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Abstract. The EU Copernicus Climate Change Service (C3S) European Climatic Energy Mixes (ECEM) has
produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, de-
signed to enable the energy industry and policy makers assess how well different energy supply mixes in Europe
will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the
role climate has on the mixes. The concept of C3S ECEM, its methodology and some results are presented here.
The first part focuses on the construction of reference data sets for climate variables based on the ERA-Interim
reanalysis. Subsequently, energy variables were created by transforming the bias-adjusted climate variables using
a combination of statistical and physically-based models. A comprehensive set of measured energy supply and
demand data was also collected, in order to assess the robustness of the conversion to energy variables. Climate
and energy data have been produced both for the historical period (1979-2016) and for future projections (from
1981 to 2100, to also include a past reference period, but focusing on the 30 year period 2035-2065). The skill
of current seasonal forecast systems for climate and energy variables has also been assessed. The C3S ECEM
project was designed to provide ample opportunities for stakeholders to convey their needs and expectations, and
assist in the development of a suitable Demonstrator. This is the tool that collects the output produced by C3S
ECEM and presents it in a user-friendly and interactive format, and it therefore constitutes the essence of the
C3S ECEM proof-of-concept climate service.

Published by Copernicus Publications.
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1 Introduction

The electric energy sector is undergoing a major transfor-
mation. The established model, of traditional thermal power
plants providing most of the “firm” power to match vari-
able levels of demand, is being challenged by the steadily
increasing share of power supply from temporally-variable
renewable energy sources, such as wind and solar power (e.g.
REN21, 2016). Demand variability is also increasing as a re-
sult of the widespread use of embedded small-scale genera-
tion (e.g., rooftop solar PV) and air conditioning, and can fur-
ther change in response to price signals. At the same time, the
cost of batteries has started to noticeably decrease, making
electricity storage increasingly economically viable (Frankel
and Wagner, 2017). This transformation in the energy sec-
tor is taking place against a variable and changing climate.
Given the weather- and climate-dependency of both renew-
able energy and demand — even in the case of large storage
uptake — it is important to develop robust climate-based tools
that can assist energy planners, market operators and policy
makers (Silva and Burtin, 2015).

Recent projects or studies that have assessed future en-
ergy scenarios normally do not fully consider the effect of a
variable and changing climate (e-HW2050, 2015; Silva and
Burtin, 2015). While this may not be the main driver of fu-
ture energy planning, it is likely that long term changes in
variables like temperature and precipitation will affect the
volume of energy that is used and produced on timescales of
decades (e.g., Bloomfield et al., 2016; van Vliet et al., 2016;
Pfenninger and Staffell, 2018). It is therefore important to
assess and quantify the level of changes in climate variables
that will drive the future energy systems, both from a cli-
mate and energy perspective, while also recognising that dif-
ferent energy outcomes need to be considered. For instance,
he e-Highway 2050 project! (e-HW2050) selected five en-
ergy scenarios, amongst those developed by the EU roadmap
2050 reference. These five scenarios were chosen to be sub-
stantially different from each other, while also challenging
the entire existing European electricity system, not just the
transmission grid.

In order to assist the energy sector in understanding the
role of climate on energy systems, and uptaking this cli-
mate information, the EU Copernicus Climate Change Ser-
vice (C3S), a programme started in 2015, has taken as one
of its foci the development of climate services for the en-
ergy industry, such as through the European Climatic Energy
Mixes (ECEM) project. The C3S ECEM’s aim has been to
produce a proof-of-concept climate service, or Demonstra-
tor, to enable the energy industry and policy makers to assess

1e-Highway 2050 was an EU project (2012-2015), participated
in by a large number of Transmission System Operators (TSOs), en-
ergy companies and research institutions, that investigated a num-
ber of scenarios for power production across Europe (http:/www.
e-highway2050.eu, last access: 3 July 2018).
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how well different energy supply mixes in Europe could meet
demand, over different time horizons (from seasonal to long-
term decadal planning), focusing on the role climate has on
the mixes. This objective has been tackled through a close
interaction with stakeholders, in a framework that allows for
co-design of the service.

The C3S ECEM Demonstrator is constituted of a visual
tool to display and investigate climate and energy data, along
with a comprehensive set of documentation such as fact-
sheets, methods and assumptions, key messages, event case
studies and frequently asked questions. It also has the op-
tion to enter feedback for the developers of the Demonstrator
to take on board. However, response to users’ queries, data
updates or fixes are not acted upon within set time frames.
Thus, while the Demonstrator has been developed follow-
ing detailed guidelines (as described in the C3S ECEM data
management plan) in preparation for the future C3S opera-
tional service for the energy sector, it is a (pre-operational)
proof-of-concept climate service, rather than a fully-fledged
(operational and/or commercial) climate service.

The C3S ECEM project started in November 2015, and
represents a collaboration between teams from the Univer-
sity of East Anglia (UEA, UK), Electricité De France (EDF,
France), the Met Office (UK), MINES ParisTech/Armines
(France), the University of Reading (UK) and the Agency
for new technologies, energy and sustainable development
(ENEA, Italy). The project has a duration of 29 months.

The specific underlying challenges motivating C3S ECEM
are:

— To describe the ways in which energy supply and de-
mand over Europe are affected by the spatial and tem-
poral variations of their climate drivers

— To produce scenarios that demonstrate how different
energy supply mixes can meet demand at the Euro-
pean scale, particularly given the projected high level
of highly climate-sensitive renewable energies.

To this end, the C3S ECEM has produced consistent and
high-quality datasets for climate and energy variables, se-
lected for their relevance for the electric energy sector. These
datasets can be explored and downloaded through a flexi-
ble and user-friendly platform, provided by the Demonstra-
tor. The datasets and Demonstrator, as well as the underly-
ing energy conversion models, have been developed by sub-
ject experts in close collaboration with energy sector users.
The Demonstrator allows to explore relationships between
climate and energy over the last 40 years and the effects
of climate change over coming decades, as well as assess-
ment of the skill of seasonal forecasts. As mentioned, a wide
range of documentation and guidance is also provided with
the Demonstrator.

This paper provides an overview of the main aspects of
the C3S ECEM based on a presentation given at the 2017

www.adv-sci-res.net/15/191/2018/
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Figure 1. Overview of the C3S ECEM project. Climate data of rel-
evance to the energy sector (top left) are first bias -adjusted and
then converted into energy variables through statistical modelling
or transfer functions. Climate and energy variables (var.) produced
by the C3S ECEM are presented via the Demonstrator (inset fig-
ure expanded as Fig. 2) together with a wide range if documenta-
tion. For more information, see: http://ecem.climate.copernicus.eu/
demonstrator/ (last access: 3 July 2018).

European Meteorological Society Conference in Dublin (Ire-
land). The main elements of C3S ECEM are shown in Fig. 1.
Section 2 discusses the work on the bias-adjustment of cli-
mate variables relevant for the energy sector over the his-
toric period (1979-2016), for projections (out to 2100), and
including the assessment of seasonal climate retrospective
forecast skill. The conversion of climate variables into en-
ergy supply and demand variables is the next step, described
in Sect. 3. The conversion is performed using models that of-
fer a good compromise between accuracy and flexibility to
model each country in Europe with the available measured
data. In Sect. 4 we describe the main aspects of stakeholder
engagement in the C3S ECEM project, leading to the devel-
opment of the C3S ECEM Demonstrator tool described in
Sect. 5. The final Sect. 6, offers some concluding remarks as
well as an outlook for the next phase of the project, including
the pre-operational phase of the Demonstrator.

2 Bias-adjustment of climate variables relevant for
the energy sector

In the C3S ECEM project, bias-adjustment methods and
tools for the development of some of the Essential Climate
Variables (ECVs, Bojinski et al., 2014) relevant for the en-
ergy sector have been developed for the historical period
(1979-2016). These bias-adjusted historical variables pro-
vide a reference for the bias-adjustment (or calibration) of
seasonal climate predictions and climate projections.

Given the large domain covered by C3S ECEM, reanaly-
ses are preferred to direct observations. The former has the

www.adv-sci-res.net/15/191/2018/
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specific advantage of being spatially and temporally com-
plete through the process of physical/dynamic representation
of the climate system which provides internally consistent
fields across most surface atmospheric variables as well as in
the atmospheric column up to the stratosphere (Compo et al.,
2011). Aside from being used in reanalyses, observations are
here used as reference in our bias-adjustment procedures.

Historical period

A preliminary assessment of different reanalysis products —
ERA-Interim (Dee et al., 2011), JRA-55 (Kobayashi et al.,
2015) and MERRA (Rienecker et al., 2011) — for surface air
temperature, precipitation and solar radiation for the Euro-
pean domain (27°-72° N by 22° W—45° E) was conducted as
an initial step. Each product was re-gridded to the 0.5° grid
for this domain and compared against observational gridded
and station-based products (Haylock et al., 2008; Becker et
al., 2013; Harris et al., 2014; Weedon et al., 2014). On aver-
age, ERA-Interim performed somewhat better than the other
reanalyses over the European domain, so for the purposes of
the project it was decided to retain ERA-Interim only.

All reanalysis products are potentially biased when com-
pared with observations, so a major task in C3S ECEM has
been to assess possible bias-adjustment approaches avail-
able in the scientific literature. A number of different bias-
adjustment approaches have been proposed. In the method-
ology we have adopted, the parameters of different distri-
butions (depending on the variable) are modified, adjusting
those calculated from ERA-Interim to those based on grid-
ded observations or direct station measurement (details are
provided in Jones et al., 2017). Specifically, the following
energy-relevant ECVs have been bias-adjusted:

Air Temperature (TA)

Precipitation (TP)

Wind Speed (WS) at 10 and at 100 m

Solar Irradiance (GHI)

Relative Humidity (RH)

These are the most important variables for the computation
of the energy indicators developed in C3S ECEM, as also
established via stakeholder consultations. Two other ECVs,
Pressure at Sea Level (PSL) and Snow Depth (SD), have also
been considered but these have not been bias-adjusted2; their
country and cluster’ averages are therefore provided based
on the original ERA-Interim.

2In the case of PSL this is considered a well simulated variable
and in the case of SD observed datasets are not readily available.

3The clusters used in C3S ECEM are taken directly from the
e-Highway2050 project. These are aggregates of Nomenclature of
Territorial Units for Statistics (NUTS)-3 regions.

Adv. Sci. Res., 15, 191-205, 2018



http://ecem.climate.copernicus.eu/demonstrator/
http://ecem.climate.copernicus.eu/demonstrator/

194

GPQKHEQH§

D S

© Countries ) Clusters )
g =
:\} Vi
Time period ) Historical . S
Seasonal Forecasting ? X
© Projections

category ) Climate @ Energy

Variables ?
Demand

Hydro (reservoir) Wind
Hydro (run-of-river) @ Solar (PV only)

Variable Type ?
Capacity Factor () Energy @ Power

Temporal Resolution
Daily () Monthly () Seasonal @ Annual

Climate Model ?

© Ensemble Mean
RCM1 ()RCM2 () RCM3 () RCM4
RCM5 () RCM6 < RCM7

Energy Scenario ?
© eHW1 () eHW2 ) eHW3

eHW4 () eHW5  None

Emission Scenario
RCP4.5 @ RCP8.5

Timeseries plots

Country France 9

Full plot || New gra... || Refresh ... || Add to g

Labels Off || Close Graphs || Reset Map

Click here for help and information...

The European Climatic Energy Mixes (ECEM) Demonstrator C

A. Troccoli et al.: Creating a proof-of-concept climate service

TR Sy

% [ —

\ C (
U\ ) R
France | Projections Solar (PV only) (SOL) | Power (PWR) S x
Solar (PV only) (SOL) Power (PWR) =
x
— FRSOL PWR ENSM EH1 R85 12m  — FR SOL PWR ENSM EH2 R85 12m S
FR SOL PWR ENSM EH3 R85 12m  — FR SOL PWR ENSM EH4 R85 12m o
— FR SOL PWR ENSM EH5 R85 12m b
25k ®
/
- /
s (
. W
: f
g (
g 9
2 J
° k2
2
= -
B p— i
g N ;
5 — \
’ {
L/
2030 2040 2050 2060 ;
- AN
e A
P
7 -
L {
Projections Solar (PV only) Power | Ensemble Mean | eHW1 | RCPS.5 ¢
R peny e ) wes |

© 1« <« 2050 » =1 >
# Legend OMW I 0.01TW
A — )

Figure 2. Screenshot of the C3S ECEM Demonstrator. It shows solar power for France for the projection period (RCP8.5) for the five
e-Highway2050 scenarios described in the text (time series plot) and for Europe (underlying map) for year 2050 for the first e-Highway2050
scenario (purple line in the timeseries). Comprehensive documentation about the Demonstrator is available at the bottom left hand side of
the Demonstrator (http://ecem.climate.copernicus.eu/demonstrator/, last access: 3 July 2018).

Note that wind speed at 100 m is calculated using a power
law relationship from wind speed at 10 m. This relationship
is simpler than other methods as it is independent of rough-
ness lengths, namely WS100 = (100/10)*- WS10, with o =
0.143, corresponding to neutral condition of the air column.
Also, bias adjustment for RH is first applied to the dewpoint
depression (air minus dewpoint temperature). Bias adjust-
ment is only performed for land areas. Users wanting off-
shore series (e.g. for wind) should use the original ERA-
Interim data®.

The benefit of performing bias-adjustment is demonstrated
by comparing original and bias-adjusted ERA-Interim data
(as monthly averages for the 1979-2014 period) against the
same observations. This may seem circular, but our approach
adjusts the distributions, not the long-term average. In Jones
et al. (2017) the differences between our bias-adjusted ERA-
Interim data and for instance the well-used WFDEI dataset
(WATCH Forcing Dataset for ERA-Interim, developed by
Weedon et al., 2014) are displayed and discussed. A key
outcome of this assessment is that since there are a number
of observational datasets that represent reality, it is vital to
clearly state which is used in any bias-adjustment applica-
tions.

4These are provided within the bias adjusted gridded products:
where gaps in observations exist the default we adopted is to use
original ERA-Interim data.

Adv. Sci. Res., 15, 191-205, 2018

These bias-adjusted ECV time series, together with the
original PSL and SD, have been made available through the
C3S ECEM Demonstrator: http://ecem.climate.copernicus.
eu/demonstrator/ (last access: 3 July 2018). While the main
ECV products displayed on the C3S ECEM Demonstra-
tor are country and cluster averages, the 0.5° by 0.5° res-
olution gridded data are also made available through the
C3S ECEM ftp site (ftp://ecem.climate.copernicus.eu/, last
access: 3 July 2018), with complete details (including all
the data processing of ERA-Interim and the observational
datasets with which this was compared in Jones et al., 2017).

As described in Jones et al. (2017), the bias-adjusted ECVs
were produced assuming that the variables were indepen-
dent of one another (univariate bias adjustment). However, in
C3S ECEM a bi-variate bias adjustment was considered too.
This work concluded that bias adjustment becomes harder for
more than two variables and becomes more complex if bias
adjustment of climate change projections is contemplated as
questions of non-stationarity arise (Dekens et al., 2017). The
problems are not insurmountable but require further study,
beyond this particular project.

Seasonal prediction period

The energy sector has been identified as a key potential user
of seasonal climate prediction services (e.g. Troccoli, 2010;
Buontempo et al., 2010; Brayshaw et al., 2011; Bruno Soares

www.adv-sci-res.net/15/191/2018/
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and Dessai, 2015). However, the skill of seasonal forecasts
must be assessed and understood before forecasts can be pro-
vided. We have therefore looked in detail at the skill of cur-
rent seasonal forecast systems in predicting quantities rele-
vant to the energy sector for the C3S ECEM project.

In recent years, different seasonal forecasting systems
have demonstrated sufficient skill over Europe to justify the
development of prototype and operational services in vari-
ous sectors (e.g. De Felice et al., 2015; Svensson et al., 2015;
Mackay et al., 2015; Palin et al., 2016; Viel et al., 2016; Clark
et al., 2017). The skill of a forecasting system is assessed
using retrospective forecasts, i.e. forecasts of past seasons
made using the current forecasting system. The accuracy of
the skill assessments is limited by features of those retrospec-
tive forecast data sets, such as the number of years they cover
and the size of the forecast ensembles produced each season.

Forecast skill can be assessed through a wide range of
different statistics, each of which probe different aspects of
the forecasts with different levels of detail (see e.g. Wilks,
2011; Jolliffe and Stephenson, 2012). For the C3S ECEM
project, we have focused on the simple Pearson correlation
between the ensemble-mean retrospective forecasts and the
bias-adjusted historical data (described above). This is often
seen as a measure of deterministic skill, although using the
ensemble means (enhancing the detectable forecast signal by
reducing the noise from the ensemble) can provide an indica-
tion of the skill of probabilistic forecasts (Palin et al., 2016;
Bett et al., 2018a). We have also assessed more directly-
probabilistic statistics, looking at reliability and ROC dia-
grams, and their corresponding Brier and ROC skill scores
(Wilks, 2011; Jolliffe and Stephenson, 2012).

We have performed a preliminary skill assessment of the
climate variables described above, using the retrospective
forecast data sets available from ECMWEF as part of the
EUROSIP multi-model seasonal forecasting system: from
ECMWF (Molteni et al., 2011), Météo-France (Voldoire et
al., 2013), and the Met Office (MacLachlan et al., 2015). For
the final C3S ECEM Demonstrator, we will be using new
seasonal retrospective forecast data available from the C3S
Climate Data Store, which is being developed in parallel to
C3S projects like ECEM.

Using three different dynamical forecasting systems,
based on different coupled climate models, provides a good
overview of the current status of seasonal forecasting skill.
It is important to appreciate that the skill will not only dif-
fer between models, but will also vary considerably between
different variables, seasons and regions. As the seasonal ret-
rospective forecast data is generally available at 1° horizon-
tal resolution, rather than the 0.5° of the historical data, we
have restricted our assessments to European countries, rather
than clusters. Assessing skill directly at the European coun-
try scale, across Europe, is a novel feature of the C3S ECEM
project, and one that closely scrutinises the forecast systems
and their retrospective forecast data sets. It is more common
to assess seasonal forecasts at the scale of Europe as a whole,
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particularly in terms of reliability (e.g. Molteni et al., 2011;
Weisheimer and Palmer, 2014).

Our main findings are that levels of skill vary consider-
ably across the different models, variables, seasons and coun-
tries considered. This means that seasonal forecasts have to
be used carefully and selectively. Skill in winter is very di-
verse across the models and variables we assess. In summer,
the three models are more consistent in which areas can be
forecast skilfully, although there are fewer cases of signif-
icant skill overall. It is important to note however that we
have examined the direct model output for each climate vari-
able. This provides a simple baseline assessment of skill, and
more sophisticated techniques, for example using knowledge
of larger-scale climate drivers, could yield more skilful be-
spoke forecasts for particular regions. Subsequent work on
seasonal forecasting within the C3S ECEM project will ex-
amine different methods of forecasting energy supply and de-
mand metrics, focusing on the cases where we have found
significant skill in forecasting their corresponding climate
variables.

The seasonal skill assessments are described in detail in
technical reports made available as part of the user guid-
ance on the C3S ECEM Demonstrator (Bett et al., 2018b).
The Demonstrator itself provides maps of country-level skill
across Europe, as well as time series for each country show-
ing the relationship between the historical data and the retro-
spective forecast ensemble means.

Projection period

Climate change projections used in C3S ECEM have been
derived from Global Climate Models (GCMs) and Re-
gional Climate Model (RCMs). GCMs are available from
the CMIP5 (fifth Coupled Model Inter-comparison Project)
ensemble of simulations, but their spatial resolution is rel-
atively coarse. RCMs, which use GCMs (from CMIPS5 in
our case) as their boundary conditions, provide more detailed
spatial resolution (comparable to our historical bias-adjusted
datasets). In C3S ECEM, it was decided to base the pro-
jections on RCM output for our European domain, EURO-
CORDEX, rather than global climate projections. This is be-
cause:

— EURO-CORDEX provides a higher spatial and tempo-
ral resolution, typically one order of magnitude higher;

— Bias-adjustment of energy-related climate vari-
ables were already available through the Im-
pact2C/C3S CLIM4ENERGY (C4E, http:
/Iclim4energy.climate.copernicus.eu/, last  access:
3 July 2018) project;

— Consistency in output relative to climate change pro-
jections from the two Energy Sectoral Information Sys-
tems (SISs, namely C3S ECEM and C4E) was consid-
ered a desirable outcome.

Adv. Sci. Res., 15, 191-205, 2018
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Following EURO-CORDEX, output based on the two
most common Representative Concentration Pathways
(RCPs), RCP4.5 and RCP8.5, have been used in C3S ECEM.
Since it would be useful to consider low-carbon scenarios
from the EU perspective (as used in e.g. the e-Highway2050
project), it could be argued that also lower RCPs should be
considered, as for instance RCP2.6. One issue is that output
from EURO-CORDEX for RCP2.6 is sparse, and it would
not therefore be possible to meaningfully compare this out-
put with that of RCP4.5 and RCP8.5. In any case, the two
RCPs considered here provide a useful reference for other
RCPs.

Data from both the GCMs and RCMs are available via the
Earth System Grid Federation (ESGF). Over ten RCM simu-
lations are available for the European domain, but some are
closely-related variants of other simulations, so less useful
than simulations which are more independent of each other.
C4E assessed this similarity and independence, together with
the model skill, and determined the best choices of GCM and
RCM configurations to use if resources were only available
to work with seven, five or three. The rationale behind the
C4E choices is that the main determinant driving the vari-
ability within an RCM is the underlying GCM providing the
boundary conditions. Their choices of 3 and 5 all contain dif-
ferent driving GCMs. For further detail please see C4E report
Climate projection dataset release for the energy sector”. In
C3S ECEM we chose to use the 7-member sub-ensemble.

The C4E bias-adjusted variables (TA, TP, WS and GHI)
were obtained from the relevant ESGF node®. These vari-
ables are listed under the project CORDEX-Adjust. The
other variables (RH, MSL and SD) were obtained from the
ESGF CORDEX repository’.

Data were extracted at the best temporal resolution avail-
able. This is generally 3-hourly but for some variables it can
be daily. The temporal resolution (together with GCM and
RCM configuration, ECV and start and end dates) can be
found in the corresponding Variable Fact Sheet (VES) in the
C3S ECEM Demonstrator. The data are available for the pe-
riod from 1979-2100, and for the two RCPs (4.5 and 8.5).
The switch between historic forcing and projections occurs
at year 2005, so the first part of the simulations from 1979

3 Available at: http://clim4energy.climate.copernicus.eu/
sites/default/files/C4E_ClimateProjection4Energy_dataset_v4_
summary.pdf (last access: 25 February 2018).

6https://esgf—node.ipsl.upmc.fr/sea.rch/c35-<:nergy/ (last access:
25 February 2018).

7https://esgf—data.dkrz.de/projects/esgf—dkrz/ (last  access:
25 February 2018), (other nodes are also available). Note that C4E
obtained the data for one of the CORDEX models directly from
the model developer’s as it is not in the CORDEX archive. This
means that RH, MSL and SD are missing for this RCM. Also, for
another model: RH was not available and SD was not used as it
contained many small negative values. Given the issues with these
SD projection data, these were not used in the Demonstrator in the
end.
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for the two RCPs are the same. The data from each RCM was
re-gridded onto the standard C3S ECEM grid (0.5° by 0.5°
latitude/longitude) and the C3S ECEM domain (27°-72° N
by 22° W-45° E) was retained.

From the cluster and country averages, an ensemble mean
has been calculated and is available for the monthly, seasonal
and annual timescale. The variance of the ensemble mean
time series is reduced compared to the individual RCM sim-
ulations (and also the historic series) due to higher-frequency
variability in the RCMs not being in phase with one an-
other. The RCMs have common external forcings (green-
house gases, solar and some have aerosols) but the detailed
time-evolution of each model (i.e. their internal variability)
will differ depending on the equations and parameterisations
used. Additionally, to give some idea of the RCM uncer-
tainty, within the Demonstrator, we provide an upper and
lower range (the highest and lowest RCM value for each time
step, monthly, seasonal and annual) and plot a smoothed ver-
sion to simplify their representation.

3 Energy variables

A substantial amount of work has gone into collecting and
harmonising energy data from various sources including
ENTSO-E®, eHW2050, EUROSTAT?, World Bank, national
Transmission System Operators (TSOs) data not contained
in the ENTSO-¢ dataset!?, the WindPower database!!, data
from EMHIRES'?, and the Ninja project (Staffell and Pfen-
ninger, 2016). These data have been critical in testing con-
version models (from climate to energy variables) developed
for the historical period, as described in this section, which
are then applied for the seasonal forecast and projection pe-
riod 3.

Based on a literature review, project partners’ expertise
and stakeholder interaction, the energy variables provided by
C3S ECEM are:

— Electricity demand (DEM)
— Electricity supply from:

— Wind power generation (WPG) — Onshore only
(data from offshore wind power is much less ac-
cessible, than for onshore; it is also less widespread
than onshore)

8The European Network of Transmission System Operators for
Electricity: https://www.entsoe.eu/ (last access: 25 February 2018).
9http://ec‘europa‘eu/eurostat/data/database (last
25 February 2018).
1Ohttps://transpalrency.entsoe.eu/ (last access: 25 February 2018).
11http://www.thewindpower.net (last access: 25 February 2018).
12European Meteorological derived high resolution renewable
energy source generation time series (https://ec.europa.eu/jrc/en/
scientific-tool/emhires last access: 25 February 2018).
3Most of the energy data presented in the following is available
via the C3S ECEM Demonstrator.

access:
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— Solar power generation (SPG) — PhotoVoltaic (PV)
only (i.e. not Concentrating Solar Power, as this is
less widespread than PV)

— Hydropower generation (HPG) — Run-of-the-River
and Water Reservoir; pumped storage hydro power
has not been considered given its little dependence
on climate (since it is normally used for load bal-
ancing purposes, it mainly depends on human man-
agement factors).

It should be noted that only a very limited number of stake-
holders requested information about bioenergy/biofuels,
thermal and nuclear power generation. Although climate fac-
tors are less relevant for generation from thermal and nuclear
power plants, climate variables like air or water tempera-
ture, relative humidity or river flow are used to determine the
efficiency and availability of these plants’ cooling systems.
Thus, while C3S ECEM will not provide an estimation of
thermal and nuclear generation as such, the climate variables
provided by the Demonstrator provide useful indicators for
these types of generation too.

The four main energy indicators — DEM, WPG, SPG and
HPG - expressed as both power (in MW) and energy vari-
ables (in MWh), are being provided at country level, and
whenever possible at daily time resolution (together with pre-
computed lower resolution averages, namely monthly, sea-
sonal and annual). In addition, WPG, SPW and HPG are also
provided as capacity factor (or load factor), that is the ra-
tio of real generation to installed capacity (in the interval [0,
1]), providing the advantage that one can then easily compute
generation with different installed capacity distributions.

Power generation can be calculated using either a statisti-
cal or a physical model. The difference is that, for statistical
models, we build a relationship (model) between the clus-
ter or country aggregated power generation and the climate
variables, whereas, for physical models, we use a pre-defined
relationship which provides the power output of a specific
plant using the climate variables and characteristics of the
generating plant (e.g. the power curve for a wind turbine).
Statistical models are simpler to implement, as they require
less information, but they need long-enough time series of
energy generation to be calibrated. In contrast, the main ad-
vantage of physical models is that no power measurements
are needed to compute the power output. They also have the
extra advantage that they can be easily used with ECVs from
climate projections or seasonal forecasts.

The methodologies used to calculate the energy variables
provided by the C3S ECEM project are aimed at highlight-
ing the role of climate on these energy variables. Thus, for
instance, while DEM depends on many factors largely un-
related to climate (technological, social, etc.), in the C3S
ECEM project great effort has been put into isolating the
specific role that climate plays on DEM (as well as on the
other energy variables taken into consideration). This is very
important as it becomes easier to extrapolate in future projec-
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tions, or even at the seasonal time scale, climate-dependent
DEM.

The detailed description of the energy conversion models
developed by the C3S ECEM project for DEM, then hydro,
solar and wind power generation is beyond the scope of this
paper. These more specific papers are being written up, or are
already available, as in the case of the solar PV conversion
model (Saint Drenan et al., 2018). As mentioned, models are
developed for the historical period and then applied to the
projection period and the seasonal forecast period, but this
is work in progress. In the following, brief details of each of
these models — namely for DEM, WPG, SPG and HPG — are
provided.

Electricity demand model

Based on EDF expertise, daily DEM is modelled using a re-
gression approach, the Generalized Additive Model (GAM),
a generalization of Linear Models. Introduced by Hastie and
Tibshirani (1990), GAM has been improved by Wood (2006)
and many others since then. This is a well known method for
load forecasting (Pierrot and Goude, 2011; Fan and Hynd-
man, 2012; Goude et al., 2013), and has been successfully
used in the Global Energy Forecasting Competition 2012
(GEFCOM2012) forecasting competition (Nédellec et al.,
2014). Its major advantages are that it is simple to interpret, it
is fast to run and it can be easily adapted to different datasets.

DEM is characterized by significant trends, due to popu-
lation increase and economic activity variability. Across Eu-
rope, in particular, the 2008 financial crisis had noticeable
impacts on energy demand. The DEM model is built there-
fore in two steps: (1) long term trend estimation and removal
and (2) modelling of the daily residuals e.g. as undertaken
in Thornton et al. (2016). The trend is then added to the
daily model to reconstruct the whole signal. Models have
been built using the climate variables that have an impact
on DEM (temperature, wind speed, solar irradiation, relative
humidity) according to industry experience, for country and
daily averages. If for any reason one of the variables is not
available, for seasonal forecasts or climate projections for in-
stance, it is straightforward to remove that variable and re-
run the models to take into account only the available climate
variables.

For the historical ERA-Interim period, DEM is provided
only at country level, as no information is available for the
clusters’ share of national values. In addition, DEM time se-
ries are provided in three different forms:

a. Full signal, including the long-term trend (see Fig. 3 for
an example referring to four European countries);

b. Detrended signal, in which the time series is adjusted to
the latest level, by removing the long-term trend;

c. Anomaly, in which the mean of (b) is removed, to iso-
late the climate dependant part of the signal
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ECEM time series: demand (DEM) energy (NRG)
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Figure 3. Example of seasonally averaged electricity demand (in MWh) plot for France (burgundy), Germany (blue), United Kingdom
(green) and Italy (purple). This plot has been produced by, and downloaded from, the ECEM Demonstrator (http://ecem.climate.copernicus.

eu/demonstrator/, last access: 3 July 2018).

Hydro Power Generation model

The data necessary to compute hydro-power using simple
physical models (namely hydraulic head, plant location and
plant efficiency; see e.g. van Vliet et al., 2016) are difficult
to obtain. In France for instance, we managed to get these
data only for about two thirds of the total hydropower in-
stalled capacity (15 GW out of 24 GW). In other countries,
data access is more complicated. Hydropower plant charac-
teristics and generation data are indeed considered as strate-
gic information by most energy companies, and hence is not
shared publicly. As a consequence, it was decided that a more
pragmatic approach was to model country-average HPG us-
ing statistical models. Separate models have been developed
for run-of-the-river and water reservoir.

All the available variables (both for energy and meteoro-
logical aspects) have been aggregated at the daily level and
calculated considering the national average. Not all the coun-
tries have been considered for this work. They have been cho-
sen according to two aspects: (1) Generation data were avail-
able for at least 18 months; (2) Installed capacity of hydro-
power is among the countries with the largest installed gener-
ation capacities. The latter requirement has been introduced
to focus the modelling work on the countries where hydro-
power generation plays an important role. According to these
criteria, the countries analysed in this work are the following:
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— Run-of-the-river for France, Austria, Germany, Finland,
Portugal, Romania, Norway and United Kingdom

— Water reservoir for France, Austria, Germany, Portugal,
Romania, Norway, Spain, Sweden and Switzerland

The most challenging aspect when modelling the hydro-
power generation using meteorological variables is the ne-
cessity to capture in some way the complex relationship be-
tween the availability of the water resource (obtained basi-
cally through precipitation and snow melting) and the pro-
duction of electricity. Our assumption is that the generation
at time ¢ is highly correlated not with the precipitation at the
same time, but instead with the cumulative sum of the pre-
cipitation for the preceding k days. So, the first step in our
methodology is the search of the value of k that maximises
the Pearson correlation coefficient between the moving sum
and the daily generation. After this step, the moving sum with
the optimal & is then included among the set of the predictors.
The other used predictors are:

Precipitation at time ¢

Air temperature at time ¢

Sum of the precipitation for the last 5 days

Sum of the precipitation for the last 30 days
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Figure 4. Correlation between prediction of country-average hydro power capacity factor using three statistical models (linear regression,
random forests, regression tree) and measured data from the ENTSO-E dataset. (a) Run-of-River production. (b) Water Reservoir production.
Country abbreviations are (in the order given): Austria (AT), Switzerland (CH), Germany (DE), Spain (ES), Finland (FI), France (FR), Latvia
(LV), Norway (NO), Portugal (PT), Romania (RO), Sweden (SE), United Kingdom (UK).

Note that air temperature is used as proxy for snow depth
(or snow melt) because the latter variable is not modelled
with sufficient accuracy, particularly for projections or, even
seasonal forecasts. Also, to provide a consistent and mean-
ingful methodology we do not consider as a target variable
(i.e. the predictand) directly the generated electricity but in-
stead the capacity factor.

Three different statistical models have been tested: linear
regression, random forests and regression tree. All the mod-
els have been calibrated and tested for each selected country
and hydro-power type. A 10-fold cross-validation procedure
has been applied. Figure 4 shows that this approach, while
relatively simple, yields satisfactory results. Our extensive
tests show that the random forests model yields a better per-
formance than the other two models. Hence, only the random
forests model is used for the C3S ECEM hydropower prod-
ucts. Further details about the hydro power modelling and
additional results are available in De Felice et al. (2018).

Solar Power Generation model

In C3S ECEM PV power production is estimated by tak-
ing the aggregated power production of all plants included
in each for each 0.5° by 0.5° cell. We used only a physical
modelling approach for PV. This relies on some known char-
acteristics of PV panels. A difficult issue in this calculation
is the consideration of the characteristics of the PV plants
(module orientation, technology. . .), which are only partially
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known in the past and present and difficult to assess in the
future. The impact of most of these individual characteristics
on the PV power generation is not negligible (Saint-Drenan,
2015). Therefore, a compromise has to be found in the choice
of the power operator between an accurate model and an easy
implementable approach.

Three different model formulations are proposed by Jerez
et al. (2015) for the calculation of time series of PV power
generation for climate projection. They can be summarized
in the general expression given in Eq. (1):

G
Gstc

P, =PR (1)

where G is the downward short-wave (solar) radiation at the
surface, Gstc is G under standard test conditions and PR is
the performance ratio of the PV plant.

The three variants of the model formulations differ in the
expression of the performance ratio, which is assumed con-
stant, depending on the irradiance and temperature and de-
pending on the wind speed, irradiance and temperature in the
first, second and third formulations respectively. The strength
of the set of models proposed by Jerez et al. (2015) is that it
requires a very limited amount of information to be imple-
mented. A major drawback is however that, since the influ-
ence of the module orientation angles on the output power is
neglected, the daily and seasonal variation of the PV power
generation can noticeably differ from actual PV production.
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In C3S ECEM, an improved model was implemented
based on the work of Saint-Drenan (2015) and Saint-Drenan
et al. (2017), in which the total PV power produced in a re-
gion is calculated from meteorological data using a physical
model. In this model, the characteristics of PV plants such
as module orientation angles and power curve are first eval-
uated on the basis of a statistical analysis of a database con-
taining meta-information of several thousands of PV plants.
Assumptions about the installed PV capacity are necessary
to aggregate the PV power generation evaluated for each cell
in order to compare the model output with TSO data at coun-
try level. The model was trained over Germany and tested
over France. For Germany, a database of more than 1.5 mil-
lion PV plants has been used. For France, the information
provided on a yearly basis on the total PV capacity installed
on each of the more than 36 000 French zip-code areas has
been collected. With these datasets, the installed PV capaci-
ties have been calculated for each cell. The result of this PV
modelling approach is displayed in Fig. 5. Our PV model was
then applied to all other European countries considered in the
C3S ECEM project and outputs are available on the Demon-
strator. Further details about the solar power modelling and
additional results are available in Saint-Drenan et al. (2018).

Wind Power Generation model

Wind power modelling in C3S ECEM has been performed
using both physical and statistical models, with the two inter-
compared in order to select the approach with the more
accurate representation of wind power capacity factor. The
physical model computes the capacity factor by adopting the
standard conversion relationship (e.g. Brayshaw et al., 2011)
tested for several wind turbine types and several hub heights.
Computing the capacity factor at individual wind farm level
requires:

a. Improving the estimation of individual turbine height
when not available in the WindPower database; this has
been done by using the closest windfarm data (closest
in terms of distance and commissioning date);

b. Improving the choice of power curves for individual
farms; an analysis has been carried out to identify the
most frequent turbine types as a function of the hub
height, and a selection has been made to use different
power curves associated to the hub height.

The statistical models have been trained using the most re-
cent WPG data from the ENTSO-E transparency platform,
for all the available countries. Two regression approaches
have been compared: random forests and support vector ma-
chine.

The different options have been tested for France and some
other countries for which at least daily time series of ob-
served WPG is available for validation. It has to be noted
that statistical models require such observations to be trained.
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Therefore, as this kind of data is not available for all coun-
tries, it is not possible to implement the statistical approach
everywhere. Our WPG data, using both physical and statis-
tical models, have been compared also with the EMHIRES
data set (Gonzales Aparicio et al., 2016) and with the Ninja
data set (Staffel and Pfenninger, 2016) as displayed in Fig. 6.
Further details about the wind power modelling and addi-
tional results are available in Dubus et al. (2017, 2018).

4 Stakeholder engagement

The C3S ECEM programme of stakeholder engagement has
provided a wealth of information and feedback via work-
shops, one-to-one meetings with experts, advisory commit-
tee interaction, email surveys, webinars and interactions at
key conferences and seminars. While keeping the communi-
cation methods and suite of communication tools largely un-
changed, a key aspect of the C3S ECEM approach to stake-
holder engagement is that it has continually been adapted
to suit the broadening stakeholder groups. Also, joint stake-
holder engagement in the form of a Climate and Energy Sym-
posium'# in February 2017 with the sister C3S C4E project
has allowed us to draw on expertise to complement both the
energy Demonstrator tools whilst reaching a wider audience.

Stakeholder workshops have played a strong role in elicit-
ing input from a wide and diverse audience towards the de-
velopment of the Demonstrator. Four workshops, one every
six months, have been held by the C3S ECEM project at dif-
ferent locations around Europe, also as a way to attract dif-
ferent regional audiences. The broad objectives of the C3S
ECEM workshops have been:

— To engage with a wide number of energy sector experts
(industry, policy, service providers, academia) to seek
their views on requirements for climate services;

— To elicit feedback on the Demonstrator and the climate
and energy data it provides, through “hands-on” partic-
ipation sessions;

— To allow prospective users to discover through case
studies how access to climate information can improve
an organisation’s ability to cope with extreme climate
events and scenarios, and to build a simple tailored data
assessment;

As such, the C3S ECEM stakeholder workshops have been
carefully planned to ensure these objectives were achieved in
the most effective way. Indeed, the approach taken in each
workshop has considered the expected audience and, espe-
cially, the level of progress of the project and of the C3S
ECEM Demonstrator. For instance, in the first workshop
(February 2016), when the visual component of the Demon-
strator was still in an embryonic stage, stakeholders provided

1 4http://climate.copernicus.eu/events/copernicus-symposium—
climate-services-energy-sector (last access: 3 July 2018).
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Figure 6. Country-average wind power capacity factor for C3S ECEM wind power models, and JRC (EMHIRES, green) and Ninja (salmon)
datasets. In model mix] and nocl the known installed capacities from the WindPower database were used; in mix/ a mix of bias-adjusted
100 m wind speed were used (i.e. bias-adjusted over land and non-bias-adjusted over the ocean), in model noc/ the original ERA-I extrapo-
lated to 100 m wind speed were used. In PhM03_wbc, the bias-adjusted 100 m wind speed data were applied to a fixed wind turbine type at
each 0.5° by 0.5° grid cell. Finally, Stat is the statistical model using the support vector machine approach.
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Table 1. Energy and climate sector requirements now and in the future.

A. Troccoli et al.: Creating a proof-of-concept climate service

User Category User requirement

Energy producing companies

Energy planners require data and modelling tools (Multi-decadal climate

change projections) to prioritise investment initiatives

TSOs and Distribution System
Operators (DSOs)

Requirement for bias adjusted climate data and energy supply and demand data.
Some organisations use in house modelling tool to check supply will meet de-

mand on a seasonal basis and on a multi-decadal timeframe for infrastructure

decisions.

International Organisations and
Projects

Requirement for bias adjusted climate data and energy supply and demand data.
Would potentially use Demonstrator for forecasting, particularly at country and
pan—European level.

Policy and operational relevant
research organisations

Requirement for multi-decadal climate change projections. Would potentially
use Demonstrator for devising and advising investment and infrastructure deci-

sions at cluster, country and pan-European level.

abundant input to help shape it, including via users’ sto-
ries. In workshop three (jointly delivered with C3S C4E), we
canvassed stakeholder feedback through a series of breakout
group discussions and plenary summaries. With the fourth
workshop, we showcased the Demonstrator and arranged for
groups to select and build on a case study of their choice. In
so doing we captured comments and feedback from the dif-
ferent categories of user present. A programme of webinars,
to present the various aspects of the C3S ECEM project, from
the work on climate variables, to energy variables and to the
Demonstrator, has formed an integral component of stake-
holder engagement, with feedback gathering and information
sharing as their main aims. A number of “learning” areas for
C3S ECEM have thus been achieved: energy and climate sec-
tor characteristics, communication with key stakeholders, as
well as the technical requirements of potential users. For in-
stance, our engagement activities have helped define energy
and climate sector requirements now and in the future, as
summarised in Table 1.

While our stakeholder engagement activities targeted a
large number of prospective users, the project also benefited
strongly from having an industrial partner (EDF) directly
involved in the project execution, rather than as an exter-
nal stakeholder. EDF participation has not only allowed the
project to benefit from direct and continuous feedback on the
development of the Demonstrator, but has also led to the de-
velopment of key methodologies for analysing and working
with energy variables, using the expertise of EDF profession-
als.

5 The Demonstrator: the visible part of the iceberg

As mentioned throughout this paper, the ultimate target of
the C3S ECEM project has been the development of the C3S
ECEM Demonstrator. This is an interactive visual on-line
tool, which allows users to view and explore energy supply

Adv. Sci. Res., 15, 191-205, 2018

and demand profiles, and climate variables, for each Euro-
pean country and subnational cluster, in map and time se-
ries format (Fig. 2). As discussed, the C3S ECEM Demon-
strator has been developed in accordance with user needs,
and integrates the energy and climate variable data produced
in C3S ECEM on historical, seasonal forecasting and future
climate projection timescales. Time series and map data for
countries and clusters can also be downloaded directly from
the Demonstrator, whereas bulkier gridded data, in the form
of netCDF files, are available through the project ftp server,
which is also readily accessible via the Demonstrator.

The C3S ECEM Demonstrator has been designed to be
relatively simple, with pre-calculated data displayed as both
maps and time series plots, while allowing for interactive
changes to plotted maps and time series. Although the hori-
zontal resolution displayed is not as high as the original un-
derlying gridded data, the visual simplicity of the C3S ECEM
Demonstrator makes it accessible to climate and energy spe-
cialists (to carry out initial investigations) and to less experi-
enced users such as policy makers or even high-school stu-
dents.

A wide variety of help and guidance is provided with the
Demonstrator, including key messages and event case stud-
ies which illustrate the types of information that the Demon-
strator offers, and how it can be used and interpreted to
benefit the energy sector. Documentation (including variable
fact sheets) is provided on all the data sets embedded in the
Demonstrator to ensure transparency and that users have ap-
propriate information to judge the quality and reliability of
these data for their own particular applications.

It is important to note that in order to handle the large
amount of data and files generated by the C3S ECEM
Demonstrator, conventions were discussed and agreed as pre-
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sented in the C3S ECEM Data Management Plan'>. Such
conventions will be key elements in the development of any
future operational phase of the service.

While the Demonstrator functionality is intended to
be broadly frozen during the current pre-operational
phase, feedback is continually encouraged, for instance
though the feedback tab on the right-hand-side of the
Demonstrator page. Interested prospective users of the
C3S Demonstrators are therefore encouraged to regu-
larly visit the project and Demonstrator web pages, and
to test the Demonstrator: http://ecem.climate.copernicus.eu/
demonstrator/ (last access: 3 July 2018). Feedback will be
gratefully received.

6 Conclusions and perspectives

The Demonstrator has been promoted and demonstrated at
various venues, including the European Meteorological So-
ciety Conference in September 2017 in Dublin. It is now
available for public access and users are encouraged to ex-
plore and exploit it, and to provide ongoing feedback. A
number of new features, such as energy variables at the cli-
mate projection time scale, are being produced for inclusion
in the Demonstrator. Energy companies and operators, such
as TSOs, and energy policy makers will benefit from the co-
designed climate service Demonstrator as it will provide a set
of tools to better assess energy mix options over Europe. Im-
portantly, by bringing together climate and energy data for
different time frames — historical, seasonal forecasting and
future projections — that are consistent in space and time, well
documented, and easy accessible, the C3S ECEM Demon-
strator will:

— Ensure that estimates of the country energy mixes prop-
erly reflect climate conditions including their variabil-
ity, and it will therefore allow end-users to better as-
sess the optimal supply mix that can meet demand in
the most cost effective manner;

— Offer a coherent approach for the climate variables and
energy indicators used in power demand and supply bal-
ance, an added value with respect to current practice in
the sector, where climate data and derived energy vari-
ables are not always physically homogeneous and/or in
balance

As well as providing a critical building block for an op-
erational energy service, we envisage that the Demonstrator
and its associated data sets could be used in a variety of fu-
ture research projects (such as European H2020 projects), as
it offers a unique approach: it provides a Europe-wide, multi-
variable, multi-timescale view of the climate and energy sys-

15An abridged version can be downloaded at: ftp://ecem.
climate.copernicus.eu/C3S_ECEM_README_v1.pdf (last access:
3 July 2018).
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tems. It can therefore help in anticipating important climate-
driven changes in the energy sector, through either long-term
planning or medium-term operational activities. For instance,
it can be used to investigate the role of temperature on elec-
tricity demand across Europe, as well as its interaction with
the variability of renewable energies generation.

Data availability. The data produced by the EU Copernicus Cli-
mate Change Service (C3S) European Climatic Energy Mixes
(ECEM) is available through its Demonstrator which can be ac-
cessed via the http://ecem.wemcouncil.org. The C3S website (https:
//climate.copernicus.eu/) also contains complementary and/or more
updated information.
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