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Abstract 

Here we study the self-assembly of arginine capped bolaamphiphile peptide RA3R 

(A: alanine, R: arginine) together with its binding to model membranes and RA3R cytotoxic 

and antimicrobial activities. Anionic 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-rac-(1-

glycerol) sodium salt/ 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphoethanolamine 

(POPG/POPE) vesicles and zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine/ 2-oleoyl-

1-palmitoyl-sn-glycero-3-phosphocholine (POPC/DOPC) vesicles are used as model 

membranes to mimic bacterial and mammalian cell membranes respectively. We show that 

RA3R adopts a polyproline II collagen-like conformation in water.  Binding of RA3R to 

POPG/POPE vesicles induces a strong correlation between the lipid bilayers, driven by 

RA3R/POPG attractive electrostatic interaction together with a shift of the intramolecular 

POPE zwitterionic interaction towards an attractive electrostatic interaction with the RA3R. 

Populations of RA3R/POPG/POPE vesicles comprise different bilayer spacings dA and dB, 

controlled by the conformation of the lipid chains corresponding to the L (gel-like) and L 

(liquid-crystal) phases respectively. Cryo-TEM images reveal the presence of vesicles with 

no internal structure, compartmentalized thin wall vesicles or multilayer vesicles with 

uncorrelated layers and compartmentalization, depending on the RA3R/POPG/POPE 

composition. In contrast, the interaction of RA3R with multilamellar POPC/DOPC vesicles 

leads to the de-correlation of the lipid bilayers. RA3R was tolerated by skin fibroblast cells for 

a concentration up to 0.01wt%, while 0.25 wt% RA3R probed to be an efficient antibacterial 

agent against Gram-positive bacteria L. monocytogenes. Our results highlight the ability of 

RA3R to distinguish between bacterial and mammalian cells and set this peptide as a 

candidate to reduce proliferation of L. monocytogenes bacteria.  
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Introduction 

The development of innovative antimicrobial agents is attracting great interest 

because of the major global healthcare challenge of emerging antimicrobial resistance 

(AMR) to currently available drugs. Antimicrobial peptides are an important class of 

antimicrobials since they have evolved naturally in many plants and organisms and these 

can be exploited directly, or used as a basis for biomimetic antimicrobial peptide 

development. 

A surfactant-like peptide (SLP) is conventionally considered to be a peptide 

comprising a short hydrophobic peptide sequence attached to a sequence of charged 

residues. This class of peptide was originally developed by S. Zhang et al. 1-4  Examples 

include peptides with hydrophobic glycine, valine or alanine repeats and charged 

headgroups (either cationic or anionic), for instance G8D2, H2V6, V6D2, A6K, A6D, etc. Our 

group has previously studied the self-assembly of A6K,5-6 A6H,7 A6R,8 A6RGD9 and A6D10 

among others. All these SLPs aggregate above defined critical aggregation concentrations 

(CACs). A6K forms nanotubes in concentrated aqueous solution.5-6, 11 A6H forms nanotapes, 

the morphology of which can be tuned using pH and ZnCl2 (which coordinates with the 

histidine residue).7 A6R self-assembly motif in aqueous solutions can be changed from 

nanosheets into helical ribbons and nanotubes upon increasing the concentration of the 

sample.8 A6RGD incorporates the RGD cell adhesion motif, and forms fibrils or vesicles in 

water as a function of the concentration.9 A6D self-assembles into nanosheets.10 

SLPs have remarkable self-assembly properties and a diversity of applications. For 

example, A6D can replace surfactants in the production of soluble G-protein coupled 

receptors using E. coli cell-free systems.12 A6D can potentially be used in drug delivery 

formulations, since the SLP forms nanovesicles at physiological conditions.13 However in 

another paper from the same group, nanotubes, or nanotubes with bulges (which also 

appear to be like bead aggregate structures) were reported under the same conditions.14 

Most relevant to the present paper, SLPs incorporating cationic head groups have been 
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shown to have antimicrobial activity. Recent work15 shows that although addition of A3K did 

not reduce the number of bacteria, A6K and A9K show antimicrobial activity against Gram-

negative E.coli and Gram-positive S. aureus.15 The antibacterial activity increases with 

increasing hydrophobicity, which also influences self-assembly since A3K forms ill-defined 

aggregates, whereas it was reported that A6K and A9K form elongated nanostructures.15 The 

peptide A6R shows antimicrobial activity against the same bacteria, however with greater 

activity against S. aureus.16 The interaction of this peptide with zwitterionic DPPC [1,2-

dipalmitoyl-sn-glycero-3-phosphocholine] lipid membranes was also investigated, and a lack 

of lysis with this type of membrane (of the same class as the membranes of eukaryotes) was 

noted.16 Peptide bolaamphiphiles (with charged residues at both ends) are another class of 

surfactant-like peptide. In particular, the self-assembly of SLPs including I2K2I2 and KI4K 

were investigated and the sequence change was found to profoundly influence aggregation 

since the former shows no defined nanostructure (and there is no evidence for -sheet 

formation) whereas the latter forms nanotubes based on -sheet hydrogen bonding.17-18 The 

self-assembly of arginine peptide bolaambolaamphiphile RFL4FR has been investigated and 

its compatibility with cells (fibroblasts) was demonstrated.19  

Here, we report on the self-assembly and antimicrobial activity of the novel SLP 

RA3R incorporating arginine residues at both termini. In this process, we also report the 

interaction of RA3R with lipid membranes representing the cell wall of bacteria (vesicles 

containing mixtures of POPG/POPE lipids) or animals (vesicles containing mixtures of 

DOPC/POPC lipids). POPG indicates 2-oleoyl-1-palmitoyl-sn-glycero-3-phospho-rac-(1-

glycerol) sodium salt, POPE denotes 2-oleoyl-1-palmitoyl-sn-glycero-3-

phosphoethanolamine, DOPC denotes 1,2-dioleoyl-sn-glycero-3-phosphocholine and POPC 

denotes 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine. Vesicle compositions are based 

on the knowledge that lipids from the phosphatidylethanolamine (PE) and 

phosphatidylglycerol (PG) classes are the most abundant lipids in the composition of 
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bacterial membranes 20 while POPC is the major lipid component of mammalian 

membranes.21 

Here we use a range of microscopy and spectroscopy techniques and small-angle X-

ray scattering (SAXS) to probe the assembly and conformation of RA3R in water and its 

interaction with model lipid membranes. Finally, we evaluate the cytotoxicity and 

antimicrobial activity of RA3R.     

 

Experimental 

Samples. Peptide RA3R was custom synthesized by Biomatik (UK). The peptide was 

received as a TFA salt, the purity was determined by the supplier to be 96.86% as 

determined from HPLC (0.1 % TFA in water/ acetonitrile gradient).  Mw= 543.63 Da was 

measured by electro-spray ionization mass spectroscopy (ESI-MS) analysis. Lipids POPG 

(Mw= 770.99 Da), POPE (Mw= 718 Da), DOPC (Mw= 786.11 Da) and POPC (Mw= 760.08 

Da) were purchased from Sigma Aldrich (UK) and used as received. RA3R is positively 

charged in water (+2). POPE, POPC and DOPC are zwitterionic in water. POPG is 

negatively charged in water (-1).  Scheme 1 displays the chemical structures for RA3R, 

POPE, POPC, DOPC and POPG. 

Vesicle preparation. Vesicles were prepared by the thin layer hydration method, used in 

previous studies on binary POPE/POPG vesicles.22 Weighted quantities of lipids were 

dissolved in chloroform. Thin films of lipids were obtained by drying the chloroform under a 

stream of nitrogen. Traces of the organic solvent were removed by placing the lipid films in a 

vacuum chamber for 2 hrs.   Lipid films were then re-suspended in a weighted quantity of 

water corresponding to 0.5 wt% lipid. Lipid solutions were vortexed for 5 minutes (1800 rpm; 

55 oC) and left to equilibrate before experiments. POPG/POPE anionic vesicles were made 

using mixtures of lipids at different molar ratios to provide POPG molar fractions POPG = 

[POPG]/([POPG]+[POPE]) = 1, 0.6, 0.5, 0.4, 0.2 and 0 ([ ]: molar concentration) which 

corresponds to a POPG/POPE % content (e.g, % POPE= 100xweight 
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POPE/weight(POPE+POPG)) of 100, 65/35, 50/50, 44/56, 27/73 and 0. Zwitterionic vesicles 

were made by mixing POPC and DOPC lipids at a molar ratio to provide a DOPC molar 

fraction DOPC= [DOPC]/([POPC]+[DOPC]) = 0.2 which corresponds to a POPC/DOPC % 

content of 80/20. Samples containing RA3R and lipids were made by adding a weighed 

quantity of RA3R powder to solutions of 0.5 wt% lipid vesicles, in order to obtain 0.08, 0.25 

or 0.5 wt% RA3R. The mixtures were then vortexed for 5 minutes (1800 rpm, 55 oC) and left 

to equilibrate before experiments.  

In the following we will omit the concentration of POPG/POPE and POPC/DOPC 

mixtures because it was kept at 0.5 wt% for all the samples. The composition of each 

sample will be indicated only by the relevant mole fraction of lipid (POPG or DOPC) and the 

concentration of RA3R in wt%. 

Circular Dichroism (CD) Spectroscopy. CD spectra were recorded using a Chirascan 

spectropolarimeter (Applied Photophysics, UK). Solutions were placed in a quartz cover slip 

cuvette (0.01 mm thick). Spectra were measured using a 0.5 nm step, 1 nm bandwidth, and 

1 s collection time per step. Only data with absorbance A < 2 was recorded during the 

experiments. The CD data is corrected by the CD signal from the water background. Where 

data has been smoothed, the smoothed spectra present no distortions in the residual trace. 

Fourier Transform Infra-Red (FTIR) Spectroscopy. FTIR data were recorded using a 

Nexus-FTIR spectrometer equipped with a DTGS detector. Solutions were measured using 

the PEARL liquid transmission accessory. Spectra were measured for wavenumbers in the 

range 900-4000 cm-1. Each spectrum was scanned 128 times. 

Small-Angle and X-Ray Scattering (SAXS). Synchrotron SAXS experiments were 

performed using BioSAXS robots on beamline BM29 (ESRF, France) and on beamline B21 

(Diamond Light Source Ltd., ESRF). On BM29 and B21, the solutions were manually loaded 

into the 96 well plate of an EMBL BioSAXS robot. The robot injected the solutions into a 

quartz capillary (1.8 mm internal diameter) placed in front of the X-ray beam. After the 
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sample was injected in the capillary and reached the X-ray beam, the flow was stopped for 

the acquisition of the SAXS data. The quartz capillary was enclosed in a vacuum chamber to 

avoid parasitic scattering. B21 operated with a 3.9 m camera length and 12.4 keV 

energy.  The images were captured using a Pilatus 2M detector. Data was corrected by 

background subtraction and then radially averaged, using the dedicated beamline software 

ScÅtter. BM29 operated with an X-ray wavelength  = 1.03 Å (12 keV).  The images were 

captured using a PILATUS 1M detector, while data processing was performed using 

dedicated beamline software ISPYB (BM29). 

Cryogenic Transmission Electron Microscopy (Cryo-TEM). Experiments were carried out 

using a field emission cryo-electron microscope (JEOL JEM-3200FSC) operating at 300 kV. 

Images were taken using bright-field mode and zero loss energy filtering (omega type) with a 

slit with 20 eV. Micrographs were recorded using a Gatan Ultrascan 4000 CCD camera. The 

specimen temperature was maintained at -187 °C during the imaging. Vitrified specimens 

were prepared using an automated FEI Vitrobot device using Quantifoil 3.5/1 holey carbon 

copper grids with 3.5 μm hole sizes. Grids were cleaned using a Gatan Solarus 9500 plasma 

cleaner just prior to use and then transferred into an environmental chamber of FEI Vitrobot 

at room temperature and 100% humidity. Thereafter, 3 μl of sample solution with 0.5 wt% 

concentration was applied on the grid, blotted once for 1 second and then vitrified in a 1/1 

mixture of liquid ethane and propane at -180 °C. Grids with vitrified sample solutions were 

maintained in a liquid nitrogen atmosphere and then cryo-transferred into the microscope.  

Cell Viability assays. The cytotoxicity of RA3R was examined. In vitro cell culture was 

conducted using the 161br (ECACC) human skin fibroblast cell line. Cells were cultured in 

EMEM, with 2 mM glutamine, enriched with 15% fetal bovine serum (FBS), 1% non-essential 

amino acids (NEAA) and 1% antibiotic-antimycotic (100x). Cells were maintained in a 

humidified atmosphere of 5% CO2 at 37oC.  Cytotoxicity was examined using the MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. RA3R was dissolved in 

complete medium. Cells were seeded into a 96-well plate at a seeding density of 4 x 104 
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cells/mL, and allowed to adhere for 24 hours in 100 µL complete medium. After 24 hours, a 

total volume of 100 µL of either complete medium and/or peptide solution was added, to give 

final peptide concentrations of 0.5, 0.25, 0.1, 0.05, 0.01 or 0.005 wt% RA3R. After 67 hours 

of incubation, 20 µL of MTT (5 mg/mL in PBS) was added to each well plate and allowed to 

incubate for 5 hours (total of 72 hours incubation). After this, the solution was removed from 

each well and replaced with 100 µL DMSO per well in order to dissolve the formazan 

crystals. Plates were incubated for 30 minutes, and then analysed using a UV microplate 

reader (λ = 570 nm). Results are reported as a percentage cell viability compared to control 

(untreated values).  The ANOVA and Bonferoni post hoc tests were used to check statistical 

significance.  

Bacterial strains and growth conditions. Experiments were performed with three different 

microorganisms namely, Staphylococcus aureus, Listeria monocytogenes and Escherichia 

coli. The strains used were a wild type strain of Staphylococcus aureus previously isolated 

from ham23 a widely-used wild type strain of L. monocytogenes (LO28;24-25) and one of the 

most widely-used E. coli strains (K-12). Stock cultures were stored at -80 °C in 7% (vol/vol) 

DMSO (Sigma-Aldrich, Dorset, UK). Prior to experiments, stock cultures of S. aureus and L. 

monocytogenes were streaked onto brain heart infusion (BHI) agar (LAB M, Lancashire, UK) 

while those of E. coli were streaked onto Lysogeny Broth (LB) agar (Oxoid, UK) and 

incubated overnight at 37 °C.  

Preparation of cell suspension. Three colonies from these cultures were then transferred 

to 3 ml sterile Tryptone soy broth (TSB) supplemented with 0.3%(w/v) yeast extract (TSBY) 

(Oxoid, UK) and grown at 37 °C under agitation at 150 rev min-1 on a Gallenkamp orbital 

shaker for 24 h. Subsequently, 20 ml of TSB broth was inoculated with the previously 

prepared overnight cultures up to 1% and grown at 37 °C under agitation at 150 rev min-1 for 

a further 24 hours. These cultures were used for the subsequent experiments.  
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The viability of the cultures was assessed before use by serially diluting in Maximum 

Recovery Diluent (MRD, Oxoid) and plating onto nutrient agar. Cultures were transferred into 

50 ml falcon tubes (VWR UK) and cells were harvested by centrifugation at 9000 rpm and 4 

°C, for 10 min in an Eppendorf 5804 centrifuge. The supernatant was then discarded and the 

pellet was re-suspended in 1.5 mL ice chilled PBS. Twenty μl of this solution was then 

transferred into 200 μl of RA3A peptide solution (0.25 wt%) which had been prepared in 

sterile water.  Control solutions were made by inoculating 200 μl of sterile water with 20 μl of 

the PBS suspended culture. Solutions were then vortexed for 3 seconds and samples taken 

at 0, 30, 60, 120 and 1440 min. 100 μl of the peptide culture solution was then serially 

diluted in MRD and subsequently 10 μl of each dilution was plated onto plate count agar 

(PCA) and incubated at 37 °C for 24 hours before the enumeration of colonies.  

 

Results and Discussion 

We first examined the self-assembly of RA3R in water. CD, FTIR and SAXS data are 

shown in Figure 1.  

The CD spectra for 0.08-0.5 wt% RA3R show a deep minimum at 190 nm along with 

a broad positive maximum at around 220 nm (Figure 1a); a signature of polyproline II 

(collagen-like) secondary structure.26-34 This structure has been observed for other short 

polyalanine peptides.32  

FTIR spectra for 2, 0.5, 0.25 and 0.08 wt% RA3R show bands at 1672, 1587 and 

1608 cm-1 (Figure 1b). The peak at 1672 cm-1 is due to bound TFA counterions.35-37 FTIR 

bands at 1587 and 1608 cm-1 are related to vibrational bands associated with the side 

chains of the R-residues.38-39 In addition, the 2 wt% RA3R sample shows a FTIR band at 

1675 cm-1, which consistent with the CD spectra, is characteristic of short polyalanine 

peptides with a PPII structure.40-41  
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Figure 1c shows the SAXS data for 0.5 and 10 wt% RA3R. The SAXS data for 0.08 

and 0.25 wt% RA3R had very poor statistics and therefore has not been included in the 

manuscript. Since the SAXS data for 0.5 wt% RA3R is relatively weak, the SAXS data for 10 

wt% RA3R has been included in Figure 1c as a reference. SAXS data for 0.5 and 10 wt% 

RA3R (Figure 1c) was modelled according to a Gaussian coil model using the SASfit 

program.42-43 The parameters of this model are the radius of gyration of the Gaussian chain 

Rg and the excluded volume parameter . The fitted models provided Rg= 4.8, 8.9 Å and = 

0.43, 0.6 for 10 and 0.5 wt% RA3R respectively. The excluded volume parameter  indicates 

a swollen conformation of the peptide chain at 0.5 wt% RA3R, and a relatively folded 

conformation of the peptide chain at 10 wt% RA3R. Cryo-TEM on 1 wt% RA3R did not show 

the formation of any nanostructure (results not shown). 

These results indicate that RA3R does not self-assemble in water, probably due to 

the high solubility due to the two terminal R residues and the flexibility of PPII structure. 

Therefore, in the following we will focus on the interaction of RA3R with model anionic and 

zwitterionic membranes.  

Table S1 lists the POPG/POPE + RA3R mixtures studied in this work along with the 

appearance of the solutions. POPG/POPE vesicles with POPG= 1, 0.6, 0.5, 0.4, 0.2 or 0 were 

mixed with 0, 0.08, 0.25 or 0.5 wt% RA3R. In this way, the influence of the lipid composition 

in mixtures at a given peptide concentration was examined while additionally the influence of 

peptide concentration was probed. Table S1 shows that homogeneous cloudy samples were 

obtained for  POPG= 1, 0.6, 0.5, 0.4, 0.2 or 0 + 0 wt% RA3R, for POPG= 1, 0.6, 0.5, 0.4 or 0.2 

+ 0.08 wt% RA3R and for POPG= 0.6, 0.5, 0.4 or 0.2 + 0.25 wt% RA3R. But phase separation 

(sample precipitation) was observed for other samples.  

Figure 2 shows the SAXS data measured for samples in Table S1. Spacings d, 

measured from the position of the peaks in the SAXS data (d= 2/q0; q0= position of the 

peak maximum), are displayed in Figure 2. Table 1 shows representative examples, as a 
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function of  POPG, for the indexation of the spacings d displayed in Figure 2. SAXS data  in 

Figure 2 for samples with POPG= 1, 0.6 or 0.4 + 0.5 wt% RA3R is dominated by the scattering 

from the precipitate, as cryo-TEM results later in the text show that there are no vesicles in 

the supernatant. 

We first consider the SAXS profiles of the lipid mixtures without added peptide. The 

SAXS data in Figure 2 was measured at 20 oC. A previous SAXS study of POPG/POPE 

vesicles shows that at 20 oC, samples with POPG= 0 are in the L (gel-solid ordered phase) 

phase, samples with POPG= 0.2 are at the L/L (fluid disordered liquid crystal phase) phase 

co-existence point, and samples with 0.4≤ POPG ≤ 1 are in the L phase.22 Here, we 

measured a lamellar spacing of 61.6 Å for POPG= 0 in the L (gel) phase (Table 1), in good 

agreement with data in the literature.22 SAXS for  0.2≤ POPG ≤ 1 shows a broad peak centred 

at q~0.1 Å-1, which was previously ascribed to MLVs (with walls consisting of freely 

fluctuating and uncorrelated bilayers) for 0.4 ≤ POPG <1, but to unilamellar vesicles for 

POPG= 1 (the negative charge of the lipids leads to a net electrostatic repulsion of the 

bilayers).22  

Figures 2a-e shows that addition of RA3R to samples with  POPG= 1, 0.6, 0.5, 0.4 and 

0.2 induces a strong correlation between bilayers, corresponding to a lamellar order denoted 

by the presence of scattering peaks in the SAXS curves. Noticeably, increasing the peptide 

concentration does not alter the position of the scattering peaks for a fixed POPG, but it can 

increase the order of the reflexions in the SAXS pattern (e.g. Figure 2a-c).  The RA3R 

induced bilayer order is divided in two populations with lamellar cell parameter dA or dB, 

which increases from 70.9 to 72.9 Å and from 59.3 to 63.7 Å respectively, for POPG 

fractions decreasing from 1 to 0.2 (Figure 2, Table 1). In contrast, the addition of RA3R to 

samples containing POPG= 0 (100% POPE) does not induce any order different from the 

lamellar spacing at 61.6 Å measured at 0 wt% RA3R (Figure 2f, Table 1).  
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The SAXS data in Figure 2 was fitted using models for the form factor and structure factor 

of lamellar structures, in an attempt to get a closer insight into the nanostructure of the 

solutions. Details of the model44 are provided in the Supplementary Information. We only 

fitted the data for the samples in Figure 2c, containing POPG= 0.5 and 0-0.5 wt% RA3R, as a 

representative result for the data plotted in Figure 2 with 1 ≤ POPG< 0. Fits to the SAXS data 

in Figure 2c data are displayed in Figure S1. Fitting parameters,   listed in Table S2, were 

used to calculate the electron density distribution across the bilayers (Figure S2). 

Results obtained from the fitting of the SAXS data describe the formation of two co-existing 

bilayers upon addition of RA3R to the sample (bilayers A and B, Table S2). SAXS fittings 

provide the distance between the lipid headgroups, lH (Table S2). The water layer thickness 

between bilayers, lw, can be estimated from the bilayer repeat distance (dA= 71.7 Å or dB= 

61.2 Å, Table 1) minus lH, according to lw,i = di- lH (i= A, B). 

Our results provide lw,A = 13.5 or 13.6 Å for 0.25 or 0.5 wt% RA3R respectively and lw,B = 

13.1, 13.2 or 13.1 Å for 0.08, 0.25 or 0.5 wt% RA3R respectively.  Parameters lw,A  and lw,B 

are similar for all samples in Table S2.  This is in contrast with lH ~ 58 Å for bilayers A 

against lH ~ 48 Å for bilayers B (Table S2).  As a whole, results in Figure S1 and Table S2 

confirm that dA and dB in Table 1 originate from two populations of lipid bilayers with different 

lH but similar lw. 

The nanostructure of the samples containing peptides, studied in Figure 2 and Table S1, 

was also investigated by cryo-TEM. Cryo-TEM images correspond to the supernatant or to 

the bulk sample, for samples presenting precipitation or for homogeneous samples 

respectively (Table S1). Following the inspection of all cryo-TEM images, it is possible to 

classify vesicles according to the three types displayed in Figure 3. The first are simple thin 

wall vesicles, which may be unilamellar vesicles (confirmed by SAXS), the second are thin 

wall vesicles with internal structure, i.e. internal compartmentalization and the third are multi-

lamellar vesicles with uncorrelated layers and typically (but not necessarily) internal 
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compartmentalization. The classification of vesicles according to Figure 3 is modified from 

that introduced in ref. 22 for POPG/POPE vesicles in the absence of peptide. Table 2 

summarizes vesicle morphologies identified by cryo-TEM. Figures S3 to Figure S8 show 

cryo-TEM images from all samples.  

A repeat distance between bilayers dcryo could be measured in some cryo-TEM 

images (e.g. inset in Figures S4b, S5a and S6b). However, dcryo, listed in Table 2, cannot be 

solely assigned to dA or dB measured by SAXS because the error in cryo-TEM 

measurements (~ 10 Å) falls within the difference between dA and dB. 

 In an attempt to understand the role of electrostatic effects on the interaction of RA3R 

with POPG/POPE vesicles, we studied the interaction of this peptide with zwitterionic 

DOPC/POPC MLVs by SAXS.  

Figure 4 shows the SAXS measured for a sample containing DOPC= 0.2 with 0, 0.8, 

0.25 and 0.5 wt% RA3R. The SAXS for samples with only DOPC= 0.2 displays two peaks in a 

positional ratio 1:2 corresponding to a lamellar spacing of 64.4 Å (Figure 4). To our 

knowledge there are no previous records in the literature for the lamellar spacing of 

POPC/DOPC MLVS. However, a lamellar repeat distance of ~ 63 Å has been reported for 

POPC MLVs at room temperature45 while lamellar spacings of 62.5 Å and 63.1 Å have been 

reported for DOPC MLVs at room temperature46 and 30 oC47 respectively. Figure 4 shows 

that gradual addition of RA3R induces the de-correlation of the lipid bilayers. 

The different effects produced in the SAXS curves by adding RA3R to POPG/POPE 

vesicles (Figure 2) or POPC/DOPC vesicles (Figure 4) can be attributed to the electrostatic 

interaction between RA3R and the lipids. 

SAXS data in Figure 4 was fitted using the same method described before to fit the SAXS 

data in Figure 2c. The fitted SAXS data is shown in Figure S9 while the parameters 

extracted from the fitting are listed in Table S3. The electron density profile of the bilayers, 
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calculated with parameters listed in Table S3 is displayed in Figure S10. The extracted 

parameters describe the de-correlation of bilayers induced upon addition of RA3R to 

DOPC=0.2 vesicles. This is denoted by the decrease in the length of correlation of the 

bilayers from N= 8 to N= 2 by adding 0.5 wt% RA3R to the zwitterionic bilayers. 

Figure 5a shows a representative cryo-TEM image for a sample only with DOPC= 0.2. 

There is co-existence of vesicles type (i), (ii) and (iii) described in Figure 3. Some of the 

vesicles show a spacing (6.2±1.3) nm at the walls, similar to the lamellar spacing 64.4 Å 

measured by SAXS for 0.5 wt% DOPC= 0.2 (Figure 4). Figure 5b shows that for DOPC= 0.2 + 

0.5 wt% RA3R, the destabilization of lipid bilayers suggested by the SAXS data in Figure 4,  

corresponds to decreased correlation of lipid bilayers in type  (iii) vesicles. The is confirmed 

by SAXS which shows a broad peak in the intensity profile, instead of Bragg reflections 

(Figure 4).  

It is likely that RA3R is adsorbed at either side of POPC/DOPC bilayers. 

Consequently, a net positive charge is added to the bilayer surface, increasing the repulsion 

between bilayers and therefore reducing their correlation length. A similar effect was 

reported to us for the interaction of the peptide A6R with zwitterionic MLVs of DPPC.16 On 

the other hand, electrostatic interactions between RA3R and POPG/POPE vesicles increase 

the correlation between lipid bilayers. In contrast to POPC and DOPC, the positively charged 

NH3
+ group in POPE is exposed to water. In contrast to POPC and DOPC, the positively 

charged NH3
+ group in POPE is exposed to water. In the presence of RA3R, the balance of 

the zwitterionic interaction between the phosphate group and the NH3
+ group in the POPE 

may be driven towards favouring the interaction between the positively charged RA3R and 

the phosphate group of the POPE. An attractive electrostatic interaction between the RA3R 

and POPG is expected due to their opposite charges. 

The interaction between alanine-based short peptides and anionic or zwitterionic 

small unilamellar vesicles (SUVs) has been reported in a previous study.15  Similarly to 

results presented here, it was found that A9K strongly interacts with the membrane at the 
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wall of phosphatidylglycerol SUVs, causing a strong disruption of its structure, but barely 

affects the membrane of phosphatidylcholine SUVs. 

The thermal stability of lamellar phase spacings was tested through temperature 

ramp-SAXS experiments on the sample with POPG =0.4 + 0.08 wt% RA3R. Figure 6 displays 

the SAXS results where the temperature was increased from 10 to 60 oC and subsequently 

decreased to 20 oC. The spacing dA is 70.9 Å at 10 oC and 73 Å at 20 oC, disappears 

between 30 and 60 oC, but it appears again as dA= 72.3 Å when the temperature is 

decreased from 60 to 20 oC. Spacing dB gradually changes from 61.9 into 58.3 Å when the 

temperature increases from 10 to 60 oC, but it returns to dB= 63.7 Å when the temperature is 

decreased from 60 to 20 oC. Lipid bilayers with lamellar spacing dB resist temperature 

changes, while lipid bilayers with lamellar spacing dA are stable only up to 20 oC. It is likely 

that dA corresponds to lipid chains in the L (gel-solid ordered phase) conformation, which 

changes into the L (fluid disordered liquid crystal phase) conformation with spacing dB, upon 

raising the temperature. Extrapolating these results, dA and dB listed in Table 1 for samples 

containing RA3R, originate from two populations of lipid chains in the L (dA) or in the L (dB) 

phase. This hypothesis points to a phase co-existence of both phases for mixed peptide/lipid 

samples in Figure 2, with POPG > 0. 

MTT assays, using 161Br skin fibroblast cells, were performed to evaluate the 

cytocompatibility of RA3R. Viability results (Figure 7) show that the peptide was tolerated by 

the cells up to a concentration of 0.01 wt%. But above this concentration there is a steady 

decrease in cell proliferation, such that cell viability is reduced from 78% to 34% when the 

peptide concentration is increased from 0.05 to 0.5 wt%. Since RA3R does not self-assemble 

in solution, the reduction in cell viability might be triggered by the intrinsic effect of the 

cationic residues interacting with the PC lipids (cf. Figure 4).  

To study the antimicrobial activity of the RA3A peptide we selected both Gram 

negative and Gram positive microorganisms. The Gram negative bacteria was E. coli, which 
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is one of the most studied microorganisms with a variety of pathogenic strains causing a 

range of negative health problems generally resulting from foodborne contamination.48 The 

two Gram positive bacteria were S. aureus, a highly key human nosocomial and foodborne 

pathogen and L. monocytogenes which currently is one of the deadliest foodborne 

pathogens with a mortality rate of 30%.23, 49 

 Antimicrobial assays to assess the potential antimicrobial activity of RA3A, measured 

the survival of S. aureus,  E. coli, and L. monocytogenes after exposure to the presence  or 

absence of 0.25 wt% RA3R under aqueous conditions. The results are displayed in Figure 8. 

An effect of the peptide treatment in the range of 3.5 orders of magnitude reduction 

of the CFU/ml was found against E. coli (Gram negative organism) which however, was not 

statistically significant. A major effect of RA3A was found with L. monocytogenes, 

represented by a 5.6 log reduction in CFU/ml (Figure 8). A less pronounced effect in the 

range of 2.6 log reduction of the CFU/ml was found for RA3R in contact with S. aureus. The 

CFU/ml reduction effect was however statistically significant only for L. monocytogenes.  

This result is different from our previous experiments for closely related SLPs, which report 

the antimicrobial activity of 0.25 wt% A6R against S. aureus.16 

Overall, a dramatic effect of this peptide on the numbers of L. monocytogenes was 

seen within the first hours of the challenge where approximately a 4 order of magnitude 

reduction occurred within the first 2 hours. In contrast, the effect on E. coli and S. aureus 

seemed to be steadier throughout time as the logarithmic reduction within the first 2 h was 

proportional to that which occurred within 24 h.   These results suggest a strong antibacterial 

effect on Gram positive bacteria and a possibly small but potentially significant impact on 

Gram negative organisms when exposed to high contractions of this type of peptide.  

Here, antimicrobial assays are performed at 0.25 wt% RA3R because we investigate 

bacteria survival within a few minutes. The concentration 0.25wt% RA3R resulted in a 

reduction of fibroblast numbers by ~40% (Figure 7) while it caused a reduction of about 4 - 5 
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orders of magnitude in L. monocytogenes numbers (Figure 8c). Accordingly, if we started 

with 10,000 fibroblasts we would be left with 4,000 while with the same treatment we would 

be left with 1 out of 10,000 cells of L. monocytogenes. Furthermore, the effect on fibroblasts 

is after 67 hours incubation while that on Listeria is only after 1 hour. This demonstrates the 

compound is clearly highly antimicrobial.  

L. monocytogenes contains 80-85% phospholipid of the PG type and 15-20% neutral 

lipid.50 This membrane composition is intermediate to POPG = 1 and POPG = 0.6 in our work. 

We therefore argue that the antimicrobial activity of 0.25 wt% RA3R on L. monocytogenes 

(Figure 8) does not take place through membrane lysis, but through a re-organization of the 

membrane bilayers, similar to that shown in Figures 2a-b. 

The antimicrobial activity of RA3R against E. coli (Gram negative) and S. aureus 

(Gram positive) can be compared to that reported in the literature for the closely related 

peptide A3K.15 Similar to RA3R, addition of 0 to 0.02 wt% A3K to E. coli DH5a (Gram 

negative) or S. aureus (Gram positive) did not cause a great reduction in the number of 

bacteria.15 

    

Conclusions 

Our results show that RA3R does not aggregate in water, but adopts a polyproline II 

collagen-like conformation for 0.08-0.5 wt% peptide. Interaction of RA3R with model bacterial 

membranes (POPG/POPE vesicles) induces a strong correlation between the lipid bilayers. 

RA3R enhances the correlation POPG/POPE bilayers through the attractive electrostatic 

interaction with POPG together with the shift of the zwitterionic interaction in POPE towards 

an attractive electrostatic interaction with the peptide.  

The walls of RA3R/POPG/POPE vesicles with POPG > 0 present a co-existence of 

lamellar orders with cell parameters dA and dB, which span a range dA= (70.9-72.9) Å and 
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dB= (59.3-63.7) Å for POPG = 0.2-1. The cell parameters are controlled by the conformation 

of the lipid chain; dA and dB corresponding to the L and L phases respectively. This hybrid 

lamellar order can build the walls of (i) thin wall vesicles with no internal structure, (ii) 

compartmentalized thin wall vesicles or (iii) multilayer vesicles with uncorrelated layers and 

compartmentalization. In contrast, the addition of RA3R to POPC/DOPC vesicles leads to the 

de-correlation of the lipid bilayers. In this case, the zwitterionic groups of the lipids are not 

exposed to water and therefore less likely to interact with RA3R, preventing an increase in 

the bilayer correlation. 

The affinity of RA3R for POPE/POPG membranes compared to the weak interaction 

with POPC/DOPC membranes shows the ability of RA3R to distinguish between bacterial 

and mammalian cells. In fact, RA3R was tolerated by skin fibroblast cells for a concentration 

of 0.01 wt%, with cell viability highly reduced for 0.05-0.5 wt% RA3R. However, 0.25 wt% 

RA3R probed to be an efficient antibacterial agent against L. monocytogenes, setting a 

precedent to develop new formulations containing RA3R as the active agent against L. 

monocytogenes bacteria. 
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Table 1. Representative examples, as a function of  POPG, for the indexation of the SAXS 

data in Figure 2: spacings d, measured from the position of the peaks in the SAXS data (d= 

2/q0; q0= position of the peak maximum), ratios between spacings showing a lamellar order 

and lamellar cell parameter di=A,B.  

 

 

 

Table 2. Information from cryo-TEM images (representative examples Figures S3-S8): 

vesicles types indicated as (i), (ii) or (iii), according to Figure 3, and repeat bilayer distance 

dcryo.  

POPG 

 

wt% RA3R 

  
1 

 
0.6 

 
0.5 

 
0.4 

 
0.2 

 
0 

 
0.08 

Vesicle type  
dcryo [Å] 

(i) 
-- 

(i), (ii) 
-- 

(i), (ii), (iii) 
63.4±12.8 

(i), (ii), (iii) 
73.4±17.6 

(i), (ii) 
57.9±8.2 

(i), (ii), (iii) 
64.8±4.1 

 
0.25 

Vesicle type 
dcryo [Å] 

(i), (ii) 
-- 

(i), (ii), (iii) 
63.1±12.3 

(i), (ii), (iii) 
-- 

(i), (iii) 
64.3±11.1 

(i), (ii), (iii) 
-- 

(i), (iii) 
-- 

 
0.5 

Vesicle type 
dcryo [Å] 

-- 
-- 

-- 
-- 

(i), (ii) 
-- 

-- 
-- 

(i), (ii), (iii) 
52.9±7.2 

(i),  (iii) 
69±10.5 

 

 

 

 

 

 

 

 

 POPG = 1 + 
0.5 wt% RA3R 

POPG = 0.6 +  
0.25 wt% RA3R 

POPG = 0.5 +   
0.25 wt% RA3R 

POPG = 0.4 +  
0.25 wt% RA3R 

POPG = 0.2 + 
0.25 wt% RA3R 

POPG = 0 

d [Å] 
ratio 

dA [Å] 

70.9:35.6 
1:2 

70.9 

71.4:37.8:24 
1:1.8:3 

71.4 

71.7:35.9:24.1:17.9 
1:2:3:4 

71.7 

71.9:36.6:24.1:18.1 
1:2:3:4 

71.9 

72.9:36.6 
1:2 

72.9 

-- 
-- 

-- 
d [Å] 
ratio 
dB [Å] 

59.3:29.8:19.8 
1:2:3 
59.3 

60.6:30.3:20.2 
1:2:3 
60.6 

61.2:30.5:20.3 
1:2:3 
61.2 

62.2:30.9:18.1 
1:2:3 
62.2 

63.7:31.9 
1:2 

63.7 

61.6:30.9:20.6 
1:2:3 
61.6 
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Scheme 1. Chemical formulas for the lipids and peptide used in this work 
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Figure 1. (a) CD, (b) FTIR, (c) SAXS data for RA3R solutions. The full line in (c) corresponds 

to the fitting of the experimental data. The intensity of the FTIR spectra for 2 wt% RA3R has 

been divided by 2, and the SAXS data for 0.5 wt% has been multiplied by an arbitrary factor 

in order to aid visualisation. 
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Figure 2. SAXS data for samples displayed in Table S1. The SAXS curves have been 

multiplied by an arbitrary factor in order to aid visualisation. Spacings d= 2/q0 (q0: position 

of the peak maximum) were calculated using the reflexions indicated as 1-7. 
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Figure 3. Classification of vesicle types. Top row: (i) Thin wall vesicles with no internal 

structure, (ii) Compartmentalized thin wall vesicles, (iii), multilayer vesicles with uncorrelated 

layers and compartmentalization.  Bottom row: Typical cryo-TEM images for the three types 

(i) POPG=0.2 + 0.08 wt% RA3R  (ii)  POPG=0.6 + 0.08 wt% RA3R, (iii) POPG=0.2 + 0.5 wt% 

RA3R. 
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Figure 4. SAXS results obtained for samples with DOPC= 0.2 + 0.08, 0.25 or 0.5 wt% RA3R. 

The SAXS curves have been multiplied by an arbitrary factor in order to aid visualisation. 

Spacings d= 2/q0 (q0: position of the peak maximum) were calculated using the reflexions 

indicated as 1-2. 
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Figure 5. Cryo-TEM images recorded for DOPC = 0.2 + (a) 0 or (b) 0.5 wt% RA3R.  
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Figure 6. SAXS intensity profiles obtained for POPG= 0.4 + 0.08 wt% RA3R, display the 

temperature dependence of the reflexions in Figure 2d. 
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Figure 7. Cell viability of RA3R solutions. Error bars: SEM (n = 3). All concentrations show 

statistical significance from the mean, p<0.001.  

 

 

 

 

 



29 
 

3

6

9

3

6

9

0 400 800 1200

3

6

9

(d) (c) 

(b) 

time / min

L
o
g

 C
F

U
/m

l

time / min

 S. aureus

 S. aureus + RA
3
R

(a) 

 E. coli

 E. coli + RA
3
R

*

*

*

L
o
g

 C
F

U
/m

l

 L.monocytogenes

 L. monocytogenes + RA
3
R

*

0 400 800 1200

3

6

9

 E. coli,  L. monocytogenes, 

 S. aureus,  L. monocytogenes+RA
3
R,

 E. coli+RA
3
R,   S. aureus + RA

3
R

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Survival of (a) S. aureus, (b) E. coli, and (c) L. monocytogenes after exposure to 

the presence (orange dash lines) or absence of 0.25 wt% RA3R under aqueous conditions 

(blue full lines). (d) Data plotted in (a-c): E. coli (boxes), L. monocytogenes (circles), S. 

aureus (triangles). Estimations of the cell numbers (CFU: colony-forming units) at each time 

point were performed in triplicate (3 biological replicates) while each dilution was plated in 

duplicate (2 technical replicates). Markers represent an average of the measurements 

performed in triplicate, and error bars represent the standard deviation. Asterisks denote 

statistically significant difference between the treated and untreated strain at the specific 

time point as assessed by a t-test (P<0.05). 
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