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Abstract: 

The functional composition of plant communities is commonly thought to 

be determined by contemporary climate. However, if rates of climate-
driven immigration and/or exclusion of species are slow, then 
contemporary functional composition may be explained by paleoclimate as 
well as by contemporary climate. We tested this idea by coupling 
contemporary maps of plant functional trait composition across North and 
South America to paleoclimate means and temporal variation in 
temperature and precipitation from the Last Interglacial (120 ka) to the 
present. Paleoclimate predictors strongly improved prediction of 
contemporary functional composition compared to contemporary climate 
predictors, with a stronger influence of temperature in North America 
(especially during periods of ice melting) and of precipitation in South 

America (across all times). Thus, climate from tens of thousands of years 
ago influences contemporary functional composition via slow assemblage 
dynamics. 
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Abstract 58	

The functional composition of plant communities is commonly thought to be determined by 59	

contemporary climate. However, if rates of climate-driven immigration and/or exclusion of 60	

species are slow, then contemporary functional composition may be explained by paleoclimate 61	

as well as by contemporary climate. We tested this idea by coupling contemporary maps of plant 62	

functional trait composition across North and South America to paleoclimate means and 63	

temporal variation in temperature and precipitation from the Last Interglacial (120 ka) to the 64	

present. Paleoclimate predictors strongly improved prediction of contemporary functional 65	

composition compared to contemporary climate predictors, with a stronger influence of 66	

temperature in North America (especially during periods of ice melting) and of precipitation in 67	

South America (across all times). Thus, climate from tens of thousands of years ago influences 68	

contemporary functional composition via slow assemblage dynamics.  69	
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Introduction 70	

Shifts in the functional composition of plant communities can indicate variation in ecosystem 71	

functioning and ecosystem services (Chapin et al., 2000, Dı ́az &  Cabido, 2001, Hooper et al., 72	

2005, Jetz et al., 2016).  Forecasting the two components of functional composition, functional 73	

trait means (FM) and functional diversity (FD) (Villéger et al., 2008), is therefore of central 74	

interest. Insights into geographic variation in the contemporary functional composition of plant 75	

communities (Violle et al., 2014) comes from field surveys (Asner et al., 2014, Baraloto et al., 76	

2010, De Bello et al., 2006), macroecological approaches (Campbell &  McAndrews, 1993, 77	

Lamanna et al., 2014, Šímová et al., 2015, Swenson et al., 2012), and remote sensing approaches 78	

(Asner et al., 2017a, Asner et al., 2017b, Jetz et al., 2016). However, little is known about 79	

changes in these functional trait patterns over longer time scales (Blonder et al., 2014, Polly et 80	

al., 2011, Thuiller et al., 2008). There is also growing evidence that paleoclimate has directly 81	

and indirectly structured contemporary species composition and functional composition 82	

(Ordonez &  Svenning, 2016, Svenning et al., 2015). It has been unclear how these paleoclimate 83	

effects on species composition translate to differences in functional composition, because even  84	

species assemblages in disequilibrium with contemporary climate may have equilibrium 85	

functional relationships with contemporary climate (Fukami et al., 2005).	 86	

 A core hypothesis of plant functional ecology is that contemporary environments 87	

determine contemporary functional composition (Enquist et al., 2015, Grime, 1974, Raunkiær, 88	

1907, Schimper, 1898, von Humboldt &  Bonpland, 1807 (tr. 2009)). Many studies have shown 89	

relationships between FMs or FD and contemporary environmental variables, e.g. Cornwell and  90	

Ackerly (2009), Moles et al. (2014), suggesting equilibrium with contemporary environmental 91	

conditions is plausible. However, paleoclimate may also have had a strong influence on 92	
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contemporary functional composition at large spatial scales (Svenning et al., 2015). A mismatch 93	

could exist between contemporary climate and contemporary FMs and FD because of 94	

disequilibrium in species’ geographic ranges and lack of more appropriate species in the regional 95	

pool (Davis &  Shaw, 2001, Enquist et al., 2015). Mechanisms that could lead to differing 96	

degrees of lagged responses of FMs and FD, and thus disequilibrium, include differential rates of 97	

exclusion and immigration driven by variation in dispersal limitation, longevity, and species 98	

interaction strengths that are associated with certain functional traits (Davis, 1984, Eiserhardt et 99	

al., 2015, Enquist et al., 2015, Svenning &  Sandel, 2013, Webb, 1986). Evidence for 100	

disequilibrium in functional composition is growing. For example, instability in climate in the 101	

Late Quaternary may have influenced contemporary functional composition in Europe (Mathieu 102	

&  Jonathan Davies, 2014, Ordonez &  Svenning, 2015, Ordonez &  Svenning, 2017, Svenning 103	

et al., 2015) and in the Americas (Ordonez &  Svenning, 2016).  104	

Paleoclimate influences on plant species composition are better known. For example, 105	

many tropical forests and temperate understory assemblages have compositions lagging 106	

contemporary climate changes at 101-103 year timescales (Campbell &  McAndrews, 1993, Cole 107	

et al., 2014, DeVictor et al., 2008, La Sorte &  Jetz, 2012). At 103-105 year timescales, the 108	

European flora (Svenning &  Skov, 2007) and North American plant range size distributions 109	

(Morueta-Holme et al., 2013) show strong signals of slow recovery from cover of ice sheets due 110	

to late-Quaternary glaciation. At 105-106 year timescales, African and Madagascan palm 111	

distributions can be predicted by Pliocene precipitation patterns (Blach-Overgaard et al., 2013, 112	

Rakotoarinivo et al., 2013). Last, at 106-107 year timescales, Cenozoic climate change and land 113	

connectivity shifts have resulted in cold tolerance-driven extinction of some temperate trees 114	
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(Eiserhardt et al., 2015), and have limited the dispersal and radiation of certain clades (Morley, 115	

2011, Woodruff, 2010).  116	

We first test a hypothesis (Hypothesis 0) that paleoclimate has additional predictive 117	

power for functional composition beyond that provided by contemporary climate. We do so by 118	

determining whether FMs or FD are best predicted by contemporary climate alone or by 119	

contemporary climate and paleoclimate together. 120	

We also test four hypotheses for how paleoclimate and contemporary climate could 121	

influence contemporary FMs and FD (Figure 1). The hypotheses explore fast vs. slow processes 122	

for exclusion and immigration of species under linear change in a mean climate value (Blonder 123	

et al., 2017). ‘Fast’ and ‘slow’ are terms used to indicate temporal rates of change in species 124	

composition and functional traits relative to the rate of climate change; mechanisms underlying 125	

exclusion and immigration could include ecological processes such as environmental filtering, 126	

competition, or dispersal or evolutionary processes such as speciation, adaptation, or extinction. 127	

These hypotheses are thus relevant over intervals where changes in climate can be treated as 128	

linear. They also all assume an underlying linear trait-environment relationship that would be 129	

obtained in the equilibrium limit.  130	
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Figure 1. Four hypothetical scenarios for the relationship between contemporary functional traits 131	
and climate change. Inset panel shows the assumed equilibrium trait-environment relationship. 132	
A) Hypothesis 1, fast exclusion and fast immigration: species will track contemporary climate, 133	
and there will be a strong contemporary climate mean – functional trait mean relationship. B) 134	
Hypothesis 2, slow exclusion but fast immigration: many species that were at one time suitable 135	
still remain part of the assemblage, and there will be a positive relationship between paleoclimate 136	
temporal variation and functional diversity. C) Hypothesis 3, fast exclusion but slow 137	
immigration: only species that were at all times suitable will be able to enter the assemblage, and 138	
there will be a negative relationship between paleoclimate temporal variation and functional 139	
diversity. D) Hypothesis 4, slow exclusion and slow immigration: species will fail to track 140	
contemporary climate, and there will be a strong paleoclimate mean – functional trait mean 141	
relationship.  142	
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In Hypothesis 1 (Figure 1A), if exclusion of species with inappropriate traits for a novel 144	

climate is fast and if immigration of more appropriate species is fast, then contemporary climate 145	

mean – contemporary FM relationships will exist. In Hypothesis 2 (Figure 1B), if exclusion of 146	

species with inappropriate traits is slow and if immigration of more appropriate species is fast, 147	

paleoclimate temporal variation – contemporary FD relationships will be positive because more 148	

species with appropriate traits are continually added to the assemblage without loss of other 149	

species. In Hypothesis 3 (Figure 1C), if exclusion of species with inappropriate traits is fast but 150	

if immigration of appropriate species is slow, then paleoclimate temporal variation – 151	

contemporary FD relationships will be negative because species with inappropriate traits become 152	

lost from an assemblage without replacement by other species. In Hypothesis 4 (Figure 1D), if 153	

exclusion is slow and if immigration is slow, then paleoclimate mean – contemporary FM 154	

relationships will exist because of temporally lagged losses and gains of suitable species. 155	

These four hypotheses provide non-exclusive predictions of relationships between 156	

climate and functional trait patterns. More than one of these patterns could be simultaneously 157	

observed, depending on the dynamics of climate over a long period comprising multiple 158	

approximately linear changes. That is, predictions of relationships between e.g. paleoclimate 159	

variation and contemporary FD do not preclude observation of relationships between 160	

paleoclimate mean and contemporary FMs. 161	

 Here, we ask: 1) whether paleoclimate means and temporal variation improve predictions 162	

of contemporary FMs and FD (Hypothesis 0), and 2) which of the proposed hypotheses 163	

(Hypothesis 1 - Hypothesis 4) are consistent with empirical patterns of contemporary FMs and 164	

FD. We derived gridded maps of contemporary FMs and FD (as convex hull volume (Cornwell 165	

et al., 2006)) across the Americas by merging species-mean trait data with maps of species 166	
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distributions.  We used five plant functional traits that are representative of major ecological 167	

strategy axes (Díaz et al., 2016, Westoby &  Wright, 2006), and predictive of species sorting 168	

along environmental gradients (Moles et al., 2014, Simova et al., 2018, Šímová et al., 2015). We 169	

then coupled these estimates with contemporary and paleoclimate maps at timescales spanning 170	

the Last Interglacial (120 ka) to the present. We chose climate axes of mean annual temperature 171	

and annual precipitation because of their established trait-environment relationships (Moles et 172	

al., 2014), and their ability to be reconstructed by general circulation models. 173	

 174	

Materials and Methods 175	

Species distribution maps 176	

We obtained occurrence data for New World plants from the BIEN database (version 3.0, access 177	

date 26 February 2017, http://www.biendata.org) (Enquist et al., 2009, Enquist et al., in 178	

preparation, Maitner et al., 2017). Following Morueta-Holme et al. (2013), we selected only data 179	

that represented geo-validated and non-cultivated occurrences, and standardized all taxonomic 180	

names (Boyle et al., 2013). Occurrence points were non-randomly distributed, with higher 181	

observation densities in the continental United States and in Central America / northwestern 182	

South America. 183	

  To reduce biases from spatial variation in sampling intensity, we estimated species’ 184	

geographic ranges using convex hulls (Elith &  Leathwick, 2009). Convex hulls can be estimated 185	

without using climate variables for niche modeling, avoiding any potential circularity in our 186	

analyses that would be caused by (for example) a maximum entropy model calibrated on 187	

contemporary climate variables. We generated range polygons from latitude/longitude 188	

coordinates for species with more than three non-collinear observation points. For species with 189	
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three or fewer observations (6,886/74,491 species=9.2%), we assumed that the species was 190	

present only in the 100×100-km grid cell(s) containing the observation. We rasterized 191	

predictions over the Western Hemisphere on a 100×100-km grid cell equal area projection 192	

centered at 80°W, 15°N. 193	

 194	

Functional trait data 195	

We selected five functional traits representing major ecological strategy axes for growth, 196	

survival, and reproduction (Díaz et al., 2016, Westoby &  Wright, 2006). These included specific 197	

leaf area, plant height, seed mass, stem specific density, and leaf nitrogen. Trait data were 198	

obtained from the TRY database (https://www.try-db.org, accession date 19 June 2013) (Kattge 199	

et al., 2011), covering 45,507 species (7,051 genera). A list of data references is in Table S1. 200	

Because many taxa were missing some observations of certain variables, a phylogenetic gap-201	

filling approach (Schrodt et al., 2015) was used to estimate missing values; then for a fraction of 202	

taxa that were present in the occurrence data but not present in the TRY data (59,423 species, 203	

3343 genera), missing values were filled with genus means estimated from the TRY data. This 204	

approach likely results in less bias than omitting data for species without exact matches to trait 205	

data. 206	

We also categorized each species by its growth habit. Using a New World database 207	

(Engemann et al., 2016), we classified species as woody (29,676 species) or non-woody (44,324 208	

species). Analyses were carried out for either all or only woody species to distinguish potentially 209	

different climate drivers on traits between growth forms (Díaz et al., 2016, Simova et al., 2018). 210	

 211	

Functional trait mapping 212	
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We used the distribution maps to estimate the species composition within each grid cell. We then 213	

matched this species list against the functional trait data to estimate the distribution of log-214	

transformed traits within each grid cell. To reduce undersampling biases, we then removed from 215	

the analysis all cells with richness of species with non-missing trait values less than 100 (a value 216	

chosen to be small, in this case representing the 7% quantile of the data, and which primarily 217	

removes extreme-latitude cells in Greenland and Ellesmere Island in the northern hemisphere, 218	

and Tierra del Fuego in the southern hemisphere) (Figure S1). This procedure was repeated for 219	

woody species and for all species. 220	

To estimate FMs, we calculated the average trait value across all species occurring within 221	

the cell, based on overlapping range maps. To simplify these five axes, we calculated a ‘FM 222	

PC1’, defined as the score along the first principal component of the five mapped trait axes. This 223	

axis explained 83.5% of the variation in traits for the woody species subset and 74.5% of the 224	

variation for all species, and corresponds to increasing plant height, seed mass, and stem specific 225	

density, as well as decreasing SLA and leaf nitrogen content (Figure S2). 226	

To estimate FD, we first calculated the five-dimensional convex hull volume across log-227	

transformed values of each trait value occurring within the cell (Villéger et al., 2008). Second, 228	

we corrected this estimate because convex hull volumes often scale linearly with sample size, 229	

and because the fraction of species per grid cell with available trait measurements (‘trait 230	

coverage’) was variable (78% mean, 10% s.d). This value was sufficiently high to lead to limited 231	

bias in FM estimates, according to simulations (Borgy et al., 2017c). To correct for the sample 232	

size effect in FD, we built a null model. We calculated the convex hull volume of random 233	

samples of the full trait dataset with species richness varying from 100 to 10,000 in steps of 100 234	

(‘FDtrue’), then subsampled each to a trait coverage value varying from 0.05 to 1.0 in steps of 235	
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0.05, and then recalculated the convex hull volume based on this subsample (‘FDobserved’). We 236	

repeated the convex hull volume calculation 10 times for each combination of species richness 237	

and trait coverage. We then built a linear model to predict FDtrue on the basis of linear terms of 238	

FDobserved, species richness, and trait coverage, as well as 2-way and 3-way interactions between 239	

these variables. This model explained 95.8% of the variation in FDtrue. We therefore applied this 240	

model to FDobserved in the empirical data to yield a corrected estimate of FDtrue (hereafter, FD) 241	

that accounted for variation in trait coverage. 242	

FDobserved and species richness are positively correlated, because as species richness 243	

increases within a grid cell, FDobserved can only stay constant or increase. Thus, it may be difficult 244	

to separate effects of paleoclimate-related processes on FD from effects on species richness. To 245	

partially address this issue, we also repeat all analyses for another composite variable FDres, 246	

defined as the residuals of a regression of the corrected estimate of FD (FDtrue) on species 247	

richness. Thus positive values of FDres indicate FD values higher than expected based on a 248	

random assemblage with the same species richness, while negative values indicate values lower 249	

than expected. 250	

   251	

Contemporary climate data 252	

We obtained contemporary climate predictions (1979-2013 AD averages) for mean annual 253	

temperature (MAT) and mean annual precipitation (MAP) from the CHELSA dataset version 1.2 254	

(available at http://chelsa-climate.org/) (Karger et al., 2016). The climate dataset is based on a 255	

quasi-mechanistic statistical downscaling of the ERA (European Re-Analysis) interim global 256	

circulation model with a GPCC (Global Precipitation Climatology Centre) bias correction, and 257	

incorporating topoclimate (Karger et al., 2016). This approach avoids biases inherent to 258	
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interpolation between weather stations with uneven coverage of geographic and climate space. 259	

We then re-projected the 1-arcsecond resolution data to the same grid as the species distribution 260	

maps. 261	

 262	

Paleoclimate data  263	

We obtained paleoclimate data from the HadCM3 general circulation model. The HadCM3 264	

model consists of a coupled atmospheric, ocean, and sea ice model with non-interactive 265	

vegetation, with an atmospheric resolution of 2.5° latitude × 3.75° longitude. The model was 266	

driven by variations in orbital configuration, greenhouse gases, ice-sheet topography, and 267	

coincident sea level changes and bathymetry since 120 ka. Simulations included the effects of 268	

abrupt “fresh-water” pulses and the resulting abrupt climate changes that occurred during at 17 269	

ka (Heinrich event) and 13 ka (Younger Dryas). Boundary conditions and spin-up are fully 270	

described in Hoogakker et al. (2016), Singarayer and  Valdes (2010). Data were available at time 271	

points beginning 0-120 ka in 1 kyr slices from 1–22 ka, in 2 kyr slices from 22–84 ka, and in 4 272	

kyr slices from 84–120 ka (example time slices in Figure 2, all time slices in Figure S3, S4). 273	

  274	
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Figure 2. Example contemporary climate and HadCM3 general circulation model temporal mean 275	
values for annual temperature (MAT) and annual precipitation (MAP) as well as for temporal 276	
standard deviations of MAT and MAP for the present day (0 ka), and for intervals beginning at 277	
13 ka (Younger Dryas), 21 ka (Last Glacial Maximum), and 120 ka (Last Interglacial). Colors 278	
are scaled and transformed (see Materials and Methods), with labels indicating values back-279	
transformed to original units. The full analysis includes a larger number of temporal mean values 280	
at intervals spaced between 0 – 120 ka. 281	

  282	
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Model output was re-projected to the same coordinate system and resolution as the 283	

contemporary species distribution maps. This approach assumes a negligible impact of variation 284	

in sea level on the vast majority of pixels and is appropriate given that only contemporary 285	

functional composition data were available. Paleoclimate maps are close to contemporary 286	

climate maps during the Holocene, and diverge strongly during the Pleistocene, as measured by 287	

mean absolute deviation between contemporary and paleoclimate pixel values (Figure S5).  288	

  289	

Statistical analysis 290	

To prepare climate data for analysis, we first square-root transformed contemporary and 291	

paleoclimate MAP data to improve normality. We calculated a temporal mean value at x ka, for x 292	

in 0 to 120, as well as a temporal standard deviation at x ka within each grid cell using a moving 293	

window approach, i.e. over values within the interval [x-k, x+k]. These temporal standard 294	

deviations were then standardized by divided by the total temporal range of the moving window. 295	

Temporal standard deviations thus have units of either °C kyr-1 or mm kyr -1. We used a value of 296	

k=1 where possible, but k=4 in some cases where HadCM3 data had coarser resolution (i.e. 297	

closer to 120 ka). Edge cases at 0 and 120 ka were calculated treating out-of-range data as 298	

missing. Contemporary climate was used for values at 0 ka, while paleoclimate was used for 299	

values at 1-120 ka.  300	

We then rescaled all contemporary and paleoclimate predictor variables by z-301	

transforming each relative to their grand mean and standard deviation (over all pixels and years) 302	

for each variable type from the HadCM3 model (MAT and MAP mean values and temporal 303	

standard deviation of MAT and MAP). This approach standardizes values across both variable 304	

types and models relative to estimates of their ranges across study interval. Thus, a value of +1 in 305	
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a MAT layer indicates that this cell has a value that is 1 standard deviation larger than the mean 306	

value relative to all values seen in all locations over the 0-120 ka interval. 307	

We used partial least squares (PLS) regression to determine the best predictors of FMs, 308	

FD, and FDres in independent analyses. We conducted PLS regressions separately for North 309	

America and South America (split at the Panama/Colombia border) because of their different 310	

glaciation histories (Ehlers et al., 2011). The PLS approach accounts for the statistical non-311	

independence of large numbers of predictors by finding the rotation of the predictor matrix that 312	

best overlaps with the response vector, and identifies the latent factors (components) that 313	

correspond to these rotations (Geladi &  Kowalski, 1986). The PLS components describe the 314	

independent contribution of each predictor variable to the response variable and are ordered by 315	

their explanatory capacity such that the first component (PLS1) by definition explains the most 316	

variation in the data. Thus the approach can identify independent effects of multiple correlated 317	

predictors (i.e. separating the effects of contemporary and paleoclimate, even if they are 318	

sometimes correlated with each other). We built models that simultaneously incorporated up to 319	

six classes of predictors: contemporary climate mean values, paleoclimate temporal mean values, 320	

and paleoclimate temporal standard deviations (metrics of paleoclimate variation) for each of 321	

MAT and MAP. 322	

We also performed a separate set of PLS analyses in order to assess biases from climate 323	

changes occurring at times and locations where plants could not have grown. Although 324	

predicting ice sheet spatial coverage at each time and location would be ideal, we instead masked 325	

out pixels at all times and places where there was ice cover during the Last Glacial Maximum 326	

(21 ka) (corresponding to pixels in the black polygon in Figure 2I). This choice was motivated 327	
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by the currently limited knowledge of temporally-resolved ice sheet dynamics during the full 328	

extent of study period (Kleman et al., 2013, Kleman et al., 2010). 329	

We tested Hypothesis 0 for each of FMs, FD, or FDres by comparing root mean square 330	

error of prediction (RMSEP) values for PLS models that included contemporary climate (n=2 331	

total predictors) and/or paleoclimate values (n=250 total predictors). Because RMSEP 332	

necessarily decreases with number of PLS components, we compared RMSEP values after fixing 333	

the number of PLS components in each model. This approach is more appropriate than model 334	

selection methods based on Akaike Information Criterion comparisons (Li et al., 2002) because 335	

it is difficult to calculate degrees of freedom in PLS in order to correctly penalize likelihood 336	

values (Krämer &  Sugiyama, 2011). 337	

In this PLS framework, Hypotheses 1–4 can be distinguished by regression of 338	

contemporary FMs, FD, or FDres on contemporary climate mean values, paleoclimate mean 339	

values over multiple times, and paleoclimate temporal variation over multiple times. We 340	

assessed the importance of each PLS component via the percentage of variance explained by the 341	

component. The effect of each variable at each time for FMs, FD, or FDres can be interpreted as 342	

the PLS component’s loading coefficient explaining the most variance in each model, with 343	

positive loading coefficients indicating that higher than average (over the 0-120 ka interval) 344	

values of this predictor yield higher than average values of the response variable. We also 345	

defined an overall effect for each class of predictor as the maximum absolute loading coefficient 346	

for that predictor type along each axis across all times. 347	

All analyses were carried out with the R statistical environment (version 3.3.3). 348	

Occurrence data were obtained with the ‘BIEN’ package (Maitner et al., 2017). Map rescaling 349	

and re-projection were carried out with the ‘raster’ (Hijmans &  van Etten, 2014) and ‘maptools’  350	
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(Bivand &  Lewin-Koh, 2013) packages. Convex hulls were calculated with the ‘geometry’ 351	

package (Habel et al., 2015). PLS regression was carried out within the ‘pls’ package (Mevik &  352	

Wehrens, 2007).  353	

 354	

Results 355	

Contemporary functional trait patterns 356	

Mapped FMs for all species for the five focal functional traits showed strong spatial gradients. 357	

Mean estimates of specific leaf area were highest in temperate/boreal North America (Figure 358	

3A). Maximum plant height and seed mass were highest in the eastern Amazon basin (Figure 359	

3B, 3C). Stem specific density was highest in the Amazon basin (Figure 3D). Leaf nitrogen 360	

content was highest in western North America and the southern South America (Figure 3E), all 361	

leading to similar latitudinal tropical-temperate-boreal gradients in FMs for PC1 (Figure 3F). 362	

FD was high throughout the tropics and into southeastern North America (Figure 3G), and FDres 363	

was high in southeastern North America, Central America, and the Caribbean, as well as along 364	

the northeastern and eastern coasts of South America (Figure 3H). Species richness was highest 365	

in Central America and the western Amazon basin (Figure 3I). All of these results were 366	

qualitatively consistent when restricted to woody species only (Figure S6). 367	

 368	

Figure 3. Estimated plant species assemblage characteristics, based on data for all species. 369	
Distributions of functional trait means (FMs) for five functional traits (each colored by log-370	
transformed values, with labels indicating values back-transformed to original units) are shown 371	
for A) Specific leaf area, B) plant height, C) seed mass, D) stem specific density, and E) leaf 372	
nitrogen per unit mass. F) First principal component of FMs. G) Functional diversity (FD; 373	
convex hull volume of loge-transformed values); H) FDres, the residual of FD regressed on 374	
species richness, and I) Species richness. The black polygon indicates the maximum ice sheet 375	
extent during the Last Glacial Maximum. 376	
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 377	

 378	

Overall predictive power of paleoclimate 379	

We found that models that incorporated paleoclimate and contemporary climate had higher 380	

predictive power than models that incorporated only contemporary climate (Figure 4). When 381	

comparing models with the same number of PLS components, the contemporary + paleoclimate 382	

models usually had equivalent or lower root mean square error of prediction (RMSEP) than the 383	
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contemporary climate models. For example, for FD calculated with data for all species and 384	

HadCM3 climate data, using 1 PLS component, RSMEP was 9% lower in North America and 385	

20% lower in South America; when using data for woody species, RMSEP was 14% lower in 386	

North America and 20% lower in South America. Similar results held for all other response 387	

variables, other methodological choices, and 2 PLS components (Figure S7). 388	

  389	
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Figure 4. Predictive uncertainty in models for FD as measured by the cross-validated root mean 390	
squared error of prediction (RMSEP) for increasing numbers of PLS components. Y-axis units 391	
correspond to units of functional diversity (compare to Figure 3G). Results are for PLS 392	
regression models generated using trait data for all species and climate data from HadCM3. 393	
Orange lines indicate models using only contemporary climate predictors; blue lines, models 394	
using contemporary and paleoclimate predictors. 395	
	396	
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Paleoclimate and contemporary climate predictors of contemporary functional composition 399	

We present results for the HadCM3 paleoclimate model using all species, as results are 400	

representative across all modeling choices.  401	

For FD in North America, we found that the first PLS component explained 57% of the 402	

variation in the data (Figure 5A). This component represented large effects (> 0.1 in absolute 403	

standard deviations) for paleo MAT mean value (+0.11), paleo MAT temporal standard deviation 404	

(-0.20), and for paleo MAP temporal standard deviation (+0.11). There were no large effects 405	

from contemporary MAT or MAP mean values. These effects were strongest immediately after 406	

the Last Glacial Maximum (~20 ka) and the Last Interglacial (~120 ka). 407	

For FD in South America, we found that the first PLS component explained 60% of the 408	

variation in the data (Figure 5B). This component represented large effects for contemporary 409	

MAP mean value (+0.13), paleo MAP mean value (+0.10), and paleo MAP temporal standard 410	

deviation (+0.28). There was no large effect from any MAT predictor. Paleo MAP temporal 411	

standard deviation was most important at time periods beginning at 17 ka and 13 ka, 412	

corresponding to abrupt change from a Heinrich event and the Younger Dryas, respectively.  413	

  414	
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Figure 5. Contemporary climate and paleoclimate effects on functional diversity (FD), for the 415	
first PLS component, for A) North America, and B) South America. Results are for models 416	
generated using trait data for all species and using climate data from HadCM3. Left subpanels 417	
indicate effect sizes (loading coefficients) for each model component at different times. 418	
Contemporary climate data are shown in triangles; paleoclimate values as dark lines and 419	
temporal standard deviations as lighter lines. Red indicates MAT, blue MAP. Right subpanel 420	
symbols indicate the maximum absolute effect for each variable class over time. A gray 421	
background rectangle indicates a significance threshold. Orange shading behind each panel 422	
indicates global atmospheric temperatures reconstructed by Bintanja et al. (2011), with deeper 423	
shading indicating warmer conditions. Results for FMs and FDres are shown in Figure S8. 424	

 425	

  426	
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 Results for FMs and FDres were similar to those for FD. One exception occurred in South 427	

America, where estimates for FDres were opposite in sign (Figure S8). Results for higher PLS 428	

components are not reported, as explained variation for each was individually low (e.g. at most 7 429	

- 13% for PLS2 across all response variables using the HadCM3 data and all species across 430	

response variables). Model residuals for North and South America for varying numbers of 431	

components are shown in Figure S9. 432	

 All of the above results were qualitatively similar when restricting data to woody-only 433	

species (Figure S10). Analyses were also qualitatively similar when excluding pixels covered by 434	

ice sheets at the Last Glacial Maximum. Results for these analyses are presented in Figure S11. 435	

 436	

Discussion 437	

We identified spatially and temporally variable effects of paleoclimate on contemporary 438	

functional trait patterns, independent from those of contemporary climate. Across 439	

methodological choices, functional composition was predicted in North America by paleo MAT 440	

mean values, paleo MAT temporal standard deviations, and paleo MAP temporal standard 441	

deviation, and in South America by paleo MAP mean values and paleo MAP mean values. Paleo 442	

MAT and MAP mean values had similar effects over time, while in North America MAT 443	

temporal standard deviation at the Last Glacial Maximum and Last Interglacial had strongest 444	

effects, and in South America MAP temporal standard deviation at the Younger Dryas and the 17 445	

ka Heinrich event had strongest effects. Thus climate immediately after the Last Glacial 446	

Maximum appears to have left a strong legacy on contemporary functional composition. We also 447	

found that paleoclimate was a useful predictor of contemporary functional composition, 448	

supporting Hypothesis 0. Predictive errors for predicting FMs, FD, and FDres were lower when 449	
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paleoclimate variables were incorporated into regression models than when only including 450	

contemporary climate variables. 451	

The PLS models support several of the hypotheses. Hypothesis 1 (a relationship between 452	

contemporary FMs and contemporary climate mean values, with fast immigration and fast 453	

exclusion) was supported in South America for MAP. Hypothesis 2 (a positive relationship 454	

between contemporary FD and paleoclimate temporal standard deviation, with fast immigration 455	

slow exclusion) was supported for MAP in North America and in South America. Hypothesis 3 456	

(a negative relationship between contemporary FD and paleoclimate temporal standard 457	

deviation, with slow immigration and fast exclusion) was supported for MAT in North America. 458	

Hypothesis 4 (a relationship between contemporary FMs and paleoclimate mean values, with 459	

slow immigration and slow exclusion) was supported for MAP in North and South America. 460	

Thus, all of the scenarios of Figure 1 received some support in either North or South America. 461	

The general implication is that processes of species immigration or exclusion can sometimes be 462	

slow, leading to spatial variation in colonization and extinction debts across these continents. 463	

The results therefore do not map cleanly onto any one class of dynamics dominating at 464	

continental scales. Elucidating the details of these sometimes slow immigration and exclusion 465	

dynamics more precisely would require comparing time series of functional composition to time 466	

series of paleoclimate (Blonder et al., 2017). That approach contrasts with the approach taken in 467	

the present study, which compared time series of paleoclimate to a single time-point estimate of 468	

functional composition, and tested hypotheses most relevant for single linear climate changes. 469	

Time series data for functional composition are highly challenging to obtain from available 470	

paleoproxies. However, such data would enable direct measurement of the rates and lags in 471	

temporal response of functional composition to climate variation. 472	
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Results in North America are consistent with limited dispersal after ice sheet retreat 473	

(Davis &  Shaw, 2001, Morueta-Holme et al., 2013, Svenning et al., 2015), and on thermal 474	

tolerances that constrain species distributions in high-latitude environments (Hawkins et al., 475	

2013, Körner, 2003, Morin &  Lechowicz, 2011, Sakai &  Weiser, 1973).  The paleoclimate 476	

MAT signal seen in these data may be driven by cooling in temperate and boreal portions of the 477	

continent during the last glacial period that have caused regional extinctions and slow 478	

recolonization dynamics (Davis, 1984). These findings extend the spatial and temporal extent of 479	

analyses exploring glacial effects on biodiversity (Ordonez &  Svenning, 2017), providing 480	

additional confidence that this period plays a key role in shaping contemporary biodiversity 481	

patterns.  482	

Results in South America supported the role for paleoprecipitation variation in shaping 483	

contemporary biodiversity patterns in tropical areas (Blach-Overgaard et al., 2013, Göldel et al., 484	

2015, Rakotoarinivo et al., 2013), possibly by survival and recolonization from refugia along 485	

hydrological gradients. Lower precipitation values and higher precipitation temporal variation in 486	

the Late Pleistocene in certain coastal regions of this continent have led to contemporary FD 487	

being lower than expected based on contemporary climate. The strong precipitation effects in 488	

South America caused by Northern hemisphere ice melting during the 17 ka Heinrich event and 489	

the Younger Dryas are consistent with strong cross-hemisphere telecoupling of climate during 490	

these intervals, in which ice sheets and ice melting in the Northern hemisphere caused 491	

atmospheric and ocean circulation changes, leading to changes in Southern hemisphere climate 492	

regimes (Clement &  Peterson, 2008, Jones et al., 2018). This result suggests that other climate 493	

telecoupling may also drive initially unintuitive relationships between climate change and 494	

functional composition change. 495	
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The spatial uncertainties in our results are possibly large. Biases in trait data coverage 496	

could spatially bias our maps of FMs and FD if botanical collecting effort in certain areas were 497	

focused on certain taxonomic or functional groups (Borgy et al., 2017b). Because our maps of 498	

functional composition are broadly consistent with other estimates (Butler et al., 2017, Simova et 499	

al., 2018, van Bodegom et al., 2014), this is unlikely to be a major concern. Nevertheless, trait 500	

data and species occurrence are poor in some regions (e.g. the central Amazon, as well as 501	

southern South America). Thus, this approach is unlikely to be able to parse out sub-regional 502	

biodiversity patterns because of limitations in available data. The spatial resolution of 503	

paleoclimate simulations (>2° per grid cell) also limits parsing of sub-regional spatial patterns 504	

due to within-pixel climate heterogeneity (Stein et al., 2014). Nevertheless, the broad 505	

consistency of our findings across methodological choices gives some confidence in the 506	

generality of our conclusions. 507	

The temporal uncertainties in our results are probably smaller than the spatial 508	

uncertainties. The HadCM3 simulations included multi-millennial drivers of climate change 509	

(orbit, greenhouse gases, ice sheets), as well as the Heinrich event at 17 ka (Hemming, 2004) and 510	

the Younger Dryas event at 13 ka (Alley, 2000). Detailed simulations of similar events in deeper 511	

time were not available (e.g. the Heinrich event at ~45 ka (Hemming, 2004), or Dansgaard-512	

Oschger millennial events that may increase the variability of temperature and precipitation, 513	

especially between 30 and 60 ka), but it is possible that these events also have large and 514	

persistent effects on contemporary functional composition. Regardless, these models provide 515	

some of the best available estimates of past climates, though independent paleo-proxy validation 516	

of predictions remain sparse, especially in South America (Harrison et al., 2014).  517	
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Non-climate factors may also be important drivers of functional composition over 518	

multiple timescales. For example, past human impacts on landscapes via active propagation, land 519	

clearance, or fire regimes (Bond &  Keeley, 2005, Keeley et al., 2011) are widely acknowledged 520	

throughout tropical (Levis et al., 2017, Malhi, 2018, Ross, 2011) and temperate (Abrams &  521	

Nowacki, 2008, Borgy et al., 2017a, Feng et al., 2017, Nowacki &  Abrams, 2008) regions. Soil 522	

and surficial geology may also be important in determining plant species distributions (Ordoñez 523	

et al., 2009). However, the mechanisms linking specific traits to different non-climate abiotic 524	

variables are not yet completely clear. Moreover, all of these variables remain difficult and 525	

controversial to estimate over time and space. While we were unable to include them in our 526	

analysis, there is likely scope to extend our approach as datasets improve. 527	

Climate may also indirectly drive changes in functional composition through changes in 528	

species interactions. Megafauna had large impacts on plant assemblages. These impacts would 529	

have shifted after the extinction of many megafauna in North and South America during the late 530	

Pleistocene (Gill et al., 2009, Johnson, 2009). While humans are acknowledged to be a major 531	

driver of these extinctions (Lorenzen et al., 2011), many also were strongly linked to climate 532	

change during this period on these continents (Bartlett et al., 2016). Indeed, some of the changes 533	

in immigration and exclusion rates could have been driven indirectly by these organisms, e.g. 534	

reduction in seed dispersal services leading to slow immigration (Pires et al., 2018) (but see (van 535	

Zonneveld et al., 2018)), or reduced trampling leading to slow exclusion (Bakker et al., 2016). 536	

The temporal and spatial dynamics of megafaunal distributions remains poorly constrained by 537	

data, but such information may ultimately provide additional insight into climate-linked drivers 538	

of plant functional composition.   539	
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Our findings suggest that when predicting the future response of biodiversity to climate 540	

change, disequilibrium effects due to slow immigration or exclusion may be important. 541	

Statistical models based on the assumption that trait-environment relationships calibrated from 542	

contemporary climate data are at equilibrium (Laughlin et al., 2012, Shipley et al., 2006) could 543	

potentially be improved by incorporating paleoclimate predictors. Alternatively, it could be 544	

useful to include more mechanistically model processes of slow immigration and/or exclusion 545	

dynamics (Blonder et al., 2017, Fukami, 2015, Svenning et al., 2015). Such models, e.g. 546	

demography-constrained species distribution models (Zurell et al., 2016) or dynamic global 547	

vegetation models (van Bodegom et al., 2014), can represent disequilibrium dynamics that may 548	

result in nonlinear relationships between climate, paleoclimate, and functional traits.  549	

The overall conclusion of our study is that functional trait patterns are predicted better by 550	

inclusion of paleoclimate than by contemporary climate alone, as seen via a Pleistocene 551	

temperature legacy in North America and a precipitation legacy in South America. While current 552	

functional composition may be well-adapted to contemporary environments, the high importance 553	

of paleoclimate suggests that the equilibrium assumption of functional ecology may be 554	

inappropriate for plant functional traits over 103-105 yr timescales and continental spatial scales. 555	

The interplay between contemporary climate and paleoclimate drivers of biodiversity patterns 556	

will need to be better understood in order to accurately predict assemblage responses to future 557	

climate change.   558	
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Figure S1. Summary of data coverage. A) Raw counts of occurrences for the BIEN3 database. 857	
B) Number of species for which trait data were available. C) Number of woody species for 858	
which trait data were available. Note log10 scale for all panels. 859	
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Figure S2. Principal component analysis of log-transformed trait values for A) all species and B) 861	
only woody species. 862	
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Figure S3. Paleotemperature predictions from the HadCM3 model for 0 – 120 ka. Values are 864	

reported in scaled coordinates relative to mean and standard deviation across all pixels and all 865	

times. 866	
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Figure S4. Paleoprecipitation predictions from the HadCM3 model for 0 – 120 ka. Values are 868	

reported in scaled coordinates relative to mean and standard deviation across all pixels and all 869	

times. 870	
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Figure S5. Deviation between present-day climate and paleoclimates at different past times for 872	

the HadCM3 model. Y-axis values indicate the mean absolute deviation between contemporary 873	

and paleoclimate pixel values in transformed coordinates (standard deviations relative to 0-120 874	

ka ranges). Blue lines, mean annual precipitation; red lines, mean annual temperature. 875	
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Figure S6. Estimated plant species assemblage characteristics, based on data for only woody 878	

species. Compare caption to Figure 3. 879	
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Figure S7. Predictive ability of PLS models usually increases when including paleoclimate 883	

predictors as well as contemporary climate predictors. Bar height indicates percent decrease in 884	

RMSEP of each model (paleo. + contemp. relative to contemp. only) for different variables (bar 885	

colors – red, FD, green FDres, blue, FM (PC1)). Plots are shown for models for each continent, 886	

and for every combination of trait data (woody vs. all species) and number of PLS components 887	

(1 contemp. PLS axis vs. 1 paleo. + contemp. PLS axis, or 2 contemp. PLS axes vs 2 paleo. + 888	

contemp. PLS axes). 889	
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Figure S8. Contemporary climate and paleoclimate effects on contemporary FMs (PC1) (A,B) 891	

and FDres (C,D) using trait data for all species and climate data from HadCM3. Compare caption 892	

to Figure 5.	893	
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Figure S9. Residuals of PLS regression model for FD. Results are based on trait data for all 896	

species and climate data from HadCM3. Panels indicate the number of PLS components included 897	

in the model (n) and the cross-validated root mean square error of prediction (RMSEP). Over-898	

predicted values are shown in red and under-predicted values are shown in blue. 899	
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Figure S10. Contemporary climate and paleoclimate effects on contemporary FD (A,B), FMs 901	

(PC1) (C,D) and FDres (E,F) using trait data for woody species and climate data from HadCM3. 902	

Compare caption to Figure 5. 903	
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Figure S11. Contemporary climate and paleoclimate effects on contemporary FD (A,B), FMs 906	

(PC1) (C,D) and FDres (E,F) using trait data for all species and climate data from HadCM3. In 907	

this analysis, locations under ice at the Last Glacial Maximum are wholly excluded from the 908	

analysis. Compare caption to Figure 5. 909	
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Table S1. Original data sources for trait data extracted from the TRY database. 912	
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27 May 2018 
 
Dear Dr. Penuelas, 
 
Thank you for your effort handling our manuscript. We appreciate the thoughtful and constructive reviews that 
we received. We have now prepared a revised submission that addresses all of the reviewer points. In 
particular, we have: 
 

- Removed the ECBilt-CLIO model from the paper, per advice from Reviewer #1; 
- Redrawn most figures for enhanced clarity, with larger font sizes and legends; 
- Better explained the biases inherent to the data, and justified our choices to minimize them, throughout 

the text; 
- Extended discussion of megafauna and non-climate factors in driving our results. 

 
A detailed response to the review comments follows below, with our responses in boldface type. We hope that 
our changes will be sufficient to render the manuscript acceptable for publication. Thank you again for your 
consideration. 
 
Sincerely, 
Benjamin Blonder, on behalf of my co-authors  
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Reviewer: 1 
 
Comments to the Author 
This study uses what appear the be the best available plant assemblage and climate reconstruction data to test 
whether palaeoclimate is 1) important in explaining contemporary plant community functional means and 
diversity, and 2) infers from those influences whether processes of plant functional community turnover are fast 
or slow. 
 
Overall the study represents a thorough, comprehensive, and well-reasoned undertaking of an important 
question, which stands to influence a broad variety of global change topics. There are very few points on which 
I think the study could improve, although some recommendations are made below, including around breadth of 
explanations and reference to the literature, as well as points around ease of understanding and presentation 
of figures. A few issues around description of results require definite correction before publication can be 
considered. 
 
 
We thank the reviewer for their interest in our work. 
 
Specific Comments on Manuscript 
 
Introduction –  
 
Paragraphs 1 – 3: Suitably general in their statements, but literature cited is very plant-dominated, with 
reference to few other taxa. Discussion that this study is specific to plant FM & FD comes is not yet introduced. 
Some additional examples from other taxa would help reflect the generality of these statements – in particular I 
raise a point w.r.t. the discussion (see below) regarding late-Quaternary loss of megafauna, which may a 
suitable topic to cite here. Alternatively, the authors may wish to make it more explicit that this study and the 
cited works are principally in relation to plant communities earlier on the in this section. 
 
We regret this lack of clarity. We have rewritten the first few paragraphs of the introduction to clarify 
that our results – and cited literature – are meant to primarily apply to plant assemblages. 
 
Lines 104 – 129: I would like to commend the authors on the quality and clarity of writing in this section. 
 
We appreciate this feedback. 
 
Fig. 1: This explanatory figure was greatly appreciated during reading, however some minor changes to 
improve interpretability would be: 
-        The green ‘tree symbols’ differ in their opacity (and shape). Differing their colour (yellow, blue, red?) 
without differences in their opacities would ease interpretation in my opinion. 
 
We appreciate the suggestion, but prefer to keep the existing scheme. While we agree that high 
contrast could be provided by using differing colors, we believe that changing opacity will reproduce 
better in black & white printouts of the figure. The differing shapes also already provide contrast. We 
are open to changing this upon further editorial advice. 
 
-       The charts illustrating +ve or -ve effects on FM & FD would be more easily understood if the graphs for 
FM and FD were entirely separated with white space between plot panels. Additionally, the ‘+’ and ‘-‘ symbols 
would be better placed outside the plot-axis areas. I would also like to see the font size increased, and the use 
of annotation lines to allow for horizontal text would improve readability. 
 
We have increased the white space between the right panels and the left panels. We have used some of 
this space to move the +/- symbols to a clearer position, and also added a 0 symbol. We have also 
increased the font size, but are not sure what is meant by annotation lines. 
 
-       The legend being above the figure (true also elsewhere) is atypical, but I expect this would be changed 
following publisher’s formatting. 
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We believe that this placement of the legend minimizes unused space in the figure, as some of this 
vertical header is needed to label the rightmost panels of the figure. 
 
Lines 144-161: Again, the clarity of the explanations here should be commended. 
 
Thank you! 
 
Line 170 (& elsewhere): I would recommend the authors try and more clearly distinguish their uses of ‘Ka’ 
depending on whether it is being used to mean ‘thousands of years ago’ or simply ‘thousand years’ – i.e. a time 
before present or just a period of time. Whilst I appreciate there is no uniform consensus on this matter, in this 
study ‘Ka’ seems to be used to mean both, and then elsewhere in the manuscript ‘Kyr’ is also used (see lines 
298 & surrounding). The reader’s understanding would be better served by use of ‘kya’ for ‘thousand years ago’ 
and ‘kyr’ for ‘thousand years’, or similar distinguishing units meaning ‘before present’ and as a period unit of 
time. Additionally, I would highlight that the ‘K’(kilo) shouldn’t be capitalised. 
 
We have standardized on lower case capitalization in all figures and the text. We have also carefully 
checked all uses of ka and kyr and found only one instance where the term was not used correctly. The 
text is now fixed. 
 
Methods –  
 
Line 208: ‘arbitrarily’ raises concerns here as a phrase. Can some context be given for this value of 100? How 
it relates to mean or median species richness across all the cells (and a measure of spread around such a 
figure), would be informative. I trust this choice of < 100 not to be a problem, but some comparative context 
would help in the explanation of this cut-off. 
 
The reviewer is correct that the cut-off was chosen to be small, and to remove unwanted cells with poor 
data coverage or current permanent ice cover. It represents the 7% quantile of richness for the ‘all’ 
species case and the 29% for the ‘woody’ species case. We simply do not feel comfortable estimating 
trait distributions with a very low number of species with trait coverage and prefer to lose spatial 
coverage rather than proceed with biased estimates. 
 
The empirical cumulative distribution function of richness for the ‘all’ species case is shown 
below. The vertical red line indicates the chosen cut-off. The cells that are removed by the 
analysis are shown in green in the rightmost map. (Top row, all species; bottom row, woody 
species only). 
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We have clarified the text to reflect the rationale for this choice. 
 
We do want to note that the woody maps and results are slightly different in our revised 
submission compared to our original submission. In the original, we gap-filled traits for all 
species using data for only the woody subset, then applied these to all species for the functional 
composition estimates. We have decided it is better (and more consistent with how we wrote the 
methods originally) to gap-fill traits for all species, then apply to only species that are classified 
as woody. The net effect is that the richness per cell in the woody species case decreases (as we 
are now only including woody species, rather than all species estimated with woody species’ 
traits) and some of the functional composition metrics change slightly. There is however no 
qualititative change in analysis outcomes, as can be verified by comparing the main text figures in 
the revised and original submission. 
 
General: I was pleased to see how the authors carried out their testing, in particular the use of residual FD in 
addition to their initial FD and FM measurements. The justification for their approaches was also eloquently 
explained. 
 
Thank you! 
 
Fig. 2: Colour bar annotations are difficult to make out – I recommend widening the colour bars, removing or 
reducing the thick black outline/box, and increasing adjacent font sizes (maybe by reducing decimal place 
precision). 
 
We have widened the colorbars and reduced the precision of the labels in the legends.  
 
Climate Model: The mismatched MAP values between the HadCM3 and ECBilt-Clio are a little concerning. Do 
the authors feel comfortable commenting on / assessing which model is likely to be more accurate? If the 
HadCM3 climate reconstruction is likely superior (lines 525-526 suggest so), I would encourage the authors to 
cut all analysis and mention of the ECBilt-Clio model, as it is so temporally restricted in comparison. 
 
We believe the HadCM3 model is strictly superior, but originally included the ECBilt-CLIO model based 
on prior reviewer suggestions. We have now removed it entirely from the analysis. 
 
Line 298 (& 303): Immediate clarity with variation in window sizes depending on reconstruction period, as soon 
as the window concept is introduced, would be appreciated. The earlier description of the climate models make 
the mention of this window size on L298 confusing, only for the clarification to come five lines later on L303. 
 
We clarified this paragraph by re-arranging, indicating the normalization approach and the HadCM3 
resolution issue earlier on. 
 
312-334 – Notably well written & justified methodology. 

0 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(getValues(r[["num_species_with_traits"]]))

x

Fn
(x
)

-6e+06 -4e+06 -2e+06 0e+00 2e+06 4e+06 6e+06

-6
e+
06

-4
e+
06

-2
e+
06

0e
+0
0

2e
+0
6

4e
+0
6

6e
+0
6

0.0

0.2

0.4

0.6

0.8

1.0

Page 84 of 91Global Change Biology



For Review Only

 
Thank you. 
 
352-355 – Citations for all packages would be appropriate (from a cursory check, at least one of the used 
packages has an easily accessed associated citation). 
 
We have added citations. 
 
Results –  
 
Fig. 3: Same comments as Fig. 2 and other maps – larger colour scale bars, reduce outlining box line weight, 
increase font size. 
 
We have improved the font size in the legends. 
 
Fig. 4: More care needs to be taken with this figure and its explanation. “Blue lines indicate models using only 
contemporary <…> orange lines, models using contemporary & palaeo” this account in the legend is directly 
opposite to the actual illustrated legend / annotation on the graph. The correct colours can be inferred from the 
results, but this is a problematic error. Additionally, it is not clear to me why the orange line is so limited 
compared to the blue? The blue line spans the whole length of the X-axis range, whilst the orange stops after 
only 1 x-axis step. An explanation of this, or correction of the plotting error, is necessary. 
 
We regret the confusion. The color scheme was reversed immediately before submission and we 
neglected to update the caption. The reviewer is correct that orange reflects contemporary climate 
variables. 
 
The differences in x-axis range for blue vs. orange is intentional and correct. We have only two 
contemporary climate axes (temp and precip) while we have many more paleoclimate axes (temp & 
precip at 0 ka, 1 ka, 2 ka, etc.). Mathematically, the number of PLS components in the model can be up 
the number of predictor variables (i.e. in the same way that a principal component analysis has as 
many principal components as input variables). Thus the paleo + contemp model can potentially have 
many more PLS components than the contemp model. We clarified this by including a sentence on 
number of variables in the ‘We tested Hypothesis H0’ paragraph.  
 
Additionally, the link to figure panel 3H must be clarified. I think I understand that this is testing prediction of FD, 
and therefore model evaluation is in the same units as residual-FD (which is shown in 3H). However a cursory 
reading could lead to thinking that what is being tested is FDres, mapped in fig 3H, rather than FD, mapped in 
figure 3G. 
 
Overall this crucial figure requires better explanation, framing in terms of Fig 3, and clarification. 
 
We regret this imprecision, which was also caused by a panel reorganization before submission. We 
now write ‘units of functional diversity (compare to Figure 3G)’. 
 
Discussion –  
 
Overall the discussion is well written and there are next-to-no changes to suggest. 
 
My main comment is around lines 533-542. I think the authors understate the importance of this work in its links 
to other climate-interacting processes determining plant assemblages. Some reference is made to megafaunal 
extinctions (Gill et al. 2009), but the phrasing suggests that these processes are separate from the effects of 
the palaeoclimate. I think that megafauna-mediated effects provide an interesting indirect mechanism for 
palaeoclimate to  influence plant assemblages, and therefore FM & FD, and should be (at least briefly) 
discussed here. 
 
For example, Pires et al. (2018), Gill (2014), Gill et al. (2012), and Doughty et al. (2009)  all demonstrate that 
the loss of megafauna will influence plant assemblages into the long-term, with examples specifically from the 
Western Hemisphere and this study’s temporal period. Whilst human activity is undeniably a cause of 
megafaunal loss, Bartlett et al. (2016) showed that climate also had an important role in the loss of Pleistocene 
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megafauna – including in the Western Hemisphere. In particular I think it’s noteworthy that their study also used 
what appears to be the same (or a very similar version) of the HadCM3 reconstruction used by the authors of 
this study. 
 
I think therefore that more can be made of megafaunal extinction or population decline as an additional 
mechanism behind the effect of palaeoclimate on contemporary functional assemblage. It may even provide 
insights into when immigration or exclusion are fast or slow preocesses 
I think the authors understate the relevance of their study in terms of its integration with this topic, and think 
with additional citations (a few of which I have provided here) and at least brief discussion, their findings would 
be even more impactful than they are currently presented to be. 
 
We thank the reviewer for this point, and agree with it. We have added a new paragraph to discuss 
indirect effects of climate on species composition in much more depth. 
 
 
Pires, M. M., Guimarães, P. R., Galetti, M., & Jordano, P. (2018). Pleistocene megafaunal extinctions and the 
functional loss of long-distance seed-dispersal services. Ecography, 41(1), 153-163. 
 
Gill, J. L. (2014). Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist, 201(4), 
1163-1169. 
 
Gill, J. L., Williams, J. W., Jackson, S. T., Donnelly, J. P., & Schellinger, G. C. (2012). Climatic and 
megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from 
Silver Lake, Ohio. Quaternary Science Reviews, 34, 66-80. 
 
Bartlett, L. J., Williams, D. R., Prescott, G. W., Balmford, A., Green, R. E., Eriksson, A., ... & Manica, A. (2016). 
Robustness despite uncertainty: regional climate data reveal the dominant role of humans in explaining global 
extinctions of Late Quaternary megafauna. Ecography, 39(2), 152-161. 
 
Doughty, C. E., Wolf, A., & Malhi, Y. (2013). The legacy of the Pleistocene megafauna extinctions on nutrient 
availability in Amazonia. Nature Geoscience, 6(9), 761. 
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Reviewer: 2 
 
Comments to the Author 
Dear authors, 
see my comments to the editor and my detailed comments below: 
 
In their manuscript “Late Quaternary climate legacies in contemporary plant functional composition” Blonder et 
al. show for plants across the Americas that contemporary functional trait composition of assemblages is linked 
to Paleoclimate indicating that processes reorganizing assemblages have been slower than the changing 
climate. They test four hypotheses on how past climate, past climate variation and contemporary climate affect 
contemporary functional trait means and functional diversity. They find that climate closely after the Last Glacial 
Maximum has left a strong imprint on contemporary functional composition. Results for what mechanisms (slow 
or fast immigration and/or exclusion) are responsible for the observed patterns were different among the two 
continents showing the complexity of the processes behind the observed patterns and calling for future 
analyses based on time series of functional composition. 
The manuscript is very well written, the methods are state of the art and well-described, and the results are 
presented in a nice way and discussed appropriately given the available body of literature. The topic is certainly 
of interest to a broad community of Macroecologists and beyond and the results are novel (given the functional 
perspective) and exciting. I therefore recommend considering the paper for publication in Global Change 
Biology. However, I have some concerns about how potential effects of quality issues with the trait and 
distribution data (which are discussed in the text) on the results are assessed and I suggest to perform rigorous 
sensitivity analyses. I therefore recommend a “major revision”. Unfortunately the online review system only 
allows to chose “minor revision without reassessment” and “reject and invite to resubmit”. Since I don’t want to 
participate in this game of artificially reducing the time from submission to publication, I chose “minor revision”. 
However, I urge the authors to take my comments seriously. 
 
We thank the reviewer for their interest in our work. 
 
Comments to the authors: 
Major points 
My only main doubt about this paper concerns if potential biases in the trait and distribution data might have 
affected the results. The maps of trait means and FD look extremely smooth (Fig. 3), which I would guess is 
due to the quite low availability of actual trait (a lot imputed) and distribution data (convex hulls sometimes 
around few occurrences)? Also, some patterns look a bit artificial (almost straight horizontal and vertical lines) 
in some of the plots (e.g. Fig. 3 G. Functional Diversity and H. FD residual). Can you explain this? I would 
therefore like to see sensitivity analyses on how gap filling for traits, genus means for species without trait 
records and species with few distribution records influence the results. It would also be helpful to show spatial 
coverage patterns for the trait and distribution data. 
 
The reviewer is correct in noticing that the distribution data are coarse, and sometimes include what 
are likely artifacts of the modeling method. Part of this effect comes from the greater quantity of 
occurrence data available in the United States relative to Canada (the upper horizontal line) and the 
lower quantity of data available in southern south America (the southern angled line). Some species 
also may have coastal distributions, which can lead to artifacts in range maps when a convex hull 
method is used. We acknowledge these issues, but feel that they are inevitable ‘costs’ of a SDM 
approach that does not calibrate predictions based on contemporary climate data. For example, a 
MaxEnt type model would produce species distribution (& thus functional diversity) maps without 
many of these artifacts. The downside is some circularity, as a map of FD produced by calibration on 
contemporary climate data will surely show that contemporary climate is a good predictor of FD.  
 
In a previous iteration of this manuscript at a different journal, we included MaxEnt type models for the 
FD calculations. We show a few example figures from this analysis below. While some of these ‘sharp 
edge’ artifacts are now gone, the overall spatial patterns are often quite similar. 
 
It is also important to remember that the overall analysis is constrained by the spatial resolution of the 
paleoclimate data, which is at a nominal 2° resolution, but in practice has lower resolution due to the 
spatial structure of the model. As such, many features in the FD and richness maps are effectively 
‘blurred out’ by the PLS analysis. For this reason, we decided against trying to take more complex 
modeling approaches. 
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Regarding the data coverage issues (both for species with too few occurrence points, and for species with no 
trait data), the reviewer has requested sensitivity analyses, or alternate analyses with removing these data 
points. We have thought long and hard about this issue when preparing this project, and ultimately believe that 
carrying them out would not be helpful. In the absence of complete data, any methods taken to fill in data will 
potentially introduce biases – and something as simple as removing data may in fact have a much larger bias 
than the gap-filling and space-filling methods we have elected to use. In this dataset, 24042 of the 74,000 
species are represented by 10 or fewer observations, and most of these species are tropical – thus, losing 
these species would represent a very large bias in the dataset. In another in-progress study led by co-author 
Enquist, it is shown that most of these database-rare species are actually rare and have restricted ranges 
according to interviews with expert botanists. 

  
Above, histogram of occurrence records per species; below, heatmap of occurrences over space (note 
the log-scale z axis). Additionally, trait data for 59,423 species out of 74,000 was not available. The trait 
coverage is higher in tropical regions. 
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Omitting cells with low trait coverage would also introduce a large spatial bias. Our resampling 
approach is, we believe, the best way to deal with the impacts of low trait coverage on functional 
diversity. 
 
We therefore feel that the approach we have taken is the least bad of all the bad options, given the 
currently available data resources for plant macroecology. Removing rare species, and removing 
species without trait data would lead to highly sparse and biased estimates. Our trait maps and 
richness maps are approximately congruent with other recent mapping efforts (e.g. Jetz’s late-2000s 
work, or Butler et al. in PNAS this year, which the lead author is a co-author on), but are more 
appropriate for this application because of the lack of circularity. 
 
We hope that this extended response is convincing to the reviewer. We have clarified the methods text 
to reflect the bulk of these points. We have included the trait coverage and occurrence point coverage 
figures in the resubmission.  
 
 
I could imagine that due to the smooth spatial patterns in the response variables (Trait means and FD metrics) 
the spatially smooth paleo climate data performs better than the high resolution and spatially more 
heterogeneous contemporary climate data. Maybe the different resolutions and methods how contemporary 
climate and paleoclimate are derived are partly responsible for the findings (btw. Chelsa now also offers LGM 
climate at high resolution). It is striking that contemporary and Paleoclimate were not strongly correlated (lines 
289-290). Maybe the coarser resolution of the Paleoclimate layer fits better to the coarse spatial scale of the 
distribution data? 
 
We agree that methodological differences in how the paleoclimate and contemporary climate datasets 
are created could drive some of the findings. We appreciate the suggestion for the higher resolution 
CHELSA dataset, but for this application we would need that high resolution at every time point back to 
120 ka, which is to our understanding not yet (or perhaps not ever) feasible. 
 
While the reviewer argues that contemporary and paleoclimate axes are not strongly correlated, we 
believe that our supplementary figure shows otherwise, also the definition of ‘strongly’ is certainly 
debatable. Rather than report the Pearson correlation between these maps, which could be high even if 
the actual values are down or up biased, we report the mean absolute deviation between them. These 
values are less than 0.5 standard deviations throughout the Holocene, which we think reflects strong 
correlation, and then diverge during the late Pleistocene, as expected. We have clarified the main text 
to better explain when and when not there is evidence for matching between these variables. 
 
We also note that based on feedback from the first reviewer, we now no longer include the ECBilt-CLIO 
analyses in the paper. 
 
Minor points: 
Line 63: delete one of the two “to”s 
 
Fixed. 

A) Log10 # occurrence records

0

1

2

3

4

5

B) Trait coverage (all species)

0.0

0.2

0.4

0.6

0.8

1.0

C) Trait coverage (woody species)

0.0

0.2

0.4

0.6

0.8

1.0

Page 89 of 91 Global Change Biology



For Review Only

 
Line 79: rather “little” than “less”? 
 
Changed. 
 
Line 81: „paleoclimate has structured contemporary“ sounds too obvious to me. The question rather is, how 
much of it is still visible, right? 
 
We prefer to keep this phrase as-is – a great deal of species distribution modeling assumes that there 
is no influence of paleoclimate on species ranges – so while we agree that it is obvious paleoclimate 
should matter, we do not think everyone would agree with this statement. 
 
Line 82: Also secondary effects due to climate change like changes in sea levels (See literature examples for 
islands) 
 
We agree this is reasonable, but our downstream analyses do not have the ability to account for 
variation in sea level. We now write ‘climate has directly & indirectly’ as a compromise.  
 
Lines 83-85: Is this something tackled here? 
 
We believe it is – all of our conceptual models focus on fast vs slow (i.e. lagged) dynamics of 
organisms. To clarify we now write, “It has been unclear how these paleoclimate effects on 
species composition translate to differences in functional composition, because even  species 
assemblages in disequilibrium with contemporary climate may have equilibrium functional 
relationships with contemporary climate” 
 
Lines 101: Do you want to state that the influence is still visible? 
 
To clarify, we write ‘contemporary functional composition’ instead of ‘functional composition’. 
 
Line 145 “and also”? 
 
We clarified conditional phrasing throughout this paragraph. 
 
Line 170: “(120 Ka [thousands of years ago])” Not clear to me 
 
Ka is meant to define ‘thousand years ago’. We removed this definition as we think it is well-
understood by most readers. 
 
Line 185: What does “collinear observations” mean? 
 
Collinear is a standard mathematical term referring to points that fall on the same line 
(https://en.wikipedia.org/wiki/Collinearity). We clarify by writing ‘observations’ now as ‘observation 
points’. 
 
Line 235-238: Species richness  
 
We do not understand what change we should make to the text here, as species richness is already 
used throughout the sentence. We did find one ‘richness’ and changed it to ‘species richness’ on the 
following line. 
 
Line 307 “type type” -> “type” 
 
Fixed. 
 
Line 454: “appears” 
 
Fixed. 
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Line 455: Why “additionally”? Aren’t the previous sentences saying the same? 
 
We removed the ‘additionally’. 
 
Line 465: “, ,” 
 
Fixed. 
 
 
Figure S3 I think you could remove white space and make the maps larger if you only show one legend for all 
of them and change the location of the titles. 
 
We prefer to keep the legend on each panel to enable easy comparison of colors. However we have 
moved the titles to reduce white space. 
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Reviewer: 3 
 
Comments to the Author 
It was a real pleasure to read this manuscript. The scope of the analysis is very impressive, the analytical 
methods appear well chosen and meticulously applied. Moreover the detection of lag effects on contemporary 
trait composition is of great interest because it means that the pool exposed to future global change and that 
deliver trait-associated ecosystem functions may exhibit on-going slow dynamics as it continues to equilibrate 
to current climate space. 
 
We than the reviewer for their interest. 
 
My only question centres on their assumption that the traits selected are strong carriers of the climate signal. 
For example Ordoñez et al (2009) report weak relationships between MAT, MAP and SLA, leaf N (mass and 
area basis in their Fig 2) but inferred clear interactions and main effects of soil nutrients. Also Wright et al 
(2005) reported weak correlations but did conclude that they were strong enough to show a biogeographic 
influence of climate.  
Thus if the traits selected are also strongly related to other abiotic conditions then it seems possible that the 
strong correlation between temporal paleo-climate variation and trait variation could be slightly artefactual. I 
admit that a mechanism for this is not obvious. For example it would require that the 100x100km cells that had 
high temporal climate variability also had high contemporary abiotic variation giving rise to higher functional 
diversity. Even if this were not the case then separate test of individual traits ought to show that traits more 
strongly related to climate showed a stronger paleo-climate signal and vice versa. I am not suggesting the 
authors revise their analysis but a greater level of comment would be useful. The authors openly allude to 
some of these difficulties at bottom of page 29 but I think a deeper consideration is needed. 
 
We appreciate this point, which was also raised (in the context of megafauna drivers of traits) by 
another reviewer. In response we have extensively revised and extended the page the reviewer 
mentions. We now highlight the importance of soil as a possible driver of traits, and also the indirect 
role of megafauna. However we note that in both cases, we do not yet have the time-series data 
available to determine the role of these variables relative to climate. We are also optimistic that such 
analyses will become possible in the near future. 
 
Refs: 
Ordoñez, JC et al (2009) A global study of relationships between leaf traits, climate and soil measures of 
nutrient fertility. Global.Ecol.Biogeogr. 18, 137-149. 
Wright, IJ et al (2005) Modulation of leaf economic traits and trait relationships by climate. 
Global.Ecol.Biogeogr. 14, 411-421. 
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