and depending on the interconnection

structure, which maximises storages in integral causality, there will remain some in differential
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causality to be accounted for. The functions characterizing this class of Port-Hamiltonian
Systems, i.e., interconnection, dissipation and input/output matrices, as well as their properties,
are immediately expressed in terms of bond graphs parameters. Under suitable assumptions,
the method supports the direct derivation of Input-State-Output Port-Hamiltonian Systems —
which is an explicit type of PHS — even from bond graphs having causally coupled dissipaters
and storages in derivative causality, which are known to imply algebraic and implicit
differential equations. First, the mathematical structure of the bond graph is uncovered. The
storage-field has been partitioned into two fields according to the integral or derivative causality
assignment as referred to in figure 5.9. This structure is defineds as the BG-Standard Implicit

Form (BG-SIF). The corresponding matrix relation is as shown in (5.40):

. Z,
Xi S11 S12 S13 S14 X

Zy |= S21 S22 Szz S24 Dd
D, S31 832 S33 S34 XO

The above matrix has some properties such as: S;and S,;, which are skew-symmetric

matrices, S, =-S, and S, =-S.,. The constitutive relations of the elements will be
considered in the derivation for a system with a linear storage element:
2(t) = Fx(t), z, (t) =Gx, (t), D!(t) = LD!. The port Hamiltonian model in terms of bond graph
variables should be in the form of:

% (1) = Sg (%, u)Z; (t) + Sg (X )u(t) (5.40)
After explicitly determining the matrices of Sqand Sy, then through direct comparison of this
model with the port Hamiltonian state equations, an interpretation of bond graph into the port
Hamiltonian parameters, J, R and g, is derived. By defining Sq expression into symmetric and

skew symmetric parts, the symmetric part represent the R matrix and the skew symmetric part

represents the J matrix.
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5.7 Derivation of Port-Hamiltonian Systems for Systems Contain

Memristive from Bond Graph

The inclusion of memristors within a port-Hamiltonian framework has been discussed
by Jeltsema [147], presenting the opportunity to define expressions describing ISO PHS with
memristive elements using a nonlinear BG formulation, which is the focus of the current work
and to the best of the author’s knowledge there has been are no research carried out combining
port Hamiltonian formulation and bond graph modelling with memristive elements in a unique
framework. The derivation of ISO PHS from nonlinear bond graph with memristor elements

extends the formulations presented in [209].

A simple inspection of the proposed bond graph general junction structure model for
systems that contain memristive elements was shown in Figure 4.30, and the corresponding
general structure matrix in (4.66). The dynamic model in (5.13) and the variable equivalence,
shows that the entries of J are closely related with the direct causal paths between the capacitor
and the inductor, and the entries of R are related to the interconnection between the storages
and the resistor. As the voltage and the current associated to the input power port are the input
and the output of (5.13) respectively, the input matrix g is defined by the interconnection
structure linking the power source and the storages. Computing the energy function E in the
bond graph via integration of the power P, which is the product of the input and output variables

of each storage (in the case of the energy functions of the BG and PCHS formulations, E(X;,X,)
and H(x)respectively), are different, because they have different arguments (when evaluated

on the same system state - Xi =x for a special choice of the state variables they take identical
values for they represent the energy stored in the system). Writing the energy as a function of

only the state vector x; yields an expression of:
E(Xi ) Xd) = E(Xi ) g(zd ) = E(Xi J g(szlzi)) = E(Xi ] 9(821f (X.))) =H (Xi) (5.41)
After applying the chain rule to (5.41) and the need to define z;(t) in (5.40) in terms of port

Hamiltonian energy expression, the total energy H(q,p) is given after considering the general
implicit state equation in (4.74), and the result will be:

H

= =[1 - $15GS,,F ] 2(t) (5.42)
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As stated early in chapter four, a causally constrained bond graph usually yields to implicit
DAE-system under suitable assumptions with the energy equation being derived. The variable
equivalence given by (5.42) becomes simpler for particular cases. Two cases are distinguished

next.

5.7.1 Case 1. Nonlinear Bond Graph with All Storages in Integral Causality
Assignment.
This implies that S;; =S, =0 as these matrices reflect the determined storage element

in differential causality and the system storages are assumed to be in the preferred integral
causality, which confirms the variable equivalences suggested. Given the hypothesis of
storages, (5.42) is reduced to (5.43) by setting:

oH
=20 (5.43)

The expression of the general model (5.40), for this case is obtained by setting in:

. _ oH
X(t) = S11 + SlZL(I - S22 L) lS21 + Sl3M (X)Ssl &"'

W WM

(5.44)

S, L(1=S5,L) "S5, + SsM (X)Sg, +S,, |U(t)
g

whereE =1.

5.7.2 Case 2. Nonlinear Bond Graph with Storages in ICA and DCA, Without
DCA-Storages Causally Determined by Sources.

Given the systems with storages in integral and differential causality assignment (in

ICA and DCA), without differential causality assignment (DCA)-storages will be causally
determined by sources, Sy, =0. Equation (5.42) will be used and the port Hamiltonian model

follows that:
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X(t)=E™| Sy, +S,L(I =S,L) 'S, +S M (X)S,, (I —FS,GS,,)™"
W WM ET (545)

oH __ -
&"' E l[slzl-(l _SzzL) lS24 + SlSM (X)Ss4 +Sl4:'u(t)

where E=(I-S,GS,,F). The above expression can be split into parts, a skew-symmetric

component J (where J7=-J), and a symmetric component R. These two components can be
written in terms of the BG formalism by:

E" =(1 —FS;sGS,) " (5.46)

W =S,L(I =S,L)™"S,, (5.47)

w, = [slzl_(l L) S, +[ S,L( =S,L)7's,, | } /2 (5.48)
Wy =] 8L ~8,L)'S, [ 8L (1 -8,1) 78, ] |2 (5.49)

whereW, andW,, represent the symmetric and skew-symmetric part of (5.45) respectively.

The memristance M, in the symmetric and skew-symmetric parts associated with this

component will be defined by:

W, =S,M(x)S,, (5.50)
Wy, =[ 8:aM (984, +[8.:M (98, | /2 (5.51)
Wi s = [SmM (X)Ss _[SlsM (X)S31]T J/Z (5.52)

5.7.3 Matrix and Function Equivalences

In this section the expressions of J(x), R(x) and g(x) are found in terms of the matrices
of the BG by combining symmetric parts in (5.48) and (5.51) into a single R(x) term and skew-

symmetric parts in (5.49) and (5.52) into a single expression for J(x) after incorporating
submatrix S;;. The next theorem covers the General Case, and it follows that the system

equation matrices in (5.13) are expressed in a different general form:
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Theorem:

A nonlinear BG with the associated constitutive laws of  z(t) = Fx(t),
x4 (t) = Gz4 (t), D (t) =LD!, and D) (t) =M (x)DM (t), incorporate the BG general structure
matrix in (4.66). Storages in ICA and DCA, implies Sy3 = S3, = S35 =0 as there are no coupled

resistors; but because of no sources storages in DCA S, =0. Then, the following identities

and properties hold:

J(x)=E"S,E+E"W,E+E'W,, ,E (5.53)
R(X)=-E"W,E+EW,, ,E (5.54)
9(¥) = E" [ SL(1 =Sy, L) *S,4 +S;5M (X)S3, + Sy | (5.55)

The obtained equations are considered as a special case of the full derivation of port-
Hamiltonian system from Bond graph analysis for nonlinear systems. The subsequent focus is
on memristor circuits. The obtained port Hamiltonian matrices were automatically computed
by software. The full derivation for the circuits that contain all of the components (specially
memristor elements) to derive port-Hamiltonian system from Bond graph will be discussed in

the next chapter (six) with the special cases and case studies discussed in detailes.

5.8 Summary

A brief description of port Hamiltonian systems has been provided. It was shown how
the port-Hamiltonian formalism offers a systematic framework for modelling and control of
large-scale multi-physics systems, emphasizing at the same time the network structure of the
system (captured by Dirac structure) and the energy-storage and dissipation (Hamiltonian
functions and resistive relations). It was shown that the port-based network models of physical
systems such as bond graph immediately lend themselves suitable to a Hamiltonian description.
The identification of the underlying Hamiltonian structure in bond graph platform offers
additional insights and tools for analysis and control, as compared to general differential-

algebraic systems.
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Apart from enlarging the modelling building blocks, the inclusion of memristive elements
in the existing port-Hamiltonian formalism possibly opens up new ideas for controller synthesis
and design. In Dirac structure both the resistive and memristive ports are combined into a single
‘dissipative’ port. A framework has been presented to derive ISO PHS formulations from BG
to model the memristive behaviour. The dependency of the parameters (functions and matrices)
of the derived Hamiltonian form of memristive systems on the BG properties has been analysed.
As the obtained matrices for the memristive systems BG in Standard Implicit form can be
obtained algorithmically, the Hamiltonian parameters may be automatically computed by

software.
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Chapter 6: GENERIC PORT-HAMILTONIAN
FORMULATION TO MEMRISTIVE
SYSTEM MODELING USING
BOND GRAPH

6.1 Introduction

Modelers, in general, focus on the energy of the physical systems under investigation.
Therefore, to achieve different engineering objectives, causality analysis needs to be inspected.
The design engineer will therefor study causality for modelling assumptions and deficiencies
[236]. A mathematical representation (i.e. transfer function, state space representation) is a
control engineer concern [71][237]. Also a digital simulator specialist uses causality to derive
a set of equations to design a simulation program [238]. For each of the different engineering
problems as hand, system properties are extracted from the mathematical model structure as
well as from the bond graph structure and its causal relations. Both aspects are useful in
understanding the model behaviour. For practical consideration in both the simulation
communities in control fields, implicit and explicit state space model descriptors have a strong

preference.

This chapter proposes a new method for formulating a system with memristive elements in
bond graph modelling platform. The memristors will be analysed by bond graph within systems
that contain all possible elements such as systems with storage in both integral and differential
causality assignments. In order to do this, the junction of the system is proposed to represent the
overall structure of the system. Guidelines for constructing the new bond graph model is given
along with different causality assignment. The generic nonlinear bond graph of systems with
memristive elements is then investigated without any assumptions to reduce the mathematical
complications that are usually mentioned in research papers. A junction structure matrix is obtained,

and further used to derive an explicit equation describing all possible modes of operation.



Additionally, this work presents a method to obtain models in the form of Input-State-Output Port-
Hamiltonian Systems from causal nonlinear bond graph models, thus, exploring six different
classes of nonlinear systems. These kinds of causal connections are based on the classes of
different bond graph. For each class, the descriptor equations are derived and, if possible,
converted into a state space form to be formulated into port Hamiltonian formulation. The
results are further interesting from a structural and a computational point of view. This chapter
puts forward a genuine representation that connects between memristor, bond graph modelling,
and port Hamiltonian formulation in one full consistent procedure, which as far as the writer

aware, has not been presented before in one direct expression.

6.2 State Space Descriptors of Bond Graph for Systems with

Memristor Elements.

Rosenberg formulated a method for deriving the state equations from a junction structure

model of a system [71] in the form of:

% (t) = f (% (t); % (t); u(t); u(t)) (6.1)
where X; is the derivative of the state vector which consists of the energy variables in integral
causality, thus X; consists of p for the inertia elements (inductors) and ¢ for the compliant

elements (capacitors). X; is the state variable, which contains p and q. U is the vector which

contains the power sources of the system and U contains the nonlinear part. The model
properties constructed from this formulation depend on the energy structure of the model and
on the dynamic variables. In practice, a preference is for a description in an explicit state space
model on the implicit one. The closed form of this formulation can be written in a (a descriptor

form) which is close to the state space formulation [239], as in:

EX (t) = A% (t)+Bu(t)+Gu(t) (6.2)
where E, A, B and G are extracted from bond graph structure field matrices. In the previous
cases mentioned in chapters four and five to derive state space expression, there were few

assumptions to simplify mathematical computations which are considered to be a special case,

and that representation was in the form [240]:
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X(t)= Ax(t)+Bu(t) (6.3)
Consequently, to derive this formulation in bond graph the procedure of SCAP mentioned in
chapter four needed to be used. These systems that do not follow (6.3), are often called

non-causal or degenerate systems [240]. Linear (or linearized) systems are described as
[241][242]:

Et)x(t)=A(t)x(t)+B(t)u(t) (6.4)
where E(t) can be singular and the descriptor vector is x(t). This chapter focuses on the
determination of a mathematical formulation of nonlinear physical dynamic systems, with the
vectorised state equation generation in [71], where the state equations are generated for linear
and state dependent nonlinear multiport systems. A closed matrix descriptor form of (6.2) is
written as:

E(x u; t)x(t)=A(x u; t)x(t)+B(x; u; t)u(t)+G(x; u; t)u(t) (6.5)
These dynamic equations depending on the junction structure can be written into a form without
cross-terms (i.e. with E(t), A (x; t), B (u; t) and G (u; t)). Note that the matrix descriptor form
(6.2) differs from its standard form defined in (6.4). One of the assumptions mentioned in [243],
is to define the block matrix:
B=[B G] (6.6)
and the artificial input vector
a=[u ul (6.7)
This set of states could be treated as a descriptor vector. In this work, this hypothesis will be
used to approximate the descriptor into its standard state space form to derive the port-
Hamiltonian formulation extracted from bond graph modelling. Therefore, Equation (6.2) can
be rewritten in a standard form:
Ex = Ax+Bad (6.8)
However, this implies constraints on the input vector U, since its components cannot vary

independently; hence, U cannot really be called an input.
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6.3 Memristor As a Bond Graph Element

As previously mentioned in section 4.3, Oster in 1972 [3] proposed that memristors can
be considered as one of the fundamental elements in constructing a bond graph with assigning
the causality to each type of memristor (charge controlled memristor and flux controlled
Memiristor) as shown in Figure 4.26. Based on this, memristors are not considered as energy
storage elements as they have the same dissipative behaviour of resistors. Following this
proposal and after performing carful research in the literature on connecting memristor with
bond graph, according to the author’s knowledge, no research such as this has been done before

which is the first motivation of this work and one of the main objectives.

After establishing that the memristor does not store energy and it is a dissipative element
with nonlinearity[244], there is then the possibility to assume that the dissipation field in the
junction structure of general bond graph system, can be considered as being combined of two
parts, a linear one for the resistive behaviour (R) and a nonlinear one for memristive behaviour

(M) as afore mentioned.

6.3.1 Junction Structure Matrix with Memristive Elements

A vectorised view of the physical system described for the proposed bond graphs
structure is shown in Figure 4.31. This new modified partitioning version was suggested to
partition structural bond graph dissipation field into two parts. These vectors represent the block
diagram derived from the causal bond graph with memristor elements and defining the key
variables used in the next section. Note that the inputs to the elements are the outputs from the

junction structure and vice versa.

6.3.2 Definition of The Key Vectors

The key vectors are the input and output variables of different fields involved in power and
powerless interaction with or within the system of Figure 4.31, and these keys will be defined
below:

e The energy vector of the dynamic system is taken as the descriptor vector x is partitioned

in an integral causality field X;, which is the state vector in integral causality and
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differential causality field Xy . The components of the integral part are the generalized

momenta P and generalized displacements ( , and with respect to the derivative part,
the output variables are €4 and f.
e The co-energy vector Z can be partitioned in a co-energy variable associated to Z;

which is for the integral causality storage and the co-energy variables associated to Z
for the storage in the derivative causality assignment.

e The dissipation field input and output vector are DiI and Dc',, which are the linear input
and output vectors for dissipative fields with resistive behaviour (R).

e The memristive fields DiM and Dc',\’I are input and output vectors for the memristive field
(M).

e The source field input u and output v vectors contain the effort and flow variables
imposed by the sources (Se, S).

e The junction structure input and output vector koz[xi D! DM zd] and

k. =[zi D! DM u x ] respectively, are related by k, = Jk. [204].

6.3.3 The Field Assignment Statements
Different bond graph elements are used in the junction structure shown in Figure 4.31.
The implicit constitutive relation of such different fields can be characterised by assembling the

underlying element relations as shown below:
The energy storage field is constructed of C-element field @_ (e, q) and I-elements field

@, (f, p) - They can be calculated as the time integral of the vectors f and e for the capacitor

and the inductor respectively. Their constituent relation is provided in relations for the linear

storage elements in integral causality elements[88]:

zj = Fx

i (6.9)

where F is a diagonal square matrix of linear coefficients of C or C, and L or L. For a large
class of physical systems these nonlinear field functions can be written as matrix functions f(t),

as a nonlinear relation will be:
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2= f(x) (6.10)
For linear elements in derivative causality
Xg = Fd_lzd* (6.11)

Fis a diagonal matrix of linear coefficients of either C or C* and L or L. The nonlinear
relation will be:

Xy = fg " (z4), (6.12)
The invers function of f, is defined locally. These results can be generalised for all the

dissipative linear elements, resulting in:

D! (t) = LD/, (6.13)
where L is a diagonal matrix of linear coefficients R or R pertaining to each element. The
nonlinear relation will be:

D) =1(x)D/, (6.14)
For the generalised memristive field, the relation will be written in [15]:

DM =M (x)D". (6.15)

with the memristive field matrix M a diagonal matrix of coefficients M or M and the source

field matrix defined as:

u=Hv (6.16)

6.4 The Unique Matrix Descriptor with Memristive Elements

After the use of SCAP procedure with the power arrows towards or out of the junction
structure for the fundamental elements [245] as well as the memristor element [3], the defined
generic junction structure for systems with a memristor of systems with storage elements in

integral and differential causality can be developed as in:

. _ - %
%i ] Suu S Si3 Su Sis D!
| (0]
D _|Sa1 S22 Sz Sy S DM (6.17)
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In this matrix s,,, s,;, and S, are set to be equal to zero because by definition, the dependent

state variables are functions for only integral causality state and the system inputs.
Using this proposed generic junction structure matrix, an explicit form can be derived.
The difference in the dimensions should be noted compared with the standard bond graph:

. . | T
dlm[xi D, zd] =N,c +Ng (6.18)

where Ny is the total number of storage elements, Ny is the total number of dissipative

elements. For the proposed junction structure matrix:
T
Where Ny, is the number of memristor elements.

The S matrix in Equation (6.17) has some properties as follows:

e The matrix is skew-symmetric because of duality [246], which means S»: is equal to minus

the transposes of S, (S, :—SlTZ) and Ss1 is equal to minus the transposes of Si;

(Sq1 = _S1Ts)-

e When preferred integral causality is assigned, there might be no relation between the
derivative causality and resistor fields, because this would imply a causal path that could
be inverted to give integral causality[247]. There will be also no relation between the
derivative field and itself for the same reason. Hence S42, S5 and Sss are all set to zero.

e The submatrices Si1, S22, Sz3 and Sas on the diagonal of the generic structure matrix are

square and skew symmetric.

In the sequel, the class of nonlinear systems for the field relations, which can be written
in an explicit matrix form are considered. No constraint is placed on the time dependency or
linearity of the matrix relations involved. The derived state equations express the time-

derivatives of the states and (where there is derivative causality) the pseudo-states X; and X

in terms of their causality and the system inputs U . As already stated in the introduction, even
though causally constrained BGs usually yield implicit DAE-systems, an explicit differential
equation may result from BG under suitable solvability assumptions. An explicit form will be

extracted from the junction structure matrix using the following procedure which is based on
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the method provided by [71]. In this derivation, the storage elements will be assumed to be
linear storages in integral and derivative causality assignment as well as the dissipative elements

are also linear for the simplicity of calculations:
The first step to solve (6.17) for x, is by looking at row four, an expression for z, in
terms of z; and U of the system can be derived as:
Zy = S412; +Syqu (6.20)
with using the constitutive relation x4 = F, 'z4, where F,™ is a symmetric invertible square

matrix and the diagonal consists of the storage elements in derivative causality. Then

substituting into (6.20) will result in:

X4 = Fg " (SaZ +Saall) (6.21)
After differentiating (6.21), it will yield:

Xg = ( Py 'Sa1+Fy 71341) Zi +Fy'S2 + ( Fa 'Sas + Fy 713‘44)“ +Fy 'Sy4U (6.22)
Note that F,™ denotes the time derivative of the matrix F,™. This allows the terms z, to be
eliminated from the system equations. Starting with row three of the equation (6.17), the

expression for D} can be written as:
DM =85,7; +S3,Dy + SgaD +Sa4u + Sas%y (6.23)
Substitute (6.23) into the constitutive relation D) =M (x)D". Where M(x) is an invertible

symmetric square matrix and its diagonal consists of the memristive values, then this

substitution will lead to:

DY =T (Aizi +MS,, Dy + AU+ MSacFy 'S, + MSae Fd—ls44u) (6.24)
With  defining T =(1-Sg5M), A =(MS;, +MSy (F, 'S, +F,%S,,),  and
A, = (MSg, + MSae (Fy 'S, + F47'S,,)). 1t is assumed that (1-S3M)  matrix is invertible.
Now looking at row two of the equation (6.17), an expression for D" in terms of the other

elements in the system can be derived:

DI =Sy,Z; +SpDE +Sp3D0" +S,0U + SpeXy (6.25)
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Substitute (6.24) in (6.25) in an attempt to eliminate Dg" . Then substitute the resultant equation

in the constitutive relation into D! (t) = LD/, where L isan invertible symmetric square matrix

and the diagonal consists of the resistive values, the result will be:

AD} = Ayzi + AU+ Agz; + Al (6.26)
Where A =(1—LS,, —LS,;T ™MSs,), A, =(LSy; +LSysT A + LS, (Fy 'Sy + Fy 7S,1),
A5 = (LSpsT A + LSy + LS5 (Fy 'Sy + Fy 7S4a)),
Ao = (LSy3T "MS3sFy 'Sy +LSysFy'Syy),  and Ay = (LSyT "MSsF Sy +LSysF 'Sy,).
Assuming that (1—LS,, —LS,5T ‘1M832) matrix is invertible, then by substituting (6.26) into
(6.24), an expression for DM in terms of only x, x, U, and U is obtained:

DM =T (Agz; + AU+ Az, + AyU) (6.27)
where Ay = (A +MSpAT A, Ay =(MS3p AT A+ Ay),  Ag = (MS3, A A + MSyFy7'S,y),
and A, = (MS;, AT A, + MS,.F,7'S,,) . At this stage, most of the system equations are defined
in terms of z;, U, Z; and U. Now consider row one of the equation (6.17) to extract an
expression for X; as below:

% =S11Z; +S1,Dg +S1aDY +Sy4U + Sy %y (6.28)
Substitute (6.27) (6.26)and (6.22) into (6.28) to define the state variable vector with the terms
Zi, U, Z; and U:

X = ApZi + Agl+ Az + Al (6.29)

Where A, = (Sy1 +Si2A5 Ay +SyaT A + S5 (Fy 'Sy + Fy 7Sa1)),
Az = (Sip A5 A5 +S15T Ay + S + Si5(Fy Saq + Fy'S4)),
A = (S12A5 A +S1aT *Ap +S15Fy 'Sy), and  Ag = (S ATt A + 15T A +S15F,'S,,).
The term in (6.29) can be replaced by X; using the constitutive law, which describes the

behaviour of the storage elements within the network z; = Fx; . Here, F is a positive diagonal
definite matrix that consists of the storage values in integral causality. Differentiating this
constitutive relation to define the derivative of the state vector only with X; and U, the resultant

equation is:
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2, = Fx, + FX, (6.30)

Notice that F denotes the time derivative of the matrix F. Substitute (6.30) and the
constitutive relation into (6.29) to obtain a unique explicit state expression for systems with

memristive elements as expressed below:

(1= A4F)% = (A F + A F)% + Agu+ Agl (6.31)
Equation (6.31) is a descriptor form, which lies close to the state space formulation of the form

EX, = A% + Bu+GuU . The matrices A, B, G and E are defined as:

E = (1-(Si2 (1= LSy — LSyT ""MS3,) ™ (LSp5T ""MSgsFy ™'Syy + LSpsFy Ss) +
S1aT (MSgp (L— LS — LSp5T "'MSg,) ™ (LSpsT "*MSgsFy 'Sy + LSp5Fy 'Sg) +
MS35Fy 'S 41) + S15Fy S41)F)

A= (Sy+S1p (L= LS — LS5T 7"MS;,) (LS + LSy5T ~H(MSg; +MSy5(Fy ™Sy +Fg 7S41) +
LS5 (Fy"Sag+Fy "Sa1))) + SiaT (MSg; + MSgs(Fy ™Sy + Fy 'S 4) +
MSgp(1— LSz, —LSpsT MS3,) (LS + LSpT ~(MS3y +MSg (Fy ™Syy + Fy 'Sy1) +
LS 5(Fy"Sa1+ Fy S41)))) + S1s (Fy 'S4y + Fy 'S40))F +
(S12(L— LS5, —LS3T "'MSg,) ™ (LS5sT "MS35Fy Sy + LSysF ~'Syy) +
S15T " (MSg (L~ LS5 — LS55T ~"MS3p) (LSyqT "MSgsFy 'Sy + LSpsFy'Su) +
MS35F, 'S 41) + SisF S4)F)

B = (S12(1— LSy —LS5T ""MS3,) (LT ™ (MS3y +MSa5(Fy Sy +Fy 'Sy1)) +
LSzq + LS5 (Fy "Sq +Fy S4a)) +S15T (MSgy (L— LSy, —LS5T *MSg,) ™
(LSpsT (MSgy +MSg5(Fy Syy + Fy S41)) + LSy + LSy5(Fy 'S4y + Fy Syy)) +
(MS34 +MS35(Fy Syy + Fy'541))) + 14 + Si5(Fy "Saq + Fy~Sas))

G = (Spp(L— LS — ST "MS3,) ™ (LS55T "MSgsFy 'Sy +LSpFy 'Spa) +
S13T H(MS3 (1= LS, — LS 5T "MSg;) (LS 5T "MSysFy 'S4 + LSysFy Saa) +
MS35F; 1S 44) +S15Fg Saa)
-1

Along with this work, the energy must be conserved, the matrices (;i and a;:'( , and their
X d

linear versions F, and Fd‘1 satisfy Maxwell’s reciprocal relations, which means that they are
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symmetrical matrices. The resistors are considered to be truly dissipative, resulting in the matrix

I(xi) positive definite; particularly, the constitutive matrix of the linear resistor field satisfies

L>0.

6.5 Subclasses of Nonlinear Systems with Field Matrices of

Memristive Systems
In the matrices A, B, G and E, derivatives with respect to time of some submatrices of the
matrix S and Fd‘1 appear. In certain cases, like in two or three-dimensional mechanical systems,

major parts of the matrix S are coordinate transformation matrices. Then, these submatrices of

S can be written as functions of generalised coordinates, which can be seen as the time integral
of some descriptor variable. It is easy to see that Fd‘1 plays a crucial role in the time behaviour

of the descriptor vector. If no derivative causality appears in the storage field, E = | and
G = 0. Consequently, (6.31) in fact, a state space description and the descriptor vector equals
the state vector. Conversely, if a derivative causality appears in the storage field a state space

description is only possible if E is not singular, or

det(1— A,F) = 0 (6.32)

In this chapter, subspace identification methods could be developed for identification
methods of other descriptions, like time-varying and nonlinear systems. Unfortunately, it is

only possible to determine an approximation of the state sequence, because the influence of the
initial state is unknown. In other words, by making different choices for the matrices z; and
Z4 in the generalised equation. Once a general descriptor of the state space for systems with

memristive elements has been determined, the system matrices can be assumed by solving the
set of equations. This section will describe six different subclasses that are based on different

system variables of the state:
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6.5.1 Class 1: Nonlinear Bond Graph with No Coupling Between the Resistive

and Memristive Fields

The first class examined in this section is the rule of the coupling between the resistive
elements and memristive elements on bond graph models, which determines the existence of
symmetric and skew-symmetric components in the matrix contributed by the resistive field and
memristive field of bond graph. The matrices defining the model are obtained according to

(6.31), with causal paths as there are no coupled resistors, S,3 =Ss, =S33 =0, which implies

the system equations of (6.33) are as follows:

S Az ]
X Su Sz Sz S S5 DI|
|
Di |_|Sa Sz % S S D'SI (6.33)
M o
D S31 }Q S3a Sz y
(2] [sa 0 0 s, 0],
L | x4 ]

Then, with these assumptions, the reduction of (6.31) will be obtained. This yields an explicit
solvable matrix in the form of:

Ec % =A% +B u+G.u (6.34)
with time-variant junction structure and storage elements, where the matrices Ac , Bc, G,

and Ec, are defined as:

Eg = (L (S1o(1—LSp) LS sFy Sy +S13MS3sFy ™Sy + SiFy ~'Sa1)F)

A = (S +S,(1- LS55) (LSg; + LS5 (Fy ™S4y + Fy Syp)) +
S13(MS3; + MS35(I5d _1541 +Fy _1S41)) + S15(F.o| _1841 +Fy _1341))F +

(S12(1=LSp) " LSp5Fy "Say +S1sMSgsFy Su1 + S15Fy 'S4 F (6.35)

B, = (S (- LSp) (LS4 + LS5 (Fy Say+Fy 'Syq)) +
S13(MS,, + MS35(|fd _1341 +Fy _1341)) +S,+ S15(':.d _1544 +Fy _1S44))

G = (S, (- LS25)5" LSs5Fy "Saq +S13MSsFg Sas + S15Fg Saa)
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6.5.2 Class 2. Nonlinear Bond Graph with All Storages in Integral Causality
Assignment
This implies that S;5=S, =S4 =S5 =S35=0 as these matrices reflect the

determined storage element in differential causality and the system storages are assumed to be
in the preferred integral causality, which confirms the variable equivalences suggested, for this
case the expression is obtained by re-casting the matrix of (6.17) as follows:
EREEE e
DiI _ Siu Sy % S24 % [I;),\(j, (6.36)
I:)i'v| Sa1 % % Sas }é uo
[Za] |3 0 0 3 0 % |

This is the case when the bond graph can be made fully causal. The expression of this model
which is considered as the preferred model in most of the research, published so far in the
literature. The derived expression will yield the form
% =A% +Bu (6.37)
where the matrices A, B are defined as:
A, =(Sp1+S,(1- LS) LSy +S13MS3)F

) (6.38)
Be, = (S12(1—LSp) "LSy4 +S;3MS34 +Sy4)

with, G=0 and E=0. As already shown, the descriptor equations of (6.31), change
fundamentally; it reduces into a state space description. Only in this case, the physical energetic
state vector is a function of itself and the power input variable.

6.5.3 Class 3. Nonlinear Bond Graph with Storages in ICA and DCA, Without
DCA-Storages Causally Determined by Sources

Given the system with storages in integral and differential causality assignment (in ICA

and DCA), without differential causality assignment (DCA)-storages causally determined by
sources, S, =0are admitted. The equation will be used and the port Hamiltonian model

follows that:
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S11 S12 S13 S14 S15 I

DI | |Sy S Sy S

DiM S31 % }é S34 S35 °

[ 20 ] [Sy O 0 3% O 5,

This assumption allows us to find an explicit dynamic model from the bond graph modelling
derived in (6.31) in the form of:

Ee, % =A% +Bu (6.40)
where the matrices E, A, and B, with G=0, are defined as:
Ec, = (1—(S12(1—LS;,) " LSy5Fy *Sy; + S13MS35Fy 'Syq + S15Fy S41)F)
A, = (S11+S1p (1= LS5) (LS + LS5 (Fg 'Sy + Fg 7Sy1)) +

S13(MSg; +MSg5( Iid _1341 +Fy _1341)) +S5 ('id _1541 +Fy _1341)) F+ (6.41)
(S, (1- Lszz)_l LSy5Fy _1541 +513MS55Fy _1541 +315F4 _1541) F

B, = (51— LS25) LSy, +S13(MSgy + MSs (Fy 1S40 + Fy S41)) + S14)

6.5.4 Class 4. The Storage and Junction Structure Field Matrices Are Time-
Invariant
This is a system that consists of time-invariant junction structure and storage elements,
again, the descriptor equation parameters A, B, G and E are simplified, with F,™, Fand S,

are all equal to zero. Then, with these assumptions, in addition to the assumption applied in
Class 1, the reduction of (6.31) will be obtained below, yielding an explicit solvable matrix in

the form of:

Ec % =A% +B u+Ggu (6.42)

where the matrices A, B, G and E are defined as:

E., =@ (S, 1- LS20) ™ LSy Sa1 + S13MSasFy 'Sa1 + SisFySa1)F)
A, =((Sp1 +S2 (- LS,,) LSy +S13MS;)F)
B, = (S (1- LS;,) " LSyq + S13MS34 +Sy4)

G, =(S12(1-LSy, ) LS 5Fy S + S13MS3sFy 1S4 + S15Fy S 4s) (6.43)
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It should be noted that formally, this result is also valid for linear systems. However, here L

might be time-varying or state-dependent.

6.5.5 Class 5. The Junction Structure Field Matrix Is Time Invariant
A time-invariant system is a system whose behavior (its response to inputs) does not

change with time. Then also the descriptor equation matrices are E, A, B, and G. That means
that only 341 will be equal to zero. In addition to the assumption applied in Class 1, yielding
an explicit simplified version of (6.31), which still in the form of:

E, % =A% +B u+Ggu (6.44)
where the optimised matrices of A, B, G and E are defined as:

E,, =(1-(S(1- LS25) LS p5Fy 'Sa1 + S15MSsFy 'S 1 + SisFy " Sa1)F)

A, = ((Sy1+S,,(1- L822)_1(L821 +LSy5Fy _1341) +S;3(MS3; + MS;5F, _1541) +
Sy5Fy Sa1)F +(S1p(1—LSy,) LS p5Fy Syy + SysMSggFy 1S,y +

Sl5 Fd _1841)F.) (645)

B, =(S,,(1- LS55) " (LSpq + LSp5Fy S44) +S;5(MSs, + MSg5(Fy Syy))

+514+ S5 'id _1544)

G, =(S;,(1- LSy ) LS 5Fy Sa + S13MSgsFy 1S 44 + Si5Fy Sas)

This case applies when no modulated transformer (MTF) or modulated gyrator (MGY) elements
appear in the junction structure.
6.5.6 Class 6. The Storage Field Matrices Are Time Invariant

If both the matrices Fd_l, and F are constant, then their derivatives are equal to zero.

The descriptor equation matrices are E, A, B, and G. Therefore:

EC6 XI = Ats XI + BCGU +GCGU (646)
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where the associated matrices are defined as:

E, =(1-(5,(1-LSy, ) LS 5Py 'Sy +S15MSgsFy S 1 + SisFySa1)F)

Ao, = (Gra + 52 (- LS55) H(LSg; + LSp5Fy 'S41) + S13(MSg; + MS3sFy'S,y)
+Sp5Fy 7 S41)F +(S12 (L= LS2) ™ LSp5Fy " Syy +S13MSgsFy 'Sy +
SisFy'Sa1)F)

) ) (6.47)
B, = (S12(L—LS5) (LS4 + LSpsFg S4q) + S13(MSzs + MSgs (Fy™S1)) +

Si4+ 315Ky _1344)

G, = (S (- LSp) " LSy5Fy S + S13MS35Fy Sas + Si5Fy S4s)

It should be stressed that the descriptor variables all have a physical meaning since they are in
fact the generalised momenta and displacements of the independent storage field. Therefore,
this approach can be seen as a generalisation of the classical derivation of the state space

formulation of linear systems.

6.6 Derivation of Port-Hamiltonian Systems for Systems Contain

Memristive From Bond Graphs

Whenever the predominant energy exchanges are expressible as the products of pairs of
scalar variables, and the system contains a finite number of such exchanges, a port-Hamiltonian
model is implied. The representation of such models takes various forms, depending upon the
area of application and background of the problem. One of these is that the generic descriptor
equation of (6.31) in the form of Ex(t) = Ax(t) + Bu(t) + Gu(t) , which differs from the standard
form Ex(t) = Ax(t) + Bu(t) . By using the definition stated in section 6.2, new matrices B in
(6.6) and «(t) in (6.7) [248] are used to rewrite the descriptor equation in the standard form as

in (6.8). After writing the descriptor into the standard form of (6.8), port- Hamiltonian matrices

can be formulated in the form of an ISO-PHS equation:
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xz[J(x)—R<x>]‘2—':<x)+g(x)u
(6.48)

oH
y=9"()—(x)
OX
where H(q, p) is the total energy stored in the system for the conjugate variables, x is the state
variable, u and y are the power variables of the input and output ports, g(x) is the output vector,

J(x) is a skew-symmetric matrix representing the interconnection structure (which is power

conserving), and R(x) is the dissipation structure symmetry matrix. A special engaging feature
of a port-Hamiltonian system is: as J (x) has a skew-symmetry property, the flow of energy

within the circuit will ensure that the power consumed by the inductors and the capacitors is
equal to the difference between the power provided to the circuit by the external port and the

power dissipated by the resistors and memristors.

To compute the form of H(x) expressed by BG variables, first, the energy function E(x)
needs to be expressed as the integration of power which is the product of the input and output

variables of the storage elements as in (6.49)[209].
E(x, %) = [ 2] xot+[ 25 xgot (6.49)
Then, as the energy E(x) and H(x) represent the energy stored are different but in a special
case their values will be identical. This case is when a chosen state variable of the system is the
same such as Xi = xi. Thus, the energy function will be written as a function of x; only as shown

in (6.50):

E(x)=E(X.%3) =E(%,9(z4)) = E(%, 9(s12)) =H (%) (6.50)
After the chain rules are applied, the total energy form of H(x) expressed using BG variables

will be as nonlinear storages:

oH of(x) . o (zg)
Y i A S, | Z; 6.51
x o 15 &, a |7 (6.51)
And the linear form is:
oH _
— =[| —FS,.F; 1341]4 (6.52)

From the definition of J, it can be observed that this is a skew-symmetric matrix, where J=-J".

Similarly, R is a symmetric matrix. A relatively new and generic representation proposed to the
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expressions of symmetric and skew-symmetric components with memristive elements, which

can be defined in terms of BG, is follows:

Er = (1 -FSsFy 'Syy)™ (6.53)

w,, =%[W W' (6.54)
1 i

W, :E[W -] (6.55)

where Wsy and Wi are the symmetric and skew-symmetric symmetric parts of W. Here, W is the

part of the state vector X; of (6.31) that does not consist of memristive behaviour. And Wy, is

the expression of the state vector X; in (6.31), that contains the memristance M. The symmetric

and skew-symmetric parts will be:
1
Way sy = 5| Waa + (Wt | (6.56)
1
Wi sk = E|:WM _[WM ]T] (6.57)

The expressions of J, R and g are found in terms of the matrices of the BG, then, the following

identities hold as:

J(x) = E7'SyEr + E Wy Er + E"Wy o Er (6.58)
R(X) =—E "Wy Er + E"Wy, o Er (6.59)
g(x)=E"'B (6.60)

6.7 Matrix and Function Equivalences of The Subclasses

Descriptors with Memristive Elements
Many types of physical systems have been studied above using bond graphs, and the
derivatives with respect to time of some submatrices of the matrix S, F and F;* appear. In

certain cases, like in two or three-dimensional mechanical systems, major parts of the matrix S
are coordinate transformation matrices. Then these submatrices of S can be written as functions

of generalised coordinates, which can be seen as the time integral of some descriptor variable.
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This specification will be used in the work derivations to assume that this matrix is in its

generalised form.

One of the noteworthy features of the approach described is that it enables the researchers
to formulate the equations to predict the difficulties that will be encounted before any equations
have been written. This is made possible by the systematic use of computing causality, assigned
directly to the bond graph. Based on the definitions given for each field port of the classes
derived before, each system type may be represented in ISO port Hamiltonian form as will be

shown next:

6.7.1 Class 1: Nonlinear Bond Graph with No Coupling Between the Resistive

and Memristive Fields
To define the port Hamiltonian model matrices, the matrices A, B, G and E in (6.35)
for the descriptor expression derived in section 6.5.1 is used to obtain the symmetric part R(x)

and skew symmetric parts J(x) for system equation (6.48). For that purpose, it is needed to split

the state matrix expression A of X; into two parts with and without memristance in order to

extract W and W, .

A, = ((S11 + 12 (1= LSp) (LS + LS5 (Fy ™ Sgy + Fy Sap)) +
S13(MSg; +MS35(Fy 'S 41 + Fy'S41)) + Si5(Fy 'Saq + Fy'Sq0))F +
(S12(L—LS5) LS p5Fy "Syy + S13MS3sFy Sy + SisFg S41)F)
As can be noticed, the expression for A, matrix consists of two forms one with constant integral

causality assignment storage elements and the other is with time varying storages in integral
causality assignment. This type of systems leads to complex geometrical modelling of physical
systems. As far as the author is aware, there is limited research to solve such systems. This
therefore highlights the need to investigate more on the one hand — in modelling these systems
in port Hamiltonian formulation, and — on the other hand- in defining matrix expressions to
support these formulations. Later, this special case will be addressed as one of the future works
to be extended into formulating broader types of system structure that can be formulated

according to their energy exchange.
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6.7.2 Class 2. Nonlinear Bond Graph with All Storages in Integral Causality

Assignment

After assuming that all the storage elements are linear and have only integral causality
assignment, G=0 and E=0. As already shown, it turns out that the descriptor equations of (6.31)
change fundamentally. Using (6.52) and assuming the total energy H(q,p) in BG variables, is
given from:

oH
=-=120). (6.61)

Substituting into equation (6.42), it follows that:

. - oH

W W

M (6.62)

Sio (1 =1(%)S2,) 11(%)S04 + S13M (X)Sa4 + Sp4 [U(t)
g

The above expression will be split into a skew-symmetric component J (where J'=-J), and a

symmetric component R. These two components can be rewritten in terms of the BG formalism:

E.l=| (6.63)
W =S, (1 =S50l (%)) 1(%)Sy; (6.65)

Wy, = [Slz (L=106)S22) "1()S 1 +| S1 (1—l(xi>822)‘1l(xi)821]T } /2 (6.66)

.
Wy :|:812(1—|(Xi)822)_1|(Xi)821_|:812(1—|(Xi)822)_1|(Xi)821:| :|/2 (6.67)

Equation (6.62) contains the memristance M, so the symmetric and skew-symmetric parts

associated with this component are given from:

Wy = 513M (X)S3 (6.68)

Wy o, = [slgm (X)Ss1 +[S1sM (¥)S1 | ] /2 (6.69)
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Wi sk = [513'\/I (X)S3; _[Sl3M (X)S31]T J/Z (6.70)

Combining symmetric parts in (6.66) and (6.69) into a single R(x) term and skew-symmetric

parts in (6.67) and (6.70) into a single expression for J(x) after incorporating the effect of the
submatrix Sis, it follows that the system equation matrices in (6.48) are:

J (X) = 811 +Wsk +\NM sk

(6.71)
R(x) = _(\Nsy +Wy ,sy) (6.72)
900 =[ S12(1 = S521)) H1(x)S 24 + S13M (X)S34 + Sy | (6.73)

6.7.3 Class 3. Nonlinear Bond Graph with Linear R’s, Linear Storages in ICA
and DCA, Without DCA-Storages Causally Determined by Sources

" . . f -
Under the derivation of the total energy equation (6.51), the matrlcesa—, and Aty

X; OXq4
, are replaced by their linear versions F, and Fd‘l. The resistors are considered to be truly

dissipative, resulting in the matrixl(xi) positive definite; particularly, the constitutive matrix

of the linear resistor field satisfies L > 0. With the constitutive relation, of (6.9):

-1 0H

Fx.(t) =1 -FS F's,, | 2~ 6.74

W=[1-FssFs, | 2 (6.74)

By replacing Fx; (t) in equation equation (6.40):
X =

B, [ (S +810(1=LS,,) (LS + LS,F, S,) + 815 (M (X)Syy + M ()85 F, 'S,,) + S,5F, 'S,) | (6.75)
1o T1OH _ . 18
[I —FSF lS41] &"" Ec3 l[(slz - LSzz)sl LS, + SlS(M (X)Ss4 +M (X)Ssst lS41) + S14)]“

Using the Hamiltonian formalism proposed, the dynamics of this system are calculated from
the set of equations of the form:

Er = (1 -FSisF 7S,) ™

(6.76)
E.l=(1-(S,(1—LS,) 'LS,F 'S, + S;;MS F 'S, + S F 'S, )F )’1 (6.77)
W = (Sll + S12 (1_ LSZZ)_I(LSZl + LSZS Fd _1341) + S1L5 Fd _1341) (678)
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W, 5 (6.79)
w-[wT]
Wsk = T (680)
Wy = S13(MS31 +MS; Fd_ls41) (6.81)
e g T
813(MS31 + MSss F S41) + [813(MS31 + |V|S35 Fy S41):|
My = (6.82)
' 2
_18 a8 AT
S13(M331 + Msss F S41) - I:Sl3(MS31 + Msss F S41)]
v = (6.83)
' 2
As J(x) takes the skew symmetric part, R(x) will take the symmetric then:
J(x) = EC‘:SHET + EC‘;\NskET + E,;:\N,\,,vskET (6.84)
R(x) = —(EC;]WSy E +E; Wy, o Er) (6.85)
g(x) = E: [(812 a- Lszz)gl Lsz4 + S’13(Mss4 + |V|835 Fd 718‘41) + 814)] (686)

6.7.4 Class 4. The Storage and Junction Structure Field Matrices Are Time
Invariant
Yielding an explicit solvable matrix in the form of EX; = Ax; + Bu+GuU (6.42), the total

energy H(q,p) in BG variables, will also be defined as:

Fx =[1-FS.Fs, | cul (6.87)
By replacing Fxi in equation (6.42), the resulted descriptor will be:
. _ _ - -10H
X(t) = E04 ' I:Sll + Slz (1_ LSzz) ' L321 + SlsM (X)SM:H:I - FSlSF 1S41i| - 1
E,, [ (S (L= LSy) LS, + M (X)Sy, +S,,) Ju(t) + (6.88)

E.," [(Slz (1-LS,,) 'LS,.F, 'S, +S,;M (X)S,.F, 'S, +S,.F, -1344)] u(t)

Obtaining the matrices to develop the port Hamiltonian set of equations as denoted by the

following terms:

Er =(1 -FS;sF s, (6.89)
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Ec;l = (1_ (812 (1_ Lszz)_l Lszs Fd _1841 + SlSM (X)Sss Fd _1841 + SlS Fd _1841) F)_l (6-90)

W =(S,, +S,(1- I—Szz)il LS,) (6.91)
-1 -1 T
(Sn + S12 (1_ I-Szz) I-Sz1) + [811 + SlZ (1_ LSzz) LSZl :'
= (6.92)
2
(511 + Slz (1_ I-Szz)_l LSZl) - [Sn + Slz (1_ I-Szz)_l LSZl '
s = > (6.93)
W,, =S,,MS,, (6.94)
T
WM,sy _ SlaMssl +£513M831] (6.95)
.
WM,sk _ S13M831 _£813M831] (6.96)

All these resulted symmetric and skew symmetric parts will be formulated to hold the port

Hamiltonian functions of interest, which are of the form:

(0 = E'S,E, + EQWLE, + EW, L E, (6.97)

R(X) =—-E, W E; +E_ W,  E; (6.98)

4

g (X) — E—l (812 (1_ LSzz)_l LSz4 + S13MS34 + S14)

: 2 ? g ) (6.99)
(812 (1_ LSZZ) . LSZS Fd 1S44 + SlSMSSS Fd 1844 + SlS Fd 1844)

6.7.5 Class 5. The Junction Structure Field Matrix Is Time Invariant
This class holds the same investigative difficulties as class 1 in section 6.7.1. it can also

be noticed that the expression for A, matrix consists of two forms one with constant integral

causality assignment storage elements and the other is with time-varying storages in integral
causality assignment. This also leads to complex geometrical modelling of physical systems,
that need to be investigated in more depth for modelling these systems in port-Hamiltonian
formulation. Later this case in addition to the case of class 1, will be addressed as future works

to widen the proposed formulating into broader types of system structure.
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6.7.6 Class 6. The Storage Field Matrices Are Time Invariant
Following the development of Section 6.5.6, it is clear the storage field is time invariant.
The extended descriptor is given in the form (6.46), and the nonlinear equation after substituting

the total energy term defined in (6.52) will be as:
X(t) =
1 1 “1g8 _1¢ “1g 1 TtOH
Ee, [ (S11+ 812 (1= LS3) (LS +LS55Fg "Sa1) + S1sFy Sy +S13(MSgy + MSs Py 'S0)) ][ 1 - FSsF 'Sy | =t
E, " [(312 (L LS2) " (LSp + LSp5Fy 'Sas) + S13(MSgy + MSy5(FyS41)) + Sia + SisFy 715.44)} u(t)+
E, ™ [(512 (L LS5) ™ LS5 Fy 'Sus +513MS35Fy 'Sy + S5y 71544)] u(t)
(6.100)

The relation sets used to characterize port Hamiltonian system, may be constructed from the

following terms:

E; =(I —FS;sF's,)™ (6.101)
Ec;l =(1-(5,A- |—522)71 LSysFy 71341 +S13M (X) S35 Fy 71541 +S15Fy 71541) F)™ (6.102)
W = (S}, +S,(1-LS,,) (LS, +LS,F,S,) +SsFy 'S, (6.103)
W W]
o=, (6.104)
w-[w]
W, = — (6.105)
Wiy = Sia(M (X)S5; + M (X)SsF, 'S,.) (6.106)
W, - S, (M (X)S,; + M (X)S,.F, 'S,,) + E813(M ()85 + M (0S,sF, *S,) | (6.107)
_ S15(M ()85, + M (x)SFy 'S4) —[ S5 (M (X)S5, + M ()S5F, S | (6.108)

M, sk
2

As the final step, the J(x) and R(x) will be calculated by the use of (6.101 -6.108), giving the

matrices equation set as:

J (X) = Ec_elSnET + Ec_slwsk ET + Ec_:VVM sk ET (6.109)

R(x) = —(E; W, E; + E.W,, , E;) (6.110)
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g(x) =
. . . T
£ {(Slz (- Lszz)_l(l—sm +LS,, Fd_ls44) +S,;(M(X)S;, +M (X)835(Fd_1841)) +S8, + S5 Fd_ls44):|
“ (S, (- Lszz)_l LS,sF, _1344 +S;M (X)SFy _1844 +35F4 _1844)

6.8 Further Equation Derivation

It has already been shown that an explicit or implicit state equation can be found from the
junction structure matrix of memristive systems. It was also shown that the causal assignment
can be exploited to give insight into the system. In this section, some additional equation
derivations are carried out to provide more information about Hybrid Bond Graph with dynamic
causality. A further challenge is that nonlinear dynamics that are often associated with these
networks also need to be incorporated within the derived mathematical models. Furthermore,
systems may be hybrid, containing both continuous states as well as discrete (a typical example
being that of switching systems) [249]. Methods for representing hybrid systems using BGs
have been suggested, e.g., [250] and [251], but those have limitations.

6.8.1 Analysis of the Hybrid Bond Graph

As an example of the proposed modelling methodology, this is implemented to derive
models for DC-DC power converter circuit. Memristive elements instead of resistors are used
in these circuits to better emulate their nonlinear action because in a switch system, ohmic
contacts momentarily change thus varying the resistance of that component in the circuit.
Within the context of DC-DC power converter circuit analysis, the switching operation of these
networks has already been discussed [252][253]. A combination of a Modulated Transformer
with a binary modulation ratio and a resistor (MTF-R method) may be employed to represent
the operation of a switch in a BG framework [254][255]. The advantage of such formulation is
that it leads to a fixed causality bond graph model. Furthermore, it is suitable for control
strategies with direct Boolean control inputs so that advances from the ‘Sliding Mode Control’
community can be incorporated [256] [257][258]. DC-DC power converter circuits incorporate
diodes, and their nonlinear operation needs to be also accommodated in the BG and ISO PHS

formulations. BG modelling of switching circuits was recently presented in [259], where
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examples of DC-DC power converters were analysed. We find this a particularly elegant
approach; therefore, the current work adopts the MTF-R method within the memristor circuit

analysis framework to derive the associated model states.

6.8.1.1 DC-DC Converter Modelling Using Bond Graphs

As discussed in [259], DC-DC converters may be modelled by BGs using the MTF-R
method. In the simplest case, when a modulation transformer with a binary modulation ratio is
connected to a resistive element with resistance Ron the circuit emulates the operation of a
switching device. Regarding Figure 6.1, if the modulation index of the modulated transformer
is set equal to one (m=1), the power is dissipated through the resistor Ron. The Ron value is
chosen to be small and can represent the resistance of a switch when it is closed (ON state). In

the case of the ON state, the MTF-R combination provides the flow of current f, to the rest of

the system:
f—mf—me4—m2e:>f—m2(el e,) (6.111)
3~ 4 — W =" %3 37 5 2 '
Ron Ron Ron
Ron
4
MTF:1/m
Ts
Lo

Figure 6.1 Bond graph model of a switch implemented by the MTF-R method [15]

When the modulation index of the transformer is set to zero (m=0), a zero flow is implied to
the rest of the system. In that case, the operation of an open switch (OFF state) is realised,
where no current is allowed to pass. The ratio m / Ron sShows that the conductance of the switch
is high when the switch is ON and is zero when the switch is OFF. With reference to Ron, the
causality of Ron remains fixed during the change of states in the switches, and this is known as

‘Conductance Causality’.

It is also well-known that a diode can be modelled as a switch. In single-switch DC-DC

converter applications, a diode may thus be assumed to operate complementarily to the actual
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switch. Such a simplistic representation, however, may lead to erroneous models. For instance,
in a conventional DC-DC converter, which is composed of one switch and one diode, the
inductor current is restricted by the diode to remain above zero, which is not always the case.
An alternative representation of the diode using a bi-directional switch model, however, will
permit the inductor current to go below zero resulting in a steady-state as well as a transient
response. Furthermore, in the case where the switch and diode are assumed to operate while on
different ON and OFF states over a portion of the switching cycle, the modelling of the system
becomes problematic. The MTF-R method, however, allows for a more accurate representation
of the diode independent of the state of the main switch.

—0 —
1 2

Figure 6.2 Bond graph model of a diode implemented by the MTF-R method

A control loop external to the MTF-R BG model as shown in Figure 6.2, was established in

[255] to emulate the diode operation. In this approach, the control loop compares the effort

between the shared bonds (€;,€, ) of the diode junctions (with resistance Rq). Depending on

the difference of the effort A6 = € —€,, exceeding a specific threshold, the modulation ratio m

of the transformer is modified accordingly:

B {1 if Ae > e,

) (6.112)
0if Ae < ey

The effort across the junction is considered to be internal to the system control loop. Therefore,
the obtained model of Figure 6.2, as discussed in [255] is considered to be a model with internal
modulation. Following this definition, the flow information provided by the model of the diode
to the rest of the system is a function of its flow and effort and it is not affected by any external
control. This assumption enables the creation of models for DC-DC converters accounting for
different modes of operation as discussed in [259].
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6.8.1.2 Bond Graph of a Switching Memristive Element

In BG theory, power is the result of the product between effort e(t) and flow f(t). Flow
and effort variables at all the ports of the network are described using the causal bond graph
methodology. The causality concept is used to assign the direction of power-conjugated input-
output pairs [88]. As discussed in [98], a BG general structure is composed of dissipation fields
that can be split into two parts (linear and nonlinear), storage fields (C and 1), source fields
associated with effort and flow (Se and S), and junction structures (denoted by JS) containing
transformers TF and gyrators GY and with the existence of switches [259]. The causal bond
graph of a switching circuit assuming the presence of a memristor element is shown in Figure
6.3.

Source fields (Se, Sf)

A

v(1) u(?)
z, (1) ) Dl
Storage  [* o Junction b () | Dissipation
: Yl ' :
fields ) Structure S |y fields
(N 20 | (0,1, TF,GY) |niw| RM)

Tz'n (I) Tom({)

A4

Switches

Figure 6.3 Structure of a causal bond graph accounting for the non-linearity of
a switching memristive element.

where X (t) is the state vector in integral causality, X4(t) contains the energy variables in
differential causality, Z;(t) andz4(t) contain the co-energy variables associated to X; and Xy ,
DiI (t) and D(', (t) are the linear input and output vectors containing the power variables entering

and exiting from dissipative fields with resistive behaviour (R), DM (t) and DM (t) are input
and output vectors containing the power variables entering and exiting from the memristive
field (M), T;, and T,; are vectors containing the power variables going into and out of the

junction structure from the switches, and u contains the effort and flow variables imposed by

the sources (Se, St).
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In this generic structure of a causal bond graph, dissipation is being composed of input
and output variables. The dissipation variables consist of two types of elements: linear and
nonlinear. Similar type expressions can be developed to model memristive dissipative elements
using the BG framework after assuming the following general junction structure shown in (3).

Internal and external vectors can be related using the following interconnection matrix:

BICREI 129
i Siu Sz Si3 Sy Sis D! (1)
D! (t y
':/I( ) _ 821 822 0 S24 S25 D(,)VI (t) (6113)
Di (t) 831 0 0 S34 S35 T (t)
LT® ] [S; Saz Siz 0 Sus uit)

The constitutive relations of the elements in the derivation of a system containing linear storage

elements are:
z(t) = Fx; (1), D) (t) = LD!, DM (t) = M (x)DM (1), T, (t) = ET; (t)
where x(t) is an integral causal input variable, T;(t) and T,(t) are the input and output power

variable from the switches, u are the output variables and M(X) denotes memristance.

Substituting these constitutive relations into (6.113), it follows that:

TR - %@ ]
i SuF Spb SisM SUE Sis D! ®)
| [
D'\I/I(t) _|SuF Syl 0 SuE Sy DiM ®) (6.114)
Di (t) 83]_': 0 0 S34E S35 T (t)(t)
L T; (t) i _S41F Spl SiM 0 S45_ ul(t)

By solving (6.114) for x(t), the following expression is derived:

X(t) =

[Sq +S12HSy; +S1,HS» EP 'R, +S13M (X) Sz, + S13M (X)Sg,EP'F, + S, EP TR JFx(t) +
[S12HS,EP'F, + S;,HS o5 + S13M (X)Sg, EP'F, + S13M (X)Sgs + S14EP'F, + SisJu(t)

(6.115)

where H = L(I - S,,L) ™, Pl=(1- S4oHS,E —S4sMS5,E),  Fi = (S +S4HSy; +S43MS5y),
\%/—J %,_/

R P R F,

F, = (S4HSy5 +S43MS55 + S45). Equation (6.115) is a state space equation in the general form.
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6.8.1.3 Port Hamiltonian of a Switching Element

State space models of the circuit dynamics are made possible by adopting an ISO-PHS
formulation, directly from bond-graph analysis [209][148][147][135]. In [225] it was shown
that the equations obtained from BG can be mapped to Port-Hamiltonian System (PHS)
formulations. The PHS formulations preserve the energy exchange between storage,
dissipation, source and junction structures. The derivative of the state, as well as the associated
output of the system, are given by the following generic expressions of (6.48). The derivation
of 1ISO PHS from nonlinear BG with memristor elements extends the formulations presented in

[209], after assuming that all the storage elements are linear and have only integral causality

assignment. The total energy H(q,p) then is given from %—H = z;(t). Substituting into (6.115)
X

it follows that the above expression can be split into a skew-symmetric component J (where
JT=-J), and a symmetric component R. These two components can be rewritten in terms of the

BG formalism: Equation (6.115) is solved accordingly with and without a memristive element

so that:
W = RS;, + BS;,HS,; + S1,HS,, EP ', + S, EF, (6.116)
W, =W+ [w]|/2 (6.117)
W =W -[w]' | /2 (6.118)

whereW,, andWy represent the symmetric and skew-symmetric part of (6.115) respectively.

The resulting expression contains the memristance M, so the symmetric and skew-symmetric
parts associated with this component are given from:
Win =—P5S11 = PS5 HS, + 81, HS 3 EFy + RS15M (X) S5,

6.119

+5,3M (X)S, EF, + Sy5M (X)S5,EF, + Sy, EF, (6.119)
Wiy :[WM AWy I ] /2 (6.120)

Wi :[WM —[Wa T } /2 (6.121)

Combining symmetric parts into a single R(x) term and skew-symmetric parts into a single
expression for J(x) after also incorporating submatrix Si1, it follows that the system equation

matrices for hybrid systems are:
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J(X) = P™W,, + P Wy (6.122)

R(X) =—P W, +P7W, (6.123)

Msy

6.9 Summary

Nonlinear systems are modelled with bond graphs in this chapter. This is done by showing
that a large class of nonlinear systems can be described with matrix field functions. The main
result is a closed formula for the descriptor's class of nonlinear systems. From these results,
different subclasses of nonlinear systems are treated along. A example of such a subclass is
given. Likewise, it should be stressed that the descriptor variables all have a physical meaning
considering that they are in fact the generalised momenta as well as displacements of the
independent storage field. The second part of this chapter is that the ISO PH system equation
can be established for a system consisting of memristor elements. Nonetheless, the derived
equations have differences depending not on the proposed method, but on the physical system
involved, especially the existence of a dependent storage field, MTF- and MGY transducer the
dissipation field characteristics which consist of resistive and memristive behaviour. All this
can be advantageous from a structural and a computational point of view, and in modern control
applications for which a state space description (linear, nonlinear, constant time varying) is

necessary.

The fact that, the bond graph method provides a thorough guide to the systematic
transformation of the equations is the primary advantage. Additionally, the direct observable
properties of the junction structure arrays enable one to make a key check on the correctness of
the basic equations before extensive reduction has occurred. For systems containing linear and
nonlinear, one-port field elements and modulated two-ports (TF and GY) in the junction
structure, an automatic numerical procedure has been implemented. The last remark to be made
concerns the generalisation of the array form of the junction structure equations. Moreover, in
all practical examples arising in the study of physical and engineering systems, the form used

here has proven sufficiently general including problems involving the large-scale network.
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This chapter extends the mathematical models of the dynamics associated with nonlinear
actuation in state space for hybrids system represented by DC-DC converter topologies from
their Bond Graph (BG) representation. The proposed new circuits are modified, with the
corresponding resistors found in their conventional representation replaced by a memristor.
Input-State-Output Port-Hamiltonian System (ISO PHS) formulations are derived to describe
the associated dynamics of the switching action in the elements of each converter network. The
associated nonlinear switching action is emulated by memristive components embedded in the
network. The Bond-graph modelling process systematically accounts for energy exchange
across the different ports in the networks. The proposed methodology is quite generic and
bridges the gap between BG theory, memristive circuit analysis and 1SO PHS formulations. It
may thus be adapted by the cyber-physical systems community for the design of nonlinear

sensor and actuator networks, which may also incorporate switching action.
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Chapter 7: CASE STUDIES

7.1 Introduction

This chapter presents a number of case studies to demonstrate the proposed bond graph
method presented in the previous chapter. The work thus forms the basis for developments that
Cellier stated at the 2012 ‘International Conference on Bond Graph Modelling and Simulation’
where he discussed a bond graph method to handle variable topology systems. He also stated this

was remained the next big challenge for bond graph modelling.

Since, memristor have been proposed to be incorporated in neuromorphic building
blocks, in this work a Hodgkin-Huxley neuron model circuit with two memristors is
implemented. Furthermore, the linearized bond graph method for the Hodgkin-Huxley
application is derived. Operational amplifier building blocks, is another field for implementing
the method on Op-Amp circuits with memristors. Examples include an, Integrator operational
amplifier circuit, and a simple Integrator Op-Amp neuron model controlled output by op amp.
For sensors applications, a Josephson-Junction circuit consists of memristor element is
considered, Dielectrics, Circuits with a gyrator and a Coupled resistors network are also
considered. In addition to applying the approach on Hybrid systems, the ISO PHS Formulation
of DC-DC Converter with memristor are also defined for three converters circuits: a modified
memristive Boost converter, a modified memristive Buck converter, and modified memristive
Buck- Boost Converter. All these examples are analysed using the theory developed in the

previous chapters.



7.2 Investigating Different Systems Topologies

This chapter will apply the proposed analysis method in different system topologies, which
have attracted specific attention over the years. These systems differ in application fields and the
size of the state equation matrices varies in complexity. The case studies will be analysed using
bond graph to develop port Hamiltonian formulation to illustrate and demonstrate, that these models

can be analysed in a direct and simplified approach.

7.2.1 Neuromorphic Building Blocks

As we have seen, typically, memristive responses are evident in systems where the scales
of the characteristic electrical processes are small (for instance biological systems at cellular
levels) [260]. The fundamental cell electrical unit is the action potential whose origin is located
across the cell membrane. A potential is released when potassium and sodium ions are
transported across the membrane making it possible for cells to be electrically active. This
action was described by Hodgkin and Huxley in the 1950s, and this potential is in many ways
the fundamental building block of bioelectricity [261].

7.2.1.1 Implementing Hodgkin’s- Huxley Circuit Bond Graph with Memristors
Suggestions of an electrochemical model of the brain based on the nonlinearity of the
memristor have been discussed from a single neuron perspective since the 60’s [234] and 70’s
[235]. An equivalent electrical model of the nerve cell membrane in the Hodgkin-Huxley
neuron used as one of the case studies was presented in [213], it is based on two memristive
elements as shown in Figure 7.1. The corresponding bond graph assuming preferential integral

causality is shown in Figure 7.2.

T Inside

— O] % Mna Mk Re

e L
T | |

J_— Outside

Figure 7.1 Hodgkin-Huxley memristive model [5]
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The bond graph of the Hodgkin-Huxley memristive model is shown in Figure 7.2,

the configuration in which the storage elements are in integral causality. This bond

graph structure interpretation was presented by the author of this

thesis in

CNNA 2016, Awugust 23-25, 2016, Dresden, Germany. It can be found at:

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7827953.

MNap-1l_ 1p 2 Ena F;r
E :

4I 0 v1

E [7

9 E

Mik—— 110 g, 1

Figure 7.2 the corresponding bond graph of the Hodgkin-Huxley memristive

Following Figure 7.2, the key vectors of this bond graph are:

: f
X=0y; X= 14, Z=8y, I:)i'vI :Lel} D(”VI :{f1:|; Di|=eg; Dc|>=fg.
9 9

In order to construct the Junction Structure Matrix, causalities must be identified. These are in

turn used to construct a matrix of zeros and ones to identify the structure matrices (S). The junction

structure matrix (7.1) is constructed to interpret the Hodgkin-Huxley memristive model:

f, 770 -1 1 -1 00 0]fe,
& | |1 0 0 0 01 0| f,
e | |-1 0 0 0 10 Off,
& |=[1 0 0 0 00 1/f, (7.1)
f, 0 0 1 0 0 0 0Ofje
.1 o 1 0 0 00 0fe
fol L0 0 0 1 0 0 0]eg]
T 1 0 0 L
where:  S;; =0, S, =-1, S;3=[1 -1], S5;=[-1 1] , Sy = — The constitutive

relations are:

M (x)=diag{l/ My, (f,),1/ M, (fg)}, F=1/C, and L=1/R.

Assuming that the memristor is a charge controlled memristor, the state space matrix for this

system will be as in the form of equation (7.2) of class 2. Then after giving an implicit model,
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the 1ISO PH matrices for the Hodgkin-Huxley memristive neuron model are derived after

calculating the equations (7.3- 7.9):

E.l=1 (7.3)
Er =1 (7.4)
W =-1R (7.5)
W, =-1/R (7.6)
Wsk :WM,sk =0 (7.7)
1 1
Wy, =| — - 7.8
g (Mm(fl) Mk(fg)] o
1 1
WM'SVZ(_MNa(fl)_Mk(fg)) (79
After substituting these expressions in (6.71), (6.72) and (6.73), it follows that:
J(9:)=0 (7.10)
1 1 1
R(0~.)=—— - 7.11
) R M) M (T (740
1 1 1
_ = 7.12
(%) {Mm(fl) R Mk(fg)} (742

Finally, by combining the structural interconnection, dissipation and output matrices from
(7.10), (7.11) and (7.12), the charge state variable is given from:

qc=[1— ! __ 1 ]GH 7{ ! L1 }u (7.13)
R Mpa(f) M (fg) Joac [Mpa(f)) R Mi(fy)

7.2.1.2 Linearized Hodgkin-Huxley Application Example

In this section, we show how to develop port Hamiltonian system equations from a
linearized bond graph of memristive systems. The procedure of obtaining a linearized state
space in bond graph terms was described in chapter four, section 4.7. The procedure introduced
is based on assuming an equilibrium point that the nonlinear dynamic system will act around it

in a linear behaviour. The resulting linearized state space equation for the equivalent electrical
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model of the nerve circuit of the Hodgkin-Huxley memristive model shown in Figure 7.1, is
written in equation (7.14) as below:

. 0S 0S3M (X)S
Kxs (t) = {8—)1(3 M (X) +S;5 _8I\g)fx) } Xs(t)+ [—13 asx) 34 } us(t) (7.14)

where K is constant. Next, an extension of the method proposed to linearize nonlinear
memristive systems is developed by incorporating the proposed procedure in section 6.7 to
formulate the resulting linearized state space descriptor in port Hamiltonian energy formulation.
This can be done by following the steps proposed in section 6.8.2, and calculating the

fundamental terms as:

E; =1 (7.15)
E.'=k™ (7.16)
W =0 (7.17)
W, =0 (7.18)
0S oM
T
oS oM oS oM
[8)1(3 M (X) +Sys a)fx)}{ M (9 + Sy aix)}
Wy sk = > (7.20)
85 M(x)] [as M) T
{JM(X)WLSB 8)5 )}_[ a)l(gM(X)JrSls 6)5 )}
After substituting these expressions in (6.71), (6.72), and (6.73), it follows that:
8 oM 85 M) T
[8;3 M (0 + S GX(X)}—[ 291 (4) + 55 6@}
R(gc) =—k™ , (7.23)
0S;,M (X)S
g(q) - S 05w (7.24)

Finally, by combining the structural interconnection, dissipation and output matrices from
(7.22), (7.23), and (7.24); the charge state variable after linearizing the obtained bond graph

will be given from:
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.
Sy M(X)] [ 85 oM (X)
P23 M (x) + S —| B M (x)+ Sy 2
[6x 0+ 317, ox MOF S To oH |

2 00

G =| —k l:aSBM (X)S34 }u (7.25)

ou

7.2.2 Operational Amplifier Building Blocks

The most important single linear integrated circuit is the operational amplifier.
Operational amplifiers (Op-amp) are available as inexpensive circuit modules, and they are
capable of performing a wide variety of linear and nonlinear signal processing functions[262].
In the next section will investigate the case where a memristor element is connected at the input
port of op-amp. A standard operational amplifier schematic symbol is shown in Figure 7.3; it

shows that the Op-amp is proportional to the voltage difference between the two inputs.

Figure 7.3 General operational amplifier circuit diagram

In Figure 7.3, V- and V+ are the inverting and non-inverting input ports, ud is the differential
input, Rin, Rout are the input resistance and output resistance respectively, and Ve, Vc are the
supply voltages. In this work, an ideal Op-amp is assumed. There are many models for
representing Op-amp in bond graph, some of these models are proposed in [263][264][265]. In
this work the model of Op-amp under analysis proposed by Wolfgang Borutzky [88], as shown
in Figure 7.4, which contains modulated effort source (MSe) with modulation factor A is

considered.

V-0 Rout
- A T
Riv—1 % Mse— 10
(.
V4 0

Figure 7.4 Bond graph of Op-amp circuit [9]
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Next, some example circuits will be discussed to verify that the proposed approach is

applicable on different types of electric circuits.

7.2.2.1 Integrator Operational Amplifier Circuit

An op-amp integrator simulates mathematical integration, which is basically a
summing process that determines the total area under the curve of a function. An op-amp may
be connected in a closed loop configuration as shown in Figure 7.5. The input signal in the
integrator Op-amp circuit is applied to the inverting input port through the memristor element.
A portion of the output is applied back to the inverting input through the feedback network in

the same physical domain through a feedback capacitor. The output is controlled by RC circuit.

R; Ci
— W | I_

—.Vo

Figure 7.5 Integrator operational amplifier circuit diagram with memristor

The BG model of Figure 7.5 is assumed to be in a preferred integral causality as shown in

Figure 7.6.

Rl\ /Cl
M 4 16 S| 15
2|
Se1-Ly1—=0 14
3
s - A
R'T1 ud, pse g 2L 0 L3R,
7+ 0] 12
Se; 2~ 0 Rout Cz

Figure 7.6 Bond graph of Integrator Op-amp memristive

Following Figure 7.6, the key vectors of this bond graph are:
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€s fe

f f
X:[%z} X:[ 12} Z:[eﬁz} DM —e,; DM =1, D! = €10 . Dl=|
Cis fis €15 €3 fis

fie ©6

To determine the junction structure matrix of the op-amp integrator based on bond graph

model of Figure 7.6, the matrix is given by:

L, 0 0 1 1 -10 1 0 0]ey
fis 0 0 -100 0 -1 0 O0fes
& -1 1 0 0 0 1 0 0 1| f
eo| [-A-1 A 0 0 0 A 0 0 Al fy
esl=| 1 0 0 0 0 0 0 0 0} fy (7.26)
fio 0 -10 0 0 0 -1 0]eg
e, -1 1 000 1 0 1 0] f,
f, 0O 0 0 0 O0 0 1 0 0fe
f;)] L 0O 0 1 00 0 0 0 0]e|

The constitutive relations are:

F=diag {1/C3 1/C2}, M=1/M(e2), and L=diag{1/Rin 1/Rout 1/R3 R2}.
Assuming that the memristor is a charge controlled memristor. The state space matrix for this
system will be as in the form of class 2. Then after developing an implicit model, the ISO PH
matrices for the op-amp integrator connected with the memristor element are derived after

deriving the following:

k2 R3 I:aout k1 Rout kl k2

W= 7.27
1 o (7.27)
k1 k1
AR, 1 (A+) 1 A 1 AR,
Wsy _ k2 R3 Rout kl 2Rout k1 2|(2 (7.28)
A 1 AR 21
2R, K 2k, ky

150



W 2ot 2Kz (7.29)
sk '
A AR 0
2R, 2k,
N
M M
Wy =Wygey = (7.30)
1 1
M M
WMsk =0

(7.31)

where k= R, + R, Ky =R,; (R, + R;,) . After substituting these expressions in (6.71), (6.72)
and (6.73), it follows that:

A AR,
2Ry, 2K
J= T (7.32)
A AR
2Ry, 2k,

AR, 1 1 (A+) 1 A 1 1 AR,

+—+———=
nl e R M Ry ki Ry kM2

out

(7.33)
A 1 1 AR 1 1

2Ry k M 2k, k M

7.34
R, 1 1 (7.34)

7.2.2.2 Operational Amplifier Integrator

In this section, an ideal Op-amp is assumed. as shown in Figure 7.7. This simple

integrator memristive circuit feedback element is the capacitor that forms an MC circuit with
the input.
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et ol V-
—1V+

Figure 7.7 Bond graph of simple integrator op-amp memristive circuit

The BG model of Figure 7.7 is assumed to be in a preferred integral causality as shown in

Figure 7.8.
C>

s
ZT 1

Ser 4|:|_;|0_ 12

';61 D_H MSe4|1|LO

1T s

Se2 8 ST Rout

Figure 7.8 The corresponding bond graph of simple integrator op-amp memristive circu

The BG model assumed to be in a preferred Integral Causality as shown in Figure 7.8. To obtain
the symbolic Port-Hamiltonian expressions of the closed loop Op-amp circuit, the proposed

methodology will have applied on this circuit. The key vectors of this bond graph are:

. . . e f
X=0yy; X=Ty =6, Dilz{ef} Dclaz{ 6} DV =f,; D) =6,

0 f10

and corresponding Junction structure matrix will be:
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(f,] [0 0 -1 0 0 0[ey]
6| |00 0 1 -1 1] f
eo|_[1 0 0 A+l -A-1 Al fy .35
f,| |0 -1 -1 0 0 0fe
f,| [0 -1 -1 o0 0 0feg
| [0 1 0 0 0 0] &

The constitutive relations are:

F=diag{C.}, M=M, and L=diag{1/Rin 1/Rout}
Then after giving the junction structure matric of the model, the ISO PH matrices for the op-
amp integrator connected with memristor element are derived after calculating the equations
(7.45- 7.48):

1
W=-—— (7.36)
Rout
1
W, =——— (7.37)
N Rout
W, =0 (7.38)
Wi :WMsy =Wy =0 (7.39)

After substituting these expressions in (6.71), (6.72) and (6.73), the ISO PH matrices for the
Op-amp Integrator circuit are:

J=0 (7.40)
1
R=-— (7.41)
Rout
(A+1) A
= — 7.42
%) = 742

7.2.2.3 Neuron Controlled Output
An Op-amp connected to the output of the Hodgkin-Huxley neuron model in a closed
loop circuit in addition to memristor element shown in Figure 7.9, is also developed. A feedback
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from the output applied to the inverting input through feedback RC is considered.

R Co
W—

V- R3

| +
Ci—— % Mna % Mia le jv
_|_E1

T T,
TET°"
N

Figure 7.9 Operational amplifier circuit diagram with memristive Hodgki
neuron model

The BG model of Fig. 7.9 assumed to be in a preferred Integral Causality as shown in Fig.7

R1
E T%l R2 Cz
2 N
e 1 23\/ 22
1.1 3} 13 1
i Na 17N
E1
4.0 6 0
C'/\ 5 o Ex 121 R 21
8 1 el ), 171 19,0 Zig
M T7 + 18i
Sez&o Rout

Figure 7.10 Hodgkin-Huxley and Op-amp memristive circuit corresponding bond graph

In order to obtain the symbolic Port-Hamiltonian expressions of the closed loop Op-amp circuit,
the proposed methodology will have been applied on this circuit. The corresponding Junction

structure matrix will be;

154



f, 0 0 -11 1 -1 0 1 -1000 0]e,

50 0 0 0 0-11 000 00 0 0}e,

e 1 0 000 0 000010 0Jfy

es| | -1 0 0 0 0 0O 0O 0 0 00O 1|fy

es| [-A-1 1 0 0 0 0 1 0 0 00 0 Al fy

&0 1 -1 000 0 -100 00 0 0 fy

fl=| 0 0 0 0 -1 1 0 0 0 000 0|eg| (743

e, 1 0 000 0 000 1000|f#

€g 1 0O 0 00O 0O OO O OOTZ1O0|fg

f, 0 0 0 0 0O 0 1 0 O OOTODOf6e

fio 0 0 1 0 0 0 O O O O O O Ofc¢ey

fy 0 0O 0 0 0O 0O 0 O 1 O OO0 0} €

fs] L 0 0 0 1 0 0 0 0 0 000 0 e

-11 1 -10 1 1 1 1 o' -1 0

where 51, =0 812:[0 0 -1 1 O] 821{0 0 —A-1 1 o} ! 831{1 0}’

o [t 1
13_00

The constitutive relations are:
F =diag{l/C,,1/C,}, L=diag{l/ R;,1/ R;;,1/ Rx,1/ R, Ry}, M (x)=diag{L/ My, (f,),1/ M, (f5)}.

The ISO PH matrices for controlled neuron model can be express using equations:

E" =1 (7.44)
2R, K, 11 Ky Ky 2Ry K
W = Ki (RouK)(A+D) Ry Ry RgKy  RgKy Ky RyyKy (7.45)
K, 2R, K, 2R, K3 K,
ReK: Ky (Roue Kp)(A+1) Ky RsKy RowKy
W, =
(2
&_& (A+1)+&_&_i_i &-3&_ Kl ROUtKl +ﬁ+&
K, K, K, K, R R 2K, 2K, 2 2K, 2Rk, | (7.46)
(2
Ky 3R, (K1 Rouky Ko, K 2R, Ky Ky
2K, 2K, 2 2K, 2RK; Ky Ki Rk |
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Wy =

0

(RZ K, J(A+1)
Rp (K RouK K Ky K
2K, 2 2K, 2K, 2R.K,
Wy =
V\/Msy:

where K; = (RyRy + RoRyye + RoRor), Ky =(RoRyye +RsRy)

(RZ—KZ ](A+1)
Rk R K Ky K
2 2K, 2K, 2K; 2R;K;
0
-1 1 0
Mk MNa
0 0
-1 1 0
Mk IVINa
0 0
WMsk:0

substituting these expressions in (6.71), (6.72) and (6.73), it follows that:

J =

0
(Rz_KzJ(Aﬂ)
R K Rk Ky K Ky
| 2K, 2 2K, 2K, 2R;K,
R:
[&_&](A peRe K 1 1 1 1 K SR,
Kl Kl K1 Kl MK MMNa Rl Rin
Ky 3R, (K Rouy LKoo, Ky
| 2K, 2K, 2 2K, 2RgK;
t 1
IVIMNa Rl
g:
0 0

Ky

(RZ—KZJ(AH)

Rou Ky R K Ky Ks
2 2K, 2K, 2K, 2R;K,
0

e
2K, 2 2K, 2R,K;
2R, K; K,
K1 Kl RoutKl

L_A(&_Lj
Rin K1 Rout K1

Kl Rout Kl

K3 =(RyRs +R3Ry).

(7.47)

(7.48)

(7.49)

(7.50)

After

(7.51)

(7.52)

(7.53)
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7.2.3 Sensors Applications

In this section, state space transformations from a bond graph representation of the
Josephson junction are developed, and then an analysis that links the associated inputs and
outputs in the junction to the nonlinear characteristics of the memristive element is provided. A
bond graph Input-State-Output Port-Hamiltonian formulation of memristive networks for
Josephson junction circuits is presented. The methodology has applications to the modeling of
SQUIDs and other non-linear transducers and enables the formulation of input-output models

of complex components embedded in non-linear networks.

7.2.3.1 Josephson- Junction Circuit with Memristor Elements

Josephson junction circuits are named after the British physicist Brian David Josephson,
who developed in 1962 the mathematical relationships for the current and voltage across a weak
link [266] when there is quantized current leakage even in the absence of a constant source
supply. Such junctions have important applications in quantum-mechanical circuits e.g. in
magnetic sensors where they can measure the total magnetic field or the vector components of
the magnetic field [267]. An important class of sensing elements that make use of the Josephson
junction current to perform measurements are the superconducting quantum interference
devices (SQUIDs). In their simplest realisation these have two Josephson junctions in parallel
in a superconducting loop [268]. An electrical model of a Josephson junction using memristive

elements is shown | Figure 7.11. [269].

I(t) e} EM ——c R |

Figure 7.11 Josephson junction circuit model with the non-linearity emulated
memristor.

The corresponding bond graph for the circuit in preferential integral causality is shown in Figure
7.12.

B -

Figure 7.12 The corresponding BG for the Josephson junction circuit model.

157



It can be seen that there are no internal connections, and the derived junction structure matrix

after rearranging the junction elements into the form of (7.54):

e,] O 1 0 0 0 Off,]
fo -1 0 -1 -1 1 0}f¢e
eg/=| 01 0 0 0 Of f; (7.54)
e, 01 0 0 0 O0ff,
| | {00 0 0 0 0] f]
The constitutive relations are:
1 1 1 1
F=-Fh=—L== M=——.
I C R M (9)
The ISO PH matrices for a Josephson junction circuit can be expressed by using equations as
follows:
E =1 (7.55)
El=1 (7.56)
0 0
W= 7.57
o L (7.57)
0 01
Wsy = 1 (7.58)
[0 J——
00
Wy, {0 0} (7.59)
0 0
Wy, = o _ 1 (7.60)
M (#)
0 0
Wug =g __ 1 (7.61)
M (¢)
Wy o = 00 (7.62)
M,sk — 00 .

From the above matrices, it is possible to obtain the Port-Hamiltonian system components:
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J { 0 1} (7.63)

-1 0
0 0
R = 0 11 (7.64)
R M(g)
0
g= L} (7.65)

This derivation was presented by the author as a poster at Sensors & their Applications XVIII
2016, Queen Mary University of London, UK.

7.2.4 Dielectrics

Directed transport is one of the fundamental problems in physics, but it is also a
challenge to design on-chip integrated devices to directionally control the flow of light. One
such circuit can be implemented by using two partly-coupled circular microcavity resonators
each exhibiting matched non-linear gain/loss mechanisms with the flow of light propagating in
each resonator at opposite directions [270] as shown in Figure 7.13. The two resonators are also
partly coupled to transmission lines where the unidirectional control of light is implemented.
An equivalent electrical circuit is shown in Figure 7.14. We propose that the non-linear gain
and loss diodes can be replaced with memristor elements and then analysed with the proposed
bond graph junction structure to obtain the 1ISO-PHS formulation.

v

vl G {right}

Loss I’ 0.36R
3
==
R
ot
(b)
Figure 7.14 (a) Equivalent electronic circuit that simulates an optical valve implemented using

two non-linear microcavities; (b) Non-linear loss implemented by diodes or memristor
(a complementary circuit can be drawn for gain).
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The corresponding bond graph for the circuit equivalent electronic circuit that simulates an

optical valve in preferential integral causality is shown in Figure 7.15.
C L

4 right
Ji i
Loss — 0 —Y I—Y 0—Y| Gain

1117

R

lefi right

Figure 7.15 The corresponding bond graph for the equivalent electronic circuit to
simulates an optical valve

The proposed bond graph for the non-linear loss with memristor element with memristive

R
R 112
4 |
| !

operational amplifier circuit

ML\HL\{O 1
1
, 4
R v 6 1/ Nud,," 10

7t

Figure 7.16 The corresponding bond graph for the non-linear loss with memristor element,
with A =2,

By adding memristive elements, nonlinear networks can be developed for emulating complex
dielectric responses of materials embedded in complex dielectric matrices. This proposed
circuit to emulate the nonlinear loss or the gain is presented by the author of the thesis as a
poster titled ‘Port Hamiltonian modelling of memristive dielectrics’ in Dielectrics 2017 at

National Physical Laboratory, Teddington, UK.

7.2.5 Memristive Circuits with Gyrator
A gyrator is a passive, linear, lossless, two-port electrical network element. Unlike the
four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations

of two-(or-more)-port devices which cannot be realized with just the conventional four
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elements [270]. In particular, gyrators make possible network realizations of isolators and

circulators. For this a gyrator is used as an application example to be combined with a

memristor. The best way to study the combination of a gyrator and a memristor is by analyzing
the bond graph shown below [204]:

Cs
R3

\ /\ 7

sf Iﬁ 0 —— GY lﬁ 1

4

L4 R8

Figure 7.17 Bond graph structure of an application example of gyrator combined

with memristor [16]

After we analyze the system and determined the corresponding matrix for each junction in the
dielectric system. We will arrange the obtained matrices into the form of matrix (7.66), and the

resulted junction structure

01 0 0 0 0]
fe] |1 0 1 -1 -1 _L1j[f]
f rrile
I'lo1 0 0 0o o7
€3 f3
=lo1 0 0 0 0 (7.66)
64 f4
t1lol 0o 0o o olle
r
| fg | 1 | €g |
0= 0 0 0 O
L r |
0o 1 1 1
r r . -1
where: S,=|1 0 0 [,S,=| 0 ’821_[F 0 0},822—0813 0[,S,=[1 0 0]
1 0 0 0 0
r ] L
1

The constitutive relations are:
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1

F :diag{—'—'—

C,

1.1
7L4,C7

}, L=Rg, M

ISO PH matrices for the application example of gyrator combined with memristor are derived

after calculating the equations below:

WMsy =

The ISO PH matrices for the circuit bond graph shown in Figure 7.17, can be express:

0 -1
0
0

=|F

1

r
0

0

(7.67)

(7.68)

(7.69)

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)
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‘R ]
r’ My(q,)
R=| 0 0 0 (7.75)
0 0 0
1
g=|0 (7.76)
0

7.2.6 RLC Circuit with Coupled Resistors

The circuit of Figure 7.18 has three elements in ICA and three resistors, two of them
statically coupled. This coupling will show how the R-elements with the addition of the
memristor effect, contribute to the structure with a skew-symmetric component which is power-

conserving, because all the storages are in ICA.

Ra Me
— T
CoL L1 C3

Rs=

Figure 7.18 Electric circuit with coupled resistor

The BG representation of this circuit is shown in Figure 7.19 with the coupled resister being
identified.

Ly el OAH%
e

3
4 5

Co 1_|4 Rs

6

C3L| OL\{MG

Figure 7.19 The corresponding bond graph assuming integral causality of
electric circuit with coupled resistor
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According to the bond graph of Figure 7.19, the calculated junction structure matric will be as

below:
e ] [O 0O -1 -1 -1 0][f,]
e, 00 -1 -1 -1 01f,
f 11 e
‘= 0 0 0 0je (7.77)
f 11 0 0 0 O0]e
f, 11 0 0 0 -1fe
] 100 0 O 0 f,]

0 -1 -1 0 -1 0
here:S..={1 0 0 |,S 1030_105 0_15 0
where: Sy = S = , Sy = .S, = S, =

11 12 21 1 0 0 22 1 0 13
1 0 O i -1

Sg1=[0 01,534 =S54 =S5 =0
The constitutive relations are:
F =diag {iii} L =diag {i; R5}, Mg =L.

Then after giving the structure matrices, the ISO PH matrices for the circuit are derived after

calculating the equations below:

ET =1 (7.78)
_ R4Rs _ Rs(R4-1)

(Rs-R4Rs +1)  (Rg-R4R5+1)

we| - Retl 1 (7.79)
(Rs-R4Rs+1) (Rs- R4Rs+1)

_ Rgt1 ~ 1
| (Rs-RyRs+1)  (Rs-R4Rs+1)
I _ R4Rs ~ Retl  Rg(Rl)  Rgtl ]
(Rs -R,R5 +1) 2(Rs-R4Rs+1)  2(R5-R4Rs+1)  2(Rs-R,R5+1)
> 2(Rs-R4R:+1) 2(Rs -R,Rs+ 1) (Rs- R,Rs+1) 2(Rg- R,Rs+1) '
__ Retl o 0
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R:(R,-1) Re+1
W, = 51y 5

2(Rs -R,Rs+1) 2(Rg-R,Rs+ 1)
Rs+1

R, +1 Ry (R,-1) Ry +1

2(R;-R,Rs+1) 2(R.-R,R +1) ~ 2(Rs- R,R.+1)
0 Lt
1

~ 2(Rs-R,Ry+1)

00 0
Wy, =/0 0 0
3 1
Mg () |
00 0
Wiy =| 0 0 0
00 - L
Mg (dg)
WMsk =0

0

(7.81)

(7.82)

(7.83)

(7.84)

From the above matrices, it is possible to obtain the Port-Hamiltonian system components:

. Rstl  RsReD) Retl
2(Rg-R4Re+1) 2(Rg-R,Rg+1)  2(Rs- R;Rs+1)
J_|_Rs®eD)  Rgl . 1
2(Rs -R,Rs+1) 2(Rs-R R+ 1) 2(Rs- R4Rs+1)
___Retl N S 0
I 2(Rs- R,Rs+1) 2(Rs- R,Rs+1)
i R4Rs Ry+1 Rs(R,-1) Rg+l |
(Rs-R,Rs +1) " 2(Rs-R,Rs*1) 2(Rs-R,Rs+1)  2(Rg-R4Rs+1)
o | R RyRD ) 1 ) 1
2(R5-R4Rs+1)  2(R5 -R4R5+ 1) (Rs-R4R5+1) 2(Rs-R4Rs5+1)
Rg+1 1 1
2(Rs- RyR5+1) 2(R5- R4R5+1) Mg (0g)

g=0

(7.85)

(7.86)

(7.87)
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7.2.7 Hybrid Systems

The general hybrid bond graph is investigated in this section. A junction structure matrix
Is obtained, and this is used to derive an implicit, system equation describing all possible modes
of operation. The method for constructing a causally dynamic hybrid bond graph with structural

switching, and consequent derivation of the LTI implicit system equations is presented.

7.2.7.1 1SO PHS Formulation of DC-DC Converter with Memristor

In conventional DC-DC converter topologies, a switch and a diode are connected either
in parallel or in series. Using bond graphs and the MTF-R method, a causality conflict occurs
at the junction where the two components are connected. To solve this causality conflict an
additional resistive element (Rad) is added, as suggested in [254]. The causality on that
additional resistor remains fixed during the commutation. This additional resistor in
combination with the resistive elements of the switch and the diode does not allow the
denominators of the first derivatives of the state variables to be zero when both switch and the
diode are OFF, i.e. when m1=m>=0. Therefore, no singularity occurs in the associated equations
when the converter operates. This proposed work for hybrid system is accepted and will be
presented as a poster titled "Port Hamiltonian Formulation of a memristive Switch Circuit
Represented in Bond Graph", at the IEEE Sensors 2017 Conference, Glasgow, Scotland UK,
and then will be published as a full paper in IEEE Xplore.

7.2.7.2 Modified Memristive Boost Converter Example:

As an example of hybrid systems, we follow the bond graph representation of a Boost
DC-DC converter as proposed by Markakis et al., [259]. However, in the current example, a
modified circuit with a memristive element replacing the original resistive element is modelled.
The derivation of the ISO PHS model for the Boost convertor circuit shown in Figure 7.20a is
then based on the corresponding BG in Figure 7.20b after assuming preferable integral

causality.
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Figure 7.20 (a) Boost convertor model and (b) corresponding Bond graph

assuming integral causality.

The associated junction structure matrix is:

L It
p,1fo 0 -1 0 0 0 1

G0/ |0 0 0 -1 0 m, O (Z“
fe| [T 0 0 0 -m -m, O f6
e,/ |0 1 0 0 0 0 O flz
| |0 0 m O O 0 O f5
& | |0 -m;, my, 0 0 0 O] Eg

. 00 -1 0 0 O
where: Sll = 0 0 y SlZ = 0 y 813 = 1 ) S14 = 0 m J 824 = [_ml
2

The constitutive relations are:

M (x)=1/M(f,), L=R, E:FIR"” ° }

0 1/Ry

The ISO PH matrices for the memristive boost converter are derived:

A-Ry(A+D+A —A
W= mg

A=Rag (A +D) ==

d

(A
B M
I IR T e

M

(7.88)

(7.89)

(7.90)
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2
T Re(ar)  m A
2 Ry
0 _(Aﬁ +1)
_ 2M 7.92
Wiy (A+1) (A +1) (7.92)
oM M
. R.g (25 +1)_A4
W, = (7.93)
A R.g (25 +1) .
(At
_ 2M 7.94
WMsk (A6+ 1) O ( )
2M

Substituting these expressions in (6.71-6.73), a full port Hamiltonian description of the

dynamics of the switching memristive network can be obtained.

MR a aa, ACEE A
‘]Boost = A7 R dAizzMA7 A7 R dA122MA7 (7-95)
Aok oA g A AY)
| 2MA, A 2MA, A |
R R
RBoost = M 12 7.96
{Rﬂ R22i| ( )
Ron(RaaM® +R)A, Ay, |
A A
g 00S: = 797
oo vy (797
i A A |

where
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onA15(A1 RadA14+A3) RonA18A13 RadRonAﬂSAfLZ

A 2MA, 2A,
R, = Ron A£L6A17 _ Ron A17A13 + Roan AELB _ Rad Ron A15'6‘12
2T mA 2MA, RyA, 2A,
R, —— AL(A-RagAs+A3)  AcAs  RaAnAw
“ A, 2MA,  2A,
_ AiAs - AvAr m22(Rad m’ + Ron) + AiAL
2MA,  MA; A, 2A,
and:
— Rad m2 _ Rad ml2 _ Rad ml _ Rad mz2 _ Rad m, m, _ Rad m, m,
Al_ Rd ’AZ_[ Ron }AS_ Ron ,A4_ Rd 1A5_[ Ron }Aa_[ Rd j,

2 2
A7 = (Rad Rd m-+ Rad Ronmz - Rad Rd mm, — Rad Ron mlmz) A8 = I:Qon (Rd + I:Qad mlmz)

m
AJ Ron(RadmZ +Rd) AlO_Rd(Radml +R0n) All Rd(Ron"'Radmlmz) A12_ adml 2

R, +1
m (R.gm%) R,gMm
As = aRdml 2, Ay ——Rad +11 As = (Radm22 +Ry), Ag =(Ry +Rygmmy), A :—F?d +21 ,
d on d
Rad mz2 RagMM, Rag MM, R dm12
=, =, :—,and = a .
As Ry Ao Ry, —1 Poo Ry -1 Por 2R, +1

7.2.7.3 Modified Memristive Buck converter Example:
A modified circuit of the proposed BG representations for a Buck DC-DC converter

that was discussed in [259] is shown in Figure 7.21a, where the original resistive element was

ROI’]

3

MTF:1/m; L
Rad

A e>0 —-MTF 1/m2 C

@ e

Figure 7.21 (a) Buck convertor model and (b) corresponding BG assuming

integral causality
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replaced by a memristor. A BG representation of the circuit assuming integral causality is
shown in Figure 7.21b. This is subsequently used to derive the ISO PHS model of the circuit.

The associated junction structure matrix is:

— o fo
bl [O -1 1 0 0 0 1]
4, |1 0 0 -1 0 0 O i“
f -1 0 0 0 m -m O0}.°
5 = 1 2 f12 (7'98)
e[ |0 1 0 0 0 0 0.
e 0O 0 -m 0 0 0 m f3
e,/ |O 0O m 0 0O 0 O] E7
0 -1 1 0 00
Where Sll = 1 O y 812 = O y 813 = _1 ) 814 = O O y 824 = [ml _mz]
1/R,,

I . 0
The constitutive relations are: M (x)=1/M(f;,), L=R, E { UR } The ISO PH
d

0

matrices for the memristive buck converter are derived:

WZ{A&—Rad(AzWLl)ﬁLAs—(%*Ll) —(A2—1)} (7.99)
Rag (As =D+ (A, +1) A5—-1
0 _(Aﬁ_l)
M
W,, = 7.100
"l (A 0
M
T e
W, = (7.101)
Rad(p's_l)_i_ﬁ_ﬁ A5—1
2 2 2
0 _Rad(AS_l)_ﬁ_i_l
K 2 2 2 (7.102)
R0 A A, ;
2 2
0 _(AYS_l)
2M
T 7.103
P -) (A N
2M M
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o _(A-D)
2M
Wy = 7.104
A G | R (7
2M
Substituting these expressions in (6.71-6.73), the port Hamiltonian of the dynamics of the

switching memristive network is obtained.

A8( adA19_|_A18 +A21) A8A2 _Ag( adA19+A18+A21) AQAQO
JBuck = A A7A1 M A A7Ai My (7.105)
ad 9 8 ad 9 8
Ao A gm, M) pny
: Ay “ama, A, “oama, |
Rll R12
- 7.106
e |:R21 sz ( )
I RaaMy” (RagMy” + Ry) |
9Buck = ) A (7.107)
_ Rald Rd m (Ron B Rad mlmz)
i Ay |
where
A8( ad A12 ﬁ_i)
_AA Ry (A + A —Ag) 2 2 +A8A20
A A, 2MA,
Raho , A _ A
R12=A9( d29+2 2)_A8A&9_A9A20_A8A17
A A 2MA,  MA,

Ry 2 220 AARuAAAY)  Achy
A A, 2MA,
Rad (Aw)/ A _ Ay

oA MO ) mAy Ay
2T A MA, | 2MA,
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7.2.7.4 Modified Memristive Buck- Boost Converter Example:

The third topology considered is that of the modified Buck-Boost DC-DC converter
where a memristive element in the place of the original resistive element is used, as shown in
the circuit diagram in Figure 7.22a. In Figure 7.22Db, the corresponding BG after the resistor Rag
is added to resolve the causality conflict. This is subsequently used to derive the ISO PHS model

of the circuit. Ry

— _
sw 61 8
L C — ‘M

(e

0
10

2| . ‘ ]11
A\

MTF:1/m; |- &

(@) 3 \ (b)
A\
Ron

Figure 7.22 (a) Buck- Boost convertor model and (b) corresponding bond graph
assuming integral causality.

The associated junction structure matrix is:

. —_ — — f5
ps] O 0O 1 0 0 0 1
G0/ [0 0O 0 -1 0 m, O (Z“
6
fg _ 1 0 0 0 m -m O i, (7.108)
e [0 1 0 0 0 0 0}
e 0 0 -m 0 0 0 m f“"
6| [0 -m, m, 0 0 0 O Eg
. 0 0 1 0 0 0 -
where: S, = R , Sip = ol Si3= 1 , Sia = 0 m .Sy =[m, —m,]. The constitutive
relations are:
1/R 0
M (x)=1/M(f,), L=R, E= on :
(=1 M (1) ]

The ISO PH matrices for the memristive Buck- Boost converter are derived:
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Rag (A5 —1) = A,

A —Ryg (A +D)+ A

M=l Ry
2

0 A, —
Wsk =

Rad (AS _1) _
2 A 0

_O (AYS_]')
_ M

0 _(A4+1)
M

(A1)

A-Ry(A+D)+A; A
m

Rad (Aj _1)
2

m;
Ry

Rad (AS _1)
2

o (AD

2M
(As+1)

L 2M

M

Wiisk = B (Aﬁ 1)
2M

2M

(7.109)

(7.110)

(7.111)

(7.112)

(7.113)

(7.114)

Substituting these expressions in (6.71-6.73), the dynamics expression of the switching

memristive network can be obtained:

Ay A A)

Ay ACE A

2MA, A

Rag A
Aio( d2 9_A18)_A10A19

J Buck—Boost —

2MA, A,
(Raa A
Ail(%_p’is) ~ AilAZO

A 2MA,

R1l

RBuck—Boost = |:R
21

A 2MA, |

Ri }
R22

(7.115)

(7.116)
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I Raa™:’ (RaaM,” +Ry) ]
9Buck—Boost = 5 & (7.117)
_ RagRami” (Rgn — Ragmimy)
L RonA7 |
R. - P(A-RaAITA) AP  Raaheho
. A, 2MA,  2A,
_ Ahxn + As A7 + RonM2”A6) + Rad AAr
27 2MA, T MA, RyA, 2A,
R. — Ao Poo N A1(A—RagAu+A) + Rad AloAro
“2ma, Ay Ay
R. —_ mzz(Rad ml2 +Ron)  AvAr AP RaaAuAo
2 A, MA,  2MA, 2A,
7.3 Summery

In this chapter, it was shown that memory circuit elements, and the memristor in
particular, have a natural place in circuit theory. And even if it only came to production in 2008,
it is just not properly identified. In many cases the memristor concept also has the potential to
give us a richer and more conceptually correct understanding of nature as it opens a neglected
field in bioelectricity and bioimpedance. In this work an operational amplifier bond graph
model was presented. It takes account the input and output resistances, gain, supply voltages of
an operational amplifier. Therefore, closed loop configurations of the operational amplifier in
the physical domain have been discussed with the effect of a memristor at the input stage. Also,
the presence of coupled R-elements with memristor on the BG determines the existence of
symmetric and skew-symmetric components in the matrix contributed by the coupled R-field

of the BG. Thus modify the interconnection matrix J(x).

The methodology has also other applications to other sensors that have non-linear
responses. The method can be seen as the enabling step of a procedure for the construction of
PHS models through the BG technique. This is worth from an engineering point of view
because, on the one hand, as a network-type representation technique, the BG method honors
the usual interconnection topology of technical systems and provides an object-oriented

modelling tool, and, on the other hand, avoids employing classical analytical methods that, in
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some cases, may show formulation difficulties. Current research focuses on control system
design in the BG domain using the theoretical support already available for PCHD, but also
taking advantage of the physical information intuitively provided by BG. Can further
embedded in more complex networks as encountered in communications [271] or in the
modelling of bio-dielectrics e.g., neuronal structures [152]. The proposed analysis should also
find new uses in the analysis of other RLCM networks extending the applications of PHS-BG

theory originally proposed by Donaire [152].
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Chapter 8: DISCUSSION AND
CONCLUSIONS

8.1 Discussion

The goal of this research is to propose a new port-Hamiltonian formulation for memristive
systems by nonlinear bond graph, which could be used to gain engineering insight (through
structural analysis and exploiting causal assignment) and be suitable for simulation activities.
In doing so, it is important to retain the graphical advantages of bond graph modelling and the
principles of system interconnection/ underlying structure. This has been achieved by some
assumptions at the beginning of this work, which examine this approach. One assumption is
that the storage elements should be linear and in preferred integral causality, which means there
is no derivative function and there were no coupling resistors as well as no storage defined by
a source in differential causality. These assumptions reduced some of the mathematical
difficulties.

The original objectives have been satisfied by proposing a new junction structure matrix
for representing the nonlinear bond graph of memristive systems and formulating the derived
state space descriptor in an 1ISO PH system equation.

The closed form of the general descriptor resulted from the proposed
junction structure matrix, is in the form EX; (t) = A% (t)+Bu(t)+Gu(t). This is in conjection
with the assumptions mentioned to define the block matrix: B= [B G]and a=[u ], to

reduce the



descriptor equation into a standard form Ex = Ax+B(. This resultant standard form shows
that large classes of nonlinear systems can be described in a standard form.

The behaviour of memristor elements, as dissipation energy elements and as a nonlinear
device, is reflected on the junction structure matrix. The dissipation field in the junction

structure matrix is assumed to be divided into linear dissipation and memristive dissipation, as
denoted by D' and DM. That assumption has an impact on the mathematical modelling from

bond graph perspective, as the subsequent descriptor equation is not in a state space form unless
there are a few assumptions made.

A generic descriptor model describing all possible modes of operation is generated. This
model offers engineering insight for large systems that contain all kinds of components. It can
be preferable in control theory and object-oriented simulation as there will be a single
expression that covers all states. This generic expression offers a unique new approach to
incorporate memristor elements in bond graph and visualise that it can be modelled within
variable systems topology. Classes of generic descriptor are assigned to describe the method in
several modes of operation. Each condition of the classes mentioned had an influence on the
resultant descriptor formulation. Hence, each element in the system is assigned according to
each class, to show how system properties vary with each bond graph structure.

The unique port-Hamiltonian method proposed to derive an expression from the
obtained generic descriptor, was applied by separating memristive and non-memristive parts
into the symmetric and skew-symmetric part to obtain J(x), R(x) and g(x). This proposal is used
to describe different types of systems, which require complicated mathematics and it has
implications for simplifying the relations between the energy storage, dissipation and
interconnection structure. Moreover, it can be considered as one of the control design
methodologies which can be directly applied to such port-Hamiltonian descriptions of complex
nonlinear systems.

Memristor elements have a notable impact on the mathematical complexity of the
derived port-Hamiltonian formulation, which means it needs more attention in the future.
Regarding class 1 systems of nonlinear bond graph with no coupling between the resistive and
memristive fields, it can be noticed that it is a case of a time-varying nonlinear system, which
consists of two main factors, linear and the derivative of storage vector in integral causality. A
new technique is needed to derive port Hamiltonian for such systems, as, according to the

author’s knowledge, most of the presented methods are for time-invariant systems. Likewise,
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in class 5 systems, the junction structure field matrix is time variant which has the same
mathematical expression.

In conducting this research, it was important to preserve the different memristor
physical models and its initial conditions were not of concern in the proposed approach; this

could be a central focus of future studies.

8.2 Conclusions

A general bond graph and the derived port-Hamiltonian formulation for memristive
elements and a method for constructing it have been defined. This method features:

e Memristor devices defined according to bond graph rules and assigned causality.

e The inclusion of memristor in bond graph as one of the elements that construct junctions
bonds, that yields an algebraic constraint.

e The Junction structure matrix is represented using a newly proposed notation; dividing the
dissipation field into linear and nonlinear memristive fields.

e A system equation is generated acknowledging that memristor elements in assigned
causality have an impact on the subsequent equation.

e The model generates a unique port-Hamiltonian system equation. This equation easily
yields a single mode of operation and the models for each class may change size, but all
are captured in the unigue system model.

e This model is not only a more intuitive way of analysing a memristive system but is also

suitable for both analysis and simulation purposes.

The novelty here is that the port-Hamiltonian representation is augmented by the states
associated with the memristive elements, and the view is that there are physical phenomena that
justify the introduction of a memristor to be added to the small set of fundamental bond graph
elements, which have not been shared by most members of the bond graph community.
Furthermore, a unique system model is produced, which requires no extra derivations to obtain
the equation for nonlinear memristive systems and avoids employing classical analytical

methods that, in some cases, may show formulation difficulties. Current research focuses on
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control system design in the BG domain using the theoretical support already available for PHS,
but also taking advantage of the physical information intuitively provided by BG.

Memristor inclusion in bond graph can be exploited to show how system properties vary
with the transfer function of the system. It is shown that the proposed structure directly affects
structural system properties as well as the effect of memristor on hybrid bond graph.

Finally, a presentation in the form of small case studies gave an idea of the diversity of the
system that may be analysed, and a selection of case studies are presented to demonstrate the
method. These consist of a neuromorphic field using Hodgkin-Huxley neuron model, linear
integrated circuits presented by operational amplifier circuits, a Josephson junction as a sensor
building block, a proposal that the non-linear gain and loss in diodes in dielectric circuits can
be replaced with memristor elements according to the analysis presented. Also, there are
memristive circuits with gyrator, and the effect of memristor in circuit with Coupled resistors.
This is in addition to the Boost converter, a Buck DC-DC converter, and a Buck-Boost DC-DC

converter example.

8.3 Future work

There is tremendous scope to extend and develop this proposed method.

The investigation adds more detail to the influence of different models of memristor on
the proposed approach such as inspecting the effect of polarity changing of the memristor. The
broad generalisation of memristors, accompanied by meminductive and memcapacitive
elements which can also be captured to extend the proposed method into one comprehensive
expression, as the meminductor and memcapacitor share many of the characteristics of
memristor element, but store energy. One might consider expanding the state space dynamics

and the junction structure matrix by partitioning the state vector into linear and nonlinear fields.

Another technique proposed for future work is to linearize the bond graph of memristive
system, as linearization is used by control theory researchers to approximate nonlinear functions
and systems. The linearization procedure stated in chapter four is to linearize the proposed
nonlinear bond graph. This is accomplished by linearizing the resultant state space expression.
Furthermore, linearization of a nonlinear system can also be achieved by linearizing the

memristor element nonlinear behaviour only. Following a few research papers, a technique for
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linearizing memristor element as individuals is proposed and there will be no need to linearize

the final expression which will be a more simplified process.

Also, the control properties observed such as stability and the definition of observability
were basic for the proposed approach, compared with those for standard bond graphs and port-
Hamiltonian formulation. These properties are important to control theory modelling and need
to be interpreted, as bond graph is related to behavioural modelling, these properties might be

obtained in terms of bond graph terms.

A full study of the port-Hamiltonian for nonlinear systems and its properties is
recommended, especially the derivations of nonlinear time-variant model. The lack of
modelling in such systems was noticeable in two of the case studies investigated in chapter six
section 6.7. This type of system modelling has important implications, as real physical systems

are often nonlinear time-varying systems.

A nonlinear bond graph can be developed for emulating complex physical systems, as
in simulating plant water relations which are of interest to environmental physiology and
agriculture and Circuits that mimic Neuromorphic and biological systems such as brain
neurons. Environmental and medical applications are probably the most promising future

application areas for memristor-based circuits and systems.
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Introduction

Although in standard RLC circuit analysis, voltage and current
vectors satisfy linearly independent relations (Kirchoff’s voltage and
current laws) and there are single variable relations between flow
(current), effort (voltage), generalized momentum (flux) and
generalized displacement (charge), there are additional variables
associated with mem-based circuits. The discovery of flux controlled
memristors by Leon Chua in 1971 as the missing element relating
generalized momentum with generalized displacement promises
the development of a new class of novel dielectrics over the coming
years. Well established dielectric structures such as metal-insulator-
metal thin films with thickness between the nanometer and the
micrometer scales have been used in several applications and also
display memristive and capacitive effects simultaneously. Similar
effects are observed in nano-dielectrics where a formation of local
dipoles is observed in nanoscale resistors. Incorporation of mem-
based elements into circuits containing RLC components leads to
circuits with far more complex ‘emergent’ behaviors than normal
dielectrics display. Interesting phenomenon such as self-sustained
non-linear oscillators capable of super-critical Hopf bifurcation can
be conveniently observed in this new class of dielectrics. From a
modeling prospective, Such circuits can also mimic dielectric
responses of biological materials such as dielectrically excited
membranes. Because of the non-linearity associated to the response
of memristive, mem-capacitive and mem-inductive components,
Laplace transform may not be used to derive transfer functions that
would uniquely relate the input with the output function of these 2-
port devices. Their dynamics may be studied instead, using
differential algebraic models arising from descriptor representations
derived from nodal analysis associated to the underlying circuit
topology. State space models of the circuit dynamics are made
possible using the notion of Dirac structures. this work will discuss
the THz modeling of such circuits. -
) I. ows

¥
columns -

N3 -4

i R .m
Fig. 1. Random RLCM network structure considered in the
incidence matrix analysis [ 1-3].

Bond graph and port Hamiltonian approach

In the bond-graph approach the physical system is represented
by power-conserving interconnected Dirac structures through
effort ¢, and flow £, variables. The Dirac structures are modulated
by the state space variables of dynamic system while at the same
time preserving the geometric relations.
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Fig. 2. Interconnected Dirac structures and distinction of O-type and 1-
type bond junction elements,

A -

Fig. 3. Inter-relations between individual RLCM components and
corresponding port Hamiltonian notation. There is an energy storage
function port S, an internal energy dissipation port R, an accessible
port C for external control action which may also incorporate sources,
and an interaction port I to account for the interaction of the system
with its environment,

Problem formulation
If x denotes a set of n state variables and g is a generalized
response, for each componentin the network we have
expressions for elementalinput «(r) and output y(s):
W)= g, nu(r), x= f(xurt)
The corresponding memristive and memcapacitive responses
will be described by the following expressions:
V(=R I0I0), x=f(x0L1) gO)=CxV . nV.o)n x=f(xV.0
@(t) = L(x,1,0)I(t), x=f(x,1.1)

T WY T TR W W -

S o Y -m;u Py
Fig.4, Single element memristive , memcapacitive and meminductive
responses derived on the basis of the above formulation.
Conclusion

Ageneric input/outputformulation for randomly connected
RLCM networks is developed. Adding memristive /mem-
capacitive] mem-inductive elements, nonlinear networks can be
developed for emulating complex dielectric responses of
materials probed by THz time-domain spectrometers.
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Introduction

Although in standard R, L, C circuit analysis, voltage and current
vectors satisfy linearly independent relations (Kirchoff's voltage and
current laws) and there are single variable relations between flow
(current), effort (voltage), generalized momentum (flux) and generalized
displacement (charge), there are additional variables associated with
mem-based circuits. The discovery of flux controlled memristors by Leon
Chuain 1971 [1] as the missing element relating generalized momentum
with generalized displacement as in fig (1), promises the development of
a new class of novel dielectrics over the coming years. Well established
dielectric structures such as metal-insulator-metal thin films with
thickness between the nanometer and the micrometer scales have been
used in several applications and also display memristive and capacitive
effects simultaneously. Similar effects are observed in nano-dielectrics
where a formation of local dipoles is observed in nanoscale resistors.
Incorporation of mem-based elements into circuits containing R, L and C
components leads to circuits with far more complex ‘emergent’
behaviors than normal dielectrics display. Interesting phenomena such as
self-sustained non-linear oscillators capable of super-critical Hopf
bifurcations can be conveniently observed in this new class of dielectrics.
From a modeling perspective by using Bond graph analysis with Port-
Hamiltonian formulation, such circuits can also mimic dielectric
responses of biological materials such as dielectrically excited
membranes.

Port- Hamiltonian representation from Bond Graph

Because of the non-linearity associated to the response of memristive, mem-
capacitive and mem-inductive components, Laplace transforms may not be
used to derive transfer functions that would uniquely relate the input with
the output function of these 2-port devices. Their dynamics may be studied
instead, using differential algebraic models arising from descriptor
representations derived from nodal analysis associated to the underlying
circuit topology. State space models of the circuit dynamics are made
possible by adopting a input-state-output port-Hamiltonian formulation
(ISO-PHS)as shown in equation system (1), from bond-graph analysis [2-5].

: oH
x=[J(x) - R(x)|—(x) + g(x)u

Ox
" (M
cH )
ox
The bond graph analysis [6, 7] provides the geometric relations between the
memristive elements and the rest of the circuit. Flow and effort variables at
all the ports of the network described using the causal bond graph
methodology are split into power-conjugated input-output pairs. The
generalized structure of the portis shown in fig. 2-a.

y=g"(x)

Se, Sf
U_ , : A
; I Zi . X'_ S S S S i
= X Junction —=% ¢ S“ Slz S13 SM X,
Iy L Siructure “;d“' NC Z,|=|8, 2 2 21 p
D, S, 8, 8 8, Uo

l)‘%ﬁ i

Fig. 2. (a) General structure of an causal bond graph. (b) the corresponding

matrix
The corresponding matrix interrelating the parameters of the port is
given in fig. 2-b. where Xi = [x;,, x;5 . . . ,x;,|" is the state vector in
integral causality, Xa =[x, X5, - - - ,X4..,]T contains the energy variables
in differential causality, Zi=[z,,, 2, . ...z, )" and Zd=[z,,, 7,5, . . ., 2, ]
contains the co-energy variables associated to Xi and Xq, and variables
D, and D, entering and exiting from resistive elements and U containing the
efforts (Se) and flow (Sf) variables imposed by the sources. R are the
dissipation elements, I and C are energy storage elements.

Inductive  dp = Ldi

Generalized
momentum (p)

dg = Mdgq

Memristive

Fig. 1. Inter-relations between individual RLCM components
Memristive elements and port-Hamiltonian
In port Hamiltonian memristor is called null-Hamiltonian because it

cannot store energy. The associated state equations for port-
Hamiltonian as in equation(2) [3,4]

x=u,y=——I(x) 2)
Ox
By comparing equation system (1) with (2) the resulted equations
for a charge-modulated memristor :
oH
Ox
Problem formulation

(x)+ M (x)u 3)

A.’=Il,y=

If f=.\'~,e=aﬂ,where f and edenotes flow and effort. By relating it

X
to equation(3) for charged controlled memristor then

f=xe= (’;ﬂ(CI)+M(‘I)f The extension of ISO-PHS formulations to
memristive elements enables the state space modelling and emulation of
embedded systems with non-linear dynamics. The approach significantly
extends the applicability of dielectrics theories to complex materials as

well as bio-dielectrics.

Conclusion

A generic inputfoutput formulation for randomly connected RLCM
networks is developed. Adding memristive [mem-capacitive| mem-
inductive elements, nonlinear networks can be developed for
emulating complex dielectric responses of materials embedded
in complex dielectric matrices. The work bridges the gap between
causal Bond Graph formulations and port-Hamiltonian formulations
of non-linearsystems.
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Linearized Bond Graph of Hodgkin-Huxley
Memristor Neuron Model
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Abstyact - A linearized Bond Graph procedure is used to
model memristive behavior of the Hodgkin-Huxley neuron. In the
proposed framework, the dissipation field splits into two parts,
resistor dissipations and memristor dissipations. Linearization is
then applied. The discussed nonlinear Bond graph methodology
has applications to other RLCM element network analysis and
neuromorphic chip design.

Index Terms — Memvistor, Bond Graph, Lincarizafion,
Hodgkin-Huxley nexron .

I. INTRODUCTION

After Leon Chua established a relation between magnetic
field (¢) and charge (g) [1], a fourth element whose charge
also dependent on its history was added to the list of
basic elements for performing analog computations.
Nanotechnology advances in HP Labs produced the first
physical device in 2008 [2].

Characteristic properties in memristors such as a pinched
hysteresis loop, a nonlinear behaviour, and a totally dissipative
behaviour were very useful for augmenting the capabilities of
Bond Graph (BG) modelling, therefore, Oster in 1972 [3]
proposed to integrate the memristor as a bond graph element in
that framework. This related well to previous work by Paynter
in 1959 [4] in circuit analysis and modelling that proposed that
physical systems can be modeled using energy and power
alone.

The advantage of using BG theory is that energy in
different physical domains can be simultaneously analyzed
using the same methodology. Since systems with memristive
elements behave nonlinearly in a BG framework, one needs to
consider two dissipative parts, one linear one for the resistive
behaviour (R) and one nonlincar one for the memristive
behaviour (M).

Small perturbation techniques that enable small non-linear
terms to be vanishingly small have been well developed by the
non-linear control theory community to assist with stability
analysis. As discussed by Avalos and Orozco [S], it is
appropriate to adopt such approach to the analysis of
memristive systems in a BG framework.

The aim of this paper is to apply linearization postulations
to a Hodgkin-Huxley neuron model [6] to model bioelectrical
phenomena within a BG framework. The methodology has
applications to a wide class of RLCM systems.
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University of Reading
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II. BOND GRAPH MODELLING WITH MEMRISTOR

A Introduction to Memristor Dynamics
Memristors relates the magnetic field (¢) and charge (g)

by 8¢ =Mag andy = M(x,1)i, where Ox/&f = f(x,1).

W
o—l Dopped | Undopped I—.
) ) Ron Roff

Fig. 1 Structure of HP Laboratory mermristor and equivalent model

Memristance (}) incorporates the dynamics of dopped
and undopped regions shown in Fig. 1.
The mathematical model for the HP Lab memristor is [2]:

1 . |.
Wt) = [RM % +R,( —%)Jz(t) (1)
o _ B 2
T A0 @

where £, is the mobility of dopants. where (3) expresses the

fact that memristor is dependant on state variable w(z), which
makes it a nonlinear element distict from linear resistor.

B, Bond graph with nonlinear elements

The current work adopts standard definitions and
postulations in BG theory [7] that, power is expressed as the
product of effort e(f) and flow fif), and the same is applicable
to state variables, momentum p(¢) and displacement ¢(f). The
direction of effort and flow are assigned by causality [7]. Bond
eraph consists of four field groups as in Fig. 2: the dissipation
field splits into two parts, linear and nonlinear dissipations as
proposed in [5], the storage fields (C and J), the source fields
(Se and Sf), and junction structures denoted by JS. Dissipation
as an input variable is seen as composed of two elements:
linear D} and nonlinear D;. Similar expressions D!, DY can

be used for dissipation as an output variable.

Source fields
(Se, 87)
Pm
2463
Storage ‘—ZstL Frnchion A9 » Dissipation
fields  |Xalf) &) fields
€D |dlt) Structure DO, (R M
z(h > ©, 1, TF, GY) )

Fig. 2 Structure of a causal bond graph
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Systems with a memristor can be modelled by bond graph with
a junction structure defined as discussed in (4):

; ; z,(D)
xi(t) ‘Sll S12 S13 SM SlS D/([)
Di®) | _| Sy S, 0 8 0 D ol ©
DY®| |S, 0 0 8, 0 u"(t)
z,(t i 0 0
d( ) ‘S-'ll 0 0 xd ([)

The constitutive relations of the elements will be considered in
the derivation for a system with linear storage elements are:

2(t) = Fx(t), z,(1) =Gx, (1), D.(t) = LD', D (1) =M (x)D" (t)
where x(#) is an integral causal input variable, x (z) is
differential causal input variable and u are the output variable

0K =[S, +S LU ~S,1)"S, +S,MxS, |Fx@)

w[s.La-s.1)"s, + S M@S, + 8, |u)

where K = (I —S,,GS, F) . Equation (6) is the state space
equation of the form x(¢) = Ax(t) + Bu(t) .

C. Bond graph linearization

The Lemma stated in [5] can be used on (6). in order to
linearize a bond graph. The following equations are derived
for nonlinear memristive systems to define new causal paths
that construct a linearized bond graph, by obtaining an
additional term. By rearranging equation (6) into the form:

E(x)%(t) = A(x)x(f) + Bc)u(t) + H (x,1) )

where E(x), A(x). and B(x) are state dependent matrices and
H(x.u) is the state of memristor elements. The linearized
expression for the system is:

X5(t) = Asx (1) + Bsu(t) (6)
where A; and B; are the partial derivative matrices of the
nominal trajectory.

III. HODGKIN-HUXLEY APPLICATION EXAMPLE

The equivalent electrical model of the nerve cell membrane
in the Hodgkin-Huxley neuron with two memristor elements is
shown in Fig. 3 [8], with the corresponding bond graph in
preferential integral causality. The key vectors of this bond
graph are:

A

=gy e 1;z=el;D?'M_[f] ol [e
Y 4 7

Inside
_I_

:|D,l fD<l1 €y

L\ a £y
T Ts
Outside Mir 21 P_E;. E;

Fig. 3 Hodgkm Huxley model and the corresponding Bond graph
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52

And the resulted junction structure matrix will be as in (8)
with :

100
8,=0,8,=-18;=[1 -1]; 8, =1 Sy=[-1 1];._534:[ }

0 0 1
(A1 o =11 =1 0 0 0][e,]
e 1 0 0 0 01 ofllf
e, -1 0 0 0 1 0 ofl /4 )
e |=[1 0 0 0 0 0 1|/
5 0 0 1 0 0 0 0fe,
/i 0 1 0 0 0 0 0fle,
| /o] LO 0 0 1 0 0 0fe,]
The constitutive relations are: F=1/C, L=1/R. M(x)

=diag{1/M(f1). 1/M(fo)}. Applying the linearization method,
the resulted state space for the linear bond graph for Hodgkin-
Huxley can be expressed in the following form:

B, (f) = E)H(x,u) (1) + 6H(x u)

with K is constant and, the result expression will be:

Kiy(0) = [%M(x) +8, ‘”‘iix) } X0+ [—OS ud ;l(lx)b ] ]:45(:) ©9)

®)

us (1)

-~

IV. CONCLUSIONS

A Bond Graph linearization procedure is used to model the
memristive behaviour of the Hodgkin-Huxley neuron. This has
applications in other models of a neuron [9] and eventually in
nanoscale neuromorphic chip design.

Furthermore, the proposed analysis should find new uses in
other practical examples extending the range of applications of
RLCM networks using BG theory. Future examples will
extend the applications of BG theory as originally proposed by
Karrnopp and Rosenberg in 1963 [10].
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Abstract. State space transformations from a bond graph representation of the Josephson
Junction are developed, and then an analysis that links the associated inputs and outputs in the
Junction to the nonlinear characteristics of the memristive element is provided. A bond graph
Input-State-Output Port-Hamiltonian formulation of memristive networks for Josephson
Junction circuits is presented. The methodology has applications to the modeling of SQUIDs
and other non-linear transducers and enables the formulation of input-output models of
complex components embedded in non-linear networks.

1. Introduction

Although in standard R, L, C circuit analysis, voltage and current vectors satisfy linearly independent
relations (Kirchhoff’s voltage and current laws) and there are single variable relations between flow
(current), effort (voltage), generalized momentum (flux) and generalized displacement (charge), there
are additional variables associated with mem-based circuits. The prediction of flux controlled
memristors (memory- resistor) by Leon Chua in 1971 [1] as the missing element relating generalized
momentum with generalized displacement, promises the proliferation of a new class of novel
dielectrics over the coming years. There have already been important developments in this line of
research and the first physical devices have been produced since 2008 by HP Labs using
nanotechnology [2]. Well established dielectric structures such as metal-insulator-metal thin films with
thickness between the nanometer and the micrometer scales have been used in several applications and
also display memristive and capacitive effects simultaneously. Similar effects are observed in nano-
dielectrics where a formation of local dipoles is observed in nanoscale resistors. Incorporation of
mem-based elements into circuits containing R, L. and C components leads to circuits with far more
complex ‘emergent’ behaviors than normal dielectrics display. By relating generalized momentum
with generalized displacement as in Fig.1, a new generation of trans ducting devices can be developed.

Inductive  d = Ldi Generalized
F]O“ n JCNera c
momentum (p)

dv = Rdi

S
dgp = Mdq

Hamiltonian

Resistive

Co-Hamiltonian (Brayton-Moser)
’
~

Memristive

Effort (e) H

Generalized n
displacement (5)

Fig. 1. Inter-relations between individual RLCM components.



Circuits that consist of memristive elements can be analysed using Bond graph (BG) modelling.
As the known analysis methods such as nodal analysis leads to a large set of differential equations,
often without any apparent structure Bond graph was suggested first by Paynter in 1959 [3]; it
provides a graphical representation of a physical systems and is designed to represent the continuous
flow of the power or the energy exchanges within the components of a system using energy and power
alone. Hence, this type of modeling can incorporate multiple domains seamlessly (e.g. mechanical,
clectrical, hydraulic, etc.).

Because of the non-linearity associated to the response of memristive components, Laplace
transforms may not be used to derive transfer functions that would uniquely relate the input with the
output function of these 2-port devices. Their dynamics may be studied instead, using differential
algebraic models arising from descriptor representations derived from nodal analysis associated to the
underlying circuit topology. But in 1972. Oster proposed to integrate the memristor with the other
bond graph elements [4]. Since frameworks with memristive components act nonlinearly in a BG
structure, one needs to consider two dissipative parts, a linear one for the resistive behaviour (R) and a
nonlinear one for the memristive behaviour (A).

State space models of the circuit dynamics are made possible by adopting an Input-State-Output
Port-Hamiltonian System (ISO-PHS), directly from bond-graph analysis [5][6][7][8].In [9] it was
shown that the equations obtained from BG can be mapped to Port-Hamiltonian System (PHS)
formulations. PHS formulations preserve the energy exchange between storage, dissipation, source
and junction structures. Both PHS and BG representations share the same fundamental postulations
making inter-conversion between the two formulations possible. Memristors have been discussed
within a port-Hamiltonian framework by Jeltsema [7].

2. Bond graph with nonlinear elements

In BG theory, power is the result of the product between effort e(?) and flow f{#). Flow and effort
variables at all the ports of the network are described using the causal bond graph methodology. The
causality concept is used to assign the direction of power-conjugated input-output pairs [10]. As
discussed in [11], a BG general structure is composed of: dissipation fields that can be splits into two
parts (linear and nonlinear), storage fields (C and /), source fields associated with effort and flow (S,
and §), and junction structures (denoted by JS) containing transformers 77 and gyrators GY as shown
in Fig. 2. Dissipation is seen as composed of input and output variables. The dissipation variables
consist of two types of elements: linear and nonlinear. Similar type expressions can be developed to
model memristive dissipative elements using the BG framework after assuming the following general
junction structure.

Source fields
(S S

i WDy
Storage | Xz (7 , D; (1) | Dissipation
fields - ( ) Junction = - fiSIdS
((om)) :x (t) Structure I (52 ®R M)
z(n “MTY o

Fig. 2 Structure of a causal bond graph.

A defined junction structure for systems with a memristor can be developed using the generic
expression shown in Eq. (1) below.
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after making the following hypotheses: (a) All storage clements are linear, (b) all storages are in
integral causality (which implies there is no element in differential causality) this leads to

S, =85=0, (¢c) no storages are assigned in differential causality by source (S,, =0), (d) by
definition the dependent state variables are functions only of integral causal state and the system
inputs (S, =S,s =8,; =0), (e) if there is no coupled resistors (S,, =S;, =85, =S5;; =0). This
exXpression arises as:

. [ z(t) |
xi (t) Sll SIZ ‘5{13 Sl4 SIS Dl (t)
D/ (¢ 0 0 :
le( ) e SZI S22 S24 D;’W (t) (2)
Di (t) S31 0 O S34 u(t)
z,(t) S, 0 0 0 %(8)
L 7d =

In the derivation for a system with linear storage elements, the constitutive relations of the elements
are defined as: z(t) = Fx(t), x,(t) =Gz, (1), D.(t)=LD, D" () =M (x)D" (¢). Wherex(t) is an
integral causal input variable, x,(Z) is differential causal input variable and u are the output variable.

Substituting these constitutive relations into (2) yields to:

. [ x() ]
X, (1) SnF S12L S13M S14 SISG D 0
Dt :
;VI( ) - S21F SZ2L O S24 0 -QM (f) (3)
DYl |s,F 0 0 S, 0 o5
2] S0 000
L “d .

by solving (3) according to x(f), the resulting expression is:

MOE =[5, +5,LUd~5,L)"S, +5,M @8, |Fx)

. 4)
+[s.La-8,L)"8, +8M@®s, +5, |uw)

where E = (I - §.GS, F). Equation (4) is a state space equation of the form %(¢) = Ax(¢)+ Bu(?). It is

worth noting that the above expression is still not a proper PHS formulation because the J, R and g
matrices have not been defined yet. This is discussed in the following section.

3. ISO-PHS Formulation

The interconnection between the storing energy elements (inductors and capacitors),
dissipation energy elements (resistors and memristors), and that represents the energy exchange
with the environment (voltage and current sources) with using basic laws is known as the network
model. In Port-Hamiltonian framework it formulates the structure of power geometric within the



system, the total energy flow reflects the circuit physical structure and defined as the Hamiltonian
Function H(x). Thus, Port-Hamiltonian systems (PHS) have coordinate physical understanding
and specific geometric structure. Models in energy methodologies are valuable approaches for
engineers, which is a common concept to all physical domains.

One important class of PHS is the standard ISO-PHS formulation. In this formulation, the flow
and effort variables are split into input-output pairs of power-conjugated charge and momentum
(¢, p) [12] as shown in the expressions system (5) is referred to as an input state-output
port-Hamiltonian system with Hamiltonian function as the total stored energy :

% =[J(x) R(x)]%(x) + g

. OH (5)
y=g (x)—(x)
Ox

where H(q, p) is the total energy stored in the system for the conjugate variables, x is the state
variable, u and y are the power variables of the input and output ports, g(x) is the output vector,
J(x) is a skew-symmetric matrix representing the interconnection structure (which is power
conserving), and R(x) is the dissipation structure symmetry matrix. A special engaging feature of a
port-Hamiltonian system is: as J(x) has a skew-symmetry properties, the flow of energy within
the circuit will satisfies that the power consumed by the inductors and the capacitors equals to the
difference between the power provided to the circuit by the external port and the power dissipated
by the resistors

To compute the form of H(x) expressed using BG variables, first the energy function E(x) will
be expressed as the integration of power which is the product between the input and output
variables of the storage elements as in (6) [5].

E(xl.,xd)=szxl.8t+-[z§xdat (6)

Then as the energy £(x) and H(x) represent the energy stored are different but in a special case
their values will be identical, this only evaluated with a chosen state variable of the system such as
X; = x. thus the energy function will be written as a function of x; only as shown in Eq. (7).

E(x)=E(x,%,) = E(x,,8(z,)) = E(%,. 8(s,,2)) = H(x,) @

After the chain rules applied to Eq. (7), the total energy form of H(x) expressed using BG variables
will be as:

oH
. [1-FS,GS,, ]z (8)

Substituting (8) into (4), the resulted equation will be:

. -1 -1 -1 o0H
xt)y=E |S,+S,L(I-S,,L) S, +S,M(x)S,, |(I-FS,GS,) E

W W, ©)

-1 -1
+E | S,LU-S8,L) S, +8M(x)S,,+5,, |u(f)

From the definition of J it can be observed that this is a skew- symmetric matrix, where J=-/J.
Similarly, R is a symmetric matrix. The expressions of symmetric and skew-symmetric components
are defined in terms of BG as follows:



E" =(I-FS,GS,)" (10)

W =S, LI -S:L)"S,; (11)
1 e S |

w,, = > S,L(I=S,L) S, + [SIZL([ -3S,,L) Sm} (12)
1 - < T

Vo= 8,005,008, —[SRL([—S%,L) sm} (13)

where Wy and Wy are the symmetric and skew-symmetric parts of (9). For the expression in Eq. (9)
that contains the memristance A/, the symmetric and skew-symmetric parts are:

Wy = SiM(x)8 (14)
WM,sy = %[SIBM(x)SSI + [SISM(X)SBI]T} (15)
WM,Sk = %[SBM(X)Sm - [SlsM(x)Sm ]T } (16)

As J(x) combines the skew-symmetric parts of Eqs 13 and16 and R(x) combines the symmetric parts
of Eqs 12 and 15, then the system equation matrices shown in (5) will be:

J(x)=E"S,E+E"W,E+E'W,, ,E (17)
R(x)=-E'"W_E+E'W,, E (18)
8(¥) = E7 [ SuL(I = SpLY 'Sy, +SsM (3)Sy, +5,, | (19)

4. Formulating PCHD models of sensor systems using bond graphs: A Josephson junction
application exam ple:

Josephson junctions circuits are named after the British physicist Brian David
Josephson, who developed in 1962 the mathematical relationships for the current and voltage
across a weak link [13] when there 1s quantized current leakage even in the absence of a
constant source supply. Such junctions have important applications in quantum-mechanical
circuits e.g. in magnetic sensors where they can measure the total magnetic field or the vector
components of the magnetic field [14]. An important class of sensing elements that make use
of the Josephson junction current to perform measurements are the superconducting quantum
interference devices (SQUIDs). In their simplest realisation these have two Josephson
junctions in parallel in a superconducting loop [15]. An electrical model of a Josephson
junction using memristive elements is shown in Fig. 3a. [16].
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Fig. 3 (a) Josephson junction circuit model with the non-linearity emulated using a memristor.
(b) The corresponding bond graph with causality marks is also shown.



The corresponding bond graph for the circuit in preferential integral causality is shown in
fig.3b. It can be seen that there are no internal connections, and the derived junction structure
matrix after rearranging the junction elements into the form of Eq. (2) is:

e, (01 0 0 0 0 .
Fe -1 0 -1 -1 1 0} e
e, 01 0 0 0 0| L
] L0 0 0 0 0 0] A]
The constitutive relations are: F, = %, E= E, L= %, M = L( The ISO PH matrices for a

Josephson junction circuit can be expressed by using equations (7-13) as follows:

0 0 0 0 5 1 o 0
k=L k=1 W=| = 1| W= = 1} Wsk=[0 0} Wu=lg __L |
M ()
0 0
0 0
Wiw=|o —_L | Pus=|y
M (4)

From the above matrices, it is possible to obtain the Port-Hamiltonian system components (1).

L[ L o
{—1 0]’ [ ——— g_u'
R M($)

5. Conclusion

ISO-PHS formulations are derived from BG to model the memristive behaviour of a Josephson
junction circuit and should enable the modelling of more complex networks associated to recently
proposed SQUID designs. These have applications in the modelling of diclectric loading in HTS
resonators[17][18] enabling them to be used for the implementation of phase conjugation in the
microwave region[19]. Additional applications can be found in the modelling of noise in magnetic
field measurements[20], in inductive measurements[21] also as applied to thermometry and
calorimetry[22][23], in single-photon and macro-molecule detection[24][25], and other quantum
detection sensing schemes as well as in Nano-electromechanical systems resonators[26]. The
formulations should be also particularly useful for the design of coupled NanoSQUIDs[27][28] e.g.,
Dayem Bridge Junctions[29].

The methodology has also other applications to other sensors and transducers that have non-linear
responses and are embedded in more complex networks as encountered in communications [30] or in
the modelling of bio-dielectrics e.g., neuronal structures[31]. The proposed analysis should also find
new uses in the analysis of other RLCM networks extending the applications of PHS-BG theory
originally proposed by Doniare [5].
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Introduction

A procedure for obtaining Input-State-Output Port-Hamiltonian
formulations from Bond graph is adopted to model the memristive
behaviour of non-linear dielectrics. The work will discuss how under the
Bond graph formalism, one may assume a dissipation field which can be
split into two parts (a linear and nonlinear component), as well as
storage fields and source fields and junction structures. The junction
structure then provides an explanation of how the flow and effort
variables are split into input-output pairs of power-conjugated, charge
and momentum. Furthermore, the junction structure imposes the
algebraic constraints on the dynamics of the system when this is
subjected to some electromechanical excitation. Examples of the
application of this modelling technique will be provided. The port
Hamiltonian formulation provides the total energy stored in the system
in relation to the input-output power variables in the two ports of the
system. The discussed nonlinear Bond graph-Port-Hamiltonian
methodology has very broad applications and is of much relevance to the
dielectric community as it provides novel ways to model excitatory
responses of complex dielectric materials.

Port- Hamiltonian representation from Bond Graph

Because of the non-linearity associated to the response of memristive, mem-
capacitive and mem-inductive components, Laplace transforms may not be
used to derive transfer functions that would uniquely relate the input with
the output function of these 2-port devices. Their dynamics may be studied
instead, using differential algebraic models arising from descriptor
representations derived from nodal analysis associated to the underlying
circuit topology. State space models of the circuit dynamics are made
possible by adopting an input-state-output port-Hamiltonian formulation
(ISO-PHS)as shown below, from bond-graph analysis [2-5].

(M

The bond graph analysis [6, 7] provides the geometric relations between the
memristive elements and the rest of the circuit. Flow and effort variables at
all the ports of the network described using the causal bond graph
methodology are split into power-conjugated input-output pairs. The
generalized structure of the portis shownin fig. 1-a.
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Fig.1 (a) General structure of an causal bond graph. (b) the corresponding
junction structure matrix

The corresponding matrix interrelating the parameters of the port is given in
fig. 2-b where Xi =[x, . x,.. .. . .x,,|" i the state vector in integral causality, Xa=
. x4,,]T contains the energy variables in differential causality, zi=[z,,
Zigs - s ZJT and Zd = [z4), 23 - - - z,,]T contains the co-energy variables
associated to Xi and Xg, and variables D; and D, entering and exiting from
resistive elements and U containing the efforts (Se) and flow (Sf) variables
imposed by the sources, R are dissipation elements, I and C are energy
storage elements.

Memristive elements and port-Hamiltonian

In port Hamiltonian formalism, a memristor is called null-Hamiltonian
because it cannot store energy. The associated state equations for its port-
Hamiltonian is given from [3,4] :

(X4 %42 - -

y= ai(x) + M (x)u (2)
Oox

Problem formulation

Directed transport is one of the fundamental problems in physics, but it is
also a challenge to design on-chip integrated devices to directionally
control the flow of light. One such circuit can be implemented by using
two partly-coupled circular microcavity resonators each exhibiting
matched non-linear gainfloss mechanisms with the flow of light
propagating in each resonator at opposite directions [8]. The two
resonators are also partly coupled to transmission lines where the
unidirectional control of light is implemented. An equivalent electrical
circuit is shown in fig. 2. We propose that the non-linear gain and loss
diodes can be replaced with memristor elements and then analysed with
the proposed bond graph junction structure to obtain the 1SO-PHS
formulation.

V
| —
A .
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(a) (b) (9

Fig.2. (a) Four-portphotonicstructure, (b) Equivalent electronic circuit
that simulates an optical valve implemented using two non-linear
microcavities; (c) Non-linear loss implemented by diodes or memristor (a
complementary circuit can be drawn for gain).
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Fig.3 the correspondingbond graphfor (a) Equivalent electronic
circuit that simulates an optical valve. (b) Non-linear loss with
memristor element, with A =2.

Conclusion

A generic ISO-PHS formulation for a directed non-linear photonic device
is developed. Adding memristive elements, nonlinear networks can be
developed for emulating complex dielectric responses of materials
embedded in complex dielectric matrices. The work bridges the gap
between causal Bond Graph formulations and port-Hamiltonian
formulations of non-linear systems.
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Abstract—Under the Internet of Things initiative, networks
are designed to incorporate both sensing as well as
switching/control action. The need for control action may arise in
different physical domains. Bond graphs are a useful tool which
provides modeling of multiple processes that simultaneously take
place in different physical domains. The current work discusses
the need to develop mathematical models of the dynamics
associated with non-linear sensing and actuation processes that
may take place in several physical domains. As many control
solutions are designed in state space, Input-State-Output Port-
Hamiltonian (ISO PHS) formulations are the best tool to describe
the associated dynamics of the elements in a network. Non-linear
switching action can be emulated using memristive devices. This
contribution, therefore, focusses on translating bond graph
representations accounting for energy exchange across different
ports in a network, where the transduction processes take place in
a multitude of physical domains. As an example, the ISO PHS of a
bond graph of a memristive element embedded in a simple switch
circuit is presented. The work is of general interest to the sensors
community and has applications in the design of sensor networks.

Keywords—memristors; Bond Graph; port-Hamiltonian; non-
linear control switching;

L INTRODUCTION

With the term ‘Internet of Things’ (IoT), one wishes to cover
various aspects of sensing and control associated with the
extension of the Internet and Web technologies into the physical
realm. This requires the seamless integration of multi-domain
analog and digital devices within a complex network
environment. This contribution focuses on the use of a Bond
Graph to represent multi-domain transduction processes
assuming a memristive switching system embedded in a simple
network. The non-linearity in the dynamics of the system is
derived in state space form using an ISO PHS formulation. This
formulation permits us to develop multi-domain non-linear
circuit elements analysis in state space where multiple elements
are embedded in a network. The derived system dynamics may
provide additional information regarding the states within any
sensor network. This is also of relevance to the modelling of
power dissipation in sensor networks.

II. BOND GRAPH OF A SWITCHING MEMRISTIVE ELEMENT

Memristors [1][2] display both a dissipative behavior at a
region of operation as well as a non-linear behavior at another
region of operation. This non-linear behaviour gives rise to a
characteristic pinched hysteresis loop in their current-voltage

characteristic. In previous work in circuit analysis and modelling
by Paynter (1959) it was suggested that physical systems can be
modeled using energy and power alone[3]. The advantage of
using BG theory with memristive elements is that energy in
different physical domains can be simultaneously analyzed
using the same methodology.

Bond Graphs (BG) have been developed to represent the
continuous flow of both power and energy exchanges within the
components of a system. A particularly attractive aspect of these
formulations is that both continuous states as well as discrete
phenomena can co-exist within this unified framework. As
discussed by Oster [4], circuits that consist of memristive
elements can also be analysed using BG modelling. Since
frameworks with memristive components act nonlinearly in a
BG structure, one needs to consider two dissipative parts, a
linear one for the resistive behaviour (R) and a nonlinear one for
the memristive behaviour (A).

In BG theory, power is the result of the product between
effort e(?) and flow f7). Flow and effort variables at all the ports
of the network are described using the causal bond graph
methodology. The causality concept is used to assign the
direction of power-conjugated input-output pairs [5]. As
discussed in [6], a BG general structure is composed of
dissipation fields that can be splits into two parts (linear and
nonlinear), storage fields (C and ), source fields associated with
effort and flow (S, and 8y, and junction structures (denoted by
JS) containing transformers 7F and gyrators GY and with the
exitance of switches [7]. The causal bond graph of a switching
circuits with memristor element is shown in Fig. 1.
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Fig. 1 Structure of a causal bond graph



In this generic structure of a causal bond graph, dissipation
is seen as composed of input and output variables. The
dissipation variables consist of two types of elements: linear and
nonlinear. Similar type expressions can be developed to model
memristive dissipative elements using the BG framework after
assuming the following general junction structure shown in (1).
Internal and external vectors can be related using the following
interconnection matrix:

400 z (1)
i Sit Sz Si3 S Sis oae)
! ©
Dl (t) = SZI Szz 0 S24 S25 DM (f) (1)
M
D; 6] S31 0 0  S34 S35 TD(I)
71 Sa1 Saz Saz 0 Sys uo( »

The constitutive relations of the elements in the derivation of
a system containing linear storage elements are:

z,(0) = Fx, (0, D,y = LD, DY (1) = M) D" (), T, () = ET. (1)

where x(¢) is an integral causal input variable, 7, (r)and 7T (7) are
the input and output power variable from the switches, u are the
output variables and M(x) denotes memristance. Substituting
these constitutive relations into (1), it follows that

L) %)
’ SiaF Sigk 1M SE iz | o @
4
Di(®) | _|8yF SpL 0 SyE Sps DM @)
DM@| |S5F 0 0 SpE S|
L,O®
L) | [SuF Sl SpgM 0 S5 )

By solving (2) for x(), the following expression is derived:
(0) =[Sy + S12HS) + 12 HS24EPT'F; + S13M (2)S3, +
SysM (x)S34EPLF, + 81, EP™YF, | Fx(1) +
[S),HS 2 EP7Fy + 85 HS 5 + SysM (x)S5, EP7'F, +
S13M (%) S35 + S14EP™'Fy + Sy5Ju(®)

€)

where H = L(I - SpL) ", P™ = (1= 83, HS £ —S45MS3, B),
e

1 2
By = (Sqy+ SapHSy; + S43MS31), I = (SupHS)s + Sy3hSzs + Sys).
o ey e e
I3 F,
Equation (3) is a state space equation in the general form.

III.  PORT HAMILTONIAN OF A SWITCHING ELEMENT

State space models of the circuit dynamics are made possible
by adopting an ISO-PHS formulation, directly from bond-graph
analysis [8][9][10][11]. In [12] it was shown that the equations
obtained from BG can be mapped to Port-Hamiltonian System
(PHS) formulations. The PHS formulations preserve the energy
exchange between storage, dissipation, source and junction
structures. The derivative of the state as well as the associated
output of the system are given from the following generic
expressions:

$=[I@ R + g

Q)
y=e @
ox
where H(g,p) is the total energy stored in the system on the basis
of the system’s conjugate variables, x is the state variable,  and
v are the power variables of the input and output ports, g(x) is
the output vector, J(x) is a skew-symmetric matrix representing
the interconnection structure which is power conserving and
R(x) is the dissipation structure symmetry matrix. The
derivation of ISO PHS from nonlinear BG with memristor
elements extends the formulations presented in [8], after
assuming that all the storage elements are linear and have only
integral causality assignment. Using (4) and assuming BG

variables, the total energy H(g,p) is given from Zi:z,(r).
X

Substituting into (3), it follows that the above expression can be
split into a skew-symmetric component J (where JT=-/), and a
symmetric component R. These two components can be re-
written in terms of the BG formalism: Equation (3) is solved
accordingly with and without a memristive element so that:

W =FS,, +BS,,HS,, + S,,HS,,EP"'F, + S,,EF, ©)
Wy =W+ |2 ©

v
Wee =W - (] J/z ©

where W, and W, represent the symmetric and skew-

symmetric part of (5) respectively. The resulting expression
from (3) contains the memristance M, so the symmetric and
skew-symmetric parts associated with this component are given
from:

War = —PyS11 — PaS12HS)1 + S1oHS 34 BFy + B S13M ()53,

1 3M(x)S3,EF; + Sy3M (x)S34EF, + S),EF, ®
Wigsy = [WM + [T } /2 ©)
Wi st = |:WM o [WM]T }/2 (10)

Combining symmetric parts in (6) and (9) into a single R(x)
term and skew-symmetric parts in (7) and (10) into a single
expression for J(x) after also incorporating submatrix S, it
follows that the system equation matrices in (4) are:

JO=P Wt P Wysa (n

R@)=—P Wy, +P Wy, 12)

g(x) = P[S,HS,,EF, + PS,HS,s + S;;M (x)S,,EF, + )
PS M(x)S, + S, EF, + PS,.]



IV. ISO PHS MODEL FORMULATION: BOOST CONVERTER
EXAMPLE

As an example we follow the bond graph representation of the work
by Markakis et al., [7], who proposed bond graph representations of a
boost DC-DC converter. In the current example, however, a modified
circuit with a memristive element in the place of the original resistive
element is used. Furthermore, the derivation of the ISO PHS model is
shown.
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Fig. 2 (a) Boost convertor model and (b) corresponding Bond
graph assuming integral causality.

The associated junction structure matrix is:

1o 0 10 o o 1”7
&

gl 10 0 0 -1 0 mm O e“
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The constitutive relations are: M (x)=1/M(#,). L=R,

1/R 0 ) .
E={ OO" R } The ISO PH matrices for the memristive
d

boost converter are derived using equations (6-12):
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2.2 2 2252 2
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Ron Rd

Substituting these expressions in (11), (12) and (13), a full state space
description of the dynamics of the switching memristive network can

be obtained.

V. CONCLUSIONS

We have discussed the representation of the switching action
of a simple memristive circuit in Bond Graph form. The
associated circuit dynamics of the system were derived using
ISO PHS formulations. The state space solutions offer a
mapping of possible control action in a multitude of physical
domains. We have also placed these formulations within the
context of sensor networks. In cases where descriptor
representations of complex networks arise, these may be further
converted to state space form using an extension of the shuffle
algorithm [13].
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Abstract—Under the designing of networks to incorporate both
sensing as well as switching/control action. The need for control
action may arise in different physical domains. Bond graphs are a
useful tool which provides modeling of multiple processes that
simultaneously take place in different physical domains. The
current work discusses the need to develop mathematical models
of the dynamics associated with non-linear sensing and actuation
processes that may take place in several physical domains. As
many control solutions are designed in state space, Input-State-
Output Port-Hamiltonian (ISO PHS) formulations are the best
tool to describe the associated dynamics of the elements in a
network. Non-linear switching action can be emulated using
memristive devices. This contribution, therefore, focusses on
translating bond graph representations accounting for energy
exchange across different ports in a network, where the
transduction processes take place in a multitude of physical
domains. As an example, the ISO PHS of a bond graph of a
memristive element embedded in a simple switch circuit is
presented. The work is of general interest to the sensors
community and has applications in the design of sensor networks.

Keywords—memristors; Bond Graph; port-Hamiltonian; non-
linear control switching;

L INTRODUCTION

The addition of memristor (memory-resistor) as the fourth
element in electronics became one of the researcher interests,
since the element predicted by Leon Chua [1] and then the
development of the first physical Nano device at HP Labs in
2008 [2]. With relating magnetic field (¢) and charge (g), and
the unique characteristics of a memristor as the pinched
hysteresis loop, nonlinear behaviour, and a totally dissipative
behaviour, set rationale for considering memristive components
in circuits as dynamic elements [3]. These properties were very
useful for augmenting the capabilities of Bond Graph (BG)
modelling[4], as Oster [5] proposed to integrate the memristor
as a bond graph element in that framework. One of the
advantage of using BG theory is that energy in different physical
domains can be simultaneously analyzed using the same
methodology as physical systems modeled using energy and
power alone.

Since memristor elements behave nonlinearly with totally
dissipative behavior, in a BG framework, the dissipation field
need to be considered as a combined two dissipative parts, a
linear one for the resistive behavior (R) and a nonlinear one for
memristive behavior (M). The non-linearity in the dynamics of

the system caused by the memristor elements is derived in state
space form using an ISO PHS formulation, which preserve the
process of energy exchange between storage, dissipation, source
and junction structures. Both PHS and BG representations share
the same fundamental postulations making inter-conversion
between the two formulations possible. The equations obtained
from BG can be mapped to Port-Hamiltonian System (PHS)
formulations as in [6]. Besides that, memristors also have been
discussed within a port-Hamiltonian framework by Jeltsema [7].

The focus of the current work. In addition, to proposing a
direct formulation of ISO PHS from the BG for memristive
systems, this framework will be extended to include systems
defined as hybrid, which contains both continuous states as well
as discrete phenomena [8] such as switching systems, which will
be analysed in this work. Several methods have been suggested
and reviewed for representing hybrid systems using bond
graphs, as mentioned by[9][10].

Modelling of switching circuits in bond graph was presented
in [11] is a DC-DC power converter. There are applications
where the converters are required to operate in the operation
modes [12][13]. A combination of a Modulated Transformer
with a binary modulation ratio and a resistor (MTF-R) method
is employed to represent the operation of a switch. This method
has been proposed by [14][15] and leads to a fixed causality
bond graph model .Such a model s suitable for control strategies
with direct Boolean control inputs like” Sliding Mode Control”
[16]. DC-DC power converter circuits are build up with diodes,
and the operation of the diode will be represented in the
following sections.

The novel contribution of this paper is the use of the MTF-R
method to derive a unified model valid for DC-DC power
converter consists of memristor elements. Then the non-linearity
in the dynamics of the system is derived in state space form
using an ISO PHS formulation in bond graph terms. The derived
system dynamics may provide additional information regarding
the states within any switching network and also of relevance to
the modelling of power dissipation in sensor networks.
Furthermore, the model is implemented with the mathematical
models for three converters topologies of a: Boost converter,
Buck converter, and Buck-Boost converter.



II.  Dc-Dc CONVERTER MODELLING USING BOND GRAPHS

The DC-DC converters are suggested to be modelled by
bond graphs using the MTF-R method to model switches [17].
According to the method of bond graph, Modulated Transformer
(MTF) elements with Binary modulation ratio is combined with
a resistive element R,, to exhibit the operation of a switching
device. With reference to Fig. 1, if the modulation index of the
modulated transformer is set equal to one m=1, the power is
dissipated through the resistor R,.. The R,, value is chosen to be
small and can represent the resistance of a switch when it is
closed-ON ’. In this case, the MTF-R combination provides the
flow information, £, to the rest of the system, as it is described

by eq.(1).
2 e
fizmfy=m A= o= =" (g —ey) ey

B Bon R,

1 2
— —
Fig. 1 Bond graph model of a switch implemented by MTF-R method[11]

When the modulation index of the transformer is set to be
equal to zero, m=0, a zero flow is implied to the rest of the
system. In that case, the operation of an open switch-OFF is
realised, where no current is allowed to pass. The ratio (m / R)
shows that the conductance of the switch is high when the switch
is ON and is zero when the switch is OFF. With reference to R,
the causality of R,, remains fixed during the commutation and it
1s named as Conductance Causality.

A diode is commonly modelled as a switch and assumed to
operate complementary to the actual switch in a single-switch
DC-DC converter as for an example the boost converter circuit
shown in Fig.4. Such a representation may lead to erroneous
models. For instance, the inductor current in a conventional DC-
DC converter with one switch and one diode is restricted by the
diode to remain above zero. However, the representation of a
diode using a bidirectional switch model will permit the inductor
current to go below zero resulting in steady-state as well as
transient response. Also, if the switch and diode are assumed to
operate complementary then it will not be possible to represent
the switch and diode where they are OFF for a portion of the
switching cycle. The MTF-R method allows for a more accurate
representation of the diode independent from the main switch.

RO”Z

MTF:1/m Ae>0

|

—N o —

Fig. 2 Bond graph model of a diode implemented by MTF-R method[11]

This paper uses a control loop external to the Bond Graphs
model is established, as shown in Fig.2 [15]. The control loop
compares the effort between the shared bonds of the diode
Junctions. With reference to Fig.2, when the difference of the
effort e = ¢ —e, , passes a specific threshold, e.. the

modulation ratio of the transformer becomes equal to one as can
be tracked in eq. (2).

_ {lg'fAe > ey, @

0if Ae < ey

The effort across the junction is internal to the system control
loop. Therefore, the obtained model of Fig.2 as defined by
Borutzky (2012) is a model with Internal Modulation. Following
this definition, the flow information provided by the model of
the diode to the rest of the system is a function of its flow and
effort and it is not outlined by any external control. The
operation of a conventional DC-DC converter passes into
different modes of operation for further details of theses modes
please refer to[11].

III. BOND GRAPH OF A SWITCHING MEMRISTIVE ELEMENT

Memristors [18][2] display both a dissipative behavior at a
region of operation as well as a non-linear behavior at another
region of operation. This non-linear behavior gives rise to a
characteristic pinched hysteresis loop in their current-voltage
characteristic. In previous work in circuit analysis and modelling
by Paynter (1959) it was suggested that physical systems can be
modeled using energy and power alone[19]. The advantage of
using BG theory with memristive elements is that energy in
different physical domains can be simultaneously analyzed
using the same methodology.

Bond Graphs (BG) have been developed to represent the
continuous flow of both power and energy exchanges within the
components of a system. A particularly attractive aspect of these
formulations is that both continuous states as well as discrete
phenomena can co-exist within this unified framework. As
discussed by Oster [5], circuits that consist of memristive
elements can also be analysed using BG modelling. Since
frameworks with memristive components act nonlinearly in a
BG structure, one needs to consider two dissipative parts, a
linear one for the resistive behaviour (R) and a nonlinear one for
the memristive behaviour (M).

In BG theory, power is the result of the product between
effort e(¢) and flow f{¢). Flow and effort variables at all the ports
of the network are described using the causal bond graph
methodology. The causality concept is used to assign the
direction of power-conjugated input-output pairs [4]. As
discussed in [20], a BG general structure is composed of
dissipation fields that can be splits into two parts (linear and
nonlinear), storage fields (C and ), source fields associated with
effort and flow (S. and Sy, and junction structures (denoted by
JS) containing transformers 7F and gyrators GY and with the
exitance of switches [17]. The causal bond graph of a switching
circuits with memristor element is shown in Fig. 3.
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Fig. 3 Structure of a causal bond graph

where x(¢) is the state vector in integral causality, x,(t)
contains the energy variables in differential causality, z (¢)
and z,(¢) contain the co-energy variables associated to x; and
x,, D (tyand D!(¢) are the linear input and output vectors
containing the power variables entering and exiting from
dissipative fields with resistive behaviour (R), D¥(t)and D (%)
are input and output vectors containing the power variables
entering and exiting from the memristive field (M),
7, and T, are vectors containing the power variables going
into and out of the junction structure from the switches and u
contains the effort and flow variables imposed by the sources
(S. S

In this generic structure of a causal bond graph, dissipation
is seen as composed of input and output variables. The
dissipation variables consist of two types of elements: linear
and nonlinear. Similar type expressions can be developed to
model memristive dissipative elements using the BG
framework after assuming the following general junction
structure shown in (3). Internal and external vectors can be
related using the following interconnection matrix:

() z()
: Sir Sz S13 S Sis ||y
Do D,®
N |Sa1 Sy 00 Sy Sas DM () 3)
7
D7 (1) S;;1 0 0 S34 Sss ;(t)
Lo Sy Sz Sz 0 Sys utz 3

The constitutive relations of the elements in the derivation of
a system containing linear storage elements are:

z.(t) = Fx, (), D.(®) = LD), DY () = M) DY (), T,(t) = ET.(t)

where x(¢) is an integral causal input variable, 7,(#)and T (#) are

the input and output power variable from the switches, u are the
output variables and M(x) denotes memristance. Substituting
these constitutive relations into (3), it follows that:

x,(9)

f‘z[(’) SuF Sl SpM SuE Sis | oo
1
D;l(t) B S5l 0 SuE S DM () @
I
D@ | S 0 0 S3E Sss LO®
7@ Saf Spple SpsM 0 Sys ul(t)

By solving (4) for x(¢), the following expression is derived:
&(0) =[Sy + S1oHSyy + S12HS 3y EP™'Fy + Sy3M (x)S3, +
SysM (x)S3,EPTYF, + 8y, EP YR |Fx () +

)
[S1,HS 4 EP™IF, + 8, HSy5 + S;5M (x)S3,EP'F, +
SysM (%)S35 + S14EP 7y + 8 5 Ju(f)
where H = L(I - S,,L) Y, P! = (1~ S4,HSp4E — Sy3MS3,E),
A 5
Fy = (Sgq+ SqaHSyy + S43MS31),  Fy =(SypHSys + SyzMS35 +Sy5).
pAL TR T S

F F

3 4
Equation (5) is a state space equation in the general form.

IV. PORT HAMILTONIAN OF A SWITCHING ELEMENT

State space models of the circuit dynamics are made
possible by adopting an ISO-PHS formulation, directly from
bond-graph analysis [6][21][7][22]. In [23] it was shown that
the equations obtained from BG can be mapped to Port-
Hamiltonian System (PHS) formulations. The PHS
formulations preserve the energy exchange between storage,
dissipation, source and junction structures. The derivative of the
state as well as the associated output of the system are given
from the following generic expressions:

i=[J(x) —R(x)]%(x) +g(xu

6

y=d @ ©

Ox

where H(g,p) is the total energy stored in the system on the basis
of the system’s conjugate variables, x is the state variable, z and
y are the power variables of the input and output ports, g(x) is
the output vector, J(x) is a skew-symmetric matrix representing
the interconnection structure which is power conserving and
R(x) is the dissipation structure symmetry matrix. The
derivation of ISO PHS from nonlinear BG with memristor
elements extends the formulations presented in [6], after
assuming that all the storage elements are linear and have only
integral causality assignment. Using (6) and assuming BG

variables, the total energy H(q,p) is given from %:z,,(t).

Substituting into (5), it follows that the above expression can be
split into a skew-symmetric component J (where J'=-J), and a
symmetric component R. These two components can be re-
written in terms of the BG formalism: Equation (5) is solved
accordingly with and without a memristive element so that:



W =P\, +RS,,HSy +S,,HS,.EP"'F, + S,EF, (7
I

W, = [W+[W] } /2 o)
7

W= w-[] |2 ©

where 7, and 7, represent the symmetric and skew-symmetric

part of (7) respectively. The resulting expression from (10)
contains the memristance M, so the symmetric and skew-
symmetric parts associated with this component are given from:

Wi = —PaS11— PaS12HS ) + S1oHS 3 EFy + RS13M (x)S3;

+ S13M (X)S34EF; + S3M ()83, EF, + S14EF, 0
W™ [WM + [WM]T}/Z (an
Whsk = [WM - [WJVI]TV2 a2

Combining symmetric parts in (8) and (11) into a single R(x)
term and skew-symmetric parts in (9) and (12) into a single
expression for J(x) after also incorporating submatrix Sy, it
follows that the system equation matrices in (6) are:

JX)=P Wy +P W (13)

R(x)=~P Wy + P W g, (14)

g(x)= P[S,HS,,EF, + PS,HS,. + S, M (x)S,,EF, + a5
PS M(x)S,,+8,,EF, + PS,]

V. ISOPHS FORMULATION OF DC-DC CONVERTER WITH
MEMRISTOR ELEMENTS USING BOND GRAPHS

In conventional DC-DC converter topologies, a switch
and a diode are connected either in parallel or in series. Using
bond graphs MTF-R method, a causality conflict occurs at the
Junction where the two components are connected. To solve this
causality, conflict an additional resistive element (R,4) is added
as suggestfad by[14]. The causality on that additional resistor
remains fixed during the commutation. This additional resistor
in combination with the resistive elements of the switch and the
diode does not allow the denominators of the first derivatives
of the state variables to be zero when both switch and the diode
are OFF, mi=my=0. Therefore, no singularity occurs in their
equations when the converter operates.

A. Boost converter Example:

As an example we follow the bond graph
representation proposed of a boost DC-DC converter by
Markakis et al,, [17]. However, in the current example, a
modified circuit with a memristive element replacing the
original resistive element is modelled. Furthermore, the
derivation of the ISO PHS model for the Boost convertor circuit
as shown in Fig.4a the corresponding bond graph with the
assumed integral causality is shown in Fig.4b:
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MTE: 1/
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Fig. 4 (a) Boost convertor model and (b) corresponding Bond
graph assuming integral causality.

The associated junction structure matrix is:

(221 [0 0 -1 0 0 0 1] f
gyl [0 0 0 -1 0 m oOf M
€6

Je| |1 0 0 —m -my O P
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e 0 -my my, 0 0 0 0|
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where:
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The constitutive relations are:

0
mJ’S“ =[-m —m].
M(x)=1/M(f), L=R,

E:F/R”" 0 } The ISO PH matrices for the memristive

0 1/R,
boost converter are derived using equations (7-15):
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Substituting these expressions in (13-15), a full state
space description of the dynamics of the switching memristive
network can be obtained.



B. Buck converter Example:

A modified circuit of the proposed bond graph
representations for a Buck DC-DC converter [17], by replacing
the resistive element with a memristor element is shown in
Fig.5a. it is used to derive the ISO PHS model for that convertor
circuit and the corresponding bond graph will be as shown Fig.
5b with the assumed integral causality.

'

QE D]_

(@ R ®

Fig. 5 (a) Buck convertor model and (b) corresponding Bond
graph assuming integral causality.

The associated junction structure matrix is:
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The constitutive relations are: M(x)=1/M(f). L=R,
/R, 0 . .
=" 4 VR, | The ISO PH matrices for the memristive

buck converter are derived using equations (7-15):
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Substituting these expressions in (11), (12) and (13), a full state
space description of the dynamics of the switching memristive
network can be obtained.

C. Buck- Boost converter Example:
The third topology is the buck-boost DC-DC converter as
shown in the circuit diagram in Fig.6a. and the corresponding
bond graph after the resistor R, is added to resolve the causality
conflict is shown in Fig.6b. In the current example, however, a
modified circuit with a memristive element in the place of the
original resistive element is used.
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Fig. 6 (a) Buck- Boost convertor model and (b) corresponding
Bond graph assuming integral causality.

The associated junction structure matrix is:
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The constitutive relations are: M(x)=1/M(f,). L=R,
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d

Buck- Boost converter are derived using equations (7-15):
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Substituting these expressions in (13-15), a full state space
description of the dynamics of the switching memristive
network can be obtained.

VI. CONCLUSIONS

We have discussed the representation of the switching action
of a simple memristive circuit in Bond Graph form, a
mathematical model this modified conventional DC-DC
converters with one switch and one diode has been extracted via
Bond Graphs. The associated circuit dynamics of the system
were derived using ISO PHS formulations, the state space
solutions offer a mapping of possible control action in a
multitude of physical domains. The operation of a switch is
represented by the MTF-R method, allows the switches
participating in the system to operate without any correlation
between them and the diode. The new modelling method has
been implemented in three different converter topologies, Boost,
Buck and Buck-Boost, and their behaviour is evaluated through
their vector fields. We have also placed these formulations
within the context of sensor networks. In cases where descriptor
representations of complex networks arise, these may be further
converted to state space form using an extension of the shuffle
algorithm [13].
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