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Abstract 

 

The discovery of flux controlled memristors (Memory Resistor) by Leon Chua in 1971 as 

the missing element relating flux to charge, opens up possibilities for the development of a 

novel class of dielectrics over the coming years. With memristive components there is a 

departure from linearity; and components exhibit nonlinear characteristics. These properties 

enable the memristive elements to be used for the successful modeling of a number of physical 

devices and systems. The Bond Graph is one of graph theory modeling techniques, whose 

graphical description directly reveals the allocation and management of energy in the system 

(storage and dissipation) as well as the interconnection structure through which internal and 

external power exchange occurs via power ports. The graphical expansion of bond graph with 

the causal relationships among the system variables leads into a formulation of different types 

of mathematical models such as Port-Hamiltonian Systems. Incorporation of memory based 

elements leads to circuits with far more complex behaviour than normal dielectrics display. 

System dynamics may be studied using differential algebraic models arising from descriptor 

representations of the derived Port-Hamiltonian systems through Bond graph analysis.  

A derivation of unique generic Input-State-Output Port-Hamiltonian (ISO PHS) 

formulation from Bond graph representation of memristive circuits is proposed, which is 

suitable for simulation as well as providing engineering insight through analysis. In the 

proposed framework, the dissipation field splits into resistive and memristive parts in order to 

derive the Input-State-Output Port-Hamiltonian expressions and discuss different classes of 

systems of the proposed framework. Applications of the generic bond graph ISO PHS 

formulation using case studies with a memristive element are presented as examples of the 

proposed analysis. Consistency of the formulation is shown with transfer function formulations 

as well as with hybrid systems modelling. The nonlinear bond graph port-Hamiltonian 

methodology has applications in nonlinear network analysis and enables the formulation of 

input-output models of complex components embedded in non-linear circuits and systems. 
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 INTRODUCTION 

 

 

 

1.1 Background  

 Modelling and simulation are of fundamental importance to the engineering design 

process. Design engineers need to provide an accurate mathematical description of systems 

with adequate flexibility in their specifications to expedite the design process. Most frequently, 

the mathematical models of systems contain different hardware components. The ability to 

accurately model these types of systems is therefore a necessity within the engineering 

community.  

 In standard R, L, and C system analysis, voltage and current vectors satisfy linearly 

independent relations (Kirchhoff’s voltage and current laws). There is also a single variable 

relation between flow (current), effort (voltage), generalized momentum (flux) and generalized 

displacement (charge); these are related by an analysis method called Bond Graph theory (BG), 

which provides a domain-independent graphical description of the dynamic behaviour of 

physical systems. The approach enables systems from different domains (electrical, 

mechanical, hydraulic, acoustical, thermodynamic, material) to be described in the same 

framework. Bond graph analysis is based on energy and energy exchange.  

 Port-Hamiltonian system is a framework that provides the geometric description of 

network models of physical systems. It turns out that port-based network models of physical 

systems immediately lend themselves to a Hamiltonian description. There has been a relatively 

recent interest in port-Hamiltonian  systems and  their  connection with  bond  graph models.  
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 There are additional variables associated with memory-based circuits. The discovery of 

flux controlled Memristor (Memory-Resistor) by Leon Chua in 1971 as the missing element 

relating generalized momentum with generalized displacement promises the development of a 

new class of novel nano-dielectrics over the coming years. The memristor properties 

incorporation in circuits containing R, L and C components leads to circuits with far more 

complex ‘emergent’ behaviour than normal dielectrics display. From a modelling perspective, 

such circuits can also mimic dielectric responses of biological materials such as dielectrically 

excited membranes and neurons. Owing to the non-linearity associated with the response of 

memristive components, their dynamics need to be studied further. Using differential algebraic 

models arising from descriptor representations derived from Bond Graph analysis associated 

with the underlying circuit topology is the focus of this project. 

 

1.2 Statement of Problem 

The Hamiltonian structure offers a systematic approach for the analysis of the resulting 

dynamics[1]. A unifying geometric and compositional framework for modelling complex 

physical network dynamics as port-Hamiltonian systems from bond graphs was presented in 

many research studies, as mentioned in the literature and as illustrated in Figure 1.1. This 

combination with graph theory, and its applications in control theory systems is a very 

promising way forward for further research. On the other hand, an extension of the existing 

port-Hamiltonian formalism with the inclusion of generalised memristive elements is proposed 

also by many researchers such as Jeltsema [2]. Besides being a resistive element, a memristor 

also exhibits dynamics, and as a result, the state space manifold is augmented by the states 

associated with the memristive elements.  

The view that there are physical phenomena that justify the introduction of a memristor 

to be added to the small set of fundamental bond graph elements has not been shared by most 

members of the bond graph community. Furthermore, as the literature shows, many studies 

have been conducted using the memristor as a port-Hamiltonian element. In addition, several 

studies as mentioned in next chapter propose the use of the port-Hamiltonian formalism for 

generalised bond graph analysis. However, there has been to the author’s knowledge, only one 

study mentioning the memristor as a bond graph element[3], without presenting an explicit 

formulation. This work will focus on providing this connection between memristive elements 



 

 

3 

 

Port-Hamiltonian 

System 

Port Hamiltonian Formulation Of 

Memristive Systems Using A Bond 

Graph Analysis  

 

Memristor 
Bond Graph 

Analysis 

Derivation of  

Port-Hamiltonian from  

Bond Graph  

Port-Hamiltonian with 

Memristive Elements 

Figure 1.1 The connection between Memristor, Bond graph and Port Hamiltonian 

formulation (aim of research) 

particularity memristor devices and bond graph modelling as one of the bond graph 

fundamental elements with port Hamiltonian formulation to formulate the resulted descriptor 

equations. The work bridges the gap between causal bond graph formulations and port-

Hamiltonian formulations of nonlinear systems with the presence of the memristive behaviour. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 shows that previous research was conducted to describe the memristor as a port 

Hamiltonian element and also the studies to extract port Hamiltonian formulation from bond 

graph modelling are considered sufficient in a certain way. However, there is a lack-of 

connection between bond graph and memristive elements; to be able to analyse the memristor 

in a new domain. 

 

1.3 Study Aims 

The project aims are to introduce a new method to analyse memory-based circuit elements 

using a bond-graph approach. The proposed methodology will be able to directly obtain 

mathematical description for memristive systems enabling behavioural simulation of 

memristors in an object-oriented manner. Thus, the next question is how we could adopt the 
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developed bond graph in control theory as bond graph depends on the power flowing in the 

structure. So, the next aim is to express the resulting output into state space models and extract 

Input-State-Output port Hamiltonian formulation models as energy. The power flow is a 

common variable with the bond graph, which can be used to gain a better understanding of the 

system behaviour.  

 

1.4 Research Objectives  

The following objectives were set at the beginning of this study:  

1. Carry out a survey of the current literature on memristive elements and the different circuit 

analysis for analyzing memristive systems, in particular bond graph approach; and then, to 

discuss the ability to formulate the output in the port Hamiltonian formulation. 

2. Find solutions to networks consisting of complex interconnections of both conventional and 

memory-based circuit elements. 

3. Derive a formulation of the memristor as a bond graph element, assuming that the storage 

elements are linear and in integral causality. 

4. Attempt to design a simulation library using the SIMULINK/MATLAB programming 

environment, to simulate the bond graph analysis using memristive elements. 

5. Derive port-Hamiltonian system equations from bond graph analysis, to be used to model, 

analyse, and simulate memristive networks. 

6. Investigate the advantages and limitations in the non-linear formulation of bond graph 

analysis and Port-Hamiltonian systems using different system classes. 

7. Derive transfer function for memristive system from bond graph. 

8. Derive a generic formulation of descriptor for the memristive bond graph and the resulted 

port Hamiltonian expression without any assumptions to explore different types of systems. 

9. Explore some new application areas of memristive networks, their use as memory elements, 

as classifiers, as elements to emulate the function of superconducting circuits and as models 

of neuromorphic circuits. 

10. Formulate an expression for hybrid memristive systems with application. 
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1.5 Contribution of The Thesis 

There are several novel aspects presented in this thesis: 

• The use of memristor device as a bond graph element and propose a new system junction 

structure.  

• Derivation of a new state space expression of memristive system from bond graph. 

• The adaptation of the resulted nonlinear bond graph into port Hamiltonian formulation. 

• The work bridges the gap between causal bond graph approach and port-Hamiltonian 

formulations of nonlinear systems with the presence of the memristive behaviour. 

• The use of the proposed junction structure matrix in deriving transfer function for 

memristive system using bond graph. 

• Attempt at linearizing non-linear memristive bond graph. 

• Building a bond graph library by adding memristor building block. 

• Derivation of an expression for hybrid sytems that consist of memritor devices including 

the use of controlled junctions. 

• The unique, implicit or explicit system equation derived from the memristive bond graph 

and describing different system classes.  

 

1.6 Thesis Outline 

 This thesis is structured around six main topics: Introduction, literature review on 

memristor foundation, bond graph analysis approach and port-Hamiltonian formulation 

background, the provision of new investigations into using bond graph algorithms within 

memristive systems, the analysis of results and their formulation into port-Hamiltonian 

framework then applying it to case studies, and finally the generation of conclusions and the 

provision of directions for future work. The chapters are organised as follows: 

Chapter1 gives a brief research background about the problem and discusses the methods 

adopted to do the research. The aims and objectives of this research are presented in this chapter 

as well. 

Chapter 2 presents a literature review, which focuses on some previous studies related to the 

development of memristor theory and manufacturing as well as current simulation 

environments. Moreover, some information related to bond graph analysis, the foundations, 
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generalisation, and relevance to simulations is provided. This approach further examines the 

possibility of using the Port-Hamiltonian system formulation to simulate memristive systems. 

The derivations from bond graph are mentioned in this chapter, relating memristor 

representations with bond graph and port-Hamiltonian formalism discussing a simulation 

environment using MATLAB/Simulink for simulating memristors. 

Chapter 3 focuses on the theoretical proposal of memristive elements by Leon Chua, then a 

review of some previous studies related to discussing the features of memristive elements. It 

will be followed by a short list of some unique properties as well as a few applications to justify 

the significance of the element to be incorporated into the circuit analysis.   

Chapter 4 gives a background to the current methods, used to analyse memristor systems, 

reviewing various circuit analysis methods such as standard methodologies (Nodal and Mesh 

analysis). Following these methods, an introduction is given to the state-space formulation and 

some modern development based on port theory. As bond graph analysis is a unified platform 

for all physical systems, that will be used to adopt memristor as a bond graph element. Then, 

the theoretical and technical background of the proposal is introduced for incorporating 

memristor in bond graph and introducing unique Junction structure matrix for such nonlinear 

systems. After this, a linearization attempt on the resulted bond graph will be discussed as well. 

Furthermore, a new proposal is introduced to calculate directly the transfer function for 

memristive systems as an important part of control theory. Finally, a memristor mathematical 

model in MATLAB/SIMULINKTM  is built  that enables the study of the dynamic behaviour of 

a memristive system within bond graph environment. 

 Chapter 5 introduces the Dirac structure representation of port-Hamiltonian systems to obtain 

the basic idea of modelling the port-Hamiltonian system. Then the possibility of using the Port-

Hamiltonian system formulation is examined for simulating memristive systems and the 

derivation from bond graph, relating memristor representations with bond graph and port-

Hamiltonian formalism. An expression is then defined describing Input-state-output port-

Hamiltonian systems (ISO PHS) with memristive elements using a nonlinear BG formulation 

with application in two case studies. 

Chapter 6 presents in more detail the theoretical consideration of implicit and explicit states 

space model descriptors. This chapter proposes a new method for constructing a system with 
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memristive elements in bond graph modelling platform. The generic nonlinear bond graph of 

systems with memristive elements is then investigated without any assumptions to reduce the 

mathematical complications. This is used to derive an explicit equation describing all possible 

modes of operation to obtain models in the form of Input-State-Output Port-Hamiltonian 

Systems from causal nonlinear bond graph models. Furthermore, six different classes of 

nonlinear memristive systems are explored to obtain state space formulations and then extract 

port Hamiltonian expressions for most of the classes.  

Chapter 7 presents several case studies to practically demonstrate the proposed bond graph 

method presented in the previous chapter, and show that a memristor has a natural place in bond 

graph circuit analysis. The proposed approach is investigated in the neuromorphic field by using 

Hodgkin-Huxley neuron model, and linear integrated circuits presented by operational 

amplifier circuits, as well as Josephson junction as a sensor building block. A proposal of the 

non-linear gains and loss diodes in dielectric circuits can be replaced with memristor elements 

and apply the analysis, using memristive circuits with a gyrator, and the effect of memristor in  

a circuit with coupled resistors. In this chapter, also a general hybrid bond graph with memristor 

is investigated as a further area for study. 

Chapter 8 provides a summary of the project’s outcomes and some concluding remarks. 

Moreover, recommendations for possible further developments and future work are mentioned.  

 



 

8 

 

 

 

 

 LITERATURE REVIEW 

 

 

 

2.1 Introduction 

This research brings together several fields and ideas and consequently a variety of topics 

that were reviewed in the literature. Circuit analysis methods are briefly reviewed as the 

foundation for the chosen bond graph method used for constructing a systems model in the 

current work. Then the foundations of the bond graph, the development and simulation software 

are reviewed in some detail. As this work bridges the gap between memristor elements with 

bond graph, the discovery of memristor elements is then addressed. The attempts of 

manufacturing different device that claim to be as close as  Chua memristor behaviour is stated, 

with software simulations that mimic the memristor characteristics. The incorporation of bond 

graph methodology with memristors will be analysed according to its energy and how it will be 

formulated in the form of port-Hamiltonian formulation. The origins of this formulation and its 

connection with bond graph from one side and with memristor in the other side will be reviewed 

next.   

This research, however, focuses on memristive system analysis using bond graph and the 

resulted output formulated in port-Hamiltonian equations, that can be extracted directly from 

bond graph, itself. This shows that as far as the author knowledge there is no research done in 

that field. 

 

 



 

 

9 

 

2.2 Circuit Analysis 

 It is generally accepted that circuit theory started with the formulation, of Gustav 

Kirchhoff’s current and voltage laws in 1845. This general formulation establishes stability 

conditions of the currents and voltages that occur in a circuit. The innovative efforts, in the 

early 1800s, of Volta, Ampère, Ohm, Faraday, Henry, Siemens, and later Maxwell led to rules 

that outline the current-voltage relations of circuit elements, which at that time were the resistor, 

inductor, and capacitor. Kirchhoff’s laws, together with the definitions of circuit elements, 

constitute the foundation of circuit theory. Everything about circuits: analysis methods, analytic 

properties, theoretical limitations, design techniques, can be derived from first principles based 

on these laws and definitions. In 1881, Maxwell, put circuit analysis within a more 

mathematical foundation. He introduced node equations and mesh equations to define circuits 

by a set of maximally independent linear equations. Gilbert [4] was perhaps the first to introduce 

the new approach to oil and gas wells, but Mach, Proano, and Brown [5], and then Brown [6] 

popularised the concept, this is now typically referred to as nodal analysis within the oil and 

gas industry. Though mesh equations are applicable only to planar circuits, node equations with 

the modification that came later, can be used to describe any circuit and are the ones adopted 

in all circuit simulation programs today. This approach is currently known as modified nodal 

analysis. As circuits grew in size and complexity (at least by 19th century standards), the idea 

of “equivalent” circuits as a means to simplify circuit analysis became attractive. Thévenin 

showed in 1883 that a linear circuit across a pair of terminals, can be represented by an 

equivalent circuit involving a single voltage source in series with a resistor or an impedance.  

 In 1926, Norton extended the idea for a new representation consisting of a current source 

in parallel with an impedance to compute the transient response of circuits when the excitation 

is a pulse. Heaviside, in 1880-87, introduced operational calculus, which led to the 

representation of voltages and currents as complex variables as alternating current became the 

standard mode of generating and distributing electricity at the turn of the 20th century, 

Steinmetz came up with the idea of using complex numbers to represent voltages and currents 

in the sinusoidal steady state. The concepts of impedance, transfer function, magnitude and 

phase enabled, and circuits to be analysed entirely in the frequency domain using complex 

algebra. Inspired by Brune’s work, Darlington in 1939 derived the necessary and sufficient 
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conditions for a rational function to be realizable as the transfer function of a lossless two-port 

terminated in a one-ohm resistor. 

  The nonlinear circuit theory is more recent, and has at its centre the properties and the 

study of non-linear devices as well as the development of new analytical techniques.  Efforts 

have been made to develop computational algorithms to simulate and design very-large-scale 

integrated (VLSI) circuits, both small-signal and large-signal, linear and nonlinear. The 

popularization of the personal computer, the Internet, the cellular phone and personal 

entertainment devices, owes much to the work of circuit theorists who developed efficient and 

reliable computational tools to help engineers design complex circuits that ‟work the first time”. 

The next frontier, as far as circuit theory is concerned, seems to be the design of circuits that 

operate in the GHz or even Terahertz (THz) range, and the harnessing of properties of nonlinear 

circuits in a more systematic manner. 

 

2.3  The Memristor (Memory-Resistor) Element 

2.3.1  History on The Memristor Discovery 

  There are only three independent two-terminal passive circuit elements: the resistor R, 

the capacitor C and the inductor L. However, when Leon Chua in 1971 introduced the general 

nonlinear mathematical relations describing the dynamics of this device, he put the basis for 

linking the charge q that flowed through a circuit with the flux φ in the circuit so that,  dφ = M 

dq  which is now known as the standard equation for the memory resistor or memristor. It is 

worth noting, however, that this concept was mentioned even before Leon Chua‘s publication 

on the Memristor in 1971, by Professor Widrow from the University of  Stanford [7], in 1960. 

He was the one who developed a new circuit element and named it the ―Memristor. A 

memristor is made from a device with three-terminals, two of them have a controlled 

conductance, with the control provided by a third terminal. In 1968, Argall published a paper 

with the title -‟Switching phenomena in titanium oxide thin films”[8], which shows similar  

results to that of the memristor model proposed by Stanley Williams and his team from HP lab 

forty  years later.  

 During the 1960's, Prof. Chua, from Purdue University established the first 

mathematical principles of nonlinear circuit theory. His work is considered to have led him in 
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1971, to make a prediction of the need for the introduction of a fourth fundamental circuit 

element [9], which is characterised by relating the charge and flux linkage with each other (there 

was no element linking them before that time). He introduced the concept that a 'memristive 

device' has a state variable (or variables), indicated by w, that describes the physical properties 

of the device at any time. 

 After this announcement in 1976, Chua and Kang published another paper entitled- 

‟Memristive devices and systems” [10]. That work takes a broader view to the theory of 

memristor and memristive systems by proposing a memristive elements family, which is 

extended to memcapacitor and meminductor elements. This approach exposed other 

behavioural characteristics of memristor but at that time this was just based on mathematical 

analysis that was not supported by the capabilities of the physical devices manufactured at the 

time.  

 About twenty years later, some efforts to manufacture a real memristor with regards to 

Chua’s Memristor theory was made in 1990 [11], by Thakoor et al., to establish a tungsten-

oxide variable-resistance device electrically reprogrammable. It is not clear if this memristor 

has any links with Chua‘s Memristor [9]. Then four years later, in 1994, Buot and Rajgopal 

published an article titled-‟Binary information storage at zero bias in quantum-well diodes” 

[12]. This paper recognised current–voltage features of the memristor in quantum-well diodes. 

It is currently believed that no straightforward relevance to Chua‘s memristor could be made in 

that work [9].  Beck  et al., of  IBM‘s Zurich Research Laboratory in 2000, defined a regenerated 

resistance switching effects in thin oxide films [13]. This memristor has the same hysteretic 

characteristics of these switches which are similar to the memristor proposed by Chua. 

 In 2001, Liu et al. [14], from the Space Vacuum Epitaxy Centre at the University of 

Houston, presented during the ‟non-volatile memory” conference held in San Diego, 

California, the significance of oxide bilayers to obtain high-to-low resistance ratio. Apart from 

each of the devices cited above, it is thrilling to spot that between 1994 and 2008 there were 

several devices developed with a function comparable to that of the memristor, but only the HP 

scientists were successful in bonding their work with the memristor hypothesized by Chua [15]. 

Currently manufactured memristive devices are based on the postulations found in the original 

work by Chua. It is also motivating to note that there are devices with similar behaviour to a 

memristor mentioned by Krieger et al., in 2001 [16], Liu et al., 2006 [17] ,Waser and Masakazu, 



 

 

12 

 

2007 [18], and Ignatiev et al., 2008 [19]. Other research groups have proposed different 

memristor implementations. Nearly few implementations follow a metal-insulator-metal 

(MIM) structure, such as in 2010 [20] another memristor device have been combined of two-

terminal chalcogenide based devices containing Ge2Se3 and Ag. While in the same year [21],  

a research was presented to model the memristor using the bipolar and unipolar resistive-

switching modes in NiO cells concept. After that, Hafnium oxide-based resistive memory 

devices on copper bottom electrodes was studied by [22]. Then in March 2012, a team of 

researchers from HRL Laboratories and the University of Michigan announced the first 

functioning memristor array built on a CMOS chip [23]. In 2017 [24] a demonstration of a fully 

foundry-compatible memristor, it is all-silicon-based and self-rectifying that negates the need 

for external selectors in large arrays with a p-Si/SiO2/n-Si structure. But before this year, a 

memristor with the simple structure of Ta/viologen diperchlorate terpyridyl-iron polymer (TPy-

Fe)/ITO is fabricated to simulate the functions of the synapse, which is considered as the basic 

unit for learning and memory. 

 

2.3.2 Memristor Foundation as Nano-Element 

  Thirty-seven years after Leon Chua‘s  proposal, in 2008 the memristor in a device form 

was manufactured by Stanley Williams and his team in the Information and Quantum Systems 

(IQS) Lab at HP. Dmitri Strukov, Gregory Snider, Duncan Stewart, and Stanley Williams, of 

HP Labs, published an article [25], identifying a connection between the two-terminal 

resistance switching behavior observed in nanoscale systems and Chua's memristor. They 

proposed the model that is described in detail in chapter three of this thesis.  Other types of 

memristor were claimed to be developed by other researchers, such as Erokhin and Fontana, 

who claimed to have developed a polymeric memristor [26] preceding the titanium-dioxide 

memristor developed by Williams‘ group.  

  Since the declaration of Williams’ group, many studies to examine the major features of 

the memristor and its applications in different circuit designs have been proposed. In 2009, 

Pershin and his colleagues published an article [27] recognising memristive behavior in 

amoeba's learning. A major breakthrough was made in January 2009, when Jo  et al., of the 

University of Michigan published an article [28] discussing an amorphous-silicon–based 

memristive material as having to be integrated within CMOS devices. Subsequently scientists 
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at NIST [29] reported that they had invented a non-volatile memory using a flexible memristor 

that is both inexpensive and low-power. This has catapulted the subject at the forefront of the 

21st century electronic revolution.  

 

2.3.3  Memristor Simulations 

 The literature on memristor models in various simulation environments has shown a similar 

growth in attention. Many memristor models have been written for simulation and 

characterization of memristor and memristor-based systems. Diverse programming 

environments and languages such as SPICE, Verilog-A, MATLAB, and Simulink have been 

used for these purposes. For example, in [30] [31] [32] [33] [34] [35] [36][37], SPICE models 

have been presented to capture simple behavior of the memristor. MATLAB and Simulink 

models are also presented in [38][39][40][41][42], enabling behavioural simulation of 

memristors in an object oriented manner. Verilog-A simulations have been presented in [41] 

[43][44].  In addition,  a few memristor emulator designs were presented in [45] [46] [42]and 

in MATLAB/simscape [47]. 

 

2.3.4  Incorporation of Memristors in Circuit Analysis 

 The analysis of circuits that combine memristive elements started after Chua published his 

paper in 1971 [9]. Lam, in 1972  presented a paper titled- ‟formulation of normal form 

equations of nonlinear networks containing memristors, and coupled elements” [48], he 

analysed RLCM network using Kirchoffe’s current law (KCL) and Kirchoffe’s voltage law 

(KVL). In 1979, Hajj and Skelboe, discussed a piecewise-linear network analysis for RLCM 

network [49]. Modelling of some semiconductor devices with large signal excitation was 

proposed by Sansern in 1979 in his doctoral thesis from Durham University. His model 

verified the capability of calculating diode behaviour by employing modified Bessel functions 

together with nodal analysis.  

 Thirty years later, Itoh and Chua in 2008 applied KCL and KVL laws on the circuit’s nodes 

and presented in state space form, a fourth-order canonical memristor oscillator [50].  In 2010, 

a modified nodal analysis was applied on nano-scale memristor circuits formulating the circuit 

into a first-order differential-algebra equations (DAE), by Yu and Fei [51]. During the same 
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year an HP memristor mathematical model for DC and periodic signals was proposed by 

Radwan et al. [52].  

 In 2011, Talukdar and his colleagues established a state space model of a memristor based 

Wien ̀ A' oscillator considering a nonlinear ion drift  within a memristor [53] and recently also 

a state space analysis of memristor based series and parallel RLCM circuits was carried further 

in [54][55]. Then Belousov and Liman in 2011, suggested an analysis of meminductor and 

memcapacitor circuit [56]. In 2011, Riaza presented several semistate or differential-algebraic 

models arising in nodal analysis of nonlinear circuits including memristors [57], and Torsten 

et al.  presented in the European conference of circuit theory and design 2011, a novel 

approach to describe and analyse memristive circuits based on a Volterra series representation 

of the essential time functions of the circuit [58]. 

 During 2012, a coupled electromagnetic field circuit model was simulated and  familiarised 

by using the modified nodal  analysis by Baumanns through her PhD dissertation [59]. In the 

same year, Valeri and Kirilov applied Kirchhoff’s laws in a series circuit formed from two 

memristors and a voltage source [40]. In 2012, Zhi-Jun and Yi-Cheng, proposed a novel 

inductance-free nonlinear oscillator circuit with a single bifurcation parameter. This circuit 

composed of a twin-T oscillator, a passive RC network, and a flux-controlled memristor, then 

an analysis was performed by solving a system of first-order differential equations [60].  

 Kaji and Chua in 2013 published a paper on the composite characteristics of the parallel 

and serial connections of memristors [61]. Subsequently, Kaji et al. from Chonbuk National 

University in 2013, investigated the relationships between flux, charge and memristance of a 

diverse range of composite memristors in parallel and series connection assuming different 

polarity [62]. Lately, the generation, analysis, and circuit implementation of a new memristor 

based chaotic system based on the application of KVL laws was presented by Li, Huang, and  

Guo [63]. A new method was proposed in 2016 by Corinto [64][65] based on introducing a 

comprehensive analysis method mainly based on Kirchhoffe  flux and charge laws to 

investigate the nonlinear behavior of memristor circuits in the flux–charge (ϕ, q)–domain.  

2.4  Bond Graph Framework 

2.4.1  Bond Graph Theory Foundation 

 In the 19th century, Kelvin and Maxwell both observed that a wide range of phenomena 

give rise to similar forms of equations, finding analogies between heat flow and electric force 
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and between dynamic lines of force and fluid streamlines. In 1959, Paynter of MIT, worked on 

engineering projects including hydroelectric plants, analog and digital computing, nonlinear 

dynamics, and control. Through that, he actively proposed that similar forms of equations are 

generated by dynamic systems in a wide diversity of domains (such as electrical, fluid, and 

mechanical). Paynter unified the concept of an energy port into his methodology, and that led 

to the invention of bond graphs. Since then, his group and many others have developed the 

basic concepts of bond-graph modelling into a mature methodology. He published his work in 

1961 under the title-“Analysis and Design of Engineering Systems” by M.I.T. Press [66]. Later 

on, many researchers like Karnopp, Rosenberg, Margolis, and Breedveld [67] worked on 

extending this modelling technique to power hydraulics, mechatronics, and general 

thermodynamic systems and recently to electronics and nonenergetic systems like economics 

and queuing theory.   

 

2.4.2  Bond Graph Theory and Methodology 

 The Karnopp-Rosenberg book in 1975  [68] is remarkable because it is the first text to 

be totally dependent on bond graphs as a method of representing systems topology. Bond graphs 

provide an appropriate description for systems with multiport components and energy 

transduction processes. Therefore, electromechanical, electrothermal, or thermodynamic 

systems can be described and analysed through a unified notation and procedures. Before 1975, 

and more specifically in 1968, Karnopp and Rosenberg published their first paper [69] on bond 

graphs entitled-‟Power bond graphs: a new control language”. This is considered the 

fundamental text upon which more recent work is based. Then in 1969 Karnopp [70] presented 

a paper discussed  transformations both in terms of equations and bond graph elements, and 

applications in vibration analysis, electrical machine theory, and  analytical  mechanics. In 

1971, Rosenberg advocates a novel technique for systematically generating state-space 

equations for multiport systems. This method is based upon a bond graph representation of the 

system and causal manipulation of the field equations [71]. In 1972, Brown investigated two 

types of bond graphs which incorporated Lagrange’s equations and variables encountered in 

systems described in terms of energy and power [72]. Dixhoorn then related these equations to 

the domain of engineering, and on quantitative physical laws. For this work Dixhoorn is 

generally considered as a pioneer for model builders [73]. Bell and Martens prepared a 
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comparison between linear graphs and bond graph in the modelling process in 1974 [74]. 

Rosenberg in 1975, developed a unified database for support of engineering systems design 

providing a succinct, flexible data base for linear and nonlinear, static and dynamic models. 

 An algorithm is presented by Breedveld, which enables one to determine the nature of 

the equilibrium state of a system with constant inputs by direct inspection of its bond graph 

representation. This algorithm was presented in 1984 [75], in the J. Franklin Inst., a journal that 

has hosted most of the important advances in the bond graph subject area. Also in 1984 a 

solution of algebraic loops and differential causality in mechanical and electrical systems was 

proposed at the IASTED Applied Simulation and Modelling Conference in California by 

Granda.  

 Subsequently, in 1986, Breedveld, proposed a systematic procedure to eliminate an 

unambiguous notation to formalise bond graph models [76]. Then Beaman and Rosenberg, in 

1987, investigated additional structures that might be put on bond graphs in order that (1) all 

bond graphs have physical relation and (2) all physical realizations have bond graphs [77].  

 In 1989, the definition of a bond graph was formally given and its structure in a new 

way, as an object accomplished by constructing a vector space, called the bond space of the 

bond graph. This new definition  was proposed by  Birkett and Roe, [78] [79]. In order to avoid 

a significant limitation in the standard bond graph notation for modelling systems, the extended 

bond graph notion was developed which is described by vector and tensor-valued quantities, 

this extended notation was presented by  Ingrim and  Masada, in 1990 [80]. A paper was 

published in 1992, by Cellier, introducing new concepts for modelling complex physical 

systems through classified bond graphs which can include arbitrary non-linearities. An 

introduction of  a software tool that Brown developed can be used to implement these 

categorised non-linear bond graphs [81]. In 1990, Brown stated in his paper [82] ‟The more 

difficult portions of models of physical systems often are appropriately approached through the 

use of Lagrange's or Hamilton's equations. It is seen that such a region can be integrated into 

a conventional bond graph with a simple macro symbol, a more reticulated Hamiltonian bond 

graph, or in many cases a highly reticulated Lagrangian bond graph”. This paper is the first 

relating bond graph with port-Hamiltonian system. Then Linkens discussed the application of 

network thermodynamics to the life sciences which gave the promise that bond graph 
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methodology would prove attractive to biologists and engineers and accelerate the use of its 

mathematical modelling in the life sciences [83].  

 Then in 1995, Gawthrop introduced, a bond graph representation of model-based 

observer control to provide a convenient framework for the design of controllers in the physical 

domain [84]. Vidojkovic' and Mladenovic' published a paper in 1999 [85], that deals with bond 

graph modelling of dynamic systems, the features of the bond graph elements and a new way 

forward enabling the modelling of a system represented by bond graphs. Also, the advantages 

of bond graph modelling are reported.  

  The concepts postulated within the generalised bond graph formalism are important in 

the derivation of port-Hamiltonian systems. This generalisation was proposed by Golo et al., in 

2000 [86], they present in their paper both a  Generalised Bond Graph (GBG) and a  Generalised 

Junction Structure (GJS). At the same time Karrnopp, Margolis, and Rosenberg, published one 

of the important references for bond graph analysis which is titled- ‟System Dynamics: 

Modelling and Simulation of Mechatronic Systems”. After five years, In 2005, Vink from  the 

University of Glasgow linked bond graph modelling with control [87].  

 In 2009, Prof. Borutzky published a series of books discussing the bond graph 

methodology, providing new insight in bond graph analysis [88]. Daou et al. [89],  proposed  

operators such as integrators and differentiators based on resistive, inductive and capacitive 

components, introducing  four  different configurations of  RLC based circuits that may produce 

a fractional behavior, this approach helped in analysing complex RLC networks having an 

emergent behaviour with bond graph.  

 In the case of nonlinear circuits, Rai and Umanand, proposed a bond graph model which 

does not assume any linearity constraints. The model hides the complexity of nonlinearity from 

the user of the model by developing a model of an induction machine that includes the 

nonlinearities in the system [90]. This approach, which might provide linearization through 

approximations can occasionally be used to relate the bond graph approach with nonlinear 

devices and elements.  

 In 2011, Borutzky edited the seminal work ‟Bond Graph Modelling of Engineering 

Systems Theory: Applications and Software Support”. This multi-author book reflects the 

present state of the art in bond graph modelling of engineering systems with respect to theory, 
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applications and software support. In 2011, Denman and Tahar [91], introduced a study that 

demonstrated a methodology for formally verifying safety properties of analogue circuits. In 

the proposed approach, system equations are automatically extracted from a SPICE netlist by 

means of energy-conservative bond graph models.  

 In 2012, Adriana et al., presented a method for analysis of electrical circuits with more 

than four circuit loops, for direct current (DC) circuits or alternating sine wave current circuits 

[92].  A PhD thesis submitted by Margetts at the University of Bath, Department of 

Mechanical Engineering in 2013 [93], titled-‟A Hybrid bond graph method” presents a more 

recent account of simulation as well as provides engineering insight through the analysis 

presented. In 2014, Núñez-Hernández et al. [94], published a paper titled-‟ Analysis of 

Electrical Networks Using Phasors: A Bond Graph Approach”. A so-called phasor bond graph 

is built up by means of two-dimensional bonds, which represent the complex plane. Impedances 

or admittances are used instead of the standard bond graph elements. A procedure to obtain the 

steady-state values from a phasor bond graph model is presented in their paper. Also in 2014, 

Sharma and Sharma [95],  used a unified approach to bond graph that gives the opportunity to 

simulate both existing and new systems without having to remodel the entire system each time. 

In addition, Margetts [96] suggested an approach to develop a general method for adoption by 

practicing engineers, which is intuitive, adheres to the principles of idealized physical 

modelling and facilitates both structural analysis and efficient simulation.  

 Finally, bond graph representations of hybrid system models, were proposed by 

Borutzky, in 2015 [97], the work addresses the modelling abstraction of fast dynamic state 

transitions by casting them as instantaneous discrete state changes, the work also surveys 

various bond graph representations of hybrid system models. A procedure to linearize a class 

of non-linear systems modelled by bond graphs  was also proposed by Avalosa and Orozcob, 

in 2015 [98], the approach enables one to obtain the linearization of a class of non-linear 

physical systems using bond graphs. Also, a junction structure of a non-linear bond graph 

considering of linearly dependent and independent state variables is also described in their 

work. A new proposal to model a time-varying switch dynamic in bond graph presented in [99] 

for further improvement of the bond graph modelling method. 
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2.4.3  Developments in Bond Graph Simulation Approaches  

 The modelling and simulation of physical systems using bond graph for analysis and 

evaluation of their dynamic behaviour are important steps in the design and control of systems. 

Rosenberg, in 1973, presented the ENPORT program which is a realization of the bond graph 

reduction algorithm [100]. It is based on modelling of linear multiport systems transformed to 

state-space form using algorithms taking into account operational causality. From the state-

space equations, dynamic responses are obtained using the matrix exponential technique, 

thereby allowing the direct digital simulation of linear multiport models. Then, in 1973 Martens 

suggested, a formulation to derive a system of mixed first-order differential/algebraic equations, 

whose solution is facilitated by approximating the derivatives by a linear combination of past 

and present solution derived by implicit nonlinear algebraic equations which are solved using  

Newton iterative procedure [101]. 

 Many years later, in 1981, Karnopp identified a unique feature in bond-graph 

techniques: they provide the modeler with a graphical representation of the causality relations 

in a system. This enables the modeler to use causal information to create simulation programs 

for nonlinear systems, even when some variables cannot readily be expressed in equation form 

[102]. This realization helped Beukeboom et al., in 1985, to write the TUTSIM simulation 

program for continuous dynamic systems. The program accepts (nonlinear) block diagrams, 

bond graphs or a free mix of both [103]. Many programs have been written by researchers to 

simulate bond graph, another example is the work by Brocnink and Twilhaar, in 1985  who 

wrote CAMAS (A Computer Aided Modelling, Analysis And Simulation) [104].  

 Then Broenink, produce SIDOPS a bond graph based modelling language [105]. 

Zalewski and  Rosenberg, in 1986, made a distinction of connector types; namely, bonds, 

activated bonds, and signals [106]. And in 1990, Zeid, proposed several simple models based 

on creating macros that represent physical components; this approach simplifies model-

building and can be applied to linear and nonlinear systems described by bond graph [107].  

Also, Nolan, discussed the scope for algebraic and symbolic analysis of bond graphs in the 

context of modelling and analysis of complex dynamical systems. The work includes a 

description of a prototype suite of symbolic programs [108].  

 In 1995, the problem of describing variable structure models in a compact, object-

oriented technique is revisited and analysed from the perspective of  bond graph modelling 
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using DYMOLA programming environment by Cellier et al. [109]. By 1997, Broenink 

presented a bond graph model library implemented in MODELICA [110]. MODELICA is a 

new language for physical systems modelling with main objective to facilitate exchange of 

models and simulation specifications. Granda  and  Reus [111], investigated the ability to use 

bond graph modelling technology with MATLAB and its toolboxes, a package oriented to 

matrix state variable formulation and control system design. The combination of CAMP-G and 

MATLAB is a new tool useful in generating symbolic equations of motion and symbolic system 

matrices and symbolic transfer functions. Then in 2002, [112] discussed the role of bond graph 

modelling and simulation in mechatronics systems using an integrated software tool CAMP-G, 

MATLAB–SIMULINK. The approach explores the bond graph technique as a modelling tool 

to generate state space models or non-linear models together with software tools. CAMP-G 

(Computer Aided Modelling Program with Graphical input) has been developed in order to 

generate computer models automatically and have them integrated with MATLAB–

SIMULINK as simulation tools.  

 In 2006, Wiechula presented a thesis that included genetic programming grammars for 

bond graph modelling and for direct symbolic regression of sets of differential equations. He 

also proposed a bond graph modelling library suitable for programmatic use and a symbolic 

algebra library specialized to this [113]. A Modelica Library for MultiBond Graphs and its 

Application in 3D-Mechanics was presented by Zimmer [114]. In addition to Modelica, there 

are also CAMAS [115], and MOSAIC [116], programming environments that simulate bond 

graphs.  

 In 2011 an application by Calvo et al. was developed in Simulink, this allows  

engineering students to learn easily and quickly about dynamic systems behaviour through the 

bond graph method [117]. Furthermore, Jing [118] suggested some practical techniques for 

MATLAB/SIMULINK as applied to system simulation. The simulation can be easily adjusted 

to the variation of the working conditions. The design and test of the system are thus made more 

convenient.  

 In 2012, Šargaa et al. [119] presented a paper that differed from the classical method, 

in that the equations for individual components are created first and then the simulation scheme 

is derived from a bond graph diagram basis of the system, using a step-by-step procedure. In 

2013, two new kinds of models called hybrid bond graph model and average bond graph model 
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were proposed. The two models are all derived from basic theory of the bond graph modelling, 

but they differ in the control mode of the circuit switch analysed. Firstly, two kinds of bond 

graph models are analysed, and are built in the GME (Generic Modelling Environment) 

software. Then, they are automatically converted to a MATLAB diagram model through  

MATLAB software [120]. Margetts’ thesis enables the simulation as well as provides additional 

engineering insight for hybrid systems. This new method features a distinction between 

structural and parametric switching [93]. 

  In 2014, Calvo et al. [121] presented an educational application, developed in 

MATLAB, which allows engineering students to learn easily and quickly about dynamic 

systems behaviour through the bond graph method. This application uses the SIMULINK 

library of MATLAB, which has proven to be an excellent choice in order to implement and 

solve the dynamic equations involved. Another model established in MATLAB/Simulink, with 

the same mechanism is built in the AMESim software package. Simulation results can be 

compared with those obtained from the proposed bond graph method [122]. Then a dimensional 

analysis conceptual modelling (DACM) [123] framework was introduced in 2016 for a 

conceptual modelling mechanism for lifecycle systems engineering. 

 

2.5 Port- Hamiltonian Approach 

2.5.1 Introduction to Port- Hamiltonian Theory 

 The hypothesis of port-Hamiltonian frameworks unites different traditions in physical 

systems modelling and analysis. The subject has naturally evolved from work by Paynter in the 

late 50s based on port-based Dirac formalism. A second origin of port-Hamiltonian systems 

theory is through geometric mechanics as developed by Arnol’d [124]; Abraham and Marsden 

[125]; Marsden and Ratiu [126]; Bloch [127]; Bullo and Lewis [128]. In this approach, the 

Hamiltonian formulation of established mechanics is formalized in a geometric manner. The 

essential standard of geometric mechanics is to represent Hamiltonian elements in a coordinate-

free way utilizing a state space endowed with a simplistic or Poisson structure, together with a 

Hamiltonian function representing energy. This geometric method has led to a sophisticated 

and influential theory for the analysis of the complex dynamical characteristics of Hamiltonian 

systems, displaying their intrinsic features, such as symmetries and conserved quantities, in a 
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transparent way. Also infinite-dimensional Hamiltonian systems have been successfully cast 

into this framework  by Olver [129]. 

  Finally, a third pillar underlying the framework of port-Hamiltonian systems are 

through advances in systems and control theory, emphasizing dynamical systems as being open 

to interaction with the environment, and as being subject to control through interaction, this 

subject is also known as behavioural control theory. The description and analysis of physical 

subclasses of control systems have roots in electrical network synthesis theory. Its geometric 

formulation was especially pioneered in Van der Schaft [130], in Crouch and van der Schaft 

[131] in Nijmeijer and Van der Schaft [132]; and in Bullo  [128]. This works discusses 

developments, especially with regard to the analysis and control of nonlinear mechanical 

systems. 

 The reduction of the order of physical dynamic models has been a subject of discussion 

and research for Hamiltonian systems [133]. Reduced systems are important for modelling, 

analysis and control. The properties of controllability and observability are known to be 

important for an adequate input output behavior. Such properties have been studied in [134]. In 

2000, Port-controlled Hamiltonian systems with dissipation paved the way towards a theory for 

control and design of nonlinear physical systems and the structural properties of these systems 

are discussed by Van der Schaft [135]. 

 In 2004, Van der Schaft, discussed the structural properties of port-Hamiltonian 

systems, in particular the existence of Casimir functions and their implications for stability and 

stabilization. Furthermore, it was shown how passivity-based control results from 

interconnecting the plant port-Hamiltonian system with a controller port-Hamiltonian system, 

leading to a closed-loop port-Hamiltonian system [136]. A similar approach, in 2006 Talasilaa, 

Clemente-Gallardoc, and Van der Schaft,  obtained a discrete model either by discretizing a 

smooth model, or by directly modelling at the discrete level itself [137]. 

 In 2006, Van der Schaft [138], further stated that the theory of port-Hamiltonian systems 

provides a framework for the geometric description of network models of physical systems. It 

turns out that port-based network models of physical systems immediately lend themselves to 

a Hamiltonian description. This motivated the definition of Hamiltonian systems with algebraic 
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constraints. As a result, any power-conserving interconnection of port-Hamiltonian systems 

again defines a port-Hamiltonian system. 

 In 2013, Schöberl and Siuka, introduced the port-Hamiltonian system representation 

where they pay attention to two different scenarios, namely the non-differential operator case 

and the differential operator case regarding the structural mapping, the dissipation mapping and 

the input/output mapping [139]. Van der Schaft, introduce the basic starting point of port-

Hamiltonian systems theory in network modelling, considering the overall physical system as 

the interconnection of simple subsystems, mutually influencing each other via energy flow. As 

a result of the interconnections algebraic constraints between the state variables commonly 

arise. This leads to the description of the system by differential-algebraic equations (DAEs) 

[140]. 

 In 2014, Van der Schaft and Jeltsema present an up-to-date survey of the theory of Port-

Hamiltonian systems, emphasizing novel developments and relationships with other 

formalisms. Port-Hamiltonian systems theory yields a systematic framework for network 

modelling of multi-physics systems. Examples from different areas show the range of 

applicability. While the emphasis is on modelling and analysis, the last part provides a brief 

introduction to control of port-Hamiltonian systems. 

 Finally, in 2015, Castaños et al., discussed implicit representations of finite-dimensional 

port-Hamiltonian systems from the perspective of their use in numerical simulation and control 

design. Implicit representations arise when a system is modelled in Cartesian coordinates and 

when the system constraints are applied in the form of additional algebraic equations (the 

system model is in a DAE form). Such representations lend themselves better to sample-data 

approximations. An implicit representation of a port-Hamiltonian system is given and it is 

shown how to construct a sampled-data model that preserves the port-Hamiltonian structure 

under sample and hold [141]. A new algebraically and geometrically defined system structure 

in [123] is derived to extend the port Hamiltonian formulation for descriptor systems. 

 

2.5.2  Port Hamiltonian Model Dynamics Derivation from Graph Theory 

 From a modelling perspective a port-Hamiltonian methodology for systems analysis 

originated from the theory of port-based analysis of bond graphs as pioneered by Paynter in the 
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late 1950s [66]. At the core of this approach lies the recognition that energy exchange is the 

’lingua Franca’ between physical domains, and by identifying ideal system components 

capturing the main physical characteristics (energy-storage, energy-dissipation, energy-routing, 

etc.) The network dynamics can be established, provided that certain controllability and 

observability restrictions are fulfilled. Historically port-based modelling comes along with an 

insightful graphical notation emphasizing the structure of the physical system as a collection of 

ideal components linked by edges capturing the energy-flows between them. In analogy with 

chemical species, these edges are called bonds, and the resulting graph is called a bond graph. 

Motivated by electrical circuit theory the energy flow along the bonds is represented by pairs 

of variables, whose inner product equals power. Typical examples of such pairs of variables (in 

different physical domains) are voltages and currents, velocities and forces, flows and 

pressures, etc. A port-Hamiltonian formulation of bond graph models can be found in Golo et 

al.[142]. Port-based modelling can be seen to be a further abstraction of the theory of ‟across 

and through variables” in the network modelling of physical systems. 

 In 2002, Macchelli showed that the port-Hamiltonian formulation may be generalized 

in order to cope with bond graph parameter systems. Classical infinite dimensional models are 

presented in this new formulation [143]. Subsequently, in 2003, Golo et al. discussed new 

mathematical formulation of bond graphs. It was shown that the power continuous part of bond 

graphs, the junction structure, can be associated to a Dirac structure and that the equations 

describing a bond graph model correspond to a port Hamiltonian system [142].  

 In 2006, Donaire and Junco discussed an interpretation in the bond graph domain which 

is of relevance to the energy shaping and interconnection and damping assignment control 

methods, developed for the well-known Port-Controlled Hamiltonian systems with dissipation. 

In order to have a stable equilibrium at  a prespecified state, the energy function is modified by 

adding storage elements to the bond graph such that the closed loop  system energy has a 

minimum at that state [144]. 

 In 2005, the dissertation by Vink presented some new aspects of bond graph modelling 

in control, which were relevant to closed loop bond graph representations. In particular, the 

physical model based framework of bond graph modelling addresses Backstepping Control, 

Model Matching Control and Energy Shaping in Stabilization Control. Even though these 

control design methodologies are quite different on an analytical level, it is shown that the 
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feedback designs allow for closed loop bond graph models. Concepts of passivity and the port-

Hamiltonian structure of bond graphs play a leading role throughout the thesis. Various detailed 

examples impart the essential results [87].  

 In 2009, a derivation of Input-State-Output Port-Hamiltonian Systems from bond graphs 

is presented by Donaire and Junco. The work presents methods to obtain models in the form of 

Input-State-Output Port-Hamiltonian Systems from causal nonlinear bond graph models. This 

is done first by establishing equivalences among key variables in both domains through the 

comparison of the expressions of the stored system energy in both formalisms. Later, with the 

help of the general field representation of bond graphs and its associated standard implicit form, 

the functions characterizing this class of Port-Hamiltonian Systems are provided. 

  Finally, in 2014, [145] Glad proposed modelling of dynamic systems from first 

principles which can be made of similarities between different domains. The approach leads to 

the concepts of bond graphs and, more abstractly, to port-controlled Hamiltonian systems. The 

class of models is naturally extended to differential algebraic equations (DAE) models. Then 

Van der Schaft published a research paper in Systems & Control Letters  [146] connecting 

between graph theory, symmetric Laplacian matrix and port Hamiltonian formulation. 

 

2.6 Memristor Analysis Using Port-Hamiltonian Formulations 

 In 2010, Jeltsema and van der Schaft [147] reported that the port-Hamiltonian modelling 

framework may be extended to a class of systems containing memristive elements and 

phenomena. First, the concept of memristance was generalised so it can be placed within a port-

Hamiltonian framework. Second, the underlying Dirac structure was augmented with a 

memristive port. The inclusion of memristive elements in the port-Hamiltonian framework 

turns out to be almost as straightforward as the inclusion of resistive elements. 

 In 2012, a Port-Hamiltonian Formulation of Systems With Memory, was proposed by 

Jeltsema and Dòria-Cerezo [148], the work considered memristors, meminductors, and 

memcapacitors and their properties as port-Hamiltonian systems. The port-Hamiltonian 

formalism naturally extends the fundamental properties of the memory elements beyond the 

realm of electrical circuits. 
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 In 2013, in a paper titled-‟DAEs in Circuit Modelling: A Survey”, Riaza presented a 

detailed discussion of memristive devices (memristors, memcapacitors and meminductors), 

exposing their great potential impact in electronics in the near future. The work also addressed 

how to accommodate them in differential-algebraic models [149]. Some dynamical aspects in 

circuit theory in which DAEs play a role were also investigated. 

 In 2015, Machado [150] proposed  fractional order junctions of the memristors and of 

higher order elements and broadened the scope of variables and relationships embedded in the 

development of models. This paper proposes a new logical step, by generalizing the concept of 

junction. Classical junctions interconnect system elements using simple algebraic restrictions. 

Nevertheless, this simplistic approach may be misleading in the presence of unexpected 

dynamical phenomena and requires inclusion of additional “parasitic” elements. Nevertheless, 

the algebraic restrictions are providing new opportunities to introduce in the formulation 

behavioural control theory. Caravelli and Barucca [151] in 2017, constructed an exactly 

solvable circuit of interacting memristors and study its dynamics and fixed points. They use the 

Lyapunov function as a Hamiltonian to calculate the exact model.  

  

2.7 The Memristor As a Bond Graph Element 

 One of the motivations of this project, is probably that there is as far of the author 

knowledge only three research papers that mentioned memristor as a bond graph element. This 

proposition was made first by Oster and Auslander in 1972, in their paper “The memristor: a 

new bond graph element”. In their work they defined Chua’s memristor in electrical circuits, 

and then they proposed it as a new bond graph element, on an equal footing with R, L, and C 

elements providing some unique modelling capabilities for simulating nonlinear systems [3]. 

These works are paving the way for memristive elements to be systematically described under 

a port-Hamiltonian formalism associated to bond graph representations. Later, one of this thesis 

published work was in proposing bond graph analysis approach as a new method to analysis 

memristive systems by including the memristor as one of bond graph analysis elements, in 

CNNA conference in 2016 [152]. And also recently was mentioned in the proposed mechanism 

for describing DNA information perspective based on the bond graph and the memristor 

concepts [153].  
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2.8 Summary 

What becomes clear from bond graph developments in modelling especially with regard 

to nonlinear memristive bond graph is that, barley developments have been made as most of 

bond graph developers prefers to use memristor emulators to gain the same result, however this 

is not an efficient and direct analysis to such systems. Memristor complement the standard bond 

graph elements, in a graphically intuitive way, and generate a concise, usable mathematical model 

with studying all behavioural aspects of memristor, as the future is for the charted nano devices to 

proliterate further, not the conventional devices currently in use. 

There has been a body of work on the analysis of systems into port Hamiltonian formulation. 

Exploitation of energy within the system and application are well-documented for the standard bond 

graph, but have not yet been extended to the memristive systems bond graph. 
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 INTRODUCTION TO 

MEMRISTIVE ELEMENTS 

 

 

 

3.1 Introduction 

The discovery of flux controlled memristor (Memory Resistor) by Leon Chua in 1971 as 

the missing element relating flux to charge, opens possibilities for the development of a novel 

class of dielectrics over the coming years. In the standard RLC circuit analysis, it is common 

in linear independent relations (Kirchhoff’s voltage and current laws) to establish circuit 

dynamics. With memristor (resistor with memory) components there is a departure from 

linearity and systems exhibit nonlinear characteristics. These properties enable the use of 

memristive elements to be used for the successful modelling of several physical devices and 

systems. This chapter will introduce the memristor and memristive system fields, starting with 

a brief background on memristor theory and some of the proposed models to describe its 

behavior. This is followed by a short overview of some applications to justify the significance 

of the element and the advantages of incorporation this device in circuit analysis.  
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3.2 Theoretical Definition of The Memristor 

Although in standard circuit analysis, voltage and current vectors satisfy linearly 

independent relations (Kirchhoff’s voltage and current laws), there are also single additional 

variable relations as shown in Figure 3.1 between flow (current) and effort (voltage), as well as 

a relation between generalized momentum (flux) and generalized displacement (charge), which 

are associated with mem-based circuits. Different modelling approaches that are of relevance 

when considering the use of these elements to describe the dynamics of physical systems in a 

system framework can be adopted. 

As declared by Chua [9], the fourth element (Memristor) need to be considered to  relate 

the magnetic flux () with charge (q) using a simple expression: 

 M q     (3.1) 

Memristance (M) is very similar to resistance, with the exception that it depends on a 

relation between the charge q and the flux φ through that component. As the charge and current 

are linked through the standard expression  ,
q

i
t





 a memristor state then depends on the 

history of the current passing through it. This marks the memristor to be performed similarly to 

a resistor with memory. For that reason, it is considered to be a non-linear element.  A memristor 

was proposed to be a fundamental circuit element.  
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Figure 3.1 Inter-relations between individual RLCM elements and corresponding notations. 
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A memristor can be controlled by either flux, which is called a flux-controlled 

memristor or by a charge where it is called charge-controlled memristor. The non-linear 

expression relating the current i (t) and the voltage v (t), for a charge-controlled memristor is: 

                                             ( ) ( ) ( )v t M q i t                                                        (3.2) 

 For the flux-controlled memristor:   

 ( ) ( ) ( )i t W v t   (3.3) 

The memristance and the memductance respectively [9] are defined as follows: 

 ( ) ( ) /M q q q     (3.4) 

and 

 ( ) ( ) /W q       (3.5) 

 The factor ( ( ) /q q  ) in (3.4) represents the hysteresis loop of the memristor which  is shown 

in Figure 3.2. The non-linear relation between current and voltage is due to the change in the 

resistance of the device.  To generate the figure below a  MATLAB program was written to 

simulate  the operation of a memristor based on the HP lab model [25]. However, the device 

does not store any energy, at zero voltage no current passes through it. Figure 3.3 shows that 

because of the non-linearity the voltage and current wave for a memristor device does not have 

a linear phase difference between the voltage and the current, during a single cycle. In contrast, 

one can see the current phase being a head of the voltage phase in parts of the cycle and trailing 

in the other parts of the cycle. 
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Figure 3.2 Memristor symbol and hysteresis loop I-V curve simulation of HP lab model [2] with ω =0.5 rad/s,  

input sinewave voltage of amplitude= 1.5V, and the specifications are: Ron=100  and Roff=16x103 
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The main characteristic for most of the memristor-based applications is the long-term 

memory effect of the device, where its last state after the electrical bias is removed is preserved. 

Theoretically speaking, a device relating the current to the voltage is still considered as a 

memristor even in cases when there is a lack of long-term memory effect, as long as a pinched 

hysteresis is observed [154]. 

 

3.3 Memristive Elements 

There are four basic variables that are fundamental in circuit analysis these are current, 

voltage, charge and magnetic flux. These variables are linked in six different ways as shown in 

Figure 3.4. One of the relations is the memristance which relates flux to charge. Chua [10] 

extended the concept of memristance into a broader class known as memristive systems, this 

contain inductive and capacitive elements with memory, (called meminductors and 

memcapacitors respectively). A generalised description of memristive relations may be 

mathematically assumed for this class of devices as: 

 ( , )v M w i i              (3.6) 

and 

 ( , )
w

f w i
t





  (3.7) 

 where w is the internal state of the system. A memristor based on the above relations is 

considered as a special case of memristive systems, as shown in Figure 3.4. 
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Figure 3.3 Zero phase shift between the voltage and current through 

memristor. 
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3.3.1 Memcapacitance 

In a similar fashion to the memristor relationship, memcapacitance (memory capacitor) 

is based on the non-linear relation between the integral of charge and voltage. Let ( )q t dt    

and ( )cV t dt    denote the integral of charge and flux [155]. The memcapacitance (CM) is 

given from: 

 
( )

( )M

d
C

d

 



   (3.8) 

The general mathematical model for memcapacitive elements is defined as: 

( ) ( , , ) ( )M c cq t C x V t V t                                         (3.9) 
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Figure 3.4 The three basic electrical elements and their extended memristive system:  

memristor, meminductor, and memcapacitor.  
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 ( , , )cx f x V t   (3.10) 

where CM  is the memcapacitance and x is an internal state variable. The above equation is 

denoted to charge controlled memcapacitor. The voltage controlled type will be described as: 

 1( ) ( , , ) ( )M cv t C x V t q t   (3.11) 

 ( , , )x f x q t   (3.12) 

As one of the special characteristics that memristive elements known of,  is the hysteresis loop 

[156], in memcapacitor case a MATLAB program written to simulate this behaviour using the 

model in [157][158], the resulted q-v curve  is shown in Figure 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

3.3.2 Meminductance 

Similarly to the above, the relation between the charge ( )q t and time integral of flux ( )t  

[155] as written: 

 
( )

( )
d q

L q
dq


   (3.13) 

where ( )q is the differential function of q. In 2009 [159] a general mathematical model for 

meminductive elements defined by the current controlled meminductive system: 

 ( ) ( , , ) ( )Mt L x i t i t    (3.14) 

Figure 3.5 Memcapacitor symbol and hysteresis loop, with 1.5 sine wave applied voltage and 

 different ω =0.1, 1, 2 and 10 rad/s, memcapacitor specifications are: Cmin=10-9, Cmax=10-3 and  

Cinitial=100-9 F. 
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 ( , , )x f x i t   (3.15) 

where ML called meminductance. For the flux-controlled meminductive system the 

mathematical model is: 

 1( ) ( , , ) ( )i t L x t t    (3.16) 

 ( , , )x f x t   (3.17) 

with 1L being the meminductance inverse. Considering the relation between the flux and the 

current, meminductor as all memristive family has a pinched hysteresis behaviour.  Following 

[158], the corresponding q-v curve of mem-inductive component  is shown in Figure 3.6. 

  

3.4 Device Models 

In order to be capable to integrate memristive components into analysis, simulation and 

design of an application, different models that meet certain criteria are needed. For that purpose, 

several models have been proposed. In this section, the main memristor models will be reviewed 

as assuming a variety of window functions. 
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Figure 3.6 Meminductor symbol and hysteresis loop, with 1V sine-wave applied voltage and  

different ω =0.5, 1 and 10 rad/s, the meminductor specifications are: Lmin=10-3 and  Lmax=20-3 H. 
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3.4.1 Ideal Model 

Leon Chua introduced the first ideal device of memristor in a research paper [9] at IEEE 

Transactions on Circuit theory, with two values of resistance. In order to analyse this device in 

a realistic circuit incorporation an emorphas devise is shown in Figure 3.7(a). This is connected 

with a memristor to obtain a reasonable model. The q-  curve of memristor is as shown in 

Figure 3.7(b), the flux () increased linearly up to a certain value, the device then switches to 

another resistance value. Then after the flux falls and reaches the same threshold it reverts to 

the same resistance obtained originally. This threshold is fixed with respect to the q- relation, 

and influences the hysteresis parameters of the memristor.   

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Dopant Drift Model 

In their paper “The missing memristor found” [25] Strukov, Williams and others from 

HP labs proposed that nanotechnology may be used to build such devises, further more they 

proposed a simple physical model with a simple equations that satisfies memristor 

characteristics. This memristor model displayed the most similar behaviour to that of Chua 
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Figure 3.7 (a) An emorphas circuit with memristor device introduced by Chua.(b) its characteristic [1] 
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memristor response. The device comprises of a very thin film of titanium dioxide (TiO2) as 

shown in Figure 3.8. This thin film is sandwiched between two platinum (Pt) contacts and, one 

side of TiO2 is doped with oxygen vacancies. The oxygen vacancies are positively charged ions. 

Thus, there is a TiO2 junction where one side is doped and the other side is undoped over a total 

length D. 

 These devices comprise of doped low resistance and undoped high resistance regions 

[160]. The physical structure and the equivalent circuit model are shown in Figure 3.8 and 

Figure 3.9 [161]. This model maintains the increase of the resistance in one direction of current 

and decreases the resistance in the other direction. When the applied potential is removed then 

the memristor remains in its last state, i.e.  a memristor possesses resistive memory.  

 

 Figure 3.9 shows the simple geometrical structure of the doped layer w at this stage it was 

necessary to present a mathematical descriptor model to explain the nonlinear response. 

 

 

Figure 3.8 The thin film of titanium dioxide (TiO2) [11]. There are two layers in the titanium 

dioxide film. The semiconductor thin film has a certain length, and consists of two layers of titanium 

dioxide films. One is highly resistive pure TiO (undoped layer), and the other is filled with oxygen 

vacancies, which makes it highly conductive (doped layer). The state variable w represents the width 

of the doped region (TiO layer). The doped region has low resistance while that of the un-doped 

region is much higher 

Doped Undoped 

w 

D 
Ron Roff 

Figure 3.9 Structure of memristor reported by HP and its equivalent model [272] 
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There is a region with a high intensity of dopants having low resistance Ron, and the 

remainder has a low dopant density and considerable higher resistance Roff.  By applying an 

external voltage source, the boundary between the two areas will move causing the dopant 

charge to drift. Equation (3.18) and (3.19) describe this behavior mathematically: 

 ( ) ( , ) ( )v t M w i i t   (3.18) 

 
( ) ( )

( , ) 1on off

w t w t
M w i R R

D D

    
      

    
  (3.19) 

 
( )

( )v onRw t
i t

t D

  
  

  
  (3.20) 

where onR  is the ON resistance for an entirely doped device, and offR  is the OFF resistance for 

a whole undoped device, the total thickness of the device is represented by D and the thickness 

of the doped region is w  and v  is the average ion mobility. The above expressions for HP 

model memristor will be the model used later through the thesis to calculate memristance value 

(M). Integration of equation (3.20), leads to  

 ( ) ( )on
v

R
w t q t

D
   (3.21) 

By substituting equation (3.21) into equation (3.19), the memristance  equation will be: 

 
2

( ) 1 ( )v on
off

R
M q R q t

D

 
  

 
  (3.22) 

And the current-voltage relation of memristor will be: 

 

2

( )
( )
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1 ( )v

off

u t
i t

R u t t
rD




 
  (3.23) 

where u(t) is the supply voltage and r=Roff  / Ron. 

 

3.4.3 Linear Model 

The previously described model is called the linear dopant drift model. But in physical 

devices that are memristor manufactured, some nonlinearity in ionic transport appears this 

slows down the drift velocity at the thin film. This nonlinearity might be modelled by applying 
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the function f(x) in the relation (3.24) which is so-called window function, introduced by 

Joglekar [162] to the drift velocity equation,( after assuming w
x

D
 ). It follows that: 

 ( ) ( )on
v

Rw
i t f x

t D






  (3.24) 

                                       

3.4.3.1 Window Function 

Window functions are introduced to approximate the nonlinear behavior of memristor 

into a linear one, and they are a function of the state variable. Many proposals were introduced 

to define the window function, one of these functions was defined by Strukov et al. [25] which 

is defined as: 

 
2

(1 )
( )

w w
f w

D


   (3.25) 

The boundary conditions are  1(0) 0  and ( ) 0Df f D
D

   , this function assumes that 

when the memristor is driven to the lower and higher states, there is no change in the terminal 

state driven by an external field  [30], which might be considered as fundamental problem in 

window functions.  

In 2009 [36] a slightly different window function was proposed as shown: 

 
2

( )
( )

w D w
f w

D


   (3.26) 

when 0w  and w D , ( ) 0f w   which are the conditions of the function boundary. For the 

two-mentioned function, the nonlinear behaviour of memristor is approximated when the 

memristor in not at the terminal states, which mean 0w  and w D . This is a problem in 

functionality of window functions. Therefore, Joglekar and Wolf [162] considered this problem 

and proposed a new window function that address the nonlinearity and approximately linear 

behaviour within the boundaries 0 w D . They can control their function by an additional 

parameter(p), which is called control parameter. This window function was written as: 

2p( ) 1 (2 1)f x x                                                     (3.27) 

Where p is a positive integer. This control parameter, controls the linearity of the model, where 

it becomes more linear as p increases. Figure 3.10 shows Joglekar and Wolf window function 

with different values of p. 
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As shown in research done by [163][164][165][166][167],  that there is usability in memristance 

model as the vacancy drift is highly nonlinear when it is close to the both boundaries of the 

device. Therefore, it will be assumed through the thesis that this window function will be used 

to maintain the stability of the device. 

 

3.4.4 Nonlinear Model 

Another model for memristor proposed by Yang et al.[164] is the exponential model, 

as the nonlinear model of William doesn’t account the nonlinearity of the large electric field 

within a memristor. Yang used the following equation 

 n sinh( ) (exp( ) 1)I x V V        (3.28) 

where α, β, γ, χ are fitting constants and n is a free parameter. Figure 3.11 shows an experimental 

and model I-V curves which illustrate that at the Off-state, the I-V curve behaves similar to a 

PN junction (the exponential part), while at the On-state the curve follows a tunnelling process 

(sinh part). The state equation is modelled by the following nonlinear equation: 

                       sinh( ) ( , )x a bv f x i                                              (3.29) 

where f(x,i) can be any window function. 
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Figure 3.10 Window function f(x) of Joglekar and Wolf for different values of p 
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3.4.5 Quantum-Tunnelling Model 

There are several behavioral and circuit models based on the quantum tunneling effect to 

model memristor behavior as presented in the literature[168][169][170][171][172][173]. The 

quantum tunneling effect is related to the resistance change of memristance. Figure 3.12 shows 

the device structure, which depends on the conducting channel of TiO2-x by creating a barrier of 

quantum tunnel with contacted metal. Oxygen vacancies (dopant) drift is responsible for the 

variation in tunnel width. Regarding the displacement distance in this device, it is much smaller 

than other proposed models and it has a high ratio of ON/OFF controlled by the change in the 

tunnel width. Although models that use the phenomena of quantum tunneling give a more 

realistic behaviour of memristance, the simple drift model of HP labs is used widely in circuit 

simulations due to simplicity and satisfactory accuracy. 
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Figure 3.12 Structure of the memristor quantum tunnelling model [273] 

 

Voltage (V) 

C
u
rr

en
t 

(μ
A

) 

 
 

Figure 3.11 Experimental (solid) and modelled (dotted) switching I-V curves. The red curves represent 

 50 experimental switching loops traversed as figure-of-eights, the traces show a high degree of  

repeatability. The blue curve is a lower current experimental switch loop that demonstrates the multiple 

resistive states of the device. The I-V trace of the device in the ON state exhibits a symmetric sinh-like 

 curve, and the OFF state shows an asymmetric rectifying curve similar to the origin state [164]. 
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3.5 Properties of a Memristor 

In this section, several of memristor properties are discussed to show the innate 

characteristics of a memristor which are giving it the attractive future upon CMOS devices for 

the electronics community: 

 

3.5.1 Non-volatility 

One of the unique characteristics of memristor is that it remembers the last state of the 

internal state w(t), for a signal have been applied from -∞ to current time instant t. If the input 

signal is removed, the resistance of device freezes and does not change until an input signal is 

applied again [174]. With this property and the high integration density of about 100 Gbits/cm 

speed, memristor achieved to be higher few times in speed than the technologies of the current 

flash memory advances [175]. 

 

3.5.2  Dynamic Response 

In a memristor, the boundary of the internal state variable (x) changes as the input 

amplitude changes. If the applied signal reaches to its peak value, the boundaries then reach to 

maximum or minimum limits [176] and the device either switchs from ON to OFF state or vice 

versa. This behaviour as well as  the hysteresis characteristic and the nonlinearity that a 

memristor known to have, are reasons for its unique dynamic response [177]. These features 

are valuable in developing many applications such as programmable threshold comparators, 

Schmitt triggers and frequency relaxation oscillators [178]. 

 

3.5.3 High Density 

Before the physical evolution of the memristor in 2008, researchers presented a storage 

medium insulating layer in a resistive switching application for high density memory circuits 

[179][180][181]. After the memristor concept was realized, it became a promising candidate to 

replace resistors in that storage layer, due to the very small size of the device fabricated by HP 

which had device dimensions of 30nm  30nm. So, Chen [182] proposed a memristor device 

that can have the same function as well as a high density of about  100 Gbits/cm2 [29] and very 
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low energy,  in return to existing flash memory.  Which gives a motivation to incorporate 

memristors in high speed non-volatile memories. 

 

3.5.4 Fast Switching 

Using the equation given in [183] one can calculate the switching rate of a memristor: 

 
2

2

off
sat

v on dc

D R
t

R V
   (3.30) 

where, satt  is the switching time, v ion mobility, D is device dimension and Vdc is external bias 

voltage. The observed memristor switching time was in the range of picoseconds when 

switching from ON to OFF state or the reverse. Due to small dimension and high ion mobility, 

memristors can be used as a very fast switching nano-device. 

 

3.5.5 CMOS Compatibility  

Reconfigurable CMOS logic circuits have been produced with the integration of a  

memristor using nanotechnology. The memristor act as switches in a network and connecting 

memristor to CMOS gate-level logic components [184] is possible. Another compatibility  due 

to the small size of memristor is the ability to be combined with MOSFETS to produce a low 

power applications [184].  

 

3.5.6 Low Energy Consumption 

  In [184]  it was reported that the memristor consumed energy when switching from low 

to high resistance or vice versa, and they found that the energy consumed was of the order of 

femto-Joules, opening up new possibilities for more efficient computing than current transistors 

used nowadays. 

 

3.6 Applications of Memristors  

Memristor small dimension and low power dissipation, gives the potential to enhance and 

develop integrated design area. Due to these special properties, some of the wide range of 
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designs that integrated memristor in digital, analog and neuromorphic applications, will be 

discussed below. 

 

3.6.1 Non-Volatile Random Access Memory ( NVRAM ) 

As the memory devices should consume small physical area and low power, memristor 

is seen to be penitential in digital memory applications. A single memristor have the ability to 

store one state of information either a ( 1 or 0 ) which corresponds to ( Ron and Roff ) by driving 

the memristor resistance to its lowest and highest resistance values[185]. The usual topology 

for such memory architecture is the crossbar connections, which has vertical and horizontal 

traces, and memristor will connect horizontal trace with a vertical at each intersection point as 

illustrated in Figure 3.13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two memristors are used as the fundamental cell of Figure 3.13 as shown in Figure 3.14.  The 

basic function of the mesh network above is obtained, by forcing memX into the memristor 

Figure 3.13 Crossbar memory system of 3x4 bits [186] 
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Figure 3.15 Memristor based programmable gain amplifier [39] 

high resistance for logic 0 and the memY will be in its lowest resistance while the opposite for 

logic 1 [186]. 

 

 

 

 

 

 

 

Because of simplicity of a memristor-based array crossbar structure and each memory cell 

occupies a few nanometres, they are currently being explored as the future replacement for the 

current CMOS-based memories and Solid State Drives (SSD) [187][188]. 

 

3.6.2 Programmable Gain Amplifier  

Using memristors in the design of analog circuits instead of the conventional memory 

circuits such as MOSFETs, is one of the challenges that face circuit designers. One of these 

analog circuits is a programable gain amplifier, which was presented by Shin et al. [189]. This 

amplifier consists of variable resistor replaced by a memristor. The advantage of using a 

memristor is that the amplifier gain and resistance value can be programmed to the required 

value. A simple diagram of programmable gain amplifier is shown in Figure 3.15  
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Figure 3.14 Fundamental cell for crossbar memories with two memristors [186] 
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3.6.3 Memristor Circuit for Emulating Function of Bio-Inspired Computing 

Another promising application of memristors is attempting to mimic biological brain 

synapsis and its complex work. The information flows inside neurons and is transferred by the 

ions flowing through the membrane, the conductance of the synapses increase or decrease due 

to the influx or outflux of ions. Attempting to simulate such complex networks with benefit the 

development of AI. Few work  [190][191][192][193] discuss emulating the neuron and synapse 

using memristor-CMOS components, as shown in Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

The above illustration of the unique memristor properties and its applications, shows 

the importance of memristors in the future of nanodevice as a replacement for the current 

memory devices and the fourth fundamental device. Therefore, because of also the nonlinearity 

characteristic, memristor circuits are also considered nonlinear circuits. So, from theoretical 

point of view the currents and voltages distribution in memristor circuits with one or more 

memristors and different parameters is interesting from engineering prospective. Investigations 

using different analysis methods in analysing memristive circuits is one of the main challenges 

of this project. This can also give us an idea of the extent of nonlinearity of the memristor 

circuit. Other difficulties are to include mathematical knowledge to cope with the complex 

theoretical analysis of the memristor circuits, in order to gain a deeper insight and understanding 

Figure 3.16 Memristor application as a synapse. (a) Schematic of using memristors as synapses  

between two neurons. The enlarged diagram show the schematics of the two-terminal and layered  

structure of the memristor. (b) A crossbar configuration of a CMOS neuromorphic array with memristor synapses 

[190]   

(a) (b) 
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of the behavior of different RLCM networks and perform mathematical analysis for different 

network configurations. 

 

3.7 Summary 

In this chapter, a review of memristor using theoretical definition introduced first by Chua 

with the proposed memristive elements, was presented. This facilitates the choice of memristors 

modelling with simulation to HP lab proposed memristor, memcapacitor and meminductor.  

Several signature properties and applications that leverage on the memristor have been 

reviewed. The non-linear dynamic behaviour of the device and the memory characteristic can 

be exploited to serve as a memory element or as a programmable dynamic load.  

This chapter demonstrated that memristor can be used in many solutions requiring  

scalability, functionality and energy efficiency in any conventional circuit. Although it has 

these potentials, more efforts are required towards the evaluation of a device’s state as well as 

resolve issues related with the programming. Yet, there is great progress made in the more 

reliable fabrication and the realistic modelling of their dynamics as an affordable device in the 

same level of electronic components used in circuits design. From this point of view and to the 

knowledge of the author of this thesis there is a lack of clarity  in circuit theory analysis 

assuming the behaviour of an ideal memristor, which is the motivation of this work, which aims 

to propose an alternative analysis method, as introduced in the next chapter. 
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 BOND GRAPH ANALYSIS 

 

 

 

 

 

4.1 Introduction 

With the increasingly important role of modelling and simulation in the engineering design 

field, models need to be more accurate as it is not satisfactory to model sub systems in isolation, 

since they interact and produce related dynamics. That raises the need to model different physical 

systems in one modelling platform. This will be introduced in this chapter by introducing Bond 

graph analysis.  

Recent studies have discussed the analysis and modelling of electric circuits with 

memristive elements. This chapter presents, a review of some of the standard methodologies 

developed during the first half of last century, namely Nodal and Mesh analysis, which  model 

the circuit by relating the output with the input by a set of equations [194]. Following these 

methods, State-space formulation and some modern developments are also presented based on 

port theory as Port-Hamiltonian systems and graph theory (diagraphs) represented by Bond 

graph analysis. Although almost all real physical systems behave in a non-linear fashion, a 

memristor might act within a certain operating range approximately as a linear model, assuming 

the principle of linearization. Relating the outcomes with control theory analysis and extracting 

of the transfer function by linearizing a nonlinear bond graph is then addressed.  
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4.2 Methods of Analysis 

4.2.1 Kirchhoff’s Voltage Law  

One of the first basic laws is Kirchhoff’s Voltage Law (KVL) [195], that deals with the 

conservation of energy around a closed circuit path. From the theory point of view, the division 

of currents and voltages in memristor circuits combined of two or more memristors having 

different parameters motivates to analyse it using the KVL method. This also gives us a 

knowledge about nonlinearity of the memristor circuit. The relation of memristor is used to 

model memristor circuit with two memristors and voltage source [196], this is done by applying 

the current-voltage relationship of equation (3.2) in the circuit of Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

After applying KVL, the circuit is examined at a circular frequency ω = 4 rad / s and e 

= 2.7 V, as shown in Figure 4.2. It is apparent that the current over the memristor is almost non-

sinusoidal. The voltage drop u1 is higher than voltage drop u2. As the resistances of the first 

memristor M1 is greater than the resistances of the second memristor M2, the first memristor is 

Figure 4.2 The curves of the electrical quantities - e, the voltage drop u1,  

the voltage drop u2 and the current i(t) in dependence of time [3] 

M1 

M2 e(t) 

Figure 4.1 Two memristors and sine wave circuit 

i(t) 

u1 

u2 
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more non-linear than the second memristor. That is due to the point that the deviation of the 

resistance of M1 is from   Ron1 = 200 Ω to Roff1 = 60 k Ω but for the resistance of the second 

memristor, M2 is only from   Ron2 = 100 Ω to Roff2 = 16 k Ω.  This analysis shows that the 

examined circuit is slightly nonlinear and this nonlinearity is more visible at low frequencies 

[163]. 

 

4.2.2 Nodal Analysis 

Nodal analysis is a commonly known method of analysing electrical circuits. The aim of 

using this method is to identify each node voltage in the circuit by applying Kirchhoff’s current 

law (KCL) [197]. Kirchhoff’s current law states that: for any electrical circuit, the algebraic 

sum of all the currents at any node in the circuit is equal to zero. If there are n nodes and a 

reference node were selected, the remaining nodes can be numbered from V1 to Vn-1. If the 

admittance between nodes i and j  is Yij, then nodal equations can be written as [198]: 

 

11 1 12 2 1 1

1 1 2 2

...

.

.

.

...

m m

m m mm m m

Y V Y V Y V I

Y V Y V Y V I

   

   





  (4.1) 

where m = n-1,  V1, V2  and Vm are voltages from nodes 1, 2, …, n  with respect to the reference 

node. Equation (4.1) can be represented in matrix form as: 

 1then  Y V I    V Y I   (4.2) 

Nodal analysis method becomes more used for solving large-scale circuits for two 

reasons. The first is the elimination of nonplanar networks to avoid the tree-graph theory for 

setting the equations. The other reason is that the number of equations is smaller with nodal 

analysis, but this also has some limitations [194]. 

 

4.2.2.1 RLCM Circuit Analysis Using Nodal Analysis 

The use of Nodal analysis method to analyse RLC circuit by adding memristor as a new 

element will be analysed in this section. The best way to show such analysis is by applying 
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nodal analysis on RLCM circuit. A good circuit example is the canonical Chua’s oscillator with 

a flux controlled memristor [50] shown in Figure 4.3.  

 

 

 

 

 

By applying the nodal method to the nodes, A and B of the circuit the equations obtained are:  

 1 3i i i    (4.3) 

 3 2 1v v v    (4.4) 

 2 3 4i i i     (4.5) 

with integrating the above equations with respect to time t, to develop a set of equations that 

define the relation between the two fundamental circuit variables which is the charge and flux. 

The resulted equations are: 

                                                        1 3 ( )q q q     (4.6) 

                                                       3 2 1      (4.7) 

                                                        2 3 4q q q      (4.8) 

where ( )q i t t    and ( )v t t   . By solving these equations:  

                                                    3 1 ( )q q q     (4.9) 

 4 1 2 ( )q q q q      (4.10) 

                                                    1                 (4.11) 

                                                    2 3      (4.12) 

Then substituting 31 1 2 2 4
1 1 2 2 3 4 2, , ,

qq v q v q
i C i C i and i Gv

dt t dt t dt dt

    
      

 
 with the 

parameters
3 31 2

1 2 3

( )
,  ,  ,      ( )

i q
v v v L and W

t t t t

  




   
    

    
 into equations (4.3- 

4.5), recasting them into a differential equation using only charge and flux as revealed next. 

 

Figure 4.3 Canonical Chua’s oscillator circuit with a flux controlled memristor 
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  (4.16) 

 

 

4.2.3 Bond Graph Analysis 

Bond Graph method models [66] the flow of power energy and co-energy within the 

system components taking into consideration system interconnections. In this method, the 

conjugate variable relationships in every branch in the system are described by the flow of the 

power through the system. Table 4.1 defines the terminology and the interconnection 

constraints, as ports that belong to the same domain can be connected by a bond. It shows the 

conventional domains with the corresponding flow, effort, generalised displacement, and 

generalised momentum. An advantage of bond graph analysis is that it can account for power 

and energy transfer in different transduction domains enabling the modelling of 

electromechanical, or physicochemical systems using a unified framework. Bond graph may be 

unfamiliar to many readers who have a background in analog system modelling as bond graph 

was commonly used in mechanical framework as the origin of the bond graph was introduced 

first in mechanical systems modelling. 
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Table 4.1 conventional domains with corresponding flow, effort, and generalised displacement and momentum. 
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flow 
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Chemical 

μ 

Chemical 

potential 

f N 

Molar 

flow 

 

N= ∫ f N dt 

Numbers of moles 

 

 

 

4.2.3.1 Power Bonds and Conjugate Variables 

The flow of power from one system to another is depicted by an arrow as shown in 

Figure 4.4, and this arrow is called a power bond. The energy in bond graph framework is 

substituted by two variables the (flow and effort). In the electrical domain flow (f) represents 

the current (i) and the effort (e) represents the voltage (u), where one of these variables describe 

the cause and the other describes the effect. The product of flow and effort has the units of 

power [117]. 

 power flow effort voltage current      (4.17) 
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1 1 

2

3

effort sum equal to zero 

𝑒1 = 𝑒2 + 𝑒3 

flows are equal 

𝑓1 = 𝑓2 = 𝑓3 

Figure 4.6  1-Junction bond and conjugate variables relations 

Figure 4.4 shows half of an arrow power bond, symbolising the power flow from point A to 

point B. 

 

 

4.2.3.2 Bond Graph Junctions 

Power bonds might join with each other by two types of junctions, ‟0” Junction and ‟1” 

junction. For the 0-junctions, the conditions satisfied for the flow and effort are stated below: 

 input outputflow flow    (4.18) 

1 2  n 1 2  ...input input input output output output neffort effort effort effort effort effort          (4.19) 

Moreover, for the 1-junction flow and effort follow these two rules: 

 input outputeffort effort    (4.20) 

1 2  n 1 2  ...input input input output output output nflow flow flow flow flow flow         (4.21) 

  

 

 

 

4.2.3.3 1- Port Elements 

One-port element is an element addressed through one power bond. It is divided into 

two groups, passive and active. The passive element is an element does not generate power 

A B 
e 

f 

Figure 4.4 Bond graph power bond 

0 1 

2

3

4

flow sum equal to zero 

𝑓1+𝑓4 = 𝑓2 + 𝑓3 

efforts are equal 

𝑒1 = 𝑒2 = 𝑒3 = 𝑒4 

Figure 4.5   0-junction bond and conjugate variables relations 
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C 
e 

f 

Figure 4.9 Capacitor bond symbol 

source such as resistors, capacitors and conductors [95] and active elements are the flow and 

effort power sources.  Each type of 1-port element will be discussed next. 

4.2.3.3.1 Resistor 

Resistors (R) dissipate the energy as known in electrical circuits, and the flow related to 

the effort by a static relation as shown in equation (4.22) below: 

 e Rf   (4.22) 

The power is given by  

 2power ef Rf    (4.23) 

Figure 4.7 shows the half arrow pointing towards R, which means the power is inflowing to R. 

In the case of a resistor either the flow is the cause and the corresponding will be the effort, or 

the effort is the cause and the correspondence will be the flow. 

 

4.2.3.3.2 Capacitors  

Capacitors (C) are elements that store and give out energy without loss. The elements 

relate effort and charge (q) which is the time integral of flow as shown in equation (4.24). In 

Figure 4.9, the flow will be the cause and the consequence is the effort in the case of a capacitor. 

 ( ) q f t t    (4.24) 

 1 1( ) e C f t t C q      (4.25) 

 

 

R 
e 

f 

Figure 4.7 Resistor bond symbol 

I: L 
e 

f 

Figure 4.8 Resistor bond symbol 



 

 

55 

 

4.2.3.3.3 Inductor 

Inductors or inertia (I) are type of another energy storage elements in electrical circuits. 

An inductor relates the flow with the flux (p), which is the time integral of the effort as 

illustrated in the equations below with the symbol of inductor bond. For the inductor, the effort 

will be the cause and the result is the flow. 

 1 1 ,   p e t f L e t L p          (4.26) 

4.2.3.3.4    Effort and Flow Sources  

Effort (Se) and flow (Sf) sources are the active one-port element in bond graph analysis 

which create action in the system. They are represented by the half arrow pointing away from 

them toward the junction. 

 

4.2.3.4 2-port Element  

There are also two additional basic types of 2-port elements, these are transformers (TF) and 

gyrators (GY), and will be discussed briefly next: 

4.2.3.4.1 Transformers 

Transformers do not store or dissipate or convert power, they only transmit the power 

with a proper scaling factor. They relate flow to flow and effort to effort. As shown in Figure 

4.13, m is the transformer modulation ratio while 1 and 2 are the two-port address. 

 

 

 

e1 

f1 

TF 

m 

e2 

f2 

e2=m e1 

 f1=m f2 

Figure 4.13 2-port element: Transformers 

I:L 

e 

f 

Figure 4.10 Inductor bond symbol 

Sf 
e 

f 

Figure 4.12 Flow source bond symbol 

Se 
e 

f 

Figure 4.12 Effort source bond symbol 



 

 

56 

 

4.2.3.4.2 Gyrators 

A gyrator translates effort to flow and flow to effort without scaling as shown in Figure 

4.14. Here d is the gyrator modulation ratio. Combining two gyrators in series is equivalent to 

one transformer [199]. 

 

 

 

4.2.3.5 Power Flow Diagrams 

The next step is to join the element bond in a junction and assign their power flow. This 

can be illustrated best through an example. The first example is for an electrical circuit of 

common flow, as shown in Figure 4.15 with the corresponding bond graph. 

 

 

 

 

 

The second example is a circuit with a common effort and the resulting bond graph is shown in 

Figure 4.16.  

 

 

 

 

 

 

C 

e1 

f1 

GY 

d 

e2 

f2 

e2=d  f1 

 f1=d e2 

Figure 4.14 2-port element: Gyrators 

Se 

L 
1 Se 

R 

I:L 

C 

R 

Figure 4.15 Series RLC circuit example and the corresponding bond graph 

Se 
0 Se 

R 

I:L 

C 

R L C 

Figure 4.16 Parallel RLC circuit example and the corresponding bond graph 
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4.2.3.6 Causality 

Causality is one of the essential functions in a bond graph, as it assigns the directions of 

flow and effort of the bond. Figure 4.17 shows the directions of the flow and effort according 

to causality. 

 

 

 

 

There a fixed causality as in power sources, transformers and gyrator [200]. The corresponding 

causality is shown below in Figure 4.18. 

 

 

 

 

In addition to the fixed causality, there are preferred causalities for capacitor and inductors 

because there are two possible causality mark assignments. These assignments are either 

integral or differential causalities. For the C and L, they have an integral or differential 

relationship between the conjugate variables and the causality mark depends on the specified 

relation. Figure 4.19 demonstrates the causality mark assignment related to each relationship. 

The last bond graph element places equivalent causality assignment as the resistor. The relation 

between the conjugate variables are either integral or differential and the relation is simply 

linear at all time. The causality mark assignment for the resistor is shown in Figure 4.20. 

 

 

 

 

e 

f 

e 

f 

Causality Marks 

Figure 4.17 Causality marks for two different bonds 

SE 

TF TF 

GY 

Or 

SF 

GY Or 

Figure 4.18 Fixed causalities as in power sources, transformers and gyrators 
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As shown in Figure 4.5, now there is a need to add the causality assigned to each of the 

junction’s types. For the connection bond of 0-junction which shares the same effort, the causal 

assignment is rearranged according to the element that is determined by the source of flow or 

1

𝐶
 

∫ f 
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q 
𝑒 =

1

𝐶
𝑞 C:C 
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f 

𝐶 

𝑑

𝑑𝑡
 

e 

f 

𝑓 = 𝐶
𝑑𝑣𝑐

𝑑𝑡
 C:C 

e 

f 

1

𝐿
 

∫ e 

f 

p 
𝑓 =

1

𝐿
𝑝 I: L 

e 

f 

𝐿 

𝑑

𝑑𝑡
 

f 

e 

𝑒 = 𝐿
𝑑𝑓𝐿

𝑑𝑡
 I: L 

e 

f 

Figure 4.19 The causality marks related to deferential and integral relationship graph 

𝑅 
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e 

 

𝑒 = 𝑅𝑓 
R:R 
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1

𝑅
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𝑓 =
1

𝑅
𝑒 R: R 
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f 

Figure 4.20 Resistor causality marks for different relations 
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effort. In each 0-junction, there is only one bond that is responsible for supplying effort as it is 

shown in Figure 4.21 

 

 

 

 

 

The other type of junction bond is the 1-junction. The rules that the 1-junction must satisfy are 

that all flows are equal, and the efforts sum is equal to zero. With reference to Figure 4.6, the 

resulted causality configuration will be as shown in Figure 4.22. In 1-junction, there is only one 

bond that supplies the junction with the flow [201].  

 

 

 

 

 

 

As a full illustration of bonds, junctions and causality, a simple example is shown for 

the circuit of Figure 4.23a. The first step in bond graph modelling is to convert the circuit into 

its corresponding bond graph as shown in Figure 4.23b. It is better to assume that the causality 

of capacitor and inductor are of integral causality unless these one port elements are forced to 

be in a differential causality. There are a few steps that can be followed to assign in every 

system causality. These  steps define a procedure called the Sequential Causal Assignment 

Procedure (SCAP)[202][203]. This procedure allows for assigning the causality to the overall 

bond graph, it consists of the following steps:  

0 1 

2

3

4

Flow sum equal to zero 

−𝑓1+𝑓2 + 𝑓3 = 𝑓4 

Efforts are equal 

𝑒1 = 𝑒2 = 𝑒3 = 𝑒4 

Figure 4.21 0-junction bond and conjugate variables relations with causality 

1 1 

2

3

Effort sum equal to zero 

𝑒2 = 𝑒3 − 𝑒1 

Flows are equal 

𝑓1 = 𝑓2 = 𝑓3 

Figure 4.22 1- junction bond and conjugate variables relations with causality marks 
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1) First assign the causality for the sources  ,  Se Sf  and then extend it to the 0 and 1-junctions 

taking into consideration the constraints applying on them. Continue the causality 

assignment to the TF  and theGY  . 

2) Repeat the previous step until all the sources have the causality assigned on them. 

3) Assign the integral causality to the storage elements  ,   I C and continue as in step 1. 

4) Repeat the above until causality is established for all of the storage elements. 

5) At this point, the causality has been assigned to all bonds.  

6)  If, however, any bonds without causality remain in the bond graph choose a resistive 

element without causality assigned to it arbitrarily. Then repeat from step 1. 

7) Step 5 is repeated until all resistive elements obtain causality. 

8) Any unassigned bond is chosen and causality is assigned to it. Then, follow the process as 

in step 1.  

9) Repeat the above until all the unassigned bonds have causality. After completing step 8 all 

bonds will contain their causality. 
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I: L C: C
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3
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C: C 
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5
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R: R2 R: R1 
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Figure 4.23 (a) Electrical circuit example. (b) The corresponding bond graph with causality marks 
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4.2.4 Bond graph Equation Formulation 

One of the bond graph analysis goals is to obtain state space representation form. There are 

a few steps that can be followed to obtain such form of equations as discussed in Figure 

4.23[204].  

1. The first step is to assign the integral causality for L and C elements. 

2. Determine the appropriate state variables for L and C ( p and q respectively). 

𝑓2 =
𝑝2

𝐿
              𝑒5 =

𝑞5

𝐶
 

3. Find the answer to the two important questions for solving bond graph: 

(1) What do the elements give to the system? 

 1 : Se e E   (4.27) 

 2
2: 

p
L f

L
   (4.28) 

 1 3 1 3 1 2:R e R f R f    (4.29) 

 5
5: 

q
C e

C
   (4.30) 

 2 6 2 6 5: R e R f e    (4.31) 

(2) What do the causal elements receive from the system? 

 52
2 2 3 4 3 3 5 3: e e e e

qp
L p E E R f E R

L C
            (4.32) 

 6 5 52
5 5 4 6 2 2

6 6 6

e e qp
q f f f f f

R R L R C
           (4.33) 

By answering these two questions, all system equations will be identified automatically. 

 

4.2.5 State-Space Formulation  

In 1965, the first seminal paper to discuss the state variable approach was published by 

Kuh and Kotler [205]. This work proposed a topological theoretical base to obtain the state 

equations of linear networks. A set of state variables, input and output related by differential 

equations are used to produce a mathematical model of circuits, which  is called the state space 

formulation [206].  If x is denoted as the state variable, u is the input, and y as the output of an 
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electrical system, then the linear system of n first-order differential equations can be expressed 

as follows: 

x Ax Bu                                                         (4.34) 

This equation is referred to as the state space formulation, where x (t) is the state variable, u (t) 

represents the input vector and x  is the derivative of x or each element of the input vector, with  

A  and  B  are the system matrix and input matrix respectively. The output expressed by the 

output equation as a function of the state variable and the excitation sources is: 

 

 y Cx Du    (4.35) 

where y is the output vector for the system, C is the output matrix and D is the feed-forward 

matrix representing the amount of input energy that has not interacted with the system. For 

many physical systems, the D matrix is a Null matrix and (4.35) is reduced to y xC  [206]. A 

general procedure for obtaining state space equations consisting of four steps is mentioned in 

[207]. 

 

4.2.6 Examples of State- Space Equation 

4.2.6.1 1st Order Circuit 

To obtain the state equation, the procedure steps are applied on a simple circuit example, 

as in Figure 4.24. The interesting variable here is the voltage of the capacitor as a storage 

element (VC). If Vc is denoted as x then cV
x

t





 , by applying KVL, the resulted equations are 

stated below: 

 

 

                                  

                                      

C 
Vin 

R 

VR 

VC 

Figure 4.24 1st order RC circuit example 
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 ( ) ( ) ( ) c
R c

V
i t i t i t C Cx

t


   


  (4.36) 

Then formulating resistor voltage  

 ( ) ( )R RV t Ri t RCx    (4.37)         

And applying KVL to the circuit 

 in R CV V V RCx x      (4.38) 

Rearranging equation (4.38)   

 
1 1

inx x V
RC RC

     (4.39) 

and the output is the same voltage of capacitor which is x. 

                                       y x                                                               (4.40) 

where
1

A
RC

   ,
1

B
RC

  , 1C   and 0D    

 

4.2.6.2 Higher Order Circuit 

  A higher order circuit example is that of a 2nd order circuit as shown in Figure 4.25. This 

circuit consists of two capacitors which determine the order of the circuit, and by applying the 

procedure steps, the resulted state-space form is obtained as follows: 

 

 

 

  

 ( ) c
c

V
i t C x

t


 


  (4.41) 

By solving the circuit using nodal analysis. 

 
 

11 1 2
1

1 2

0
cVx u t x x

C
R R t

 
  


  (4.42) 

 22 1
2

2

0
cVx x

C
R t


 


  (4.43) 

VR1 VR2 

R1 

u(t) 

R2 C2 VC2 

x1 x2 

C1 VC1 

Figure 4.25 2nd order RC circuit example 
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Then substituting 1 2
1 2,  and  

Vc Vc
x x

t t

 
 

 
  into equations (4.42) and (4.43), it results in:

  

  1 1 2 1 1

1 1 2 2

1 1 1 1
0x u t x x C x

R R R R
       (4.44) 

2 1 2 2

2 2

1 1
0x x C x

R R
                                                  (4.45) 

Then rearranging equations (4.44) and (4.45) according to the derivative variables: 

  1 2
1 1 2

1 2 1 1 1 1 2

1 1R R
x x u t x

R R C R C C R


      (4.46) 

 2 2 1

2 2 2 2

1 1
x x x

R C C R
     (4.47) 

  

1 2

1 2 1 1 21 1

1 2

2
2

2 2 2 2

1
1

 
1 1

0

R R

R R C C Rx x
C R u t

x
x

C R C R

 
     

                     
 

  (4.48) 

  2y x                                                    (4.49) 

By rearranging again the above equations, the state space parameters are obtained as follows: 

 3
52 2

1R
p p q E

L C
      (4.50) 

  2 55

6

1 1
q p q

L R C
                                                  (4.51) 

 

3

2 2

5
5

6

1

1

1 1 0

R

p pL C
E

q
q

L R C

 
                        
 

  (4.52) 

 

4.3 Memristor As a Bond Graph Element 

Oster in 1972 introduced the memristor as the new bond graph elements [3], after 

Chua’s announcement of conceptualizing the fourth element [9]. Oster presented two types of 

memristor (M), a charge controlled memristor where ( )e M q f and a flux controlled 

memristor where ( )f W e . The corresponding memristor power bond and causality are 
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shown in Figure 4.26. Memristors cannot be considered as energy storage element because they 

have the same behaviour as resistors. 

 

 

 

The memristor is a peculiar element, it is dissipative, but at the same time, it is a dynamic 

element requiring the specification of an initial value. It should be taken into consideration that 

the state space will be three-dimensional not two-dimensional as expected for RLC circuit, and 

that is due to the calculation of the state variable (w) of memristor.  

Almost all books and research papers did not discuss the analysis of bond graph with 

Memristor. Wolfgang Borutzky stated in his book [88] “Even in the fourth edition of their 

renowned textbook [208], Karnopp, Margolis and Rosenberg note that “no element will relate 

p and q”.  While interesting and occasionally useful, memristors can be represented in terms 

of other elements to be introduced later, so the memristor will not be considered to be a basic 

element.”. So, one of this project’s challenges is to consider the memristor as the basic fourth 

element of bond graph analysis. A simple RLCM circuit example shown in Figure 4.27 will be 

solved to give a brief understanding of how to analyse the bond graph with the existence of 

memristor.  

 

 

 

  

  The extracted bond graph with the related causality will be denoted as follows: 

 

 

 

 

M M 

(a) (b) 

Figure 4.26 Memristor bond and causality (a) Charge controlled memristor  

(b)Voltage controlled memristor 
 

L C R 

M E

Figure 4.27 Series RLCM circuit example 
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R:R I:L 

M C:C 

Se 
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Figure 4.28 The corresponding bond graph with causality for Figure 4.27 circuit 
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The system equations that represent this bond graph are derived as:  

 1:Se e E   (4.53) 

 2
2:

p
L f

L
   (4.54)

3
3:

q
C e

C
                 (4.55) 

     2
5 5 2:

p
R e Rf Rf R

L
                                                  (4.56) 

 2
6 5 6 5 2 3: ( ) ( ) ( )

p
MR e M q f M q f M q

L
     (4.57) 

 3 2
2 1 4 3 1 3 5 6 2 32 = - ( )

q pR
p e e e e e e e e E p M q

C L L
            (4.58) 

 2
3 23

p
q f f

L
     (4.59) 

 where 

  

( ) ( ) (1 )

       

on off

on
v

w w
M q R R

D D

R
w q

D


  



                                     (4.60) 

  

4.4 Junction Structure Matrix 

A vectorised description of a physical system analysed with bond graph is shown in 

Figure 4.29. This description is demonstrated below as a block diagram based on the energy 

conservation of a junction structure according to the information flow within the system. 

  

 

 

 

 

Figure 4.29 General structure of a causal bond graph 
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In the above general junction structure, the storage-field has been partitioned into two fields 

according to the integral or derivative causality assignment. This structure is defined as the BG-

Standard Implicit Form (BG-SIF). Here  Xi = [xi,1, xi,2, . . . ,xi,n]
T is the state vector in integral 

causality,  and Xd = [xd,1, xd,2, . . . ,xd,l-n]
T contains the energy variables in differential causality.        

Zi = [zi,1, zi,2, . . . , zi,n]
T and Zd = [zd,1, zd,2, . . . , zd,l-n]

T contain the co-energy variables associated 

with Xi and Xd. Di and Do containing the effort and flow variables entering and exiting from 

resistances. U contains the efforts and flow variables imposed by the sources. It is assumed that 

the system contains n-1 storages. 

The derivative of the general implicit form is based on a general form of  (4.61). The 

standard form of a bond graph will be devided into an external and internal power bonds. In 

this section, the bond graph was divided so that it can be used in formulation suited to computer 

implementation. To obtain the junction structure matrix many steps should be followed as will 

be discussed below. Every multi-port within the junction structure can have its constitutive 

relation written as: 

 11 12

21 22

   
o i

o i

g gJ J

h hJ J

    
    
    

  (4.61) 

 In this case,  go  is the external bond output variables,  ho is the internal  bond output variables,   

gi  is the external  bond input variables,  hi  is the internal  bond input variables, which are directly 

extracted from Figure 4.29. go and gi  will contain the system variables as shown: 

     and   

i

d d

o i

x z

z x
g g

v u

s r

   
   
    
   
   
   

  (4.62) 

where for the source field u and v are the output and the input variable respectively. For storage 

field, xi is integral causal input variable, xd and  zd are the differential causality input and output 

variables. After solving matrix (4.61) to obtain go and substituting hi=P ho, the result will be the 

junction structure matrix: 

  1

11 12 22 21(I ) )o ig J J P J P J g    
                                  (4.63) 

After calculating the junction structure matrix, one can rearrange the junction structure matrix 

in an order similar to (4.64) and the corresponding matrix relation is:  
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11 12 13 14

21 22 22 24

31 32 33 34

i
i

d

d

o

i

D

U

  
    
     
    
     

   

Z
X S S S S

X
Z S S S S

D S S S S

  (4.64) 

 

4.4.1 Detailed Steps for Obtaining Junction Structure Matrix 

From an augmented bond graph, using a step by step procedure for junction structure 

matrix generation. In this section a bond graph is branched into sub-divisions. Every multi-port 

within the junction structure can have its constitutive relation to be written in an equation (4.61)

[204]. Here the model of a simple system is taken as the starting point, as shown in Figure 4.30 

. 

 

 

 

 

By observing this bond graph, it can be seen that bonds 1,2,3,4,7, and 8 are the external bonds 

and also that bonds 5 and 6 are the internal bonds. Thus, for extracting each junction relations 

matrix, the first junction under investigation is the 0-junction. In this junction, the input 

variables are f1, e2, f3, f4 and f5, and the output variables will be e1, f2, e2, e4 and e5. The resulted 

relation matrix for the 0- junctions is: 

 

1 1

2 2

3 3

4 4

5 5

0 1 0 0 0

1 0 1 1 1

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

e f

f e

e f

e f

e f

  



    
    
    
    
    
    
        

  (4.65) 

For further explanation on how to calculate (4.65), the outputs 1 3 4 5 , , and  e e e e  are given the 

effort from 2e  because C2 is the supply of the effort into the junction. In addition, in the 0- 

junction all the efforts are equal, meaning 1 2 3 4 5e e e e e    . Then, the output 2 f  can be 
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Figure 4.30  Junction structure matrix example 
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obtained from the 0-junction flow equation which states that the summation of the flow equals  

zero, so 1 2 3 4 5  f f f f f     then  2 1 3 4 5f f f f f    .  

Now, we observe the 1 junction, and the input variables are 6 7 8 ,  and f e e , while the 

output variables are 6 7 8,  a nd  e f f . The resulted matrix for the 1 junction will be as follows:  

 

7 7

8 8

6 6

0 0 1

0 0 1

1 1 0

f e

f e

e f

    
    


    
        

  (4.66) 

To explain how the matrix is obtained, the outputs 7f  and 8f  are supplied from 6f .  As one of 

the 1- junction properties is that all flows are equal, the output 6e  will be calculated from the 

1- junction effort equation, which states that the summation of the efforts are equal to zero, so

6 7 8e e e   . 

For the gyrator junction, the input variables are 5e  and 6e , thus, the output variables are 

5f and 6f . The corresponding matrix for the gyrator junction is: 

 5 5

6 6

0 1/

1/ 0

f er

f er

    
    
    

  (4.67) 

        The flow output in this matrix is from the gyrator equations, 5 6 6 5  and e rf e rf  . After 

analyzing the system and determining the corresponding matrix for each junction in the system, 

we will arrange the supplied matrices into the form of matrix (4.61) as shown below:  

 

11

1

2

3

4

7

8

5

5

6

6

                                                                

0 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

o

o

J

e

f

e

eg

f

f

e

h f

f

e

 
 

   
 
 
 
 
 
 

 
 
 
 
 
 
 
 
  

12

21 22

1

2

3

4

7

8

5

5

6

6

0 1

0 1 0 0 0 00 0 0 0

0 0 0 0 0 00 0 1/ 0

0 0 0 0 0 00 0 1/ 0

0 0 0 0 1 11 0 0 0

                      

i

i

J

J J

f

e

f

f g

e

e

f

r e h

r e

f

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
     

                                     

  (4.68) 
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As hi is a reordered form of ho then we can eliminate   hi by substituting i oh Ph . Matrix P can 

be written as:  

 

5 5

5 5

6 6

6 6

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

f e

e f

e f

f e

P

    
    
    
    
    

    

  (4.69) 

After solving matrix (4.63) to obtain go and substituting hi=P ho for the above example the 

resulting junction structure is: 

 

1 1

2 2

3 3

4 4

7 7

8 8

0 1 0 0 0 0

1 1
1 0 1 1

0 1 0 0 0 0

0 1 0 0 0 0

1
0 0 0 0 0

1
0 0 0 0 0

e f

r rf e

e f

e f

f e
r

f e

r

 
 

       
    
    
    

    
    
    
    
       

 
 

                           (4.70) 

 

4.4.2 Junction Structure Matrix with Memristive Elements 

Standard postulations in BG theory where power is expressed as the product of effort 

e(t) and flow f(t) are adopted and the same is applicable to state variables, momentum p(t) and 

displacement q(t). As proposed in [98], bond graph model contains linear and nonlinear 

dissipation fields that can be decomposed into dissipation fields split into two parts (linear and 

nonlinear), storage fields (C and I), as well as source fields associated  with effort and flow (Se 

and Sf), and junction structures (denoted by JS) composed of transformers TF, gyrators GY. In 

this section, a new general junction structure model for systems that contain memristive 

elements is proposed, which is the general flow of information within such systems as shown 

in Figure 4.31.  
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where   

• xi = [xi,1, xi,2, . . . ,xi,n]
T is the state vector in integral causality.  

• xd = [xd,1, xd,2, . . . ,xd,l-n]
T contains the energy variables in differential causality. 

•  zi = [zi,1, zi,2, . . . , zi,n]
T and zd = [zd,1, zd,2, . . . , zd,l-n]

T contain the co-energy variables associated 

with  Xi and Xd.  

•  and l l
i oD D  are the linear vectors containing the power variables entering and exiting from 

resistances.  

•  and M M
i oD D  are vectors containing the power variables entering and exiting from memristive 

field. 

• u contains the effort and flow variables imposed by the sources.  

 

Dissipation as an input variable is seen as mentioned before, to be composed of two elements: 

linear  
l

iD and nonlinear .l

iD  Similar expressions of  ,M

iD
M

oD  can be used to denote dissipation 

as an output variable. The general implicit matrix of the model has been derived using bond 

graph theory: 

 o ik Jk   (4.71) 

Where ( ) ( ) ( ) ( )l M
o i di ik D t D t z tx t 

 
is the output of the junction structure and

( ) ( ) ( ) )) ((l M
i i o o dk z t D t D t u x tt 

 
is the input of the junction structure. After assuming 

a few conditions, the general structure matrix of such systems will be proposed as: 
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Figure 4.31 Structure of a causal bond graph 
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31 34

41

( )

( )
( ) 0 0

( )
( )

( )

(

0 0 0
( )

( ) 0 0 0 0
)

i

l

ol

i M

i

d

oM

i

d

z t
S S S S S

D t
D t S S S

D t
D t S S

u t
z

x t

x t
t S

 
    
    
    
    
    
       

  (4.72) 

Some of the assumed properties of (4.72) are: S11 and S22 are skew-symmetric matrices; 

12 21

TS S   and 13 31

TS S    imply that all storage elements are linear; 44 0S   as no storage 

elements are determined by sources in deferential causality; 42 43 45 0S S S    because by 

definition the dependent state variables are functions for only integral causality state and the   

system inputs; 23 32 33 0S S S    as there are no coupled resistors; 25 35 0S S   is assumed to 

be in the preferred integral causality.  

 

4.5 Formulation of Bond Graph Equation into State-Space Form 

The form of the state space equation needed to be derived from bond graph is in the form 

of: 

  ( ) ( ) ( )x t Ax t Bu t                                               (4.73) 

where  x t  is the derivative of energy variable, thus it consists of p  for the inductor element 

and q  for the capacitor elements. u is the vector that contains flow or effort sources. 

The state space equation will be calculated referring to matrix (4.64). The derivative has 

been based on the method provided by Donaire [209], assuming ( ) ,
l l
o iD t LD  where L is a 

matrix that consists of the dissipation field, and this matrix is a diagonal positive and invertible 

matrix. Then ( ) ( ),z t Fx t  describe the behaviour of the storage elements in integral causality 

within the network, with F is a positive diagonal matrix of storage field. And  ( ) ( )d dx t Gz t  

describing the behaviour of the storage elements in derivative causality within the network with 

G as a positive diagonal matrix of storage field. 

With the general matrix previously presented in section 4.4 in conjunction with the  

causally constrained bond graph that will yield a DAE-system, the differential equations are 
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derived under a suitable assumption to define a general expression for a system with integral 

and derivative causalities. The equation is produced after substituting lines three and two from 

matrix (4.64) into the first line. The final expression for all the storages and dissipation elements 

in the expression will be formulated as follows: 

11 11 1 11 11 11 1 11

14 31 11 12 22 21 12 22 23 13( ) ( ) ( ) ( ) ( ) ( )I S GS F x t S S L I S L S Fx t S L I S L S S u t             
  (4.74) 

the obtained expression is formulated into the state-space form x x u A B .      

                                                        

4.5.1 Derivation of The Unique State-Space Formulation of Bond Graph 

Equation with Memristive Elements 

For a system combined with memristor elements, the system will be considered as a 

class of nonlinear system because of the memristor behaviour, which can be obtained by 

dividing the dissipation field (as the memristor is an element that dissipates energy) into linear 

dissipation, respectively the input and output dissipation, which is a mixture of efforts e(t) and 

flows f(t), and non-linear dissipation.  In the case of memristor system, the non-linear 

dissipation will be denoted by  and M M

i oD D  . The systems with memristor can be modelled by 

bond graph with a junction structure defined as in (4.75): 

The constitutive relations of the elements in the derivation of a  system containing linear 

storage elements are: ( ) ( ),z t Fx t  ( ) ( ),  ( ) ,  and  ( ) ( ) ( ),
l l M M

d d o i o ix t Gz t D t LD D t M x D t    

where ( )x t  is an integral causal input variable, ( )dx t is the differential causal input variable, and 

M(x) denotes memristance and it is a diagonal matrix of coefficients M(x) or M-1(x) depending 

on the type of control for whether it is charge of flux control memristor or not. Substituting 

these constitutive relations into (4.72), it follows that: 
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( ) 0 0
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( ) 0 0 0
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S F S L S M S S G

D t
D t S F S L S

D t
D t S F

x t
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u t

z F
z

t
t

S

 
    
    
    
    
    
       

  (4.75) 
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The form of state space equation needs to be derived for systems with memristive elements in 

the form of (4.73). By looking at row four of equation (4.75), an expression for ( )dz t   in terms 

of the other elements in the system is derived: 

  41 41( )  ( )  ( ) ( )d dz t S F x t z t S Fx t                              (4.76) 

And from row three, an expression for ( )M

iD t  in terms of ( ) and ( )x t u t  in the system can be 

expressed as: 

 31 34( ) ( ) ( )M
iD t S Fx t S u t    (4.77) 

Then deriving ( )l
iD t  from the matrix above:  

 21 22 24 22 21 24( ) ( ) ( ) ( ) ( )( ) ( ) ( )l l l
i i iD t S Fx t S LD t S u t D t I S L S Fx t S u t         (4.78) 

Finally, an expression from the first row for the derivative of the state variables is obtained as: 

 
.

11 12 13 14 15( ) ( ) ( ) ( ) ( ) ( )l M
di ix t S Fx t S LD S M x D t S u t S G z t       (4.79) 

Substituting (4.76),(4.77), and (4.78) into (4.79) leads to the general implicit state equation: 

   1 1

11 12 22 21 13 31 12 22 24 13 34 14( ) ( ) ( ) ( ) ( ) ( ) ( )Ex t S S L I S L S S M x S Fx t S L I S L S S M x S S u t
 

            (4.80) 

where 15 41( )I S GSE F  . Equation (4.80) is consider as a  state space equation in the general 

form ( ) ( ) ( )Ex t Ax t Bu t  . 

 

4.6   Transfer Function Derivation  

One of the most common and useful methods of representing a system is by its transfer 

function of complex variables [210]. A rational function between the input and the output for 

finite dimensional systems may be used to describe systems of a very high order or systems 

described with partial differential equations. The numerator and denominator give the poles and 

zeros of the system and can be used to identify system dynamics, estimate stability margins 

through Bode plot or Nyquist diagrams. An input-output description of a system is essentiall 
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for systems to be characterised by the response. In this section, another interesting method of 

using the bond graph theory will be considered to derive transfer function.  

 

4.6.1 Transfer Function Using Bond Graph Matrices 

This section investigates the exploitation and analysis techniques used specifically on 

bond graphs. This includes both standard bond graph and bond graph incorporating memristive 

elements, and their relationship to classical systems control theory. The information included 

in the state equation of a system is analogous to the structural analysis s in control engineering. 

The implicit or explicit state space equation(s) from the bond graph can be manipulated into 

various forms and used to obtain information about the system. Although this is not strictly an 

analysis of the bond graph, it is imperative that the bond graph can yield equations suitable for 

this kind of analysis. This method can identify and avoid some of the difficulties that face other 

methods with loop or nodes technique of network analysis to accommodate certain multi-ports. 

The most direct method to derive the transfer function model [204] is to replace the 

dynamic store's relation by the equivalent Laplace transform. Then, eliminating variables to 

obtain the required transfer function as in:  

 ( )
y

F s
u

   (4.81) 

To do so, the system junction structure needs to be derived with differential causality as shown: 

 

i i i o

i wx wu wr i

vx vu vD

i D x D u D D o

w

u

D D

    
    

     
        

S S S x

v S S S

S S S

  (4.82) 

Then eliminating the unwanted vector of v, and assembling the output variable into y vector to get: 

 

i i i o

yx yu yr i

i wx wu wr

i D x D u D D o

y

w u

D D

    
    

     
        

S S S x

S S S

S S S

  (4.83) 

with constitutive relation of storage field is: 

 1
i i i i ix Z w Y w    (4.84) 

and differentiating it and then taking the Laplace transform of equation(4.84): 
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 i i ix Y sw   (4.85) 

where s is a diagonal matrix of Laplace operator and S is for the submatrices of the junction 

structure matrix. Substitute (4.85) the constitutive relation  ( )o iD t LD  into (4.83), to 

eliminate ix  and oD : 

 

i i i o

yx yu yr

wx wu wr

i D x D u D D i

Ys Ly w

w Ys L u

D Ys L D

    
    

     
        

S S S

S S S

S S S

  (4.86) 

The resulting general transfer function of systems using bond graph technique will be: 

 1( ) ( )F s P Ms I Ns Q     (4.87) 

where,                            
1( S (S ) S )

o i o iyx yD D D D xM S L L I Y                                     (4.88) 

 1(S S (S ) S )
o i o iwx wD D D D xN L L I Y     (4.89) 

 1S S (S ) S
o i o iyu yD D D DuP L L I      (4.90) 

 1S S (S ) S
o i o iwu wD D D DuQ L L I      (4.91) 

 

4.6.2  Memristive Elements Transfer Function from Bond Graph 

From the method presented in the previous section, an interest to derive a unique transfer 

function of memristive systems from bond graph is raised. This section, addresses a new and 

direct formulation of transfer function to represent systems with memristive elements. This 

derivation can be found by using the same proposal that each dissipation field is divided into 

linear dissipation  and l l

i oD D , respectively, and non-linear in the case of memristor system, the 

non-linear dissipation will be denoted by  and M M

i oD D . Then the proposed junction structure 

matrix of memristive elements with differential causality will be: 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
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( ) ( )

( ) ( )

( )

(

)

)

(

l l
i o
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i o

S S S S x t

S S S SD t D t

S S S SD t D t

v t u tS S S S

w t     
    
    

     
    
        

  (4.92) 
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First, assign the output variables in a vector y(t) then delete vector v(t)  

 

1 1 1 1
11 12 13 14

11 12 13 14

21 22 23 24

31 32 33 34

( ) ( )

( )
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    

     
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        

  (4.93) 

The constitutive relation of storage field is: 

 1x Z w Yw    (4.94) 

After differentiating and taking the Laplace transform of equation(4.84): 

 x Ysw   (4.95) 

where s is a diagonal matrix of Laplace operator. Substitutes (4.95) and the constitutive relation 

( ) ,  ( ) ( ) ( )l l M M

o i o iD t LD D t M x D t   into (4.93), to eliminate ix  and oD : 
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D t u tS Ys S L S M S
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    
    
    
      

  (4.96) 

Equation (4.97) is obtained by solving the system according to ( )y t :  

1 1 1 1 1 1
11 10 12 5 3 10 5 4 13 6 10 7 14( ) ( ( ) ( ) ) ( )y t S YsK S K K K K K S K K K S u t        (4.97) 

The resulting mathematical transfer function will be in the form of: 

    1 1 1 1 1 1
11 10 12 5 3 10 5 4 13 6 10 7 14

( )
( ) ( )

( )

y t
S YsK S K K K K K S K K K S

u t

         (4.98) 

where 1
1 33(1 ) ,K S M   2 22(1 ),K S L  1 1 1

3 2 21 2 23 1 31K K LS K LS K MS     

1 1 1
4 2 23 1 34 2 24K K LS K MS K LS    , 1 1

5 2 1 321K K LK MS   , 1 1 1
6 1 31 1 32 5 3K K MS K MS K K   

1 1 1
7 1 32 5 4 1 34K K MS K K K MS    , 1

8 11 12 5 3 13 6K S S K K S K   , 1
9 12 5 4 13 7 14K S K K S K S    

and 1
10 8 9(1 )K YsK YsK  . 

A modified example shown in Figure 4.32 from [204], serves to illustrate the above 

proposed procedure. For the bond graph in Figure 4.32a, it is with preferred integral causality, 

so for the derivation of the system transfer function it is needed to force the storage elements to 

be in a deferential causality state as shown in Figure 4.32b.   
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From the bond graph with differential causality the junction structure constitutive relation is: 
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    
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    
        

  (4.99) 

Let the output vector be  2 5

T
y e e . Then, eliminate 1e  from (4.99) and transform (4.99) 

into the form of  (4.93), with the output vector. The resulting matrix will be: 
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6
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 

  (4.100) 

where: 
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 21 0 ,S n   22 23 32 33 34 0,S S S S S      24 1,S   and  31 0 1 .S   The constitutive 

equation for the storage field is: 

L6 

1 

5 

4 sf 

M5 

1 

2 

3 

C7 

TF 0 7 

R2 

6 

L6 

1 

5 

4 sf 

M5 

1 

2 

3 

C7 

TF 0 7 

R2 

6 

(a) 

(b) 

Figure 4.32 (a) Bond graph with integral causality. (b) Bond graph with differential causality. 
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e sL f

f sC e

     
     

     
  (4.101) 

And the constitutive equation for the dissipation and memristive fields will be: 

 2 2 2e R f   (4.102) 

 5 5 5e M f   (4.103) 

After applying (4.98) to adopt the transfer function for the above example, the transfer function 

expression will be: 

 

2 2
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2 2
2 7 7 6 7 7 6
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y t
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R n
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R sC n sC sL MsC sC sL

MR n

R sC n sC sL MsC sC sL


   

 
 
 
 
 
     

  (4.104) 

4.7  Bond Graph Linearization 

Although almost every physical system has nonlinearities, the behavior around a certain 

point of equilibrium can be approximated by a linear model. The reason for approximating such 

systems is simple. Therefore, systematic linear control methods can be applied [211]. A system 

is linearized around an operating point, and it is useful to analyse the behaviour of the system. 

The newly derived equations are assumed to be valid around a small region of the equilibrium 

points [212]. One of the linearization applications is the small-signal stability analysis when the 

system maintains synchronism at small disturbance[212]. There are many other methods and 

applications that can be found in many research papers as mentioned in the literature of chapter 

two. 

              An important bond graph property is the determination of the causal path, where the 

properties of the system structure such as observability and controllability are allowed to be 

defined. This is applied beneficially in [98]. A linearized bond graph of the physical system 

around equilibrium point was proposed by considering a non-linear bond graph with linearly 

dependent and independent state variables and non-linear resistors through a procedure to build 

a linearized bond graph from a non-linear one. Small perturbation techniques that enable small 

non-linear terms to be vanishingly small have been well developed by the non-linear control 

theory community to assist with stability analysis. As discussed by Avalos and Orozco, it is 

appropriate to adopt such an approach to the analysis in a BG framework. 



 

 

80 

 

Such Lemma may be stated in linearizing a bond graph to define new causal paths that 

construct a linearized bond graph, by obtaining an additional term. As in the form: 

 0 0( ) ( ( ), ( ))      ( )x t f x t u t x t x    (4.105) 

where ( )x t  is the state variable and ( )u t  is the input. If equation (4.105) is solved for a nominal 

input ( )u t  and initial state 0x  to obtain a unique nominal solution, one can consider that 

 ( ) ( ) ( )u t u t u t    (4.106) 

 0 0x x x     (4.107) 

where they are appropriately small for 0t t , so the corresponding state will be:  

 ( ) ( ) ( )x t x t x t    (4.108) 

A state equation of a class of non-linear systems is modelled by bond graphs of the form: 

 ( ) ( ) ( ) (( ( , )) ) ( )x t A x x t B x u tE H x ux      (4.109) 

where ( ),  ( ),  and ( )E x A x B x  are state dependent matrices and ( , )H x u  is the state nonlinear 

elements. The linearized expression for the system is:  

 ( ) ( ) ( )x t A x t B u t        (4.110) 

where  and A B   are the partial derivative matrices of the nominal trajectory and  and x u  is 

the distance to the nominal equilibrium point. Then following section discusses the procedure 

presented where by Avalos and Orozcob a linearized nonlinear bond graph is obtained. 

 

4.7.1 Linearized Bond Graph of Systems with Memristor Elements. 

 In order to create a linear model of systems of non-linear memristive represented in bond 

graph, the junction structure of systems with memristors that was proposed in section 4.4.2 will 

be used in the linearization procedure, with a storage in a preferential integral causality as 

shown in Figure 4.31, by referring to equation (4.75) in section 4.5.1, the general implicit state 

equation is:  

   1 1

11 12 22 21 13 31 12 22 24 13 34 14( ) ( ) ( ) ( ) ( ) ( ) ( )Ex t S S L I S L S S M x S Fx t S L I S L S S M x S S u t
 

         
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where 15 41( )I S GSE F  . By rearranging the above equation to be as (4.109) format, the above 

system is solved according to the procedure mentioned in [98]. 

An application example of the proposed linearization procedure on Hodgkin and Huxley 

neuron model [152] was presented by the author of this thesis at CNNA 2016; 15th International 

Workshop on Cellular Nanoscale Networks and their Applications Conference, in Dresden, 

Germany. 

The equivalent electrical model of the nerve cell membrane in the Hodgkin-Huxley neuron 

with two memristor elements is shown in Figure 4.33 [213], with the corresponding bond graph 

in preferential integral causality. The key vectors of this bond graph are:
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The resulted junction structure matrix will be as in equation (4.111): 
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  (4.111) 
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Figure 4.33 Hodgkin-Huxley model and the corresponding Bond graph 
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where    11 12 13 21 31 34

1 0 0
0;  1;  1 1 ;  1;  S = 1 1 ; 

0 0 1
 S S S S S

 
         

 
. With The 

defined constitutive relations are: F=1/C, L=1/R, M(x) =diag{1/M(f1), 1/M(f9)}. Applying the 

linearization method, the resulting state space for the linear bond graph for Hodgkin-Huxley 

can be expressed in the following form: 

 
( , ) ( , )

( ) ( ) ( )
H x u H x u

Ex t x t u t
x u

  

 
 

 
  (4.112) 

with K is constant and, the result expression will be: 

 13 13 34
13

( )( )
( ) ( ) ( ) ( )

S S M x SM x
Kx t M x S x t u t

x x u
  

    
          

  (4.113) 

 A Bond Graph linearization procedure is used to model the memristive behaviour of the 

Hodgkin-Huxley neurone. This has applications in other models of a neurone [214] and 

eventually in nanoscale neuromorphic chip design.  

Furthermore, the proposed analysis should find new uses in other practical examples 

extending the range of applications of RLCM networks using BG theory. Future examples will 

extend the applications of non-linear BG theory as originally proposed by Karrnopp and 

Rosenberg in 1963 [208]. 

 

4.8  Bond Graph Simulation 

One of the engineering concerns is to build a mathematical model that describes the 

dynamic behaviour for a system with the effect of different parameters that has an influence on 

the system. These systems are usually represented by partial differential equations. Bond graph 

technique became one of the useful methods to overcome such difficulties in the mathematics 

[215] to analyse different physical fields in a common platform. Different software and 

languages where introduced to simulate bond graph and simulation build a dynamic system 

model [216] as discussed previously in the literature review of chapter two. Some of this 

commercial software allow working directly with Bond Graph concepts as CAMP-G, TUTSIM 

and BONDLAB. 
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One of these software are MATLAB and SIMULINKTM
   they are used in this research as 

a suitable choice and familiar environment for multidomain simulation and Model-Based 

Design for dynamic and embedded systems. With the customised set of block libraries in 

SIMULINK and the integration with MATLAB, they provide a possible tool to build a bond 

graph SIMULINK model. A procedure to modulate bond graph using SIMULINK was 

proposed by Calvo in 2011[117], this procedure will be modified in the next section.   

 

4.8.1 Bond Graph with Memristor Simulation 

One of the aims of this project is to represent the memristor as a bond graph element. 

This section does not aim to develop bond graph method as presented first by Paynter [66], but 

tries to add a new element to its library. As the Memristor is a nonlinear element the circuit 

will, as a result, be a nonlinear circuit. In chapter three the memristor was assumed to be in its 

linear region to solve the systems theoretically. When building a Simulink model, there is a 

problem with the state variable calculations. 

After previous discussions about Bond Graph method, this section explains how to use 

the benefits of SIMULINK to set up and solve the equations that manage system behaviour 

[117]. The procedure consists of converting the real model into a Bond Graph Model and then 

translating it to the SIMULINK block diagrams as can be seen in Figure 4.34 [117]. These 

allow researchers to represent causal lines of the Bond Graph method. In order to understand 

the physical and mathematical concepts involved in dynamic systems, the block diagram of 

Simulink creates a better compression of the physical behaviour of the system.  
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Figure 4.34 Circuit simulation steps using Simulink 
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The first step in this simulation is to build a library that consists of the basic element 

blocks used as bond graph elements according to the relations in (4.22) (4.25) (4.26) and (3.2). 

for the resistor, capacitor, inductor and memristor with charge-controlled respectively. The 

library user interface is shown below: 

 

 

 

 

 

 

 

 

 

Figure 4.35 shows the main window of Simulink to build the new elements to the library. As it 

can be seen a very few blocks are needed to generate bond graph model. 

• Sources library: such as Time, Constant and Signal Generator, they allow the user to 

supply the system with power which serve as either as a flow or effort sources. 

• Math Operation library: such as Add, Divide, Product, they represent the 0-junction 

or 1-junction operation within the system. 

• Sinks library: XY Graph and To Workspace. These blocks allow an interface to 

observe the system dynamics. 

• Bond Graph element: represent the main BG elements of 1-port and 2- port types on 

the flow and effort variables. 

This procedure is described in details in [117]. It is necessary to present a mathematical model 

of memristor and explain the intelligibility of the simulation. The model used in this simulation 

subsystem is based on the model from [40]. The memristor is seen as a two-terminal devices as 

it builds as a box of one input of effort and one output of flow. Regardless of the limitation of 

Figure 4.35 Bond graph elements library 
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the design of being near to the actual device, Simulink is suitable for model construction of 

memristor within a circuit. Figure 4.36 shows a functional memristor model. These blocks 

reflect the mathematical model of HP lab model in section 3.4.4, with Roff =16000, Ron =100 

and D=1x10-7.  

One of the advantages of simulating bond graph is the possibility of modelling systems of 

various fields (electrical engineering, hydraulics, mechanics etc.). The system also 

distinguishes physical values and units, implicitly, and allows the user to work with other 

Simulink components. This simulation enables the interpolation of the power bonds with 

causality into a directional effort and flow from either point A or B, as a definition of causal 

stroke demonstrated in Figure 4.37 which shows half of an arrow power bond, symbolising the 

power flow from point A to point B according to causality. The following steps are performed 

in the process [119]: 

 

 

 

First, circle all nodes. Then expand all bonds into bilateral signal flows according to the 

assigned causality as in Figure 4.38. According to the assigned causality, the relations of each 

node are written in block diagram form. The resulted block diagram for the simple series RLC 

circuit in Figure 4.34 after following the above steps is shown below in Figure 4.38 

Figure 4.37 Bilateral signal flows between ports and definition of the causal stroke 

Figure 4.36  Memristor model in Simulink [34]. 
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The network topology is then linked to a Simulink model as shown in Figure 4.39. The 

response of this circuit is measured by applying a step function to the system. The 

corresponding response is shown in Figure 4.40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38 Bond graph block diagram with signal direction 
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Figure 4.40 Time domain response of Figure 4.39 Simulink model 

Figure 4.39 Simulink model of bond graph RLCM series circuit 
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Another way of simulating memristor in bond graph analysis is by constructing the state space 

matrices model [217][53]and writing them into a state space block at the Simulink library as 

shown in Figure 4.41. this could be considered as a future work to building a complete bond 

graph library that contains different models of memristor. 

 

 

 

 

 

 

4.9 Summary 

A brief description of a bond graph model has been given to show the possibility of 

modelling systems of various fields (electrical engineering, hydraulics, mechanics etc.). The 

system also distinguishes physical values and units implicitly. Bond graph is introduced 

together with the standard methodology for obtaining the state space formulation from the point 

of view of nonlinearity when adding memristor elements to a system. It has been given the 

possibility to consider the memristor as a bond graph basic element, and in this way it was 

shown that there is the ability to create nonlinear bond graph by splitting the dissipation field 

into two types of fields one for linear resistors and the second for memristors.  

The Standard Implicit form and energy properties of BG models were used to obtain a 

direct formulation for systems with memristive elements, as the matrices of the BG Standard 

Implicit form can be obtained algorithmically, and incorporated in creating a simulation 

platform it can be seen as the enabling step of a procedure for BG technique. This is worth of 

attention from an engineering point of view because, on the one hand, as a network-type 

representation technique, the BG method use interconnection topology of technical systems and 

provides an object-oriented modelling tool, and, on the other hand, avoids employing classical 

analytical methods that, in some cases, may show formulation difficulties. 

The concept of transfer function was an important part of classical control theory It was 

introduced via the Laplace transform which also was used to calculate response of linear 

Figure 4.41 State space Simulink model for bond graph analysis 
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systems which raise the need to follow a linearization procedure. It is noticeable that, there is a 

possibility to generate complex models from simple ones and the possibility to change the 

model parameters in order to obtain different results. Researchers do not need to have a deep 

knowledge of differential equations with bond graph to develop the expressions that represent 

the behaviour of the system and solve them. 
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 PORT-HAMILTONIAN SYSTEMS 

 

 

5.1 Introduction 

Port- Hamiltonian systems theory formulates a descriptive geometry for physical system 

models, that have input and output ports which are connected with the external environment 

[87]. This concept originated in the theory of port-based modelling from a modelling 

perspective as pioneered by Henry Paynter in the late 1950s [66]; Then, it was further developed 

by Breedveld [218][219]. Historically, port-Hamiltonian approach was used with mechanical 

systems and as time went by it was adopted in electrical networks [220]. The port-Hamiltonian 

description offers a systematic framework for analysis, control and simulation of complex 

physical systems, for lumped-parameter as well as for distributed-parameter models. It is 

considered an important class of models for nonlinear physical systems by concentrating on the 

mathematical description of a network representation of energy-conserving physical systems 

modelled by methods such as bond graph method, with the graphical nature of bond graph (BG) 

models and the derivation of port-Hamiltonian system from it [221][220][222], There are 

common physical foundations and functions in both formalisms, which they are included in the 

state variables, their derivatives and the energy gradient. Then, with the help of the general 

field-representation of bond graphs and its associated standard implicit form, the Input-State-

Output PHS [209], this were developed is one of the PHS classes. In ISO-PHS, the 

interconnection, dissipation and input/output matrices, as well as their properties, have the 

possibility to be expressed in terms of bond graph parameters.  

By taking advantage of passivity properties in port-Hamiltonian formulation [223], the 

addition of controlling subsystems to this approach is developed to comply with the general 

control design 
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 system behaviour, and this feature models, simulates, and analyses complex systems described 

by the interconnections. Such analysis is applicable to systems that contains both conventional 

and memory circuit elements[148], and allows for natural extensions to memory element 

fundamentals beyond the electric circuits. 

 Furthermore, the framework is extended to model systems with memristive elements, 

after generalising the concept of memristance into the same level of port-Hamiltonian ports 

[147]. The inclusion of memristive elements in the existing port-Hamiltonian formalism 

possibly may lead to new ideas for controller synthesis and design. Moreover, several control 

design methodologies are available that can be directly applied to such port-Hamiltonian 

descriptions of complex nonlinear systems. The aim of this chapter is to provide a conceptual 

theoretical framework based on the investigations to model nonlinear systems with the 

inclusion of memristive elements and their properties in the port-Hamiltonian modelling 

framework in bond graph modelling terms. As far as the researcher is aware, this is the first 

study to undertake such an analysis. The extension of the port-Hamiltonian framework to 

include memristive systems extends the basic memristor concept to a much broader class of 

dynamical systems.  

 

5.2 From Junction Structures to Dirac Structures 

In the previous chapter, the theory of bond graph for modelling physical systems into 

port-based network model was shown [97]. This modelling consists of energy-storing elements, 

resistive elements and power-continuous elements like transformers, gyrators, 0- and 1-

junctions. These elements are linked by bonds, each carrying a pair of flow and effort variables, 

whose product is equal to the power through the bond. The key concept in the formulation of 

port-based network models of physical systems as a port-Hamiltonian system is the geometric 

notion of a Dirac structure as shown in Figure 5.1[1]. It is a subspace of the space of flows f 

and efforts e such that for every pair ( f , e) in the Dirac structure. The power ( e× f )  is equal 

to zero, which is one of the basic concepts in bond graph junction structure, and each of the 0-

junctions and 1-junctions are power-conserving, as illustrated below:  

 1 1 2 2 0e f e f    (5.1) 
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from this common structure element, a port Hamiltonian system formulation can be expressed 

in bond graph elements. 

 

5.3 Geometric Definition of a Port-Hamiltonian System 

As mentioned previously, physical systems are described by the interconnection of 

power-conserving that can be defined by Dirac structure D [224] and in general, a port-

Hamiltonian system can be represented as in the structure of Figure 5.1 [147]. The central idea 

of the geometric definition is the notion of a Dirac structure, D. A basic property of any Dirac 

structure is power conservation where the Dirac structure links the various port variables. The 

energy-storing elements S and the energy dissipating (resistive) elements R are linked to the  

central interconnection (energy-routing) structure D. This linking takes place via pairs (f, e) of 

vectors of flow and effort variables. These vectors of flow and effort variables are called ports, 

and the variables f, e are called the set of port variables. The total energy vector variables x for 

the energy elements, with specifying the constitutive relations of the energy elements by their 

individual stored energies, will lead to the first definition of Hamiltonian as the total energy (or 

Hamiltonian) H(x).  

 

 

 

 

 

 

 

 

Here, the vector of flows for energy storing elements is given by x , and the vector of efforts is 

given by ( )
H

x
x




, and with the energy storing elements satisfying the total energy balance of 

the system. Then, flows and efforts of the energy-storing elements are interconnected by 

xf x   (the minus sign is included to have a consistent power flow direction) and ( )x

H
e x

x





by substitution of these interconnection constraints into the specification of the Dirac structure 

storage dissipation D 

es eR 

fs 
fR 

ep fp 

Figure 5.1 Dirac structure of port-Hamiltonian system 
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D, that is,  ,  ,  ,  x xf e f e D  , this will lead to a dynamic system called a port-Hamiltonian 

system [219].  Port-based modeling and, possibly large-scale physical systems are structured 

from the interconnection of three types of ideal components, which are: (1) energy-storing 

elements, (2) energy-dissipating (resistive) elements, and (3) energy-routing elements, as will 

be described next. 

 
 

5.3.1 Energy- Storage Port 

The energy-storing port element (s) corresponds to all the energy-storing elements of 

the system. The port variables associated with the internal storage port will be denoted by (fS, 

eS), where fS and eS are vectors with their product S Sf e  denoting the total power flowing into 

the Dirac structure from the energy elements. They are interconnected to the energy storage of 

the system, which is defined by a finite-dimensional state space manifold with coordinates 

x, together with a Hamiltonian function :H  denoting the energy [140]. The 

corresponding flow variables are given by the rate x  of change of the state variables. This is 

accomplished by setting. 

 sf x   (5.2) 

 ( )s

H
e x

x





  (5.3) 

Hence, the power at the energy storage port can be written as: 

 ( ) ( )

T
T
s s

H
H x x x e f

x

 
  

 
  (5.4) 

5.3.2 Resistive Port 

The port element R corresponds to internal energy dissipation (due to friction, 

resistance, etc.), and the port variables are defined by (fR, eR). In general, a resistive relation will 

be a subset 

 ( , ) 0R RR f e    (5.5) 

with the property that for all (fR, eR) satisfying (5.5) [140]. In many cases, it may be restricted 

to linear resistive relations (note that some nonlinearities can be captured in the description of 
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the resistive port of the Dirac structure, such as the memristive port elements). This means that 

the resistive port variables (fR, eR) satisfy linear and nonlinear relations. 

 

5.3.3 External Ports 

Port variables fp, ep, denote the interaction port of the system, for modelling the 

interaction with other system components or the environment. The power delivered or extracted 

from the interaction port equals p pf e , referred to as the supply rate [140].  

The general Dirac structure can be expressed as a linear relation between all the port 

variables that satisfy the power conservation property as below: 

 T T T
s s R R P Pe f e f e f    (5.6) 

5.3.4 Memristive Port 

To complete the family of existing fundamental electrical circuit elements: the resistors, 

inductor, and capacitor are needed, in the port-Hamiltonian framework. A memristive port will 

be described later in addition to the generalised concept of memristance [147] to fit with the 

definitions of the port-Hamiltonian framework. The basic properties of the memristor as a 

dissipation element but with nonlinear behaviour are added to the Dirac structure as a sub port 

of dissipation port as shown in Figure 5.2, with port variables ( , )M Mf e . 

 

 

 

 

 

 

 

 

Figure 5.2  Port-Hamiltonian system with a single dissipative port containing  

memristors and linear [147] 

storage 

es eR 
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ep fp 
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5.4 Port-Hamiltonian Systems Theory 

General Hamiltonian system is specified by considering the constraints on the various 

port variables imposed by the Dirac structure[138], that is: 

 ( , ,  , ,  , ,   , )  S S R R C C I If e f e f e f e D   (5.7) 

The expressions of inputs and outputs in Hamiltonian formalism, are generally given in the 

following form[225]:  

 ( , )
H

q q p
p





  (5.8) 

  ( , ) ( )
H

p q p B q u
q


  


                                         (5.9) 

 ( ) ( , )T H
y B q q p

p





  (5.10) 

Here, ( )B q  is the input force matrix, with ( )B q u denoting the generalized forces resulting from 

the control inputs u . A major generalization of the class of Hamiltonian systems is to 

consider systems which are described in local coordinates as[226]:  

 
 ( ) ( ) ( )

( ) ( )T

H
x J x x g x u

x

H
y g x x

x


 








  (5.11) 

where x is the energy variable vector that consists of ( , ),q p  u and y are the input and output 

port power port variable. The input vector is modulated by matrix  g x , and it also defines the 

output vector y. 

   TJ x J x                                                      (5.12) 

 J x  is the skew-symmetric matrix with entries depending smoothly on x, which 

reveals the power-conserving interconnection structure, and  1 ,  . . . ,  nx x x  are local 

coordinates for an n-dimensional state space manifold . Owing to the skew-symmetry of J, 

the energy-balance ( ( )) ( ) ( )TH
x t u t y t

t





 is easily obtained, showing that (5.11) is lossless if 

  0.H    We call (5.11) with J satisfying (5.12) a port-Hamiltonian system with structure 

matrix  J x  and Hamiltonian H. From the structure matrix  J x  one can directly extract 
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useful information about the dynamical properties of the system, since it is directly related to 

the modelling of the system. 

A basic property of port-Hamiltonian systems is the energy balancing property

( ( )) ( ) ( )TH
x t u t y t

t





. Physically this corresponds to the fact that the internal interconnection 

structure is power-conserving ( because of skew-symmetry of  J x  ), which is equal to the 

externally supplied power ( ) ( )Tu t y t , where u and y are the power-variables of the ports defined 

by  .g x  

 

5.4.1 Input-State-Output Port-Hamiltonian 

An important special case of port-Hamiltonian systems as defined above, is the class of 

input-state-output port-Hamiltonian systems (ISO PHS) [140], where there are no algebraic 

constraints on the state space variables, and the flow and effort variables of the resistive, control 

and interaction port are split into conjugated input-output pairs, which occurs if: (1) there are 

no algebraic constraints between the state variables, (2) the external port variables can be split 

into input and output variables, and (3) the resistive structure is linear and of input-output form. 

This class of systems, in the usual input-state-output format is     ,  ,  ,  x f x u y h x u  , and 

provides a natural starting point for the development of control strategies. 

Consider now a port-Hamiltonian system where the composition of the Dirac structure 

D and the linear resistive structure R satisfies the Input-state-output port-Hamiltonian systems 

(without feedthrough terms) and which are of the form: 

 
 ( ) ( ) ( ) ( )

( ) ( )T

H
x J x R x x g x u

x

H
y g x x

x


  








  (5.13) 

 where x is the energy variable, u and y are the input and output port power port variable. The 

input vector is modulated by g(x), and it also defines the output vector y.    TJ x J x   is the 

skew-symmetric matrix, which reveals the power-conserving interconnection structure, while 

R(x) is the dissipation matrix and it is a symmetric matrix.  
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  y x u ∫ 

Figure 5.3 General structure of an energy storage element 

5.4.2 Resistors, Inductors, and Capacitors as Port-Hamiltonian Input–Output 

Systems 

One of the attractive aspects of the port-Hamiltonian formalism is that a power-

preserving interconnection between port-Hamiltonian systems results in another port-

Hamiltonian system with composite energy, dissipation, and interconnection structure 

(modularity property) [135]. One can adopt this concept to pursue further analysis of more 

complex systems. In the case of a port-Hamiltonian system containing energy storage elements, 

the structure of all these energy storage elements is identical.  

A resistor is described by the relationship of current and voltage; an inductor by that of 

current and flux, and a capacitor by that of voltage and charge. Hence, from a port-Hamiltonian 

perspective, a resistor can then be considered as a static input–output system of the form 

 ˆ( )R y y u    (5.14) 

which is just a generalized version of Ohm’s law in which u and y represent either voltage and 

current. On the other hand, the structure of all energy storage elements is identical. Therefore, 

by assuming the constitutive relation ˆ( )y y x  of any storage elements may be combined with 

the port-Hamiltonian energy structure, as shown in Figure 5.3. Furthermore, it can be 

characterized by an input u, an output y, and a physical state x.  

 

 

 

 

 

Equation (5.15) provides the resulting energy function 

 

0

ˆ( ) ( )

x

x

H x y s s    (5.15) 

where x0 is an initial state. From Figure 5.3 and (5.15) a general port-Hamiltonian system can 

be defined as: 
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 :
( )

x u

s H
y x

x





 

   (5.16) 

which depends on the input, state, and output. For the inductor element, which stores magnetic 

flux and the output is current: 

 :
( )

L L

L
L L

L

V

L H
I






 



 

   (5.17) 

and for the capacitor in which store charge and the output is voltage: 

  : ( )

C

CC
C

C

q I

C qH
V

q




 
 

  (5.18) 

 

5.4.3 Passivity of Port-Hamiltonian Systems 

The concept of passivity, which is used in the analysis of port Hamiltonian formulation 

can be described by power and energy conservation of physical systems [222]. Where the 

energy system has no physical meaning, this property is used successfully in a large class of 

systems characterization [227]. The state space approach incorporates the passivity definition, 

where the external energy is an input to the system related to the system stored energy [228].  

A particularly appealing feature of a port-Hamiltonian system of the form (5.13) is that, 

because of skew-symmetry of J(x), the energy flow of the circuit satisfies: 

 ( ) ( ) ( ) ( )

T

T H H
H x u y x R x x

x x

  
     

  (5.19) 

expressing that the power absorbed by the inductors and the capacitors equals the power 

supplied to the circuit via the external port minus the power dissipated by the resistors. 

 

5.4.4 Control of Port- Hamiltonian Systems with Dissipation 

Recall the well-known result that the standard feedback interconnection of two passive 

systems again is a passive system; a basic fact which can be used for various stability and 
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control problems [229], and also consider the interconnection of the plant (5.13) with another 

port-controlled Hamiltonian system with dissipation. One of the attractive aspects of the port-

Hamiltonian formalism is that a power-preserving interconnection between port-Hamiltonian 

systems results in another port-Hamiltonian system with composite energy, dissipation, and 

interconnection structure (modularity property). The generic port-Hamiltonian system in (5.20) 

can be considered as a controller perspective. The derivative of states and output are given 

from[135]:  

    

     ( ) ( ) ( ) ( )

:

( ) ( )                          

     

c
c c c c c c c c

c

T c
c c c c

c

H
x J x R x x g x u

x
C

H
y g x x

x


  








           (5.20) 

This is regarded as the controller system of Figure 5.4, via the standard feedback 

interconnection  system with 1 1 ,  c cu y u y    as it is the relations between the input and output 

, when Hc is assigned the function of controller to plant H1 [230].  

 

 

 

 

 

The port-Hamiltonian of the combined system 1 cH H  is also a port-Hamiltonian system, with 

a closed loop form given from: 

 

1
1

11 1 1 1 1 1 1

1 1

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

T

c c

T
cc c c c c c c

c

c

H
x

xx J x R x g x g x

Hx g x g x J x R x
x

x

 
   
    
     
  

  (5.21) 

Port-Hamiltonian formalism naturally extends the fundamental properties towards the memory 

elements beyond the realms of electrical circuits. This formulation was applied to systems with 

memristive behaviour by Jeltsema in 2012 [2].  

 

H1 

  

y1 

uc 

u1 

Hc 

y2 

Figure 5.4 A feedback interconnection of two port-Hamiltonian subsystems. 
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5.5 Port-Hamiltonian with Memory Systems 

Memory elements can be represented in the port-Hamiltonian framework by exploiting 

the property of passivity of port Hamiltonian systems [147]. The description of memory 

elements as direct feedback elements in the port Hamiltonian framework is as follows (5.13), 

gives: 

 

M

M

M

u f

x q

y e







  (5.22) 

Then, the port Hamiltonian system matrices will be as: 

 

( ) 0

( ) 0

( ) 1

J x

R x

g x







  (5.23) 

and the resulting expression for the charge-modulated memristor will be described as follows: 

 M Mx u   (5.24) 

 ( )M
M M M

M

H
y M x u

x


 


  (5.25) 

where Mx  is the state of the memory element, Mu and My are the input and output variables. 

( )MM x is the memristance and MH represents the stored energy in the memristor. As the 

memristor is considered as a non-storage element, it is defined as a null Hamiltonian, which 

will be discussed in the next section. The charge control memristor was defined previously with 

f i  and e u , where the current is the input variable, Mu , and My  is the output voltage, 

with Mx corresponding to the charge. The flux- modulated memristor is obtained by letting 

Mu e , My f  and Mx  . 

 

5.5.1 Memristive Port: Generalised Definition 

The port-Hamiltonian modelling framework was further extended by a research paper 

by Jeltsema and  van der Schaft [147], where new expressions in port Hamiltonian formulation 

were proposed. A generalized concept of memristance with other generic elements of port 

Hamiltonian frame work is developed to fit the definition of port Hamiltonian framework.  
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One can take into consideration the two types of memristor (flux controlled and charge 

controlled memristor), The charge-controlled memristor is defined with ,fx q  f i  and 

e u  in the electric domain.  Here, f fx    represents the integrated vector of flow and 

e ex   is the integrated vector of effort which can be written as: 

    and   f ex f x e    (5.26) 

Then the relation is: 

 ˆ ( )e e fx x x   (5.27) 

When constituting a multi-port fx  controller when interpreting this relation within an effort 

equation, the result will be: 

 ( )f fe M x f   (5.28) 

Then, a generalized memristance (charge-controlled) will be expressed as: 

 
ˆ ( )

( )
e f

f f

f

x x
M x

x





  (5.29) 

For the flux controlled type, the parameters are defined with ,fx   f u  and .e i  By 

using the expressions of integrated flow and effort mentioned above, this will yield a memristor 

with multi-port xe -controlled:   

 ( )e ef M x e   (5.30) 

The generalized memristance (flux controlled) is: 

 
ˆ ( )

( )
f e

e e
e

x x
M x

x





  (5.31) 

Equations (5.28) and (5.30) reflect both relationships of charge and flux controlled memristor, 

In a similar fashion to the storage and dissipation elements, the port-Hamiltonian energy 

structure is shown in Figure 5.5. 
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The constitutive relations for both types of the memristor will be: 

 
( ) ( )

( )      resp.,  ( )
f f e e

e f f e

f e

A x A x
x x x x

x x

  
  

  
  (5.32) 

where Af  and Ae are the memristive action function and related by:   

 ( ) ( )f f e e f eA x A x x x    (5.33) 

 Figure 5.5 shows the general form of memristor port Hamiltonian formulation, which is 

called integral causal form where the flow can be considered as input and the effort as output, 

or the effort is the input and the flow will be the output. Clearly, since both an integration and 

a differentiation are involved, similar to the resistor, it is causally neutral. Memristor does not 

store integrated flow or integrated effort; they hold the amount of integrated flow or integrated 

effort that passed their port. 

  

5.5.2 Memristors as Port-Hamiltonian Systems: The Null-Hamiltonian 

The memristance structure M can be described by an fx  controlled constitutive 

relationship, where the generalised memristance is: 

 ( ) ( )T

f f f fM x M x   (5.34) 

A key observation of memristive elements is that it is a non-energetic port Hamiltonian system 

with a direct feed through term. Let : 0M fH x  ; the memristor dynamics will be: 

 

,                               

:
( ) ( ) ,

f M

MM
M f f f M

f

x f

H
e x M x f

x




   
 

  (5.35) 

Figure 5.5 General structure of memristor element 
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where the memristive port variables Mf  and Me can be considered as the inputs and outputs, 

respectively, the non-energy expression follows from: 

 ( ) 0M fH x    (5.36) 

for all  f fx  , 0Me   when 0Mf   regardless of the internal state fx . From the properties 

noticed of memristor (discussed in chapter three for both charge and flux controlled memristor), 

then 0 or 0u i   regardless of the values of q  or   which are responsible for the memory 

effect. This feature is called ‘no energy discharge property’[231][232], which is unlike an 

inductor or a capacitor, because a memristor does not store energy. For this reason, MH  is 

referred to as the ‘null-Hamiltonian’. A memristive port can be generally represented by an 

implicit port-Hamiltonian system (with null-Hamiltonian) of the form as: 

 
      

:
      

f M

M

e M

x f

x e


 


  (5.37) 

5.5.3 Memristive Port-Hamiltonian Control 

In order to incorporate a modulated memristor element into the closed- loop dynamics,  

inspired by [233], the key idea is to define a desired target dynamics with the methodology 

discussed by Jeltsema. A novel example of applying this methodology to a circuit that 

incorporates memristive elements is presented. This example is an electrochemical model of 

the brain based on the non-linearity of the memristor. Some of these ideas have been discussed 

from a single neuron perspective since the 60’s [234] and 70’s [235]. An equivalent electrical 

model of the nerve cell membrane in the Hodgkin-Huxley neuron was presented in [213]. This 

was based on two memristive elements as shown in Figure 5.6.  

 

 

 

 

 

 

MNa 

Inside 

Mk R1 C1 

Ek ENa E1 

Outside 

Figure 5.6  Hodgkin-Huxley neuron model 
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One can consider individual branches in this circuit to derive generic expressions as shown in 

Figure 5.7.  

 

 

 

 

 

This can be used in a power-preserving feedback interconnection context as in Figure 5.8. 

 

 

 

 

 

 

The capacitor then will be described by the port-Hamiltonian subsystem: 

 : ( )

C

CC
C

C

q I

c qH
V

q




 
 

  (5.38) 

The resistor and memristor equations are: /R RI V R  and / ( ).M MI V M x   The interconnected 

circuit of Hodgkin-Huxley neuron model is used as a feedback to make use of the modularity 

property of the Port-Hamiltonian framework. These relations are given by

.C C R MNa Mkq I I I I      Combining the latter with the port characterizations given above, 

and using the expression in (5.21) it follows that: 

MNa Mk R1 

C1 

Figure 5.7 Modified Hodgkin-Huxley neuron model circuit 

C 

Mk 

R1 

ec 
- - - 

fc 

MNa 

Figure 5.8 Hodgkin-Huxley neuron model circuit represented as a feedback 

interconnection of port-Hamiltonian subsystems 
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1

1 1

1 1

1 1 1 1 1 1
Na

k

R

C
C M

Na k C Na k

MR g

u

E
H

q E
R M M q R M M

E

 
    

         
     

  

  (5.39) 

 

5.6 Formulating Port- Hamiltonian Models of Physical Systems 

Over Bond Graph 

The common physical foundations of port Hamiltonian systems and bond graph 

modelling, and the interest of applying port Hamiltonian control synthesis methods with the 

support of bond graph technique with the equivalence between Dirac structures and generalized 

junction structures [86], motivated the research leading to the results presented in this section.  

 

5.6.1 Input-State-Output Port-Hamiltonian Systems from Bond Graph 

Port Hamiltonian systems and bond graph modelling have common foundations and are 

comparable with processes that take place in different physical systems. Starting as a common 

function between port Hamiltonian and bond graph formalism, the total energy and the 

corresponding stored energy in the system will be the key variables. These variables in port 

Hamiltonian formulation are the state variable, their derivative and energy gradients and in 

bond graphs they are the input and output of storage elements. In [225] it was shown that the 

equations obtained from bond graphs can be mapped to Port-Hamiltonian System (PHS) 

formulations. PHS formulations preserve the process of energy exchange between storage, 

dissipation, source and junction structures. 

To establish the link between the BG and the PCHS formalism, a derivation was 

published by Alejandro Donaire in his paper [209], by establishing equivalences among key 

variables in both domains through the comparison of the expressions of the stored system 

energy in both formalisms. Later, with the help of the general field representation of bond 

graphs and its associated standard implicit form, and following the SCAP- procedure mentioned 

in chapter four (considered to derive bond graph) and depending on the interconnection 

structure, which maximises storages in integral causality, there will remain some in differential 



 

 

105 

 

causality to be accounted for. The functions characterizing this class of Port-Hamiltonian 

Systems, i.e., interconnection, dissipation and input/output matrices, as well as their properties, 

are immediately expressed in terms of bond graphs parameters. Under suitable assumptions, 

the method supports the direct derivation of Input-State-Output Port-Hamiltonian Systems – 

which is an explicit type of PHS – even from bond graphs having causally coupled dissipaters 

and storages in derivative causality, which are known to imply algebraic and implicit 

differential equations. First, the mathematical structure of the bond graph is uncovered. The 

storage-field has been partitioned into two fields according to the integral or derivative causality 

assignment as referred to in figure 5.9. This structure is defineds as the BG-Standard Implicit 

Form (BG-SIF). The corresponding matrix relation is as shown in (5.40):  

 

11 12 13 14

21 22 22 24

31 32 33 34

i
i

d

d

o

i

z

D

x

  
    
     
    
     

   

x S S S S
x

z S S S S

D S S S S

 

The above matrix has some properties such as: 11S and 33S , which are skew-symmetric 

matrices, 31 13

T S S  and 21 12

T S S . The constitutive relations of the elements will be 

considered in the derivation for a system with a linear storage element:

( ) ( ),  ( ) ( ),  ( ) .l l

d d o iz t Fx t z t Gx t D t LD   The port Hamiltonian model in terms of bond graph 

variables should be in the form of: 

 ( ) ( , ) ( ) ( ) ( )i s i i g ix t S x u z t S x u t    (5.40) 

After explicitly determining the matrices of sS and gS , then through direct comparison of this 

model with the port Hamiltonian state equations, an interpretation of bond graph into the port 

Hamiltonian parameters, J, R and g, is derived. By defining sS expression into symmetric and 

skew symmetric parts, the symmetric part represent the R matrix and the skew symmetric part 

represents the J matrix.  
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5.7 Derivation of Port-Hamiltonian Systems for Systems Contain 

Memristive from Bond Graph 

The inclusion of memristors within a port-Hamiltonian framework has been discussed 

by Jeltsema [147], presenting the opportunity to define expressions  describing ISO PHS with 

memristive elements using a nonlinear BG formulation, which is the focus of the current work 

and to the best of the author’s knowledge there has been are no research carried out combining 

port Hamiltonian formulation and bond graph modelling with memristive elements in a unique 

framework. The derivation of ISO PHS from nonlinear bond graph with memristor elements 

extends the formulations presented in [209]. 

A simple inspection of the proposed bond graph general junction structure model for 

systems that contain memristive elements was shown in Figure 4.30, and the corresponding 

general structure matrix in (4.66). The dynamic model in (5.13) and the variable equivalence, 

shows that the entries of J  are closely related with the direct causal paths between the capacitor 

and the inductor, and the entries of R are related to the interconnection between the storages 

and the resistor. As the voltage and the current associated to the input power port are the input 

and the output of (5.13) respectively, the input matrix g is defined by the interconnection 

structure linking the power source and the storages. Computing the energy function E in the 

bond graph via integration of the power P, which is the product of the input and output variables 

of each storage (in the case of the energy functions of the BG and PCHS formulations, ( , )i dE x x  

and ( )H x respectively), are different, because they have different arguments (when evaluated 

on the same system state  -  Xi = x  for a special choice of the state variables they take identical 

values for they represent the energy stored in the system). Writing the energy as a function of 

only the state vector xi yields an expression of: 

 21 21( , ) ( , ( )) ( , ( )) ( , ( ( ))) ( )i d i d i i i i iE x x E x g z E x g S z E x g S f x H x      (5.41) 

After applying the chain rule to (5.41) and the need to define ( )iz t  in (5.40) in terms of port 

Hamiltonian energy expression, the total energy H(q,p) is given after considering the general 

implicit state equation in (4.74), and the result will be: 

  15 41 ( )
H

I S GS F z t
x


 


  (5.42) 
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As stated early in chapter four, a causally constrained bond graph usually yields to implicit 

DAE-system under suitable assumptions with the energy equation being derived. The variable 

equivalence given by (5.42) becomes simpler for particular cases. Two cases are distinguished 

next. 

 

5.7.1 Case 1. Nonlinear Bond Graph with All Storages in Integral Causality 

Assignment. 

This implies that 15 41 0S S   as these matrices reflect the determined storage element 

in differential causality and the system storages are assumed to be in the preferred integral 

causality, which confirms the variable equivalences suggested. Given the hypothesis of 

storages, (5.42) is reduced to (5.43) by setting: 

 ( )i

H
z t

x





  (5.43) 

The expression of the general model (5.40),  for this case is obtained by setting in:  

1

11 12 22 21 13 31

1

12 22 24 13 34 14

( ) ( ) ( )

          ( ) ( ) ( )

M

H
x t S S L I S L S S M x S

x
WW

S L I S L S S M x S S u t

g





 
 

    
  
  

 
   
 
 

                         (5.44) 

where 1E  . 

 

5.7.2 Case 2. Nonlinear Bond Graph with Storages in ICA and DCA, Without 

DCA-Storages Causally Determined by Sources. 

Given the systems with storages in integral and differential causality assignment (in 

ICA and DCA), without differential causality assignment (DCA)-storages will be causally 

determined by sources, 44 0S  . Equation (5.42) will be used and the port Hamiltonian model 

follows that: 
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1 1 1

11 12 22 21 13 31 15 41

1 1

12 22 24 13 34 14

( ) ( ) ( ) ( )

          ( ) ( ) ( )

T
M

x t E S S L I S L S S M x S I FS GS

W EW

H
E S L I S L S S M x S S u t

x

  

 

 
 

    
 
  


     

  (5.45) 

where 14 31( )I S GSE F  . The above expression can be split into parts, a skew-symmetric 

component J (where JT=-J), and a symmetric component R. These two components can be 

written in terms of the BG formalism by: 

 1

15 41( )TE I FS GS     (5.46) 

 1

12 22 21( )S L I S L SW    (5.47) 

 1 1

12 22 21 12 22 21( ) ( ) 2
T

sy S L I S L S S L I S L SW         
   (5.48) 

  1 1

12 22 21 12 22 21( ) ( ) 2
T

sk S L I S L S S L I S L SW         
                 (5.49) 

where syW  and skW  represent the symmetric and skew-symmetric part of (5.45) respectively. 

The memristance M, in the symmetric and skew-symmetric parts associated with this 

component will be defined by:  

 13 31( )M S M x SW    (5.50) 

 13 31 3 31, 1( ( 2) )M

T

syW S M x S S M x S 
 

                   (5.51) 

  13 31 3 31, 1( ( 2) )M

T

skW S M x S S M x S 
 

   (5.52) 

5.7.3 Matrix and Function Equivalences 

In this section the expressions of J(x), R(x)  and g(x) are found in terms of the matrices 

of the BG  by combining symmetric parts in (5.48) and (5.51) into a single R(x) term and skew-

symmetric parts in (5.49) and (5.52) into a single expression for J(x) after incorporating 

submatrix 11S . The next theorem covers the General Case, and it follows that the system 

equation matrices in (5.13) are expressed in a different general form: 
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Theorem: 

  A nonlinear BG with the associated constitutive laws of ( ) ( ),z t Fx t    

 ( ) ( ),  ( ) ,  and  ( ) ( ) ( ),
l l M M

d d o i o ix t Gz t D t LD D t M x D t    incorporate the BG general structure 

matrix in (4.66). Storages in ICA and DCA, implies 23 32 33 0S S S    as there are no coupled 

resistors; but because of no sources storages in DCA 44 0S  . Then, the following identities 

and properties hold: 

 
11 ,( ) T T T

sk M skJ x E S E E W E E W E     (5.53) 

 
,( ) T T

sy M syR x E W E E W E     (5.54) 

 1

12 22 24 13 34 14( (( )) )T S L I S L Sg x E S M x S S    
  (5.55) 

The obtained equations are considered as a special case of the full derivation of port-

Hamiltonian system from Bond graph analysis for nonlinear systems. The subsequent focus is 

on memristor circuits. The obtained port Hamiltonian matrices were automatically computed 

by software. The full derivation for the circuits that contain all of the components (specially 

memristor elements) to derive port-Hamiltonian system from Bond graph will be discussed in 

the next chapter (six) with the special cases and case studies discussed in detailes. 

 

5.8 Summary 

A brief description of port Hamiltonian systems has been provided. It was shown how 

the port-Hamiltonian formalism offers a systematic framework for modelling and control of 

large-scale multi-physics systems, emphasizing at the same time the network structure of the 

system (captured by Dirac structure) and the energy-storage and dissipation (Hamiltonian 

functions and resistive relations). It was shown that the port-based network models of physical 

systems such as bond graph immediately lend themselves suitable to a Hamiltonian description. 

The identification of the underlying Hamiltonian structure in bond graph platform offers 

additional insights and tools for analysis and control, as compared to general differential-

algebraic systems.   
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Apart from enlarging the modelling building blocks, the inclusion of memristive elements 

in the existing port-Hamiltonian formalism possibly opens up new ideas for controller synthesis 

and design. In Dirac structure both the resistive and memristive ports are combined into a single 

‘dissipative’ port. A framework has been presented to derive ISO PHS formulations from BG 

to model the memristive behaviour. The dependency of the parameters (functions and matrices) 

of the derived Hamiltonian form of memristive systems on the BG properties has been analysed. 

As the obtained matrices for the memristive systems BG in Standard Implicit form can be 

obtained algorithmically, the Hamiltonian parameters may be automatically computed by 

software. 
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 GENERIC PORT-HAMILTONIAN 

FORMULATION TO MEMRISTIVE 

SYSTEM MODELING USING 

BOND GRAPH 

 

6.1 Introduction 

Modelers, in general, focus on the energy of the physical systems under investigation. 

Therefore, to achieve different engineering objectives, causality analysis needs to be inspected. 

The design engineer will therefor study causality for modelling assumptions and deficiencies 

[236]. A mathematical representation (i.e. transfer function, state space representation) is a 

control engineer concern [71][237]. Also a digital simulator specialist uses causality to derive 

a set of equations to design a simulation program [238]. For each of the different engineering 

problems as hand, system properties are extracted from the mathematical model structure as 

well as from the bond graph structure and its causal relations. Both aspects are useful in 

understanding the model behaviour. For practical consideration in both the simulation 

communities in control fields, implicit and explicit state space model descriptors have a strong 

preference.  

This chapter proposes a new method for formulating a system with memristive elements in 

bond graph modelling platform. The memristors will be analysed by bond graph within systems 

that contain all possible elements such as systems with storage in both integral and differential 

causality assignments. In order to do this, the junction of the system is proposed to represent the 

overall structure of the system. Guidelines for constructing the new bond graph model is given 

along with different causality assignment. The generic nonlinear bond graph of systems with 

memristive elements is then investigated without any assumptions to reduce the mathematical 

complications that are usually mentioned in research papers. A junction structure matrix is obtained, 

and further used to derive an explicit equation describing all possible modes of operation. 
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Additionally, this work presents a method to obtain models in the form of Input-State-Output Port-

Hamiltonian Systems from causal nonlinear bond graph models, thus, exploring six different 

classes of nonlinear systems. These kinds of causal connections are based on the classes of 

different bond graph. For each class, the descriptor equations are derived and, if possible, 

converted into a state space form to be formulated into port Hamiltonian formulation. The 

results are further interesting from a structural and a computational point of view. This chapter 

puts forward a genuine representation that connects between memristor, bond graph modelling, 

and port Hamiltonian formulation in one full consistent procedure, which as far as the writer 

aware, has not been presented before in one direct expression. 

 

6.2  State Space Descriptors of Bond Graph for Systems with 

Memristor Elements. 

Rosenberg formulated a method for deriving the state equations from a junction structure 

model of a system [71]  in the form of: 

          ;  ;  ) ;(  i i ix f x t xt t u t u t   (6.1) 

where ix  is the derivative of the state vector which consists of the energy variables in integral 

causality, thus ix   consists of p  for the inertia elements (inductors) and q  for the compliant 

elements (capacitors). ix  is the state variable, which contains p  and q . u  is the vector which 

contains the power sources of the system and u  contains the nonlinear part. The model 

properties constructed from this formulation depend on the energy structure of the model and 

on the dynamic variables. In practice, a preference is for a description in an explicit state space 

model on the implicit one. The closed form of this formulation can be written in a (a descriptor 

form) which is close to the state space formulation [239], as in:  

        i iEx t Ax t Bu t Gu t     (6.2) 

where E, A, B and G are extracted from bond graph structure field matrices. In the previous 

cases mentioned in chapters four and five to derive state space expression, there were few 

assumptions to simplify mathematical computations which are considered to be a special case, 

and that representation was in the form [240]:  
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        x t Ax t Bu t    (6.3) 

Consequently, to derive this formulation in bond graph the procedure of SCAP mentioned in 

chapter four needed to be used.  These systems that do not follow (6.3), are often called           

non-causal or degenerate systems [240]. Linear (or linearized) systems are described as 

[241][242]: 

          ( )E t x t A t x t B t u t    (6.4)  

where E(t) can be singular and the descriptor vector is x(t). This chapter focuses on the 

determination of a mathematical formulation of nonlinear physical dynamic systems, with the 

vectorised state equation generation in [71], where the state equations are generated for linear 

and state dependent nonlinear multiport systems. A closed matrix descriptor form of (6.2) is 

written as: 

                 ;  ;  ;  ;  ;  ;  ;  ;  E x u t x t A x u t x t B x u t u t G x u t u t     (6.5) 

These dynamic equations depending on the junction structure can be written into a form without 

cross-terms (i.e. with E(t), A (x; t), B (u; t) and G (u; t)). Note that the matrix descriptor form 

(6.2) differs from its standard form defined in (6.4). One of the assumptions mentioned in [243], 

is to define the block matrix:  

   B B G   (6.6) 

and the artificial input vector  

     
T

u u u   (6.7) 

This set of states could be treated as a descriptor vector. In this work, this hypothesis will be 

used to approximate the descriptor into its standard state space form to derive the port- 

Hamiltonian formulation extracted from bond graph modelling. Therefore, Equation (6.2) can 

be rewritten in a standard form: 

     Ex Ax Bu    (6.8) 

However, this implies constraints on the input vector u , since its components cannot vary 

independently; hence, u cannot really be called an input. 
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6.3 Memristor As a Bond Graph Element 

As previously mentioned in section 4.3, Oster in 1972 [3] proposed that memristors can 

be considered as one of the fundamental elements in constructing a bond graph with assigning 

the causality to each type of memristor (charge controlled memristor and flux controlled 

Memristor) as shown in Figure 4.26.  Based on this, memristors are not considered as energy 

storage elements as they have the same dissipative behaviour of resistors. Following this 

proposal and after performing carful research in the literature on connecting memristor with 

bond graph, according to the author’s knowledge, no research such as this has been done before 

which is the first motivation of this work and one of the main objectives.  

After establishing that the memristor does not store energy and it is a dissipative element 

with nonlinearity[244], there is then the possibility to assume that the dissipation field in the 

junction structure of general bond graph system, can be considered as being combined of two 

parts, a linear one for the resistive behaviour (R) and a nonlinear one for memristive behaviour 

(M) as afore mentioned.  

 

6.3.1 Junction Structure Matrix with Memristive Elements 

A vectorised view of the physical system described for the proposed bond graphs 

structure is shown in Figure 4.31. This new modified partitioning version was suggested to 

partition structural bond graph dissipation field into two parts. These vectors represent the block 

diagram derived from the causal bond graph with memristor elements and defining the key 

variables used in the next section.  Note that the inputs to the elements are the outputs from the 

junction structure and vice versa. 

  

6.3.2 Definition of The Key Vectors 

The key vectors are the input and output variables of different fields involved in power and 

powerless interaction with or within the system of Figure 4.31, and these keys will be defined 

below:  

• The energy vector of the dynamic system is taken as the descriptor vector x is partitioned 

in an integral causality field ix , which is the state vector in integral causality and 
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differential causality field dx . The components of the integral part are the generalized 

momenta p  and generalized displacements q , and with respect to the derivative part, 

the output variables are de  and df .    

• The co-energy vector z can be partitioned in a co-energy variable associated to iz  

which is for the integral causality storage and the co-energy variables associated to dz  

for the storage in the derivative causality assignment.  

• The dissipation field input and output vector are  and l l
i oD D , which are the linear input 

and output vectors for dissipative fields with resistive behaviour (R). 

• The memristive fields  and M M
i oD D are input and output vectors for the memristive field 

(M). 

• The source field input u and output v vectors contain the effort and flow variables 

imposed by the sources (Se, Sf). 

• The junction structure input and output vector l M
o i ii dk D Dx z 

 
 and 

l M
i i o o dk z D xD u 

 
respectively, are related by o ik Jk  [204].  

 

6.3.3 The Field Assignment Statements 

  Different bond graph elements are used in the junction structure shown in Figure 4.31. 

The implicit constitutive relation of such different fields can be characterised by assembling the 

underlying element relations as shown below:  

The energy storage field is constructed of C-element field ( , )c e q  and I-elements field

( , )I f p . They can be calculated as the time integral of the vectors f  and e for the capacitor 

and the inductor respectively. Their constituent relation is provided in relations for the linear 

storage elements in integral causality elements[88]: 

 i iz Fx   (6.9) 

where F is a diagonal square matrix of linear coefficients of C or C-1, and L or L-1.  For a large 

class of physical systems these nonlinear field functions can be written as matrix functions f(t), 

as a nonlinear relation will be: 
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      ( )i iz f x                   (6.10) 

For linear elements in derivative causality 

 
1

x ,
d ddF z


   (6.11) 

1F  is a diagonal matrix of linear coefficients of either C or C-1 and L or L-1. The nonlinear 

relation will be: 

 1
,( )

d ddf zx 
   (6.12) 

The invers function of df  is defined locally. These results can be generalised for all the 

dissipative linear elements, resulting in: 

 ( ) ,
l l

o i
D t LD   (6.13) 

where L is a diagonal matrix of linear coefficients R or R-1 pertaining to each element. The 

nonlinear relation will be: 

   ( ) ,
l l

o iiD l x D   (6.14) 

For the generalised memristive field, the relation will be written in [15]: 

   ( ) .
M M

o i
D M x D   (6.15) 

with the memristive field matrix M a diagonal matrix of coefficients M or M -1 and the source 

field matrix defined as: 

 u Hv   (6.16) 

 

6.4 The Unique Matrix Descriptor with Memristive Elements 

After the use of SCAP procedure with the power arrows towards or out of the junction 

structure for the fundamental elements [245] as well as the memristor element [3],  the defined 

generic junction structure for systems with a memristor of systems with storage elements in 

integral and differential causality can be developed as in:   

 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 440 0 0

i

l
ol

i M
oM

i

d

i

d

z
S S S S S

D
D S S S S S

D
D S S S S S

u

x

S
x

z S

 
     
     
     
     
     
       

 

  (6.17) 
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In this matrix 
42 43 45,  ,  and S S S  are set to be equal to zero because by definition, the dependent 

state variables are functions for only integral causality state and the system inputs. 

  Using this proposed generic junction structure matrix, an explicit form can be derived. 

The difference in the dimensions should be noted compared with the standard bond graph:  

 
T

l
i d ICi Rdim D z n nx   

 
  (6.18) 

where ICn  is the total number of storage elements, Rn  is the total number of dissipative 

elements. For the proposed junction structure matrix: 

 
T

l M
i i di IC R Mdim x D D z n n n    

 
  (6.19) 

Where Mn is the number of memristor elements.  

The S matrix in Equation (6.17) has some properties as follows:  

•   The matrix is skew-symmetric because of duality [246], which means S21 is equal to minus 

the transposes of 12S  21 12(   )TS S   and S31 is equal to minus the transposes of 13S  

31 13( ).TS S     

•   When preferred integral causality is assigned, there might be no relation between the 

derivative causality and resistor fields, because this would imply a causal path that could 

be inverted to give integral causality[247]. There will be also no relation between the 

derivative field and itself for the same reason. Hence S42, S25 and S35 are all set to zero. 

• The submatrices S11, S22, S33 and S44  on the diagonal of the generic structure matrix are 

square and skew symmetric. 

 

In the sequel, the class of nonlinear systems for the field relations, which can be written 

in an explicit matrix form are considered. No constraint is placed on the time dependency or 

linearity of the matrix relations involved. The derived state equations express the time-

derivatives of the states and (where there is derivative causality) the pseudo-states ix  and dx  

in terms of their causality and the system inputs u  . As already stated in the introduction, even 

though causally constrained BGs usually yield implicit DAE-systems, an explicit differential 

equation may result from BG under suitable solvability assumptions. An explicit form will be 

extracted from the junction structure matrix using the following procedure which is based on 
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the method provided by [71]. In this derivation, the storage elements will be assumed to be 

linear storages in integral and derivative causality assignment as well as the dissipative elements 

are also linear for the simplicity of calculations: 

The first step to solve (6.17) for
ix is by looking at row four, an expression for 

dz  in 

terms of iz  and u  of  the system can be derived as: 

 
41 44d iz S z S u    (6.20) 

with using the constitutive relation 1
d d dx F z , where 1

dF   is a symmetric invertible square 

matrix and the diagonal consists of the storage elements in derivative causality. Then 

substituting into (6.20) will result in: 

 1
41 44( )d d iFx S z S u    (6.21) 

  After differentiating (6.21), it will yield: 

    1 1 1 1 1 1
41 41 41 44 44 44d d d i d i d d dx F S F S z F S z F S F S u F S u             (6.22) 

Note that 1
dF   denotes the time derivative of the matrix 1

dF  . This allows the terms 
dz  to be 

eliminated from the system equations. Starting with row three of the equation (6.17), the 

expression for M
iD can be written as:  

 31 32 33 34 35
M L M
i i o o dD S z S D S D S u S x       (6.23) 

Substitute (6.23) into the constitutive relation ( ) .
M M

o i
D M x D  Where ( )M x  is an invertible 

symmetric square matrix and its diagonal consists of the memristive values, then this 

substitution will lead to:  

  1 1 1
1 32 2 35 41 35 44

M L
o i o d I dD T A z MS D A u MS F S z MS F S u         (6.24) 

With defining 33(1 ),T S M   1 1
1 31 35 41 41( ( ),d dA MS MS F S F S     and 

1 1
2 34 35 41 41( ( )).d dA MS MS F S F S     It is assumed that 33(1 )S M   matrix is invertible.  

Now looking at row two of the equation (6.17), an expression for L
iD  in terms of the other 

elements in the system can be derived: 

 21 22 23 24 25
L L M
i i o o dD S z S D S D S u S x       (6.25) 
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Substitute (6.24) in (6.25) in an attempt to eliminate M
oD . Then substitute the resultant equation 

in the constitutive relation into ( ) ,
l l

o i
D t LD  where L  is an invertible symmetric square matrix 

and the diagonal consists of the resistive values, the result will be: 

 3 4 5 6 7
l
o i iA D A z A u A z A u      (6.26) 

Where 1
3 22 23 32(1 ),A LS LS T MS    1 1 1

4 21 23 1 25 41 41( ( ),d dA LS LS T A LS F S F S       

1 1 1
5 23 2 24 25 44 44( ( )),d dA LS T A LS LS F S F S     

1 1 1
6 23 35 41 25 41( ),d dA LS T MS F S LS F S     and 1 1 1

7 23 35 44 25 44( ).A LS T MS F S LS F S     

Assuming that  1
22 23 32(1 )LS LS T MS   matrix is invertible, then by substituting (6.26) into 

(6.24), an expression for M
iD in terms of  only ,x ,ix ,u  and u is obtained: 

1
8 9 10 11( )M

o i iD T A z A u A z A u                                    (6.27) 

where 1
8 1 32 3 4( ),A A MS A A   1

9 32 3 5 2( ),A MS A A A   1 1
10 32 3 6 35 41( ),dA MS A A MS F S    

and 1 1
11 32 3 7 35 44( )dA MS A A MS F S   . At this stage, most of the system equations are defined 

in terms of  iz , u , iz  and u . Now consider row one of the equation (6.17) to extract an 

expression for ix  as below:    

 11 12 13 14 15
L M

i i o o dx S z S D S D S u S x       (6.28) 

Substitute (6.27) (6.26)and  (6.22) into (6.28) to define the state variable vector with the terms 

iz , u , iz  and u : 

 12 13 14 15i i ix A z A u A z A u      (6.29) 

Where 1 1 1 1
12 11 12 3 4 13 8 15 41 41( ( )),d dA S S A A S T A S F S F S       

1 1 1 1
13 12 3 5 13 9 14 15 44 44( ( )),d dA S A A S T A S S F S F S       

1 1 1
14 12 3 6 13 10 15 41( ),dA S A A S T A S F S      and 1 1 1

15 12 3 7 13 11 15 44( ).dA S A A S T A S F S      

The term in (6.29) can be replaced by ix  using the constitutive law, which describes the 

behaviour of the storage elements within the network i iz Fx . Here, F  is a positive diagonal 

definite matrix that consists of the storage values in integral causality. Differentiating this 

constitutive relation to define the derivative of the state vector only with ix  and u , the resultant 

equation is: 
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 i i iz Fx Fx    (6.30) 

Notice that F  denotes the time derivative of the matrix F . Substitute (6.30) and the 

constitutive relation into (6.29) to obtain a unique explicit state expression for systems with 

memristive elements as expressed below: 

 14 12 14 13 15(1 ) ( )i iA F x A F A F x A u A u       (6.31) 

Equation (6.31) is a descriptor form, which lies close to the state space formulation of the form 

i iEx Ax Bu Gu   . The matrices A, B, G and E are defined as: 

1 1 1 1 1
12 22 23 32 23 35 41 25 41

1 1 1 1 1 1
13 32 22 23 32 23 35 41 25 41

1 1
35 41 15 41

(1 ( (1 ) ( )

       ( (1 ) ( )

       ) ) )

d d

d d

d d

E S LS LS T MS LS T MS F S LS F S

S T MS LS LS T MS LS T MS F S LS F S

MS F S S F S F

    

     

 

     

   



  

1 1 1 1 1
11 12 22 23 32 21 23 31 35 41 41

1 1 1 1 1
25 41 41 13 31 35 41 41

1 1 1
32 22 23 32 21 23 31 35

( (1 ) ( ( ( )

       ( ))) ( ( )

       (1 ) ( (

d d

d d d d

A S S LS LS T MS LS LS T MS MS F S F S

LS F S F S S T MS MS F S F S

MS LS LS T MS LS LS T MS MS

    

    

  

       

    

    1 1
41 41

1 1 1 1
25 41 41 15 41 41

1 1 1 1 1
12 22 23 32 23 35 41 25 41

1 1 1 1 1
13 32 22 23 32 23 35 41

( )

      ( )))) ( ))

     ( (1 ) ( )

      ( (1 ) (

d d

d d d d

d

d

F S F S

LS F S F S S F S F S F

S LS LS T MS LS T MS F S LS F S

S T MS LS LS T MS LS T MS F S

 

   

    

    

 

   

   

   1
25 41

1 1
35 41 15 41

)

      ) ) )

d

d

LS F S

MS F S S F S F



 





  

1 1 1 1 1
12 22 23 32 23 34 35 41 41

1 1 1 1 1
24 25 44 44 13 32 22 23 32

1 1 1 1
23 34 35 41 41 24 25 44

( (1 ) ( ( ( ))

       ( )) ( (1 )

      ( ( ( )) (

d d

d d

d d d

B S LS LS T MS LS T MS MS F S F S

LS LS F S F S S T MS LS LS T MS

LS T MS MS F S F S LS LS F S

    

    

   

     

    

    1
44

1 1 1 1
34 35 41 41 14 15 44 44

1 1 1 1 1
12 22 23 32 23 35 44 25 44

1 1 1 1 1
13 32 22 23 32 23 35 44

))

      ( ( ))) ( ))

( (1 ) ( )

       ( (1 ) (

d

d d d d

d d

d

F S

MS MS F S F S S S F S F S

G S LS LS T MS LS T MS F S LS F S

S T MS LS LS T MS LS T MS F S LS



   

    

    

 

    

    

   1
25 44

1 1
35 44 15 44

)

      ) )

d

d d

F S

MS F S S F S



 





  

 Along with this work, the energy must be conserved, the matrices 
1

, d

i d

ff
 and  

x x



 
, and their 

linear versions F, and 1
dF   satisfy Maxwell’s reciprocal relations, which means that they are 
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symmetrical matrices. The resistors are considered to be truly dissipative, resulting in the matrix 

 il x  positive definite; particularly, the constitutive matrix of the linear resistor field satisfies 

L > 0.  

                     

6.5 Subclasses of Nonlinear Systems with Field Matrices of 

Memristive Systems 

In the matrices A, B, G and E, derivatives with respect to time of some submatrices of the 

matrix S and 1
dF  appear. In certain cases, like in two or three-dimensional mechanical systems, 

major parts of the matrix S are coordinate transformation matrices. Then, these submatrices of 

S can be written as functions of generalised coordinates, which can be seen as the time integral 

of some descriptor variable. It is easy to see that 1
dF  plays a crucial role in the time behaviour 

of the descriptor vector. If no derivative causality appears in the storage field, E  I  and 

0G   . Consequently, (6.31) in fact, a state space description and the descriptor vector equals 

the state vector. Conversely, if a derivative causality appears in the storage field a state space 

description is only possible if  E  is not singular, or  

 14 0(1 )de A Ft      (6.32) 

In this chapter, subspace identification methods could be developed for identification 

methods of other descriptions, like time-varying and nonlinear systems. Unfortunately, it is 

only possible to determine an approximation of the state sequence, because the influence of the 

initial state is unknown. In other words, by making different choices for the matrices iz  and 

dz  in the generalised equation. Once a general descriptor of the state space for systems with 

memristive elements has been determined, the system matrices can be assumed by solving the 

set of equations. This section will describe six different subclasses that are based on different 

system variables of the state: 
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6.5.1 Class 1: Nonlinear Bond Graph with No Coupling Between the Resistive 

and Memristive Fields 

The first class examined in this section is the rule of the coupling between the resistive 

elements and memristive elements on bond graph models, which determines the existence of 

symmetric and skew-symmetric components in the matrix contributed by the resistive field and 

memristive field of bond graph. The matrices defining the model are obtained according to 

(6.31), with causal paths as there are no coupled resistors, 23 32 33 0S S S   , which implies 

the system equations of (6.33) are as follows: 

 

11 12 13 14 15

21 22 23
l
i

M
i

i

d

S S S S S

D S S S

D

z

x 
 
 


 
 
  

24 25

31 32

S S

S S 33S 34 35

41 440 0 0

i

l
o

M
o

d

z

D

D
S S

u
S S

x

 
   
   
   
   
   
    

 

  (6.33) 

Then, with these assumptions, the reduction of (6.31) will be obtained.  This yields an explicit 

solvable matrix in the form of: 

 
1 1 1 1c i c i c cE x A x B u G u     (6.34) 

 with time-variant junction structure and storage elements, where the matrices 
1

cA , 
1

cB , 
1

cG  

and 
1

cE  are defined as: 

 

1

1

1 1 1 1
12 22 25 41 13 35 41 15 41

1 1 1
11 12 22 21 25 41 41

1 1 1 1
13 31 35 41 41 15 41 41

1
12 22

(1 ( (1 ) ) )

( (1 ) ( ( ))

       ( ( )) ( ))

      ( (1 )

d d d

d d

c

d

c

d d d

E S LS LS F S S MS F S S F S F

A S S LS LS LS F S F S

S MS MS F S F S S F S F S F

S LS

   

  

   



    

     

    



1

1

1 1 1
25 41 13 35 41 15 41

1 1 1
12 22 24 25 44 44

1 1 1 1
13 34 35 41 41 14 15 44 44

1 1 1
12 22 3 25 44 13 35

)

( (1 ) ( ( ))

       ( ( )) ( ))

( (1 )

c

c

d d d

d d

d d d d

d d

LS F S S MS F S S F S F

B S LS LS LS F S F S

S MS MS F S F S S S F S F S

G S LS LS F S S MS F S

  

  

   

  

 

    

    

   1
44 15 44 )dS F S

  (6.35) 
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6.5.2 Class 2. Nonlinear Bond Graph with All Storages in Integral Causality 

Assignment 

This implies that 15 41 44 25 35 0S S S S S      as these matrices reflect the 

determined storage element in differential causality and the system storages are assumed to be 

in the preferred integral causality, which confirms the variable equivalences suggested, for this 

case the expression is obtained by re-casting the matrix of (6.17) as follows:  

 

11 12 13 14 15

l
i

M

i

i

d

S S S S S

D

D

z

x 
 
 


 
 
  

21 22 23S S S 24 25S S

31 32S S 33S 34 35S S

41S 440 0 S 0
d

i

l
o

M
o

z

D

D

x

u

  
  
  
  
  
  
     

  (6.36) 

This is the case when the bond graph can be made fully causal. The expression of this model 

which is considered as the preferred model in most of the research, published so far in the 

literature. The derived expression will yield the form  

 
2 2i c i cx A x B u    (6.37) 

where the matrices A, B are defined as: 

 2

2

1
11 12 22 21 13 31

1
12 22 24 13 34 14

( (1 ) )

( (1 ) )

c

c

A S S LS LS S MS F

B S LS LS S MS S





   

   
  (6.38) 

with, G=0 and E=0. As already shown, the descriptor equations of (6.31), change 

fundamentally; it reduces into a state space description. Only in this case, the physical energetic 

state vector is a function of itself and the power input variable. 

   

6.5.3 Class 3. Nonlinear Bond Graph with Storages in ICA and DCA, Without 

DCA-Storages Causally Determined by Sources 

Given the system with storages in integral and differential causality assignment (in ICA 

and DCA), without differential causality assignment (DCA)-storages causally determined by 

sources, 44 0S  are admitted. The equation will be used and the port Hamiltonian model 

follows that: 
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11 12 13 14 15

21 22 23
l
i

M
i

i

d

S S S S S

S S SD

D

z

x 
 
 


 
 
  

24 25

31 32

S S

S S 33S 34 35

41 440 0

S S

S S 0

i

l
o

M
o

dx

z

D

D

u

 
 

 
 

 
 

 
 

 
 

 
 

  
 

  (6.39) 

This assumption allows us to find an explicit dynamic model from the bond graph modelling 

derived in (6.31) in the form of:  

 
3 3 3c i c i cE x A x B u    (6.40) 

where the matrices E, A, and B, with G=0, are defined as: 

3

1 1 1 1
12 22 25 41 13 35 41 15 41(1 ( (1 ) ) )c d d dE S LS LS F S S MS F S S F S F          

3

1 1 1
11 12 22 21 25 41 41

1 1 1 1
13 31 35 41 41 15 41 41

1 1 1 1
12 22 25 41 13 35 41 15 41

( (1 ) ( ( ))

       ( ( )) ( ))

     ( (1 ) )

c d d

d d d d

d d d

A S S LS LS LS F S F S

S MS MS F S F S S F S F S F

S LS LS F S S MS F S S F S F

  

   

   

     

    

  

    (6.41) 

3

1 1 1
12 22 24 13 34 35 41 41 14( (1 ) ( ( )) )c d dB S LS LS S MS MS F S F S S          

 

6.5.4 Class 4. The Storage and Junction Structure Field Matrices Are Time-

Invariant 

This is a system that consists of time-invariant junction structure and storage elements, 

again, the descriptor equation parameters A, B, G and E are simplified, with 1
dF  , F and 41S

are all equal to zero. Then, with these assumptions, in addition to the assumption applied in 

Class 1, the reduction of (6.31) will be obtained below, yielding an explicit solvable matrix in 

the form of: 

 
4 4 4 4c i c i c cE x A x B u G u     (6.42) 

 where the matrices A, B, G and E are defined as: 

4

1 1 1 1
12 22 25 41 13 35 41 15 41(1 ( (1 ) ) )d d dcE S LS LS F S S MS F S S F S F          

4

1
11 12 22 21 13 31(( (1 ) ) )cA S S LS LS S MS F      

4

1
12 22 24 13 34 14( (1 ) )cB S LS LS S MS S      

4

1 1 1 1
12 22 25 44 13 35 44 15 44( (1 ) )d dc dG S LS LS F S S MS F S S F S         (6.43) 
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It should be noted that formally, this result is also valid for linear systems. However, here L 

might be time-varying or state-dependent. 

 

6.5.5 Class 5. The Junction Structure Field Matrix Is Time Invariant 

A time-invariant system is a system whose behavior (its response to inputs) does not 

change with time. Then also the descriptor equation matrices are E, A, B, and G. That means 

that only 41S  will be equal to zero. In addition  to the assumption applied in Class 1, yielding 

an explicit simplified version of (6.31), which still in the form of: 

  
5 5 5 5c i c i c cE x A x B u G u                                             (6.44) 

where the optimised matrices of A, B, G and E are defined as: 

 

5

5

1 1 1 1
12 22 25 41 13 35 41 15 41

1 1 1
11 12 22 21 25 41 13 31 35 41

1 1 1 1
15 41 12 22 25 41 13 35 41

1

(1 ( (1 ) ) )

(( (1 ) ( ) ( )

        ) ( (1 )

        

d d d

d d

c

c

d d d

E S LS LS F S S MS F S S F S F

A S S LS LS LS F S S MS MS F S

S F S F S LS LS F S S MS F S

S

   

  

   

    

      

   

5

5

1
5 41

1 1 1
12 22 24 25 44 13 34 35 41

1
14 15 44

1 1 1 1
12 22 25 44 13 35 44 15 44

) )

( (1 ) ( ) ( ( ))

      )

( (1 ) )

c

c

d

d d

d

d d d

F S F

B S LS LS LS F S S MS MS F S

S S F S

G S LS LS F S S MS F S S F S



  



   

    

 

   

  (6.45) 

This case applies when no modulated transformer (MTF) or modulated gyrator (MGY) elements 

appear in the junction structure. 

  

6.5.6 Class 6. The Storage Field Matrices Are Time Invariant  

If both the matrices 
1

dF 
, and F are constant, then their derivatives are equal to zero. 

The descriptor equation matrices are E, A, B, and G. Therefore:  

  

 
6 6 6 6c i c i c cE x A x B u G u     (6.46) 
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 where the associated matrices are defined as: 

6

1 1 1 1
12 22 25 41 13 35 41 15 41(1 ( (1 ) ) )d d dcE S LS LS F S S MS F S S F S F          

 

6

6

1 1 1
11 12 22 21 25 41 13 31 35 41

1 1 1 1
15 41 12 22 25 41 13 35 41

1
15 41

1 1
12 22 24 25 44 13 34 35

(( (1 ) ( ) ( )

      ) ( (1 )

       ) )

( (1 ) ( ) ( (

d d

d d d

d

c

c

d

A S S LS LS LS F S S MS MS F S

S F S F S LS LS F S S MS F S

S F S F

B S LS LS LS F S S MS MS

  

   



 

     

    

    

6

1
41

1
14 15 44

1 1 1 1
12 22 25 44 13 35 44 15 44

))

        )

( (1 ) )

d

d

d dc d

F S

S S F S

G S LS LS F S S MS F S S F S





   





   

  (6.47) 

It should be stressed that the descriptor variables all have a physical meaning since they are in 

fact the generalised momenta and displacements of the independent storage field. Therefore, 

this approach can be seen as a generalisation of the classical derivation of the state space 

formulation of linear systems.  

 

6.6 Derivation of Port-Hamiltonian Systems for Systems Contain 

Memristive From Bond Graphs 

Whenever the predominant energy exchanges are expressible as the products of pairs of 

scalar variables, and the system contains a finite number of such exchanges, a port-Hamiltonian 

model is implied. The representation of such models takes various forms, depending upon the 

area of application and background of the problem. One of these is that the generic descriptor 

equation of (6.31) in the form of ( ) ( ) ( ) ( )Ex t Ax t Bu t Gu t   , which differs from the standard 

form ( ( ( )  ) )Ex t Ax t Bu t  . By using the definition stated in section 6.2, new matrices B  in 

(6.6) and ( )u t  in (6.7) [248] are used to rewrite the descriptor equation in the standard form as 

in (6.8). After writing the descriptor into the standard form of (6.8), port- Hamiltonian matrices 

can be formulated in the form of an ISO-PHS equation:  
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 ( ) ( ) ( ) ( )

( ) ( )T

H
x J x R x x g x u

x

H
y g x x

x


  








  (6.48) 

where H(q, p) is the total energy stored in the system for the conjugate variables, x is the state 

variable, u and y are the power variables of the input and output ports, g(x) is the output vector, 

J(x) is a skew-symmetric matrix representing the interconnection structure (which is power 

conserving), and R(x) is the dissipation structure symmetry matrix. A special engaging feature 

of a port-Hamiltonian system is: as  J x has a skew-symmetry property, the flow of energy 

within the circuit will ensure that the power consumed by the inductors and the capacitors is 

equal to the difference between the power provided to the circuit by the external port and the 

power dissipated by the resistors and memristors.  

To compute the form of H(x) expressed by BG variables, first, the energy function E(x) 

needs to be expressed as the integration of power which is the product of the input and output 

variables of the storage elements as in (6.49)[209].  

 ( , ) T T
i d i i d dE x x z x t z x t       (6.49) 

          Then, as the energy E(x) and H(x) represent the energy stored are different but in a special 

case their values will be identical. This case is when a chosen state variable of the system is the 

same such as Xi = xi. Thus, the energy function will be written as a function of xi only as shown 

in (6.50): 

 41( ) ( , ) ( , ( )) ( , ( )) ( )i i d i d i i iE x E x x E x g z E x g s z H x      (6.50) 

After the chain rules are applied, the total energy form of H(x) expressed using BG variables 

will be as nonlinear storages: 

 
1

15 41

(( )) d di

i
i

d

f x f zH
z

x z
I S S

x

 
  

 



 



  (6.51) 

And the linear form is: 

 
1 41

1
5 d iI FS S

H
F z

x


 
 
   (6.52) 

From the definition of J, it can be observed that this is a skew-symmetric matrix, where J=-JT. 

Similarly, R is a symmetric matrix. A relatively new and generic representation proposed to the 
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expressions of symmetric and skew-symmetric components with memristive elements, which 

can be defined in terms of BG, is follows: 

 1 1
15 41( )T dE I FS F S     (6.53)  

                                          
1

2
y

T

s W WW  





                                         (6.54) 

  
1

2
k

T

s W WW  





  (6.55) 

where Wsy and Wsk are the symmetric and skew-symmetric symmetric parts of W. Here, W is the 

part of the state vector ix  of (6.31) that does not consist of memristive behaviour.  And MW  is 

the expression of the state vector ix  in (6.31),  that contains the memristance M.  The symmetric 

and skew-symmetric parts will be: 

  ,

1

2

T

M MM sy W WW   
 

  (6.56) 

  ,

1

2

T

M MM sk W WW   
 

  (6.57) 

The expressions of J, R and g are found in terms of the matrices of the BG, then, the following 

identities hold as: 

 1 1 1
11 ,( ) T sk T M sk TJ x E S E E W E E W E       (6.58) 

 1 1
,( ) sy T M sy TR x E W E E W E      (6.59) 

 
1( )g x E B   (6.60) 

                                                              

6.7 Matrix and Function Equivalences of The Subclasses 

Descriptors with Memristive Elements 

Many types of physical systems have been studied above using bond graphs, and the 

derivatives with respect to time of some submatrices of the matrix S, F and 1
dF  appear. In 

certain cases, like in two or three-dimensional mechanical systems, major parts of the matrix S 

are coordinate transformation matrices. Then these submatrices of S can be written as functions 

of generalised coordinates, which can be seen as the time integral of some descriptor variable. 
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This specification will be used in the work derivations to assume that this matrix is in its 

generalised form.  

One of the noteworthy features of the approach described is that it enables the researchers 

to formulate the equations to predict the difficulties that will be encounted before any equations 

have been written. This is made possible by the systematic use of computing causality, assigned 

directly to the bond graph. Based on the definitions given for each field port of the classes 

derived before, each system type may be represented in ISO port Hamiltonian form as will be 

shown next: 

 

6.7.1 Class 1: Nonlinear Bond Graph with No Coupling Between the Resistive 

and Memristive Fields 

To define the port Hamiltonian model matrices, the matrices  A, B, G and E in (6.35) 

for the descriptor expression derived in section 6.5.1 is used to obtain the symmetric part R(x) 

and skew symmetric parts J(x) for system equation (6.48).  For that purpose, it is needed to split 

the state matrix expression A of ix  into two parts with and without memristance in order to 

extract   and MW W . 

1

1 1 1
11 12 22 21 25 41 41

1 1 1 1
13 31 35 41 41 15 41 41

1 1 1 1
12 22 25 41 13 35 41 15 41

(( (1 ) ( ( ))

       ( ( )) ( ))

      ( (1 ) ) )

d d

d d d d

d d

c

d

A S S LS LS LS F S F S

S MS MS F S F S S F S F S F

S LS LS F S S MS F S S F S F

  

   

   

     

    

  

  

As can be noticed, the expression for 
1cA  matrix consists of two forms one with constant integral 

causality assignment storage elements and the other is with time varying storages in integral 

causality assignment.  This type of systems leads to complex geometrical modelling of physical 

systems. As far as the author is aware, there is limited research to solve such systems. This 

therefore highlights the need to investigate more on the one hand – in modelling these systems 

in port Hamiltonian formulation, and – on the other hand- in defining matrix expressions to 

support these formulations. Later, this special case will be addressed as one of the future works 

to be extended into formulating broader types of system structure that can be formulated 

according to their energy exchange. 
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6.7.2 Class 2. Nonlinear Bond Graph with All Storages in Integral Causality 

Assignment 

After assuming that all the storage elements are linear and have only integral causality 

assignment, G=0 and E=0. As already shown, it turns out that the descriptor equations of (6.31) 

change fundamentally. Using (6.52) and assuming the total energy H(q,p)  in BG variables, is 

given from: 

 ( ).
H

z t
x





  (6.61) 

 Substituting into equation (6.42), it follows that: 
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 
 

 
  
 
 





  (6.62) 

 

The above expression will be split into a skew-symmetric component J (where JT=-J), and a 

symmetric component R. These two components can be rewritten in terms of the BG formalism: 

 
2

1
cE I    (6.63) 

 TE I   (6.64) 

 1

12 22 21( ) ( )( )i il x l xSW I S S   (6.65) 

 1 1
12 22 21 12 22 21( ) ( ) ( ) ( )(1 ) (1 ) 2sy

T

i i i il x l x l x l xW S S S S S S  
  
    

   (6.66) 

 1 1
12 22 21 12 22 21( ) ( ) ( ) ( )(1 ) (1 ) 2sk i i i i

T
l x l x l x l xW S S S S S S  

  
    

   (6.67) 

Equation (6.62) contains the memristance M, so the symmetric and skew-symmetric parts 

associated with this component are given from:  

 13 31( )M S M x SW    (6.68) 

  13 31 3 31, 1( ( 2) )M

T

syW S M x S S M x S 
 

   (6.69) 



 

 

131 

 

  13 31 3 31, 1( ( 2) )M

T

skW S M x S S M x S 
 

   (6.70) 

Combining symmetric parts in (6.66) and (6.69) into a single R(x) term and skew-symmetric 

parts in (6.67) and (6.70) into a single expression for J(x) after incorporating the effect of the 

submatrix S11, it follows that the system equation matrices in (6.48) are: 

 11 ,( ) sk M skJ x S W W     (6.71) 

 ,( ) ( )sy M syR x W W     (6.72) 

 1
12 22 24 13 34 14( ) ( )( )) )( (i il x l xS I S S S M x Sx Sg    

 
  (6.73) 

 

6.7.3 Class 3. Nonlinear Bond Graph with Linear R’s, Linear Storages in ICA 

and DCA, Without DCA-Storages Causally Determined by Sources 

Under the derivation of the total energy equation (6.51),  the matrices ,
i

f

x




 and 

1
d

d

f
 

x





, are replaced by their linear versions F, and 1
dF  . The resistors are considered to be truly 

dissipative, resulting in the matrix  il x  positive definite; particularly, the constitutive matrix 

of the linear resistor field satisfies L > 0. With the constitutive relation, of (6.9): 
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I FSF F
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S
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x t


 
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   (6.74) 

By replacing Fxi (t) in equation equation (6.40): 

3
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
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 
  


    

    

     
 

 (6.75) 

Using the Hamiltonian formalism proposed, the dynamics of this system are calculated from 

the set of equations of the form: 

 1 1
15 41( )TE I FS F S     (6.76) 
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

    (6.83) 

   As J(x) takes the skew symmetric part,  R(x) will take the symmetric then:  

 
3 3 3
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  (6.86) 

 

6.7.4 Class 4. The Storage and Junction Structure Field Matrices Are Time 

Invariant 

Yielding an explicit solvable matrix in the form of i iEx Ax Bu Gu    (6.42), the total 

energy H(q,p)  in BG variables, will also be defined as: 
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I FS S
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x


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                                              (6.87) 

By replacing Fxi in equation (6.42), the resulted descriptor will be: 
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             (6.88) 

Obtaining the matrices to develop the port Hamiltonian set of equations as denoted by the 

following terms: 

 1 1
15 41( )TE I FS F S     (6.89) 
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All these resulted symmetric and skew symmetric parts will be formulated to hold the port 

Hamiltonian functions of interest, which are of the form: 
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  (6.99) 

 

6.7.5 Class 5. The Junction Structure Field Matrix Is Time Invariant 

This class holds the same investigative difficulties as class 1 in section 6.7.1.  it can also  

be noticed that the expression for 
5cA  matrix consists of two forms one with constant integral 

causality assignment storage elements and the other is with time-varying storages in integral 

causality assignment. This also leads to complex geometrical modelling of physical systems, 

that need to be investigated in more depth for modelling these systems in port-Hamiltonian 

formulation. Later this case in addition to the case of class 1, will be addressed as future works 

to widen the proposed formulating into broader types of system structure.  
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6.7.6 Class 6. The Storage Field Matrices Are Time Invariant  

Following the development of Section 6.5.6, it is clear the storage field is time invariant.  

The extended descriptor is given in the form (6.46), and the nonlinear equation after substituting 

the total energy term defined in (6.52) will be as: 
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(6.100) 

The relation sets used to characterize port Hamiltonian system, may be constructed from the 

following terms: 

 1 1
15 41( )TE I FS F S     (6.101) 
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As the final step, the J(x) and R(x) will be calculated by the use of (6.101 -6.108), giving the 

matrices equation set as:  
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6.8 Further Equation Derivation 

It has already been shown that an explicit or implicit state equation can be found from the 

junction structure matrix of memristive systems. It was also shown that the causal assignment 

can be exploited to give insight into the system. In this section, some additional equation 

derivations are carried out to provide more information about Hybrid Bond Graph with dynamic 

causality. A further challenge is that nonlinear dynamics that are often associated with these 

networks also need to be incorporated within the derived mathematical models. Furthermore, 

systems may be hybrid, containing both continuous states as well as discrete (a typical example 

being that of switching systems) [249]. Methods for representing hybrid systems using BGs 

have been suggested, e.g., [250] and [251], but those have limitations. 

 

6.8.1 Analysis of the Hybrid Bond Graph 

As an example of the proposed modelling methodology, this is implemented to derive 

models for DC-DC power converter circuit. Memristive elements instead of resistors are used 

in these circuits to better emulate their nonlinear action because in a switch system, ohmic 

contacts momentarily change thus varying the resistance of that component in the circuit. 

Within the context of DC-DC power converter circuit analysis, the switching operation of these 

networks has already been discussed [252][253]. A combination of a Modulated Transformer 

with a binary modulation ratio and a resistor (MTF-R method) may be employed to represent 

the operation of a switch in a BG framework [254][255]. The advantage of such formulation is 

that it leads to a fixed causality bond graph model. Furthermore, it is suitable for control 

strategies with direct Boolean control inputs so that advances from the ‘Sliding Mode Control’ 

community can be incorporated [256] [257][258]. DC-DC power converter circuits incorporate 

diodes, and their nonlinear operation needs to be also accommodated in the BG and ISO PHS 

formulations. BG modelling of switching circuits was recently presented in [259], where 
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examples of DC-DC power converters were analysed. We find this a particularly elegant 

approach; therefore, the current work adopts the MTF-R method within the memristor circuit 

analysis framework to derive the associated model states.  

 

6.8.1.1 DC-DC Converter Modelling Using Bond Graphs 

As discussed in [259], DC-DC converters may be modelled by BGs using the MTF-R 

method. In the simplest case, when a modulation transformer with a binary modulation ratio is 

connected to a resistive element with resistance Ron the circuit emulates the operation of a 

switching device. Regarding Figure 6.1, if the modulation index of the modulated transformer 

is set equal to one (m=1), the power is dissipated through the resistor Ron. The Ron value is 

chosen to be small and can represent the resistance of a switch when it is closed (ON state). In 

the case of the ON state, the MTF-R combination provides the flow of current f, to the rest of 

the system:   

    
2 2

4
3 4 3 3 1 2 ( )

on on on

e m m
f mf m e f e e

R R R
        (6.111) 

 

 

 

 

 

When the modulation index of the transformer is set to zero (m=0), a zero flow is implied to 

the rest of the system. In that case, the operation of an open switch (OFF state) is realised, 

where no current is allowed to pass. The ratio m / Ron shows that the conductance of the switch 

is high when the switch is ON and is zero when the switch is OFF. With reference to Ron, the 

causality of Ron remains fixed during the change of states in the switches, and this is known as 

‘Conductance Causality’.  

 It is also well-known that a diode can be modelled as a switch. In single-switch DC-DC 

converter applications, a diode may thus be assumed to operate complementarily to the actual 

2 

3 

4 

1 

Ron 

0 

MTF:1/m 

Figure 6.1 Bond graph model of a switch implemented by the MTF-R method [15] 
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switch. Such a simplistic representation, however, may lead to erroneous models. For instance, 

in a conventional DC-DC converter, which is composed of one switch and one diode, the 

inductor current is restricted by the diode to remain above zero, which is not always the case. 

An alternative representation of the diode using a bi-directional switch model, however, will 

permit the inductor current to go below zero resulting in a steady-state as well as a transient 

response. Furthermore, in the case where the switch and diode are assumed to operate while on 

different ON and OFF states over a portion of the switching cycle, the modelling of the system 

becomes problematic. The MTF-R method, however, allows for a more accurate representation 

of the diode independent of the state of the main switch.  

   

 

 

 

 

 

A control loop external to the MTF-R BG model as shown in Figure 6.2, was established in 

[255] to emulate the diode operation. In this approach, the control loop compares the effort 

between the shared bonds ( 1 2,e e  ) of the diode junctions (with resistance Rd). Depending on 

the difference of the effort 1 2  e e e   , exceeding a specific threshold, the modulation ratio m 

of the transformer is modified accordingly:  

 
1    

  
0    

th

th

if e e
m

if e e

 
 

 
  (6.112) 

The effort across the junction is considered to be internal to the system control loop. Therefore, 

the obtained model of  Figure 6.2, as discussed in [255] is considered to be a model with internal 

modulation. Following this definition, the flow information provided by the model of the diode 

to the rest of the system is a function of its flow and effort and it is not affected by any external 

control. This assumption enables the creation of models for DC-DC converters accounting for 

different modes of operation as discussed in [259]. 

Rd 

0 

MTF:1/m 
∆e>0 

1 2 

3 

4 

Figure 6.2 Bond graph model of a diode implemented by the MTF-R method [15]
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6.8.1.2 Bond Graph of a Switching Memristive Element  

In BG theory, power is the result of the product between effort e(t) and flow f(t). Flow 

and effort variables at all the ports of the network are described using the causal bond graph 

methodology. The causality concept is used to assign the direction of power-conjugated input-

output pairs [88]. As discussed in [98], a BG general structure is composed of dissipation fields 

that can be split into two parts (linear and nonlinear), storage fields (C and I), source fields 

associated with effort and flow (Se and Sf), and junction structures (denoted by JS) containing 

transformers TF and gyrators GY and with the existence of switches [259]. The causal bond 

graph of a switching circuit assuming the presence of a memristor element is shown in Figure 

6.3.  

 

 

 

 

 

 

 

 

where ( )ix t   is the state vector in integral causality, ( )dx t  contains the energy variables in 

differential causality,  ( )iz t  and ( )dz t  contain the co-energy variables associated to ix  and dx , 

 (t) and ( )l l
i oD D t  are the linear input and output vectors containing the power variables entering 

and exiting from dissipative fields with resistive behaviour (R), (t) and ( )M M
i oD D t  are input 

and output vectors containing the power variables entering and exiting from the memristive 

field (M),  and in outT T  are vectors containing the power variables going into and out of the 

junction structure from the switches, and u contains the effort and flow variables imposed by 

the sources (Se, Sf).  
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Figure 6.3 Structure of a causal bond graph accounting for the non-linearity of 

 a switching memristive element. 
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In this generic structure of a causal bond graph, dissipation is being composed of input 

and output variables. The dissipation variables consist of two types of elements: linear and 

nonlinear. Similar type expressions can be developed to model memristive dissipative elements 

using the BG framework after assuming the following general junction structure shown in (3). 

Internal and external vectors can be related using the following interconnection matrix: 
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41 42 43 45

( )

(
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     
     
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     
     
        

 

  (6.113) 

The constitutive relations of the elements in the derivation of a system containing linear storage 

elements are:  

 ( ) ( ),  ( ) ,  ( ) ( ) ( ), ( ) ( )
l l M M

i i o i o i o iz t Fx t D t LD D t M x D t T t ET t     

where ( )x t  is an integral causal input variable, ( )iT t  and ( )oT t  are the input and output power 

variable from the switches, u are the output variables and M(x) denotes memristance. 

Substituting these constitutive relations into (6.113), it follows that: 
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  (6.114) 

By solving (6.114) for ( ),x t  the following expression is derived: 

1 1 1
11 12 21 12 24 1 13 31 13 34 1 14 1

1 1 1
12 24 2 12 25 13 34 2 13 35 14 2 15

( )

[ ( ) ( ) ] ( )

[ ( ) ( ) ] ( )
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  



     

    

  

(6.115) 

where 1
22( ) ,H L I S L    

1 2

1
42 24 43 34(1 ),

P P

P S HS E S MS E      

3 4

1 41 42 21 43 31( ),

F F

F S S HS S MS     

2 42 25 43 35 45( ).F S HS S MS S     Equation (6.115) is a state space equation in the general form. 
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6.8.1.3 Port Hamiltonian of a Switching Element 

State space models of the circuit dynamics are made possible by adopting an ISO-PHS 

formulation, directly from bond-graph analysis [209][148][147][135]. In [225] it was shown 

that the equations obtained from BG can be mapped to Port-Hamiltonian System (PHS) 

formulations. The PHS formulations preserve the energy exchange between storage, 

dissipation, source and junction structures. The derivative of the state, as well as the associated 

output of the system, are given by the following generic expressions of (6.48). The derivation 

of ISO PHS from nonlinear BG with memristor elements extends the formulations presented in 

[209], after assuming that all the storage elements are linear and have only integral causality 

assignment.  The total energy H(q,p) then is given from ( ).i

H
z t

x





 Substituting into (6.115) 

it follows that the above expression can be split into a skew-symmetric component J (where 

JT=-J), and a symmetric component R. These two components can be rewritten in terms of the 

BG formalism: Equation (6.115) is solved accordingly with and without a memristive element 

so that: 

 1
1 11 1 12 21 12 24 3 14 3W PS PS HS S HS EP F S EF      (6.116) 

   2
T

sy WW W 
 

   (6.117) 

    2
T

sk W WW  
 

                                    (6.118) 

     

where syW  and skW   represent the symmetric and skew-symmetric part of (6.115) respectively. 

The resulting expression contains the memristance M, so the symmetric and skew-symmetric 

parts associated with this component are given from:  

 
2 11 2 12 21 12 24 4 1 13 31

13 34 3 13 34 4 14 4

( )

          ( ) ( )

MW P S P S HS S HS EF PS M x S

S M x S EF S M x S EF S EF

    

  
  (6.119) 

   2MMsy

T

MW WW  
 

   (6.120) 

      2MMsk

T

MW WW  
 

                                        (6.121) 

Combining symmetric parts into a single R(x) term and skew-symmetric parts into a single 

expression for J(x) after also incorporating submatrix S11, it follows that the system equation 

matrices for hybrid systems are: 
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 1 1( ) sk MskJ x P W P W     (6.122) 

  1 1( ) sy MsyR x P W P W                                           (6.123) 

     
1

12 24 2 12 25 13 34 2

13 35 14 2 15

( ) [ ( )

                ( ) ]

g x P S HS EF PS HS S M x S EF

PS M x S S EF PS

   

 
                   (6.124) 

6.9   Summary 

Nonlinear systems are modelled with bond graphs in this chapter. This is done by showing 

that a large class of nonlinear systems can be described with matrix field functions. The main 

result is a closed formula for the descriptor's class of nonlinear systems. From these results, 

different subclasses of nonlinear systems are treated along. A example of such a subclass is 

given. Likewise, it should be stressed that the descriptor variables all have a physical meaning 

considering that they are in fact the generalised momenta as well as displacements of the 

independent storage field. The second part of this chapter is that the ISO PH system equation 

can be established for a system consisting of memristor elements. Nonetheless, the derived 

equations have differences depending not on the proposed method, but on the physical system 

involved, especially the existence of a dependent storage field, MTF- and MGY transducer the 

dissipation field characteristics which consist of resistive and memristive behaviour. All this 

can be advantageous from a structural and a computational point of view, and in modern control 

applications for which a state space description (linear, nonlinear, constant time varying) is 

necessary.  

The fact that, the bond graph method provides a thorough guide to the systematic 

transformation of the equations is the primary advantage. Additionally, the direct observable 

properties of the junction structure arrays enable one to make a key check on the correctness of 

the basic equations before extensive reduction has occurred. For systems containing linear and 

nonlinear, one-port field elements and modulated two-ports (TF and GY) in the junction 

structure, an automatic numerical procedure has been implemented. The last remark to be made 

concerns the generalisation of the array form of the junction structure equations. Moreover, in 

all practical examples arising in the study of physical and engineering systems, the form used 

here has proven sufficiently general including problems involving the large-scale network.  
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This chapter extends the mathematical models of the dynamics associated with nonlinear 

actuation in state space for hybrids system represented by DC-DC converter topologies from 

their Bond Graph (BG) representation. The proposed new circuits are modified, with the 

corresponding resistors found in their conventional representation replaced by a memristor.  

Input-State-Output Port-Hamiltonian System (ISO PHS) formulations are derived to describe 

the associated dynamics of the switching action in the elements of each converter network. The 

associated nonlinear switching action is emulated by memristive components embedded in the 

network. The Bond-graph modelling process systematically accounts for energy exchange 

across the different ports in the networks. The proposed methodology is quite generic and 

bridges the gap between BG theory, memristive circuit analysis and ISO PHS formulations. It 

may thus be adapted by the cyber-physical systems community for the design of nonlinear 

sensor and actuator networks, which may also incorporate switching action. 
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 CASE STUDIES 

 

 

7.1 Introduction 

This chapter presents a number of case studies to demonstrate the proposed bond graph 

method presented in the previous chapter. The work thus forms the basis for developments that 

Cellier stated at the 2012 ‘International Conference on Bond Graph Modelling and Simulation’ 

where he discussed a bond graph method to handle variable topology systems. He also stated this 

was remained the next big challenge for bond graph modelling. 

Since, memristor have been proposed to be incorporated in neuromorphic building 

blocks, in this work a Hodgkin-Huxley neuron model circuit with two memristors is 

implemented. Furthermore, the linearized bond graph method for the Hodgkin-Huxley 

application is derived. Operational amplifier building blocks, is another field for implementing 

the method on Op-Amp circuits with memristors. Examples include an, Integrator operational 

amplifier circuit, and a simple Integrator Op-Amp neuron model controlled output by op amp. 

For sensors applications, a Josephson-Junction circuit consists of memristor element is 

considered, Dielectrics, Circuits with a gyrator and a Coupled resistors network are also 

considered. In addition to applying the approach on Hybrid systems, the ISO PHS Formulation 

of DC-DC Converter with memristor are also defined for three converters circuits: a modified 

memristive Boost converter, a modified memristive Buck converter, and modified memristive 

Buck- Boost Converter. All these examples are analysed using the theory developed in the 

previous chapters.  
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7.2 Investigating Different Systems Topologies  

This chapter will apply the proposed analysis method in different system topologies, which 

have attracted specific attention over the years. These systems differ in application fields and the 

size of the state equation matrices varies in complexity. The case studies will be analysed using 

bond graph to develop port Hamiltonian formulation to illustrate and demonstrate, that these models 

can be analysed in a direct and simplified approach. 

 

7.2.1 Neuromorphic Building Blocks  

As we have seen, typically, memristive responses are evident in systems where the scales 

of the characteristic electrical processes are small (for instance biological systems at cellular 

levels) [260]. The fundamental cell electrical unit is the action potential whose origin is located 

across the cell membrane. A potential is released when potassium and sodium ions are 

transported across the membrane making it possible for cells to be electrically active. This 

action was described by Hodgkin and Huxley in the 1950s, and this potential is in many ways 

the fundamental building block of bioelectricity [261]. 

 

7.2.1.1 Implementing Hodgkin’s- Huxley Circuit Bond Graph with Memristors  

Suggestions of an electrochemical model of the brain based on the nonlinearity of the 

memristor have been discussed from a single neuron perspective since the 60’s [234] and 70’s 

[235]. An equivalent electrical model of the nerve cell membrane in the Hodgkin-Huxley 

neuron used as one of the case studies was presented in [213], it is based on two memristive 

elements as shown in Figure 7.1. The corresponding bond graph assuming preferential integral 

causality is shown in Figure 7.2.  
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Figure 7.1 Hodgkin-Huxley memristive model [5] 
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The bond graph of the Hodgkin-Huxley memristive model is shown in Figure 7.2,                                

the configuration in which the storage elements are in integral causality. This bond                               

graph structure interpretation was presented by the author of this thesis in                                          

CNNA 2016, August 23-25, 2016, Dresden, Germany. It can be found at:   

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7827953. 

 

 

 

 

 

 

 

 

Following Figure 7.2, the key vectors of this bond graph are:  
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In order to construct the Junction Structure Matrix, causalities must be identified. These are in 

turn used to construct a matrix of zeros and ones to identify the structure matrices (S).  The junction 

structure matrix (7.1) is constructed to interpret the Hodgkin-Huxley memristive model: 
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  (7.1) 

where:    11 12 13 31 34

1 0 0
0,  1,  1 1 ,  = 1 1 ,  .

0 0 1

T
S S S S S

 
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 
 The constitutive 

relations are: 

  1 9= 1/ ,1) }/{ ( ( ) ,Na kM x diag M f M f  F=1/C, and  L=1/R. 

Assuming that the memristor is a charge controlled memristor, the state space matrix for this 

system will be as in the form of equation (7.2) of class 2. Then after giving an implicit model, 
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Figure 7.2 the corresponding bond graph of the Hodgkin-Huxley memristive model

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7827953
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the ISO PH matrices for the Hodgkin-Huxley memristive neuron model are derived after 

calculating the equations (7.3- 7.9): 

 
2

1 cE I    (7.3) 

 TE I   (7.4) 

  1W R                                                  (7.5) 

     1syW R    (7.6) 

   , 0sk M skW W                                                  (7.7) 
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 
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         (7.9) 

After substituting these expressions in (6.71), (6.72) and (6.73), it follows that: 

 ( ) 0CJ q    (7.10) 
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                        (7.12) 

Finally, by combining the structural interconnection, dissipation and output matrices from 

(7.10), (7.11)  and (7.12), the charge state variable is given from: 
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  (7.13) 

 

7.2.1.2 Linearized Hodgkin-Huxley Application Example 

In this section, we show how to develop port Hamiltonian system equations from a 

linearized bond graph of memristive systems. The procedure of obtaining a linearized state 

space in bond graph terms was described in chapter four, section 4.7. The procedure introduced 

is based on assuming an equilibrium point that the nonlinear dynamic system will act around it 

in a linear behaviour. The resulting linearized state space equation for the equivalent electrical 
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model of the nerve circuit of the Hodgkin-Huxley memristive model shown in Figure 7.1, is 

written in equation (7.14) as below: 

 13 13 34
13

( )( )
( ) ( ) ( ) ( )

S S M x SM x
Kx t M x S x t u t

x x u
  
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  (7.14) 

where K is constant. Next, an extension of the method proposed to linearize nonlinear 

memristive systems is developed by incorporating the proposed procedure in section 6.7 to 

formulate the resulting linearized state space descriptor in port Hamiltonian energy formulation. 

This can be done by following the steps proposed in section 6.8.2, and calculating the 

fundamental terms as: 
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After substituting these expressions in (6.71), (6.72), and (6.73), it follows that: 
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Finally, by combining the structural interconnection, dissipation and output matrices from 

(7.22), (7.23), and (7.24); the charge state variable after linearizing the obtained bond graph 

will be given from: 
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7.2.2 Operational Amplifier Building Blocks 

The most important single linear integrated circuit is the operational amplifier. 

Operational amplifiers (Op-amp) are available as inexpensive circuit modules, and they are 

capable of performing a wide variety of linear and nonlinear signal processing functions[262]. 

In the next section will investigate the case where a memristor element is connected at the input 

port of op-amp. A standard operational amplifier schematic symbol is shown in Figure 7.3; it 

shows that the Op-amp is proportional to the voltage difference between the two inputs.  

 

 

 

 

In Figure 7.3, V- and V+ are the inverting and non-inverting input ports, ud  is the differential 

input,  Rin, Rout  are the input resistance and output resistance respectively, and Ve, Vc are the 

supply voltages. In this work, an ideal Op-amp is assumed. There are many models for 

representing Op-amp in bond graph, some of these models are proposed in [263][264][265]. In 

this work the model of Op-amp under analysis proposed by Wolfgang Borutzky  [88], as shown 

in Figure 7.4, which contains modulated effort source (MSe) with modulation factor  A is 

considered. 
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Figure 7.3 General operational amplifier circuit diagram 
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 Next, some example circuits will be discussed to verify that the proposed approach is 

applicable on different types of electric circuits. 

 

7.2.2.1 Integrator Operational Amplifier Circuit 

 An op-amp integrator simulates mathematical integration, which is basically a 

summing process that determines the total area under the curve of a function. An op-amp may 

be connected in a closed loop configuration as shown in Figure 7.5. The input signal in the 

integrator Op-amp circuit is applied to the inverting input port through the memristor element. 

A portion of the output is applied back to the inverting input through the feedback network in 

the same physical domain through a feedback capacitor. The output is controlled by RC circuit. 

 

 

 

 

 

 

The BG model of Figure 7.5 is assumed to be in a preferred integral causality as shown in 

Figure 7.6. 

 

 

 

 

 

 

Following Figure 7.6, the key vectors of this bond graph are: 

C1 

 V- 

M 

R1 

Vin 

Vo 

V+ 

R2 C2 
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To determine the junction structure matrix of the op-amp integrator based on bond graph 

model of Figure 7.6, the matrix is given by: 
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                  (7.26) 

The constitutive relations are:  

F= diag {1/C3 1/C2}, M=1/M(e2), and L=diag{1/Rin 1/Rout 1/R3 R2}. 

Assuming that the memristor is a charge controlled memristor. The state space matrix for this 

system will be as in the form of class 2. Then after developing an implicit model, the ISO PH 

matrices for the op-amp integrator connected with the memristor element are derived after 

deriving the following: 
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where 1 2 ,ink R R  2 2( )out ink R R R  .  After substituting these expressions in (6.71), (6.72) 

and (6.73), it follows that: 
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7.2.2.2 Operational Amplifier Integrator 

In this section, an ideal Op-amp is assumed. as shown in Figure 7.7. This simple 

integrator memristive circuit feedback element is the capacitor that forms an MC circuit with 

the input. 
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The BG model of Figure 7.7 is assumed to be in a preferred integral causality as shown in 

Figure 7.8. 

 

 

 

 

 

 

 

The BG model assumed to be in a preferred Integral Causality as shown in Figure 7.8. To obtain 

the symbolic Port-Hamiltonian expressions of the closed loop Op-amp circuit, the proposed 

methodology will have applied on this circuit. The key vectors of this bond graph are: 
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The constitutive relations are:  

F= diag{C2}, M=M2, and L=diag{1/Rin 1/Rout} 

Then after giving the junction structure matric of the model, the ISO PH matrices for the op-

amp integrator connected with memristor element are derived after calculating the equations 

(7.45- 7.48): 

 
1

out

W
R

    (7.36) 

 
1

sy
out

W
R

    (7.37) 

 0skW    (7.38) 

 0M Msy MskW W W     (7.39) 

After substituting these expressions in (6.71), (6.72) and (6.73), the ISO PH matrices for the 

Op-amp Integrator circuit are: 
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7.2.2.3 Neuron Controlled Output 

An Op-amp connected to the output of the Hodgkin-Huxley neuron model in a closed 

loop circuit in addition to memristor element shown in Figure 7.9, is also developed. A feedback  
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from the output applied to the inverting input through feedback RC is considered.  

. 

 

 

 

 

 

 

 

The BG model of Fig. 7.9 assumed to be in a preferred Integral Causality as shown in Fig.7 

 

 

 

 

 

 

 

 

 

In order to obtain the symbolic Port-Hamiltonian expressions of the closed loop Op-amp circuit, 

the proposed methodology will have been applied on this circuit. The corresponding Junction 

structure matrix will be: 
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The constitutive relations are: 
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The ISO PH matrices for controlled  neuron model can be express using equations:  
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7.2.3  Sensors Applications 

In this section, state space transformations from a bond graph representation of the 

Josephson junction are developed, and then an analysis that links the associated inputs and 

outputs in the junction to the nonlinear characteristics of the memristive element is provided. A 

bond graph Input-State-Output Port-Hamiltonian formulation of memristive networks for 

Josephson junction circuits is presented. The methodology has applications to the modeling of 

SQUIDs and other non-linear transducers and enables the formulation of input-output models 

of complex components embedded in non-linear networks. 

 

7.2.3.1 Josephson- Junction Circuit with Memristor Elements 

Josephson junction circuits are named after the British physicist Brian David Josephson, 

who developed in 1962 the mathematical relationships for the current and voltage across a weak 

link [266] when there is quantized current leakage even in the absence of a constant source 

supply. Such junctions have important applications in quantum-mechanical circuits e.g. in 

magnetic sensors where they can measure the total magnetic field or the vector components of 

the magnetic field [267]. An important class of sensing elements that make use of the Josephson 

junction current to perform measurements are the superconducting quantum interference 

devices (SQUIDs). In their simplest realisation these have two Josephson junctions in parallel 

in a superconducting loop [268]. An electrical model of a Josephson junction using memristive 

elements is shown I Figure 7.11. [269]. 

 

          

 

The corresponding bond graph for the circuit in preferential integral causality is shown in Figure 

7.12.  
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Figure 7.11 Josephson junction circuit model with the non-linearity emulated using a 

memristor. 
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Figure 7.12 The corresponding BG for the Josephson junction circuit model. 
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It can be seen that there are no internal connections, and the derived junction structure matrix 

after rearranging the junction elements into the form of (7.54): 
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The constitutive relations are: 
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 The ISO PH matrices for a Josephson junction circuit can be expressed by using equations as 

follows: 
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1E I                    (7.56) 
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                                                         (7.62) 

From the above matrices, it is possible to obtain the Port-Hamiltonian system components: 
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                                                       (7.63) 
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0

1
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 
  
 

  (7.65) 

This derivation was presented by the author as a poster at Sensors & their Applications XVIII 

2016, Queen Mary University of London, UK.  

 

7.2.4 Dielectrics 

Directed transport is one of the fundamental problems in physics, but it is also a 

challenge to design on-chip integrated devices to directionally control the flow of light. One 

such circuit can be implemented by using two partly-coupled circular microcavity resonators 

each exhibiting matched non-linear gain/loss mechanisms with the flow of light propagating in 

each resonator at opposite directions [270] as shown in Figure 7.13. The two resonators are also 

partly coupled to transmission lines where the unidirectional control of light is implemented. 

An equivalent electrical circuit is shown in Figure 7.14. We propose that the non-linear gain 

and loss diodes can be replaced with memristor elements and then analysed with the proposed 

bond graph junction structure to obtain the ISO-PHS formulation. 

 

 

 

 

 

 

 

 

Figure 7.13 Four-port photonic structure [15] 

(a) (b) 

Figure 7.14 (a) Equivalent electronic circuit that simulates an optical valve implemented using  

 two non-linear microcavities; (b) Non-linear loss implemented by diodes or memristor 

 (a complementary circuit can be drawn for gain). 
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The corresponding bond graph for the circuit equivalent electronic circuit that simulates an 

optical valve in preferential integral causality is shown in Figure 7.15. 

 

 

 

 

 

 

The proposed bond graph for the non-linear loss with memristor element with memristive 

operational amplifier circuit 

 

 

 

 

 

 

By adding memristive elements, nonlinear networks can be developed for emulating complex 

dielectric responses of materials embedded in complex dielectric matrices. This proposed 

circuit to emulate the nonlinear loss or the gain is presented by the author of the thesis as a 

poster titled ‘Port Hamiltonian modelling of memristive dielectrics’ in Dielectrics 2017 at 

National Physical Laboratory, Teddington, UK. 

 

7.2.5 Memristive Circuits with Gyrator 

A gyrator is a passive, linear, lossless, two-port electrical network element. Unlike the 

four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations 

of two-(or-more)-port devices which cannot be realized with just the conventional four 
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Figure 7.15 The corresponding bond graph for the equivalent electronic circuit to  

simulates an optical valve 
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Figure 7.16 The corresponding bond graph for the non-linear loss with memristor element,  

with A = 2. 
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elements [270]. In particular, gyrators make possible network realizations of isolators and 

circulators. For this a gyrator is used as an application example to be combined with a 

memristor. The best way to study the combination of a gyrator and a memristor is by analyzing 

the bond graph shown below [204]: 

 

 

 

 

 

 

After we analyze the system and determined the corresponding matrix for each junction in the 

dielectric  system. We will arrange the obtained matrices into the form of matrix (7.66), and the 

resulted junction structure 
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The constitutive relations are: 
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Figure 7.17 Bond graph structure of an application example of gyrator combined 

with memristor [16] 
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ISO PH matrices for the application example of gyrator combined with memristor are derived 

after calculating the equations below:  

1 E I         (7.67) 
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The ISO PH matrices for the circuit bond graph shown in Figure 7.17,  can be express: 
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7.2.6 RLC Circuit with Coupled Resistors 

The circuit of Figure 7.18 has three elements in ICA and three resistors, two of them 

statically coupled. This coupling will show how the R-elements with the addition of the 

memristor effect, contribute to the structure with a skew-symmetric component which is power-

conserving, because all the storages are in ICA.  

 

 

 

 

 

The BG representation of this circuit is shown in Figure 7.19 with the coupled resister being 

identified. 
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Figure 7.18 Electric circuit with coupled resistor 
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Figure 7.19 The corresponding bond graph assuming integral causality of  

electric circuit with coupled resistor 
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According to the bond graph of Figure 7.19, the calculated junction structure matric will be as 

below: 
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The constitutive relations are: 
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Then after giving the structure matrices, the ISO PH matrices for the circuit are derived after 

calculating the equations below: 

    TE I                                                   (7.78)
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From the above matrices, it is possible to obtain the Port-Hamiltonian system components: 
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7.2.7 Hybrid Systems 

The general hybrid bond graph is investigated in this section. A junction structure matrix 

is obtained, and this is used to derive an implicit, system equation describing all possible modes 

of operation. The method for constructing a causally dynamic hybrid bond graph with structural 

switching, and consequent derivation of the LTI implicit system equations is presented. 

 

7.2.7.1 ISO PHS Formulation of DC-DC Converter with Memristor  

              In conventional DC-DC converter topologies, a switch and a diode are connected either 

in parallel or in series. Using bond graphs and the MTF-R method, a causality conflict occurs 

at the junction where the two components are connected. To solve this causality conflict an 

additional resistive element (Rad) is added, as suggested in [254]. The causality on that 

additional resistor remains fixed during the commutation. This additional resistor in 

combination with the resistive elements of the switch and the diode does not allow the 

denominators of the first derivatives of the state variables to be zero when both switch and the 

diode are OFF, i.e. when m1=m2=0. Therefore, no singularity occurs in the associated equations 

when the converter operates. This proposed work for hybrid system is accepted and will be 

presented as a poster titled "Port Hamiltonian Formulation of a memristive Switch Circuit 

Represented in Bond Graph", at  the IEEE Sensors 2017 Conference, Glasgow, Scotland UK, 

and then will be published as a full paper in IEEE Xplore. 

 

7.2.7.2 Modified Memristive Boost Converter Example: 

As an example of hybrid systems, we follow the bond graph representation of a Boost 

DC-DC converter as proposed by Markakis et al., [259]. However, in the current example, a 

modified circuit with a memristive element replacing the original resistive element is modelled. 

The derivation of the ISO PHS model for the Boost convertor circuit shown in Figure 7.20a is 

then based on the corresponding BG in Figure 7.20b after assuming preferable integral 

causality. 

 

 



 

 

167 

 

 

 

 

 

 

 

 

 

The associated junction structure matrix is: 
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 The ISO PH matrices for the memristive boost converter are derived: 
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Figure 7.20 (a) Boost convertor model and (b) corresponding Bond graph  

assuming integral causality. 
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Substituting these expressions in (6.71-6.73), a full port Hamiltonian description of the 

dynamics of the switching memristive network can be obtained.  
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7.2.7.3 Modified Memristive Buck converter Example: 

A modified circuit of the proposed BG representations for a Buck DC-DC converter 

that was discussed in [259] is shown in Figure 7.21a, where the original resistive element was  

 

 

 

 

 

 

 

 

 Rd 

6 

2 

3 

4 

5 

8 
9 

10 

1 

7 

M 

C 

0 1 

Ron 

se 1 0 

L Rad 
MTF:1/m1 

MTF:1/m2 ∆e>0 

11 

12 

M C E 

L 

D 

sw 

(a) (b) 

Figure 7.21 (a) Buck convertor model and (b) corresponding BG assuming 
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replaced by a memristor. A BG representation of the circuit assuming integral causality is 

shown in Figure 7.21b. This is subsequently used to derive the ISO PHS model of the circuit. 

The associated junction structure matrix is: 
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Substituting these expressions in (6.71-6.73), the port Hamiltonian of the dynamics of the 

switching memristive network is obtained.   
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7.2.7.4 Modified Memristive Buck- Boost Converter Example: 

The third topology considered is that of the modified Buck-Boost DC-DC converter 

where a memristive element in the place of the original resistive element is used, as shown in 

the circuit diagram in Figure 7.22a. In Figure 7.22b, the corresponding BG after the resistor Rad 

is added to resolve the causality conflict. This is subsequently used to derive the ISO PHS model 

of the circuit.  

 

 

 

 

 

 

 

The associated junction structure matrix is: 
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 The ISO PH matrices for the memristive Buck- Boost converter are derived: 
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Substituting these expressions in (6.71-6.73), the dynamics expression of the switching 

memristive network can be obtained:   
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7.3 Summery  

In this chapter, it was shown that memory circuit elements, and the memristor in 

particular, have a natural place in circuit theory. And even if it only came to production in 2008, 

it is just not properly identified. In many cases the memristor concept also has the potential to 

give us a richer and more conceptually correct understanding of nature as it opens a neglected 

field in bioelectricity and bioimpedance. In this work an operational amplifier bond graph 

model was presented. It takes account the input and output resistances, gain, supply voltages of 

an operational amplifier. Therefore, closed loop configurations of the operational amplifier in 

the physical domain have been discussed with the effect of a memristor at the input stage. Also, 

the presence of coupled R-elements with memristor on the BG determines the existence of 

symmetric and skew-symmetric components in the matrix contributed by the coupled R-field 

of the BG. Thus modify the interconnection matrix J(x).  

The methodology has also other applications to other sensors that have non-linear 

responses. The method can be seen as the enabling step of a procedure for the construction of 

PHS models through the BG technique. This is worth from an engineering point of view 

because, on the one hand, as a network-type representation technique, the BG method honors 

the usual interconnection topology of technical systems and provides an object-oriented 

modelling tool, and, on the other hand, avoids employing classical analytical methods that, in 
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some cases, may show formulation difficulties. Current research focuses on control system 

design in the BG domain using the theoretical support already available for PCHD, but also 

taking advantage of the physical information intuitively provided by BG. Can further  

embedded in more complex networks as encountered in communications [271] or in the 

modelling of bio-dielectrics e.g., neuronal structures [152]. The proposed analysis should also 

find new uses in the analysis of other RLCM networks extending the applications of PHS-BG 

theory originally proposed by Donaire [152]. 
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  DISCUSSION AND 

CONCLUSIONS 

 

 

 

8.1 Discussion 

The goal of this research is to propose a new port-Hamiltonian formulation for memristive 

systems by nonlinear bond graph, which could be used to gain engineering insight (through 

structural analysis and exploiting causal assignment) and be suitable for simulation activities. 

In doing so, it is important to retain the graphical advantages of bond graph modelling and the 

principles of system interconnection/ underlying structure. This has been achieved by some 

assumptions at the beginning of this work, which examine this approach. One assumption is 

that the storage elements should be linear and in preferred integral causality, which means there 

is no derivative function and there were no coupling resistors as well as no storage defined by 

a source in differential causality. These assumptions reduced some of the mathematical 

difficulties.  

  The original objectives have been satisfied by proposing a new junction structure matrix 

for representing the nonlinear bond graph of memristive systems and formulating the derived 

state space descriptor in an ISO PH system equation. 

  The closed form of the general descriptor resulted from the proposed                          

junction structure matrix, is in the form        i iEx t Ax t Bu t Gu t   . This is in conjection 

with the assumptions mentioned to define the block matrix:   B B G and   ,
T

u u u  to 

reduce the      
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descriptor equation into a standard form     Ex Ax Bu  . This resultant standard form shows 

that large classes of nonlinear systems can be described in a standard form. 

The behaviour of memristor elements, as dissipation energy elements and as a nonlinear 

device, is reflected on the junction structure matrix. The dissipation field in the junction 

structure matrix is assumed to be divided into linear dissipation and memristive dissipation, as 

denoted by  and l MD D . That assumption has an impact on the mathematical modelling from 

bond graph perspective, as the subsequent descriptor equation is not in a state space form unless 

there are a few assumptions made. 

A generic descriptor model describing all possible modes of operation is generated. This 

model offers engineering insight for large systems that contain all kinds of components. It can 

be preferable in control theory and object-oriented simulation as there will be a single 

expression that covers all states. This generic expression offers a unique new approach to 

incorporate memristor elements in bond graph and visualise that it can be modelled within 

variable systems topology. Classes of generic descriptor are assigned to describe the method in 

several modes of operation. Each condition of the classes mentioned had an influence on the 

resultant descriptor formulation. Hence, each element in the system is assigned according to 

each class, to show how system properties vary with each bond graph structure.  

The unique port-Hamiltonian method proposed to derive an expression from the 

obtained generic descriptor, was applied by separating memristive and non-memristive parts 

into the symmetric and skew-symmetric part to obtain J(x), R(x) and g(x). This proposal is used 

to describe different types of systems, which require complicated mathematics and it has 

implications for simplifying the relations between the energy storage, dissipation and 

interconnection structure. Moreover, it can be considered as one of the control design 

methodologies which can be directly applied to such port-Hamiltonian descriptions of complex 

nonlinear systems. 

Memristor elements have a notable impact on the mathematical complexity of the 

derived port-Hamiltonian formulation, which means it needs more attention in the future. 

Regarding class 1 systems of nonlinear bond graph with no coupling between the resistive and 

memristive fields, it can be noticed that it is a case of a time-varying nonlinear system, which 

consists of two main factors, linear and the derivative of storage vector in integral causality. A 

new technique is needed to derive port Hamiltonian for such systems, as, according to the 

author’s knowledge, most of the presented methods are for time-invariant systems. Likewise, 
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in class 5 systems, the junction structure field matrix is time variant which has the same 

mathematical expression.  

In conducting this research, it was important to preserve the different memristor 

physical models and its initial conditions were not of concern in the proposed approach; this 

could be a central focus of future studies. 

 

8.2 Conclusions 

A general bond graph and the derived port-Hamiltonian formulation for memristive 

elements and a method for constructing it have been defined. This method features: 

• Memristor devices defined according to bond graph rules and assigned causality. 

• The inclusion of memristor in bond graph as one of the elements that construct junctions 

bonds, that yields an algebraic constraint.  

• The Junction structure matrix is represented using a newly proposed notation; dividing the 

dissipation field into linear and nonlinear memristive fields. 

• A system equation is generated acknowledging that memristor elements in assigned 

causality have an impact on the subsequent equation.  

• The model generates a unique port-Hamiltonian system equation. This equation easily 

yields a single mode of operation and the models for each class may change size, but all 

are captured in the unique system model.  

• This model is not only a more intuitive way of analysing a memristive system but is also 

suitable for both analysis and simulation purposes. 

 

The novelty here is that the port-Hamiltonian representation is augmented by the states 

associated with the memristive elements, and the view is that there are physical phenomena that 

justify the introduction of a memristor to be added to the small set of fundamental bond graph 

elements, which have not been shared by most members of the bond graph community. 

Furthermore, a unique system model is produced, which requires no extra derivations to obtain 

the equation for nonlinear memristive systems and avoids employing classical analytical 

methods that, in some cases, may show formulation difficulties. Current research focuses on 
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control system design in the BG domain using the theoretical support already available for PHS, 

but also taking advantage of the physical information intuitively provided by BG.  

Memristor inclusion in bond graph can be exploited to show how system properties vary 

with the transfer function of the system. It is shown that the proposed structure directly affects 

structural system properties as well as the effect of memristor on hybrid bond graph.  

Finally, a presentation in the form of small case studies gave an idea of the diversity of the 

system that may be analysed, and a selection of case studies are presented to demonstrate the 

method. These consist of a neuromorphic field using Hodgkin-Huxley neuron model, linear 

integrated circuits presented by operational amplifier circuits, a Josephson junction as a sensor 

building block, a proposal that the non-linear gain and loss in diodes in dielectric circuits can 

be replaced with memristor elements according to the analysis presented. Also, there are 

memristive circuits with gyrator, and the effect of memristor in circuit with Coupled resistors. 

This is in addition to the Boost converter, a Buck DC-DC converter, and a Buck-Boost DC-DC 

converter example. 

 

8.3 Future work 

There is tremendous scope to extend and develop this proposed method.  

The investigation adds more detail to the influence of different models of memristor on 

the proposed approach such as inspecting the effect of polarity changing of the memristor. The 

broad generalisation of memristors, accompanied by meminductive and memcapacitive 

elements which can also be captured to extend the proposed method into one comprehensive 

expression, as the meminductor and memcapacitor share many of the characteristics of 

memristor element, but store energy. One might consider expanding the state space dynamics 

and the junction structure matrix by partitioning the state vector into linear and nonlinear fields.  

Another technique proposed for future work is to linearize the bond graph of memristive 

system, as linearization is used by control theory researchers to approximate nonlinear functions 

and systems. The linearization procedure stated in chapter four is to linearize the proposed 

nonlinear bond graph. This is accomplished by linearizing the resultant state space expression. 

Furthermore, linearization of a nonlinear system can also be achieved by linearizing the 

memristor element nonlinear behaviour only. Following a few research papers, a technique for 
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linearizing memristor element as individuals is proposed and there will be no need to linearize 

the final expression which will be a more simplified process.  

Also, the control properties observed such as stability and the definition of observability 

were basic for the proposed approach, compared with those for standard bond graphs and port-

Hamiltonian formulation. These properties are important to control theory modelling and need 

to be interpreted, as bond graph is related to behavioural modelling, these properties might be 

obtained in terms of bond graph terms.  

A full study of the port-Hamiltonian for nonlinear systems and its properties is 

recommended, especially the derivations of nonlinear time-variant model. The lack of 

modelling in such systems was noticeable in two of the case studies investigated in chapter six 

section 6.7. This type of system modelling has important implications, as real physical systems 

are often nonlinear time-varying systems.  

A nonlinear bond graph can be developed for emulating complex physical systems, as 

in simulating plant water relations which are of interest to environmental physiology and 

agriculture and Circuits that mimic Neuromorphic and biological systems such as brain 

neurons. Environmental and medical applications are probably the most promising future 

application areas for memristor-based circuits and systems. 
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