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ABSTRACT
Potential natural vegetation (PNV) is the vegetation cover in equilibrium with
climate, that would exist at a given location if not impacted by human activities.
PNV is useful for raising public awareness about land degradation and for
estimating land potential. This paper presents results of assessing machine learning
algorithms—neural networks (nnet package), random forest (ranger), gradient
boosting (gbm), K-nearest neighborhood (class) and Cubist—for operational
mapping of PNV. Three case studies were considered: (1) global distribution of
biomes based on the BIOME 6000 data set (8,057 modern pollen-based site
reconstructions), (2) distribution of forest tree taxa in Europe based on detailed
occurrence records (1,546,435 ground observations), and (3) global monthly
fraction of absorbed photosynthetically active radiation (FAPAR) values
(30,301 randomly-sampled points). A stack of 160 global maps representing
biophysical conditions over land, including atmospheric, climatic, relief, and
lithologic variables, were used as explanatory variables. The overall results
indicate that random forest gives the overall best performance. The highest
accuracy for predicting BIOME 6000 classes (20) was estimated to be between
33% (with spatial cross-validation) and 68% (simple random sub-setting),
with the most important predictors being total annual precipitation, monthly
temperatures, and bioclimatic layers. Predicting forest tree species (73) resulted in
mapping accuracy of 25%, with the most important predictors being monthly cloud
fraction, mean annual and monthly temperatures, and elevation. Regression
models for FAPAR (monthly images) gave an R-square of 90% with the most
important predictors being total annual precipitation, monthly cloud fraction,
CHELSA bioclimatic layers, and month of the year, respectively. Further
developments of PNV mapping could include using all GBIF records to map
the global distribution of plant species at different taxonomic levels.
This methodology could also be extended to dynamic modeling of PNV,
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so that future climate scenarios can be incorporated. Global maps of biomes,
FAPAR and tree species at one km spatial resolution are available for download via
http://dx.doi.org/10.7910/DVN/QQHCIK.

Subjects Biogeography, Computational Biology, Plant Science, Data Mining and Machine
Learning, Spatial and Geographic Information Science
Keywords Natural vegetation, Random forest, Global, Biome, Machine learning, Forest species,
FAPAR, Land potential

INTRODUCTION
Potential natural vegetation (PNV) is the “vegetation cover in equilibrium with climate,
that would exist at a given location non-impacted by human activities” (Levavasseur et al.,
2012; Hemsing & Bryn, 2012). It is a hypothetical vegetation state assuming natural
(undisturbed) physical conditions, a reference status of vegetation assuming no
degradation and/or no unusual ecological disturbances. PNV is especially useful for
raising public awareness about land degradation (Weisman, 2012) and for estimating
land potential (Herrick et al., 2013). For example, Omernik (1987) details PNV maps
for USA; Bohn, Zazanashvili & Nakhutsrishvili (2007) provides maps for EU;
Carnahan (1989) for Australia; Marinova et al. (2018) maps PNV for the Eastern
Mediterranean–Black Sea–Caspian-Corridor; and maps of PNV for Latin America are
available in Marchant et al. (2009). Regarding specific tree species, San-Miguel-Ayanz
et al. (2016) provide habitat suitability maps for the main forest tree species in Europe,
based on environmental variables, especially bioclimatic variables such as average
temperature of the coldest month, precipitation of the driest month and similar.
Potapov, Laestadius & Minnemeyer (2011) generated a global map of potential forest
cover at one km resolution (publicly available from http://globalforestwatch.org/map/).
Erb et al. (2017) produced a global map of potential biomass stocks by reversing the
current managed land use systems to natural vegetation. Levavasseur et al. (2012) and
Tian et al. (2016) predict global PNV classes using environmental covariates such as
climatic images and landform parameters. Griscom et al. (2017) recently produced a
global reforestation map at one km resolution.

A common limitation of existing maps is their coarse spatial resolution (about 25 km)
limiting the use of these maps for operational planning (Marchant et al., 2009;
Levavasseur et al., 2012; Tian et al., 2016). In addition, comparisons of multiple
overlapping sources of PNV maps shows that they rarely agree with one another
since they do not share the same mapping criteria and, traditionally, emphasize
regionally-specific botanical groupings rather than functional classifications. Limitations
of maps based on field surveys of PNV (Bohn, Zazanashvili & Nakhutsrishvili, 2007)
arise from assumptions about controls on vegetation distribution based on
extrapolation from a limited number of field surveys.

Here, we provide an update of comparable global PNV maps produced by
Potapov, Laestadius &Minnemeyer (2011), Levavasseur et al. (2012), Tian et al. (2016), and
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Erb et al. (2017). We explore the possibility of increasing the mapping accuracy using
up-to-date maps of climate, atmosphere dynamics, landform and lithology, and
state-of-the-art machine learning methods. Our final aim is to produce PNV maps that
are more detailed, richer in information, based on objective reproducible methods; and
potentially more usable for global modeling and awareness raising projects. We focus
on improving the spatial detail, thematic accuracy, and reproducibility of maps, at the cost
of increasing the total computing load. We also consider automation of the prediction
process so that the maps can be rapidly updated as new ground-truth data is obtained.
Our modeling follows three phases:

(a) Model selection: we compare possible models of interest for PNV mapping and
choose the optimal spatial prediction framework based on the cross-validation results.

(b) Model assessment: we assess the uncertainty of predictions per vegetation class and try
to determine objectively the limitations of the mapping products for wider uses.

(c) Prediction: we use the best performing models to produce spatial predictions, then
visually assess maps and if necessary repeat steps a–c.

MATERIALS AND METHODS

Theory
Potential natural vegetation is the hypothetical vegetation cover that would be
present if the vegetation were in equilibrium with environmental controls, including
climatic factors and disturbance, and not subject to human management.
When considering PNV, one needs to distinguish between potential “natural” and
potential “managed” vegetation, and “actual” natural and “actual” managed vegetation
(Fig. 1A). Vegetation is in general a dynamic feature. Also PNV changes as the climatic
conditions change. For example, with the future global warming and changes in our
climate, PNV might be significantly different than pre-industrial revolution. Therefore it
is important to reference PNV to the time period of interest, so that historic PNV and
current or future PNV maps can be produced (Fig. 1B).

In addition to the differentiation between the potential and actual natural vegetation,
there are also three sub-types of the PNV that need to be considered:

1. PNV model A: based on the autochthonous or native vegetation and living species only.

2. PNV model B: based on the autochthonous or native vegetation that includes also
extinct species.

3. PNV model C: PNV based on any vegetation whether native or introduced or extinct.

Derivation of maps of PNV model A could be of interest to, for example, nature
conservationists; PNV model C could be of more interest to, for example, forestry and
agroforestry organizations as it provides an objective basis for introducing non-native
species to a new area.

Conveniently, locations that have not been subject to human disturbance/management
can provide relevant information about vegetation cover in historic times, which can
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serve as a guide to PNV. A major limitation of modeling PNV is that we unfortunately
do not have equally detailed information about the status of vegetation and environment
across historic periods. For instance, about half of the Earth’s mature tropical forests
have disappeared in the last 150 years and original habitats have been reduced to 10%
(Hansen et al., 2013). Given that climates have changed and few areas are truly human
impact “free,” even undisturbed historic vegetation only represents one possible expression
of PNV for a given set of climate conditions at a specific time.

Regardless of the hypothetical nature of PNV, the concept (both as a classification
and as a regression type problem) is still a helpful yardstick against which land cover
change can be quantitatively measured and land restoration designs can be planned.
Erb et al. (2017) have estimated that almost half of the standing global vegetation biomass
carbon stocks has been lost, almost equally due to land cover change (e.g., tree cover to
cropland) and management effects within land cover types (e.g., croplands managed at
lower biomass carbon stocks than tree covered areas). PNV maps can thus help quantify
such differences, both deficit and surplus, in biomass stocks caused by the current land
management system more objectively and served as an input to the redesign of land
management systems.

PNV mapping and species distribution modeling
In principle, PNV mapping is a special case of species distribution modeling (Elith &
Leathwick, 2009; Hemsing & Bryn, 2012; Hijmans & Elith, 2018): at the core of PNV
mapping is statistical modeling of the relationship between species (or natural associations
of species or communities) and a list of predictors, that is, biotic and abiotic site
factors (Elith & Leathwick, 2009). The difference between mapping actual distribution
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Figure 1 Schematic explanation of differences between (A) potential and actual natural/managed vegetation, and (B) current and historic
vegetation in the context of global land area. Full-size DOI: 10.7717/peerj.5457/fig-1
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of species and PNV mapping is that PNV involves extrapolating the model to the whole
land mask, assuming a hypothetical distribution under a specific set of undisturbed
bioclimatic and/or biophysical conditions:

PrðYÞ ¼ f Relief ;BioClimate; Lithologyð Þ (1)

where Y is the target variable, which could be vegetation types or plant species with a finite
number of states Y ∈ {1, 2, : : : ,k} and/or vegetation properties. PNV mapping can be
considered as a classification-type or regression-type problem depending on whether
we map factors such as vegetation types or continuous vegetation properties such as
biomass or leaf area index.

The primary assumptions we make when applying a PNV model to the training
data are:

1. The ecological gradients captured in training data reflect only natural ecological gradients
and not human controls such as land use systems, civil engineering constructions, or
one-off major disturbance events such as volcanic eruptions, floods, or tsunamis.

2. Remote sensing data such NDVI often reflect human-altered vegetation patterns and
ought not be used as covariates in PNV mapping (Leong & Roderick, 2015).

3. The training data are representative of the study area, especially considering the feature
space (ecological gradients) of the study area.

Assuming a log-linear relationship between ecological gradients and target variables,
PNV classes can be modeled using a multinomial log-linear model:

f ðk; iÞ ¼ b0; k þ b1; kx1; i þ b2; kx2; i þ � � � þ bM; kxM; i (2)

where f (k, i) is the linear predictor function, b are the regression coefficients associated
with themth explanatory variable and the kth outcome. An efficient implementation of the
multinomial logistic regression is the multinom function from the R package nnet
(Venables & Ripley, 2002). The output of predictions produced using multinom are k
probability maps (0–100%) such that all predictions at each site sum up to 1:XK
k¼1

PrðYi ¼ kÞ ¼ 1 (3)

In this paper, all prediction models are used in the “probability” mode; that is, to derive
probability maps per class.

Note that a PNV spatial prediction model divides geographic space among all
possible states given the training points. It is therefore necessary, for Eq. (1), that all
possible states of Y are represented with training data so that the model can be applied
over the whole spatial domain of interest. If all of the states are not known, then the space
will be artificially filled-in with known classes occupying similar ecological niches and
which can lead to prediction bias. In other words, as with species distribution modeling
of individual species, both presence and absence data play an equally important role for
model calibration (Elith & Leathwick, 2009).
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Input data: training points
We consider three ground-truth data sets for model calibration:

1. An expanded version of the BIOME 6000 DB data set representing site-based
reconstructions from surface pollen samples of major vegetation types or biomes
(http://dx.doi.org/10.17864/1947.99).

2. EU Forest (Mauri, Strona & San-Miguel-Ayanz, 2017) and Global Biodiversity
Information Facilities (GBIF) occurrence records of the 76 main forest tree taxa in
Europe (http://dx.doi.org/10.15468/dl.fhucwx).

3. Long-term fraction of absorbed photosynthetically active radiation (FAPAR)
monthly images derived using a time-series of Copernicus Global Land products
(https://land.copernicus.eu).

BIOME 6000 and EU Forest and GBIF occurrences are point data sets, while
FAPAR consists of remote sensing images at relatively fine spatial resolution (250 m),
from which we sample a large number of values (ca 100,000) using random sampling after
masking for areas of natural vegetation.

BIOME 6000
The BIOME 6000 data set (http://dx.doi.org/10.17864/1947.99) includes vegetation
reconstructions frommodern pollen samples, preserved in lake and bog sediments and from
moss polsters, soil and other surface deposits. The use of pollen data to reconstruct PNV
relies on the fact that although modern pollen samples may contain markers of land use, the
predominant pollen types found in any one sample are those of the regional vegetation
within a radius on the order of 10–30 km around the sampling site. Even if forests have
fragmented, these fragments continue to produce and disperse pollen grains, and the
composition of the pollen assemblage provides information on tree taxa that are still present.

The BIOME 6000 data set is an amalgamation of multiple data sets. BIOME 6000
initially produced maps for individual regions: Europe, Africa and the Arabian
Peninsula, the Former Soviet Union and Mongolia and China. Additional regions were
subsequently added including Beringia, western North America, Canada and the
eastern United States and Japan, and the data for northern Eurasia, China and southern
Europe and Africa were also updated. These regional compilations were summarized
in Prentice & Jolly (2000). Subsequent regional updates include China (Harrison et al.,
2001), the circum-Artic region (Bigelow et al., 2003), Australia (Pickett et al., 2004),
and South America (Marchant et al., 2009). Additionally, we have also combined
these data with pollen-based vegetation reconstructions from the Eastern
Mediterranean-Black Sea-Caspian Corridor region (Marinova et al., 2018) available
from http://dx.doi.org/10.17864/1947.109, to produce a more complete and up-to-date
compilation of the BIOME 6000.

Some sites in the BIOME 6000 data set have multiple reconstructions based on multiple
nearby modern pollen samples (up to 30), which provides a useful measure of the
reconstruction uncertainty, but could lead to modeling bias because the number of modern
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samples varies between sites. To reduce these unwanted effects, we use only the most
frequently reconstructed biome at each site and for those sites with two equally common
reconstructions (ca. 900) we use both observations.

The number of biomes differentiated varies from region to region, and some biomes
were only reconstructed in specific regions where they are particularly characteristic,
although they may occur, but not be recognized, elsewhere. Furthermore, some biomes
that can be recognized on the modern landscape were never reconstructed in the
BIOME 6000 data set (e.g., cushion forb tundra)—either because of the sample distribution
or because the characteristic plant-functional types were also spread amongst other
biomes. Simplified or “megabiome” classifications (Harrison & Bartlein, 2012) involve a
substantial loss of information. We have therefore created a new standardization of the
classification scheme (see further Table 1; the final scheme has 20 globally applicable
and distinctive biomes) which preserve the maximum number of distinct biomes that
were reconstructed as present in multiple regions.

There are relatively few data vegetation reconstructions for tropical South America,
which could lead to extrapolation problems and omission of important PNV classes in
Latin America, but also potentially in tropical parts of Africa and Asia. To reduce
under-representation of tropics, we have added 350 randomly simulated points based on

Table 1 Summary results of cross-validation for mapping global distribution of biomes (20 classes).

Biome class ME TPR AUC N

Cold deciduous forest -0.01 0.89 0.96 201

Cold evergreen needleleaf forest 0.01 0.87 0.98 892

Cool evergreen needleleaf forest -0.07 0.87 0.93 201

Cool mixed forest 0.01 0.86 0.97 1,549

Cool temperate rain forest 0.01 0.92 0.99 95

Desert 0.00 0.89 0.96 330

Erect dwarf shrub tundra -0.01 0.89 0.98 145

Graminoid and forb tundra -0.03 0.83 0.91 128

Low and high shrub tundra -0.01 0.88 0.98 393

Prostrate dwarf shrub tundra -0.02 0.54 0.90 11

Steppe 0.01 0.87 0.94 889

Temperate deciduous broadleaf forest -0.01 0.84 0.94 961

Temperate evergreen needleleaf open woodland 0.01 0.92 0.97 307

Temperate sclerophyll woodland and shrubland 0.00 0.94 0.99 154

Tropical deciduous broadleaf forest and woodland 0.01 0.86 0.97 215

Tropical evergreen broadleaf forest 0.00 0.87 0.99 333

Tropical savanna 0.01 0.89 0.99 291

Tropical semi evergreen broadleaf forest -0.05 0.87 0.98 160

Warm temperate evergreen and mixed forest 0.01 0.85 0.96 985

Xerophytic woods scrub -0.02 0.88 0.95 388

Note:
Classification accuracy for predicted class probabilities is based on fivefold cross-validation with refitting. ME = “mean
error,” TPR = “true positive rate,” AUC = “area under curve,” N = “number of occurrences.”
Numbers in bold indicate critically low prediction accuracy.
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the RADAM Brazil natural vegetation polygon map at high spatial detail (Radam
Vegetação SIRGAS map) (Veloso et al., 1992) obtained from ftp://geoftp.ibge.gov.br/.
Before generating the pseudo-observations for Brazil, we translated SIRGAS map legends
to match the BIOME 6000 classes. This translation is also available via the project’s github
repository. This gave a total of 8,057 unique individual locations represented in the
combined data set, that is, a total of 8,959 training observations (Fig. 2).

We have mapped the distribution of biomes for all land pixels, with the exception
of water bodies, barren land and permanent ice areas. Barren land and permanent ice
areas were masked out using the ESA’s global land cover maps for the period 2000–2015
(https://www.esa-landcover-cci.org) and the long-term FAPAR images, both
available at relatively fine resolution of 300 m. We only mask out pixels that are
permanent ice/barren ground and have a FAPAR = 0 throughout the period 2000–2015.

European forest tree occurrence records
For mapping PNV distribution of forest tree taxa (note: most of these are individual
species, but some are only recognized at sub-genus or genus level) in Europe we have
merged two point data sets: EU Forest (Mauri, Strona & San-Miguel-Ayanz, 2017)
(588,983 records covering 242 species) and GBIF occurrence records of the main forest
tree taxa in Europe. The GBIF Occurrence data was downloaded on January 23, 2017
(http://dx.doi.org/10.15468/dl.fhucwx). We focus on modeling just the 76 forest tree taxa
indicated in the European Atlas of Forest Tree Species (San-Miguel-Ayanz et al., 2016).

Global GBIF occurrence data can be obtained by using the rgbif package, in which case
the only important parameter is the taxonKey (e.g., “Betula spp.” corresponds to GBIF
taxon key 2875008). After the bulk data download (which gives about four million
occurrences), we imported all points and then subset occurrences based on the list of taxon

Figure 2 Spatial distribution of BIOME 6000 training points. A total of 8,057 unique locations are shown on the map.
Full-size DOI: 10.7717/peerj.5457/fig-2
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keys and coordinate uncertainty (<2 km positional error). This gave a total of 1,546,435
training points from which about two thirds are GBIF points (Fig. 3). We assume in further
analysis that the EU Forest point locations and representativeness are more trustworthy,
hence we assign four times higher weights to these points than to the GBIF points.

Certain forest tree species (Chamaecyparis lawsoniana, Eucalyptus globulus, and
Pseudotsuga menziesii), that are shown in the European Atlas of Forest Tree Species are
introduced, that is, planted and do not generally propagate naturally. Hence, they were
removed from the list of target forest tree species. We retained, however, three species
(Ailnthus altissima, Picea sitchensis, and Robinia pseudoacacia) that are not native
but are extensively naturalized. The total number of target forest tree taxa was 73.

We built predictive models for European forest tree taxa using information on their
global distribution, but only generate predictions for Europe. In other words, we use a
global compilation for model training to increase the precision of the definition of the
ecological niche of each taxon, but then predict only for Europe as the selection of taxa is
based on the European Atlas of Forest Tree Species (San-Miguel-Ayanz et al., 2016).

Fraction of absorbed photosynthetically active radiation
Fraction of absorbed photosynthetically active radiation monthly images for 2014–2017
were obtained from https://land.copernicus.eu (original values reported in the range 0–235
with scaling factor 1/255, i.e., with a maximum value of 0.94). From a total of 142 images
downloaded from https://land.copernicus.eu we derived minimum, median and
maximum value of FAPAR per month (12) using the 95% probability interval using the
data.table package (http://r-datatable.com). For regression modeling we only report results
of predictions of median values of FAPAR; predictions of minimum and maximum
FAPAR can be obtained from the data repository.

Figure 3 Merge of EU Forest (Mauri, Strona & San-Miguel-Ayanz, 2017) and GBIF occurrence records used to build models to predict PNV
for the 76 forest tree taxa. Total of 1,546,435 shown on the map. Full-size DOI: 10.7717/peerj.5457/fig-3
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We model median and upper 95% FAPAR values as a function of the same covariate
layers used in all three case studies. For model training we use ca. 30,000 randomly
sampled points (simple random sampling) exclusively from protected area as shown in
the World Database on Protected Areas (WDPA) data set (http://protectedplanet.net)
and the intact forest landscapes (IFL) data set for 2000 and 2013 (Potapov et al., 2008;
Fig. 4). We use about three times more training points from the IFL 2013 areas for model
development than from the WDPA and IFL 2000 masks to emphasize more ecological
conditions of intact vegetation.

The prediction model for FAPAR under PNV is in the form of:

R > FAPAR ∼ cm + X1m + X2m + X3 + : : : + Xp

where X1m is the covariate with monthly values (e.g., precipitation, day-time and
night-time temperatures, etc.), X3 is the environmental covariates that do not vary through
year (e.g., lithology or DEM derivatives), and cm is the cosine of the month number:

cm ¼ cos m=12 � 2 � pð Þ (4)

where m is the month number 1–12. The total number of training observations used to
build models is in fact 180,483 (each training site is represented up to 12 times).

For PNV FAPAR mapping we have masked out all water bodies including lakes
and rivers, following the ESA’s global land cover maps for the period 2000–2015
(https://www.esa-landcover-cci.org) and permanent ice/barren ground.

Input data: environmental covariates
For modeling purposes, we use a stack of 160 spatially explicit co-variate data layers that
represent standard ecological gradients essential for growth and survival of plants:

Figure 4 World’s Protected Areas (dark gray) based on http://protectedplanet.net and Intact Forest Landscapes for year 2000 (green) based on
http://intactforests.org. These maps were used to randomly select some 30,000 training points to predict potential FAPAR under PNV.

Full-size DOI: 10.7717/peerj.5457/fig-4
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� DEM derivatives quantifying various landscape metrics and hydrological processes:
slope, curvature, topographic index, topographic openness, valley depth, and multi-
resolution valley bottom index; all derived using the SAGA GIS (Conrad et al., 2015).

� Mean, minimum and maximum monthly temperatures derived as a mean
between WorldClim v2 (http://worldclim.org/version2) and CHELSA climate
(Karger et al., 2017).

� Mean monthly precipitation images derived as a weighted average between the
WorldClim v2, CHELSA climate and Global Precipitation Measurement Integrated
Multi-satellitE Retrievals for GPM rainfall product.

� CHELSA Bioclimatic layers downloaded from http://chelsa-climate.org/, including:
annual mean temperature, mean diurnal temperature range, isothermality (day-to-night
temperature oscillations relative to the summer-to-winter oscillations), temperature
seasonality (standard deviation (s.d.) of monthly temperature averages), maximum
temperature of warmest month, minimum temperature of coldest month, temperature
annual range, mean temperature of warmest quarter, mean temperature of coldest
quarter, annual precipitation amount, precipitation of wettest month, precipitation of
driest month, precipitation of wettest quarter, precipitation of driest quarter
(Karger et al., 2017).

� European Space Agency’s CCI-LC snow probability monthly averages based on MODIS
snow products MOD10A2 downloaded from http://maps.elie.ucl.ac.be/CCI/viewer/
index.php.

� USGS Global Ecophysiography landform classification and lithological map at 250 m
resolution obtained from http://rmgsc.cr.usgs.gov/outgoing/ecosystems/Global/ and
based on Global Lithological Map (GLiM) (Hartmann & Moosdorf, 2012).

� MODIS Cloud fraction monthly images obtained from http://www.earthenv.org/cloud
(Wilson & Jetz, 2016).

� Global Water Table Depth in meters based on Fan, Li & Miguez-Macho (2013).

� NASA’s monthly MODIS Precipitable Water Vapor images (MYDAL2_M_SKY_WV
data set at http://neo.sci.gsfc.nasa.gov).

� Potential wetlands GIEMS map (Fluet-Chouinard et al., 2015).

� Global Surface Water dynamics images: occurrence probability, surface water change,
and water maximum extent; downloaded from https://global-surface-water.appspot.
com/download (Pekel et al., 2016).

� Density of earthquakes based on the USGS Earthquake Archives (http://earthquake.
usgs.gov/earthquakes/).

Some CHELSA bioclimatic layers contained too many missing pixels or artifacts
(e.g., mean temperature of wettest quarter, mean temperature of driest quarter,
precipitation seasonality, precipitation of warmest quarter, and precipitation of coldest
quarter) and hence were not used for further modeling to avoid propagating those artifacts
to final predictions.
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All original layers have been resampled to the standard grid at a spatial resolution
of 1/120 decimal degrees (about one km) covering latitudes between -62.0 and 87.37.
Some layers such as water vapor needed to be downscaled from 10 to 1 km resolution,
for which we used the bicubic splines algorithm as implemented in GDAL (Mitchell &
GDAL Developers, 2014). We do not map Antarctica as this continent is dominantly
covered with permanent ice and there are no training points. We limit all analysis to
one km, that is, 1/120 degrees in geographical coordinates, to avoid too high of a
computational load, even though many of environmental covariates are also available
at finer resolutions.

We use the same stack of covariates for mapping global distribution of biomes,
FAPAR and forest tree species in Europe, in order to be able to compare model
performance and investigate whether the most important covariates differ among the
three case studies.

Machine learning algorithms examined
We examine predictive performance of the following machine learning algorithms
(MLAs):

� Neural networks (Venables & Ripley, 2002).

� Random forest (RF; Breiman, 2001; Cutler et al., 2007; Biau & Scornet, 2016;
Hengl et al., 2018).

� Generalized boosted regression models (Friedman, 2002).

� K-nearest neighbors (Venables & Ripley, 2002).

Neural networks are available from several packages in R. Here, we use the nnet package
(Ripley & Venables, 2017) also described in Venables & Ripley (2002). RF is efficiently
implemented in the ranger package (Wright & Ziegler, 2017) and can be used to process
large data sets. Generalized boosted regression models are available via the gbm package
(Ridgeway, 2017). The K-nearest neighbor regression is available via the class package,
that is, the knn function (Venables & Ripley, 2002). Of these four algorithms, the K-nearest
neighbors is computationally the least intensive and results in relatively simple models,
while RF is computationally the most intensive and results in large models. However, a
limitation of the K-nearest neighbors approach is that it does not handle high dimensional
data in comparison to RF or neural nets.

We also test using the same packages to fit models for regression-type problems
(e.g., modeling of FAPAR), with the exception of the class package, that is, the knn
function which can only be used for classification problems. For modeling FAPAR we
instead added use of the Cubist approach, available via the Cubist package (Kuhn et al.,
2017), and the extreme gradient boosting approach available via the xgboost package
(Chen & Guestrin, 2016).

The caret package has many more MLA of interest for classification and regression
problems than presented here, but many are not fully optimized for large data sets and
hence also not applicable for large data sets (>> 1,000 observations with >> 100 covariates).
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Model selection
For model fitting and model selection we use the caret package implementation for
automated evaluation of models. When comparing performance of the models we look at
classification accuracy based on cross-validation with refitting implemented in the caret
package via the setting (Kuhn, 2008; Kuhn & Johnson, 2013):

R > ctrl < -trainControl(method = "repeatedcv", number = 5, repeats = 2)

which translates as: models are refit five times using 80% of the data and predictions
derived from the fitted models are compared with the remaining observations; this process
is then repeated two times to produce stable results. The reported accuracy is the map
accuracy (0–100%) and/or root mean square error (RMSE) derived using all merged
cross-validations (Kuhn, 2008; Kuhn & Johnson, 2013). Since most of the data sets are
fairly large and model fitting can take hours, even in a high performance computing
environment, we limit the number of repetitions to 2.

For FAPAR (regression modeling) and selection of the final prediction model we use
the same repeated cross-validation as implemented via the caret package. This is, in
principle, similar to evaluation of the classification accuracy, except the comparison
criterion is RMSE.

All analyses were run on a high performance computing Amazon ec2 server with
64 threads (32 CPU’s) and 256 GiB RAM. Total computing time to produce all outputs
is about 12 hours of optimized computing (or about 600 CPU hours). One kilometer
data can be processed with two degree tiles, which usually requires some 5,000 tiles to
represent the land mask. All processing steps and preparation of input and output maps
are fully documented at https://github.com/envirometrix/PNVmaps. All output maps are
available for download via http://dx.doi.org/10.7910/DVN/QQHCIK under the Open
Database License.

Performance of classification algorithms
Performance of classification algorithms is assessed using fivefold cross-validation with
refitting of models. For evaluation of the mapping accuracy for biomes and tree species
we use the map purity (0–100%) and kappa metrics for the dominant (hard) classes as
the key measures of predictive performance (Kuhn & Johnson, 2013). For each class we also
provide predicted probabilities, which can be used to model transition zones and
correlation between classes. For the predicted probabilities of class occurrences (0–1)
we derived the true positive rate (TPR) and the area under the receiver operating
characteristic curve (AUC) as implemented in the ROCR package (Sing et al., 2005, 2016).
TPR value = 1 indicates a perfect match to the class positives in ground data while
TPR values <0.5 can be considered poor mapping accuracy. Likewise, values of AUC
close to 1 indicate high prediction performance, while values around 0.5 and below are
considered poor. TPR and AUC provide probably a more informative measure of the
mapping accuracy than overall mapping accuracy/kappa, as they also allow detection of
problematic classes.
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We also use Scaled Shannon Entropy Index (SSEI), which can be derived using the
per-class probability maps (Shannon, 1949; Borda, 2011):

SSEIsðxÞ ¼ �
Xb
i¼1

PiðxÞ � logb PiðxÞ ¼
�Pb

i¼1 PiðxÞ � log PiðxÞ
�b � b�1 � log b�1

(5)

where b is the total number of possible classes and P is probability of class i. The SSEI is in
the range from 0–1, where 0 indicates a perfect classification and 1 (or 100%) indicates
maximum confusion. SSEI should not be confused with classification accuracy assessment.
For example, SSEIs <60% indicates relatively low confusion between classes, that is,
high accuracy, while mapping error of 60% would be considered a relatively poor
classification accuracy result.

For the biomes data set, where spatial clustering of points is significant, we also use
repeated spatial cross-validation as implemented in the mlr package (Bischl et al., 2016):

R > learner.rf = makeLearner("classif.ranger", predict.type = "prob")

R > resampling = makeResampleDesc("SpRepCV", fold = 5, reps = 5)

It has been shown that spatial autocorrelation in data and serious spatial clustering
in training points can lead to somewhat biased estimate of the actual accuracy
(Brenning, 2012). A solution to this problem is to apply spatial partitioning so that
possible bias due to spatial proximity is minimized.

We also compare results of modeling potential distribution of tree species in Europe
with the habitat type maps of Europe produced independently by San-Miguel-Ayanz
et al. (2016) and Brus et al. (2012). This comparison is visually based only.

Performance of regression algorithms
Performance of regression algorithms is also assessed using fivefold cross-validation
with refitting of models. For assessment of the mapping accuracy for FAPAR we use as
the main performance measures the RMSE:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 ½ŷðsjÞ � yðsjÞ�2
n

s
(6)

and mean error (ME):

ME ¼
Pm

j¼1½ŷðsjÞ � yðsjÞ�
n

(7)

where ŷðsjÞ is the predicted value of y at the cross-validation location, and m is total
number of cross-validation points. We also report amount of variation explained by the
model (R2) derived as:

R2 ¼ 1� SSE
SST

� �
� 100% (8)

where SSE is the sum of squared errors at cross-validation points and SST is the total
sum of squares. A coefficient of determination close to 1 indicates a perfect model.
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RESULTS

Global maps of biomes
Results showed that a relatively accurate model of PNV could be produced from the
BIOME 6000 data set using the existing stack of covariates at one km spatial resolution.
Results of cross-validation show the RF model to be the best performing method and
distinctively superior to all other approaches (Fig. 5). The choice of the RF mtry parameter
had little impact on overall accuracy, most likely because there was a high overlap
in covariate maps so that even with smaller mtry bagging the performance was
relatively similar. The best prediction accuracy from among the four methods used
for mapping global biomes was about 68%. The predicted biome classes are presented
in Fig. 6.

The most important covariates for the RF model were: total annual precipitation,
monthly temperatures, CHELSA bioclimatic layers, atmospheric water vapor images,
and monthly precipitation. Landform parameters and lithology are not amongst the top
20 most important predictors. The decline in variable importance was, however,
gradual—even lower ranked covariates might still affect the accuracy of predictions.

The detailed cross-validation results show that the only difficult class to predict was
prostrate dwarf shrub tundra (Table 1). The TPR value for most class probabilities
ranges from 0.83 to 0.94 indicating relatively high match with ground data. The SSEI map
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Figure 5 Predictive performance of the target machine learning algorithms for mapping global
distribution of biomes (N = 8,653; spatial distribution of training points is available in Fig. 2).
Methods compared: ranger, random forest; kknn, K-nearest neighbors; gbm, generalized boosted
regression models; nnet, neural networks. Full-size DOI: 10.7717/peerj.5457/fig-5
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Figure 6 Predicted PNV distribution for (A) global biomes with a zoom in on areas in Brazil (B) and Europe (C). Labels indicates training
points from the BIOME 6000 data set (Fig. 2). Background map data: Google, DigitalGlobe. Full-size DOI: 10.7717/peerj.5457/fig-6
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Figure 7 Scaled Shannon Entropy Index (SSEI) derived using predicted probabilities for 20 biomes (classes) based on Eq. (5). High values of
SSEI (red color) indicate high confusion between classes. Full-size DOI: 10.7717/peerj.5457/fig-7

kknn

nnet

gbm

ranger

0.10 0.15 0.20

●

●

●

●

Accuracy

0.10 0.15 0.20

●

●

●

●

Kappa

Figure 8 Predictive performance of the target machine learning algorithms for mapping forest tree
species (N = 1.5 million distribution of training points is available in Fig. 3). Methods compared:
ranger, random forest; gbm, generalized boosted regression models; nnet, neural networks; kknn,
K-nearest neighbors. Full-size DOI: 10.7717/peerj.5457/fig-8
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Table 2 Results of cross-validation for the forest tree taxa.

Species name GBIF taxon ID ME TPR AUC N

Abies alba 2685484 -0.01 0.77 0.92 16,150

Acer campestre 3189863 -0.01 0.65 0.83 19,819

Acer platanoides 3189846 -0.02 0.68 0.82 30,801

Acer pseudoplatanus 3189870 -0.01 0.69 0.79 65,039

Aesculus hippocastanum 3189815 -0.01 0.59 0.85 8,088

Ailanthus altissima 3190653 0.04 0.69 0.92 1,576

Alnus cordata 2876607 0.05 0.73 0.95 904

Alnus glutinosa 2876213 0.00 0.71 0.77 91,292

Alnus incana 2876388 -0.03 0.76 0.95 6,873

Betula spp. 2875008 -0.03 0.63 0.83 7,313

Carpinus betulus 2875818 0.00 0.75 0.89 22,765

Carpinus orientalis 2875780 0.07 0.21 0.92 284

Castanea sativa 5333294 0.00 0.74 0.91 13,049

Celtis australis 2984492 -0.01 0.54 0.92 594

Cornus mas 3082263 0.03 0.51 0.90 827

Cornus sanguinea 3082234 -0.03 0.59 0.82 8,837

Corylus avellana 2875979 -0.02 0.67 0.76 48,140

Cupressus sempervirens 2684030 -0.04 0.21 0.70 284

Euonymus europaeus 3169131 -0.02 0.61 0.83 12,119

Fagus sylvatica 2882316 0.00 0.73 0.81 89,044

Frangula alnus 3039454 -0.02 0.71 0.86 26,873

Fraxinus angustifolia 7325877 -0.05 0.63 0.94 1,757

Fraxinus excelsior 3172358 0.00 0.67 0.74 91,111

Fraxinus ornus 3172347 0.02 0.86 0.99 2,765

Ilex aquifolium 5414222 -0.01 0.66 0.82 26,873

Juglans regia 3054368 -0.03 0.60 0.89 3,643

Juniperus communis 2684709 -0.03 0.71 0.86 21,189

Juniperus oxycedrus 2684451 -0.07 0.71 0.97 1,705

Juniperus phoenicea 2684640 -0.07 0.74 0.98 1,137

Juniperus thurifera 2684528 -0.03 0.87 0.99 1,886

Larix decidua 2686212 -0.01 0.71 0.89 15,581

Olea europaea 5415040 0.00 0.90 0.99 7,080

Ostrya carpinifolia 5332305 0.06 0.90 0.99 1,809

Picea abies 5284884 0.02 0.76 0.86 122,713

Picea sitchensis 5284827 0.05 0.80 0.96 13,023

Pinus cembra 5285134 -0.01 0.77 0.96 853

Pinus halepensis and
Pinus brutia

5285604 0.03 0.86 0.99 16,951

Pinus mugo 5285385 0.00 0.85 0.98 6,667

Pinus nigra 5284809 0.01 0.79 0.93 13,540

Pinus pinaster 5285565 0.01 0.86 0.98 17,080

Pinus pinea 5285165 -0.04 0.85 0.99 4,910

Pinus sylvestris 5285637 0.02 0.78 0.85 153,928
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(Fig. 7) showed that the zones of highest confusion between classes can be found in
Afghanistan, Nepal, mountainous parts of the USA and Mexico, parts of Angola and
Zambia. The map of the SSEI is comparable to the confusion map produced by
Levavasseur et al. (2012), except in our case the Rocky Mountains in USA and mountains
chains in South America show somewhat higher confusion. Many of the areas with
high confusion index occur because the prediction model has problems distinguishing
between closely-related biomes such as the “cold evergreen needleleaf forest” and “cool
evergreen needleleaf forest” (e.g., Scotland).

Results of the accuracy assessment based on the spatial cross-validation (mlr package
implementation; Bischl et al., 2016) further indicate that the spatial clustering of points

Table 2 (continued).

Species name GBIF taxon ID ME TPR AUC N

Populus alba 3040233 -0.01 0.54 0.86 4,522

Populus nigra 3040227 -0.01 0.65 0.89 5,478

Populus tremula 3040249 -0.02 0.66 0.74 44,057

Prunus avium 3020791 -0.01 0.63 0.77 25,711

Prunus cerasifera 3021730 0.00 0.73 0.94 3,928

Prunus mahaleb 3022789 -0.01 0.31 0.75 517

Prunus padus 3021037 -0.03 0.63 0.78 21,705

Prunus spinosa 3023221 -0.01 0.69 0.81 31,783

Quercus cerris 2880580 0.00 0.80 0.97 4,109

Quercus ilex 2879098 0.02 0.85 0.99 22,972

Quercus pubescens 2881283 0.01 0.86 0.98 9,096

Quercus pyrenaica 2878826 0.00 0.88 0.99 6,253

Quercus robur and
Quercus petraea

2878688 0.01 0.69 0.76 141,938

Quercus suber 2879411 -0.04 0.86 0.99 5,504

Robinia pseudoacacia 5352251 0.01 0.71 0.90 13,411

Salix alba 5372513 0.02 0.72 0.90 11,938

Salix caprea 5372952 -0.03 0.68 0.78 40,879

Sambucus nigra 2888728 0.00 0.70 0.81 44,961

Sorbus aria 3012680 -0.01 0.59 0.87 5,426

Sorbus aucuparia 3012167 -0.01 0.70 0.76 86,977

Sorbus domestica 3013206 -0.04 0.48 0.87 801

Sorbus torminalis 3012567 -0.03 0.62 0.92 2,558

Taxus baccata 5284517 -0.02 0.58 0.82 8,062

Tilia spp. 3152041 -0.02 0.50 0.82 4,393

Ulmus spp. 2984510 -0.03 0.64 0.92 5,426

Tilia spp. 3152041 0.00 0.58 0.85 4,522

Ulmus spp. 2984510 -0.02 0.69 0.91 5,375

Note:
Classification accuracy for predicted class probabilities based on fivefold cross-validation. ME = “mean error,” TPR =
“true positive rate,” AUC = “area under curve,”N = “Number of occurrences.” Taxa with less than <50 observations were
omitted from analysis.
Numbers in bold indicate critically low prediction accuracy.
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does have a large effect on the mapping accuracy: spatial CV drops from 0.68 to 0.33 and
weighted kappa to 0.45. This likely happens due to high spatial clustering of the biome
points and due to the high spatial autocorrelation of biomes.

European forest tree species
The results of fivefold cross-validation with re-fitting at each fold, confirms that RF was also
the best prediction method for the forest taxa data set (Fig. 8). The overall mapping
accuracy was significantly lower than for biomes, but this reduction in accuracy was to be
expected as many of these taxa occur in communities, resulting in natural overlap of
forest tree taxa distribution. Themapping accuracy of individual taxa, however, can be relatively
high with TPR values of between 0.16–0.90 and an average value of around 0.69 (Table 2).
The final maps (Fig. 9) showed a relatively goodmatch with ground data, meaning that with the
exception of some species of rarer occurrence (Picea omorika, Cupressus sempervirens, Prunus
mahaleb), the species probability distribution maps were relatively accurate.

The most important predictors in the RF model for forest tree taxa were mean annual
daily temperature, other monthly temperatures, elevation, CHELSA bioclimatic images,
monthly precipitation, and MODIS cloud fraction images. Covariates for lithology
and landform classification did not feature in the top 20 predictors. It could be that the
GLiM (Hartmann & Moosdorf, 2012), which was used to represent changes in lithology,
is too general for this scale of work.

Figure 9 Examples of predicted PNV distributions (probabilities) for European forest tree species (A) Quercus Ilex (GBIF ID: 2879098; 36,724
training points) and (B) Quercus robur/petraea (GBIF ID: 2878688; 404,296 training points). Background map data: Google, DigitalGlobe.

Full-size DOI: 10.7717/peerj.5457/fig-9
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Figure 10 illustrates differences between the map of actual distribution of Fagus
sylvatica, generated by Brus et al. (2012), and our predictions. In this case, the potential
for extending habitat of F. sylvatica is significant, especially over parts of France and
Germany.

Correlation analysis using all predicted distribution maps (matrix of Pearson’s rho rank
correlation coefficients for all possible pairs) indicated that many forest species are
positively correlated, especially F. sylvatica and Abies alba and Populus nigra and Salix
alba. High overlap between species probability maps reflects co-existence within
communities, and thus could help with objectively defining forest communities.

Global monthly FAPAR
The RF approach also produced the best preditcions of potential FAPAR (Fig. 11).
The models for FAPAR were highly significant with R-squared around 90% and RMSE
at ± 24 (original values in the range 0–232 where 235 corresponds to FAPAR = 100%)
for the most accurate model based on fivefold Leave-Location-Out cross-validation.
However, unlike with biomes and forest species distributions, the regression-tree Cubist
model achieves equal performance to that of RF. The most important covariates for
predicting FAPAR were total annual precipitation, MODIS cloud fraction images,
CHELSA bioclimatic images, and monthly precipitation images. The caret package
further suggested that mtry parameter for RF needs to be set higher than the default values
for modeling FAPAR. Setting up mtry >25 helps reduce the RMSE by about 7–8%.

Figure 10 Comparison between predicted PNV distribution for (A) Fagus sylvatica (GBIF ID: 2882316) based on our results, and (B) based on
the maps generated by Brus et al. (2012), that is, showing the presumed actual distribution of the tree species. Background map data: Google,
DigitalGlobe. Full-size DOI: 10.7717/peerj.5457/fig-10
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Figure 12 depicts an example of actual vs predicted (PNV based) FAPAR for February
in the urban area around São Paulo, where lower actual FAPAR reflects the removal
of natural vegetation. Even larger differences between the potential and actual FAPAR
are observed in parts of Africa (Fig. 13), likely reflecting land degradation and destruction
of vegetation cover. In areas of intensive agricultural production (e.g., Western Australia
and Midwest USA), actual FAPAR can be much higher than potential FAPAR under
potential natural vegetation in a given month. However, this is often a temporal effect, as
when PNV FAPAR is aggregated over the whole year, most places modified by human
management show actual FAPAR is lower than potential. In Western Australian cropping
zones, for example, crop fields have higher FAPAR during the winter growing season,
but since the fields are bare for most of the year, aggregated annual PNV FAPAR is
higher overall. Whilst this pattern may hold for rain-fed agriculture, in intensively irrigated
areas the FAPAR of the managed vegetation can be much higher than of the PNV over the
whole year, especially in arid and semi-arid areas (e.g., Nile Delta). This supplemental
irrigation, plus the fact that total annual precipitation is the most important covariate,
indicates that water availability/use efficiency is likely the main driver of FAPAR
beyond natural conditions.

Maps of the s.d. of the prediction error (Fig. 14) as derived in the ranger
package by using the quantreg setting (Meinshausen, 2006) provide useful
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Figure 11 Predictive performance of four machine learning algorithms for mapping global
distribution of FAPAR (N = 180,990). Methods compared: gbm, generalized boosted regression models;
xgboost, Extreme Gradient Boosting; ranger, random forest; cubist, Cubist regression models. (A) RMSE,
root mean square error, (B) R-squared. Full-size DOI: 10.7717/peerj.5457/fig-11
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information about model quality, that is, where collection of additional points would
maximize model improvement and which additional covariates could be considered. For
example, the highest prediction errors for FAPAR for the month of August occurred in
the transition areas between tropical forest and savanna areas, and in various biome
transition zones in Asia.

Figure 12 FAPAR values for February based on the PNV samples: (A) actual (250 m resolution) and (B) predicted (one km resolution).
A zoom in area around the city of São Paulo in Brazil. Full-size DOI: 10.7717/peerj.5457/fig-12
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Figure 13 FAPAR values for Subsaharan Africa: (A) actual (250 m resolution) and (B) predicted (one km resolution) potential FAPAR values
for February. Background map data: Google, DigitalGlobe. Full-size DOI: 10.7717/peerj.5457/fig-13
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DISCUSSION

Accuracy and reliability of produced PNV maps
Our results of modeling potential spatial distribution of global biomes, potential
FAPAR and European forest tree taxa, show that relatively accurate maps of PNV

Figure 14 Predicted global FAPAR values for August (A) and standard deviation of the prediction error for the map above (B). To convert to
percent, divide by 253. Full-size DOI: 10.7717/peerj.5457/fig-14
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can be produced using existing data and publicly available environmental grids. In the case
of the biomes and forest tree taxa case studies, RF consistently outperforms neural
networks, gradient boosting, and similar MLA’s. This is consistent with some other
vegetation mapping studies (Li et al., 2016). However, RF and Cubist models perform
equally well in the case of FAPAR. Accuracy assessment results of our work indicate
improvement in product accuracy in terms of greater spatial detail and smaller
classification error than found in the mapping products of Levavasseur et al. (2012)
and Tian et al. (2016).

Precipitation, temperature maps, and bioclimatic images are consistently the most
important covariates in all three case studies. Currently available lithology/parent material
maps are not indicated as significantly important covariates in any of the case studies.
This may be because the existing lithologic map (Hartmann & Moosdorf, 2012) is not
detailed enough, and/or because the differences in lithology/parent material are more
important at finer resolutions/scales than those mapped here. Landform and
lithology/parent material covariates may be important at local scales but, globally,
vegetation distribution seems to be dominated by climate. This is not surprising since
nutrient availability is also partially controlled by climate and partially by the vegetation
itself. Upon visualization of the mapping products, however, it was noticed that the
influence of topography is visible, especially in the maps of European forest tree taxa,
suggesting that DEM derivatives are still important for mapping PNV.

We have also not considered any soil layers as inputs to modeling as these are also often
predicted from similar climatic and remote sensing layers already used in our case studies
as covariates. Moreover, most of the predictive soil mapping projects use RS images
reflecting human induced changes, which we have tried to avoid as these are more
relevant for mapping actual vegetation. For mapping of the potential managed vegetation,
however, it would be probably more important to include also soil property/soil type maps
into the modeling framework.

Further improvements in prediction accuracy of global biome may be limited due to:

1. BIOME reconstructions representing the vegetation of an area around a given site
rather than at the exact point location, since the source of the pollen is on the order
of 10–30 km around the site.

2. The ambiguity of reconstructions for about 10% of the sites, so that maximum accuracy
of any prediction technique may not exceed 90% without additional observation data.

3. The fact that the BIOME reconstruction accuracy is known to be lower at ecotonal
boundaries and in mountainous areas because of pollen transport issues, particularly the
long-distance transport of tree pollen.

4. The BIOME data set is compiled from many regional reconstructions and all
harmonization was done a posteriori, which may have introduced additional noise
into the data.

So far, we have not explored opportunities for combining multiple MLA models based
on validation data; that is, for doing ensemble predictions, model averages or model stacks.
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Stacking models can improve upon individual best techniques, achieving improvements of
up to >30%, with the additional costs including higher computation loads (Michailidis,
2017). In our case, the extensive computational load from derivation of models and
product predictions had already obtained improved accuracies, making increasing
computing loads further a matter of diminishing returns.

Our list of MLA models could also be extended. For example, we did not consider
the use of support vector machines (Li et al., 2016), or the extreme learning machine
algorithm (Deo & Sahin, 2015). Both have proven to be suitable for mapping vegetation
distribution and quantitative properties of vegetation. Not all MLA methods are,
however, suitable for large regression matrices, as the computing time can be excessive
and hence parallelization options are crucial.

Our models of PNV FAPAR are based on simulated point data and the accuracy of
how well models represent natural vegetation areas is dependent on the representativeness
of the Protected Planet (http://protectedplanet.net) and Intact Forest Landscapes
(http://intactforests.org) data. Also, many of the world’s biomes such as the Mediterranean
region and similar, have sustained high levels of human impact in the past and are
perhaps under-represented in the Protected Planet (http://protectedplanet.net) data set.
Nevertheless, our cross-validation results (Leave-Location-Out method) indicate a good
match between training and validation points.

It would be useful to further explore what the performance of the models we used would
be if we removed whole continents in the cross-validation process, or at least larger
countries such as USA, China, Brazil, Australia, India, and/or the South African Republic.
For biomes, spatial cross-validation showed a significant drop in accuracy; removing
some larger countries from model training will likely also make difference. We did not
explore effects of spatial proximity on mapping forest species and FAPAR as these are very
dense point data sets. In addition, FAPAR training points were generated using simple
random sampling, so spatial clustering should be non-existent.

Fourcade, Besnard & Secondi (2018) recently demonstrated that randomly chosen
classical paintings can also be added to predictive modeling, and sometimes such models
might be even better evaluated than models computed using real environmental variables.
MLAs have even higher tendency to over-fit data and often perform very poor in
extrapolation areas. These two remain the biggest drawbacks of using MLAs for species
distribution modeling. It appears that the key to avoiding over-fitting or using non-realistic
mapping accuracy measures, based on Fourcade, Besnard & Secondi (2018), is in
putting more effort in cross-validation (i.e., making it more robust and more reliable) and
in ensuring that most important predictors and partial correlations can also be explained.

Possible uses of the produced PNV maps
Newbold et al. (2016) argued that many terrestrial biomes today have transgressed safe
limits for biodiversity, with grasslands being most affected, and tundra and boreal forests
least affected. “Slowing or reversing the global loss of local biodiversity will require preserving
the remaining areas of natural (primary) vegetation and, so far as possible, restoring
human-used lands to natural.” (Newbold et al., 2016) Roughly half of the difference of
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around 466 billion tonnes of carbon can be attributed to the clearing of forests and
woodlands, mostly for agricultural purposes (Erb et al., 2017). The other half of biomass
carbon stock losses is derived from the management effects within a land cover class
(Erb et al., 2017). The expansion of agriculture will probably continue in the future,
leading to decreased biodiversity and soil degradation (Mauser et al., 2015;Molotoks et al.,
2017). On the other hand, Griscom et al. (2017) identify reforestation (e.g., biomass
restoration) as the largest natural pathway to hold global warming below 2 �C. In that
context, accurate maps of PNV could become increasingly useful for assessing the level of
land degradation/biomass shortfall relative to the potential of a site. Such information can
also inform selection of optimal steps toward restoring biomass stocks in managed
vegetation in ways that better reflect the PNV FAPAR in those areas.

Other uses of PNV maps include assessing the land potential, that is, land use efficiency
given the difference between actual and potential vegetation. Consider, for example, a
location in southern Spain called “Altiplano Estepario,” which has been identified by the
Commonland company (http://commonland.com) and partners as a landscape restoration
site. Figure 15 shows results of a spatial query for this location and values of our PNV
and PNV FAPAR predictions, in comparison to the actual land cover and actual FAPAR
images. The figure shows that the actual FAPAR is as good as PNV FAPAR in February
and March but that differences are large in the summer months. Overall, the median and
upper FAPAR for this specific location are only 51% of the PNV FAPAR, so we can say that
this site is currently operating at 51% of the predicted FAPAR capability under PNV.
This comparison should also consider that our estimates of FAPAR come with an RMSE of
± 0.085. Furthermore, as landscape restoration efforts have recently begun on this site—this
work suggests that it ought to be possible to: (a) identify priority areas of PNV FAPAR
shortfall, (b) use this information to inform in part the type of restoration strategies used,
and (c) monitor the progress of restoration efforts in monthly time steps over several
decades. Such practical measurement, monitoring and verification efforts are required to
mobilize further investment in this emerging sector.

Our PNV maps could also be used to estimate soil carbon sequestration and/or
evapotranspiration potential, and gains in net primary productivity assuming return of
natural vegetation (Fig. 16). Furthermore, by combining various estimates of potential
natural and managed vegetation, one could design the optimal use of land both regionally
and globally. Herrick et al. (2013), for example, provide a theoretical framework for
estimating land potential productivity which could theoretically connect all land owners in
the world to share local and regional knowledge.

Maps of PNV for European tree species could also be used as a supplement to the
distribution and ecology of tree species produced by San-Miguel-Ayanz et al. (2016)
and Brus et al. (2012). Species such as Carpinus orientalis, Cupressus sempervirens,
Prunus mahaleb, Sorbus domestica are all predicted with TPR <0.5 indicating critically
poor accuracy. Possible reasons for such low accuracy are problems with representation
of training points and somewhat too broad ecological conditions, especially if a species
follows some other more dominant tree species that have wide ecological niche.
These maps should probably not be used for spatial planning.
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Figure 15 Example of comparison between the actual land cover and actual FAPAR curves and our predicted potential natural vegetation
(PNV) and predicted PNV FAPAR curves. According to our results, this location (A and B) in southern Spain (latitude = 37.938478, longitude
= -2.176692) currently utilizes 51% of the predicted FAPAR capability under PNV, indicating a substantive short fall in on-site photosynthetically
active biomass (C). Background map (A) source: OpenStreetMap; landscape view (B) map data: Google, DigitalGlobe.

Full-size DOI: 10.7717/peerj.5457/fig-15
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Potential natural vegetation for European tree species analysis could be made even
more quantitative so that even predictions of dendrometric properties of tree species
could be produced using similar frameworks. Also, similar PNV mapping algorithms
could be used to map the potential canopy height based on the previously estimated map
of the global canopy height (Simard et al., 2011).

Technical limitations and further challenges
Running machine learning algorithms on larger and larger data is computationally
demanding; however, by using fully parallelized implementation of RF in the ranger
package, we were able to produce spatial predictions within days. Model fitting and
prediction using EU Forest and GBIF data (1.5 million training points) was, however, very
memory and time consuming and is not recommended for systems with <126 GiB RAM.
In our case, model fitting took several hours even with full parallelization, and final
models were >10 GiB in size. Prediction of probabilities took an additional 5–6 h with
the current computational set-up. In the future, scalable cloud computing could be used
to overcome some of these computational limits. Machine learning will in any case
continue to play a central role in analyzing large remote sensing data stacks and
extracting useful spatial patterns (Lary et al., 2016).

With enough computing capacity, one could theoretically use all 160 million records
of distribution of plant species currently available via GBIF (Meyer, Weigelt & Kreft,
2016) and from other national inventories to map global distribution of each forest
tree species. In Europe the list is very short; globally this list could be quite long
(e.g., 60,000 species). The primary problems of using GBIF for PNV mapping will
remain, however, as these are primarily due to high clustering of points and
under-representation of often inaccessible areas with very high biodiversity
(Yesson et al., 2007; Meyer, Weigelt & Kreft, 2016). GBIF records have been shown in
the past to give biased results (Escribano, Ariño & Galicia, 2016), so that spatial
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Figure 16 Some possible uses of maps of potential natural vegetation. Full-size DOI: 10.7717/peerj.5457/fig-16
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prediction methods that account for high spatial clustering, that is, bias in training
point representation in both space and time; would need to be developed further to
minimize such effects.

CONCLUSIONS
Although PNV is a hypothetical concept, ground-truth observations can be used to
cross-validate PNV models and produce an objective estimate of accuracy. As the
prediction accuracy becomes more significant, the reliability of the PNV maps increases.
Our analyses show that the highest accuracy for predicting 20 biome classes is about
68% (33% with spatial cross-validation) with the most important predictors being total
annual precipitation, monthly temperatures, and bioclimatic layers. Predictions of
73 forest tree species had a mapping accuracy of 25% and with average TPR of 0.69,
with the most important predictors being mean annual and monthly temperatures,
elevation, and monthly cloud fraction. Regression models for FAPAR (monthly images)
were most accurate with R-square of 90% (Leave-Location-Out CV) and with the most
important predictors being total annual precipitation, MODIS cloud fraction images,
CHELSA bioclimatic layers and month of the year, respectively. Machine learning can be
successfully used to model vegetation distribution, and is especially applicable when the
training data sets consist of a large number of observations and a large number of
covariates. Extending the coverage of observations of natural and managed vegetation,
including through making new ground observations, will allow regular improvements of
such PNV maps.
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