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Abstract

Understanding spatial variation in the structure and stability of plant—pollinator networks, and
their relationship with anthropogenic drivers, is key for maintaining pollination services and miti-
gating declines. Constructing sufficient networks to examine patterns over large spatial scales
remains challenging. Using biological records (citizen science), we constructed potential plant—pol-
linator networks at 10 km resolution across Great Britain, comprising all potential interactions
inferred from recorded floral visitation and species co-occurrence. We calculated network metrics
(species richness, connectance, pollinator and plant generality) and adapted existing methods to
assess robustness to sequences of simulated plant extinctions across multiple networks. We found
positive relationships between agricultural land cover and both pollinator generality and robust-
ness to extinctions under several extinction scenarios. Increased robustness was attributable to
changes in plant community composition (fewer extinction-prone species) and network structure
(increased pollinator generality). Thus, traits enabling persistence in highly agricultural landscapes

can confer robustness to potential future perturbations on plant—pollinator networks.
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INTRODUCTION

Insect pollinators face many threats that may jeopardise the
crucial ecosystem service they provide to crops and wild
plants (Vanbergen et al. 2013; Gill et al. 2016; Potts et al.
2016). The stability of pollinator communities and the service
they deliver is mediated by the structure of ecological net-
works formed by interactions between pollinator and plant
species (Vazquez et al. 2009; Vanbergen efal. 2017).
Understanding such networks is important to predict the risks
associated with threats to pollinators (Gill et al. 2016). Analy-
sis of plant—pollinator networks has provided insights into
their structure and potential stability under actual or simu-
lated environmental change, including extinctions (e.g. Mem-
mott et al. 2004; Kaiser-Bunbury et al. 2010), climate change
(e.g. Memmott et al. 2007), habitat change (e.g. Forup et al.
2008; Vanbergen et al. 2017) and restoration (Kaiser-Bunbury
et al. 2017).

Studies traditionally rely on obtaining well-characterised
networks from field surveys, which are time consuming and
costly to construct (Vazquez et al. 2009; Burkle & Alarcon
2011). Constructing networks replicated across larger spatial
scales remains a daunting prospect (Burkle & Alarcén 2011),
particularly at the regional and national scales relevant to

land use and conservation policy-making. Although broad
geographical patterns in plant—pollinator network properties
have been identified across biomes (Olesen & Jordano 2002;
Welti & Joern 2015) or within landscapes (Burkle & Alarcon
2011; Carstensen et al. 2014; Trojelsgaard et al. 2015; Kaiser-
Bunbury et al. 2017), these still rely on a comparatively lim-
ited number of empirical plant—pollinator networks.

Of particular interest in understanding spatial variability in
plant—pollinator networks is the contrast between the benefits
of insect pollinators to agricultural crops (Kremen et al. 2002;
Winfree 2008; Eilers et al. 2011) and the negative impacts of
intensive agriculture on pollinators (Kluser & Peduzzi 2007;
Potts et al. 2010; Gill et al. 2016). However, we have very lit-
tle knowledge of how plant—pollinator networks are affected
by agriculture at landscape scales (e.g. > 1 km?) or whether
networks comprising species that pollinate agricultural crops
are representative of the wider pollinator community (Kleijn
et al. 2015; Gill et al. 2016).

Lack of information on ecological interactions across larger
spatial, temporal and taxonomic scales, termed the ‘Eltonian
shortfall’, represent key gaps in our large-scale knowledge of
biodiversity (Hortal et al. 2015). Moreover, there are limita-
tions on the extent to which different data sources can be
combined to analyse multiple networks because data
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collection methods can introduce potential biases (Hortal
et al. 2015). While there are exciting possibilities for molecular
techniques to increase the speed and accuracy with which
plant—pollinator networks can be constructed (Keller ez al.
2015; Richardson et al. 2015; Bohan et al. 2017; Pornon et al.
2017), these are yet to be realised across larger spatial scales.

Biological records (i.e. records submitted to voluntary
recording schemes, a form of ‘citizen science’) provide a valu-
able resource for analysing large-scale patterns in time and
space (Bishop et al. 2013; Tulloch et al. 2013; Powney & Isaac
2015). Records consist of species’ identification, date and loca-
tion (hereafter ‘occurrence’ data) and provide large volumes
of data over a wide spatial coverage, equivalent to innumer-
able hours of field survey. Methods to control for variation in
recorder effort and to infer ecological signals from occurrence
data are rapidly emerging (e.g. Isaac et al. 2014; Dyer et al.
2016), but hitherto their potential as a source of data on eco-
logical networks is untapped (Gray et al. 2014).

Here, we constructed potential plant—pollinator networks
for every 10 km-by-10 km grid square (‘hectad’) in Great Bri-
tain (GB) using interactions from a 30-year, long-term
national data set of occurrence records of pollinating insects
(bees, butterflies and hoverflies). Instead of inferring species
interactions from spatial co-occurrence (Morales-Castilla ez al.
2015; Morueta-Holme et al. 2016) we used metadata from
records that detailed flower visitation as a proxy of pollina-
tion (Ballantyne et al. 2015). These networks are ‘potential’ in
that we acknowledge their limitations in terms of assumptions
that constrain their biological realism. However, while the
structure of each potential network may be subject to errors,
we aimed to minimise bias affecting comparisons across repli-
cate networks. We used these potential networks to address
three questions. First, does network structure and stability
vary spatially across GB? Second, is network stability reduced
by greater agricultural land cover, a major driver of plant and
pollinator declines (Kluser & Peduzzi 2007; Potts et al. 2010;
Vanbergen et al. 2013; Ollerton et al. 2014)? Finally, are the
structure and stability of networks comprising crop-pollinator
species consistent with those of the wider pollinator
community?

MATERIALS AND METHODS
Constructing a plant—pollinator interactions database

We constructed a national-scale (GB) plant—pollinator interac-
tion database defining which species of pollinator visit which
species of plant (Fig. 1). Data were mostly (73%) sourced
from biological records. Specifically, these were species obser-
vations submitted to the Bees, Wasps and Ants Recording
Society (BWARS), Butterflies for the New Millennium (BNM,
Asher 1997) and Hoverfly Recording Scheme (HRS), with
plant interactions recorded as incidental metadata. Interac-
tions were inferred by algorithmically screening metadata for
valid scientific or vernacular plant names (or widely used syn-
onyms or abbreviations thereof), followed by data cleaning
(see Appendix S1). Remaining interaction data were obtained
from books (e.g. Morris 1998), papers (e.g. Carvell 2002) and
unpublished experimental data. Where interactions were

recorded only to plant genus we assumed, given the rarity of
pollinators specialised to the level of individual plant species
(Waser et al. 1996; Minckley & Roulston 2006), that these
were indicative of interactions with all plant species within the
genus that were present in the data set (full details in
Appendix S1). These inferred interactions comprised 6487
unique interactions (39%) within the full data set.

Our final plant—pollinator interactions database contained
16,712 unique interactions, involving 485 pollinator species
(206 bees, 56 butterflies and 223 hoverflies) and 499 plant spe-
cies. This total comprises approximately 76, 92, 81 and 55%
of GB bee, butterfly, hoverfly and insect-pollinated plant spe-
cies respectively (Fitter & Peat 1994; Stubbs & Falk 2002;
Thomas 2010; Falk 2015). We explored the completeness of
our interactions database by calculating interaction accumula-
tion curves across all records used to construct the database
(i.e. pollinator occurrences where we were able to identify a
valid plant interaction) and for each plant and pollinator spe-
cies separately (Appendix S2). Results suggested that our
database captured around 60% of estimated total interactions
(mean 62% for pollinators, 57% for plants), comparable to
studies which performed high-effort, multitemporal field
sampling of individual networks (Chacoff ez al. 2012; Falcao
et al. 2016).

Modelling plant and pollinator occurrence

For all species in the interactions database, we obtained
occurrence data from BWARS, HRS, BNM and, for plants,
the Botanical Society of Britain and Ireland (Fig. 1). Data
records were restricted to 1985 onwards, covering the vast
majority of records while excluding occurrences of species that
may have been more widespread prior to major changes in
GB land use (Robinson & Sutherland 2002; Ollerton et al.
2014). Occurrence data were modelled to account for spatial
bias in recorder effort using the FRESCALO algorithms (Hill
2012), implemented in the SparTA (v0.1.30 August et al.
2015b) package of R (v3.4.0 R Core Team 2017). FRES-
CALO weights by recorder effort to estimate trends and prob-
ability of occurrence in under-recorded areas (for validation
of FRESCALO for different groups and through simulation
see Hill 2012; Fox et al. 2014; Isaac et al. 2014; Dyer et al.
2016). We used the CEH Land Cover Map (LCM2007, Mor-
ton et al. 2011) as input data for FRESCALQ’s calculation of
neighbourhoods of ecologically similar hectads (see August
et al. 2015b; Dyer et al. 2016). For each species, FRESCALO
produces a probability of occurrence per hectad. To transform
this to presence/absence, we assigned a species as present in a
hectad if its probability of occurrence was greater than a set
threshold (see Appendix S3).

Constructing potential networks

We used lists of modelled plant and pollinator species pres-
ence per hectad to filter the interactions database (as derived
from plant associations in biological records) and create a
potential plant—pollinator network for each hectad (Fig. 1).
Networks were unweighted (i.e. interaction matrices consisting
of ones and zeros), this being the most conservative

© 2018 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd
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interpretation of our interaction data because the frequency
with which an interaction was recorded is unlikely to provide
reliable quantitative information on abundance, due to differ-
ences in detectability, recorder bias and data sources.

Network structure metrics

From the networks constructed in each of 2823 GB hectads,
we used the R package bipartite (v2.07, Dormann et al. 2009)
to calculate the following metrics (Bersier er al. 2002; Dunne
et al. 2002; Tylianakis ez al. 2007):

(1) Species richness: total number of plant and pollinator spe-
cies in the network

(2) Connectance: proportion of possible links which are rea-
lised

(3) Pollinator generality: mean number of plants per pollina-
tor

(4) Plant generality: mean number of pollinators per plant

While other, more complex metrics of network structure
(e.g. nestedness, modularity) have been implicated in stability
they can be comparatively insensitive to spatial or temporal
change (Kaartinen & Roslin 2012; Morris et al. 2014; Kemp
et al. 2017). Preliminary analyses confirmed that nestedness
and modularity showed little variation even for networks
greatly differing in the metrics listed above.

Robustness to simulated extinctions

To derive a metric of network stability, we assessed the
impact of simulated extinctions of plants. This was a measure
similar to robustness (following Memmott et al. 2004; Burgos
et al. 2007), but differing in that sequential simulated extinc-
tions were ordered according to a complete ‘global’ list of
plants (i.e. across all hectads) and not just those in each ‘lo-
cal’ network (i.e. individual hectad) (Fig. 2). This approach
meant the same extinction scenario was universally applied
across hectads and enables comparisons across networks with
different plant communities. We term this approach and the

resulting metric ‘robustness to global simulated extinctions’
(R, from here on) to avoid confusion with the usual
approach. For comparison, we also calculated ‘local’ robust-
ness (R, from here on) following Memmott et al. (2004)
with randomised extinction of plants within each hectad.
We focussed on simulating plant extinctions because many
of the major impacts of agriculture indirectly affect pollina-
tors via altered plant communities (Potts ez al. 2010; Van-
bergen et al. 2013, 2017), as would restoration of
agricultural plant—pollinator networks in practice (Kremen
et al. 2002; Forup et al. 2008; Menz et al. 2011; Kaiser-
Bunbury et al. 2017).

As well as randomised plant extinctions from the global list
(R r), we conducted simulated extinctions by ordering the
complete list of 499 plant species according potential predic-
tors of future plant declines under three scenarios:

(1) historic distribution trend (1985-2015) estimated using
FRESCALO (Hill 2012; Isaac et al. 2014), extinctions
occurring first for plants showing the greatest historic
decline (Rg Trend);

soil fertility tolerance based on Ellenberg N values (Hill
et al. 2004), extinctions occurring first for plants prefer-
ring low soil fertility, as historically observed in GB flora
(Stevens et al. 2006; Maskell et al. 2010) (R, y);

drought tolerance based on Ellenberg F values (Hill et al.
2004), extinctions occurring first for plants preferring
moister conditions expected to suffer under climate
change (Thuiller er al. 2005; Watts et al. 2015) (R, p).

2

3)

For each hectad-level network, plants were sequentially
extirpated from the global list in the order determined by each
scenario. After each plant extinction, any pollinator species
with no remaining links were removed from the network. We
assessed R, as the area under the curve (Burgos et al. 2007)
of pollinators remaining in the local network against plants
removed from the global sequence (Fig. 2). This process was
repeated 100 times per scenario, with random ordering of
plant species with tied trends or Ellenberg values (or of the
entire list for randomised plant extinctions; R, g).

Data sources: Input data sets: Models: Output data sets:
< ) '3 ™
Biological Recataad slart Modelled
records from . occurrencg = FRESCALO occurrence of
volunteer hectad P analysis plants/pollinators
er hectad
surveys Y ) - p )
Y /%
Recorded ; ’
Field work by pollinator F e _I|sts o
23 plants/pollinators
researchers occurrence per da ey
hectad o
-~/
( \ ( Y 2
Published plant- % Plant-pollinator PDL%'I’I?:"E'HDDT"”
rerrers L] emmers [P etwork o
alahase hectad

Figure 1 Schematic showing steps in construction of potential plant—pollinator networks for every 10 x 10 km cell (‘hectad’) in Great Britain from

biological records.
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Figure 2 Example extinction curves (coloured lines) for three example hectads (a, b, ¢) with different plant—pollinator communities and correspondingly
different robustness to global simulated extinctions as measured by area under extinction curve (a: R, = 0.90, b: R, = 0.82, ¢: R, = 0.66). Plant extinctions
are ordered by trend (i.e. most strongly declining are eliminated first). Tick marks along the x-axes indicate where simulated plant extinction from the

global list resulted in an extinction from the hectad.

Following individual plant extinctions, there is potential for
pollinators to switch between plants and rewire networks
(Thomsen et al. 2017). Other authors have used regional
information to inform the likelihood of rewiring in local net-
works (Kaiser-Bunbury ez al. 2010). However, our potential
networks already implicitly incorporate some of this capacity
for rewiring because each local network contains information
from all recorded interactions across GB over three decades.
Another approach is to create putative novel interactions
from plant—pollinator traits but, given the assumptions and
uncertainties involved, it is difficult to assess whether such
rewiring scenarios are more ecologically meaningful than
using only observed interactions. We conducted supplemen-
tary analyses exploring additional trait-based network rewir-
ing scenarios but found that spatial patterns in robustness
metrics were largely unaffected (Appendix S4).

Two main sources of error in our hectad-level potential net-
works are the methods used to model occurrence and the
database wused to assign interactions. Consequently, we
assessed the impact of these sources of uncertainty indepen-
dently and in combination by performing, for each hectad,
100 randomised resamples of species according to FRES-
CALO probability of occurrence, and of interactions propor-
tional to the number of times they were recorded (see
Appendix S5).

Crop-pollinators

We repeated our analyses by calculating hectad-level network
metrics, including R, and R;, for potential networks consisting
solely of interactions involving known crop-pollinators. This
allowed us to explore whether the structure and stability of
crop—pollinator networks was similar to the wider plant—polli-
nator networks in which they were embedded. Bees are gener-
ally considered the most important contributors to crop
pollination (Free 1993; but see Rader er al. 2016) and their
predominance in the pollination of GB crops is well supported
(Woodcock et al. 2013; Garratt et al. 2014). Crop-pollinators

were determined from a published list of bee species with the
highest contribution to crop production value (Kleijn et al.
2015) for major GB insect-pollinated crops (oilseed rape, field
bean, apple and strawberry). Our interactions database
included 23 such species from 5 genera (see Fig. S5 for full
species list). We then compared metrics for crop—pollinator
networks, overall plant—pollinator networks and bee-only net-
works. Because crop—pollinator networks are considerably less
speciose, we resampled the bee-only network for each hectad
100 times, with a random selection of pollinators equal in
number to crop-pollinator species in the hectad, and then cal-
culated mean resampled network metrics for comparison. The
number of plants in each resampled network was allowed to
vary depending on interactions with the selected pollinators,
as attempting to limit plants to the number in the crop-polli-
nator networks would severely restrict the number of resam-
pled networks and constrain resultant network metrics.

Statistical analysis

Network metrics were modelled independently against agricul-
tural coverage, using linear mixed-effects models in the nime
R package (v3.1 Pinheiro et al. 2015). We derived coverage of
agricultural land (arable + improved grassland) per hectad
from LCM2007 and used this as a fixed effect explanatory
variable, along with an optional quadratic term, which was
retained in models if significant. To account for the potential
influence of other environmental variables on network struc-
ture and response to agricultural coverage, we assigned each
hectad to an environmental zone, using a pre-existing classifi-
cation (Bunce et al. 2007). Environmental zone was then
included as a random factor in all models, with variable slope
and intercept. Some of the network metrics we used are sensi-
tive to the size of the network (Jordano 1987; Olesen & Jor-
dano 2002; Forup er al. 2008; Morris et al. 2014), so models
were compared with and without total species richness as a
fixed covariate. Environmental zones represented by < 30 hec-
tads were considered to have insufficient sample size for

© 2018 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd
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robust analysis and were excluded, as were hectads with
> 50% coverage of sea, giving a final sample of 2290 hectads.
All variables were standardised to mean of zero and standard
deviation of one, to facilitate comparison of model coeffi-
cients. Each model was compared using a likelihood-ratio test
against a model consisting only of the random effect and spe-
cies richness, to determine the impact of incorporating agricul-
tural coverage on model fit. We also applied randomisation
tests (Fortin & Jacquez 2000) to account for potential com-
plex spatial autocorrelation patterns arising from how FRES-
CALO defines neighbourhoods based on spatial proximity
and biological similarity (see Appendix S6).

RESULTS
Spatial patterns in network properties

Variation in plant and pollinator species richness conformed
to known clines across GB (i.e. higher richness in the south
and at lower altitudes, Fig. 3). Spatial patterns for con-
nectance, pollinator generality and plant generality showed
similar latitudinal and altitudinal trends to species richness
(Fig. 3), and a significant correlation with total plant-pollina-
tor species richness (Pearson’s r = —0.95; 0.82; 0.97, respec-
tively, n =2290, P < 0.001 in all cases).

Robustness to global simulated extinctions (R,) also showed
spatial variation across GB, with more variation than would
be expected under simple conformity to species richness, lati-
tude or altitude (Fig. 4a, c, e, g and i). The different extinc-
tion sequences gave mean R, scores across hectads of 0.84,

@ ¢ ®)

Total
richness

E 827
109

Connectance

E 0.27
0.08

0.92, 0.85 and 0.93 for extinctions ordered by trend (Ry 7vena),
Ellenberg N (R, »), Ellenberg F (R, ) and randomised
extinctions (R, g), respectively (range across hectads 0.66-0.97
across all four R, measures), but with varying spatial patterns
(Fig. 4). Robustness to randomised local extinctions (R))
showed a very similar range of values and spatial patterns to
R, r (Fig. 4i).

Effect of agricultural land cover on network properties and
robustness

Pollinator generality and all five measures of robustness to
simulated extinctions showed significant positive relation-
ships with agricultural coverage (Table 1). All relationships
apart from R, p included a significant negative quadratic
term (Table 1) indicating a levelling off of the relationship
as agricultural coverage approaches 100% (Fig. 5a, b, c, e,
f). These results suggest that pollinator communities in
more highly agricultural landscapes are more generalist and
that, under all our extinction scenarios, hectads with a
higher coverage of agricultural land lost pollinators less
quickly than other hectads in the same environmental zone.
This effect appeared most pronounced for R, 7y0nq and Ry y
(Fig. 5b, c¢). Neither plant generality nor connectance
showed a significant relationship with proportion of agricul-
tural coverage (Table 1).

While species richness was a significant covariate in models
for all network metrics, its inclusion did not qualitatively
change the relationships with agricultural coverage. For all
models, likelihood ratio tests and randomisation tests

(© K

Pollinator
richness

E 383

Plant
richness

E 452
77

Pollinator
generality

E 102.45
22.64

Plant
generality

E 79.65
y 10.43

Figure 3 Network properties per hectad across GB: a) total species richness of plants and pollinators combined, b) richness of pollinators and c) richness of
plants, d) network connectance, e) pollinator generality and f) plant generality. Lighter colours indicate lower values, darker colours indicate higher, with a

linear colour stretch between maximum and minimum values.
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generally corroborated the significance of the individual model
coefficients for agricultural coverage (Table 1). There was no
significant relationship between agricultural coverage and

Residual
Rg Trend

0 &

Rg Trend

E 0.93
) 0.66

Residual
Rg F
1.64

species richness of plants, pollinators or both combined, once
environmental zones were accounted for (Table 1).

There were significant relationships between agricultural
coverage and the mean values across the plant community per
hectad of the trait and trend values used to order extinction
sequences (Table 1). This indicates that agricultural coverage
influences the relative position of the plant community in our
global extinction sequences. Standard deviations in these val-
ues within hectads showed a significant, negative relationship
only for Ellenberg N, suggesting hectads with higher agricul-
tural cover not only host communities with higher average
fertility tolerance, but also show significantly less variation in
fertility tolerance between plant species.

Crop—pollinator networks

Subsets of networks consisting of only crop-pollinating bees
and the plants they visit showed significant differences in their
properties from complete hectad-level networks, or from ran-
domly resampled networks of equivalent bee species richness.
Crop—pollinator networks showed significantly higher plant
species richness than the randomly resampled bee networks
(pairwise z-test; ¢ = 133.57, P < 0.001, d.f. = 2750), as well as
higher connectance and pollinator and plant generalities (pair-
wise r-test; ¢ = 159.54, 155.48 and 116.35 for connectance, pol-
linator generality and plant generality, respectively;
d.f. = 2750 and P < 0.001 in all cases). Robustness values for
crop—pollinator networks were significantly higher than for
full or resampled networks (Supplementary Material, Fig. S5),
for all simulated extinction scenarios (pairwise f-test;
t=152.22, 121.83, 132.14, 161.45 and 155.72 for Ry 7venas
R, n, Ry Ry g and R, respectively; d.f. =2750 and
P < 0.001 in all cases). Crop-pollinator species were among
the most widely occurring species in the database (median
occurrence for crop-pollinators = 60% of hectads, for all
bees = 30%, for all pollinators = 43%).

DISCUSSION

Spatial patterns of plant—pollinator networks and relationships with
agricultural land cover

Our results revealed that national-scale spatial patterns were
clearly evident in all network metrics. Those for pollinator
and plant generality and for connectance largely reflected
well-known latitudinal gradients in GB plant and invertebrate
species richness (e.g. Woodcock er al. 2014). This is

Figure 4 Spatial patterns in robustness to global simulated extinctions
(R,) as measured by area under extinction curve. Panels a, c, e, g and i
show R, with extinctions ordered by historic plant occurrence trend (R,
Trena)s fertility tolerance (R, ), drought tolerance (R, ), globally
randomised extinctions (R, z) and locally randomised extinctions (R
respectively. Panels b, d, f, h and j show residuals from linear mixed
models of Ry 1renas Ry n» Re 7 Rg g and R;, respectively, against species
richness and environmental zone. Grey-shaded cells indicate
environmental zones with < 30 cells excluded from mixed models. For all
panels, darker colours indicate higher values, with a linear colour stretch
between maximum and minimum values.

© 2018 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd
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Table 1 Results from linear mixed models of network metrics per hectad vs. proportion of agricultural land and random effect of environmental zone for
potential networks at hectad (10 x 10 km) scale across Great Britain. Results are standardised slope coefficients (+SE) for linear and quadratic terms (the
latter only retained where significant) with level of significance (*** < 0.001, ** < 0.01, * < 0.05) and likelihood-ratio tests against a model consisting only
of the random effect, and P value derived from comparing model results against 1000 randomisations. Model results are shown with and without species

richness as a covariate

Agricultural cover Agricultural cover Likelihood-ratio Randomisation
Species richness (linear term) (quadratic term) test test
Metrics Slope + SE Sig.  Slope + SE Sig.  Slope + SE Sig. 2 P value Sig. P value Sig.
Network species Total richness 0.06 (£0.12) 2.22 0.14 0.50
richness Pollinator richness —0.08 (£0.11) 2.01 0.16 0.09
Plant richness 0.15 (£0.12) 0.78 0.38 0.23
Plant extinction Mean historic trend 0.37 (£0.07) ***  —0.12 (£0.02) *** 2933 <0.001 *** <0.001 ook
scenario predictors  SD historic trend 0.14 (£0.12) 1.00 0.32 0.30
per hectad Mean Ellenberg N 1.33 (£0.53) * —0.1 (£0.02)  *** 1482 <0.001 *** 0.03 *
SD Ellenberg N —0.54 (£0.08) ***  —0.22 (£0.04) *** 3321 <0.001 **¥* <(0.00]  R*
Mean Ellenberg F —0.23 (£0.07) ** 5.07 0.02 * 0.01 ok
SD Ellenberg F —0.05 (£0.11) 2.56 0.11 0.18
Network metrics Connectance 0.01 (£0.14) 2.14 0.14 0.27
(species richness Pollinator generality 0.33 (£0.09) ***  —0.18 (£0.02) *** 5229 <0.001 *** 0.00 K
not included as Plant generality 0.08 (£0.11) 2.06 0.15 0.38
covariate) Ry Trend 0.38 (£0.06)  ***  —0.09 (£0.02) *** 19.80 < 0.001 *** <(.00]  FH*
Ry N 0.49 (+£0.05) ***  —0.14 (£0.02) *** 49.68 < 0.001 *** <(.001  Hk*
R, 0.36 (£0.09)  *** 10.33 0.00  **  <0.001  RH*
Ry & 0.45 (+£0.07)  *** 18.65 <0.001 *** <0.001  ***
R, 0.42 (£0.07) *** —0.1 (£0.03)  **  20.58 <0.001 *** <(.00] ek
Network metrics Connectance —1.34 (£0.02)  #** 0.12 (£0.05) * 0.68 0.41 0.13
(species richness Pollinator generality 0.53 (£0.02) *** 0.34 (£0.07) ***  —0.07 (£0.02) ** 13.84 < 0.001 *** <0.001 ok
included as Plant generality 0.96 (£0.01)  *** 0.01 (£0.03) 4.90 0.03 * 0.32
covariate) Ry Trend 0.21 (£0.03)  *** 0.38 (£0.05)  ***  —0.05 (£0.03) * 19.70 < 0.001 *++  <0.001  ***
Ry v —0.12 (£0.03)  *** 0.49 (+£0.05) ***  —0.16 (£0.02) *** 5418 < 0.001 *** <(.001  H**
R, r —0.12 (£0.03)  *** 0.36 (£0.1)  *** 8.62 0.00  **  <0.001 Rk
Ry r —0.68 (£0.04) *** 0.45 (£0.09)  ***  —0.17 (£0.03) *** 2410 <0.001 *** <(.001  k*
R, —0.57 (£0.04)  *** 0.42 (£0.08)  ***  —0.22 (£0.03) *** 42,18 <0.001 *** <(0.00]  Fk*

unsurprising as these metrics are a function of the connected-
ness between the two levels of a network and thus fundamen-
tally affected by network species richness (Jordano 1987,
Olesen & Jordano 2002; Thébault & Fontaine 2010).

Of greater interest in terms of implications for network sta-
bility were the more complex spatial patterns of our metrics
of robustness to global simulated extinctions and the positive
relationship with coverage of agricultural land evident under
all our extinction scenarios. This positive relationship may, at
first sight, seem surprising. Highly agricultural landscapes are
often considered to have depauperate plant and pollinator
communities (Kremen ez al. 2002; Potts et al. 2010; Ollerton
et al. 2014). As noted by Kleijn er al. (2015), this is often used
as justification for pollinator conservation efforts under the
assumption that continued crop pollination depends upon a
diverse pollinator community. While our results cannot
directly shed light on the provision of pollination services, it
is clear that plant—pollinator networks in landscapes with rela-
tively high agricultural cover can exhibit higher robustness to
extinction scenarios.

Explaining higher robustness of plant—pollinator networks in
agricultural landscapes

Although it is somewhat counterintuitive that increased levels
of anthropogenic disturbance (coverage of agriculture here)

can lead to increased resilience to future perturbations (as esti-
mated by our robustness metrics), similar relationships have
been observed in other ecosystems (e.g. coral reefs, Coté &
Darling 2010). This might be due to positive correlations
between traits that confer tolerance to past and future distur-
bance (Vinebrooke et al. 2004). Exposure to previous stressors
therefore acts as a filter either extirpating vulnerable species
or favouring resistant ones to produce a community more
resilient to future stress. Our results suggest that the positive
relationships between agricultural coverage and robustness
may arise in this way from two interacting properties of the
plant—pollinator networks.

First, we showed greater robustness to extinctions with
increasing agricultural coverage even when extinctions were at
random and irrespective of the relative vulnerabilities of the
plant community to our trait- and trend-based extinction sce-
narios. This may be largely driven by the higher generality of
pollinator communities in agricultural landscapes, thus being
less reliant on individual plant species. Highly agricultural
landscapes, where resources are spatially and temporally clus-
tered and where travel between patches of resource is costly,
favour the persistence of generalist pollinators (Waser et al.
1996). Conversely, there was no significant effect of agricul-
tural coverage on plant generality, so the loss of each plant is
no more likely to remove resources for multiple pollinators.
In combination, increased pollinator generality and consistent
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model (i.e. with agricultural land cover, species richness and environmental zone) and show the effect of agricultural land coverage on response variables

once the effects of species richness and environmental zone are accounted for.

plant generality insulate these networks against simulated
extinctions.

Second, in landscapes with higher coverage of agriculture,
plant communities are more liable to have already lost their
most vulnerable plant species and gained more tolerant ones
(evidenced by significant relationships between coverage of
agriculture and mean historic trend in plant occurrence and
Ellenberg values), such that global extinctions are less likely
to have local impacts. Many of the severest historic declines
in GB plant species are associated with agricultural expansion
and intensification (Fuller 1987; Walker & Preston 2000).
Therefore, many plants showing strong historic declines have
already disappeared from highly agricultural areas, being
replaced by species which can persist in such landscapes and
with stable or increasing historic trends (Carvalheiro et al.
2013), contributing to higher robustness to extinctions ordered
by plant trend. Likewise, amongst the major, lasting impacts
of modern agriculture are increases in soil fertility, so agricul-
tural hectads would have undergone replacement of those
plants with low fertility tolerance (Marrs 1993; Walker & Pre-
ston 2006; Walker et al. 2009; Redhead et al. 2014), con-
tributing to higher robustness to extinctions ordered by
fertility tolerance. Furthermore, plant communities in hectads
with a higher coverage of agricultural land also showed a

lower standard deviation in Ellenberg N, suggesting a
homogenisation of fertility tolerances in agricultural land-
scapes.

Under extreme circumstances, where networks have com-
pletely extinction-prone plant communities or completely
resistant ones, differences in robustness to global simulated
extinctions might be driven by the second effect alone, regard-
less of network structure. However, this is unlikely in our data
given the significant relationship with generality and robust-
ness under randomised extinctions. Also, all hectads possessed
plant communities with varying positions in the extinction
sequences. For example, Figs. 2a and 2c¢ show extinction
curves for the two hectads which were, respectively, most and
least robust to extinctions ordered by plant trend. From the
distribution of the tick marks denoting plant extinctions from
the hectad on the horizontal axes it is clear that, while these
two hectads have plant communities consisting of species with
differing positions in the extinction sequence, neither hectad
has all its plant species at either extreme.

Of course, the observed tendency of agricultural networks
to require extreme plant extinction scenarios to collapse polli-
nator network structure does not mean that agriculture is
without detrimental effects. Simple network metrics are insuf-
ficient to capture the myriad aspects of ecological stability
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(Grimm & Wissel 1997). While the networks of agricultural
landscapes may be more robust to the scenarios we examined,
they may also have lower levels of functional diversity. Poten-
tially, they may also have lower functional resilience due to a
homogenisation of species traits in response to the selective
pressures of intensive agriculture (Woodcock et al. 2014; Oli-
ver et al. 2015; Kaiser-Bunbury et al. 2017), as seen in our
results for plant Ellenberg N.

In reality, extinctions are unlikely to proceed in a rigid lin-
ear sequence according to a single predictor. Extinction cas-
cades (Vanbergen et al. 2017), rewiring (Thierry et al. 2011,
Ramos-Jiliberto et al. 2012), climate change (Chen ez al.
2011), disease (Smith et al. 2006) or invasive species (Bar-
tomeus ef al. 2008) can alter the stability of networks in
unpredictable ways. However, our approach for calculating
robustness to global simulated extinctions is sufficiently flexi-
ble that, where information on such effects exists, these could
be incorporated into the extinction sequences.

Crop—pollinator network properties

Our results showed that crop-pollinator networks are signifi-
cantly more robust to simulated extinction scenarios than the
overall networks of which they are a subset. This is probably
due to the observed ubiquity and high generality of crop-polli-
nator species. These characteristics might be expected, as GB
crop-pollinators are by definition those species pre-adapted to
exploit the resource of non-native agricultural crop species
growing in highly modified landscapes. Our results support
the contention of Kleijn et al. (2015) that strategies and initia-
tives based on conserving crop-pollinators will provide insuffi-
cient protection for wild pollinator communities overall. More
generally, our results suggest caution where such functionally
specific taxa are studied in isolation of the wider communities
of which they are often only a small fraction. Obviously,
crop-pollinators can be threatened by a wide variety of factors
other than loss of nectar sources (Vanbergen et al. 2013; Gill
et al. 2016; Potts et al. 2016). For example, preferential loss
of crop-pollinators could be triggered if association with crops
results in detrimental exposure to pesticides (Stanley et al.
2015; Woodcock et al. 2016).

Limitations of the potential network approach

Constructing potential networks from biological records has a
variety of limitations and assumptions that constrain their
biological realism (hence ‘potential’ networks) and affect the
uncertainty of results. Perhaps the most obvious limiting fac-
tor in our networks are the biological records from which they
are constructed. In particular, our data are affected by short-
falls in our knowledge of species occurrence and of their inter-
actions (Hortal ez al. 2015).

Regarding occurrence, although FRESCALO accounts for
variation in recorder effort, there are likely to be remaining
inaccuracies for rare or under-recorded species, while conver-
sion of FRESCALQO’s probabilistic outputs to binary pres-
ence/absence values may also introduce errors, particularly at
species’ range boundaries. Regarding interactions, we know
that our coverage of GB plants, pollinators and the

interactions between them are incomplete (see Appendix S2).
Our potential networks may exhibit either ‘missing’ or ‘forbid-
den’ links in some hectads (Olesen et al. 2010) as they do not
account for variation in interactions due to flower phenology
(Basilio et al. 2006; Rafferty & Ives 2011), pollinator life-his-
tory (Vieira & Almeida-Neto 2015; Vanbergen et al. 2017) or
pollinator resource-switching (Thomsen er al. 2017).

Our exploration of some of these sources of uncertainty (see
Appendices S4 and S5) suggests that uncertainties arising
from occurrence and/or interaction data affect hectad-level
networks in ways that are relatively consistent across space.
While both sources of uncertainty affect the accuracy of indi-
vidual potential networks they are far less likely to introduce
a systemic bias which would affect our observed spatial pat-
terns and relationships with agricultural land. Therefore,
despite these limitations, we suggest that our potential net-
works properties and the spatial patterns we observe are
broadly representative of real-world networks (see
Appendix S5).

CONCLUSIONS

Our results demonstrate the ability of potential networks con-
structed from biological records to provide new insights into
spatial patterns of ecological networks across national scales
that would be impossible to monitor using conventional direct
observation approaches. The positive relationship between
agricultural cover and robustness to a range of extinction sce-
narios supports previous observations that anthropogenic dis-
turbance can result in ecological networks which are more
robust to further perturbation. Furthermore, from our results,
crop—pollinator networks are not representative of wider
plant—pollinator networks, such that targeting landscape man-
agement for the retention of crop pollination may be entirely
insufficient to conserve wider biodiversity (Kleijn et al. 2015).

Our findings suggest potentially productive fields of further
investigation, including further investigation of the mecha-
nisms underpinning spatial patterns in network properties,
validation of potential networks against those constructed
from large-scale molecular data and exploration of more com-
plex scenarios of extinction, invasion or restoration. In the
future, the production of potential networks from biological
records is likely to become easier and more accurate, as new
technology and methods increase the quality and quantity of
biological records (Tulloch et al. 2013; Gray et al. 2014,
August et al. 2015a; Powney & Isaac 2015) and novel molecu-
lar techniques increase the potential for wide-scale validation
(Keller et al. 2015; Richardson et al. 2015; Bohan et al. 2017;
Pornon et al. 2017).
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