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Key points

� This study identifies phosphorylated extracellular signal-regulated kinase (ERK) to be
immediately diminished followed by a rapid if transient increase for up to 4 h following
hypoxic–ischaemic insult (HI) in the neonatal mouse.

� Phosphorylated ERK up-regulation was prevented with systemic injection of the
mitogen-activated protein kinase kinase (MEK) inhibitor SL327. Treatment with SL327 both
pre- and post-HI gave a strong reduction in the number of dying cells and microgliosis.

� By utilising transgenic mouse mutations, we observe that neuronal ERK2 significantly
contributes to tissue damage, while ERK1 and astrocytic ERK2 are neuroprotective.

� Compared to global inactivation, selective cell-specific interference with ERK activity could
result in stronger neuroprotection.

Abstract Hypoxia–ischaemia (HI) is a major cause of neonatal brain injury resulting in cerebral
palsy, epilepsy, cognitive impairment and other neurological disabilities. The role of extracellular
signal-regulated kinase (ERK) isoforms and their mitogen-activated protein kinase kinase
(MEK)-dependent phosphorylation in HI has previously been explored but remains unresolved
at cellular level. This is pertinent given the growing awareness of the role of non-neuronal cells
in neuroprotection. Using a modified Rice–Vannucci model of HI in the neonatal mouse we
observed time- and cell-dependent ERK phosphorylation (pERK), with strongly up-regulated
pERK immunoreactivity first in periventricular white matter axons within 15–45 min of HI,
followed by forebrain astrocytes and neurons (1–4 h post-HI), and return to baseline by
16 h. We explored the effects of pharmacological ERK blockade through the MEK inhibitor
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SL327 on neonatal HI-brain damage following HI alone (30 or 60 min) or lipopolysaccharide
(LPS)-sensitised HI insult (30 min). Global inhibition of ERK phosphorylation with systemically
applied SL327 abolished forebrain pERK immunoreactivity, and significantly reduced cell death
and associated microglial activation at 48 h post-HI. We then explored the effects of cell-specific
ERK2 deletion alone or in combination with global ERK1 knockout under the same conditions
of HI insult. Neuronal ERK2 deletion strongly decreased infarct size, neuronal cell death and
microglial activation in grey matter following both HI alone or LPS-sensitised HI. ERK1 deletion
attenuated the protective effect of neuronal ERK2 deletion. Removal of astroglial ERK2 produced
a reverse response, with a 3- to 4-fold increase in microglial activation and cell death. Our data
suggest a cell-specific and time-dependent role of ERK in neonatal HI, with a predominant,
neurotoxic effect of neuronal ERK2, which is counteracted by neuroprotection by ERK1 and
astrocytic ERK2. Overall, global pharmacological inhibition of ERK phosphorylation is strongly
neuroprotective.

(Resubmitted 4 May 2018; accepted after revision 29 May 2018; first published online 6 June 2018)
Corresponding author L. Thei: UCL Institute for Women’s Health, Maternal and Fetal Medicine, Perinatal Brain Repair
Group, London WC1E 6HX, UK. Email: l.j.thei@reading.ac.uk

Introduction

Cerebral hypoxia–ischaemia (HI) is a leading cause of
neurological deficits in neonates. It affects 1–5 per 1000 live
births worldwide (Vannucci, 1990; Vannucci & Hagberg,
2004). The pattern of damage depends on the severity,
gestational age, as well as antenatal/perinatal factors such
as maternal/fetal infection (Vincer et al. 2006; Higgins &
Shankaran, 2009).

The immature brain is particularly vulnerable to HI
due to insufficient anti-oxidant and scavenging systems
preventing the elimination of endogenous free radicals
(Ferriero et al. 1996; Volpe, 2001; Vannucci & Hagberg,
2004). The subcortical white matter of the immature
brain is unmyelinated and predominantly populated
with oligodendrocyte (ODC) precursors susceptible to
an imbalance between pro- and anti-inflammatory cyto-
kines (Skoff et al. 2001; Dewar et al. 2003; Bain et al.
2010). Alteration in that cytokine balance shifts the
differentiation of ODC precursors towards astrocytes
instead of oligodendrocytes, thus affecting subsequent
myelination (Bain et al. 2010). Additionally, inflammatory
changes in the white matter also activate resident
microglia causing release of neurotoxic substances
including nitric oxide (NO), reactive oxygen species and
pro-inflammatory cytokines (Dommergues et al. 2003;
Chock & Giffard, 2005; Polazzi & Monti, 2010; Kendall
et al. 2011; Hagberg et al. 2012).

During neonatal HI multiple chemical stimuli,
including growth factors, cytokines, glutamate and
free radicals, interact with corresponding target cell
membrane receptors (Irving & Bamford, 2002). Activation
of their receptor-linked tyrosine kinases stimulates
signal transduction via the Ras/Raf/MEK1&2 pathway
causing up-regulation of phosphorylated extracellular

signal-regulated kinase 1 and 2 (pERK1&2), and
affecting a range of transcription factors, protein
kinases, cytoskeletal elements and regulators of apoptosis
(Lu & Xu, 2006).

Previous studies of neonatal HI in rodents revealed
phosphorylated ERK (pERK) positive neurons with signs
of DNA damage at the core of infarct and the border zones
to undamaged tissue (Wang et al. 2004). Pharmacological
inhibitors of MEK/ERK (PD98059, U0126) reduced
NO-induced neuronal cell death following glutathione
depletion in vitro (Canals et al. 2003; de Bernardo et al.
2004). In an adult mouse model of middle cerebral
artery occlusion (MCAO), PD98059 administered prior to
insult reduced infarct volume by 40–50%, accompanied
by reduction in neurobehavioural defects (Alessandrini
et al. 1999). A similar effect was observed in an adult
gerbil model of cerebral ischaemia using the more selective
MEK1/2 inhibitor UO126, with significant reduction in
cerebral infarct and protection against hippocampal CA1
pyramidal neuron loss (Namura et al. 2001). On the other
hand, administration of neuroprotective brain-derived
neurotrophic factor (BDNF) to postnatal day 7 (P7)
HI mice resulted in a rapid increase in pERK and in
phosphatidylinositol 3-kinase (PI3K)/AKT. When ERK
but not PI3K/AKT was inhibited, the neuroprotective
effect of BDNF was abolished (Han & Holtzman, 2000).

Thus, despite the association of ERK activation
to regions of neurodegeneration, the precise role of
ERK1/2 in neonatal HI brain damage remains unclear.
We hypothesise that ERK1 and ERK2 have cell- and
time-dependent effects following neonatal HI. The aim
of our study was to explore the outcomes of cell-specific
ERK2 removal and global ERK1 deletion, as well as ERK1/2
inactivation in neonatal HI brain damage using a modified
P7 Rice–Vannucci mouse model of HI insult.

C© 2018 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Methods

Animals

All animal experiments and techniques were approved by
the Ethics Committee of the University College London
and were carried out by licensed personnel in accordance
with the UK Home Office Guidelines (Animals (Scientific
Procedures) Act, 1986). C57/Bl6 (Charles River, UK),
ERK1KO, ERK2�Syn, ERK2�GFAP and ERK1KOERK2�Syn

mice were bred in-house with a 12 h light/dark cycle
and had free access to water and food. The ARRIVE
guidelines (Kilkenny et al. 2010) were followed in all
animal experiments. Animals were killed at different time
points (see Fig. 1) post-HI by intraperitoneal injection
of sodium pentobarbital (2.5 μg/g) and confirmed by
exsanguination.

Global ERK1 deletion was described by Nekrasova et al.
(2005). Heterozygous ERK1 mice were bred together to
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Figure 1. Schedule of experimental procedures
A, WT (C57/Bl6) mice underwent 30 min
hypoxic–ischaemic (HI) insult and were then killed at
15 min post-hypoxia for pERK immunoreactivity evaluation.
B, pERK immunoreactivity was assessed at multiple time
points up to 48 h post-insult to P7 WT mice. C, a dose
response of SL327, controlled to vehicle alone, was
administered 20 min prior to 30 min HI and pERK
immunoreactivity was assessed at 15 min post-insult. D,
WT mice were subject to either 30 min or 60 min HI, with
133 μg/g SL327 or EtOH (vehicle) administered either
20 min prior to or 60 min post-insult. Brain histology was
assessed at 48 h. E, inhibition of neuronal pERK
immunoreactivity was confirmed at 15 min post-HI in
synapsin-cre driven ERK tg mutant mice compared to
littermate WT controls. F, brain histology was assessed at
48 h after 30 min HI in synapsin-cre driven ERK tg mutant
mice and littermate WT controls. G, brain histology was
assessed at 48 h after 30 min HI in GFAP-cre driven ERK tg
mutant mice and littermate WT controls. H, saline or LPS
was injected at 12 h prior to 30 min HI in both synapsin-cre
and GFAP-cre driven ERK tg mutant mice and littermate WT
controls. Brain histology was assessed at 48 h.

C© 2018 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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produce both homozygous null mutants (ERK1KO) and
wild-type controls (ERK1WT). To ablate ERK2 expression
in the CNS, and to overcome embryonic lethality of
global ERK2 deletion, we utilised a cell-specific approach
with Cre recombinase driven transgenic mutation of
LoxP site flanked ERK2 under the control of either the
synapsin (ERK2�Syn) or glial fibrillary acidic protein
(GFAP) (ERK2�GFAP) promoters in order to remove
ERK2 expression from neurons or astrocytes, respectively.
Syn-Cre mice were provided by Dr Axel Behrens from the
Mammalian Genetics Laboratory, Cancer Research UK,
and animals expressing Cre recombinase under the control
of GFAP promoter (GFAP-Cre) were from Jackson Labs
(USA, http://jaxmice.jax.org/strain/004600.html). Mice
were bred heterozygous with C57/Bl6 to produce both
homozygous null mutants (ERK2�Syn or ERK2�GFAP) and
wild-type littermate controls (ERK2WT). Deletion of both
ERK1 and 2 in neurons or astrocytes was achieved by
breeding heterozygous ERK1 mutants with ERK2�Syn or
ERK2�GFAP, respectively.

DNA extraction and genotyping

DNA extraction was performed with the ‘Wizard’
Genomic DNA purification system according to the
manufacturer’s instructions (Promega, Southampton,
UK), using mouse tail tips taken before the
perfusion. Specific oligonucleotide primers (Invitrogen,
Loughborough, UK) were used for genotyping against
erk1, erk2, synapsin-cre, GFAP-cre.

Hypoxia–ischaemia surgery

Surgeries were performed on C57/Bl6 and transgenic ERK
mutant mice at P7, the age equivalent of late preterm
human brain maturation. Animals were anaesthetised
with isoflurane (5% induction, 1.5% maintenance), the
left common carotid artery permanently occluded and the
wound closed with tissue glue. The mice were returned
to the dam for 2 h of recovery before being placed in a
hypoxia chamber and exposed to continuous humidified
8% oxygen–92% nitrogen at 36°C for 30 or 60 min. The
mice were left to recover at 36°C and returned to the dam
for 2 h until being killed at 48 h post-HI for analysis of
neuropathological markers.

We have previously shown that lipopolysaccharide
(LPS) bacterial endotoxin administered 12 h before
the start of HI surgery confers a sensitising effect, as
seen through a significant increase in neuropathological
markers, when compared to saline-injected controls
(Rocha-Ferreira et al. 2015). This is in concordance with
other studies that show this sensitisation is mediated by
the binding of LPS to toll-like receptor 4 (TLR4) and
recruitment of MyD88 adaptor protein (Wang et al. 2009).

In the current study, P6 mouse pups were injected intra-
peritoneally (I.P.) with a single dose of LPS (serotype
055:B5, Fluka, Loughborough, UK; 0.6 μg/g), or saline
as control (10 μl/g body weight (BW)). Twelve hours
following injection, animals were exposed to carotid
occlusion and 30 min hypoxia as above.

All animals were operated blindly with genotypes
established after killing.

See Fig. 1 for all experimental outlines.

Pharmacological manipulation

SL327 toxicity. SL327 (Tocris, Bristol, UK), a MEK1/2
inhibitor (Atkins et al. 1998) proved to be toxic when
dissolved in DMSO (data not shown), and therefore, was
dissolved in 100% EtOH instead. P7 C57/Bl6 mice were
treated with a single I.P. injection of SL327 (Dommergues
et al. 2003) at 0, 15, 30, 65 or 133 μg/g BW (n = 5 per
group) 20 min prior to the start of 30 min hypoxia. Fifteen
minutes after HI, brains were assessed for intensity of
pERK staining.

Time window for pharmacological ERK inhibition. In
order to investigate the effect of MEK1/2 inhibition on
the brain regions of interest – isocortex, pyriform cortex,
hippocampus, striatum, thalamus and external capsule
– P7 C57/Bl6 animals were injected with a single I.P.
dose of SL327 (133 μg/g BW) either 20 min preceding
or 1 h following both 30 and 60 min hypoxia (n = 10
per group). Control animals received the corresponding
volume of 100% EtOH alone (10 μl/g BW). Following
48 h survival, animals were killed and brains collected for
histopathological analysis of tissue infarction (Nissl), cell
fragmentation (TUNEL), microglial activation (CD11b)
and astrogliosis (GFAP).

Tissue sample preparation

For immunohistochemistry (IHC) analysis all animals
were perfused with 4% paraformaldehyde (PFA)/PBS.
The brains were excised, post-fixed in 4% PFA/PBS for
1 h at 4°C, followed by cryoprotection for 24 h in 30%
sucrose/PBS at 4°C and snap frozen on dry ice. Brains
were sectioned on a cryostat into 40 μm sequential coronal
sections starting from the point of fusion of the corpus
callosum, in a total of 50 serial sections terminating in the
hippocampus.

For electron microscopy, tissue was cut and stained
as previously described (Hristova et al. 2010). In brief:
glutaraldehyde-fixed forebrain vibrotome sections of
100 μm were rinsed overnight in 2% sodium acetate
solution and then pre-treated for 6 h in 10% thioglycolic
acid. Sections were developed for 25–30 min under visual
control in a physical developer suspension containing

C© 2018 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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0.1% AgNO3, 0.1% NH4NO3, 0.5% H4SiW12O40

(silicotungstic acid) and 0.9% paraformaldehyde in
distilled water, to which concentrated, aqueous Na2CO3

solution was added under vigorous stirring, to a
final concentration of 2.5% Na2CO3. Following 2 min
fixation and wash with 1% acetic acid, silver deposits
were replaced with gold by immersing sections in
0.02% AuCl3 for 10 min. Sections were washed again
for 10 min in two changes of 1% acetic acid, and
10 min in two changes of 2% sodium acetate, before
transfer back into glutaraldehyde fixative until further
use.

Immunohistochemistry: frozen

Tissue IHC staining was performed as previously
described (Hristova et al. 2010). In brief, sections were
fixed in 4% formaldehyde/0.1 M phosphate buffer for
5 min before acetone treatment for antigen retrieval
(50, 100, 50%: 2 min each). Sections were incubated
with CD11b (αMβ2) (1:5000, Serotec, Kidlington, UK),
glial fibrillary acidic protein (GFAP, 1:6000, Dako,
Santa Clara, CA, US), pERK (1:100, Cell Signalling
Systems, Hitchen, UK) and pC-Jun (1:200, Santa Cruz
Biotechnology, Heidleberg, UK) primary antibodies
overnight at 4°C. Sections were then incubated with
biotinylated secondary antibody (1:100 anti-rabbit or
anti-rat IgG, Vector Laboratories, Inc., Burlingame, CA,
USA) and visualised with avidin-biotinylated peroxidase
complex (ABC, Vector Laboratories, Peterborough, UK)
and diaminobenzidine/H2O2 stain. Lastly, sections were
air-dried, immersed in xylene and covered using DEPEX
(Fluka).

Immunohistochemistry: free floating

This technique was utilised to stain for phosphorylated
ERK due to the polyclonal primary antibody’s sensitivity
to dehydration. Sections were washed in PBS and end-
ogenous peroxidases were blocked using 3% H2O2

in dH2O for 10 min at room temperature (RT).
Antigen retrieval was achieved using 0.3% Triton
(Triton X-100, Bio-Rad, Kidlington, UK) in a 5%
goat serum/PBS solution for 30 min. Sections were
incubated in wells containing polyclonal pERK anti-
body (1:100 in 5% goat serum/PBS) overnight at 4°C.
Samples were washed in PBS and incubated for 1 h with
secondary goat-anti-rabbit antibody (1:6000 dilution),
before ABC incubation for 1 h at RT. The stain was
visualised with 3,3’-diaminobenzidine (DAB)/H2O2 and
the reaction was stopped in dH2O and covered as described
above.

Electron microscopy silver–gold intensification

Brain sections were osmicated in reduced osmium
tetroxide, dehydrated in serial dilutions of ethanol and
embedded in Epon 208 (Taab Laboratories, Aldermaston,
UK). Semi-thin sections were counterstained with
toluidine blue for light microscopy, and ultrathin, 80 nm
sections were counterstained with uranyl acetate and lead
citrate for examination in a JEOL 1010 transmission
electron microscope.

Histological analysis

Forty-eight hours after HI insult, a time point where
secondary energy failure has already initiated (Inder &
Volpe, 2000), and with the highest level of widespread
neuronal caspase-3 expression within the acute period of
injury (Johnston et al. 2011), the differences in micro-
glial activation, astrocyte recruitment, infarct size and cell
death were compared between littermate control animals
and the corresponding SL327 treated, or mutant animals.
All tissue sections were analysed blindly.

CD11b score. Activated microglia scores were assigned as
previously described (Kendall et al. 2006; Hristova et al.
2016). In brief, a grade between 0 and 4 was assigned
to each section for αMβ2 (0 = no activation, 1 = foci
of non-ramified active microglia, 2 = <50% coverage of
active microglia, 3=widespread active and predominantly
phagocytic microglia, 4 = near full coverage of active and
predominantly phagocytic microglia in addition to tissue
infarct).

TUNEL+ cell death. Brain sections were stained at 400 μm
intervals for DNA fragmentation using a TUNEL kit
(Roche, Welwyn Garden City, UK) according to the
manufacturer’s instructions. Cell death was quantified
at ×20 magnification by counting the number of
TUNEL positive nuclei per brain region (3 microscope
fields/region) of experimental and control animals.

Infarct volume measurement. Infarct volume was
measured in 10 coronal sections at 400 μm intervals,
stained with cresyl violet (Nissl stain). Optimas 6.2 image
analysis software (Meyer Instruments Inc.) was utilised
to calculate the intact brain tissue of each forebrain
region by converting the measured injured and uninjured
areas into square millimetres and then converting to a
volume by multiplying by 400 μm. The sum of these
volumes was converted into a percentage of surviving brain
tissue by: injured/uninjured volume × 100 (Kendall et al.
2006).

C© 2018 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Optical luminosity. A Sony AVT-Horn camera was used
to capture three 8-bit RBG images of each of our regions
of interest under a ×20 magnification with three eye
fields/region. Images were then imported into the Optimas
v6.5 Software. The mean and standard deviation (SD) of
luminosity was obtained through the regions (Carsten
Möller et al. 1996). For each image, the SD was sub-
tracted from the mean, and the resulting value further
subtracted from the mean optical luminosity of the empty
glass slide. This provides a specific optical luminosity value
(OLV).

Statistics

When only two groups, experimental and control, were
present, statistical analysis for tissue loss, cell death,
CD11b and GFAP immunoreactivity in HI forebrain
regions was performed by either a two-tailed, unpaired
Student’s t test or two-way ANOVA, post hoc Sidak. When
more than two groups were present, statistical analysis
was performed using one-way ANOVA followed by post
hoc Tukey. The confidence interval for all assessments
was set at 95%. For a global hemispheric response,
statistical significance was assessed through one-way
ANOVA, post hoc Tukey. Animals of different genotypes
or treatment were compared in their response to injury
using the combined regions ipsilateral to carotid artery
occlusion.

Results

Rapid ERK phosphorylation occurs across whole brain
in the neonatal mouse brain following HI

ERK activation in response to HI was visualised using
immunohistochemistry for pERK immunoreactivity
(pERK-IR) in C57/Bl6 mouse pups at postnatal day 7 (P7).
These animals underwent unilateral left carotid artery
occlusion (CROC) and were exposed to 8% O2 for 30 min.
The distribution of normal pERK-IR in the forebrain of a
sham-operated animal is shown in Fig. 2A. OLV for pERK
immunoreactivity in animals with CROC (ischaemic
insult) only (Fig. 2B) was unchanged compared to sham
operated littermates and were referred to as controls (or
CTRL in Fig. 2D). Intensity of pERK-IR was comparable
in both ipsilateral (occluded, hypoxic–ischaemic insult)
and contralateral (non-occluded, ischaemia alone)
hemispheres.

Compared to controls, the animals exposed to both
carotid occlusion and 30 min hypoxia exhibited a rapid
increase in white matter pERK-IR, reaching a maximum at
15 min (Fig. 2C). Up to a 2-fold increase in pERK-IR was
observed in cortical and subcortical white matter tracts
(Fig. 2D and E).

White matter pERK expression is isolated to clusters
within parallel axonal tracts

To determine the precise ultrastructural pERK localisation
within the subcortical white matter, pERK immuno-
reactivity augmented with silver–gold intensification
(Hristova et al. 2010) revealed pERK clusters 200–500 nm
in size, occurring in 1–2 μm-long segments within central
axons (Fig. 2F). The segments of pERK expression within
axons run parallel with neighbouring axonal segments
within the white matter, with pERK clusters sometimes
also in two adjacent axons (Fig. 2H, black arrows). This
fibre tract labelling disappeared within 60 min post-HI,
but was contrasted by a cell body pERK-IR+ labelling in
grey matter forebrain areas with a more delayed response
(Fig. 3).

Grey matter pERK is bilaterally increased following
HI, with a common temporal pattern and peak
expression at 1 h post-insult

With the exception of thalamus, there is a strong increase
in pERK-IR with a peak at 1 h following recovery from
HI, declining back to approximately baseline levels at 16 h
(Fig. 3A–G). A degree of regional specificity was observed
with reference to pERK+ cells. While the striatum,
pyriform cortex, hippocampus, dorsal, mid-dorsal and
mid-ventral cortex all displayed a robust increase in
pERK+ cells; the thalamus did not (Fig. 3D). Of inter-
est, the brain hemisphere contralateral to CROC saw a
mildly, but not significantly, higher number of pERK+
cells compared to the ipsilateral. Sub-regional exceptions
were observed in pyriform cortex and mid-ventral cortex
where ipsilateral expression at 1 h was significantly higher
(P = 0.00008 and P = 0.0001, respectively). Table 1
illustrates the peak number of pERK+ cells in grey matter
regions of both hemispheres plus time of peak occurrence.

MEK inhibitor SL327 is efficient in blocking ERK
phosphorylation

Previous studies of ERK inhibition in rat neonatal HI
injury introduced the MEK-selective inhibitor UO126
intracerebroventricularly (I.C.V.) in two doses prior to
CROC and 2.5 h hypoxia (Han & Holtzman, 2000). Due to
the potentially traumatic nature of I.C.V. administration,
we wished to examine the efficacy of our inhibitor, SL327,
an analogue of UO126, when introduced via the intra-
peritoneal route. To determine the optimal dose and sub-
sequent dose–response curve for pERK inhibition, five
groups of animals (n = 5/group) were pre-exposed to
a step-wise, 2-fold dilution of 133 μg/g (i.e. 15, 30, 65,
133 μg/g) or to 100% EtOH (vehicle) alone (dose 0).
As shown in Fig. 4A–C, increasing doses of SL327 led

C© 2018 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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to reduced pERK-IR across six forebrain regions, with
reliable suppression of immunoreactivity at 133 μg/g.

Pre-treatment with SL327 significantly reduces
damage after HI insult

To determine the effect of pERK inhibition on neonatal HI
brain damage, P7 mouse pups (C57/Bl6) were pre-exposed
to SL327 (133 μg/g BW, n = 10) or EtOH (n = 8),
20 min prior to insult. Here, they were subject to a
30 min HI insult. Results were assessed 48 h post-HI.
Histopathological assessment, shown in Fig. 5, revealed
that 20 min pre-treatment with SL327 significantly
reduced levels of microglial activation in all brain regions
(apart from thalamus and cortex, Fig. 5A), neuronal loss,
via the presence of Nissl bodies in the cortex (P = 0.001,
Fig. 5E), and overall TUNEL+ cell death in striatum and
hippocampus (Fig. 5G, P = 0.06, P = 0.0001). The levels
of reactive astrogliosis assessed through OLV of GFAP-IR
remained unaffected (Fig. 5B).

Post-treatment with SL327 reduces microglial
activation but not HI damage

To examine the time dependent window for
pharmacological pERK inhibition, a second set of
P7 animals was injected 60 min post-30 min HI with
133 μg/g BW SL327 or EtOH alone (n = 6 animals per
group). Post-treatment with SL327 caused a significant
reduction of CD11b immunoreactivity in external capsule
white matter (P = 0.01) and hippocampus (P = 0.0001,
Fig. 5B). Markers for either activated astrocytes, TUNEL+
cell death or neuronal loss remained unaffected (Fig. 5D,
F and H).

A significant number of neonatal mice survived
severe HI brain injury with SL327 treatment 1 h after
insult

Previous work by our group and others have shown that a
severe form of insult, exposure to 60 min hypoxia alone,
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Figure 2. Histological and electron microscopy assesment of pERK expression in P7 mouse forebrain
following 30 min HI
A and B, distribution of normal pERK immunoreactivity in the forebrain of sham animal (A) and an animal
with unilateral carotid occlusion (B). C and G, increased pERK immunoreactivity in untreated animals at 15 min
following 30 min HI (C). Response was ablated with the application of MEK inhibitor SL327 (133 μg/g BW) (G). D
and E, schematic summary of white matter pERK-IR in naive (D) and after a 30 min HI insult (E). Light microscopy
overview at the intersection between hippocampus (top), thalamus (left) and cerebral cortex (right), coronal section
at mid-parietal level (D and E). Note the faint pERK-IR in control animal with carotid occlusion only (D, Ctrl), and
the strong increase of expression in fibre tracts in external capsule (ec), fornix (fx), cortico-thalamic fibres (ct), and
descending tracts of the internal capsule (ic) at 1 h recovery following HI (E). F and H, electron microscopy of the
internal capsule, at 15 min recovery following HI. Early pERK reactivity is located to the axons only. Arrows point
to pERK positive clusters within adjacent axons. Scale bar (A–C, G): 1.5 mm
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Figure 3. Number of phosphorylated ERK-positive cells following HI insult per ×20 microscopy field
(mean + SEM, n = 4 animals per time point) in forebrain regions
Striatum (A), pyriform (B), hippocampus (C), thalamus (D), dorsal cerebral cortex (E), mid-dorsal cortex (F) and
mid-ventral cerebral cortex (G). HI insult induces drastic changes in ERK phosphorylation in postnatal mouse
forebrain, causing an initial ipsilateral blanking out (0–15 min) and then a bilateral peak at 1–2 h. ∗P < 0.05 in
paired Student’s t test for ipsilateral versus contralateral hemispheres.

leads to an almost complete loss of hippocampal neurons
and severe tissue damage in cortex, thalamus and basal
ganglia, as well as in the subcortical white matter (Lehnardt
et al. 2003; Kendall et al. 2006). To test the efficacy of ERK
inhibition in a severe HI insult to P7 mice following 60 min
of hypoxia, 133 μg/g BW SL327 was injected 60 min after
completing the hypoxia.

The control group (EtOH) showed a significantly higher
incidence of death in the 16–48 h interval, with survival of
only 9 of 23 animals at 48 h (39%, P = 0.002), compared
to the SL327 treated group with a survival of 83% (Fig. 5I).
Despite this, cortex, pyriform cortex, hippocampus,
striatum, thalamus and external capsule revealed little
difference in microglial activation and TUNEL+ cell death
in SL327-treated pups when compared to vehicle-treated
controls when killed at 48 h (data not shown).

Neuronal deletion of ERK2 has no effect on 30 min HI
forebrain injury in the neonatal mouse

Due to embryonic lethality of the ERK2 null (−/−)
phenotype (Yao et al. 2003; Satoh et al. 2007), the effect of
ERK2 on neonatal HI brain injury was examined using cell
type-specific deletions with LoxP-tagged (floxed) ERK2
genes and assessed alone and in combination with global

ERK1 deletion. Mice with global ERK1 deletion (ERK1KO)
were crossed with animals carrying the ERK2 gene flanked
by LoxP sites on either side (ERK2f/f), and then further
crossed with those expressing Cre recombinase under the
control of neuronal synapsin promoter (Syn::Cre) (Ruff
et al. 2012) or astroglial GFAP promoter (GFAP::Cre).
Heterozygous breeding for Syn::Cre and ERK1KO gave
rise to four distinct genotypes used in the study: ERK2f/f

alone, which were functionally wild-type (ERK1/2WT);
Syn::Cre and ERK2f/f, where neurons lack ERK2 but
ERK1 is expressed normally (ERK2�Syn); global deletion
of ERK1 plus ERK2f/f (ERK1KO); and Syn::Cre plus both
ERK1KO and ERK2f/f (ERK1KOERK2�Syn). All animals
were genotyped after completing the HI experiment;
heterozygous mice with the single wild-type (WT)
copy of ERK1 were excluded from assessment of 48 h
histopathology.

The effects of ERK2 deletion were first assessed
through pERK-IR at 15 min post 30 min HI insult, as
shown in Fig. 6. Control animals showed similar pERK
expression compared to WT as displayed in Figs 2A
and 6A. Homozygous ERK1 deletion led to a visible
decrease (Fig. 6B), and deletion of both ERK2 copies in
ERK1KOERK2�Syn to an almost complete disappearance
of pERK-IR (Fig. 6C). At high resolution (Fig. 6D and
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Table 1. pERK positive cell counts in grey matter regions of P7 mouse brains following 30 min HI

Region Contralateral peak (mean ± SEM) Peak time (h) Ipsilateral peak (mean ± SEM) Peak time (h)

Striatum 222.00 ± 30.53 1 202.86 ± 40.63 1
Pyriform 151.81 ± 25.77 0.25 304.38 ± 35.33 1
Hippocampus 269.69 ± 32.92 1 201.70 ± 34.33 2
Thalamus 63.93 ± 14.46 0.25 53.40 ± 11.29 1
Dorsal cortex 376.59 ± 27.95 1 298.50 ± 40.81 1
Mid-dorsal cortex 274.32 ± 40.57 1 403.73 ± 44.47 1
Mid-ventral cortex 315.91 ± 35.49 1 345.83 ± 30.68 1

G) there was a complete disappearance of the neuro-
nal pERK-IR (Fig. 6G) compared to ERK1/2WT littermate
controls (Fig. 6D). In contrast, this homozygous deletion
of ERK1 and neuron-specific deletion of ERK2 did not
interfere with the pERK+ astroglial cells (Fig. 6E–I).

In the mild HI model of 30 min hypoxia following
carotid occlusion, homozygous global deletion of ERK1,
alone or in combination with homozygous neuronal
Syn::Cre-mediated deletion of ERK2, did not lead to a
significant change in histopathology, based on microglial
(CD11b) activation score (Fig. 7A and B), neuronal tissue
loss (Fig. 7C and D) and the number of TUNEL+ dying
cells (Fig. 7E and F). In total 24 pups at P7 were subject to
30 min HI with a survival time of 48 h, with the groups
of ERK1/2WT (n = 5 pups), ERK2�Syn (n = 5), ERK1KO

(n = 6) and ERK1KOERK2�Syn (n = 8) at completion of
the experiment. Both at a sub-regional level, and over total
hemisphere, changes in neuronal ERK expression gave no
significant effect on damage markers.

Astrocytic expression of ERK2 is required for
neuroprotection following 30 min HI insult

To further investigate the role of astroglial ERK in HI, mice
carrying the GFAP::Cre promoter were crossed with the

ERK1KOERK2f/f (without Syn::Cre) for four generations
to produce ERK1KOERK2�GFAP and ERK1KO mouse pups.
Post-HI genotyping revealed 9 controls (ERK1/2WT) and
10 each for the ERK1KO and ERK1KOERK2�GFAP groups.

Global deletion of ERK1 alone was associated with
higher averages for activated microglia in cortex (P = 0.01)
and a trend to increase in thalamus (P = 0.06)
compared to ERK1/2WT littermate controls. However,
the number of Nissl bodies and total cell death
(TUNEL+) were not statistically changed (Fig. 8A, C and
E).

Selective deletion of both ERK2 gene copies in the
GFAP-expressing cells (ERK1KOERK2�GFAP) resulted in
a strong and robust increase in all damage markers, both
on a regional basis and over total hemisphere (Fig. 8).
All forebrain regions showed an increased presence of
activated microglia, particularly in white matter where
P = 0.01. More notably both tissue loss and cell death
were greatly enhanced in grey matter regions (apart
from thalamus), where striatum and cortex were most
affected (Fig. 8C–F). Nissl bodies were observed at a
higher abundance in striatum (P=0.001), pyriform cortex
(P < 0.0001), cortex (P < 0.0001) and hippocampus
(P = 0.04). TUNEL+ cell death was significantly increased
in both striatum (P = 0.001) and cortex (P < 0.0001);
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(12 to 2 o’clock segment), CTX 2–4 middle
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however, this was reflected as a trend but with no statistical
effect over the whole hemisphere (Fig. 8F).

Interestingly, this effect was bilateral, with contralateral
cortex of ERK1KOERK2�GFAP resulting in significant
increase of microglial activation in regions contralateral to
carotid occlusion with sub-regional differences in external
capsule (P = 0.03), pyriform cortex (P = 0.04), striatum
(P = 0.03) and cortex (P = 0.01). In addition there
was an increase in the overall number of TUNEL+ cells
(P = 0.003) (data not shown).

Neuronal ERK2 is a significant contributor to
forebrain response after LPS-sensitised HI insult in
the P7 mouse

Compared to 30 min HI, systemic pre-exposure to
LPS endotoxin from Escherichia coli results in strongly
increased tissue loss and neuronal and astroglial cell
death (Kendall et al. 2011; Jã et al. 2013), mediated
by the LPS/TLR4/MyD88 pathway induction of genes
encoding pro-inflammatory factors, particularly the
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tumour necrosis factor (TNF) family of cytokines (Wang
et al. 2009; Kendall et al. 2011). In peripheral tissues,
these effects involve ERK signalling (An et al. 2002;
Watts et al. 2011). To determine the role of ERK1/2
in LPS-sensitisation to cerebral HI insult, P6 mice
were injected intraperitoneally with LPS (E. coli 055/B5
serotype) 0.6 μg/g BW 12 h prior to a 30 min
insult.

Recruitment of activated microglia over total hemi-
sphere was strongly and significantly decreased in animals
lacking neuronal ERK2 expression (P = 0.008, Fig. 9A).
ERK1 KO and double ERK KO were unaffected compared
to littermate controls. Looking at individual regions,
there is a significant decrease in thalamus (P = 0.01)
with a similar trend, but not reaching significance,
for pyriform cortex, hippocampus and striatum (not
shown). Additional deletion of ERK1 (ERK1KOERK2�Syn)
completely abolished this ERK2�Syn mediated reduction
in microglial activation in total hemisphere (P = 0.048,
Fig. 9A).

Nissl and TUNEL+ cell death assessments (Fig. 9B
and E) in the ERK2�Syn subgroup were similar to the
ones observed in respect to microglial activation, i.e.
reduction of both markers. Similarly to the trend observed
in the microglial activation this reduction disappeared in
ERK1KOERK2�Syn. Using a one-way ANOVA with post
hoc TUKEY the number of Nissl bodies was significantly
different in ERK2�Syn animals only, with cortex (P = 0.02,

Fig. 9B) as the most affected region and an overall trend
to decrease seen in all other grey matter regions (not
shown). TUNEL+ cell counts were lower in all regions
with single ERK2�Syn mutations. Both striatum and cortex
saw significant reduction (P = 0.009 and P = 0.008,
respectively, Fig. 9E), although counts over total hemi-
sphere were not statistically significant. Interestingly this
cumulatively did not contribute to total hemisphere tissue
loss in the ERK2�Syn cohort; what was observed, though,
was a significant involvement of ERK1 mutations, either
alone or in combination with neuronal ERK2 deletion, in
infarction and overall loss (P = 0.009, Fig. 9C) of 72%,
particularly in striatum (P = 0.03, Fig. 9C).

GFAP-IR remains unaffected between all four mutant
groups (Fig. 9D), the exception being an increase in white
matter GFAP expression (P = 0.001) in ERK2�Syn animals.
As before, this effect was ameliorated by the presence of
ERK1KO to baseline expression (Fig. 9D).

Astrocyte deletion of ERK1/2 is protective in cerebral
cortex after LPS-sensitised HI insult

We explored the effects of LPS-sensitised 30 min HI insult
and GFAP-specific ERK2 deletion on ERK1 null back-
ground (ERK1KO n = 6, ERK1KOERK2�GFAP n = 4) against
WT littermate controls (n = 8).
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Figure 6. Effects of global ERK1 and
neuronal ERK2 deletion on pERK
immunoreactivity at 15 min
post-30 min HI insult
A–C, control (ERK1/2WT) animal (A), global
deletion of ERK1 and ERK2WT (ERK1KO) (B),
global ERK1 deletion and homozygous
neuronal ERK2 deletion (ERK1KOERK2�Syn)
(C). C, pERK immunoreactivity is almost
completely reduced following deletion of
both copies of ERK1 and ERK2. D–I,
quantification and distribution of pERK
immunoreactivity at high magnification. D,
pERK staining in the contralateral pyriform
cortex of ERK1/2WT with strong neuronal
reactivity and prominent dendritic staining
which disappears in the presence of global
ERK1 deletion and homozygous neuronal
ERK2 mutation ERK1KOERK2�Syn. E–I,
residual immunoreactivity on the ipsilateral
side. E and H, pERK alone. F and I,
immunofluorescence double labelling with
GFAP demonstrating co-localisation of
pERK in astrocytes, particularly pronounced
in ERK1WTERK2�Syn (white arrows). Scale
bar = 25 µm
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CD11b-IR was reduced in double mutant mice
(P = 0.03), which was a cumulative effect with no
individual region seeing significant change (Fig. 10A).
A similar trend was observed with Nissl bodies
score (Fig. 10B). TUNEL+ cell death was reduced
in ERK1KOERK2�GFAP compared to WT littermate
controls although significance was not reached. A strong
contributor to this was a clear and significant sparing of
the cortex (P = 0.03, Fig. 10E) and this is confirmed
by the same pattern of sparing observed by tissue

loss, where damage to the cerebral cortex was pre-
vented in the ERK1KOERK2�GFAP animals (P = 0.04,
Fig. 10C).

ERK1/2 expression in the brain is a strong contributor
to astrocyte activation and astrogliosis after
LPS-sensitised HI insult

In contrast to the mild effect on cell death, GFAP-IR did
show a strong and significant reduction (P < 0.01) in
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Figure 7. Forty-eight hours post-insult, damage markers were analysed in four neuronal ERK variations:
ERK1/2WT, neuronal ERK2 deletion only (ERK1WTERK2�Syn), global ERK1 deletion only (ERK1KO) and
global ERK1 deletion plus neuronal ERK2 deletion (ERK1KOERK2�Syn)
Forebrain sections were analysed for microglial activation (A and B), Nissl score (C and D), and TUNEL+ cell death
(E and F). A–F, for neuron-specific transgenic mutants there was no significant change in damage markers for each
sub-region nor over the whole ipsilateral hemisphere. Despite this, inclusion of ERK1KO gave a trend to increased
injury over whole hemisphere (B, D and F). Analysis at ×20 eye field (mean + SEM over 3 fields) using ANOVA
and post hoc Tukey.

C© 2018 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society



J Physiol 0.0 ERK2 has a cell-specific response in neonatal HI cerebral injury 13

astrogliosis in all grey matter regions. This was true for
both single ERK1 and double ERK1 and 2 mutant animals
compared to littermate controls (Fig. 10D). Whereas
neuronal ERK2 deletion increases astrocyte reactivity in
white matter (Fig. 9D), astrocyte-specific deletion of ERK2
has no effect on white matter (not shown). This is a robust
indication that ERK phosphorylation is required for
astrocyte activation and a master modulator of astrogliosis
observed with neonatal brain injury.

Discussion

During neonatal HI insult, once a critical threshold is
reached, cellular mechanisms begin to fail due to ATP
insufficiency leading to a two-phase neurotoxic cascade
(Sanders et al. 2010). Primary energy failure, resulting
in immediate and necrotic cell death, is followed by a
period of up to 6 h in which reperfusion can occur.
Afterwards, secondary neuronal cell death ensues due to
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Figure 8. Three astrocytic mutant groups were assessed for brain damage markers: ERK1/2WT, ERK1KO

and ERK1KOERK2�GFAP

Deletion of ERK1 resulted in a strong increase in microglial activation in the ipsilateral hemispheres of both ERK1KO

and ERK1KOERK2�GFAP groups compared to controls. A and B, increased ipsilateral microglia activation both in
grey matter regions and over total hemisphere. Similarly, an increased level of Nissl bodies was observed (C and D),
the exception being in thalamus where P = 0.06. E and F, increased density of TUNEL+ dying cells in striatum and
cortex, although this is not reflected statistically in total hemisphere counts. Analysis at ×20 eye field (mean + SEM
over 3 fields). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001 using ANOVA and post hoc Tukey.
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multiple molecular imbalances instigated by excitotoxic
oxidative stress and mitochondria failure (Rocha-Ferreira
& Hristova, 2016). Depending on the severity of the insult,
tertiary energy failure associated with late cell death,
astrogliosis, as well as remodelling and repair, lasting
for weeks and months following the initial HI insult
may occur (Rocha-Ferreira & Hristova, 2016). Owing
to their extensive control over cellular physiology, the
mitogen-activated protein kinase kinases have a potential
role in hypoxia induced cell death.

Our study shows rapid phosphorylation of ERK
following mild HI insult. In line with previous studies,

ipsilateral expression of pERK is immediately nullified for
the first 15 min after insult followed by a rapid bilateral
increase in expression that peaked at 1 h and returned to
baseline by 4 h (Alessandrini et al. 1999; Wang et al. 2003,
2004; van den Tweel et al. 2006) establishing a consistent
temporal pattern of pERK expression in neonatal rodent
models of HI.

Initial pERK reduction was equally observed in both
white and grey matter. The appearance of axonal pERK was
seen from 15 min onwards, and normalised by 1 h (Fig. 2).
Expression of pERK was observed in white matter, bound
within the cytoplasm beyond 2 h post-HI. Our data show
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clustering of pERK positive axons following HI, which has
not been reported before (Fig. 2). This effect coincides with
other in vivo studies where neurons showing cytoplasmic
pERK activity are commonly adjacent to one another at
the borders of ischaemia-induced micro-lesions in adult
mice (Wang et al. 2003).

Pre-treatment with SL327, a selective inhibitor of
MEK, resulted in decreased levels of microglia activation,
histological brain injury, and TUNEL+ cell death. These
SL327 mediated protective outcomes were retained when
administered up to 1 h post-insult. This is in line with

current protocols where pre-treatment with U0126 to
bilateral carotid artery occlusion reduced the loss of
hippocampal neurons in addition to an overall decrease
of infarct size associated with improved neurological
outcome in adult rodents (Namura et al. 2001). Other
in vivo studies explored the suppression of cytokine
release following HI by application of U0126 both 20 min
prior to and immediately following MCAO in the adult
mouse (Namura et al. 2001). This suggests a mechanism
by which the protective effects are due to restoration
of the balance between pro- and anti-inflammatory
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cytokines thus maintaining subsequent myelination (Bain
et al. 2010).

Post-treatment with SL327 after 60 min of 8% O2

exposure had diminished efficacy, compared to 30 min
exposure, in protecting the neonatal mouse brain from
ischaemic damage. Whilst markers for damage remained
unaffected, the morbidity of this cohort was dramatically
improved with survival rate increasing from 30% in EtOH
treated controls to 83% in the SL327 group.

Some data suggest that transient suppression of ERK
phosphorylation by an intraperitoneal injection of SL327
at P6 without a surgical procedure significantly increases
cleaved caspase-3 expression, and respectively apoptosis
(Yufune et al. 2016). Nevertheless, our data are obtained
using TUNEL+ cell death as a broader marker of
damage (Hristova et al. 2010) having in mind that in
neonatal HI apoptosis, necrosis and autophagy take place
(Rocha-Ferreira & Hristova, 2016). Thus SL327 might
cause apoptosis, but at the same time prevent necrosis
and autophagy thus having an overall neuroprotective
function in neonatal HI. However, this requires further
investigation.

Use of neuronal specific ERK2 knockout mice resulted
in a clear and significant reduction of dying neurons,
active microglia and brain injury with cortex, pyriform
cortex and striatum being regions of particular sensitivity.
The neuroprotection following ERK2 deletion correlates
well with the actions of MEK inhibitors in adult MCAO
studies (Alessandrini et al. 1999). Alessandrini’s group
showed that in the adult gerbil model of focal cerebral
ischaemia, infarct size was reduced by 55%, suggesting
that similarly to our results, ERK must be acting alongside
other complementary or parallel pro-apoptotic pathways
in order to induce cell death after HI (Namura et al. 2001).

Global ERK1 deletion is embryonically viable with
no phenotypic differences to wild-type littermates. By
deleting ERK1 globally, we observed an effect contra-
sting the neuroprotection achieved through neuronal
ERK2 deletion, where ERK1 mutation increased HI brain
damage following 30 min HI compared to littermate
controls.

In adult mouse forebrain, expression of ERK1 is
significantly lower than that of ERK2 – up to 6-fold
less in the frontal cortex (Ortiz et al. 1995). The
complementary and ubiquitous co-expression of ERK1
and 2 has led to the paradigm that ERK1 regulates
ERK2 actions on cell growth and survival (Pouysségur
& Lenormand, 2003; Lefloch et al. 2008). However,
developmental complications have associated ERK1 with
thrombocyte dysfunction (Nekrasova et al. 2005; Lefloch
et al. 2008), as well as behavioural studies that link the
MAP3K gene on chromosome 16, encoding ERK1, to
altered synaptic plasticity and subsequent behavioural
abnormalities, including autism (Campbell et al. 2008;
Engel et al. 2008; Fernandez et al. 2010; Pucilowska et al.

2012). In addition, under certain circumstances ERK1
attenuates the ERK2 signal; indeed, ERK2 up-regulation
is seen in ERK1KO mice (Selcher et al. 2003; Lefloch
et al. 2008; Samuels et al. 2008) which, as shown herein,
promotes neuronal death following HI. Despite these
studies, to the best of our knowledge there is little
information as to how suppression of ERK1 exacerbates
injury in the neonatal HI mouse and further work is
required to elucidate the role of ERK1 in injury response.

Global deletion of ERK1 and astrocyte-specific ERK2
deletion resulted in a greater deleterious effect than global
ERK1 deletion alone, with significantly higher expression
of each damage marker. In vitro studies suggest a protective
role of astrocytes to ODC precursor cells (Arai & Lo, 2010).
As such they are suggested to be partially responsible for
subsequent white matter injury, via H2O2 insult, by the
up-regulation of pERK. Application of U0126 abolishes
the protective nature of astrocytes (Arai & Lo, 2010).
Other in vivo studies looked at ERK2 excision under the
GFAP promoter in the developing mouse and observed
that whilst ODC precursor cells develop normally, there
is a significant delay in maturation and reduced myelin
production. (Fyffe-Maricich et al. 2011). This suggests a
developmental requirement of astrocytic ERK2 expression
for normal ODC genesis.

Following oxidative stress, reactive oxygen species
activation of ERK results in dysfunction of the
mitochondrial outer membrane inducing cytochrome
c release and cleavage of caspases 3 and 8 (Nowak,
2002; Nowak et al. 2006; Martin & Pognonec, 2010).
ERK can further promote cytochrome c release via the
up-regulation of the pro-apoptotic proteins Bax, PUMA
and Bad (Cagnol & Chambard, 2010). Our study elucidates
that ERK can be both protective and detrimental in
neonatal HI injury depending on the cellular localisation
of ERK.

Our data suggest that ERK2 deletion on its own seems
to have ERK1 independent and cell-specific function
with a detrimental effect in neurons and a protective
one in astrocytes. Our previous data demonstrate that
inhibition of phosphorylated STAT3 (pSTAT3) has a
neuroprotective effect in neonatal HI brain damage in
a cell- and time-specific manner (Hristova et al. 2016).
While the pSTAT3 Tyr705 phosphorylation site, which
is Jak2-dependent, is associated with the transcriptional
properties of STAT3, the Ser727 site (downstream of
MAPK and ERK1/2) is responsible for recruitment
to mitochondria and regulates functions alternative to
transcription (Yang & Rincon, 2016). This suggests
that inhibition of both ERK1 and 2 could result in
mitochondrial dysfunction and might be a possible
explanation for the detrimental effects observed when
both ERK1 and ERK2 deletions combined were used.
Although possible, this mechanism would require further
investigation.
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In neonatal brain injury studies, systemic injection of
LPS leads to an up-regulation of pro-inflammatory cyto-
kines and consequently increased neuronal and astroglial
cell death (Jã et al. 2013). The synergistic nature of
LPS to HI shows the same underlying white matter
and grey matter lesion formation as those seen in
human babies subject to infection as well as hypo-
xic ischemic encephalopathy (Wang et al. 2009; Kendall
et al. 2011). LPS/TLR4/MyD88 induction of genes
encoding pro-inflammatory cytokines is mediated by the
phosphorylation and nuclear translocation of ERK1/2
(An et al. 2002; Watts et al. 2011). MyD88 can form
a functional complex directly with ERK1/2 via the
recruitment of a scaffold protein MKP3 (tpl2) which pre-
vents ERK dephosphorylation, rendering it constitutively
active (Bandow et al. 2012). MKP3 had been previously
implicated in the dysregulation of TLR2/MyD88 activation
of ERK, resulting in transcription of its nuclear target
Elk-1.

Our data indicate that both single neuronal ERK2
mutation and double ERK1 and neuronal ERK2 mutation
result in strong reduction in damage. Single mutants
exhibited up to a 90% decrease in microglia and
40% decrease in astrocyte activation that correlate with
a reduction in tissue loss and TUNEL+ cell death.
Preservation of regional cell loss was validated by
measurements of infarct. No reduction of cell death or
tissue loss was observed with double mutation of ERK1
and neuronal ERK2.

In vitro dendritic cell cultures from ERK1 null
mice show an increased expression of interleukin
(IL)-12p70 and a decrease of anti-inflammatory IL-10
secretion in response to TLR stimulation (Bandow
et al. 2012). Hippocampal cultures exposed to combined
LPS and interferon γ (IFNγ), a pro-death cytokine,
were susceptible to damage due to NO production
by co-cultured microglia (Xiao et al. 1996). Using the
MEK inhibitor PD98059, IFNγ-induced NO production
was reduced by 40% (Bandow et al. 2012). In human
monocytes, PD98059 reduced LPS induction of TNFα
gene expression in a dose-dependent manner. Indeed,
inhibition of ERK decreased the release of several
pro-inflammatory cytokines including IL-1 and IL-18 (An
et al. 2002; Gorina et al. 2011). To date, this is the first
time evidence has been provided to implicate the capacity
of ERK to modulate both neuronal and glial damage
response following endotoxin-sensitised ischaemia in the
neonate.

Our results would need to be further confirmed
in large animals as the rodent Rice–Vannucci model
does not mimic the human condition optimally. This
includes the level of white matter development, as
well as the type of injury caused by the insult. In
the rodent it is mostly severe injury with multiple
infarctions involving both white matter and grey matter

compared to diffuse apoptotic and relatively small
necrotic areas in the human infant brain, affecting
mostly white matter in most cases of periventricular
leukomalacia resulting in cerebral palsy (Rumajogee et al.
2016).

As a conclusion our data confirm that neuronal ERK2
has a pivotal role in the development of neonatal HI brain
damage. In contrast ERK1 and astrocytic ERK2 show a
clear involvement in the pro-survival response to insult.
There is clear therapeutic potential for ERK2 inhibition
after HI with the possibility of combined therapy to contest
neurodegeneration by severe insult. Similar patterns of
expression suggest that the therapeutic window of 1 h
where inhibition could be beneficial is restricted and
that pre-emptive treatment during the developmental
stage of infancy could diminish endogenous bio-
chemical survival mechanisms, significantly worsening the
outcome.
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