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 Abstract 
 
 
This research aims to assess the potential of non-pollen microfossils in archaeological 
research, as this evidence provides an important and previously overlooked 
contribution to the investigation Neolithic farming activities and their environmental 
impact. The Ligurian Neolithic provides an excellent cultural and environmental 
framework to test this approach, given the presence of upland mires suggesting 
human-driven vegetation change. In particular, the study aims to assess whether the 
introduction of a pastoral economy is detectable in the palaeoecological record. 
The analysis of a Middle Holocene sequence from an upland mire (Prato Spilla ‘A’, 
1550m asl) allowed new inferences, partially questioning previous studies. The 
sequence was rich in NPPs, showing the occurrence of several types indicating, 
amongst others, hydrological changes, grazing herbivores on the site and a relatively 
dense tree canopy. The presence of Neolithic communities settled in the region makes 
it difficult to distinguish between natural and human-driven changes. However, due 
to the probable absence of long-distance transhumance in the period, it is likely that 
the outlined picture mostly results from natural events. 
Deep cores dated to the Early and Middle Neolithic (6th-5th Millennium BC) from a 
coastal alluvial plain (Genoa, Piazza della Vittoria) were analysed. The results show 
the unequivocal presence of herbivores around a site where possible remains of pile-
dwellings were found, as well as periods of desiccation and flooding of the area. This 
is a significance contribution to the archaeology of the region, given the paucity of 
evidence for human occupation of coastal areas during this period. 
The issue of prehistoric field manuring was also addressed, studying samples from a 
Bronze Age terraced site (Castellaro di Uscio). Palynological analysis point to a 
relatively open landscape during the Final Bronze Age, complementing previous 
studies on charcoal macro-remains and suggesting that the collection of wood was 
highly selective. 
Archaeological layers from a Neolithic cave (Cave of Arene Candide) were analysed, 
showing the validity of dung fungal spores to identify stabling layers in pastoral sites. 
In addition, a short chapter on stable nitrogen isotopes from bulk sediment samples 
was added, in order to test this method as a further tool for the investigation of dung 
deposits. 
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 The potential of coprophilous spores as localised indicators to identify archaeological 
animal enclosures was assessed through the analysis of a range of modern samples 
from dung heaps, stable floors and outdoor corrals from sites characterised by 
different animal densities and frequency of use. A reference dataset of spore 
concentration per unit of volume and weight is provided as an aid to the 
interpretation of ancient contexts. The results show the importance of surface 
disturbance due to animal trampling as a likely driving factor for spore abundance, as 
well as the variability of coprophilous assemblages and dominant taxa. Light was 
shed on the informative potential of newly identified microfossils strongly associated 
with herbivore dung and of spores of hay-inhabiting thermophilic fungi. The method 
was tested on a stratified deposit from an abandoned rock shelter used as a stable for 
several decades, and the results compared to the abundance of faecal spherulites and 
total phosphorus. A clear match between these proxies was shown, as well as the 
relevance of the study to detect in the archaeological record short-term episodes of 
abandonment, leading to fungal growth and sporulation. 
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1. INTRODUCTION 

 

 

1.1 Research context and rationale 

 

Since the 1970s, palaeoecological studies have started to include counting and 

identification of non-pollen palynomorphs (NPPs - also referred to as non-pollen 

microfossils, NPMs) as a means of refining the interpretation. For the sake of clarity, 

by “NPPs” is meant a range of microscopic fossils (c. 6 - 180μm), consisting mainly of 

fungal spores, algal spores, plant remains, animal remains and microscopic eggs. 

These elements are dispersed in the environment chiefly by atmospheric agents and 

can be still perfectly preserved even over a period of hundreds of thousands of years 

(Kalgutkar and Jansonius 2000). The resilience of fungal spores is due to their relative 

thickness and chemical composition. Their walls are made of chitin, a highly resistant 

long-chain polymer which also constitutes the exoskeleton of several terrestrial and 

marine arthropods (Webster and Weber 2007). 

The research on NPPs has developed considerably in the last forty years, mainly due 

to the pioneering works by Baas van Geel (1972; 1978), that first shed light on the 

indicator value of the most commonly recurring microfossil “types”. Despite the 

potential of the method, the number of studies related to the subject remained 

relatively few until very recently (Baker et al. 2013). Over the last ten years, an 

increasing interest in NPPs has resulted in the publication of two issues of Review of 

Palaeobotany and Palynology (v. 141, 2006; v. 186, 2012) and Vegetation History and 

Archaeobotany (v. 19, 2010) entirely dedicated to this topic. Although many types still 

remain to be identified, the relationships with pollen assemblages and modern 

analogues are now much better understood (Blackford and Innes 2006; Cugny et al. 

2010). 

However, in spite of a more frequent use of NPP analysis of lakes and bogs in 

palaeoecology, the scarcity of NPP-based studies focusing on archaeological soils and 

sediments appears remarkable, as already stressed more than ten years ago by van 

Geel et al. (2003). Only a limited number of works - most of which are listed in table 

1.1 - have focused on terrestrial and archaeological deposits, showing the informative 

potential of non-pollen microfossils in this field of research. 
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Table 1.1. Studies of non-pollen microfossils from archaeological deposits and dryland 

sequences. 

Reference Site/sample type 

Aptroot and van Geel 2006 Mammoth coprolites 

Bos et al. 2006 Mesolithic site 

Bos et al. 2013 Palaeolithic occupation 

Brozio et al. 2013 Neolithic site 

Buurman et al. 1995 Bronze Age site 

Carrión et al. 2005 Palaeolithic cave 

Chichinadze and Kvavadze 2013 Bronze hoard 

Davis et al. 1984 Pleistocene cave 

Ivanova and Marfenina 2015 Profiles from medieval site 

Kaal et al. 2013 Bronze Age rock art site 

Kvavadze et. al. 2008 Medieval grave 

Kvavadze et al. 2010 Bronze Age burials 

Kvavadze and Kakhiani 2010 Bronze Age barrow 

López-Sáez and López-Merino 2007 Neolithic sites 

Mudie and Leliévre 2013 Shell midden 

Pittau et al. 2012 Neolithic settlement 

Pirozynski et al. 1988 Mastodon coprolites 

Revelles et al. 2016 Profiles from Early Neolithic site 

Uzquiano et al. 2012 Bronze-Iron Age settlement 

van Geel et al. 2003 Roman settlement 

van Smeerdijk et al. 1995 Medieval plaggen soil 

 

1.2 Hypotheses and scope of the research 

 

The study aims to test the following hypotheses: 

1. During the Middle Holocene of Liguria (north west Italy), environmental 

change at upland and coastal sites were driven by episodes of animal, and 

possibly also human, disturbance. 

2. Variations in the concentrations of dung-specific NPPs from modern 

pastoral contexts reflect the conditions recorded on the sites, providing 
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information that can be used to investigate archaeological animal 

enclosures. 

3. Non-pollen microfossil analysis from dryland archaeological stabling 

deposits is an overlooked approach, and can add useful information on 

animal management, which differs from the contribution of phytolith 

analysis and micromorphology. 

4. NPP analysis can be employed to investigate agricultural terraces and 

anthropogenic soils detecting or ruling out possible manuring practices. 

The main features of the study sites under investigation are summarised below, and 

will be treated in more detail in the respective chapters. In order to carry out NPP 

analysis with specific reference to issues of environmental archaeology, four sites 

located in northwest Italy and a number of modern analogues have been selected:  

• A natural wetland site with possible evidence for Middle Holocene 

anthropogenic impact (Prato Spilla A, Emilia Romagna, NW Italy). According to 

Lowe (1991; 1992; 1994a; 1994b) it is likely that the pollen record of the area 

points to anthropogenic disturbance, probably including the use of fire. A 

recent refinement of the vegetation history of the site has provided further 

clues to possible human-driven environmental change, tentatively identifying 

a few large grass grains as cereal pollen, and recording the presence of taxa 

commonly regarded as indicators of human disturbance (Bedford 2013). Given 

this evidence for possible human activity in the uplands during late prehistory, 

the site has been selected as a promising context to carry out the analysis. 

• A deep core taken from the alluvial plain of the river Bisagno in Genoa, next to 

a recently discovered Neolithic settlement (Arobba and Caramiello 2014), 

arguably the very first inlet used as a harbour in the history of the city (Melli 

et al. 2011). The site was selected given the opportunity to analyse samples 

that may have recorded a strong signal for human impact, and because of the 

scarcity of palaeoenvironmental studies from Ligurian coastal areas, as 

opposed to a number of studies focusing on upland wetlands. 

• An archaeological site characterized by stabling episodes and phases of 

domestic occupation (Cave of Arene Candide, Finale Ligure, NW Italy). The 

site has been selected to assess the potential of NPP analysis of archaeological 

deposits for the following reasons: 1) the availability of results from multiple 
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geoarchaeological techniques, which have led to the identification of a wide 

range of activities carried out in the cave during late prehistory - chiefly a 

series of stabling episodes, which are likely to have left a signal in the NPP 

record (Macphail et al. 1997); 2) the availability of several radiocarbon dates 

for the previously investigated sequences and the succession of highly distinct 

ceramic styles permitting accurate chronological control; 3) the location of 

the site in a region where a number of palaeoenvironmental analyses have 

been carried out, thus providing a useful framework of data to contextualize 

the research. 

• A man-made terrace from the hillfort of Castellaro di Uscio (Genoa), where 

the occurrence of on-site cultivation has been hypothesized (Macphail 1990; 

Nisbet 1990). The site will be used as a case study to test the potential of 

dung-spores to assess the application of manure in antiquity. 

• Among the modern samples are included a 19th-20th century pastoral rock 

shelter (Arma delle Manie, Finale Ligure), and a variety of samples from floors 

of roofed and unroofed stables taken in southern England and northern Italy. 

The modern dataset aims to reach a less subjective level of interpretation 

regarding the abundance of NPPs found in natural or anthropic sediments. 

 

Although the focus of this study is on the application and future developments of NPP 

analysis, the site selection shows that the project is geographically consistent, as most 

of the study sites are located in Liguria or at the border of this region. Moreover, the 

methods employed appear suitable to address a series of research questions that are 

particularly relevant for this study area in the Middle Holocene. This approach will 

lead to a more reliable understanding of the palaeoenvironment of the region and of 

the role played by the first settled communities as early as c. 7800 BP. 

In spite of the number of studies in the field of environmental archaeology carried out 

in the last three decades in this particular area, the records are largely dominated by 

pollen-based studies, and the application of other proxies appears to have been 

sporadic (Menozzi et al. 2010; Branch and Morandi 2015). This research will provide 

a complementary body of data that will integrate previous palaeoenvironmental 

investigations with the new findings. Further, the methods applied in this work will 

allow the presence of wild and domestic animals in the landscape to be assessed; an 
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essential research focus, when it comes to discussing the influence of Neolithic 

shepherds on the environment. 

 

 

1.3 The research subject: microfossil indicators for animal presence 

 

Among the wide diversity of NPPs, fimicolous spores are especially relevant for the 

new research presented here, being acknowledged as reliable indicators of on-site 

herbivore presence, given their requirement for herbivore dung as a substrate for a 

successful growth (Baker et al. 2013). Although these microfossils have been widely 

employed for assessing the timing of Pleistocene and Holocene megafaunal 

extinctions (Burney et al. 2003; Johnson 2009; McGlone 2012), they show great 

promise in investigating issues regarding the adoption of agro-pastoral economies by 

late prehistoric communities. In particular, coprophilous spores may be reliable 

indicators of extra-site locations where livestock was habitually grazed and faunal 

remains are absent, and also indicate the on-site presence of herbivores in 

settlements when other dung indicators and animal bones are missing (van Geel et al. 

2003; Baker et al. 2013). 

Some methodological aspects concerning the abundance of NPPs in sediments appear 

to have been overlooked by previous studies, and will be addressed by this research. 

For example, when interpreting the values of coprophilous spores, the need for an 

interpretative framework and a coherent way of presenting the data is required. 

Analysts have reported a diverse range of values for ancient samples, yet, often 

concluding with the same interpretation involving human-caused grazing pressure. 

Moreover, the method for expressing the values is inconsistent, ranging from Total 

(Land) Pollen%, to T(L)P%+TNPP%, TNPP% and concentration values per cm3 or 

grams. For example, Cugny et al. (2010), have shown that in modern samples from 

grazed areas the values of the dominant coprophilous type can reach percentages as 

high as 15-40% (TNPP%), and other types be attested on 5-10% (TNPP%). Riera et 

al. (2006) and Blackford et al. (2006) consider values around 2-3% (T(L)P%) as 

indicative of grazing, and even values of 1-2% (T(L)P%) have been interpreted as 

human-induced grazing when paralleled by a high charcoal incidence (Menozzi et al. 

2010). Moreover, it is not always clear what the role played by humans was, i.e. 

whether herbivores are thought to naturally occupy (deliberately?) cleared areas, or 
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to be taken by shepherds or herders; a difficult issue to solve in post-Neolithic 

contexts. 

This similarity of interpretations based on highly different values reflects the lack of a 

scientific approach and of uniformity in expressing the results, leading to a high 

degree of subjectivity. Only Davis and Schafer (2006), Blackford and Innes (2006) and 

lately Baker et al. (2016) have tried to coherently relate the values from fossil 

samples (T(L)P% or accumulation rates)) to the percentages occurring in contexts 

where information about grazing practices was available and recorded. 

Further, a deeper understanding of NPPs from archaeological sites seems necessary, 

as these assemblages may differ significantly from natural archives and indicate 

human-related practices (e.g. fungi growing on decomposing food, human parasites, 

non-biological NPPs (Kvavadze and Kakhiani 2010; Kvavadze et al. 2009; 2010; 

Chichinadze and Kvavadze 2013; Ivanova and Marfenina 2015)). 

Ova and cysts recovered from archaeological samples belong to a diverse group of 

intestinal parasites, that can be divided into organisms visible at naked eye, 

helminths, and microscopic taxa, protozoa. Cestoda and Trematoda (phylum 

Platyhelmintes, flatworms) are worth mentioning among the former, along with 

several species in the classes Secernentea and Enoplea, belonging to the phylum 

Nematoda (roundworms); protozoa are unicellular eukaryotic organisms, comprising 

amoeboid forms and other, often ciliate or flagellate species. 

The interaction between humans and their parasites is a complex story that harks 

back to the dawn of our species, when we shared the same microbiota with the 

ancestors of the other great apes (Moeller et al. 2016). The current ecology of 

intestinal parasites is particularly complex, as it results from an evolutionary history 

of a million years involving adaptation to several hosts in different environments 

(Combes 2001). Unlike common opinion, the host/parasite relationship can also be a 

mutual one (McKenney et al. 2015). Parasites may have lived with humans much 

longer than previously thought, and species infecting both man and other mammals 

may have developed before the cohabitation with animals following domestication. 

This is indicated by phylogenetic studies supporting the presence of Taenia saginata 

(cattle tapeworm) in humans before cattle domestication, and is suggested by 

Mesolithic finds of possible eggs of Trichuris trichiura (although they might belong to 

T. suis, the boar/pig-specific parasite). 
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Each species follows specific life-cycles, which cannot be taken to completion without 

the appropriate host. Typically, a period of embryonation in a suitable environment is 

followed by ingestion by one or more hosts, growth within their bodies and discharge 

of the eggs with the stools. In the case of T. trichiura (human-specific whipworm), in 

order to survive eggs need a permanence in a warm and humid environment for a 

period of about three weeks. However, after this period they become extremely 

resilient to environmental conditions. Hosts are infected through the accidental 

ingestion of contaminated soil particles. Ascaris lumbricoides (roundworm), the 

largest nematode in man, follows a similar cycle but makes use of bloodstream to 

carry the larvae to the lungs and eventually to the pharynx, where they are 

swallowed, prior to growth in the small intestine. The Dicrocoelium cycle (lancet liver 

fluke) involves two intermediate hosts (a land snail and an ant) to spread, and it is 

transmitted through the ingestion of an infected ant at the larval stage. Dicrocoeliosis 

often affects cattle, sheep and goats, and human infection is referred to as a case of 

pseudo-parasitosis, resulting from the consumption of infected animal liver. Taenia 

spp. (tapeworms) exploit humans as well as cattle or pig in order to complete their 

cycle, and infection occurs through the ingestion of raw or undercooked meat (Cuomo 

et al. 2009). 

The symptoms associated with helminth infection in humans are, in most cases, not 

very severe. Whipworms and roundworms may cause disturbs such as bloody 

diarrhea, vomiting and iron-deficiency anemia. Diphyllobothriasis is associated with 

several symptoms, and because of the loss in vitamin B12 the infected individual may 

develop anemia. The symptoms associated with dicrocoeliasis in mammals are weight 

loss, anemia and cirrhosis (Cuomo et al. 2009). 

Parasites eggs and cysts can be recovered from excavated layers, lake deposits, 

coprolites, and even directly from exceptionally preserved bodies, such as mummies 

(Bouchet et al. 2003). The eggs are normally identified in pollen slides by means of 

high-power optical microscopy. Specific procedures for the extraction of eggs have 

been developed, involving sieving through 160 and 20µm meshes (Anastasiou and 

Mitchell 2013). More rarely, parasite eggs are recognized in thin sections (Pichler et 

al. 2014), although in this case a precise identification is arduous and bulk samples 

should also be prepared to allow accurate observation of the eggs’ shape and surface. 

Eggshells of the genera Trichuris and Ascaris (nematodes) are by far the most 

commonly observed by paleoparasitologists, both because of the existence of human-
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specific species and the resilience of the thick-walled eggs. Eggs of Trichuris vary 

between c. 45 and c. 80μm of length according to the species, and are characterized 

by an elongated barrel shape with slightly convex polar plugs at both ends. The wall is 

smooth and formed by a superimposition of three layers (a lipid, a chitinous and a 

vitelline layer), with the core of the plugs being of unknown composition (Appleton 

and White 1989). Due to overlapping size, it is difficult to separate T. trichiura from T. 

suis (infecting suids) (Beer 1976). The genus Capillaria produces similar eggs that can 

be easily mistaken for Trichuris, but display a typical reticulate surface 

ornamentation and a slightly asymmetrical position of the polar plugs (Traversa et al. 

2011). Fertile eggs of Ascaris range from c. 45 to c. 70μm in length, the most apparent 

feature being a knobbed coat (albuminoid uterine layer) creating an anastomosed 

pattern. To an untrained eye, this coat, in addition to the ovoid shape of the egg, may 

easily resemble fern spores of Polypodium spp. The outer coat of Ascaris eggs is often 

partially lost, so that the smooth surface of the underlying vitelline layer is exposed. 

D. latum produces large elliptic eggs (c. 60-75µm in length) showing a wide aperture 

on one side; similar but smaller and slenderer eggs (c. 34-45µm) with an aperture 

(after the loss of the operculum) belong to the genus Dicrocoelium. 

It is often difficult to identify parasites to a species level, and many of the eggs 

recovered in archaeological deposits also derive from feces of wild and domestic 

animals (Dufour et al. 2013). Their value is not limited to the information they are 

able to provide on diseases that would not leave any trace on skeletal remains. The 

study of these microfossils also allows inferences on early population movements, as 

well as enhancing the knowledge of living conditions in ancient settlements, 

providing data on dietary practices, use of the space and social status. 

One line of research investigates the origin and spread of human parasitic infections, 

using paleoparasitological evidence to shed light on large-scale movements of early 

human groups and the occupation of previously inhabited continents. The arrival of 

hunter-gatherers to North America only through Beringia has been questioned, as 

eggs of Trichuris and Ancylostoma, requiring warm and moist soils, would not have 

survived in soil in the arid and cold permafrost. It is then difficult to explain the 

presence of these human-specific species in the stools of pre-Columbian populations, 

and alternative colonization routes have been proposed (Araújo et al. 2008). 

On archaeological sites, the informative potential of parasite eggs is manifold 

(Mitchell 2015). They are useful indicators of dietary habits (e.g. consumption of raw 
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fish: Yeh et al. 2014) and poor hygiene during food preparation (e.g. soil 

contamination: Mitchell and Tepper 2007). Changes in subsistence strategies may be 

inferred by increases in certain parasitic species, and accordingly a greater impact of 

fishing activities in Late Inca societies was hypothesized (Santoro, Vinton, and 

Reinhard 2003). In settlements, the knowledge of use and organization of the space 

can be highly enhanced, as areas such as latrines and stables would be particularly 

rich in eggshells (Langgut et al. 2016). Differences in social status, reflecting habits of 

different parts of the population, can also be detected. In late medieval France, the 

abundance of Taenia eggs in cesspits adjacent to high-rank mansions, relative to their 

absence in poor contexts, showed the consumption of raw meat as a specific practice 

diffused in aristocratic families (Bouchet 1995). In graveyards, inhumations can be 

specifically sampled for paleoparasitological analysis in key areas, such as around the 

pelvis (Fugassa et al. 2006). 

In paleoecological studies, parasite eggs of herbivores are useful indicators of local 

grazing pressure, as, unlike pollen and spores, they are not transported over long 

distances by atmospheric agents, but deposited within dung pats and droppings. 

 

 

1.4 Beyond environmental archives: the potential of local proxies to unveil 

evanescent extra-settlement areas 

 

Since the start of large-scale field survey projects in the 1970s and 1980s (Macready 

and Thompson 1985), archaeologists have struggle with the interpretation of extra-

settlement (off-site) areas. In spite of their apparent marginality, they have often 

been of primary importance for ancient societies (de Haas 2012). The relevance of 

such places is not restricted to their use for resource exploitation, but embraces 

wider cultural aspects. A paradigmatic case is that of classical antiquity, as it shows 

that even urbanized societies characterized by large metropoleis and complex 

production systems still felt the necessity to express their links to wilderness and 

rural environments, as largely indicated by several literary sources and pagan feasts 

(Dumézil 1996; Bradley 2000). A number of anthropological studies equally show the 

unsuspected relevance of various extra-settlement areas, most of which would result 

in a total lack of archaeological visibility (see e.g. Turner 1967). However, the whole 
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debate on off-site distributions in archaeology deals with the interpretation of 

material culture (chiefly potsherds) scattered on the landscape surface. 

It is suggested here that it may be possible to go beyond the use of suitable natural 

archives as the main means of reconstructing environmental conditions associated 

with human occupation. Arguably, a further approach to identifying potential extra-

settlement areas may be attempted through the use of local proxies for periodic 

human presence. Several survey projects have faced the difficulty of interpreting 

areas of apparent low activity beyond the settlement sites (Bintliff and Snodgrass 

1988). Then, at a later stage of the research, the excavations tend to focus solely on 

more promising areas characterized by stronger evidence, and there is little work to 

interpret the meaning of off-site distributions (de Haas 2012). Moreover, because 

these areas are defined by a very low number of artefacts, it seems highly likely that a 

large number of them are not detectable at all due to a total absence of remains. Local 

anthropogenic proxies may be applied to address this problem, and a project 

following such an approach should involve mapping and sampling of each geological 

archive proximal to the sites, rather than focusing only on the deepest and best 

preserved sequence for environmental reconstruction. 

It appears essential that, to identify extra-settlement areas, the best proxies have to 

be strictly local indicators, as is the case of NPPs and waste-derived biomarkers 

(human and animal stanols/sterols and bile acids). To demonstrate the potential of 

this approach, we point out that most of the structures and finds associated with off-

site areas in field survey projects relate to pastoral activities (de Haas 2012). It is 

worth stressing that sampling locations do not have to be restricted to wetlands, as 

biogeochemical analyses can be successfully performed also in dry areas to detect 

manuring practices in ancient fields (Evershed et al. 1997; Bull et al. 2001). Similarly, 

soil profiles are valuable sources of palynomorphs (Dimbleby 1985), as well as of 

resilient fungal spores and parasite eggs. Furthermore, the most commonly advocated 

explanation for interpreting off-site areas consists of the so-called “manuring 

hypothesis” (Bintliff and Snodgrass 1988). The specific use of local proxies for 

animal- and human-derived wastes seems therefore particularly suitable to test this 

hypothesis, and if successful it would result in a more detailed knowledge of land-use 

strategies nearby the site. The identification of extra-settlement areas is crucial to 

locate settlement sites in their broader landscape context, allowing insights into 

environmental exploitation and economic systems. In favourable circumstances, 
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sedimentary sequences from natural archives can provide additional meaningful 

information on extra-site distributions and their exploitation, helping to establish 

links between them and periodic human presence. These circumstances are listed 

below: 

• Chronological correlation between evidence for local anthropogenic activities 

from geological archives and archaeological evidence in the study area. 

• Spatial relationship between potential extra-settlement areas and settlements 

(e.g. distance between grazing lands and permanent sites). 

• Match between the palaeoecological indicators recovered and the subsistence 

strategy (if known) of contemporary communities settled in the study area. 

Given the present state of research and knowledge, for the reasons given above, this 

approach is best applicable to the socio-economic context of pastoral societies, 

regardless of their location in space and time. It is worth saying that, in the last forty 

years, a similar approach has been tentatively applied by means of phosphorus 

analysis. However, this method presents several technical and interpretative issues 

(Holliday and Gartner 2007), and is less directly linkable to a specific type of human 

activity, e.g. areas of food waste would appear as very phosphate-rich and 

indistinguishable from heavily grazed areas. 

 

 

1.5 Previous work on selected study contexts in the field of environmental 

archaeology 

 

 

1.5.1 Natural sequences: lakes and bogs 

 

Lakes and marshy areas are the most commonly investigated sedimentary 

environments in palaeoecology for microfossil analysis (Birks and Birks 1980). This is 

due to the fact that water-saturated layers allow excellent preservation, and 

sedimentation tends to be very homogeneous without remixing or translocation 

between horizons (Branch et al. 2005). In larger basins, however, internal processes 

caused by thermal differences at different depths may lead to water mixing and 

uneven rates of deposition, which account for site-specific differences in pollen 
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accumulation rates (Giesecke and Fontana 2008; Matthias and Giesecke 2014). In the 

last thirty years, a number of works have elucidated the complex relationship 

between vegetation, sedimentary basins and their pollen content (Prentice 1985; 

Sugita 2007; Hellman et al. 2008). This latter variable appears to be mainly a function 

of basin size, with regional vegetation being represented only in lakes measuring at 

least c. 700m in diameter (Sugita 1993). However, in order to be used successfully, 

landscape modelling based on pollen data requires a very accurate knowledge of the 

surrounding environment, and cannot cope easily with complex geomorphology or 

basins of irregular shape (Sugita 2007). 

Dispersal and deposition of fungal spores and other microfossils have been much less 

investigated. In general, a very limited dispersal based on the proximity of fungi to 

the ground has been taken for granted by several authors (van Geel et al. 2003). Only 

a handful of targeted studies exist, and almost entirely focus on Sporormiella spores. 

Raper and Bush (2009) have recorded the abundance of Sporormiella at different 

distances from the shore along regular transects in fifteen North American lakes. 

They have argued for a sharp decrease of spores in a range of c. 50-80m, although this 

claim does not seem to be strongly supported by the data they provided. Very 

recently, the relationship between dung spore abundances (expressed as rate of 

accumulation: number cm-2 year-1) and herbivore biomass density (kg ha-1) has been 

accurately established by Baker et al. (2016), stressing the importance of surface run-

off as a factor of spore dispersal and of the area immediately adjacent to the basin 

(<10m).  

To date, a sound knowledge on the dispersal of other microfossil types is lacking. For 

example, the shape and weight of Sporormiella ascospores is likely to affect their 

release and dispersal, and different species may be much more efficient in releasing 

spores than others, having developed specific strategies and morphologies (Yafetto et 

al. 2008). Regarding this point, a good amount of data, almost always neglected by 

palaeoecologists, is offered by aerobiological studies, showing that frequently fungal 

spores are transported over long distances (Pady and Kelly 1954). In light of this, it 

seems sensible that a single spore cannot be taken as evidence of in situ growth of its 

taxon, while the consistent presence of the same types in one sample is likely to 

derive from fungi growing directly on the site or in its immediate vicinity. 
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1.5.2 Natural sequences: alluvial deposits 

 

The factors controlling the deposition of microfossils along fluvial systems differ from 

those active in closed lakes and still water bodies. The pollen records of lakes and 

mires tend to be dominated by wind-pollinated taxa, cutting off the contribution of 

other pollen producers unless living in the surroundings of the basin (Jackson and 

Lyford 1999; Feurdean et al. 2011). On the other hand, a number of low-lying 

herbaceous species and spore producers (e.g. ferns) are able to disperse their grains 

on a greater distance by means of water transportation. This leads to a better 

representation of these taxa in pollen spectra from alluvial sequences. The deposition 

of microfossils in alluvial sediments occurs through three main stages (Chmura et al. 

1999): 1) dispersal of pollen/spores from the surrounding vegetation to the channel; 

2) transport along the channel by water flow; 3) final deposition in the receiving 

basin. 

However, alluvial pollen spectra do not seem to be severely biased by river transport, 

as works on buried deposits and modern analogues have shown that the assemblages 

match quite closely the vegetation of the catchment area (Heusser 1978; Chmura and 

Liu 1990). Clearly, large river systems with very wide drainage basins will be 

potentially more prone to pollen redeposition, whilst small rivers and streams with 

limited basins will provide a relatively good representation of the local vegetation. 

As previous studies focussed on pollen deposition, it is not known to what extent 

water transport may bias the NPP record. On one hand, as fungal spores are 

dispersed very near the ground, they can perhaps be transported over long distances 

more easily by water than by wind. On the other hand, they are unlikely to reach the 

river channel, unless their producers live directly on its edges. Moreover, the 

presence in the sampled sequence of algal microfossils indicative of still or slowly 

moving water and fine-grained clayey levels point to a low-energy environment, 

where water transport might have been negligible (Selley 2000; Arobba et al. 2016). 

 

 

1.5.3 Caves and rock shelters 

 

Pollen analyses of cave deposits have always been challenging to palynologists. Often, 

it is only possible to have no more than a patchy glimpse of the original pollen record, 
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due to the unfavourable 

chemistry of the deposit. These 

conditions result from the 

usual location of caves, in 

limestone or chalk aerobic 

deposits leading to pollen 

deterioration over time 

through oxidation and 

microbial activity (Branch 

1997). The current knowledge 

of coastal palaeoenvironments 

is strongly limited though, so 

that even a ‘mutilated’ record may provide useful data.  

It is undeniable that cave palynology presents  aseries of issues, so that this field of 

research is frequently surrounded by criticism and scepticism (Bottema 1975; Turner 

and Hannon 1988; Coles et al. 1989; Sánchez-Goñi 1994). This is mainly due to 

processes such as selective preservation, preferential transport and sedimentary 

discontinuities.  In particular, dry-wet cycles tend to destroy pollen grains, causing 

typically low pollen concentrations from cave deposits. All these factors affect pollen 

taphonomy, and there are no models of cave pollen deposition providing easy 

answers, as opposed to a well-established tradition of studies on the 

representativeness of pollen spectra from lake sediments (Branch 1997; fig. 1.1). A 

number of works have shown that pollen deposition in caves seems to be influenced 

by too many, and above all site-specific variables (Branch et al. 2005). However, it has 

also often been stressed how, bearing in mind the caveats, cave pollen records can 

succeed in providing a reliable picture of both, local and regional vegetation (Burney 

and Pigott Burney 1993; Carrión et al. 1999; Navarro Camacho et al. 2000; Navarro et 

al. 2001; 2002). The best and more common approach to an evaluation of cave 

palynology involves the sampling of surface locations from external areas (e.g. moss 

pollsters) and comparison with samples from inside the cave (e.g. topsoil, 

speleothems’ surface, spider webs). Several studies have demonstrated that, rather 

unexpected, cave pollen spectra have proven as accurate as external surface samples, 

and occasionally even better (Navarro et al. 2002). It has been noticed that cave 

palynology plays an important role in pollen deposition (Navarro et al. 2001), and 

Figure 1.1. Scheme indicating the relationships 
between the driving factors for pollen deposition in 
caves. 
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that the highest concentrations are found in samples from the entrances. Yet, the rear 

of the cave better represents zoophilous taxa, whereas higher percentages of 

anemophilous plants are found near the entrance (Navarro et al. 2001). In general, a 

better representation of entomophilous taxa is gained from the analysis of cave 

sediments, supplementing the prevalence of anemophilous taxa from lacustrine 

sequences (Navarro Camacho et al. 2000). Moreover, isodiametric caves with large 

entrances provide more homogeneous records, whilst percentages of undeterminable 

grains tend to be higher in long and narrow chambers, and the total pollen 

concentration lower. A strong lateral variation in the pollen content of cave sediments 

has also been highlighted, suggesting that a multiple-profile approach should be 

adopted, and a good sampling strategy should avoid areas next to the cave walls and 

moist zones (Navarro Camacho et al. 2000). This is probably because large entrances 

enable stronger air circulation, determining higher accumulation rates. Branch 

(1997), suggested that post-depositional leaching is likely to occur in cave deposits, 

causing pollen translocation to take place. On the other hand, the data provided by 

Dimbleby (1985), seem to prove the reliability of pollen records from terrestrial 

profiles and the relatively low occurrence of pollen transmigration through the 

horizons. 

Carrión et al. (1999) suggested that, in order to obtain reliable results, a series of 

conditions have to be met. At least 15-30 taxa should be recorded and counts should 

reach a minimum of 200 grains excluding Asteraceae, concentrations should be 

higher than 4000 grains g-1 and the percentages of undeterminable pollen no higher 

than 20%. Unfortunately, also for practical reasons (e.g. very high counts needed to 

excluded Asteraceae from the pollen sum), it has not been possible to meet all these 

requirements. However, some authors disagree with this view, arguing that high 

percentages of Asteraceae from archaeological deposits do not only result from 

selective preservation, but may reflect a real condition and the influence of human 

activities (Lebreton et al. 2010; Mercuri et al. 2010; Florenzano et al. 2015). Navarro 

et al. (2001) supported this notion, stating that high resilience cannot be the only 

explanation for very high values of Cichorioideae from cave sediments. 

The work by Expósito and Burjachs (2016) focused on pollen grains and differential 

preservation in the cave of El Mirador (northern Spain), used as a stable in the Bronze 

Age. The high amount of crumpled and deteriorated grains found during the analysis 
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was linked to burning activities by the ancient shepherds. Due to this bias, most of 

samples were not considered to represent any actual ecosystem. 

In the case of the Arene Candide, human activities on and around the site and the 

complex morphology of the cave make the interpretation even more difficult. For 

example, we do not only lack a precise knowledge of daily activities, but we also 

ignore the presence at times of structures that may have strongly affected pollen 

deposition and wind circulation, such as perishable walls or other barriers. Not to 

mention that air currents can follow very complex paths in irregularly shaped caves, 

and the sea-facing location may have exposed the site to frequent turbulences. 

However, in the context of the regional archaeological and palaeoenvironmental 

scheme the data seem to be of some relevance, and a number of inferences can be 

drawn. 

Relatively recently, cave palynology has been carried out in Liguria, in order to 

enhance the knowledge of Pleistocene vegetation, given the absence to this end of 

sufficiently old lake deposits. Kaniewski et al. (2004), sampled the Middle Palaeolithic 

occupation layers of Madonna dell’Arma (Sanremo), recording a high number of taxa. 

Statistical analysis (Principal Component Analysis) were applied to limit 

interpretational bias, and  the data allowed correlations between vegetation changes 

and the beginning of the Pleniglacial, identifying two main climatic phases on a 

palynological basis. A similar study (Kaniewski et al. 2005a) aimed to investigate the 

sand dunes covering the cave have and highlighted the occurrence of semi-arid 

conditions on the western coast of Liguria from the Oxygen Isotope Stage 5a to the 

Oxygen Isotope Stage 4 (c. 80,000-70,000 BP). Pollen analysis and statistical 

elaborations proved successful also in the case of the Lower Pleniglacial (75 – 57 Kyr 

BP) of the cave of Santa Lucia Superiore (Toirano), in spite of preservation issues 

affecting the palynomorphs (Kaniewski et al. 2005b; 2005c). Despite low 

concentrations, in view of the high diversity of taxa and their ecological consistency, 

the pollen records from Mousterian layers and stalagmites from the cave of Fate 

(Finale Ligure), were used to directly make palaeoclimatic inferences and reconstruct 

Middle Palaeolithic vegetation by Karatsori et al. (2005).  

With reference to the Holocene, the only studies published to date concern the Arma 

dell’Aquila, the Arene Candide and the Pian del Ciliegio rock shelter, all located in the 

territory of Finale Ligure (unpublished preliminary data from the Alpicella rock 

shelter near Varazze are mentioned by Arobba and Caramiello 2006). 
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A Late Epigravettian hearth from the Arma dell’Aquila (Arobba et al. 1987; Arobba 

1990) pointed to high tree canopy dominated by Pinus (the presence of Castanea, not 

uncommon in the Mediterranean Late glacial, is noteworthy). The second sample 

from the site was taken from a fragment of plaster dated to the VBQ phase (square-

mouthed pottery, Middle Neolithic). However, the pollen spectrum is contrasting and 

highly heterogeneous, and it has been suggested that it results from the mixing of 

sediments of different ages for the preparation of the plaster, thus preventing any 

palaeoclimatic considerations. It is relevant to stress that in both cases the amount of 

sample analysed was remarkable, between 30-50 g, given the low concentrations of 

palynomorphs typically encountered in cave deposits (Arobba 1990). 

Palynological studies at the Arene Candide were carried out by Branch (1997), who 

reported the results from Early and Middle Neolithic sections from the eastern part of 

the cave. Only two sample locations turned out to be suitable for the analysis, given 

very low or null pollen concentrations. Both areas appeared to be dominated by 

Poaceae, Ericaceae, Cichorieae, with high percentages of deteriorated/broken grains 

and in one location low values of Cerealia. The final interpretation of the Middle 

Neolithic phase supported the micromorphological analysis by Macphail et al. (1997), 

pointing to herbivore stabling for facies 3 deposits. Steady low levels of cereal-type 

pollen from section 15, however, have enabled to infer a contemporaneous domestic 

use of the site. Overall, a remarkable spatial variation in pollen spectra was noticed, 

suggesting that different activities and taphonomic processes can be identified on a 

palynological basis. On the other hand, the main drawback lies in the limited validity 

of cave pollen records to reconstruct past regional vegetation history. Only partial 

data on the surrounding environment could be gathered, as suggested by declining 

values of Quercus possibly indicating human disturbance and the presence of 

termophilous taxa suggesting the prevalence of a warm and dry climate (Branch 

1997). 

More recently, a 4m thick sequence was sampled at the Pian del Ciliegio rock shelter, 

a VBQ site dated to the 5th Millennium BC, which shares similarities with the better 

known site of the Arene Candide. The pollen analysis has shown low concentrations 

(on average 631 grains g-1), although the results enabled few remarks on vegetation 

change and human impact (Arobba and Caramiello 2009). The record embraces three 

pollen phases, the first two showing the presence of Quercus-Corylus-Ericales 

mesophilous woods, and the last one showing a decrease in arboreal pollen and an 
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increase in pastureland and sinanthropic markers. There is pollen evidence for 

agriculture, as highlighted by low percentages of Hordeum- and Triticum-type pollen. 

The authors also stressed the occurrence of NPPs such as algal cysts of 

Pseudoschizaea, which are also numerous from the Arene Candide, although a sound 

explanation for this fact appears arduous. 

As regards non-pollen microfossils, no specific data on their preservation in caves are 

available, although personal experience have shown that they do not seem to be 

affected by the severe deterioration characterizing cave pollen. As to fungal spores, it 

is likely that this is in virtue of their composition, as chitin is made from N-

acetylglucosamine units that may be more resilient in calcareous deposits (Doucet 

and Retnakaran 2012). Although the specific composition of other NPPs of different 

origins is not known as yet, such as in the case of Pseudoschizeae, they seem to be 

constantly relatively well preserved. However, high temperatures can destroy 

palynomorphs, and Expósito and Burjachs (2016) argued that burning activities may 

severely affect the preservation of fungal spores. 

As regards dispersal and deposition, the natural location of fungi on the ground 

allows spores to be deposited fairly soon, so that long transport is unlikely (see 

above). In the case of cave, though, it is possible that water circulation also plays an 

important role in transporting both, pollen and non-pollen microfossils (Gutierrez 

2012). 

To date, there are no NPP-targeted studies, unless a few works on aerial microbiology 

of caves (Docampo et al. 2011; Ogórek et al. 2014), that therefore did not focus on 

sediments. This is rather surprising, considering the potential in the field of biology 

for mycologists interested in the long-term adaptation of fungi to cave environments 

(Romero Díaz 2009). Non-pollen microfossils have been occasionally counted during 

palynological analyses of cave deposits, but only a very limited range of types 

considered to be relevant by the analysts, mostly coprophilous spores or algal cysts 

(Buosi et al. 2014; Arobba and Caramiello 2009; González-Ramón et al. 2012), 

whereas elsewhere fungal spores are only mentioned but not quantified (Navarro et 

al. 2001). The most relevant cases are perhaps the investigation of the dung blanket 

in the Bechan Cave (Davis et al. 1984), that pioneered the potential of Sporormiella 

spores in palaeoecology, the analysis of early hominid beds from Sterkfontein caves 

including aquatic types along with other spores (Carrión and Scott 1999), and the 

http://www.sciencedirect.com/science/article/pii/S0033589411001529
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recent study of a guano-clay cave sequence that has quantified not only fimicolous 

spores but also Kretzschmaria deusta and Trichuris spp. (Onac et al. 2015). 

Very recently, Expósito and Burjachs (2016) recorded dung spores and algal remains 

from a fumier sequence consisting of burnt dung, a deposit formed by repeated 

stabling episodes comparable to the one sampled in the Arene Candide. The values of 

microfossils vary from sample to sample, in spite of being almost contemporaneous. 

Significantly, coprophilous spores appeared to be more numerous only in certain 

levels. These variations were interpreted by the authors in terms of differential 

preservation due to burning and high temperatures. 

A rather different case is represented by analyses of coprolites found in caves, or cave 

rocks and perennial ice cave deposits, where certain types NPPs have been  extracted 

and counted  (Carrión et al. 2001; 2005; Yll et al. 2006; Feurdean et al. 2011; Pusz et 

al. 2014). 

 

 

1.5.4 ‘Fumier’ deposits 

 

A peculiar kind of deposit, mostly found in caves and rock shelters and associated 

with human practices is known as fumier (or “layer-cake” levels) (Brochier 2002; 

Angelucci et al. 2009). The main characteristic of fumiers lies in the occurrence of 

burnt (and often also unburnt) layers chiefly composed of dung, vegetation remains 

and ashes. Their thickness can vary substantially according to the site, from 

alternations of thick layers to multiples very thin units. Nevertheless, fumiers appear 

strikingly uniform as concerns their main traits on an extremely wide area 

comprising the west fringes of the Mediterranean basin up to the Near East, ranging 

from alpine to warm Mediterranean climates (Angelucci et al. 2009). Fumiers are 

thought to be primarily the results of reiterated pastoral activities, whose differences 

are reflected in the variety of layer-cake deposits. These are also remarkably 

homogenous from a chronological perspective, being attested only from the very 

onset of Neolithisation to the Copper/Bronze Age (modern fumier-like deposits have 

been also described from Sicilian and Greek caves: Brochier et al. 1992; Acovitsioti-

Hameau et al. 2000). 

A suit of analytical methods has been applied to the study of fumiers in the last few 

decades, in order to provide answers to formative and interpretative issues. 
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Undoubtedly, micromorphology has been the technique most frequently used, and 

has allowed the dung component to be identified in various sites (Boschian and 

Miracle 2007; Angelucci et al. 2009). It has also shown the striking similarity of 

fumiers from distant locations on a microscale, the occasional presence of 

horizontally layered phytolith chains and frequent signs of compaction probably 

caused by animal trampling (Macphail et al. 1997).  

Phytolith analyses have often been carried out along with micromorphology. The 

results provide indications of the vegetation ingested by the flock, the type of material 

used for foddering, and possibly crop processing practices prior to the creation of 

animal bedding (Albert et al. 2008). 

Chemical and isotopic characterizations of pastoral deposits have been attempted, 

but they appear to be linked more to the field of research aiming at the species 

identification of archaeological dung rather than to the specific investigation of 

fumiérs (Shahack-Gross et al. 2003; Shahack-Gross et al. 2008; Macharia et al. 2012). 

A relevant study illustrating the chemical variation of modern fumier profiles 

according to different compositional units (e.g. burnt, unburnt, ashes, etc.) was 

performed by Brochier et al. (1992), in a pioneering paper on the significance and 

formation processes of such sequences. It is worth noting that only a few authors 

have paid attention to the investigation of freshwater indicators in pastoral contexts. 

Despite a poorer preservation compared to wetland deposits, remains of siliceous 

algae have been identified and interpreted as derived from the water supplied to the 

herd (Brochier et al. 1992). Furthermore, diatom-rich layers have been used to 

distinguish separate pastoral episodes and oligotrophic/eutrophic species employed 

as indicators of high/low pastoral pressure (Brochier 2002). The problem of water 

supply has indeed been largely overlooked in most studies on pastoral sites, and 

requires further investigation (a recent example of the potential of diatom and 

sponge spicule analysis of animal dung deposits is given by Golyeva 2012). 

A notable enhancement of the understanding of site formation processes in pastoral 

contexts was provided by ethnographic works focusing on recent and sub-recent 

deposits. Layered sequences resembling late prehistoric fumiers have been analyzed 

providing a model of fumiers formation, with the aid of available oral information on 

pastoral practices in the last two centuries (Brochier et al. 1992; Acovitsioti-Hameau 

et al. 2000; Martín-Rodríguez and Vergès 2016; Vergès et al. 2016).  
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Palynological analyses of fumiers have been rarely carried out (Branch 1997), 

presumably due to taphonomic problems related to terrestrial samples and 

preservation issues. However, the analysis of terrestrial profiles can prove highly 

profitable (see e.g. Donaldson et al. 2009 on anthropogenic soils), and when applied 

to pastoral sequences new data on the environment surrounding the site can be 

collected (Branch 1997).  

 

 

1.5.5 Agricultural settings: man-made soils and terraced slopes 

 

Deep anthropogenic soils can provide valuable information on past farming activities. 

In northwest Europe, these horizons are termed “plaggen”, and have resulted from 

the repeated addition of different manures to the fields for several centuries, with the 

aim of improving harvest productivity (Blume and Leinweber 1988; 2004; Pape 

1970). Such practice formed part of an operational cycle consisting of different 

phases, which varied according to the region and the historical period. Among the 

most common deliberate additions to the fields were heath and grass sods, although 

also peat and turf ashes, seaweeds and animal carcasses are documented, and sand 

and till were occasionally added (van de Westeringh 1988; McKenzie 2007).  

The sods were initially cut in square patches to be used as litter for cattle and sheep 

in stables. After a period, they became dung- and urine-impregnated and were spread 

on the fields as manure. It should be noted that such a system had to be thoroughly 

adopted, as the balance between available grazing surface and source area for sod 

cutting was precarious. For these reasons, in historical times plaggen-type manuring 

systems were commonly regulated by local authorities (Mckenzie 2007). 

The repetition of this practice determined the formation of characteristic dark 

horizons, typically thicker than 50cm. Such soils are known in the Netherlands, 

northwest Germany, Belgium and Scotland, most of them being created during the 

last millennium (van de Westeringh 1988). Plaggic anthrosols are therefore of the 

greatest interest for historical archaeology, but plaggen-like soils have been identified 

and hypothesized also with reference to prehistoric farming. The most notable 

examples are found on the Islands of Sylt and Fohr (northern Germany) and several 

Dutch sites (Conry 1974; Blume and Leinweber 1988; Dockrill and Simpson 1994). 
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Plaggen soils have been investigated mainly by means of chemical, sedimentological 

and micromorphological analysis (Mücher et al. 1990; Dercon et al. 2005; Davidson et 

al. 2007). C, N and Pb isotopes have also been employed, in order to identify the 

source of pollution in the arable land (Meharg et al. 2006). In some favourable cases, 

these methods are coupled with historical and ethnographical sources providing a 

better understanding of past agricultural practices (Donaldson et al. 2009).  

A few pollen-based investigations of plaggen horizons have been attempted (Bakels 

1988; Groenman-van Waateringe 1988; 1992; Mücher et al. 1990; Donaldson et al. 

2009). It is worth noting that despite the issues of grain taphonomy in terrestrial 

deposits and related difficulties in interpretation, these studies have proved 

successful. It seems possible to link the variations in the assemblages to the 

agricultural history of the sites, and even provide a chronological link based on 

regional vegetation history, given the unreliability of radiocarbon dates from 

anthrosols. To these ends, when possible it is recommended to collect and analyze a 

“control” sample from a nearby natural wetland archive, to facilitate a distinction 

between regional and site-specific signals and to elaborate a pollen chronology for 

the area (Mücher et al. 1990). However, the dating of plaggen-soils is highly 

problematic. Radiocarbon and pollen-based chronology fails to provide an accurate 

age estimate, therefore optically stimulated luminescence (OSL) has been tentatively 

applied (van Mourik et al. 2011). 

Distinct man-made soils can be found also in the Americas, where patches of highly 

fertile Amazonian dark earths (terra preta de Ìndio) are scattered on the backdrop of 

naturally occurring poorly nutrient weathered soils (Glaser and Birk 2012). The 

origin of such anthropogenic soils is still being debated, and unlike plaggen soils it is 

not clear whether they were produced intentionally or unintentionally in a large 

period comprised between c. 2500 and 400 BP. The data point to an unintentionally 

prolonged formation due to the accumulation of charred organic matter (biochar), 

faeces, food residues and various domestic waste including several potsherds, 

resulting in a high P content and high productivity of these deposits (Lima et al. 

2002). Elemental and soil organic matter analyses clearly separate the dark earths 

from the surrounding local soils (Ferrasols and Acrisols), and faecal biomarkers such 

as stanols and bile acids seem to indicate a massive addition of human waste (Birk et 

al. 2011). The formation and composition of Amazonian dark earths, and particularly 

their relationship with archaeological sites, farming practices and pre-Columbian 
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demography requires further investigation. The palaeoecologial approach applied to 

their European counterparts might reveal fruitful results, as suggested by the studies 

focusing on plaggic deposits. 

Despite the extension of the phenomenon, very little is known on the origin of 

agricultural terraced systems characterizing the landscape of several Mediterranean 

regions. A few chronological attributions have been advanced on the basis of the 

associated archaeology such as terrace wall masonry or radiocarbon dates, the 

earliest cases being tentatively dated to the Copper Age and the Late Mycenaean 

(Grove and Rackham 2001; Bal et al. 2010). The current knowledge of farming 

practices taking place on the terraces is equally poor. Indeed, when ancient terraces 

have been buried, the commonly adopted approach was normally limited to a 

pedological assessment, allowing the ancient soil surface to be identified. However, in 

a few cases a more refined analysis has been carried out with the aid of charcoal and 

phytolith analysis and micromorphology (Nisbet 1983). The most detailed 

investigation was performed by Bal et al. (2010), by means of charcoal analysis. In 

spite of the reworking of the deposit, radiocarbon dated charcoal enabled distinction 

between different phases of construction and local vegetation dynamics. 

On the contrary, the widespread diffusion of terracing in pre-Columbian America has 

been investigated in far greater detail, given the combination of archaeological (Healy 

et al. 1983), pedological (Smith and Price 1994; Kemp et al. 2006), palaeoecological 

(Trombold and Israde-Alcantara 2005; Branch et al. 2007) and even isotopic 

investigations (Webb et al. 2004). Through these methods it has been possible not 

only to identify buried terraces, but also gain information on the cultivated plants and 

the local palaeoenvironment. It is worth noting that Trombold and Israde-Alcantara 

(2005) have also considered the problem of water management involved in terraced 

agriculture, assuming that water was purposely collected in the valley and brought up 

to the fields on the basis of diatoms frustules recovered on the terraces. 

 

 

1.5.6 The use of modern parallels in palaeoecology and archaeology 

 

When outlining the roots of approaches targeted at the present in order to get a 

better understanding of the past, it is appropriate to look back at the pioneering era 

of modern geology and evolutionary biology. It was not until then, that a full 
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awareness of the principle of uniformitarianism of was first gained and maintained as 

a sound guideline in the following decades (although the concept had already been 

touched on before by a few great thinkers of the Muslim and Christian Middle Ages: 

Saliba 2007; Rosenberg 2009). 

The use of modern analogues in ecology became common from the late 1960s. An 

analogue was defined as a form of inference assuming that two similar entities share 

similarities in more than one respect (e.g. fossil pollen assemblage/modern pollen 

assemblage and past vegetation community/modern vegetation community) (Jackson 

and Williams 2004). Back in the 1960s, Hesse (1966) formulated three key criteria 

for the validity of analogues: 1) the similarities between the compared entities have 

to be clear and definable; 2) a hierarchy can be established so that relevant positive 

analogies are more important than negative and irrelevant ones; 3) it is possible to 

demonstrate a causal relationship between entities. Besides, it is necessary to watch 

out for pitfalls, such as: 1) erroneous inference of a positive match (false positive); or 

erroneous inference of a mismatch (false negative) (Wahl 2004). 

In its early days, the analogue approach was developed mainly in Europe and North 

America, as a means of identifying modern vegetation communities matching fossil 

pollen assemblages. The method formed the basis for elaborating pollen-based 

models allowing for accurate correlations between pollen rain and the actual 

vegetation structure (Sugita 2007; Hellman et al. 2008). The approach has also been 

adopted to elucidate the ecological value of non-pollen palynomorphs and their 

relationship with vegetation communities and animal husbandry, looking at a range 

of modern samples from surface lake muds and moss pollsters (Blackford and Innes 

2006; Mazier et al. 2009; Raper and Bush 2009; Cugny et al. 2010; Dietre et al. 2012; 

Baker et al. 2016). 

Roughly fifty years ago, alternative approaches looking at long- and short-term 

contemporary processes also made their way in archaeology. It was realized that 

issues in post-depositional processes could be better understood, both by observing 

living communities and their contribution to the creation of new archaeological 

records (ethnoarchaeological approach), and deliberately creating stratigraphies and 

looking at them through time (experimental archaeology) (David and Kramer 2001). 

The experiments show that a relatively short time of burial is sufficient to create 

steady chemical and pedological conditions comparable to the cases unearthed in 

prehistoric excavations (Bell et al. 1996). The effect of burial and biological activity in 
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relation to pollen grains was also evaluated by scattering Lycopodium spores on the 

land surface, showing that upward and downward movement does occur, although 

only to an extent of a few centimetres (Dimbleby 1965; 1996; Ashbee and Jewell 

1998). 

The value of contemporary or sub-recent deposits for interpreting pastoral shelters 

in caves and open-air sites was illustrated in an exemplary way by Brochier et al. 

(1992). The formation and properties of sharply banded stratifications were 

examined by means of several biological and geochemical proxies, providing relevant 

implications for 

understanding 

various 

Mediterranean sites 

spanning from the 

Neolithic to the 

Bronze Age. In 

recent years, 

further experiments 

were conducted to 

assess the degree of 

compaction 

undergone by cave 

stabling layers and 

the effect of burning 

(Albert et al. 2008; 

Vergès 2008; 

Martín-Rodríguez 

and Vergès 2016; 

Vergès et al. 2016). 

 

 

1.6 Geographical setting and vegetation history of the study region 

 

The northern Apennines are defined as a subdivision of the Apennine chain lying 

between Mt. Cadibona and the mountain pass of Bocca Trabaria (fig. 1.2). The area 

Figure 1.2. Physical map of Italy showing the location of the 

northern Apennines range and the study sites. 1. Cave of Arene 

Candide. 2. Prato Spilla ‘A’. 3. Genoa Piazza Vittoria. 4. Castellaro di 

Uscio. 
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comprises, from south to north, the modern regions of Tuscany, Emilia-Romagna and 

Liguria. The orogenesis of the range is highly complex and originates in the Jurassic 

and Cretaceous periods (c. 200-65 Ma), when oceanic ophiolites were deposited in 

the area. 

The Apennine landscape is mostly hilly, with only a few peaks extending above 

2000m asl (average height 800m, versus 1300m of the Alps), and limited stripes of 

plain along the coasts. Unlike the Central Apennines, no major rivers are located in 

the northern area, the main ones being the Vara (58km) and the Magra (70km), 

flowing between Tuscany and Liguria. 

 

 

1.6.1 Current floral assemblages in Liguria and northern Apennines 

 

At present, the vegetation types of Liguria (Gentile 1984; Terzuolo et al. 2006; Vagge 

and Mariotti 2010) are as follows: 

 

Oak woodlands (Quercus ilex and Q. suber) 

Forests composed of sclerophyll oaks (for the greatest part only Q. ilex, being Q. suber 

much less diffused) were very common on all the hills facing the sea prior to the 

massive deforestation to gain agricultural soils. Q. ilex forests are now diffused 

especially between Chiavari and the Cinque Terre, and in the territory around 

Imperia. In these latter areas, the species can be found up to 1000m asl if sunny and 

rocky slopes are available. These two zones show the most typical Mediterranean 

climate, whereas the humidity of the areas around Genova and Savona tend to favour 

mountain species, enabling their presence even near sea level.  

 

Mesophilous broadleaved woodlands 

Forests of this type are typical of valley floors, low slopes, and abandoned mountain 

pastures or hazel orchards following invasions. Two mesophilous species normally 

co-dominate these woodlands, locally prevailing on other trees generally more 

diffused on a regional scale. There is no continuity in the distribution of this 

vegetation type, it often being the result of local processes in areas of relatively high 

humidity. 
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Manna ash-hop hornbeam woodlands (Fraxinus ornus and Ostrya carpinifolia) 

This type includes a coenosis mainly populated by F. ornus and O. carpinifolia, 

occasionally coupled with Q. pubescens, Q. ilex, Fagus sylvatica and Castanea sativa. Its 

diffusion is prevalently concentrated in the backcountry of Genoa and in the area of 

Finale Ligure, where carbonatic soils prevail. O. carpinifolia is particularly diffused on 

mountain reliefs, where it survives up to 1000m asl. F. ornus has a more xerophile 

and heliophilous predilection and can thrive on any substrate, so that it is often a 

colonizing species. 

 

Chestnut woodlands (Castanea sativa) 

On a regional scale Castanea sativa is nowadays the most diffused species, and 

chestnut woods constitute up to 30% of the total Ligurian forest composition. They 

appear to be evenly distributed across the territory, and particularly frequent in the 

provinces of Genoa, Savona and La Spezia, whilst the calcareous subsoils around 

Imperia are less suitable for their growth. The species has a wide altitudinal range, 

spanning from 100m asl to the beech woods in the mountain areas (c. 1000m asl). 

 

Coastal pine woodlands (Pinus alepensis and P. pinaster) 

The type is less relevant to our purposes as most of the coastal pine forests have been 

artificially created over the last 100-40 years. The main populations of P. alepensis are 

located in the areas of La Spezia and Imperia, given its resistance to drought allowing 

it to grow directly on rock slopes facing the sea. P. pinaster has higher water 

requirements, so that it is localized in the hinterland between Savona and Genoa and 

on the shores of eastern Liguria. 

 

Mountain pine woodlands (Pinus sylvestris and mugo) 

Natural populations of Scots pines are strongly localized, although very much diffused 

in reforestations along with Pinus nigra and pinaster. The main groups are localized in 

the backcountry of Imperia and Savona, while elsewhere they have been artificially 

introduced. Scots pines is also present as isolated specimens among beech forests, Q. 

petraea woodlands, chestnut groves and rocky woods. Altitudinal limits vary between 

700 and 1700m asl. Dwarf mountain pine can be regarded as a relict, presently 

occurring solely in the upper Negrone valley, and only with single specimens on the 
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southern slopes of the Mt. Maggiorasca. The optimal altitude ranges from 1300 to 

1700m asl. 

 

Beech woodland (Fagus sylvatica) 

Beech is currently highly prevalent in the upland areas, as well as being the most 

common arboreal species in the region along with chestnut. It is distributed all over 

the territory, but more intensively in the provinces of Imperia, Savona and Genoa. The 

reasons for this success lie in the cool and oceanic climate of Liguria, which is 

particularly favourable to the ecology of Fagus sylvatica. Although the optimal 

altitudinal range spans between 500 and 1700m asl, it can be found also around 

200m asl in the Geonoa’s hinterland, where some mountain species are able to 

colonize even cool hillslopes of near-sea-level areas (e.g. Geranium nodosum). 

 

Silver fir woodlands (Abies alba) 

Natural forests of Abies alba are presently extremely rare in the whole region. Small 

clusters have survived only in relatively remote areas due to difficult access. The 

main groups are situated on the Mt. Aveto and Mt. Alfeo (Genoa), and in the upper 

valleys of Tanarello, Negrone and Argentina. Elsewhere, silver fir is present due to 

artificial reforestation. The optimal altitude is between 1300 and 1700m asl. 

 

Larch woodlands (Larix decidua) 

Larix forests are rare and very localized in the region, being confined to the western 

part between the valleys of Argentina and Tanarello. The reason for their scarcity is 

to be sought in the climate of the region, which does not suit the ecological 

requirements of the species. Larch’s natural habitat is typically alpine, and where it 

coexists with beech this is due to human intervention. The altitudinal range varies 

from 100 to 1800m asl. 

 

Riparian formations 

This coenosis is formed by mesophilous, mesoigrophilous and mesoxerophilous 

species, typical of riversides. Along the principal rivers, the most frequent forest types 

are formed by rows of Populus and Salix spp. on sandy and gravel soils. The dominant 

species slightly vary in mountain locations, where along with Populus we find Salix 
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alba, Alnus glutinosa and incana, these latter also common on middle and- low-

altitude cool hillslopes. 

 

Pioneer and invading woodlands 

This is a highly heterogeneous category, distributed all over the regional territory. 

The main invasion-prone habitats are abandoned cultivated fields and rocky areas, 

from the sea level to the mountainous areas, characterized by strong erosion, shallow 

soils and fire events favouring recolonization. Normally two or more co-dominant 

mesoxerophile or xerophile species coexist, the most frequent being Corylus avellana 

and Robinia pseudoacacia. 

 

Shrublands and Mediterranean maquis 

This vegetation type is present all over the region, particularly on sunny slopes or in 

fire-prone zones. Six main associations can be identified, all composed by evergreen 

Mediterranean species able to reproduce on hot, arid and windy environments. The 

simplest type is the Erica arboria/scoparia-Arbutus unedo maquis, distributed 

between 200 and 1000m. Directly facing the sea shore we find instead the 

thermomediterranean maquis (Pistacia lentiscus, Myrtus communis, Euphorbia 

dendroides). Typically, Pinus pinaster, P. alepensis and Olea europaea also occur, 

testifying to the origin of the maquis as derived from a previous pine wood or from 

abandoned cultivated fields. 

 

 

1.6.2 Past vegetation changes in Liguria and the northern Apennines: anthropogenic 

influence and natural environmental change 

 

Due to the historical development of Italian prehistoric archaeological research 

(“palaeoethnology”), attention has always been paid in our study region to 

human/environment interactions (Maggi 1997). In the late 19th century, the scholars 

working in the field and directing excavations had a close relationship with natural 

sciences. This fact strongly influenced their methods, while southward an art-history 

oriented approach followed by classical archaeologists took over (Guidi 1988; De 

Pascale et al. 2008). Thanks to this tradition, already in the 1940s during the first 

large-scale investigations of Arene Candide conducted by Bernabò Brea botanical and 
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malacological samples were collected (Bernabò Brea 1946; 1956). Subsequently, the 

field of environmental archaeology flourished in the region, and palaeoecological 

studies in more recent years have been often integrated in the archaeological scheme, 

continuing and consolidating this tradition of study (Maggi 1997).  

Increasing attention has been devoted to the northern Apennines since the early 

1980s, allowing specific local vegetation changes to be defined and contextualized in 

the Mediterranean milieu. Initially, the efforts focused on a few upland peatbogs 

located in northeast Liguria and southwest Emilia: Lago Padule, Lago Pratignano, 

Pavullo, Ospitale (Watson 1994; 1996). In spite of a rather poor chronology these 

attempts, along with previous works (Baffico et al. 1987), employed palynology and 

micromorphology to stress the importance of the onset of peat accumulation, which 

was interpreted as a result of late prehistoric anthropogenic activities in the 

highlands leading to charcoal and fine material deposition and subsequent soil 

impermeabilization (Baffico et al. 1987; Courty et al. 1989; Maggi 2004b). According 

to these authors, this evidence is sufficient to prove the use of controlled fires as a 

means of clearing the mountain slopes since the Copper Age, for hunting and 

mountain pasture. Moreover, the main regional events in the vegetation succession 

were detected, such as the shifting from Abies-dominated to Fagus-dominated forest 

communities, the Ulmus decline, the rise of herbaceous taxa and later the appearance 

of ruderal species (Branch and Marini 2014). The picture was widened and the 

number of study sites increased by the works of Lowe and Branch (Lowe 1991; 1992; 

Lowe et al. 1994a; 1994b; Branch 1997; 1999), that proceeded to carry out pollen 

studies in the region. A first pollen-based chronological scheme was developed and 

still holds true in its main lines (Lowe et al 1994a). The sequences were better 

investigated and dated in the following years, and the scheme refined accordingly 

(Branch 2013; Branch and Marini 2014; Branch et al. 2014; Branch and Morandi 

2015). Occasionally, new proxies were applied to integrate Holocene fire history and 

vegetation history (see e.g. Branch 2013), this latter being very likely affected by 

burning, be that natural or human-induced. As of today, a reliable chrono-

palynological scheme for the Ligurian-Emilian Apennines is shown in table 1.2. 
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Table 1.2. Main phases of Holocene vegetation change in the northern Apennines. 

Regional Pollen 

Assemblage zones 

(PAZs) 

 

Composition 

Time scale 

(Cal yr BP) 

PAZ-8 Woodland reduction and 

anthropogenic landscape: scattered 

Fagus and Quercus woods 

2000 to present 

PAZ-7 Fagus-Abies-Quercus (-Alnus) 4000 to 2000 

PAZ-6 Abies-Quercus 7500 to 4000 

PAZ-5 Abies-Quercus-Ulmus 10,300 to 7500 

PAZ-4 Quercus-Betula-Fraxinus-Corylus 10,600 to 

10,300 

PAZ-3 Pinus-Abies-herb associations 11,600 to 

10,600 

PAZ-2 Abies-Pinus-Quercus-Corylus >12,360 to 

11,600 

PAZ-1 Pinus-Quercus-Compositae Not dated 

 

A variety of past ecosystems have been detected, not necessarily having perfectly 

matching equivalents in the present (fig. 1.3). The oldest vegetation community 

known for the region has been identified in the rare deposits dating back to the Late 

Würm Late Glacial (Rovegno, Lagdei, Prato Spilla C, Prato Spilla D). At lower altitudes 

it consisted of a steppe-like environment dominated by Artemisia, mixed with pine 

populations and 

evolving toward a 

Juniperus 

Figure 1.3. 

Paleo-ecosystems 

identified in the 

northern 

Apennines by 

means of pollen 

analysis: 

chronology and 

altitudinal 

gradient. 
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shrubland. This phase is followed by Pinus-Betula woodlands and then termophilous 

taxa indicating the Late Glacial interstadial, whereas in the uplands Abies is already 

diffused at this time, along with Pinus. Forests of Abies alba become dominating 

during the Early Holocene in all the mountain locations, and remain the principal 

ecosystem for more than 3000 years. The species is today very rare in the region 

(Menozzi et al. 2010; Arobba et al. 2016), although good analogues can be found 

elsewhere in southern Europe, for examples in eastern France and Bulgaria (Becker 

et al. 1992; Roussakova and Dimitrov 2005). Since about 7000 BP Fagus woodlands 

start rising and then take over in most sites, Quercus, Corylus and Fraxinus being often 

cohabiting species. Towards lower altitudes the picture seems to be more varied and 

perhaps locally differentiated. No old lake deposits are known from along the shore, 

so that deep cores from very thick alluvial plains are the main sources for 

reconstructing lowland environments. Meso-termophilous woods and Mediterranean 

maquis dominated by Erica along the coasts of eastern Liguria and northern Tuscany 

during the Middle Holocene were identified by Bellini et al (2009). Conversely, a 

near-sea area in the Bisagno valley seems to have been occupied by a coastal silver fir 

forest (Montanari et al. 1998), a habitat that lacks a contemporary analogue at such a 

low altitude. The authors specifically stress the negligibility of the other arboreal 

species, usually more common at lower altitudes. A further different and contrasting 

picture is provided by very recent investigations in the centre of Genoa, next to the 

Bisagno river delta. Here, a number of arboreal taxa were recorded (riparian, 

pyrophilous and heliophilous trees), Quercus being highly dominant in some levels, in 

particular around 7200 BP and 6500 BP (Arobba et al. 2016). It is worth stressing 

that records from alluvial deposits are more likely to be affected by taphonomic 

issues that are often very challenging to interpret, such as the transport down valleys 

of pollen grains produced by upland species. 

Widespread evidence for pastoralism (and on a smaller scale for agriculture) from a 

number of sites (Lowe et al. 1994a), has led many authors to assume a relationship 

between certain changes in vegetation structure and composition and the human 

communities settled in the area (Branch 2013; Branch et al. 2014). (table 1.3). 

Namely, the replacement of Abies by Fagus as a dominant forest species after 6000 

BP, a slight increase in grasses and locally Corylus, and the occurrence in some 

deposits of microcharcoal particles.   A relationship between these  events and human  
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Table 1.3 Indicators of human disturbance identified in previous palaeoecological studies on the Holocene of the northern Apennines. 

REFEREN
CE 

ANTHROPOGENIC INDICATORS MENTIONED SITE 

Palynology Fungal 
spores 

LOI Litholog. Chemistry Micromorph. 

Baffico et 
al. 1987 

Juglans, Castanea, Olea, Plantago 
lanceolata, Cruciferae, Poaceae + 
microcharcoal 

    microcharcoal Prato Mollo  
(1500 m asl) 

Cruise 
1990 

Juglans, Castanea, Plantago lanceolata      Agoraie  
(1330 m asl), Casanova  
(1055 m asl) 

Lowe et al. 
1994a 

Ulmus and Fraxinus (fluctuations) + Olea, 
Plantago, Artemisia, Compositae, Rumex, 
Umbelliferae 

  mineroge
nic 
horizons 

  Prato Spilla ‘A’ 
(1550 m asl) 

Lowe et al. 
1994b 

Fagus, Quercus, Corylus, Fraxinus, 
Ericaceae, Poaceae (fluctuations), 
Plantago, Compositae, Umbelliferae 

  mineroge
nic 
horizons 

  Prato Spilla ‘A’ 
(1550 m asl), 
Lago Padule 
(1260 m asl) 

Watson 
1996 

Juglans, Castanea      Lago Padule (1260 m 
asl),  
Lago Pratignano 
(1305m asl) 

Cruise et 
al. 2009 

Juglans, Castanea, Olea, Artemisia, 
Chenopodiaceae, Cerealia 

 miner
ogenic 
inputs 

 rise in 
phosphate
s 

herbivore 
dung?, 
microcharcoal 

Lago di Bargone  
(830 m  asl) 

Menozzi et 
al. 2010 

Juglans, Castanea, Chenopodiaceae, Rumex, 
Artemisia, Plantago lanceolata, Pteridium 
aquilinum, Cichorioideae, Urticaceae, 
Poaceae, Cerealia + microcharcoal 

Delitschia, 
Chaetomium, 
Apiosordaria 
verruculosa, 
Sordaria-type, 
Sporormiella, 
Cercophora, 
Glomus 

    Mogge di Ertola 
(1115 m asl) 
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Vescovi et 
al. 2010a 

Juglans, Castanea, Olea, Plantago 
lanceolata, Rumex acetosella, Cerealia, 
monolete spores + microcharcoal 

Diporotheca 
recorded but 
not taken as 
an A.I. 

    peat-bog of San 
Pellegrino 
(670 m asl) 

Vescovi et 
al. 2010b 

Abies and Fagus (fluctuations), Juglans, 
Castanea, Olea + microcharcoal 

     Lago del Greppo 
(1440 m asl) 

Branch 
2013 

Fagus, Abies, Fraxinus, Ulmus, Tilia, Ostrya, 
Corylus (fluctuations), Castanea, Juglans, 
Olea, Cyperaceae, Plantago lanceolata, 
Artemisia, Rumex + microcharcoal 

 miner
ogenic 
inputs 

   Lago Riane  
(1280 m asl) 

Guido et al. 
2013 

Juglans, Castanea, Olea, Cerealia, Artemisia, 
Chenopodiaceae, Centaurea cyanus, Rumex, 
Plantago lanceolata, Plantago 
media/major, Urticaceae, Apiaceae, 
Ranunculus acri, Humulus/Cannabis, 
Melampyrum-type, Fabaceae, 
Campanulaceae, Brassicaceae, Solanum 
dulcamara, Linum, Papaver, Knautia, 
Apshodelus, Polygonum aviculare + 
microcharcoal 

     Mogge di Ertola 
(1115 m asl) 
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activities, such as fodder gathering and landscape clearings, has been repeatedly 

suggested (Branch and Marini 2014). 

There is strong evidence for early animal domestication and husbandry in south-

western Emilia and Liguria. In this latter region, the onset of the process can be dated 

to the Early Neolithic, although the data increase notably in the Middle and Late 

Neolithic. The  event  occurs  against  the  backdrop  of cultural changes,  involving the 

diffusion of the VBQ culture (squared-mouth pottery) during the VII Millennium BP, 

replacing the Early Neolithic impressed ware (Biagi 1996). 

Most of the evidence comes from a number of rock shelter and cave deposits located 

in the cave-rich area of western coastal Liguria, while there is scant evidence for 

open-air sites, this probably being an effect of their lesser archaeological visibility. 

Considerable bone assemblages have being recovered, showing a prevalence of 

domestic species such as sheep, goats and cows. A seasonal or continuous occupation 

has been suggested for these sites (Barker et al. 1990; Maggi and Nisbet 1991). Aside 

from the zoological remains, a few sequences have been investigated by a suit of 

techniques, among which micromorphology, botanical and charcoal analyses (Del 

Lucchese 2009; Nisbet 1997; Macphail et al. 1997). 

The picture resulting from the best known deposit in the cave of the Arene Candide 

indicates the presence of the herd within the cave, probably used as a permanent or 

temporary stable, with occasional episodes of human occupation (Maggi 1997). It has 

been suggested that the animals were kept in a fenced area, periodically swept and 

cleared by burning to dispose of large masses of dung and perhaps prevent the 

spread of parasites (Macphail et al. 1997). The cyclic repetition of this practice is 

thought to be the origin of distinctive banded deposits characterizing several cave 

sites in the Mediterranean basin from the Early Neolithic to the Early Bronze Age 

(Angelucci et al. 2009). Although pigs are also included in the bone assemblages, 

Neolithic specimens were still in the wild state. The introduction of domestic pig is 

commonly dated to the Early Copper Age with the spread of the Chassey culture from 

south-eastern France to north-western Italy (Maggi 2004c; Maggi and Campana 

2008). Aside from clear changes in the material culture, new species of sheep of 

bigger size are also introduced by the Chasséen shepherds (Maggi 2004a). These 

latter are probable responsible for significant landscape modifications involving the 

use of fire to create open pastures, as suggested by multiple natural archives (Maggi 

2004b). However, a clear relationship with anthropogenic disturbance remains 
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dubious (Branch 2013; Branch and Morandi 2015), as the contemporaneous 

archaeological evidence is mainly found on the western coast. A few findings from 

Castellaro di Uscio and Tana delle Fate, though, seem to suggest the presence of 

Chassey groups also in the eastern part (Branch et al. 2014). 

It appears clearly that the record is very much pollen-depending (table 1.3), and 

alternative methods have been applied only sporadically and not always 

systematically - e.g. mesh sizes used in palynology make it difficult to reliably 

reconstruct fire history, and are likely to provide only a regional picture resulting 

from airborne particles (Clark 1988). Future studies should then aim to integrate 

complementary proxies to help distinguish human-driven from climate-driven 

changes, otherwise the whole debate would keep resting on assumptions which are 

hard to demonstrate (Branch and Morandi 2015). 
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2. LABORATORY METHODS AND MATERIALS 

 

 

Different preparation protocols initially developed for pollen analysis may have various 

effect on the preservation of fungal spores (Ciara 1994; van Asperen et al. 2016). The 

use of Hydrofluoric acid is a particularly aggressive treatment, and it was never applied 

to any of the sites under investigation. Acetylation was also avoided when possible, and 

used only if it was necessary to improve visibility removing protoplasm. 

Non-pollen palynomorphs are normally counted alongside pollen grains, following 

slight modification to the pollen extraction procedure and mounting in an appropriate 

medium (Chambers et al. 2011). 

 

Details of the sample preparation are given below: 

A volumetric sampler was used to receive the required amount of sample for example 

1cm3, and then the sample extruded into a 100ml graduated glass beaker. 

10ml of distilled water were poured into the beaker before step, one or two Lycopodium 

tablets added (noting batch number and total amount of pollen per tablet).  

The beaker was covered with aluminium foil, and following addition of 25ml of 1% 

sodium pyrophosphate was placed onto a hotplate and simmered for 40 minutes at 80 

degrees centigrade, stirring frequently. This deflocculates the sample. If after 40 

minutes the sample was still intact and sticky, the treatment was continued adding 

more sodium pyrophosphate. 

For each sample place a coarse sieve (125 µm or 200 µm) was placed on top of a fine 

mesh (5 µm). The lower sieve was flooded with distilled water and the sample poured 

into the upper sieve, washing out the beaker with distilled water. The coarser fraction 

was washed until all fine particulate matter was suspended in the lower sieve. The 

coarse sieve was then removed and the fine sieve washed to remove gne silts and clays. 

After reducing the amount of water in the lower sieve, the sample retained was 

transferred from the sieve to a labelled round bottom centrifuge tube (15ml capacity 

with screw cap). 

Ensuring that the water level in each tube is the same, tubes were centrifuged for 5 

minutes at 2500rpm and the supernatant poured off and. The washing procedure was 

repeated with 10ml of distilled water until the supernatant was clear. 
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When dissolution of calcium carbonate was required: 

A small amount of hydrochloric acid (10%) was added to the centrifuge tube (and the 

pellet stirred with a wooden stick if necessary). After the reaction had stopped, distilled 

water was added to the 15ml mark, and the tube centrifuged for 5 minutes at 2500rpm 

with brake on. The supernatant was then poured off and the washing procedure 

repeated with distilled water. 

For heavy liquid separation, 6ml of sodium polytungstate (specific gravity of 2.0g/cm3 ) 

were added to the centrifuge tubes, that were agitate using a vortex mixer (Labdancer) 

(30 seconds per sample). With the centrifuge brake to 0, tubes were centrifuged for 20 

minutes at 2500rpm. 

An appropriate number of conical base centrifuge tubes (15ml capacity, screw cap) 

were selected and labelled.  The organic suspension was poured off from the round 

bottom tube into the conical tube, and 10ml of distilled water added. The cap was 

replaced and the tube shaken for 30 seconds to mix/dilute the sodium polytungstate. 

After resetting the centrifuge brake on, the tubes were centrifuged for 5 minutes at 

2500rpm. The supernatant was poured off and the procedure two more times. 

When acetylation was applied, each centrifuge tube was filled with approximately 10ml 

of glacial acetic acid, then agitated and centrifuged for 5 minutes at 2500rpm (this step 

dehydrates the sample prior to acetylation). The supernatant was poured off in the 

fume cupboard (safety clothing and eye protection were worn). 

The acetylation mixture was made up in a ratio of 9:1 acetic anhydride and sulphuric 

acid. 5ml of acetolysis mixture were poured off into the tubes, and the tubes agitated 

and placed in boiling water bath for 3-4 minutes. The samples were then centrifuged for 

5 minutes at 2500rpm and the supernatant poured off into running water in fume 

cupboard. 10ml of distilled water were added, and the tubes were agitated and 

centrifuged gain for 5 minutes at 2500rpm. 1.5ml of distilled water were to each conical 

centrifuge tube, and the residue agitated and transferred using a pipette to 1.5ml or 2ml 

micro-centrifuge tubes. These latter were centrifuged for 5 minutes at 2500rpm and  

supernatant poured off. 

A small amount of glycerol was added to the pellet and stirred with a clean wooden 

stick.  The residue was then smeared onto a slide, and a cover slip placed over the 

glycerol allowing it to spread. 
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For this research, a fluid mountant (liquid glycerol) was preferred to a hard mountants. 

The choice arises from the following considerations: 

• Personal experience has repeatedly shown that fungal spores of primary 

importance for a sound analysis (e.g. Sporormiella-type spores) cannot be 

correctly recognized unless their distinctive features (e.g. germ slits) are 

observed. To so do, it is often necessary to turn the objects by gently tapping the 

slide. 

• Many fungal spores are dark-coloured and thick-walled. For this reason, the 

microfossils are not easily penetrated by light as in the case of pollen grains, and 

their rotation is required to observe the shape of the objects. 

• Unlike pollen grains, most of fungal spores are psilate (having non-ornamented 

smooth surfaces), therefore it is not possible to use surface patterns as a 

parameter of identification, and a clear view of the object’s shape must be 

obtained by moving it within the mountant. 

• If necessary, unsealed slides prepared with fluid mountants allow rotation of 

large microfossils (>100 μm), by gently moving the coverslip. This should be 

done at the end of the counting as all the other smaller microfossils will tend to 

move across the slide. 

Given the difficulty of creating a comprehensive NPP reference collection (an almost 

impossible task), several articles were used as reference material for the identification 

of microfossils: Bakker and van Smeerdijk 1982; van der Wiel 1982, van Geel 1972; 

1978, van Geel et al. 1981; 1983; 1986; 1989; 2003; 2011; Gelorini et al. 2011; Prager et 

al. 2012; Ellis and Ellis 1985. The nomenclature of the NPPs follows the common 

practice indicating a type number and the code of the laboratory where the reference 

specimens are kept: HdV-type no. = Hugo de Vries Laboratory, University of Amsterdam 

- The Netherlands, EMA-type no. = Ernst-Moritz-Arndt-University of Greifswald - 

Germany, TM-type no. = University of Toulouse – le Mirail, Toulouse - France. Newly 

unidentified microfossil were labelled UR + type no., where UR = Allen Laboratory, 

University of Reading - United Kingdom. 

More detailed explanations of the methodology applied to each site are provided below. 
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2.1 Prato Spilla ‘A’ (Chapter 3) 

 

On July 2012, a 730cm long core was taken using a Russian peat corer. The sampling 

spot was located c. 15m from the northern edge of the basin, next to a minor pool. 

At the base of the core, the deposition of fine sand and detrital lake sediment points to 

the presence of a freshwater lake on the site.  The inclusion of fine and corse sand 

across the core testifies to the deposition of material, probably originating from the 

erosion of the slopes around the mire. From about 5.60m upwards the formation of 

woody peat indicates a transition to a terrestrial environment favourable for plant 

colonisation, following the gradual filling of the lake (fig. 2.1). 

 

Figure 2.1. Prato Spilla ‘A’: lithology and main depositional events. The green rectangle marks the 

part of the sequence investigated. 
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Subsamples of 1cm3 were taken from the core every 8cm from the part of the sequence 

comprised between 730 to 602cm, and every 16cm between 602 and 442cm. Five 

superficial samples have also been collected using a clean spatula, in the hope of using 

the relationship between the current vegetation and the current fungal/algal 

assemblages to help interpret the Middle Holocene deposit.  

Bulk sediment samples from four horizons were used for radiocarbon determinations. 

The results were calibrated with OxCal 4.2.4 (Bronk Ramsey 2013) using the Intcal13 

atmospheric curve (Reimer et al. 2013) (table 2.1). 

 

Lab code Depth d13C 14C years Cal BP years range at 95.4% 

probability 

OxA-34439 723-722cm -27.76 7595 ± 40 BP 8457-8341 BP 

OxA-34440 667-666cm -27.48 6636 ± 39 BP 7579-7441 BP 

OxA-34441 540-539cm -27.28 4960 ± 36 BP 5844-5601 BP 

OxA-34674 490-489cm -27.63 4242 ± 30 BP 4861-4655 BP 

Table 2.1. Prato Spilla ‘A’: radiocarbon dated horizons and calibrated ages. 

Figure 2.2. Prato Spilla ‘A’: age-depth model showing the dated horizons (cal. years BP, 95.4 % 

probability) and the confidence ranges (black/grey curve). 
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The sequence was then elaborated with Bacon, subdividing the core into 5cm thick 

sections that were used to create and Age-depth model (fig. 2.2). From the uppermost 

and lowermost dates, the model was stretched to the top and bottom of the sequence by 

means of interpolation. 

Microscope slides were prepared at the University of Reading sieving through 125 and 

10μm meshes and applying acetolysis treatment prior to mounting in glycerol. A Leica 

DME light microscope (400x and x1000x magnification) was used for the analysis. A 

high number of small or particularly significant microfossils have been identified in oil 

immersion at x1000 magnification.  

In total, 27 samples were analyzed, with counts averaging 460 NPPs, ranging from 361 

to 630 total microfossils per sample, and including a minimum sum of 200 fungal 

spores/fungal hyphopodia/algal remains (numbers ranging from 209 to 306). High 

values of indeterminable microfossils (see e.g. Menozzi et al. 2010, fig. 3; Latałowa et al. 

2013, fig. 4) arise from the incidence of multiseptate types, rarely distinguishable and 

often incompletely preserved, and other broken or poorly preserved microfossils.  

As NPPs were counted separately from the pollen, values are expressed as percentages 

of Total Non-Pollen (spores + hyphopodia + algae) Palynomorphs Sum (TNPP) (Mazier 

et al. 2009; Cugny et al. 2010). Chironomid remains, other microfossils of animal origin, 

other microfossils of vegetal origin and fungal fruit bodies are reported as TNPP %. 

 

 

2.2 Genoa, Piazza della Vittoria (Chapter 4) 

 

The part of the core comprised between 15.10 and 24.74m from the surface is 

characterized by an abundance of organic material, and was therefore selected for the 

study. Provisional data are available from sedimentological and palynological analyses 

(Melli et al. 2011; Arobba and Caramiello 2014; Arobba et al. 2016). The sequence is 

characterized by the deposition of silty/silty clayey levels, intercalated with sporadic 

thin organic-rich and peaty horizons (fig. 2.3). Below 25m lies a series of minerogenic 

silty clayey levels intercalated with sand and gravel, until the Pliocenic deep geology 

localized at 45.30m below the surface and consisting of the Clays of Ortovero. Further 

deep (-111m) is the top of the Cretaceous formation known as Limestone of Monte 

Antola (Arobba et al. 2016). It is likely that the upper 25m of the deposit have formed  
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Figure 2.3. Genoa, Piazza della Vittoria. Diagram showing the sequence from the borehole BH1 and its 
main depositional units. 
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due to an alternation of several complex high- and low-energy episodes involving 

alluvial deposition, as typical of river deltas. The data seem to point to an inlet formed 

by a palaeomeander of the Bisagno, localized up to 1km inland of the current shoreline, 

which constituted the very first harbour of Genoa since late prehistory, than silted up by 

the river and replaced (Melli et al. 2011). 

Forty-three samples were taken at distances varying between 10 and 15cm. The 

sediment was deflocculated in KOH and then sieved through 5 and 180µm meshes. 

Microfossils were isolated by means of heavy liquid separation (Thoulet liquid, specific 

gravity 2.1), avoiding the use of acetylation in order to preserve pollen and spores as 

best as possible. The residue was then mounted in liquid glycerol under 24 x 40mm 

microscope cover slips and sealed with histolaque LMR®. As pollen and NPP analysis 

were carried out independently, a count of a minimum of 200 fungal/algal spores and 

hyphopodia per sample was reached (averaging 244, ranging from 205 to 659), except 

for seven samples less rich in microfossils, whose counts range from 110 to 183 NPPs 

(mean 141). A Leica DME compound microscope was used for the analysis (400x and 

1000x magnification). A high number of small or particularly significant microfossils 

have been identified in oil immersion at x1000 magnification. NPP values are expressed 

as percentages of total fungal/algal spores + hyphopodia (TNPP sum) (following Mazier 

et al. 2009 and Cugny et al. 2010). Chironomid remains, testate amoebae, parasite eggs, 

flatworm eggs, stomata, sporangia, other microfossils of animal origin and fungal fruit 

bodies are reported as TNPP%. 

Newly identified microfossils were labelled with the code UR (University of Reading, 

Allen Laboratory), followed by a sequential number. In order to avoid unnecessary 

multiplication of types, when the identification was certain the codes used in the 

previous literature have been used (Miola 2012). All new types, their possible biological 

identification and equivalence with previously described types are listed in the final 

Appendix. Three radiocarbon dates were obtained (Ce.Da.D. Laboratory, Universitá del 

Salento) from wood macro remains near the top of the sequence (16.20m = LTL14045A, 

6345 ± 68 cal BP), from the middle (20.47m = LTL14046A, 6625 ± 120 cal BP), and near 

the base (24.82m = LTL14047A, 7500 ± 67 cal BP), pointing to a steady and rapid 

deposition. 
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2.3 Samples from modern animal pens and dung pats (Chapter 5) 

 

As much oral information as possible was gathered on the sites from the owners, and 

details about animal density, species, diet and other farming practices were recorded. 

Dung pats and droppings and mixed soil/dung samples were collected from a variety of 

sites (figs. 2.4, 2.5, 2.6, 2.7, 2.8), listed in table 2.2. The information collected on the 

site, including  the degree of continuity of surface disturbance (CSD) is reported in table 

2.3. 

 

Table 2.2   

Sites of sample collection form modern dung heaps, stable floors and outdoor corrals. 

Location Altitude Sample nos. 

Arborfield (Berkshire, UK) 50m asl 2, 4, 11, 15, 16, 27a-b 

Besnate (Lombardy, Italy) 280m asl 1, 22 

Semogo (Valdidentro, Lombardy, Italy) 1810m asl 28 

Somma Lombardo (Lombardy, Italy) 250m asl 7, 12, 23, 24, 26 

Tarquinia (Lazio, Italy) 160m asl 3, 8, 9, 10 

Vaccarezza (Bobbio, Emilia-Romagna, 

Italy) 

727m asl 5, 17, 18, 19, 21 

West Overton (Wiltshire, UK) 150m asl 6, 13, 14, 20, 25 
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Table 2.3  

Conditions recorded on the sampling locations. CSD = continuity of surface disturbance.  

 

Sam

ple 

no. 

 

Structure/context 

 

Animal species 

Approximate 

quantity of 

specimens 

(if known) 

 

Diet 

 

Other 

 

CSD 

1 Roofed stable; floor 

made of cement 

Cows (Bos 

taurus): 

Holstein 

Friesians 

 

 

Hay collected in the 

surroundings of the 

farm 

 high 

2 Roofed stable; floor 

made of cement 

Cows (Bos 

taurus): 

Holstein 

Friesians 

 Grass/maize silage  high 

3 Roofed stable; earthen 

floor 

Sheep (Ovis 

aries): 

Apennine 

The stable 

hosts a 

maximum of c. 

100 sheep 

Grass Sheep freely graze on grassland 

during the day, and are kept here 

overnight, especially younger 

specimens 

moderate 

4 Roofed stable; floor 

made of cement 

Cows (Bos 

taurus): 

Holstein 

Friesians 

 Grass/maize silage  high 
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5 Roofed stable; floor 

made of cement 

Cows (Bos 

taurus): 

Piedmontese 

 Mixture of maize, 

barley and bran and 

also with Lucerne 

(Medicago sativa) 

 high 

6 Roofed stable; earthen 

floor 

Sheep (Ovis 

aries): Suffolk 

+ North 

Country Mule 

 When kept, sheep are 

fed with hay and grass 

Sheep are kept in in the stable from 

January to the end of April and 

graze on the surroundings of the 

farm for the rest of the year 

low 

7 Small outdoor corral Horse (Equus 

ferus caballus): 

cross between 

Haflinger and 

Quarter Horse 

1 Hay and oat  moderate 

8 Medium sized corral Sheep (Ovis 

aries): 

Apennine 

variety 

A few hundred Grass Sheep freely graze on grassland 

during the day, and are kept here 

overnight all year round 

moderate 

9 Medium sized corral Sheep (Ovis 

aries): 

Apennine 

 Grass Sheep freely graze on grassland 

during the day 

moderate 

10 Medium sized outdoor 

corral 

Sheep (Ovis 

aries): 

 Grass Lambs with their mothers are kept 

here from January to April 

low 



48 
 

Apennine 

11 Medium sized outdoor 

corral 

Sheep (Ovies 

aries): 

unknown breed 

c. 10 

specimens 

Grass Occasionally, sheep are kept here 

for some weeks, where they are 

free to graze 

low 

12 Medium sized outdoor 

corral 

Goats (Capra 

hircus): 2 

Tibetan + 1 

Chamois 

coloured  

3  Grass and herbs Goats are free to get out of the 

fenced area for a few hours a day, 

freely grazing on the understory; 

when kept, they spend most of the 

time resting in a small wooden 

shelter inside the enclosure 

moderate 

13 Large grazing area 

covered in grassland 

Sheep (Ovis 

aries): Suffolk 

+ North 

Country Mule 

 Grass  moderate 

14 Large grazing area 

covered in grassland 

Sheep (Ovis 

aries): Suffolk 

+ North 

Country Mule 

 Grass  moderate 

15 Cow dung heap Cows (Bos 

taurus): 

Holstein 

Friesians 

 Grass/maize silage  low 



49 
 

16 Cow dung heap Cows (Bos 

taurus): 

Holstein 

Friesians 

 Grass/maize silage  low 

17 Cow dung heap  Cows (Bos 

taurus): 

Piedmontese 

 Mixture of maize, 

barley and bran and 

also with Lucerne 

(Medicago sativa) 

 low 

18 Cow dung heap Cows (Bos 

taurus): 

Piedmontese 

 Mixture of maize, 

barley and bran and 

also with Lucerne 

(Medicago sativa) 

 low 

19 Cow dung heap Cows (Bos 

taurus): 

Piedmontese 

 mixture of maize, 

barley and bran and 

also with Lucerne 

(Medicago sativa) 

 low 

21 Cow dung heap Cows (Bos 

taurus): 

Piedmontese 

 Mixture of maize, 

barley and bran and 

also with Lucerne 

(Medicago sativa) 

 low 

20 Sheep dung heap Sheep (Ovis 

aries): 

 Hay and grass  low 
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unknown breed 

22 Cow dung heap Cows (Bos 

Taurus): 

Holstein 

Friesians 

 Hay collected in the 

surroundings of the 

farm 

 low 

23 Horse dung heap Horses (Equus 

ferus caballus): 

unknown breed 

 Hay and oat  low 

24 Horse dung heap Horses (Equus 

ferus caballus): 

unknown breed 

 Hay and oat  low 

25 Droppings Sheep (Ovis 

aries): 

unknown breed 

 Hay and grass  low 

26 Droppings Goat (Capra 

hircus): 

unknown breed. 

Either Tibetan 

or Chamois 

coloured 

 Grass and herbs  low 

27a-

b 

Droppings Sheep (Ovis 

aries): 

 Grass  low 
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unknown breed 

28 Droppings Red deer 

(Cervus 

elaphus) 

 Diet may vary; in 

winter it is most likely 

made of wild fruits, 

dried grass and tree 

bark 

 low 
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The herding site of Arma delle 

Manie was also selected for 

investigation, following the 

pioneering work by Brochier et al. 

(1992), which studied pastoral 

deposits through the excavation of 

recent Mediterranean rock shelters. 

The site is located c. 2km inland 

from the coast of Finale Ligure and 

Varigotti (Liguria, Italy), at an 

altitude of 270m asl (fig. 2.9). Oral 

accounts indicate that it was used to 

corral livestock, at least in the last 

two centuries. This was still the 

case in the 1980s when sheep were 

kept; previously, the site was used 

for keeping cows. The animals were 

taken to graze elsewhere on a daily 

basis and then brought back to the 

shelter. Moreover, the presence of a 

circular millstone platform also 

suggests the use of a mule. Possible evidence for wool polish generated by animals 

(Vergès and Morales 2016; Vergès et al. 

2016) was noted along some of the walls. 

 

 

Figure 2.4. Modern samples: selection of sample 
locations. 

 

Figure 2.5. Site of Vaccarezza. Accumulation 
of cow dung resulting from the stabulation of 
cattle. 

Figure 2.6. Site of Tarquinia. View of the 
pastureland used for sheep farming. 
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Figure 2.7. Civita di Tarquinia (Lazio, Central Italy): map of a local sheep farm showing 
the area occupied by the enclosures and the sampling locations (samples 3, 8, 9, 10). 

Figure 2.8. Vaccarezza 
(Emilia-Romagna, NW 
Italy): cattle stabled in a 
local (sample 5). 
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Figure 2.9. Finale Ligure (Liguria, NW Italy): pastoral rock shelter of Arma delle Manie. 
The site was used in the last centuries for keeping livestock, primarily sheep and cows. 
The yellow arrows indicate possible traces of wool polish along the western wall of the 
shelter. 
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For livestock enclosures, subsamples were collected from different locations within the 

fenced area and then homogenised together in order to obtain a sample as 

representative as possible. In archaeological deposits it is not always possible to 

distinguish between different dung loads and related interfaces due to the following 

compaction and homogenization of colour and texture. Consequently, care was taken 

when sampling dung heaps, in order to mix material collected from the surface with that 

taken from c. 2-3cm below the surface. In one case, material from the surface of sheep 

droppings (Sample 27a) was collected and prepared separately from that collected from 

the core of the faeces (Sample 27b). At Arma delle Manie, a 1 m2 test pit was dug and the 

exposed section sampled at regular intervals (every 4 and every 8cm, in addition to a 

stratigraphic unit located between 17 and 18cm of depth). 

Subsamples of 1cm3, 2g or 5g were taken and processed with acetylation and heavy 

liquid separation (Sodium polytungstate, specific gravity 2.0g/cm3) following 

deflocculation in Sodium pyrophosphate (1%), sieving through 5 and 200μm meshes 

and mounting in liquid glycerol (Branch et al., 2005). The samples from the rock shelter 

of Arma delle Manie were treated with HCl to dissolve carbonates, but acetylation was 

not applied to avoid degradation of fragile microfossils. A known quantity of 

Lycopodium spores was added, and in order to calculate NPP concentration a minimum 

sum of 200 (exotic markers + dung spores) was counted to obtain statistically reliable 

and representative results (Finsinger and Tinner 2005), although in several cases much 

higher counts were reached (up to 1748 dung spores). Identifications were made at 

400x and 1000x (oil immersion) magnifications, and for Arma delle Manie a standard 

depth/concentration diagram was created using TILIA 1.7.16 (Grimm 2011). 

All volumetric samples were weighted, in order to enable calculation as microfossil 

number per gram, and 1cm3 of material from all of the other samples was weighted in 

order to also enable conversion of the results into microfossil number per cm3. This is 

essential to provide both values to permit comparisons between sites, as some authors 

report values as concentrations per unit of weight of dry sediment (g) whilst others as 

concentrations per unit of volume (cm3) (Bosi et al. 2011; Dietre et al. 2012; 

Expósito and Burjachs 2016; Vaccaro et al. 2013). When possible, microfossils were 

labelled according to the existing literature (Miola, 2012). For new types and when 

identification with previously described NPPs was uncertain, the prefix UR- (University 

of Reading) was adopted. 
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For the examination and quantification of faecal spherulites, the material from the pit 

profile at Arma delle Manie was subsampled using a precision scale, in order to collect 1 

mg of dried and untreated sediment from each of the levels selected for NPP extraction. 

This was ground and smeared on a microscope slide with a drop of liquid glycerol. The 

entire slide was then examined under cross-polarised light at 400x magnification, 

counting all of the spherulites. Abundance was then expressed as spherulite number per 

mg of sediment. Reference slides from fresh sheep droppings collected at Arborfield 

(Berkshire, UK) were also prepared in order to observe a high number of elements and 

train the eye to confidently distinguish faecal spherulites from similar features (Canti, 

1998). 

Previous studies on spherulites have employed different methods for counting and 

reporting values, ranging from the number of elements per 30-50µg (Canti, 1999), to 

the number per gram (Portillo and Albert 2011; Portillo et al. 2009, 2010, 2011), to 

relative abundance (Brochier 1991; Brochier et al. 1992; Elliott et al. 2014; Goren 

1999). The procedure followed here resembles the method used by Portillo et al. 

(2009), although the whole slide was scanned instead of a number of randomly chosen 

fields, hopefully improving the accuracy of the results. It seems appropriate that future 

studies adopt a similar approach expressing the results as spherulite number per unit of 

weight, in order to enable comparison between sites. 

On the stratigraphic units from Arma delle Manie, phosphorus analysis was also 

performed, in order to quantify the presence of total phosphorus (Ptot) from the pit 

profile in the rock shelter. The samples were dried, ground to a powder in order to 

obtain a flat surface and tested using a Niton XL3t GOLDD+ portable XRF analyser fixed 

to a shielded stand. Values were expressed as part per million (ppm). 
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2.4 Cave of Arene Candide (Chapter 6) 

 

Sixteen samples were obtained from a newly exposed Neolithic section characterized by 

the alternation between charred and uncharred layers (fig. 2.10). The sequence, facing 

south, is located in the eastern part of the cave, near the 1972-1977 excavation (Maggi 

et al. 1997). This is due to the fact that extensive stabling layers were excavated in this 

area in the previous campaigns, leaving only the section on the northern limit intact for 

sampling. Irrespective of the sediment colour, ranging from black to light brown and 

grey, all layers presented a sandy-silty texture. 

Radiocarbon dates for the deposit are 

not available as yet, although based on 

correlation with the other excavated 

layers the sequence is expected to span 

from the Middle Neolithic to the Early 

Copper Age. 

It was decided to collect a large amount 

of sample (20 grams) given the probable 

low number of preserved microfossils 

(cf. Arobba 1990). A known amount of 

exotic markers was added to the 

samples, which were then treated in 

Sodium pyrophosphate (1%) for 

deflocculation and sieved through 5 and 

200μm meshes. Pollen and spores were 

isolated by means of heavy liquid 

separation (Sodium polytungstate, 

2.0g/cm3), avoiding the use of acetolysis 

not to damage the microfossils, 

especially the more delicate pollen grains. The pellets were stored in liquid glycerol, and 

mounted under 22 x 40mm cover slips sealing the edges with clear nail polish. 

Pollen grains and NNPs were counted at the same time. A minimum pollen sum of 300 

grains was chosen (total pollen sum), and NPPs were calculated as percentages of this 

sum. Only samples with a sufficient amount of material preserved could be included in 

Figure 2.10. Cave of Arene Candide: the profile 

sampled for the analysis. Note the alternation 

between burnt and unburnt horizons, as typical of 

Mediterranean fumiers. 
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the analysis. Pollen of the tribe Cichoriaeae have been divided into three size classes 

following Florenzano et al. (2012), in order to increase the level of taxonomic accuracy.  

A specific extraction method was applied in an attempt to recover parasite eggs from 

the archaeological layers, following Anastasiou and Mitchell (2013; slightly modified), 

involving deflocculation in Sodium pyrophosphate (1%) of 10g of sediment, addition of 

exotic markers, sieving through 38 and 150μm meshes and heavy liquid separation 

(Sodium polytungstate, 2.0g/cm3). The residue was then mounted in tap water to obtain 

temporary microscope slides. 

 

 

2.5 Castellaro di Uscio (Chapter 7) 

 

A soil profile was exposed on the eastern limit of the upper terrace excavated in 1982-

1985, in order to sample the dark Final Bronze Age horizon (Layer 3U). Samples were 

also taken from the topsoil (Layer 1U) and the underlying horizon (Layer 2U), and from 

the subsoil beneath the occupation layer (Layer 4U) (fig. 2.11). The same sequence was 

identified and sampled at the western limit of the excavated lower area (Layers 1L, 2L, 

3L, 4L). 10g of material were subsampled from each layer and dissolved in Sodium 

pyrophosphate (1%) following the addition of a known number of Lycopodium spores 

to enable calculation of pollen concentration. The samples were sieved through 5 and 

Figure 2.11. Castellaro di Uscio: soil profile exposed at the upper terrace. The dark 

horizon (layer 3U) results from the Bronze Age occupation of the site. 
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200μm meshes, and the organic content was separated from mineral matter by means 

of heavy liquid separation (Sodium polytungstate, specific gravity 2.0 g/cm3). Because 

the grains appeared to be still obscured by cellulose after this stage, acetylation was 

successfully applied in order to clean the grain surface and facilitate identification. 

Microscope slides were then prepared using liquid glycerol as a mounting medium. 

Modern reference collections and manuals (Reille 1992; Beug 2004) were used as an aid 

to the identification. 

For total phosphorus analysis, the samples were dried, ground to powder in order to 

obtain a flat surface and tested using a Niton XL3t GOLDD+ portable XRF analyser fixed 

to a shielded stand. Values are expressed as part per million (ppm). 
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3. PRATO SPILLA ‘A’: A MIDDLE HOLOCENE UPLAND MIRE 

 

 

3.1 Geographical setting and previous studies 

 

The site of Prato Spilla ‘A’ (44˚21’16’’ N 10˚05’51’’ E) - here indicated by a letter in 

order to distinguish the bog from three other sites, Prato Spilla ‘B’, ‘C’ and ‘D’ - is 

located in the Liguro-Emilian Apennines, about 40km north of the town of La Spezia 

and 65km south of Parma, at 1560m asl (fig. 3.1). The modern vegetation of the area 

consists of a dense beech forest. The basin measures c. 40m along its major axis, and 

the wetland is currently dominated by sedges and grasses (fig. 3.2). 

Previous work on the site has shown that 9m of sediments have accumulated since 

the Early Holocene, the whole 

sequence spanning c. 10,000 

years. The vegetation history of 

the area shows that irregular 

variations in the percentages of 

tree taxa occurred, resembling 

the trends recorded at Ligurian 

sites associated with Middle 

Holocene archaeological 

remains (Lowe 1991). Strong 

evidence for the Ulmus decline 

commencing around 5500 BP is 

attested, slightly preceded by 

the rise of Fagus and 

paralleled by peat initiation 

(Lowe 1991; Lowe et al. 

1994b) (fig. 3.3).  

 

 

Figure 3.1. Prato Spilla ‘A’: map showing the location of 

the site ‘A’. 
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What is more important for 

the human/environment 

interaction throughout the 

Holocene, the pollen record 

has highlighted the 

occurrence of factors 

suggesting possible 

anthropogenic disturbance 

in the area at least since c. 

5000 cal BP (Lowe et al. 

1994a; 1994b). According to 

Lowe (1991) it is likely that 

the vegetation history of the area points to anthropogenic disturbance. A recent 

refinement of the vegetation history of the site has provided further clues to possible 

human-driven environmental changes. A few large grass grains were tentatively 

identified as cereal pollen, but no clear microcharcoal peaks were identified (Bedford 

2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. View of the site from the south. 

 

Figure 3.3. Prato Spilla ‘A’: pollen diagram from Lowe 1991. 
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Therefore, given the evidence for possible human activity during late prehistory, the 

site has been selected as a promising context to carry out a NPP analysis. This 

technique may indeed help assess the degree of anthropogenic influence, and provide 

additional data on the past ecology of the wetland. Moreover, the identification of 

coprophilous fungal spores is currently one of the few existing methods for assessing 

the local presence of herbivores in off-site contexts (Linseele et al. 2013), and it 

proves particularly suitable when investigating a region long inhabited by Late 

Neolithic and Copper Age pastoral societies. 

The area north of Prato Spilla is characterized by a large fertile plain, densely 

inhabited during the Neolithic. Before the emergence of the VBQ culture, in the Early 

Neolithic the Fiorano culture emerges as a distinct facies (Bagolini and Biagi 1977). 

Many open-air settlements were identified, some of them reaching a noticeable extent 

(Degasperi et al. 1998). Although they are less known than the contemporary north-

eastern sites in Friuli, there is evidence for plant domestication since the Early 

Neolithic (second half of the 8th millennium BP) (Rottoli and Castiglioni 2009). 

However, faunal assemblages show a high proportion of wild species, and subsistence 

strategies are not clearly known as yet (Bagolini and Pedrotti 1998; Rowley-Conwy et 

al. 2013). 

The origin and characteristics of the first transhumance in southern Europe have 

been long discussed (Maggi et al. 1991; Arnold and Greenfield 2006; Jourdan-

Annequin and Duclos 2006). In broad terms, this form of livestock management 

involves the seasonal movement of flocks to upland pastures during the summer 

months, under the care of one or more shepherds (Braudel 1949). The method aims 

to make the best possible use of resources exploiting the richness of the mountain 

pastures in the warm season and avoiding drought in the valleys (Sullivan and 

Homewood 2003). In the cold season, the herds are kept in the permanent lowland 

settlements. This practice may leave a trace in livestock diet, as it has been 

demonstrated for Swiss lake shore settlements (Akeret and Jacomet 1997; Akeret et 

al. 1999). 

There is a certain degree of confusion around the definition of transhumance, 

especially in terms of horizontal transhumance as this often merges with the concept 

of nomadism (Cribb 1991). It would be incautious, however, to label prehistoric 

forms of herding with any of the modalities known in the better documented post-

Roman centuries. It is possible that in prehistory the practice had a character of 



63 
 

short-range nomadism 

involving the movement of 

a single family group along 

the route (Maggi 2004a) 

(fig. 3.4). According to 

Maggi and Nisbet (1991), 

this may be indicated by the 

skeletons found in the high-

altitude cave of Grotta del 

Pertuso (1330m asl), used 

as a burial site for 

individuals of both genders 

and various ages. 

The data from our study region, based upon evidence from archaeological sites and 

palaeoenvironmental records suggest a gradually more frequent use of mountain 

pastures as early as the Late Neolithic (Branch and Marini 2014). The signal seems to 

become increasingly stronger during the Copper and Bronze Age, when important 

landscape modifications associated with burning episodes and woodland clearance 

occur. The evidence includes pastures located at very high altitudes. The shelter of 

Tana del Barletta (950m asl) was used as a stable between the Late Neolithic and the 

Bronze Age, suggesting a seasonal exploitation of the pastures of Mt. Galero at 1700m 

asl (Del Lucchese et al. 1987; Barker et al. 1990). Indirect evidence for high-altitude 

herding is also indicated by a number of rock engravings found on Mt. Bego (above 

2000m asl) and dated to the Copper and Bronze Age (De Lumley 1984; Maggi and 

Nisbet 1991; Maggi 1998a; 2004b). It has been suggested that only small groups of 

individuals were involved in these first pastoral activities (Maggi and Nisbet 1991). 

This point should be taken into consideration when interpreting palaeoecological 

records from lakes and mires because small populations may have had restricted 

spatial impact on the environment and therefore produced only a weak 

anthropogenic signal (Branch and Morandi 2015).  

It has been suggested that Tana del Barletta and Arene Candide should be viewed as 

part of a pastoral system linking these sites to possible villages located in the plain of 

Albenga, some 20km away on the coast (Maggi and Nisbet 1991). However, on the 

basis of the cull of domestic species, Rowley-Conwy (1997) has argued that Arene 

Figure 3.4. Schematic model of short-range vertical 

transhumance. 
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Candide was occupied all year long and should thus be seen as a permanent outlying 

settlement. Moreover, the site is not located in the highlands, therefore it cannot be 

part of a vertical farming system. With very few exceptions (Spindler 1994; 2003), 

long-range transhumance (>100km) is considered implausible in prehistory, because 

it is dependent on extensive social and economic networks only found later in the 

Roman and especially medieval periods (Barker 1985; Marzatico 2007; Robb 2007). 

 

 

3.2 Results 

 

More than 260 NPP types have been recorded during the analysis. Following Mazier 

et al. (2009), in order 

to highlight the main 

changes in the fungal 

community the 

sequence has been 

divided into five Non-

Pollen Palynomorph 

Assemblage Zones 

(NPPAZs) (fig. 3.6), 

which differ from the 

Local Pollen 

Assemblage Zones 

(LPAZs) 

distinguished during 

the pollen analyses (Lowe 1991; Lowe et al. 1994b; Bedford 2013). This choice is due 

to the biological difference between plants and the fungal community, which reflects 

a diverse ecology and different succession mechanisms (Neville and Webster 1985). 

Moreover, symbiotic relationships between fungi and host plants may vary through 

time, without apparent changes in the vegetation community (Gange et al. 2011). 

The modern surface sediment and water samples (fig. 3.5) have not yielded useful 

results, as they were virtually devoid of fungal and algal spores. It is therefore likely 

that local conditions on the site have changed notably since c. 4000 BP, which is the 

latest date represented by the top part of the core. 

Figure 3.5. Prato Spilla ‘A’: location of modern surface samples. 
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NPPAZ PSA-1 · Depth: 729cm - 689cm · ~7500-6700 yr cal BP 

The zone is dominated by remarkable values of 128B, reaching 28% in the lowermost 

sample, and then sharply decreasing to 7%. Aquatic taxa are perhaps represented 

also by HdV-181, rising up to 9%. Wood saprophytes are recorded in low 

percentages, whereas coprophilous and potentially coprophilous taxa are well 

represented, although in low percentages (especially Delitschia and 

Melanosporaceae). Clasterosporium caricinum rises to 5%, and disturbance indicators 

such as Kretzschmaria deusta and Diporotheca rhizophila occur. Possible spores of 

Sclerodermataceae/Ustilaginaceae (UR-3) are near 5% and Scleroderma is recorded 

in low percentages. Glomus clamydospores rise to 7% towards the top of the zone. 

Eggs of flatworms (Rhabdocoela) are present. 

 

NPPAZ PSA-2 · Depth: 689cm – 602cm · ~6700-5550 yr cal BP 

HdV-128B keeps dropping down until it disappears, while HdV-181 increases to 10% 

in the middle part of the zone. Zygnema-type occurs among the other aquatics. Spores 

of Cirrenalia donnae are recorded in high values throughout the whole zone, and 

reach a maximum value of 15%, then decrease at the end of the zone. The same trend 

is followed by HdV-572, although in lower percentages (7%). At the boundary with 

the upper zone there is a peak in Pediastrum (12%). Low values of Sordaria-type and 

Delitschia are recorded, while Cercophora-type increases to 3%. Clasterosporium 

caricinum rises again in the middle part of the zone (5%), and Kretzschmaria deusta 

occurs in several samples. Scleroderma is present in low percentages. The 

unidentified type UR-1 increases up to 6%, resembling the saprobic trend. The 

thecamoeba Arcella is present and locally growing ferns are indicated by spore cases. 

 

NPPAZ PSA-3 · Depth: 602cm - 521cm · ~5550-4950 cal yr BP 

The dominant aquatic organism is now Pediastrum, and the potential aquatic type 

HdV-181 remains steady around 4%. Cirrenalia donnae and HdV-572 are both 

attested in low values in the lower and upper part of the zone, and increase (namely 

15% and 11%) in the middle of it. Among the largely coprophilous taxa Arnium-type 

is now recorded, and the potentially coprophilous taxa Melanosporaceae and 

Cercophora-type slightly increase (3-4%). Clasterosporium caricinum and Scleroderma 

drop to null values, while Kretzschmaria deusta and Diporotheca rhizophila are 

present. Glomus is steady around 3%, and UR-1 increases to 6% in the middle of the 
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zone, broadly following the trend of the major saprobic taxa. The thecamoeba Arcella 

is present. 

 

NPPAZ PSA-4 · Depth: 521cm - 473cm · ~4950-4550 cal yr BP 

Between the top of the sequence and NPPAZ-4 Pediastrum rises to 16%. The main 

event in the zone is the sharp rise in Scleroderma, reaching 10%. A slight peak in 

Cirrenalia donnae and HdV-572 (c. 10%) seems detectable in the middle part of the 

zone. Sporormiella-type (2%) is the main largely coprophilous taxon and 

Melanosporaceae slightly increase again (2%). A new and slight increase in 

Clasterosporium caricinum occurs between this zone and NPPAZ-5, and UR-1 

decreases steadily. Arcella is recorded, as well as fern spore cases. 

 

NPPAZ PSA-5 · Depth: 473cm - 441cm · ~4550-4300 cal yr BP 

The zone is defined by a sharp decrease in Pediastrum among the aquatic taxa and by 

a sharp increase in Cirrenalia donnae (16%) among the wood saprophytes. Several 

coprophilous taxa occur in low values, and Melanosporaceae and Cercophora-type 

slightly increase towards the top of the zone. Diporotheca rhizophila occurs again. 
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Figure 3.6. Prato Spilla ‘A’: selected taxa NPP diagram. Values expressed as percentages of total NPPs. Empty curves represent 10x exaggeration. HGP: high grazing pressure; LGP:

low grazing pressure; EN: Early Neolithic; MN: Middle Neolithic; LN: Late Neolithic; CA: Copper Age. Ecological grouping of coprophilous species follows Krug et al. 2004.
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3.3 Interpretation and discussion 

 

 

3.3.1 Fimicolous spores at Prato Spilla ‘A’: an ambivalent signal 

 

A wide range of coprophilous and potentially coprophilous spores have been 

recorded, confirming the presence of grazing animals on the site. For a clearer 

exposition, following Krug et al. (2004) the taxa have been grouped into “largely 

coprophilous” (LC), “mixed ecology” (ME, i.e. genera comprising several coprophilous 

and non-coprophilous spp.) and “occasionally coprophilous” (fig. 3.6). The LC taxa 

represent the most reliable proxies for the local presence of herbivores. Among these, 

Sporormiella-type and Sordaria-type have been shown to be statistically correlated 

with high grazing pressure in modern analogue studies (Cugny et al. 2010). It appears 

evident that the LC are distributed throughout the whole sequence, without any 

evident peaks or gaps. It is only possible to spot three apparent major concentrations, 

namely localized at 721-722cm from the top (Sporormiella-type and Delitschia), in the 

whole of NPPAZ-2 (Sporormiella-type, Sordaria-type, Delitschia) and between NPPAZs 

4 and 5 (Sporormiella-type, Sordaria-type, Arnium spp.). 

A wide range of other potentially coprophilous spores was also recorded, including 

rare taxa infrequently represented in NPP diagrams. Chaetomium and Gelasinospora 

include a number a coprophilous and non-coprophilous species, but as in the case of 

the LC they are distributed across the entire sequence. Among these, the presence of 

Gelasinospora is worthy of note as it also favours burnt soils (Ellis and Ellis 1988). 

Whether natural or induced burning, the genus may be taken as indicative of local 

fires. 

The large group of ME taxa appears dominated by Melanosporaceae and Cercophora-

type. Although the latter is often directly regarded as a dung indicator, high values of 

Cercophora may simply derive from the saprobic habit of many species growing on 

rotten wood and leaves (Lundqvist 1972). Indeed, as its percentage curve broadly 

reflects the cumulative curve of the wood saprophytes, this is likely to be the case at 

Prato Spilla ‘A’. Further research is necessary to clarify the ecological value of HdV-

55B. The spores found on the site, showing two protruding apical pores, correspond 

to the first described type 55B in the NPP literature by van Geel (1978). However, 

other studies have included under the same type biporate spores lacking protruding 
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pores (Cugny et al. 2010). As these latter are likely to represent Arnium spp. or other 

unidentified taxa, we argue that the protrusion of the pores is an important 

taxonomic features and only spores showing this character should be recorded as 

HdV-55B. The type strongly resembles spores of Melanospora brevirostris, though the 

protruding pores may point to identification as Sphaerodes spp. While fimicolous 

Sphaerodes spp. exhibit a reticulate surface pattern (in the diagram as Sphaerodes cf. 

fimicola), M. brevirostris produces psilate spores and has occasionally been isolated 

from dung (Doveri 2007). More commonly, the species is found parasitizing on 

Pezizales (Doveri 2007), whose spores are often not sufficiently distinctive to enable 

recognition and infer a relationship with HdV-55B. As in the other cases, spores of 

Melanosporaceae are diffused throughout the whole sequence. Although no clear 

peaks are detectable, they seem to increase slightly in the upper part (NPPAZs-3-4-5, 

transition from Late Neolithic to Copper Age and the whole Copper Age). 

Given the absence of any distinguishable rise, it is likely that the abundance of 

coprophilous and potentially coprophilous taxa, spanning from the Early Neolithic to 

the Late Copper Age, only reflects a natural “background noise”. The signal is 

probably a result of wild herbivores periodically grazing around the mire. It is worth 

saying, however, that the dispersal of dung spores does not automatically occur in 

every high-altitude mire, as occasionally NPP analyses of southern European sites 

have provided no evidence for such indicators (Argant et al. 2006). In an entirely 

natural condition, this situation may simply reflect a lack of herbivores nearby the 

site; on the other hand, when humans are likely to have played a role, zero counts of 

dung-specific microfossils are explicable by the absence of animal husbandry (e.g. in 

pre-Neolithic contexts). 

The finding of coprophilous spores at Prato Spilla ‘A’ is thus significant, as it allows 

apparently problematic phases of forest disturbance to be accounted for (Lowe et al. 

1994a; 1994b), given the physiological stress imposed on the vegetation by wild 

animals (bark stripping, soil trampling, etc.). This scenario is further supported by the 

occurrence of Kretzschmaria deusta, as the spread of this fungus is favoured by 

disturbances such as bark removing and root exposure due to intense animal 

trampling. Different ungulates are likely to have been the major factor responsible for 

the presence of dung near the site. Red deer, roe deer, ibex and chamois are at 

present diffused on the Apennines and their presence in northwest Italy during the 

Holocene is certain and documented also by the zooarchaeological assemblages 
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(Rowley-Conwy 1997; Lorenzini et al. 2002). Moreover, several coprophilous species 

successfully grow on lagomorph dung, which is likely to have been deposited by 

mountain hares (Lunqvist 1972; Doveri 2007). 

In light of this, it is suggested that patterns of increasing/decreasing herbivore 

activity may have been one of the driving factors behind irregular fluctuations in 

Abies pollen recorded throughout the Holocene in the study region, as shown by a 

number of pollen diagrams (Lowe et al. 1994a; 1994b; Branch 2013; Vescovi et al. 

2010a; 2010b). This might be particularly true in case of local presence of Abies. 

Although on a large scale these data probably reflect a response to climate change, 

several works have focused on the impact on the vegetation by herbivore ungulates 

(Bradshaw et al. 2003; Danell et al. 2003; Senn and Suter 2003). Their predation 

pressure during the sapling stage of Abies alba, thus preventing regeneration, has 

been highlighted, with particular reference to high-altitude areas (Senn and Suter 

2003). Among the other tree species, Abies is largely preferred by ungulates, 

especially by roe deer, whose browse may consist of up to 50% of silver fir. While 

their role as seeds and seedlings predators is negligible, there is a consistent body of 

evidence indicating a strong effect on young Abies specimens which may eventually 

lead to their total disappearance, often regardless of the size of the herbivore 

population. The strongest impact occurs when trees are less than 1.3-2m high, 

enabling animals to easily remove twigs, shoots, needles and flowers (Danell et al. 

2003; Senn and Suter 2003). Over one thousand enclosures aimed at excluding 

ungulate herbivores have experimentally proven that, without browsing pressure, 

Abies alba successfully regenerates, unlike the areas where ungulates are free to 

browse (Senn and Suter 2003). Moreover, there is also a consistent match between 

patterns of Abies regeneration and density of ungulate populations (Senn and Suter 

2003). It is therefore arguable that, at least in the area of Prato Spilla, wild ungulates 

may have played a role in determining minor fluctuations in the Abies population. 

Alternatively, a more anthropogenic scenario may be pictured; in this situation the 

curves of type 55B and Cercophora-type would entirely represent coprophilous 

species. If so, it may be suggested that their slight increase from NPPAZ-3 onwards 

derives from a more continuous presence of small domestic flocks around the mire. 

However, further points against this argument exist. While coastal or upland grazing 

lands suitable as pastures are located at a relatively short (0-10km) distance from the 

cave sites of western Liguria, Prato Spilla ‘A’ appears rather isolated.  
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As mentioned above, Maggi and Nisbet (1991) have found a plausible seasonal 

movement of shepherds along distances of maximum 20km. Although there are no 

sharp boundaries to define transhumance modalities, a greater distance should be 

termed as medium/long range transhumance, and there is general agreement on the 

unlikelihood of long-distance pastoral systems in prehistory (Barker 1985; Marzatico 

2007). It seems also necessary to stress that in previous studies the site of Prato 

Spilla ‘A’ has been considered in the context of a well-developed tradition of 

environmental archaeology focusing solely on Liguria (e.g. Lowe et al. 1994b). 

However, its position on the northern side of the Liguro-Emilian watershed suggests 

taking into account also the archaeological evidence in the area north of Valditacca. 

Here, as the last northern Apennine slopes decline, a wide plain extends around the 

territory of Parma. The area was densely populated during the Neolithic, and 

culturally dissimilar from the Ligurian milieu (particularly in the Early Neolithic) 

(Pessina and Tiné 2008). If we turn our attention to the plain of Parma, we note that 

its southern fringes lie about 20km from Prato Spilla. The important settlement of 

Sant’Ilario d’Enza (Maffi and Tirabassi 2013) is located some 30km from the site (like 

Pianaccia di Suvero in Liguria), and sporadic Neolithic artefacts are documented also 

in the near site of San Polo d’Enza (Tirabassi 1987). Further south-east, a Late 

Eneolithic lithic assemblage was found at Bagioletto, a site located at 1700m asl c. 

20km from Prato Spilla, previously already occupied during the Mesolithic 

(Cremaschi et al. 1981; Cremaschi 1990). These distances are more compatible with 

short-range pastoral systems, which are more likely to have occurred in later 

prehistory (fig. 3.7). In this respect, it is useful to stress that the Early Neolithic 

rhomboid point found in eastern Liguria at Mt. Aiona-Prato Mollo (Province of 

Genova) is near to the Fiorano types (Baffico et al. 1987), suggesting that also the 

Apennine watershed was exploited by groups culturally linked to the plain of Parma. 

Moreover, a number of studies have stressed multiple relationships between Emilia 

and Liguria in the Neolithic (Biagi 1973; Bagolini and Biagi 1973; 1974). 

However, even if we accept the existence of any form of transhumance, including 

long-range systems, the absence of known seasonal sites in the vicinity of the mire 

(presumably in a range of 0-5km) remains difficult to explain. Potential summer 

pastures should indeed be associated with sites interpreted as possible seasonal 

camps (or at least with archaeological artefacts), as is the case of Mt. Galero and Tana 

del Barletta in western Liguria (Barker et al. 1990; Maggi and Nisbet 1991). In our 
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case, it is relevant to stress that the 

north-eastern most finds of statue-

stelae lie 7 to 12km from Prato Spilla 

and belong to the Filetto-Malgrate-

type, which is dated to the Copper 

Age on the basis of the weapons and 

ornaments represented (de Marinis 

1994). These monuments are 

characteristic of the Eneolithic of 

Lunigiana and Garfagnana (between 

eastern Liguria and north-west 

Tuscany), and are interpreted as 

ritual images placed along pastoral 

routes linking settlements and 

pastures (Maggi 1998b). 

Two high-altitude mires in eastern Liguria have provided direct evidence for in situ 

human presence, albeit scant and sporadic. An ornament dated probably to the 

Copper Age has been collected at Lago di Bargone (830m als) (Campana et al. 1998), 

where contemporary low anthropogenic disturbance has been suggested by 

pedological and palynological analyses (Cruise et al. 2009). At Mt. Aiona-Prato Mollo 

(1700-1500m als), there is instead evidence for periodic human presence since the 

Early Neolithic (Baffico et al. 1987). A further point supporting the existence of this 

extra-settlement area being used as an upland pasture is the presence of a number of 

arrowheads from the Copper Age - Early Bronze Age (Baffico et al. 1987; Maggi 

1998c; Maggi and Campana 2008). Although commonly interpreted as related to 

hunting, and occasionally as ritual offers (Leonardi and Arnaboldi 1998), the finds 

may be consistent with the interpretations from similar sites, that stress the necessity 

to guard the livestock against robbers or rival groups (Marzatico 2007; on the rise of 

violence during later prehistory see Meyer et al. 2015). The importance of controlling 

and defending upland resources seems confirmed by the case of Talheim (southern 

Germany), where a large Early Neolithic mass grave containing the bones of 34 

individuals of both genders and various ages was found. Isotopic evidence has 

suggested that some of the deceased, considered as a family group killed by a rival 

Figure 3.7. Prato Spilla ‘A’ (star), the nearest 

finds of Eneolithic statue-stelae (triangles), and 

the nearest Neolithic and Eneolithic sites south 

and north of the Apennine threshold (dots). 
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community, may possibly have been involved in forms of vertical transhumance 

between high pastures and Linearbandkeramik valley settlements (Price et al. 2006). 

 

 

3.3.2 Other ecological changes: a NPP-based reconstruction 

 

NPPAZ-1 is defined by remarkably high percentages of HdV-128B. Although this 

microfossil is known to the analysts since the 1980s, its identity and ecology, and 

therefore its indicative value, are still a matter of debate. Usually, it is mostly taken as 

an algal organism favouring meso-eutrophic environments (van der Wiel 1982; van 

Geel et al. 1983; 1989; Miola et al. 2006). Only in a few cases genus/species 

identifications have been attempted. The need for a greater taxonomic accuracy 

appears clearly when it is considered that type 128B has been variously identified 

with organisms of different families, and even of different classes. Moreover, these 

attempts have not been supported by critical evidence, but in most cases simply 

proposed as a matter of fact, nor questioned by other authors. 

In view of the spiny ornamentation, Mudie et al. (2010) have suggested an 

identification with Sigmopollis psilatum. There is scant information on these 

organisms included in the class Prasinophyceae, often recorded in pre-Quaternary 

contexts (Batten 1996). However, other authors favour identification with 

Chlamydomonadales (syn. Volvocales) (Miola et al. 2010). Magny et al. (2012) and 

Kramer et al. (2010) have gone further, proposing a family-level identification 

(Volvocaceae). 

Chlamydomonaceae consist of biflagellate unicellular algae, which have been 

considered to represent also the smooth globose microfossil HdV- 303. These algae 

have several different ecological requirements at a species level (Harris 2008), but 

neither of them seem to be compatible with the morphological features 

characterizing HdV-128. Chlamydomonas spp. show a relatively smooth or irregularly 

hairy surface, an often slightly elliptic shape and are characterized by flagella (Harris 

2008). Besides, a largely spaced (type 128A) or closely spaced (type 128B) spiny 

pattern should be visible on the surface of the potential candidate for identification. 
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The same problem affects an identification with Volvocaceae (genus Volvox), as these 

organisms are constituted by a multitude of Chlamydomonas-like cells. Moreover, if 

identification with Volvox is proposed, this should be taken into account in terms of 

interpreting abundance, as a single specimen may be constituted by up to 500,000 

algal cells (Kirk 2005). These algae would thus appear highly overrepresented when 

compared to the percentages of the other microfossils. 

This confusing situation has therefore encouraged an attempt to capture SEM images 

of HdV-128B in the Centre for Advanced Microscopy of the University of Reading, 

hoping to shed light on its identity. To this end, a bulk sample has been collected 

between 722 and 721cm, as the highest concentration per cm3 of HdV-128B was 

recorded at this level (fig. 3.8). Although the spiny ornamentation should stand out 

clearly in electron microscopy, parameters such as colour and wall thickness, 

distinctive in light microscopy, could not be observed. Five promising microfossils 

were photographed (fig. 3.9). 

Only a smaller microfossil (fig. 

3.9E) showing a closely spaced 

ornamentation really resembles 

the surface pattern of HdV-128B. 

Moreover, none of the elements 

photographed shows the typical 

sigmoid slit running through the 

surface, therefore the images 

captured may represent other 

Figure 3.8. Prato Spilla ‘A’: selected taxa concentration diagram. Values expressed as 

microfossils no./cm3. 

 

Figure 3.9. SEM images of microfossils of unknown 

origin resembling HdV-128B. 
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spores, given the extreme variability of fungal assemblages (Hawksworth and 

Wiltshire 2011) and the difficulties arising from the colourless tridimensional view of 

SEM images. 

The largest group of spores sharing a similar ecology can be grouped as wood 

saprophytes. The assemblage is highly dominated by Cirrenalia donnae and HdV-572. 

Fossil Cirennalia spores have been rarely recorded (Pirozynski et al. 1988; López-Vila 

et al. 2014), and recently found in modern analogue studies. Cugny et al. (2010) 

recorded low values of Cirrenalia analyzing modern samples from oak and beech-

dominated forests, a mire and a peatland. Very low percentages of Cirrenalia have 

been recorded also by Gelorini et al. (2011) from eastern African lake surface 

sediments. Dietre et al. (2012) have carried out multivariate analysis on modern 

samples from the Jura Mountains (eastern France), suggesting that Cirrenalia spores 

are positively correlated with forested sites and should thus be regarded as indicators 

of tree cover. The morphology of the conidia allows species identification with C. 

donnae (López-Vila et al. 2014). Scanty mycological literature is available on this 

hyphomycetes (Ellis 1976; Goos 1985; Zhao and Liu 2005). However, the data seem 

to indicate a strong preference for Abies wood as a host tree (Ellis 1976; Kew 

Herbarium online database: 

http://www.herbimi.info/herbimi/results.htm?name=Cirrenalia%20donnae) 

(accessed September 2016). This mutualism is highly likely for the Middle Holocene 

at Prato Spilla, characterized by constantly elevated percentages of pollen of Abies 

alba. It is worth noting that Cirrenalia species produce conidia, which being non-

motile spores have a particularly narrow range of dispersal. Although no conifer 

stomata were recorded and macrofossil analysis was not carried out, it is suggested 

that high values of C. donnae may point to the on-site presence of A. alba. This view 

would be consistent with the above hypothesized predatory pressure exerted by roe 

deer on Abies saplings. 

The trend followed by Cirrenalia strongly resembles the values of HdV-572. This 

microfossil has been first recorded and described only relatively recently (Speranza 

et al. 2000) in a central European peat bog. The analysts recorded extraordinarily 

high values of HdV-572 (91% of the pollen sum) from their study site located in an 

elevated area highly influenced by ancient anthropogenic activities. The associated 

lithology shows a Sphagnum-dominated oligotrophic environment, but no apparent 

correlation between the remarkable peak in this NPP type and other taxa emerge. 

http://www.herbimi.info/herbimi/results.htm?name=Cirrenalia%20donnae
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Later works on modern samples from southwest France have shown a relationship 

between HdV-572 and beech forests (Cugny et al. 2010). The authors report a value 

around 10% calculated as TNPP%, which allows a more accurate comparison with 

our data to be made. Multivariate analysis by Dietre et al. (2012), have suggested a 

strong relationship between tree cover and HdV-572. In our region of study, type 572 

has been recorded in a Ligurian highland peat bog (Menozzi et al. 2010) and in a 

coastal alluvial plain (Arobba et al. 2016). Given the similarities with many other 

uniseptate conidia, it is not possible to suggest any precise link between HdV-572 and 

suitable hosts. The type strongly resembles conidia of Endophragmia (e.g. pinicola) 

and Arthrobotrys (e.g. conoides) spp. Both genera include wood and herbaceous 

saprophytes with different ecological requirements. Yet, the percentage curve of HdV-

572 closely resembles the fluctuations of C. donnae, suggesting its inclusion among 

the wood saprophytes. If so, it is likely that type 572 indicates the presence of dead 

wood on the bog surface, hence possibly periods of higher tree cover. 

Similarly, Sporidesmium and Dyctiosporium spp. do not allow specific plant-fungal 

relationships to be inferred, although they can be considered further indicators of 

decaying wood. It is possible that also the unidentified monocolpate type UR-1 is 

produced by a wood decomposer, as its curve broadly reflects the trend of the main 

saprobic taxa. 

The range of saprophytes on herbaceous plants is much more limited. However, a 

refined picture of the local ecology of the area can be traced due to the presence of 

Lophiostoma arundinis. The species is almost invariably associated with Phragmites, 

thus indicating the on-site presence of this genus and an aquatic origin for part of the 

Poaceae grains identified in the pollen analysis. 

The parasitic fungus Kretzschmaria deusta sparsely occurs throughout the sequence. 

The species is known for affecting broadleaved taxa such as Fagus, Tilia, Quercus, 

Ulmus, Fraxinus and Corylus, colonizing the roots and taking advantage of periods of 

physiological stress. As noted above, it is appropriate to point out that browsing and 

bark-stripping animals are considered facilitating factors for the spread of the 

parasite (Latałowa et al. 2013). However, despite being deadly for the host tree, K. 

deusta does not necessarily lead to a decrease in the hosting population (as shown by 

the Tilia rise recorded by Latałowa et al. (2013)). 

A better knowledge of the ecosystem of the site is achieved through the finding of 

Diporotheca rhizophila spores in the middle and upper part of the sequence (NPPAZs-
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1, 3 and 5). Although a possible mutualism in the past with Thelypteris palustris has 

been proposed (van Geel et al. 1986), the species is currently known as a parasite of 

the host plant Solanum nigrum (van Geel et al. 2003; Hillbrand et al. 2012). This latter 

requires wet meso-eutrophic habitats matching the conditions documented at Prato 

Spilla during the investigated period. Be that as it may, the occurrence of D. rhizophila 

allows the presence of S. nigrum or of a different suitable host to be proved, in spite of 

its absence in the pollen record. Moreover, S. nigrum is also associated with episodes 

of soil disturbance as derived by forest clearings, agricultural activities and animal 

trampling, a fact that lately led to consider D. rhizophila as an indicator of such events 

(Hillbrand et al. 2012). 

It is likely that at Prato Spilla D. rhizophila naturally occurs, given the presence of a 

habitat appropriate for the growth of its host. Nevertheless, it is worth noting that D. 

rhizophila was found on a site where ecological changes possibly partly due to human 

intervention have been identified. In this respect, an evaluation of the presence of 

cereal pollen would be essential, as it would be further supported by the occurrence 

of D. rhizophila as an indicator of anthropogenic impact. In this view, the increase in 

Corylus recorded in the pollen record may not be fortuitous, as its growth may be 

facilitated within disturbed forest ecosystems. 

Given their dispersal by soil erosion, D. rhizophila spores are often associated with 

Glomus chlamydospores. However, at Prato Spilla neither D. rhizophila nor Glomus 

peak in correspondence of an increased mineral inwash. It follows that, as lately 

argued by Kołaczek et al. (2013), Glomus chlamydospores were probably associated 

with plants growing in the peaty layers, whose roots can penetrate and sporulate 

within the underlying sediments. 

As expected, the peak in fungal hyphopodia (Clasterosporium caricinum?) between 

NPPAZ-1 and 2 correlates with the increase in Cyperaceae recorded in the pollen 

analysis. This data indicates the local occurrence of the genus Carex, as 

Clasterosporium hyphopodia adhere to the surface of the epidermis of Carex species. 

Although it deserves further research, the peak in spiny spores released by 

Scleroderma spp. during NPPAZ-4 points to a damp environment with frequent 

mosses, these latter being a suitable substrate for this basidiomycetes (Guzmán 1970; 

Kuo 2011). 

Detrended Correspondence Analysis (DCA) was also performed on all microfossils 

occurring in percentages higher than 1%, in an attempt to detect similarities between 
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taxa and identify types with similar requirements (PAST software, Hammer et al. 

2001) (fig. 3.10). The NPPs occurring at the extremities of the axes (e.g. HdV.-128B) 

are less likely to have affinities with the other taxa. The main freshwater microfossils 

of the sequence, HdV-128B and Pediastrum sp., show clearly opposite behaviours. 

The plot also suggests that spores of Cercophora-type spores are likely to represent 

saprophitic species affecting rotten vegetal matter rather than coprophilous species, 

given their association with HdV-572 (probably conidia of Endophgramia or 

Arthrobotrys spp.) and Cirrenalia donnae. 

 

 

Figure 3.10. Prato Spilla ‘A’. DCA plot showing 95% confidence ellipse. Eigenvalue for axis 1 is 
0.292, eigenvalue for axis 2 is 0.007. 
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4. THE MIDDLE HOLOCENE ALLUVIAL SEQUENCE FROM GENOA PIAZZA DELLA 

VITTORIA 

 

 

4.1 Geographical setting and archaeology 

 

Geognostic coring was performed in 2006 at Piazza della Vittoria in Genoa. The coring 

location is presently located 600m north of the shore, in a small alluvial plain formed 

by the river Bisagno, about 2km2 wide, enclosed by low hills on the northern edge 

(fig. 4.1). The main channel of the Bisagno measures 25km, its catchment area totals 

95km2 and it extends from the coast to about 15km inland (Provincia di Genova 

2009). The average altitude of the drainage basin is relatively low (around 300m asl), 

although on its fringes there are peaks reaching 900-1000m asl (Mt. Candelozzo, Mt. 

Croce di Fo, Mt. Bado). The pollen analysis has pointed to a coastal marshy/swampy 

area, possibly brackish (Ruppia, Nuphar, Nymphaea, Potamogeton, Typha), dominated 

by deciduous Quercus and hosting riparian species such as Alnus, Salix and Populus, 

but relatively opened as suggested by the percentages of wild grasses (Arobba and  

Caramiello 2014; Arobba et al. 2016). 

Figure 4.1. Map showing the location of the coring site in relation to the modern 
topography. 
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It is worth stressing that other deep cores from the same area, in a range of a few tens 

of metres, have revealed the presence of several potsherds and a wooden artefact 

dated 5770 ± 70 cal yr BP, testifying to human occupation (fig. 4.2). On the basis of 

the wooden remains, the existence of a Neolithic pile-dwelling site possibly related to 

a prehistoric harbour was postulated (Maggi 1996). Indeed, during the excavation for 

the underground at Brignole, about 150m north of Piazza della Vittoria, a Late 

Neolithic site was found (late 5th Millennium BP), as revealed by fires places, pottery 

and animal bones (Del Lucchese 2010; 2014). Although the size of the site and its 

structure is not clear, it is likely that it took advantage of the location on the right side 

of the river Bisagno and of the proximity to the see. The sea level at that time was 

probably slightly lower than at present. Unlike previous estimates based on caraibic 

coral reefs (Fairbanks 1989; Bard et al. 1996; Chappel et al. 1996), recent works on 

the archaeological structures of the ancient harbour of Marseille and the Upper 

Palaeolithic paintings of the Cosquer Cave have allowed precise estimates for 

Holocene sea-level fluctuations (Lambeck and Bard 2000; Morhange et al. 2001), that 

can be considered reliable for the whole Mediterranean area. On the basis of 

biostratigraphy, artefacts and a number of radiocarbon dates it is possible to 

demonstrate that during the Neolithic the water level was about 2-1.5m lower. 

Importantly, the site of Brignole has also provided the first evidence of deliberate 

pollarding of Fraxinus in the region, after it was hypothesised on the basis of the 

botanic remains from the Arene Candide (Arobba and Caramiello 2010; 2014). This 

Figure 4.2. Map showing the morphology of the site and the position of the 
Neolithic finds. 
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practice involves cutting of branches in late spring and summer in order to increase 

the amount of fodder prior to the winter season, and leaves clear marks in the wood 

pores. Its use is documented until very recently in the Ligurian-Emilian Apennines 

(scalvatura) to provide fodder to ovi-caprines and cattle over summer (Salvi 1982). 

 

 

4.2 Results 

 

A separate zonation was adopted to represent the main NPP assemblages and related 

ecological changes (Non-Pollen Palynomorph Assemblage Zones - NPPAZs) (Carrión 

and Navarro 2002; Mazier et al. 2009; Cugny et al. 2010; Miras et al. 2010) (fig. 4.3). 

Therefore, the phases identified do not necessarily overlap with the pollen zonation, 

as fungal, algal and plant communities respond to different driving factors (Baker et 

al. 2013). On the other hand, they better represent the main naturally and human-

driven changes on a very local scale (van Geel et al. 2003; Mazier et al. 2009). 

 

NPPAZ GPV-1 · Depth: 24.72m – 24.05m · ∼7480-7345 cal yr BP 

This zone is characterized by the dominance of UR-15 (25%) and a rise in UR-20 

(14%), coupled with a slight increase in Glomus (7%). Among the aquatics, Zygnema-

type spores are recorded. 

 

NPPAZ GPV-2 · Depth: 24.05m – 23.05m · ∼7345-7145 cal yr BP 

Pseudoschizaea increases (3%), along with Spirogyra (3%). Coniochaeta decreases 

(7%), whilst UR-11 and Cirrenalia basiminuta reaches high values (15% and 17%).  

 

NPPAZ GPV-3 · Depth: 23.05m – 22.62m · ∼7145-7055 cal yr BP 

Coniochaeta rises up to 26%, coupled with a peak in fungal hyphopodia (7%), but the 

dominant taxon is UR-17, reaching 25%. 

 

NPPAZ GPV-4 · Depth: 22.62m – 21.07m · ∼7055-6745 cal yr BP 

Coniochaeta occurs in lower percentages (c. 10%), whereas C. basiminuta (25%) and 

UR-12 (15%) become dominant. A rise in fern sporangia occurs (5%). 

 

NPPAZ GPV-5 · Depth: 21.07m – 20.05m · ∼6745-6595 cal yr BP 
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The zone is characterized by a sharp increase in Spirogyra (20%), along with a new 

rise in Coniochaeta (41%), a peak in Kretzschmaria deusta (14%) and the first 

considerable rise in Sporoschisma (7%). 

 

NPPAZ GPV-6 · Depth: 20.05m – 18.95m · ∼6595-6525 cal yr BP 

A new rise in Pseudoschizaea occurs (11%), along with the first notable increase in 

Glomus (12%). Sporoschisma reaches its highest value (9%), coupled with 

Cercophora-type (7%). 

 

NPPAZ GPV-7 · Depth: 18.95m – 18.55m · ∼6525-6505 cal yr BP 

Glomus decreases (less than 3%), while C. basiminuta becomes dominant (25%), 

along with UR-11 (20%). 

 

NPPAZ GPV-8 · Depth: 18.55m – 18.25m · ∼6505-6485 cal yr BP 

The zone is defined by a new peak in Spirogyra (7%), paralleled by a sharp rise in 

Sordaria-type (9%) and Coniochaeta (42%). 

 

NPPAZ GPV-9 · Depth: 18.25 m – 16.95m · ∼6485-6395 cal yr BP 

A second notable rise in Glomus occurs (32%), along with an increase in Cercophora–

type (8%) and a decrease in Coniochaeta (17%). Among the aquatics, Pseudoschizaea 

rises again (3%). UR-18 reaches remarkable values (38%). A rise in conifer stomata 

occurs (5%). 

 

NPPAZ GPV-10 · Depth: 16.95m – 16.45m · ∼6395-6360 cal yr BP 

The zone is absolutely dominated by HdV-119, which reaches extremely high 

percentages (70%). 

 

NPPAZ GPV-11 · Depth: 16.45m – 16.20m · ∼6360-6345 cal yr BP 

A very sharp rise in fungal hyphopodia occurs (48%), along with a rise in Coniochaeta 

(43%), UR-46 (15%) and Pseudoschizaea (3%). HdV-200 reaches high values (19%). 

 

NPPAZ GPV-12 · Depth: 16.20m – 15.10m · ∼6345-? cal yr BP 

The zone is dominated by Glomus (near 60%), which rises coupled with UR-15 (13%). 

The main aquatic taxon is represented by Pseudoschizaea (5%). 



Figure 4.3. Genoa, Piazza della Vittoria, borehole 1: NPP diagram. Values expressed as percentages of NPPs + fungal hyphopodia. Exaggeration factor = 5x. EN = Early Neolithic; 

MN = Middle Neolithic.
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4.3 Interpretation and discussion 

 

4.3.1 Diachronic changes in the NPP assemblage 

 

The sequence has proved very rich in both well-known and unidentified microfossils, 

and several insights into natural and possibly anthropogenic changes can be 

developed. 

First, a rough subdivision into erosional events, although of undeterminable intensity, 

seems possible. The percentage curve of Glomus points to GPV-1, GPV-6, GPV-9 and 

GPV-12 as episodes of more intense transport and deposition compared to the other 

phases. However, there is no clear match between Glomus spores and increased 

amounts of mineral matter. Indeed, it is complicated to interpret the peaks in mineral 

matter from an alluvial sequence, as inorganic inputs are likely to result mainly from 

water transport, whilst in lacustrine environment they are well-established erosion 

indicators (van Geel 2001). Although it has been suggested that Glomus spores may 

prove unreliable to infer erosion, this holds true especially in very peaty sequences 

(Kołaczek et al 2013). D. rhizophila spores are only indirect indicators, as they 

represent parasitic species, but are usually dispersed by erosional processes, given 

their preference for disturbed and bare soils (Hillbrand et al. 2012). 

During GPV-1, a small peak in Kretzschmaria deusta occurs. This is in agreement with 

the suggested picture, as this parasitic sordariomycetes prevails in disturbed 

conditions, such as root exposure, attacking the trunk of a range of broadleaved trees 

(Latałowa et al. 2013). Arguably, Quercus wood has been the most likely host for the 

parasite in this phase. The presence of rotten wood on the site at this time is 

confirmed by Coniochaeta, Xylariaceae and HdV-572. 

Various largely and potentially fimicolous taxa (Delitschia, Melanosporaceae, 

Gelasinospora, Coniochaeta) are also documented at the very bottom of the sequence, 

suggesting herbivore involvement in the spread of K. deusta and Glomeromycota (van 

Geel and Aptroot 2006). 

It is possible that GPV-1 is characterized by a relatively wet environment, given the 

resemblance of UR-15 with NPPs of supposed aquatic origin (e.g. HdV-983, Carrión 

and van Geel 1999; Carrión and Navarro 2002). Damp conditions may also be 

suggested by spores of Scleroderma, often colonizing mossy substrates. The genus is 
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somewhat a further indicator for erosional events, as all Scleroderma species are 

ectomycorrhizal (Guzmán 1970; Kuo 2011). 

GPV-2-3-4 and 5 are characterized by higher percentages of wood saprophytes. The 

fact might point to a denser tree canopy on the site, and correlates well with one of 

the major peaks in Quercus revealed by the pollen analysis (localized around 7150 cal 

yr BP). Grazing pressure seems to increase between GPV-2 and GPV-3 (Delitschia), 

whereas the peak in UR-11 requires further research to unveil its indicator value. A 

range of newly identified and unidentified microfossils (HdV-120, UR-12, UR-14) also 

increases during GPV-4. HdV-120 was first recorded in a brackish lake by Pals et al. 

(1980). It seems possible to associate this conidium and its main peaks during GPV-4 

and GPV-7 with the occurrence of relatively salty pools, as its morphology points to 

identification with Cirrenalia basiminuta (Raghu-Kumar et al. 1988; 

http://www.niobioinformatics.in/fungi/Micro-cd/htm/47.htm), a rare and 

cosmopolitan hyphomycetes consistently collected in environments characterized by 

some degree of salinity (Leong et al. 1991; El-Sharouny et al. 2009). 

A rise in Sordaria-type in the NPP zone GPV-5, along with a peak in Coniochaeta, 

testifies to grazing pressure, and the corresponding decrease in Delitschia may be 

accounted for by mechanisms of fungal competition or changes in the main dung 

substrates (Wicklow 1992). 

The abundance of HdV-55B between GPV-3 and GPV-4 is of difficult interpretation, as 

the spore morphology points to identification with Melanosporaceae (Melanospora 

brevirostris? Sphaerodes spp.? Doveri 2007; García et al. 2004; Vujanovic and Goh 

2009), which are only partly fimicolous, and mostly parasitic on other fungi (Zhang 

and Blackwell 2002; Doveri 2007). 

A first sharp rise in Spirogyra in the NPP zone GPV-5 points to shallow and stagnant 

water, as supported by a rise in fungi predominantly known from submerged habitats 

(Sporoschisma and Bactrodesmium spp.; Hu et al. 2010). It is difficult to argue 

whether the corresponding peak in Coniochaeta derives from animals attracted to the 

water body. In the same phase, the parasitic attack by K. deusta may have affected not 

only Quercus, but also Ulmus or Fagus, that are represented in the pollen diagram. Elm 

is particularly sensitive to K. deusta attacks (Latałowa et al. 2013), and its slight 

decrease before 6600 cal BP may have been facilitated by the spread of the disease. 

Later, the main event during GPV-6 lies in erosional episodes and indications of soils 

disturbance, as suggested by Glomus and D. rhizophila, whose spread was presumably 
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facilitated by herbivore activity. A less dense tree cover is indicated by the gradual 

decrease of wood saprobic species. Higher values of Pseudoschizaea cannot be 

straightforwardly interpreted, as its biological identity is a matter of debate as yet 

(Scott 1992; Milanesi et al. 2006). 

The data from GPV-8, showing a new increase in Spirogyra spores, point to a shallow 

and eutrophic water body, about or less than 0.5m deep (van Geel 2001). This 

environment is likely to have attracted herbivores as a watering place, as shown by a 

sharp increase in Sordaria-type, coupled with Sporormiella and Podospora, although 

Spirogyra can also inhabit brackish waters (Aleem 1961). Presumably, also part of the 

Coniochaeta spores recovered from this level represents fimicolous species. The fall 

in Delitschia may be determined by Sordariales fungi, here grouped in the Sordaria-

type, able to out-compete rival species on the same substrates (Wicklow 1992). 

The area was at this time probably too wet to allow arboreal taxa to grow within the 

pool, as significantly shown by relatively high and steady percentages of aquatic fungi 

between GPV-5 and GPV-10. Unlike what could be expected, erosion seems now 

reduced (GPV-7-8), as are root- and soil-inhabiting taxa. Glomus newly become 

abundant during GPV-9, and grazing pressure seems to remain constant, as indicated 

by several obligate fimicolous genera coupled with Cercophora-type spores. The trend 

followed by Cercophora spp., however, may mostly reflect the presence of rotten 

wood, as it seems to be broadly consistent with Sporoschisma, which occasionally 

colonizes also dry substrates (Shearer et al. 2007). A different hydrology is suggested 

by the disappearance of Spirogyra, suggesting a different regime (e.g. drier conditions 

or running water). 

The dominance of an unidentified NPP with a characteristic rupture pattern 

resembling HdV-119 in the NPP zone GPV-10 requires an explanation. Similar 

microfossils have been recorded in Mediterranean and northern European contexts, 

where they seem to be associated with aquatic environments, possibly characterized 

by stagnant or slow moving waters (Pals et al. 1980; Carrión and Navarro 2002; 

Demey et al. 2013). Although these conditions may well match our situation, these 

indications seem too general to be of any help, and cannot account for such a sharp 

rise in the abundance (70%). On the other hand, HdV-119 shows an exagonal rupture 

that is found on dynoflagellate cysts, (for example Brigantedinium spp., which also 

has a smooth surface), although their morphology slightly differs, these latter being 

usually spherical. Dinocysts have been employed in freshwater palaeolimnology to 
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infer previous marine/brackish conditions of lake basins (Leroy and Alban 2010). 

Therefore, it seems plausible to assume a short-lived episode of marine transgression, 

resulting in a brackish pool, as also suggested by the palynological results. 

An important episode of parasitism occurs at the top of the sequence (GPV-11). 

Previous research has highlighted the match between polylobate fungal hyphopodia 

and Carex species (e.g. van Geel et al. 1983). It is not possible to observe any 

correlation in our case, but it should be pointed out that very similar hyphopodia may 

be produced by different genera (Pirozynski et al. 1988). It is thus possible that the 

sharp rise here recorded results from a different host-pathogen association. To this 

end, it is worth stressing that closely resembling hyphopodia of Buergenerula 

spartinae are typical of brackish environments along the coasts of north and south-

western Europe (Kohlmeyer and Gessner 1976), and that such conditions may be 

indicated by the above mentioned peak in HdV-119. Infection of pollen grains by 

fungal hyphae filling the apertures has also been observed in one case (fig. 4.4). The 

process has unknown causes and has been first reported only very recently 

(Shumilovskikh et al. 2015). 

Apparently, fungal material is 

able to colonize the areas of 

angiosperm grains occupied by 

pori and colpi, thus avoiding 

the protective outer layer made 

of sporopollenin. However, a 

relationship with dry phases, 

as suggested by Shumilovskikh 

et al., cannot apply to our case, given the concurrent presence of Spirogyra. 

In order to identify affinities among microfossils of unknown ecology, Detrended 

Correspondence Analysis (DCA) was also performed (PAST Software, Hammer et al. 

2001). The technique clearly separates HdV-119 from the other taxa (figs. 4.5, 4,6). It 

is also noteworthy that Gelasinospora spores showing small pores (in the diagram as 

Gelasinospora B, different from G. cf retispora) (are closely correlated with 

Sporormiella, indicating their probable association with herbivore dung rather than 

burnt soils. The same can be argued for Gelasinospora spores with one apical pore 

(Gelasinopora C), showing affinity with Sordaria-type and Cercophora-type (fig. 4.7). 

Figure 4.4. Pollen grain of Corylus showing darker 
fungal material inside the pores. Scale bar = 20µm. 
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Given the ecology of Cirrenalia basiminuta, it is also tempting to suggest a correlation 

between the unknown NPPs UR-12 and UR-60 and saline environments. 

 

 

Figure 4.5. Genoa Piazza Vittoria. DCA plot showing 95% confidence ellipse. Eigenvalue for axis 1 
is 0.705, eigenvalue for axis 2 is 0.446. 

 

Figure 4.6. Genoa Piazza Vittoria. DCA plot excluding HdV-119, in order to improve the legibility 
of the main cluster of taxa. 
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4.3.2 Hydrology 

 

Summarising, the abundance of aquatic taxa allows some remarks on the hydrology of 

the site. Four episodes of shallow and eutrophic stagnant/slowly moving water 

(Spirogyra: GPV-2-5-8-11) might be inferred. These changes can be accounted for by 

the presence of temporary oxbow basins formed from meanders of the Bisagno 

(Arobba et al. 2016). On the other hand, ecologists do not have a univocal view on the 

value of Pseudoschizaea, mostly thought to be originated from an unknown aquatic 

organism (Grenfell 1995; Scott 1992, favouring the hypothesis of a plant or animal 

origin; unexpected results pointing to a relationship with angiosperms based on DNA 

extraction were reported by Milanesi et al. 2006). The microfossil seems to be an 

indicator of summer drought and periodical drying out of wet areas in warm climates, 

coupled with increased mineral inwashes (Carrión and Navarro 2002). For this 

reason, in view of its characteristic morphology it is normally considered to represent 

a freshwater algal cyst. Encystment is a well-known strategy used by phytoplankton 

species in order to survive in periods of extreme environmental conditions, involving 

the formation of a resistant outer shell protecting the living cell until favourable 

conditions (Bold and Wynne 1985; Blackburn and Parker 2005). Because the annual 

range of variability of planktonic habitats is often wider than the degree of tolerance 

of the algal cells, their blooms and reproduction cycles often follow a seasonal pattern 

(Sandgren 1983). It is thus likely that periodic desiccation and flooding of the area 

triggered algal encystment, in order to enable survival during dry periods. All these 

conditions match very closely our reconstruction of the middle Holocene 

Figure 4.7. Genoa Piazza Vittoria. A: Gelasinospora cf retispora; B: Gelasinospora B; 
C: Gelasinospora C. Scale bar = 20µm (applies to all photos). 
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environment in the Bisagno river delta, most likely characterized by frequent changes 

in wetness and erosion rates, as typical of alluvial regimes. This view also gains 

support in the agreement between the rises in Pseudoschizaea and the main erosional 

events as indicated by Glomus spores from GPV-6 onwards. It is also worth stressing 

how Spirogyra and Pseudoschizaea mainly tend to exclude each other, presumably 

responding differently to variations in hydrologic parameters such as pH, 

temperature and nutrient supply. 

 

4.3.3 Omnivores and herbivores 

 

Data on omnivore species are provided by the eggs of intestinal parasites recovered 

(Arobba et al. 2016), that measure between 31.6 and 48.6µm in length (mean 

39.1µm), falling within the size range of whipworms infecting humans (Trichuris 

trichiura) and pigs (T. suis). The specimens found around 6300 and 6480 cal BP 

appear particularly small (31.6µm - 40.8µm), although a few similar cases are known 

in the literature. The smallest Trichuris eggs found in Mesolithic levels at Goldcliff 

measured 41µm in length (Dark 2004), the eggs of T. trichiura and T. suis studied by 

Sondak (1948) ranged respectively between 34-41µm and 34-45µm, and the eggs of 

T. suis examined by Beer (1976) ranged from 35 to 62µm. Further, Hall et al. (1983), 

showed that T. trichiura eggs treated with standard procedure for pollen preparation 

measure from 34.7 to 47µm. Although the eggs of T. suis are thought to be slightly 

longer than the eggs of T. trichiura (Beer 1976; Florenzano et al. 2012), the size range 

considerably overlaps so that a distinction on morphometric basis is not possible. 

Moreover, although domestic pigs were introduced in Liguria only during the late 

Neolithic by Chassey groups (Rowley-Conwy 1997), T. suis can also infect wild suids 

as well as humans (Beer 1976), and bones of wild boar/pig were found very near the 

coring spot in late Neolithic levels at Brignole (Fontana et al. 2010). Both suid and 

human infections are thus plausible in our context. It is worth noting that, in this 

latter case, to our knowledge this would be the earliest evidence for human 

trichuriasis in the Italian Peninsula, whereas the only earlier record for Trichuris spp. 

(probably from wild animals) was found in southern Italy (Torri et al. 2012). 

A high amount of dung spores was also recorded (Arobba et al. 2016). In the absence 

of specific data to address herbivore composition (lipid/bile analysis, DNA 

metabarcoding (D’Anjou et al. 2012; Giguet-Covex et al. 2014)), geographical and 
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ecological remarks allow us to advance some conclusions. Several data from 

mycological collections point to a very wide variety of animal families (chiefly 

Bovidae, Equidae, Caprinae, Cervidae, Leporidae, Mustelidae) for the main 

coprophilous families identifiable in the fossil record. Although due to a lack of sound 

experimental data fungal spore analyses can give, if any, only a very general 

indication in terms of animal identification (Richardson 1972; 2001; Angel and 

Wicklow 1975; Parker 1979; Doveri 2011), the coastal location of our site may help 

restrict the number of candidates. 

Mycologists have carried out statistical analyses on a large number of samples of 

different dung types collected from different biozones. Their results are of some value 

for palaeoecologists, although some warnings are worth stressing. First, the most 

widely diffused fungal species colonizing dung unfortunately produce rather 

undistinctive hyaline spores, which are unlikely to be correctly identified during the 

analysis, and strongly resemble a number of other non-coprophilous spores (e.g. 

Ascobolus spp.). Secondly, these taxa may be more deeply affected by degradation 

compared to thick-walled brown spores, but to our knowledge there are no 

experimental data aimed at assessing this issue thus far. Richardson (1972) stresses 

the prevalence of the genera Ascobolus, Lasiobolus, Coprobia, Cheylimenia, Ascoplanus 

and Podospora (curvula) on the dung of ruminants. Among these, only Podospora 

curvula and Ascobolus spores would be recognizable in the subfossil records, the 

former being probably classified as Sordaria-type 55A, and the latter perhaps as 

Neurospora (the name Neurospora-type should thus be adopted in the future as 

routinely done for Sporormiella and Sordaria; on the relationship between NNP type 

terminology and actual biological attributions see Baker et al. 2013). The group of 

taxa favouring lagomorph substrate that would survive in the record is larger, 

including Coniochaeta, Podospora appendiculata and setosa (Podospora-type), and 

Sporormia (Sporormiella-type). However, Sporormia is well attested also on ruminant 

an horse dung (Parker 1979), and Coniochaeta has also commonly a saprobic 

behaviour (Krug et al. 2004). Richardson again (2001), highlights a statistical 

significant abundance of Coniochaeta spp. on dung of deer, and of Schizothecium 

(decipiens and conicum) and Podospora (decipiens) on sheep and cattle dung (these 

latter taxa recordable as Sordaria-type 55A in terms of NPP classification). It seems 

therefore highly problematic to convincingly use these studies for interpreting past 

animal presence, so that an examination of zooarchaeological assemblages and 
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animal population distributions in the Middle Holocene seems a more promising 

direction to follow. 

The most common cervids documented in the Ligurian Holocene (Capreolus 

capreolus, Cervus elaphus, Rupicapra rupicapra, Capra ibex) all have relatively marked 

preferences for elevated habitats (up to 2000m asl), and only sporadically graze at 

lower altitudes. No hills exceeding 500m asl occur in a range of 5km from the site, 

suggesting that a more than negligible contribution to the coprophilous assemblage 

from cervid populations is unlikely. Moreover, it is not certain that fallow deer, 

typically Mediterranean, was diffused in the region in prehistory (Minelli 2002). 

Leporidae (notably Lepus spp.) and Mustelidae (e.g. Meles meles) are likely to be 

represented in our fimicolous record, but presumably only on a limited scale.  

Omnivores such as wild boar should be ruled out, given the rarity of fungi isolated 

from non-herbivore dung (Lundqvist 1972). 

As finally regards equid populations, although very scanty groups may have survived 

the last glaciation, horses are almost non-existent in the Italian zooarchaeological 

record prior to their reintroduction as domesticated species from eastern Europe 

during the Eneolithic (Pessina and Tiné 2008; Wilkens 2012).  

In light of this, it is most likely that the only significant contribution to the 

coprophilous signal results from bovine and ovi-caprine dung, which are also the 

highly predominant dung types affected by fungal growth (percentages in Richardson 

2001 and Doveri 2011). It should be borne in mind that ovicaprines were introduced 

in the peninsula already in a domesticated form, as their wild predecessors were not 

originally present on the Italian territory (Pessina and Tiné 2008). Although aurochs 

were diffused in the region prior to domestication, as shown by the bone assemblages 

from the Arene Candide (Rowley-Conwy 1997), bovine remains largely belong to 

domesticated species in middle-late Neolithic contexts. Therefore, given the 

complementary evidence for cattle and ovi-caprines bones at Brignole (Fontana et al. 

2010) and the relevance for animal husbandry in the region (Barker et al. 1990; 

Maggi and Nisbet 1991), our data point to intense grazing pressure on the site. An 

overall schematic reconstruction of the main phases of landscape development at the 

mouth of river Bisagno during the Middle Holocene, integrating the results from 

pollen analysis (Arobba et al. 2016) and the current NPP analysis, is given in fig. 4.8. 

The limited knowledge of the Neolithic phase of Genoa does not allow more refined 

inferences, as the nature of the occupation is not clear as yet (Maggi 1996; Del 
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Lucchese 2010). The alluvial plain may have been particularly suitable for domestic 

flocks, given the presence of handy watering places with still water and salt 

availability, a precious element for bovine and ovi-caprine diet (Tasić 2000; Di Fraia 

2006). 

Figure 4.8. Vegetation and land use change in the valley of Bisagno during the Middle 

Holocene:  1. Mediterranean plant communities; 2. Mesophile oak wood; 3. Arboreal 

riparian vegetation; 4. Wild vine; 5. Silver fir;  6. Beech; 7. Pine; 8. Hygrophilous 

herbaceous plants; 9. Widgeon grass; 10. Sedges; 11. Cereals; 12. Synanthropic plants; 

13. (Domestic?) herbivores; 14. Wild boar. 

 



94  5. THE EXPERIMENTAL APPROACH: COPROPHILOUS FUNGAL SPORES FROM 
RECENT PASTORAL SEDIMENTS 
 
 
5.1 Introduction 
 
A considerable amount of research has been directed at the development of methods 
for identifying cattle pens in archaeological sites. Among the more commonly used 
techniques are micromorphology and phytolith analysis (Brochier et al. 1992; Canti 
1997, 1998, 1999; Lancelotti and Madella 2012; Macphail et al. 1997; Shahack-Gross 
2011; Shahack-Gross et al. 2003). Biomarker analysis and a method based on stable 
nitrogen isotopes have also been experimented, following the investigation of both 
archaeological layers and modern analogues (Bull et al. 2005; Shahack-Gross and 
Finkelstein 2008; Shahack-Gross et al. 2008). Although each of these methods has 
been successfully applied, they can also prove ineffective, as their validity may change 
according to site-specific factors such as taphonomic conditions and soil chemistry 
(Bull et al. 2005; Canti 1999). 
This chapter aims to assess the reliability of dung spore analysis as an additional 
method for the existing ‘toolbox’ for the identification of ancient animal pens 
(Lancelotti and Madella 2012; Macharia et al. 2012; Shahack-Gross 2011). The study 
highlights the potential of these microfossils as localised and reliable indicators of 
archaeological animal enclosures. To this end, data have been collected from a 
number of sample locations such as dung heaps, floors of roofed stables and outdoor 
corrals, each characterised by different animal densities and frequency of use (fig. 
5.1; Chapter 2, table 2.3). The article also aims to explore the value of other dung-
related palynomorphs, as well as assessing the visibility of water indicators in 
pastoral sediments and the taphonomy of dung spores in stratified deposits. In order 
to show the applicability of the method, a recent pastoral site (rock shelter of Arma 
della Manie, Liguria, Italy) was excavated and the abundance of spores compared to 
other indicators (faecal spherulites and total phosphorus). 
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spores are a suitable 
analytical tool, as they 
are often recorded in 
dung samples (Dietre et 
al. 2012; Gauthier et al. 
2010) and have a 
relatively limited 
spatial dispersal (Baker 
et al. 2016; van Geel et 
al. 2003) - especially in 
protected conditions 
such as when found 
within caves or other 
sheltered 
environments. Previous 
research on fimicolous 

fungi has focused 
mainly on wild grazed 
environments (e.g. 
Baker et al. 2016; 
Blackford and Innes 

2006; Cugny et al. 2010; Davis and Schafer 2006), and while natural sequences 
adjacent to archaeological sites are frequently investigated (e.g. lakes and mires), only 
a limited number of non-pollen palynomorph studies from terrestrial archaeological 
deposits have been conducted (e.g. Expósito and Burjachs 2016; Ivanova and 
Marfenina 2015; Kvavadze and Kakhiani 2010; Revelles et al. 2016; van Geel et al. 
2003). Research on analogues for archaeological structures and the issue of 
differential abundance and distribution of dung spores is missing from these deposits. 
Moreover, while the use of percentages of the total pollen or the more independent 
parameter of accumulation rates appear suitable for natural archives (Baker et al. 
2013, 2016; Wood and Wilmshurst 2013), they may not be adequate for 
anthropogenic layers, where the formation of thick sequences is often the result of 
single events occurring on a much shorter time scale (e.g. material being dumped, or 

Figure 5.1. Map showing the location of the sites from which 
samples have been collected. 1. Arborfield, UK. 2. Besnate, Italy. 
3. Semogo, Italy. 4. Somma Lombardo, Italy. 5. Tarquinia, Italy. 6. 
Vaccarezza, Italy. 7. West Overton, UK. 
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Gross et al. 2005; Schiffer 1987: 266). For this reason, spore concentration per unit of 
volume and weight has been chosen as most appropriate parameter in this work. 
 
 
5.2 Results 
 
5.2.1 Dung spore analysis 
 
Most of the samples proved to be rich in a wide range of spores of fungi characterised 
by different degrees of coprophily (Krug et al. 2004); accordingly they were grouped 
in the tables to summarise the results (tables 5.1 and 5.2). Eggs of intestinal 
parasites were also quantified (table 5.3). In addition, when recovered in high 
amounts, the abundance of unidentified microfossils of unknown ecological 
preference was recorded (table 5.1). The results were also plotted according to the 
site type (fig. 5.2). 
In the profile from the rock shelter, 17 obligate and occasionally coprophilous fungal 
taxa were identified in the upper two units, and the values are similar to the results 
obtained from modern stables and corrals (table 5.4). At the depths of 4 and 12cm 
two decreases in dung spores were recorded. Conversely, no spores were found in the 
lower part of the sequence (fig. 5.3). Parasite eggs and cysts of Pseudoschizaea were 
also recovered (tables 5.3 and 5.5). 
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Figure 5.2. Scatterplots showing the abundance of dung spores (no./cm3 and  

no./g) according to the site type (data points jittered for visibility). 
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Table 5.1. Number of obligate and occasionally coprophilous taxa and microfossils of 
unknown ecology per unit of volume (cm3) and unit of weight (g). 
Sample 1 NPPs of unknown ecology:  

UR-2 = 1985 spores/cm3 (= 9452 spores/g) 
 
Sample 2 

Largely coprophilous fungi: 
Sordaria-type = 116 spores/cm3 (= 464 spores/g) 

Dominant 
copr. taxon: 
Sordaria-type NPPs of unknown ecology:  

UR-2 = 1,347,554 spores/cm3 (= 5,390,216 spores/g) 
 
 
Sample 3 

Largely coprophilous fungi: 
Arnium-type + Sordaria fimicola-type + Sordaria-type = 
188 spores/cm3 (= 382 spores/g) 

 
Dominant 
copr. taxon: 
Thermomyces 
stellatus 

Occasionally1 coprophilous fungi: 
Coniochaeta + Thermomyces stellatus = 326 spores/cm3 (= 
666 spores/g) 

 
 
Sample 4 

Occasionally coprophilous fungi: 
Thermomyces stellatus = 4833 spores/cm3 (= 19,332 
spores/g) 

Dominant 
copr. taxon: 
Thermomyces 
stellatus NPPs of unknown ecology:  

UR-2 = 3,305,772 spores/cm3 (= 13,223,088 spores/g) 
 
Sample 5 

Occasionally coprophilous fungi: 
Chaetomium + Coniochaeta + Thermomyces stellatus = 
16,620 spores/cm3 (= 63,923 spores/g) 

Dominant 
copr. taxon: 
Thermomyces 
stellatus 

 
 
 
 
Sample 6 

Largely coprophilous fungi: 
Arnium-type + Sordaria-type + Sporormiella-type = 
89,004 spores/cm3 (= 93,689 spores/g) 

 
 
 
Dominant 
copr. taxon: 
Sordaria-type  

Occasionally coprophilous spores: 
Chaetomium + Coniochaeta + Gelasinospora + 
Melanosporaceae (HdV-55B) = 25,659 spores/cm3 (= 
27,009 spores/g) 
NPPs of unknown ecology: 
UR-1 = 15,235 spores/cm3 (=16,037 spores/g); UR-2 = 
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10,424 spores/cm3 (= 10,973 spores/g) 

Sample 7 Ø  
Sample 8 Largely coprophilous fungi: 

Sporormiella-type = 47 spores/cm3 (= 82 spores/g) 
Dominant 
copr. taxon: 
Sporormiella- 
type 

Occasionally coprophilous fungi: 
Coniochaeta = 24 spores/cm3 (= 41 spores/g) 

Sample 9 Largely coprophilous fungi: 
Podospora-type + Sordaria-type + Sporormiella-type = 
594 spores/cm3 (= 1266 spores/g) 

 
 
Dominant 
copr. Taxon: 
Sordaria-type 
 

Occasionally coprophilous fungi: 
Chaetomium = 54 spores/cm3 (= 116 spores/g) 
NPPs of unknown ecology: 
UR-2 = 216 spores/cm3 (= 460 spores/g) 

Sample 
10 

Largely coprophilous fungi: 
Arnium-type + Sordaria fimicola-type + Sordaria-type + 
Sporormiella-type = 2770 spores/cm3 (= 6440 spores/g) 

 
 
Dominant 
copr. Taxon: 
Sordaria-type 
 

Occasionally coprophilous fungi: 
Chaetomium + Cercophora-type + Coniochaeta + 
Gelasinospora + Sphaerodes = 1133 spores/cm3 (= 2634 
spores/g) 

Sample 
11 

Largely coprophilous fungi: 
Sordaria-type + Sporormiella-type = 6444 spores/cm3 (= 
5461 spores/g) 

 
Dominant 
copr. Taxon: 
Cercophora-
type and 
Sporormiella-
type 

Occasionally coprophilous fungi: 
Apiosordaria verruculosa2 + Ascodesmis + Chaetomium + 
Cercophora-type + Neurospora + Thermomyces stellatus 
= 14,499 spores/cm3 (= 12,287 spores/g) 

 
 
 
Sample 
12 

Largely coprophilous fungi: 
Arnium-type + Sordaria-type + Sporormiella-type = 
71,478 spores/cm3 (= 72,200 spores/g) 

 
 
 
Dominant 
copr. taxon: 

Occasionally coprophilous fungi: 
Chaetomium + Melanosporaceae (HdV-55B)+ 
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Thermomyces stellatus = 92,327 spores/cm3 (= 93,260 
spores/g) 

Thermomyces 
stellatus 

NPPs of unknown ecology: 
HdV-708 = 5956 spores/cm3 (= 6016 spores/g) 

 
 
Sample 
13 

Largely coprophilous fungi: 
Arnium-type + Sordaria-type + Sporormiella-type = 9078 
spores/cm3 (= 9657 spores/g) 

 
Dominant 
copr. taxon: 
Apiosordaria-
type 

Occasionally coprophilous fungi: 
Apiosordaria-type + Chaetomium + Gelasinospora = 5380 
spores/cm3 (= 5723 spores/g) 
NPPs of unknown ecology: 
 UR-2 = 1345 spores/cm3 (= 1431 spores/g) 

 
 
 
Sample 
14 

Largely coprophilous fungi: 
Arnium-type + Delitschia + Sordaria-type + Sporormiella-
type + = 48,040 spores/cm3 (= 51,106 spores/g) 

 
 
Dominant 
copr. taxon: 
Sporormiella-
type. 
 

Occasionally coprophilous fungi: 
Apiosordaria-type = 906 spores/cm3 (= 964 spores/g) 
NPPs of unknown ecology: 
 UR-2 = 13,596 spores/cm3 (= 14,464 spores/g) 

Sample 
15 

NPPs of unknown ecology: 
 UR-2 = 2,062,080 spores/cm3 (= 4,482,782 spores/g) 

 

Sample 
16 

NPPs of unknown ecology: 
 UR-2 = 908,604 spores/cm3 (= 663,214 spores/g); UR-68 
= 1,051,661 spores/cm3 (= 767,636 spores/g) 

 

Sample 
17 

NPPs of unknown ecology: 
 UR-2 = 1208 spores/cm3 (= 3265 spores/g); UR-69 = 
2819 spores/cm3 (= 7619 spores/g); UR-71 = 151,031 
spores/cm3 (= 408,192 spores/g) 

 

Sample 
18 

NPPs of unknown ecology: 
 UR-69 = 71,242 spores/cm3 (= 229,813 spores/g) 
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Sample 
19 

Largely coprophilous fungi: 
Sordaria fimicola-type = 239 spores/cm3 (= 412 spores/g) 

 
 
Dominant 
copr. taxon: 
Thermomyces 
stellatus 

Occasionally coprophilous fungi: 
Thermomyces stellatus = 477 spores/cm3 (= 822 spores/g) 
NPPs of unknown ecology: 
UR-69 = 32,220 spores/cm3 (= 55,552 spores/g); UR-71 = 
9785 spores/cm3 (= 16,871 spores/g) 

 
 
Sample 
20 

Largely coprophilous fungi: 
Sporormiella-type = 1158 spores/cm3 (= 2068 spores/g) 

 
Dominant 
copr. taxon: 
Sporormiella-
type 

NPPs of unknown ecology: 
HdV-708 = 235,119 spores/cm3 (= 419,855 spores/g); UR-
2 = 16,215 spores/cm3 (= 28,955 spores/g) 

 
 
 
 
Sample 
21 

Largely coprophilous fungi: 
Sordaria-type = 1017 spores/cm3 (= 3390 spores/g) 

 
 
Dominant 
copr. taxon: 
Sordaria-type 
and 
Thermomyces 
stellatus 

Occasionally coprophilous fungi: 
Thermomyces stellatus = 1017 spores/cm3 (= 3390 
spores/g) 
NPPs of unknown ecology: 
HdV-708 = 113,957 spores/cm3 (= 379,858 spores/g); UR-
69 = 5087 spores/cm3 (= 19,956 spores/g); UR-71 = 
294,049 spores/cm3 (= 980,163 spores/g) 

 
 
 
 
Sample 
22 

Largely coprophilous fungi: 
Sporormiella-type = 2156 spores/cm3 (= 1373 spores/g) 

 
 
Dominant 
copr. taxon: 
Sporormiella-
type. 

NPPs of unknown ecology:  
HdV-708 = 143,779 spores/cm3 (= 91,578 spores/g); 
UR-2 = 2865 spores/cm3 (= 1825 spores/g); UR-70 = 
46,000 spores/cm3 (= 29,299 spores/g); UR-71 = 22,285 
spores/cm3 (= 14,194 spores/g) 

 
 
 

Largely coprophilous fungi: 
Sordaria-type + Sporormiella-type = 18,762 spores/cm3 (= 
30,757 spores/g) 
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Sample 
23 

Occasionally coprophilous fungi: 
 Apiosordaria-type + Chaetomium = 4170 spores/cm3 (= 
6836 spores/g) 

Dominant 
copr. taxon: 
Sporormiella-
type. 
 

NPPs of unknown ecology:  
HdV-708 = 164,699 spores/cm3 (= 269,998 spores/g); UR-
2 = 14,593 spores/cm3 (= 23,923 spores/g); UR-71 = 
179,292 spores/cm3 (= 293,922 spores/g) 

 
 
 
 
 
Sample 
24 

Largely coprophilous fungi: 
Sporormiella-type = 111,189 spores/cm3 (= 150,255 
spores/g) 

 
 
 
Dominant 
copr. taxon: 
Sporormiella-
type 

Occasionally coprophilous fungi: 
Apiosordaria-type = 13,899 spores/cm3 (= 18,782 
spores/g) 
NPPs of unknown ecology:  
HdV-708 = 48,645 spores/cm3 (= 65,736 spores/g); UR-2 
=17,373 spores/cm3 (= 23,477 spores/g); UR-70 = 97,290 
spores/cm3 (= 131,473 spores/g); UR-71 = 535,098 
spores/cm3 (= 723,105 spores/g) 

Sample 
25 

NPPs of unknown ecology:  
UR-2 = 8736 spores/cm3 (= 15,600 spores/g) 

 
 
Sample 
26 

Largely coprophilous fungi: 
Sordaria-type + Sporormiella-type = 1303 spores/cm3 (= 
1760 spores/g) 

 
Dominant 
copr. taxon: 
Sordaria-type NPPs of unknown ecology:  

UR-2 = 29,969 spores/cm3 (40,499 spores/g) 
 
 
 
 
 
Sample 
27 

 
a 
(outer 
surface) 

Largely coprophilous fungi: 
Sordaria fimicola-type + Sordaria-type = 
602 spores/cm3 (= 463 spores/g) 

 
Dominant 
copr. taxon: 
Sordaria-type Occasionally coprophilous fungi: 

Apiosordaria-type + Chaetomium = 602 
spores/cm3 (= 463 spores/g) 

 
b (inner 

Largely coprophilous fungi: 
Sordaria-type = 3912 spores/cm3 (= 5588 

 
Dominant 
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part) spores/g) copr. taxon: 
Sordaria-type Occasionally coprophilous fungi: 

Cercophora-type = 1956 spores/cm3 (= 
2794 spores/g) 

 
Sample 
28 

Largely coprophilous fungi: 
Delitschia + Podospora-type + Sordaria-type + 
Sporormiella-type = 150,676 spores/cm3 (= 289,761 
spores/g) 

Dominant 
copr. taxon: 
Sporormiella-
type 

1Given the sampling contexts, it is highly likely that most of the occasionally coprophilous taxa recovered in 
the analysis actually represent coprophilous species. 
2Apiosordaria verruculosa (HdV-169, verrucate gelatinous sheath, sensu Aptroot and van Geel, 2006) was 
maintained distinct from Apiosordaria-type (UG-1171, smooth gelatinous sheath, sensu Gelorini et al., 
2011). 
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Table 5.2. Total sums of spores of obligate and occasionally coprophilous fungi per unit of 
volume (cm3) and unit of weight (g), divided by site types. 
 
Site type 
 
 
 

 
Sample 
no. 

Tot. obligate + 
occasionally coprophilous 
spores no. per cm3 

Tot. obligate + 
occasionally coprophilous 
spores no. per gram 

 
 
Roofed  
stables 

1 0 0 
2 116 464 
3 514 1048 
4 4833 19,332 
5 16,620 63,923 
6 114,663 120,698 

 
 
Outdoor  
corrals 

7 0 0 
8 71 123 
9 649 1382 
10 3903 9074 
11 20,943 17,748 
12 163,805 165,460 

Larger grazing 
areas 

13 14,458 15,380 
14 48,946 52,070 

 
 
 
 
Large dung  
heaps 

15 0 0 
16 0 0 
17 0 0 
18 0 0 
19 716 1234 
20 1158 2068 
21 2034 6780 
22 2156 1373 
23 22,932 37,593 
24 125,088 169,037 

 
 
Individual 
droppings 

25 0 0 
26 1303 1760 
27a1 1204 926 
27b 5868 8382 
28 150,676 289,761 

1The inverse proportion between number of spores per cm3 and per gram in the two subsamples is due to the 
slightly heavier weight of the coprolite surface (27a, 1cm3 = 1.3g) relative to its inner part (27b, 1cm3 = 0.7g).  
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Table 5.4. Arma delle Manie: total sums of spores of obligate and occasionally 
coprophilous fungi per unit of volume (cm3) and unit of weight (g). 
 
 
Unit 
 
 

 
Depth 
(cm) 

 
Tot. obligate + 
occasionally coprophilous 
spores no. per cm3 

 
Tot. obligate + 
occasionally coprophilous 
spores no. per gram 

  0-1 67,189 35,930 
  4-5 5072 3093 
1  8-9 4810 2672 
  12-13 3193 2365 
  16-17 128 72 
2  17-18 3537 1987 
  24-25 0 0 
3  32-33 0 0 
  40-41 0 0  

 
Table 5.3. Eggs of intestinal parasites per unit of volume (cm3) and unit of weight (g). 
Sample no.  Parasite eggs  
 Trichuris sp. Ascaris sp. Dicrocoelium sp. 
 no. per cm3 no. per g no. per cm3 no. per g no. per cm3 no. per g 
3 77 158 0 0 0 0 
10 0 0 0 0 169 292 
A. Manie  
(depth in cm) 

      

0-1 153 82 77 41 39 21 
4-5 0 0 90 55 0 0 
8-9 124 69 101 56 25 14 
12-13 49 36 16 12 0 0 
16-17 0 0 0 0 0 0 
17-18 64 36 0 0 0 0 
N.B.: Although in modern industrial farms the use of pesticides would highly affect the data, this is probably not 
the case of Samples 3 and 10, taken from a traditional private farming context, as well as the samples from the 
rock shelter of Arma delle Manie. 



Figure 5.3. Arma della Manie: diagram showing the abundance of dung spores (10x exaggeration factor applied to the total coprophilous sum), probable aquatic

microfossils and eggs of intestinal parasites (values expressed as microfossil no./g), the amount of total phosphorus (ppm), the concentration of faecal spherulites and

coccolith plates (no./mg), as well as the alkalinity of the sediments. Ecological grouping according to Krug et al. 2004.
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5.2.2 Analysis of faecal spherulites 

 

Spherulite abundance per mg ranged from zero counts to a maximum of 240 particles 

(uppermost unit). Although Canti (1998) identified several types of spherulites, the 

elements observed here seem to broadly fall into two categories, as noted by 

Korstanje (2004): larger (c. 10-15µm) and slightly yellowish particles showing bands 

of interference colours (type A; fig. 5.4A), and smaller (c. 5µm) whiter particles, 

occasionally showing a basketball-like/dumbbell-like appearance upon rotation (type 

B; figs. 5.4B and 5.4C). During the analysis, 

the presence of calcareous nannoplankton 

was also noted (fig. 5.4D), and the number 

of coccolith plates (often closely resembling 

faecal spherulites: Canti 1998) quantified. 

Spherulites and coccolith plates are clearly 

concentrated in different parts of the 

deposits, the former being numerous mostly 

in the upper levels and the latter in the 

lower levels. This suggests that they were 

correctly separated during identification 

and are the products of different formation 

processes. 

 

 

5.2.3 Total phosphorus analysis 

 

A higher content of Ptot was measured from Units 1 and 2 (c. 2000-1600 ppm), whilst 

values sharply decrease in Unit 3 (c. 1200-900 ppm) (fig. 5.3). 

 

 

 

 

 

 

 

Figure 5.4. Types of faecal spherulites (A-B-

C). Figure D shows a coccolith plate 

(calcareous nannoplankton). Scale bar = 

10μm. 
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5.3 Discussion 

 

5.3.1 Differential taphonomy, differential abundance of dung spores 

 

As shown, coprophilous spores are not always necessarily recovered within dung 

samples (Samples 15, 16, 17, 18, 25). Their presence therefore strictly depends upon 

successful sporulation and dispersal, and the absence of spores cannot be taken as a 

certain evidence for the absence of herbivores. 

There seems to be a relationship between periods of limited soil disturbance and 

higher values of dung spores. The structures used only for some months a year 

(Samples 6 and 10), show higher concentrations compared to the places where 

animals are corralled continuously. This is particularly evident in the case of Samples 

1 and 7, taken from a stable floor and an outdoor corral. Similarly, the sheep 

enclosures regularly used to keep all of the specimens overnight have yielded low 

values (Sample 8), and almost equally negligible is the concentration in Sample 2 

from another stable floor. Presumably, as dung fungal spores need a certain amount 

of time and the appropriate degree of aeration to colonise fresh substrates (Wicklow 

1992), continuous soil disturbance may impede successful fungal colonisation and 

prevent fungi from growing and releasing high numbers of spores, and repeated 

remixing and compaction of dung are likely to be factors responsible for their 

absence. 

In stabling sequences from caves, the occurrence of sporadic peaks in dung spores 

only in certain samples (Expósito and Burjachs 2016) may reflect such conditions and 

not only burning-caused destruction, with spore-rich layers being an indication of 

episodes during which the herd was taken away leaving the surface undisturbed, at 

least for a period long enough to allow fungal growth and spore dispersal. According 

to mycological studies, this period can be quantified from 3 to 30 days, depending on 

the coprophilous species (Harper and Webster 1964; Richardson 2002). This 

information would be precious to shed light on the farming practices adopted by 

early farmers.  

Rapid burial of pellets under fresh dung before sporulation takes place may be a 

further cause of zero counts from dung heaps and stabling layers. As spores would be 

dispersed mainly on the surface of dung pats and droppings, the rapid accumulation 

of thick layers may cause anaerobic conditions across the deposit and impede 
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sporulation, resulting in spore-free horizons. However, to assess this effect the 

surface and the inner part of sheep droppings were subsampled and processed 

separately, with the core of the droppings being richer in coprophilous spores 

(Samples 27a and 27b). 

It is possible that Samples 10 and 11 represent an intermediate condition, where soil 

disturbance occurs only to some extent, preventing a peak in dung spores but 

allowing the recovery of between c. 4000-20,000 spores per cm3. High values from 

Sample 12 may instead be due to the goats’ preference for resting mainly in the 

sheltered area, resulting in a relatively low disturbance of the remaining part of the 

enclosure.  

The analysis has also provided somehow unexpected data. First, a remarkable 

diversity in spore concentration and dominant coprophilous taxa has emerged, even 

on a small (a few tens of metres) and very small scale (less than 3m). This is shown by 

Samples 18-19-21 and 23-24, all located within the same area but characterised by 

highly different values and different dominant taxa. The data indicate the importance 

of locally growing and sporulating fungi, in spite of the fact that the same cows and 

horses, fed with the same feed, provided the substrates. 

A few unidentified as well as already known microfossils have been found to be 

strongly associated with herbivore dung (HdV-708, UR-2, UR-68, UR-69, UR-70, UR-

71) (fig. 5.7). The newly identified NPP types may be further reliable indicators of 

grazing pressure, as they occurred in exceptionally high concentrations in samples 

from dung heaps and stable floors. Therefore, further research on non-coprophilous 

but potentially pasture-related NPPs seems promising, as is suggested by other 

studies (Revelles et al. 2016; van den Bos et al. 2014). 

It is worth noting that there is some degree of consistency between the values 

recovered from the 28 samples analysed, with the total coprophilous concentration 

comprising between a minimum of 0 and a maximum of c. 160,000 spores per cm3. 

Occasionally, similar contexts from different sites have also produced comparable 

results (e.g. Sample 11-13, 21-22). Extremely high values, such as those recorded in 

the case of UR-2, UR-68 and UR-71 in Samples 2, 4, 15, 16 and 24, never occur in the 

coprophilous record. 

Canonical Correspondence Analysis (CCA) was used to plot the data, assessing the 

occurrence of groups of samples or NPP assemblages sharing affinities. Furthermore, 

this method is suitable to check the influence of abiotic variables on biotic variables. 
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In this case, three environmental variables, corresponding to different degrees of 

surface disturbance, were inserted in the dataset: low, moderate and high continuity 

of surface disturbance (CSD). 

Following CCA, a discrete group of samples appears to be correlated with high CSD 

and characterised by the abundance of the microfossil type UR-2 (fig. 5.5). On the 

other hand, although some of the other taxa form small clusters, they are distributed 

over a large portion of the graph. It is possible that this is an effect of differential 

resiliency of fungal species to animal trampling or other environmental variables 

(e.g., moisture, temperature), as well as an effect of differences in the length of the 

period necessary for spore production and dispersal (Richardson 2002). Clustering of 

rare taxa (e.g. Neurospora and Sphaerodes) result from their presence only in a few 

samples, and therefore no reliable inferences can be drawn about them. 

Although low concentrations of coprophilous taxa can occasionally occur in samples 

correlated with moderate and low CSD, it seems significant that none of the samples 

with high dung spore concentrations (black, green and violet dots, fig. 5.6) show 

correlations with high CSD. This supports the empirical observation that animal 

trampling constitutes a factor in determining the ability of coprophilous taxa to 

produce and disperse spores. 
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Figure 5.5. NPP types from modern samples: CCA plot. Eigenvalue for axis 1 is 0.48, 
eigenvalue for axis 2 is 0.31. The cluster of taxa around Y -1.50 is formed by Cercophora, 
Sphaerodes, Neurospora, UR-68, UR-69, UR-70 and UR-71. 
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Figure 5.6. Modern samples: CCA plot. Eigenvalue for axis 1 is 0.48, eigenvalue for axis 2 is 
0.31. Dark red dots = 0-1000 spores/cm3; grey dots = 1000-5000 spores/cm3; violet dots = 
5000-25,000 spores/cm3; green dots = 25,000-1000,000 spores/cm3; black dots = 100,000-
150,000 spores/cm3. 
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Figure 5.7. Microfossils of unknown origin and ecology (composite images showing high and 

low focus) and conidiospores of Thermomyces stellatus (micrographs and graphic 

representation to better show the features of its irregularly shaped spores). HdV-708: 

globose, 1-2 pores, psilate, reddish-brown, often in a series or two or more cells. Newly 

described types: UR-2: globose, with short protuberances densely distributed across the 

surface, yellowish-brown; UR-68: globose, thick-walled, psilate, yellowish-brown; UR-69: 

globose to ovoid, psilate, hyaline; UR-70: globose, 8-10 protruding pores, psilate, hyaline; UR-

71: more irregular than UR-70, wrinkled, double-walled, with internal membrane forming 8-

10 pores by piercing the external wall, psilate, hyaline. T. stellatus: very irregularly shaped, 4-

8 rounded projections, no proper pores but thinner walls at the end of the projections, 

psilate, reddish-brown. Scale bars = 10μm. 
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5.3.2 Thermophilic fungi: ecology and future research potential 

 

The study represents a rare recorded case of thermophilic fungi. This small 

assemblage of Eukaryota is virtually absent in the extant literature on non-pollen 

palynomorphs, where so far they have only been briefly mentioned twice 

(Hawksworth et al. 2016; Ivanova and Marfenina 2015). The ecology of these 

organisms is very specific, as they necessitate elevated temperatures in order to 

thrive, normally between 20°C and 40°C, with optimal growth around 50°C-60°C in a 

humid and aerobic environment (Mouchacca 1999; Salar and Aneja 2007). This is the 

first record of the thermophilic fungus Thermomyces stellatus (Bunce) Apinis 

(Ascomycota: Eurotiomycetes: Eurotiales) from a sedimentary context. This species 

was unknown to biologists until 1961, when it was first described by Bunce (1961) as 

a member of the genus Humicola, and subsequently assigned to the genus 

Thermomyces by Apinis (1963). 

T. stellatus finds its most suitable habitat on hay, although it has also been isolated 

from dung (Sreelatha et al. 2013). Its strong association with hay and capability of 

growing on dung leave little doubt about the correctness of the identification. Its 

presence within sedimentary sequences testifies to a warm microclimate on or within 

the colonised substrate, as well as providing a substantial contribution to the issue of 

the archaeological visibility of hay (Hodgson et al. 1999), given its strong preference 

for this host. Arguably, T. stellatus may even enable distinction between spontaneous 

bacteria-driven combustion of hay and manure (Browne 1929; Firth and Stuckey 

1947; Woodward 2004) and deliberate dung burning in archaeological pastoral 

deposits (Brochier et al. 1992; Vergès et al. 2016), as in the latter case temperatures 

would rise more abruptly, without allowing thermophilic taxa to grow and release 

spores. Temperatures suitable for thermophilic fungi would occur for sufficient time 

afterwards during the slow cooling process (Vergès et al. 2016), but at this point 

fungal organisms would have been destroyed by previous high temperatures. On the 

contrary, in self-combustion temperatures rise progressively over a prolonged 

period, providing an optimal microclimate for heat-loving species, as even two 

months may pass before the deposit catches fire (Musselman 1935; Rothbaum 1963). 

Chitin-composed fungal spores (Ruiz-Herrera 1991) are effectively resilient, and can 

be successfully recovered also from layers of burnt dung (Expósito and Burjachs 

2016; Morandi 2016). 
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T. stellatus is named after the morphology of its small (ø 7-10μm) conidia, presenting 

from four to eight rounded projections (fig. 5.7). These conidiospores should not be 

mistaken for the triangular spores of Chaetomium trigonosporum (Doveri 2008; Torri, 

2010: pl. 7, fig. 1) or the more rounded conidia of Arhtrinium puccinioides (Ellis 1971: 

573). Also the microfossil type HdV-365 reported by van Geel et al. (1981), in spite of 

its similar morphology, is by far too large to be T. stellatus, and cannot even represent 

Humicola stellata var. gigantea (Khanna 1963). This latter name is misleading and 

clearly derives from a misidentification of hyphopodia of Gaeumannomyces graminis 

(Walker 1972), rather than of aleuriospores of Arthrinium pterospermum (Mouchacca 

2000). However, the microfossil identified as type 365 by Shumilovskikh et al. (2015: 

fig. 5J) may actually represents spores of T. stellatus, in view of its low number of 

projections relative to spores of Inocybe sp., although its size seems slightly larger. 

Thermophilic fungi have also been reported from lakes (Tubaki et al. 1974), 

suggesting that palaeoecological research could greatly benefit from their 

identification. In particular, some genera (e.g. Humicola, Rhizopus, Thermomyces) 

include species producing morphologically distinct spores, that would reliably 

indicate the occurrence of elevated temperatures near the site, at least for a period 

long enough to enable fungal growth and sporulation (Ellis D.H. 1981; Ellis M.B. 1971: 

59; Hawksworth et al. 2016). 

 

 

5.3.3 Dung spores from a stratified deposit: application of the method to a recent 

pastoral site 

 

The rock shelter of Arma delle Manie has proven very rich in dung spores in its top 

18cm (fig. 5.8), the spore concentration being remarkably consistent with the 

modern dataset (table 5.4). The profile was macroscopically divided into three 

different units, each characterised by a different texture and colour (fig. 5.3, see also 

Chapter 2, fig. 2.9). A sharp stratification, although commonly formed by black and 

pale layers, is typical of Mediterranean pastoral cave deposits since Neolithic times 

(Angelucci et al. 2009; Brochier et al. 1992). All of the coprophilous-rich levels are 

located in the thick uppermost layer (Unit 1) and in the thin underlying layer (Unit 2). 

The difference in abundance between Units 1-2 and Unit 3 is striking, the latter being 

totally devoid of dung spores (fig. 5.3). It is highly likely that the two upper units 
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represent decomposed and partially mineralised compacted dung layers, directly 

accumulated above the natural calcareous topsoil. Such a sharp difference in 

microfossil composition clearly shows the validity of dung spore analysis as a further 

method to identify ancient animal enclosures, along with other well-established 

indicators (Shahack-Gross 2011; Shahack-Gross et al. 2003, 2008). 

 

 

 

 

 

 

 

Figure 5.8. Arma delle Manie: selection of non-pollen microfossils. Spores of fungal taxa 

obligately or occasionally coprophilous: A. Hypocopra; B. Rhytidospora; C. Podospora-type;  

D. Apiosordaria-type; E. Probable spore of Trichodelitschia; F. Chaetomium elatum-type 

(thick-walled); G. Chaetomium bostrychodes-type (thin-walled); H. Podospora inequalis-type;  

I. Sporormiella-type; J. Coniochaeta lignaria-type. Scale bars = 10μm. Eggs of intestinal 

parasites: K. Trichuris sp.; L. Ascaris sp. (high and low focus); M. Dicrocoelium sp. Scale bar = 

40μm. 
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In the absence of micromorphological data, it is difficult to better specify the 

formation processes for the sequence, as it slightly differs from the typical fumier 

deposits showing several burnt layers and ash lenses (Angelucci et al. 2009; Brochier 

et al. 1992). However, Unit 2 has a very ashy texture and colour, and burnt units are 

located in other areas of the shelter which were not excavated. 

Among the aspects touched on by Brochier et al. (1992), the finding of aquatic 

indicators in pastoral sequences is one of particular interest. The authors stress the 

presence of diatoms in fumiers and grazed areas, suggesting a relationship between 

the places used to water the herd and aquatic microfossils. Micromorphology has also 

provided some examples of diatoms within coprolites, which probably derived from 

the water drunk (Banerjea et al. 2015; Macphail and Goldberg 2010). With a few 

exceptions (Arcella tests mentioned in van Geel et al. 2003) the subject has been 

either mostly neglected, or when evidence was found no links have been mentioned 

between algal remains and the water ingested by animals (Expósito and Burjachs 

2016). 

In fact, the topic appears to be relevant as there are often no clues as to the off-site 

locations where the flocks were grazed or water brought from. Future developments 

seem possible, as aquatic indicators of animal and possibly algal origin were present 

in modern samples (fig. 5.9), as shown in table 5.5 (on the debated biological 

identity of Pseudoschizaea see Grenfell (1995), Scott (1992) and Milanesi et al. 

(2006)). Although these components were recorded in limited amounts, they may 

contribute to widening the knowledge of animal management. 

Faecal spherulites have so far mostly been considered only in soil thin section studies, 

and little attention has been paid to their use as proxies for herbivore presence in 

other contexts. With the exception of a pioneering article by Canti (1999), only a  

Figure 5.9. A. Chironomidae; B. Arcella sp. (Testacea); C. Cyst of Pseudoschizaea.  

Scale bars = 40μm. 
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handful of works have tried to quantify in terms of absolute frequency the amount of 

spherulites in dung layers, counting them along with phytoliths (Portillo and Albert 

2011; Portillo et al. 2009, 2010, 2011). Their results are summarised in Table 5.6. 

 

  

Table 5.6. Spherulite counts obtained in previous studies (samples with zero counts have 

been excluded) and results obtained from the abandoned rock shelter of Arma delle Manie 

(this study). 

 

Reference 

Number of spherulites per mg of sediment 

Min. Max. Average 

Canti, 1999 unknown c. 107,500 c. 7960 

Portillo and Albert, 2011 

 

13 846 182 

Portillo et al., 2009 16 175 52 

Portillo et al., 2010 

 

8 1638 125 

Portillo et al., 2011 515 1065 790 

Arma delle Manie 7 240 56 
N.B.: Values were converted into number per mg from the original units used in the papers: µg (Canti, 1999), 

and g (Portillo and Albert, 2011; Portillo et al., 2009, 2010, 2011). For Canti, 1999 (studying fresh dung) 

only the samples from herbivore species were considered. 

 

 

Table 5.5. Elements of certain and probable aquatic origin recovered in the samples. 

Sample no.  Aquatic organisms  

 Chironomidae  Arcella sp. Pseudoschizaea 

6 x   

13 x   

14 x   

17  x  

20  x  

27b (inner part)  x  

A. Manie 

(depth in cm) 

   

4-5 x   

8-9   x 

12-13   x 

16-17   x 
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Quantitatively, the data presented here display a remarkable similarity with the 

values reported by Portillo et al. (2009). The results show a very clear match between 

dung spores and spherulites, indicating an obvious difference in composition for 

Units 1 and 2, most likely consisting of herbivore dung. Both proxies are correlated 

with the values of total phosphorus measured throughout the profile, supporting an 

organic origin for Units 1 and 2. It is worth noting that spherulites also closely reflect 

the two declines in dung spores occurring between 0 and -4cm and between -12 and -

16cm, as well as the small rise at -17cm (table 5.4; fig. 5.3). It is more challenging to 

explain for which reason, unlike coprophilous spores, they follow an increasing trend 

from -4 to -12cm. 

The complexity of factors governing spherulite abundance and preservation has long 

been highlighted (Canti 1999). First, a possible explanation for variations deals with 

the animals responsible for dung deposition, as sheep are known to be large 

spherulite producers, whilst bovine tend to be slightly less productive (Canti 1997, 

1999). This could match the statements gathered from informants on the site, 

according to which sheep were the last animals kept in the shelter, which was 

previously used for cows. Secondly, it has been pointed out that seasonal variations in 

spherulite production may occur (Canti 1999), and this may account for fluctuations 

in the abundances from deposits spanning several decades, where the sampled levels 

correspond to different and unknown periods of the year. Thirdly, albeit minimally, 

spherulites might be subject to some degree of translocation through the profile, 

which seems suggested by very low values of presumably intrusive elements 

recovered from Unit 3. Bioturbation may also have played a role, as spherulites are 

likely to be destroyed following digestion by soil-eating organisms (Canti 1999). 

The pH of the whole profile (fig. 5.3) is ideal for the preservation of spherulites, 

which are attacked and dissolved only when values are lower than 7.7 (Canti 1999). 

Therefore, the higher counts recorded in the two upper units must reflect a real 

difference in herbivore presence, as also indicated by the abundance of dung spores. 
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6. THE CAVE OF ARENE CANDIDE: THE NEOLITHIC SEQUENCE 

 

 

6.1 Geographical setting and archaeology 

 

The cave of Arene Candide is located in western Liguria (Italy), in the territory of 

Finale Ligure, and is regarded as a key site for the prehistory of the central 

Mediterranean, given the richness of its Palaeolithic and Neolithic deposits. The cave, 

extending from the west to the east and measuring c. 70m in length and 10-20m in 

width, lies on Miocene limestone, and at the present day opens on a steep rocky slope 

facing south toward the coast, at 89m asl (figs. 6.1, 6.2, 6.3). It is likely that originally 

high aeolic sand dunes, now removed for modern quarrying, connected the entrance 

of the cave directly to the coast, as shown by an early 20th century photograph 

(Maggi et al. 1997). Following the very first investigations back in the 19th century, 

Figure 6.1. Cave of Arene Candide: map showing the location of the site. 
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the cave was systematically excavated since the 1940s. The site was periodically 

occupied from the Upper Palaeolithic to the Neolithic (both for domestic and funerary 

purposes), with a few traces of later occupations (Maggi et al. 1997). The finely 

stratified Holocene sequence has allowed multiple cross-cultural connections to be 

traced, enabling the creation of a reliable chrono-cultural scheme for the region 

(Bernabò Brea 1956; Maggi 1997; Pessina and Tiné 2008). The Neolithic assemblages 

show the presence of impressed ware (Early Neolithic, 7800-7000 BP), VBQ 1-2 

pottery (squared-mouth culture, Middle Neolithic, 7000-6200 BP), and Chassey 

pottery (Late Neolithic, 6200-5600 BP). 

 

6.2 Results of the pollen analysis 

 

The samples are too distant to allow a 

reliable pollen zonation. However, the 

lower part of the sequence (-220cm/-

150cm) is clearly dominated by pollen 

of Cichorieae (syn. Lactuceae), whose 

percentages decrease quite sharply at 

the depth of 150cm, where a peak in 

Ericaceae and Gramineae occurs (fig. 

Figure 6.2. Cave of Arene Candide. A. Early 20th century photo showing the sand dune 

at the entrance of the cave. B. View of the eastern part of the cave (May 2013). 

Figure 6.3. Cave of Arene Candide: the 
profile sampled for the analysis. Note the 
alternation between burnt and unburnt 
horizons, as typical of Mediterranean 
fumiers. 

A B 
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6.4).  A major rise in Gramineae takes place at -80cm, along with a new peak in 

Cichorieae. The sample at -55cm sees again a rise in Ericaceae and Gramineae, this 

time coupled with Apiaceae. The upper part of the sequence is dominated by 

Cichorieae, with Quercus reaching the highest value. A wide variety of arboreal taxa 

occurs between -150 and -180cm, and the highest percentages of Abies occur in the 

lower part of the deposit. 

 

 

6.3 Interpretation and discussion of the pollen analysis 

 

In our case, the pollen record is very much biased by the following factors: 1) most 

importantly, differential pollen preservation in calcareous soils. It is well known how 

fern spores and certain pollen types (e.g. Polypodium spp. and Cichorieae spp.) are 

highly resilient and can be still identified even when badly corroded or folded 

(Florenzano et al. 2012). On the other hand, a wide range of arboreal and herbaceous 

taxa are strongly underrepresented, and their percentages are not a direct reflection 

of low values in past environments; 2) human activities involving plant collection 

from unknown distances around the site for various purposes, such  as human and 

animal food and fodder; 3) dietary preferences of ovi-caprines and cattle when (if 

ever) freely grazing outside, presumably not very far from the cave. 

It is nonetheless possible to make the most of the data, assessing whether a 

relationship with the current knowledge of coastal palaeoenvironment and 

vegetation changes through time is detectable. It should be taken into account, 

however, that at the moment the chronology of the sampled sequence (study in 

progress) is poor and only a rough periodization can be established on the basis of 

potsherds. 

As stated above, given the issues of pollen taphonomy in caves, it is difficult to 

establish to what extent the record includes airborne pollen grains from distant 

locations. It seems therefore likely that the sporadic presence of Abies pollen 

throughout the whole deposit results from wind transport from higher altitudes. 

Indeed, areas above 1000m asl are found only 10km inland of the site at Piano Corso. 

However, it is tempting to suggest a relationship between the slightly higher 

percentages of Abies pollen at the base of the  sequence  and  the  results  obtained  by  



Figure 6.4. Cave of Arene Candide: pollen and NPP diagram. Values expressed as percentages of the total pollen.  ● = presence.
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Montanari et al. (1998) from a coastal site. These authors have assumed a different 

ecology for A. alba in the Middle Holocene, suggesting that silver fir woods occurred 

even at lower altitudes. If this view is valid, our data may similarly point to a more 

intense silver fir population in the coastal lowlands, although the timing of this event 

still needs to be determined through radiocarbon dates. 

What is more evident from the pollen diagram are the high values of Cichorieae 

(subfamily: Cichorioideae) recorded in almost every level. Pollen grains of 

Cichorioideae are known to be highly resistant to corrosion, and their morphology 

allows indentification even in bad conditions (Florenzano et al. 2012). For this reason, 

Cichorioideae often reach high values in archaeological sites and other poorly 

preserving deposits. A further explanation for high percentages of Cichorioideae lies in 

the presence of pasturelands, so that the pollen type is also considered as a reliable 

grazing marker (Mazier et al. 2009; Kouli et al. 2009). In fact, several authors 

(Florenzano et al. 2015; Lebreton et al. 2010; Mercuri et al. 2010) argue that an 

overrepresentation of Cichorioideae is likely to result from the actual incidence of 

grazing activities rather than from selective deterioration. This view may be partly 

supported by our record, as it appears that there is no relationship between higher 

percentages of Cichorieae and increases in indeterminable (corroded and broken) 

pollen grains. Consistently with the use as a grazing marker, a strong relationship 

between Cichorioideae and open environments has also been proved by previous 

studies (Florenzano and Mercuri 2013; Mercuri et al. 2010; Florenzano et al. 2015). 

Besides, a thorough evaluation of Cichorioideae pollen from modern vegetation 

communities has shown how high values naturally occur in Mediterranean riparian 

environments (Florenzano et al. 2015). 

In light of this, it seems likely that the dominance of Cichorieae at the base and at the top 

of the sequence reflects the actual use of the cave and the abundant presence of animal 

fodder. Cichorieae may thus indictae the presence of pasturelands in the adjacent small 

coastal plains formed by the streams Aquila and Bottassano, or may have been collected 

from riparian habitats along these streams and the flow of the Pora and brought to the 

site as animal feed. An indication of hygrophilous environments, albeit scanty, is indeed 

present in the record in four levels, where low percentages of Alnus, Salix and 

Myriophyllum were found. 
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The second more common taxon in the diagram is represented by pollen of Ericaceae, 

that become dominant at -60 and -160cm. It is again challenging to provide a 

satisfactorily explanation, discriminating between vegetation change in the surrounding 

area and human-collected plants on the site. The use of Erica for animal bedding is well 

known from medieval analogues (Bakels 1988; Webb 1998), and it is highly palatable to 

sheep and cattle (Jáuregui et al. 2009; Osoro et al. 2012). Hence, fodder may have been 

collected from a heather-dominated area for a period of time, leading to a 

predominance upon Cichorieae. Alternatively, the change may reflect the use of a 

different pastureland to which the herd was taken to graze. However, it is expedient to 

remind here that Bellini et al. (2009), have shown the rise of the Erica-dominated 

Mediterranean maquis along northwest Italian coasts during the Middle Holocene. This 

ecosystem would find a suitable environment on the sea-facing rocky slope of the cave, 

and future refinement of the chronology of our sequence will allow assessing a 

relationship between high values of Ericacae and Mediterranean maquis. It is worth 

stressing that there seems to be no relationship between Cichorieae/Erica and higher 

percentages of herbaceous taxa potentially suggesting landscape openings, which 

instead seem to be higher in the middle part of the sequence. On the other hand, the 

only evidence for large grains of possible domestic grass has been recorded at -50cm, 

along with high values of Ericaceae and a peak in Apiaceae. Relatively high proportions 

of Quercus are instead in agreement with the results from the deep cores in the alluvial 

plain of Genoa, where oak woods are likely to have been predominant (Arobba and 

Caramiello 2010; 2014; Arobba et al. 2016). 

The development of the Mediterranen maquis is also supported by the presence of Vitis 

and the sporadic finding of Lavatera, which is a typical salt-tolerant coastal and 

perennial herb (Okusanya 1980). It may be of some interest to mention that its seeds 

are edible, and its use as antirheumatic and antineuralgic is known in the traditional 

medicine of Mediterranean coasts (El Beyrouthy et al. 2008). 

In regard to the fern community, two species of Polypodium (vulgare and interjectum) 

seem to be identifiable on the basis of the spore morphology, both favouring shady and 

humid habitats, probably characterizing the margins of the cave (Bernardello and Girani 

2007). The finding of Ophioglossum is consistent with this environment, as it tends to 

grow on calcareous substrates with shallow soils, among vegetation communities that 

include typical Mediterranean species such as Erica and Euphorbia (Giovannini and 

https://scholar.google.it/citations?user=_MWChDQAAAAJ&hl=it&oi=sra
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Pierini 2006). As the samples come from an archaeological site, it is interesting to stress 

that these fern taxa also have well-known healing properties for various illnesses 

(Bernardello and Girani 2007). 

 

 

6.4 Results of the NPP analysis 

 

The base of the sequence shows relatively high values of Pseudoschizaea, and the 

presence of obligate coprophilous fungi (Sordaria-type) was recorded (fig. 6.4). A peak 

in Glomus occurs at the depth of 210cm, and the sample localised at -180cm is 

characterized by a wide variety of NPP types occurring in very low values. The central 

part of the deposit is poor in microfossils, whereas a notable rise in the unidentified 

type UR-4 occurs at -80cm. The sample at -60cm shows a new rise in Pseudoschizaea 

and Glomus, but the main interest of the sequence lies in the remarkable peaks in 

Sphaerodes cf. fimicola and Cercophora spp. occurring in the uppermost sample, along 

with other potentially coprophilous taxa and a further increase in Glomus and other 

types of unknown ecology. 

 

 

6.5 Interpretation and discussion of the NPP analysis 

 

Being the pollen record of the site highly biased, NPP analysis was attempted in order to 

gain additional information. More than 60 microfossil types were identified. As 

expected, among them coprophilous spores were recorded, consistently with the use of 

this part of the site as a stable as suggested by the banded fumier-like stratigraphy. The 

assemblage is rather rich, and both obligate and occasionally coprophilous taxa are 

present. Consistently with the bone assemblages (Rowley-Conwy 1997), all these 

species are known to grow on sheep, goat and cow dung (Richardson 1972; 2001; 

Doveri 2007). Possible human coprolites (Macphail et al. 1997) cannot have biased the 

species composition, as omnivore dung is almost totally unsuitable to fimicolous genera. 

Low values are likely to be a result of the flock being kept in the cave all year round 

(Rowley-Conwy 1997), consequently leading to continuous trampling and soil 

disturbance inhibiting or severely limiting fungal growth and sporulation. This view 
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seems to gain support also by the analysis of modern surface samples (see below, 

Chapter 6). 

There is a remarkable exception though, allowing more elaborate inferences based on 

the fungal record, as shown by the extremely high percentages reached by two taxa at 

the top of the sequence. Here, Cercophora-type rises up to more than 160% of the pollen 

sum, along with Sphaerodes cf fimicola (more than 70%) (fig. 6.5). The latter belongs to 

a genus including a few species showing a reticulate surface pattern (García et al. 2004). 

One of these, S. fimicola, is often coprophilous, and known from samples of sheep and 

rabbit dung (Richardson 2006; Watling and Richardson 2010). Cercophora spp. colonise 

not only animal dung but also similar substrates such as rotten leaves and grasses. 

This sudden and remarkable peak in dung spores is rather challenging to interpret, but 

a possible explanation may lie in the topsoil conditions at the time the spores were 

deposited and be related to the activities taking place in the area. Mycological data allow 

for a rather precise quantification of the time period required by these species to 

produce and release spores. Spore dispersal and 

fungal growth do not occur earlier than three 

days, and typically require a period between 

three and thirty days according to the species 

(Harper and Webster 1964; Richardson 2002). It 

should then be assumed that fungi were allowed 

to grow in a favourable condition for a minimum 

of a few days, until the reproductive cycle began. 

This implies that ascocarps were able to reach 

maturity producing a high number of spores 

prior to dispersal, or before being squashed by 

hooves. Such a condition points to the absence of soil disturbance, suggesting that 

animal and possibly human trampling was strongly reduced or absent for a period of at 

least three-four days or more. This would be compatible with the – periodical? – 

absence of the flock from the cave for a short period, for reasons unknown (e.g. 

exploitation of nearby resources).  

If the suggested interpretation holds true, we may integrate this picture with the 

commonly accepted formation model for fumier deposits in Mediterranean caves (fig. 

Fig. 6.5. Cave of Arene Candide: 

spore of Sphaerodes cf fimicola. 
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6.6). Following stabling episodes (a), the dung layers are deliberately burnt by the 

shepherds (b), resulting in the typical banded stratigraphy (c). The cycle is repeated, 

and a thick cake-layer sequence builds up (d-e-f). In the proposed view, the flock is then 

carried away (g), leaving the dung undisturbed and causing fungal growth and 

sporulation on the surface (h), which is subsequently buried again by new stabling 

episodes (g), only preserving microscopic evidence of the event. It is noteworthy that 

such event in theory may be extremely short-lived compared to the usual millennial life-

span of fumiérs (Angelucci et al. 2009), but still detectable in the microfossil record. It is 

noteworthy that also Expósito and Burjachs (2016) recorded one level characterised by 

higher values of dung spores from cave deposit in the fumier of El Mirador. This may not 

be a coincidence, and these variations in dung spores may well by a product of ancient 

farming practices, rather than only a result of burning activities. 

As anticipated, although this reconstruction should be better assessed by the ongoing 

geoarchaeological analysis (G. Boschian, in preparation), there is some supporting 

evidence from the modern samples collected from stable floors. On the one hand, these 

data show the viability of coprophilous spores as an evidence of in situ stabling deposits, 

and on the other hand they seem to suggest a relationship between spore abundance 

and reduced trampling (see below, Chapter 6). 

To better illustrate the events leading to the creation of a spore-rich layer, it would be 

helpful to list here the stages following which a dung spore gets incorporated into a 

deposit. In spite of its relevance for the interpretation, this point has never been clearly 

developed in the specific literature. These stages are best represented in the form of 

sketches (fig. 6.7). There are multiple explanations accounting for dung spore dispersal, 

and the one that best suits the context under examination should be selected as the 

most likely. In this particular case, to our current knowledge the occurrence and 

variability of coprophilous spores from a stabling deposit may reflect the following 

situations: 

• continuous/sporadic presence of animals; 

• natural fungal succession on the same dung type; 

• disappearance of a suitable substrate (dung type) for certain species, probably 

caused by a change in the composition of the herbivore population, now 

producing a substrate more suitable to different species; 



129 
 

• the use of a different grazing area where the main species of fimicolus fungi 

differ from the former grazed area. 

Figure 6.6. Model of spore dispersal on stable sediments integrating the accepted model 

of formation of fumier deposits. 
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If the micromorphological analysis will fail to identify evidence for stabling deposits in 

the lower part of the sequence, alternative explanations are possible, such as the 

prevalence of a domestic occupation followed by the use as a stable in the level marked 

by higher concentrations of dung spores. It is well known, however, that faecal 

spherulites do not always preserve successfully (Canti 1997; 1998; 1999), and a 

comprehensive interpretation cannot rely on micromorphology alone (the reports 

presented in Maggi 1997 seem to be very much micromorphology-dependent). 

A variety of other microfossils helps to complement the data from the pollen analysis. 

Unfortunately, many types still lack biological identifications, although their occurrence 

in pollen-rich natural sequences  encourages their use as ecological indicators in the 

near future when their value will be hopefully unveiled (see e.g. HdV-179, found across 

 
Figure 6.7. The life cycle of a dung fungal spore. The ingestion by a herbivore is a 
necessary stage to trigger germination. 
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many sites in northern and southern Europe: Carrión et al. 2000). A few types are 

instead identifiable at least to the genus level, and some of them were never reported 

before in the palaeoecological literature. 

A large uniseptate and constricted spore represents Zopfia rhizophila. It is of some 

interest that the species, as well as being parasitic on other taxa, is associated with 

edible plants such as Asparagus (Ellis and Ellis 1985; Shumilovskikh et al. 2015). These 

taxa do not occur in the pollen record or may have not been preserved, but are still 

detectable through their specific and more resilient fungal parasite. Similarly, a few 

types (UR-21, UR-22) may have been produced by Tuberales (truffle species). 

Deliberate gathering of truffles as a source of food in prehistory has been hypothesized 

in other cultural contexts (Horrocks et al. 2002; 2008; Horrocks 2004; Horrocks and 

Rechtman 2009), and should be taken into account in our case too. Thecaphora seminis-

convolvuli is commonly associated with Calystegia and Convolvulus (Ellis and Ellis 1985), 

whereas a range of generic wood saprobes have also been recorded (Endophragmiella 

spp.). 

Aside from fungal spores, it is worth focusing on the finding of microfossils of aquatic 

origin. Pseudoschizaea was recorded at various levels and a few Zygnema-type spores 

also appear in the sequence. The biological identity of Pseudoschizaea is still a matter of 

debate, although ecological associations and a number of studies point to a relationship 

with shallow and eutrophic basins with still or slowly moving water (Scott 1992; 

Carrión and Navarro 2002). Zygnema-type can instead be confidently ascribed to 

Zygnema spp., a genus of Zygnemataceae inhabiting wet environments such as shallow 

ponds and bogs. 

Three possible scenarios can be advocated to explain the presence of aquatic taxa in a 

dryland archaeological context. First, their occurrence may be an indirect result of 

pastoral activities involving the movement of the flock to a water source nearby, be it 

occasionally or on a regular basis. This would cause the microfossils to be ingested 

along with water and then dispersed on the stable floor following animal urination. On 

the other hand, in this case the presence of aquatic pollen would be expected, although 

this absence can be an artefact of differential pollen preservation (see above). A second 

and similar explanation assumes that water was brought to the cave for the animals by 

the cave inhabitants, avoiding moving the herd, and here possibly stored (perhaps also 

https://scholar.google.co.uk/citations?user=bAlzvfUAAAAJ&hl=en&oi=sra


132 
 

for human use). After being drunk by sheep and cattle, aquatic microfossils would enter 

the archaeological record in the same way through organic wastes. 

An alternative scenario contemplates a local origin for the enigmatic NPP known by 

most authors as Pseudoschizaea. The origin of this organism is not entirely clear as yet, 

and a few palynological studies have stressed their occurrence in other cave deposits 

(Arobba and Caramiello 2009). Moreover, this autochthony hypothesis is in agreement 

with the microfossil record from a 19-20th century stable floor from a rock shelter (see 

below, Chapter 6), where Pseudoschizaea was identified even in the uppermost levels  

(unfortunately, a detailed knowledge of water provision on the site is missing, in spite of 

the oral accounts gathered). It seems therefore plausible that small temporary pools 

formed in caves (e.g. due to rock dripping) may provide a favourable habitat for algal 

forms, that then undergo encystment as a surving strategy following desiccation (on the 

process of cyst formation and its causes see Sandgren 1983; Blackburn and Parker 

2005). The scanty values for Zygnemataceae may follow the same explanation. This 

view would also account for the absence of aquatic pollen. Although this latter condition 

might indeed be a result of poor preservation, spores of aquatic ferns (e.g. Thelypteris 

palustris), normally more resilient, are missing too, supporting the autochthony of the 

algal organisms in our sequence. As an analogue, one might cite the case of blue-green 

algae (Cyanobacteria), some of whom are known to be living on damp soils of 

Mediterranean caves, such as Chroococcidiopsis spp. (Friedman 1961; 1962). 

Finally, the absence of eggs of intestinal parasites, elsewhere found in prehistoric 

archaeological contexts and natural deposits (see also above, III.1.2), appears worth 

noting and it is somehow unexpected. The data deserves a comment, and a possible 

explanation may lie in the formation of the layer-cake stratigraphy, involving burning at 

high temperatures (Shahack-Gross et al. 2003). Brochier et al. (1992), have collected 

ethnographical information about the practice of burning dung for hygienical purposes 

before the advent of modern veterinary care, thus preventing the spread of animal 

diseases. It is not known to what extent prehistoric shepherds may have been aware of 

this advantage, but they may have accidentally obtained the same result by burning 

manure for other purposes, such as simply to get rid of a large mass of refuse. It may 

have been handier to burn the dung in situ than removing it manually from the cave. It 

has been shown that fire is a very effective means to this end, allowing the dung deposit 

to be reduced by 97% of its volume (Shahack-Gross et al. 2005). However, this also 



133 
 

implies that the dung cannot be used for other purposes, such as field manuring and 

wattle and daub construction. 

A further speculation can be made in light of no parasite eggs. The life cycle of Trichuris 

spp., the most common genus recovered in archaeological samples, involves the 

ingestion of contaminated plants by the potential hosts, prior to egg hatching in the 

intestine (Dark 2004; Morandi, in press). Therefore, when the flock is freely grazing 

outside, the chance of contamination due to the faeces deposited on the soil surface is 

very high. On the contrary, if new feed is brought to the animals a little at a time (e.g. in 

troughs or piled in bales), the risk of contamination may be reduced. 

A relationship between degradation processes and the absence of eggs should also be 

considered. It is known that parasite eggs are made of three or four layers depending on 

the species, namely a lipid layer, a chitinous layer, a vitelline and a uterine layer 

(Appleton and White 1989; Mahmoud 2002). However, the specific composition of the 

chitin layer slightly differs from that of fungal spores (Ruiz-Herrera 1991), and it is has 

been noted that a low proportion of proteins in the polar plugs triggers enzymic attack 

and dissolvence (Perry and Clarke 1982). There is thus still a possibility that chitinous 

eggs may have undergone degradation due to the alkaline nature of the soil (Gray and 

Baxby 1968; Nawani and Kapadnis 2003). 
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7. THE BRONZE AGE HILLFORT OF CASTELLARO DI USCIO 

 

 

7.1 Introduction 

 

7.1.1 Historical, geographical and environmental setting 

 

More than forty years ago, the first excavation conducted on Mt. Borgo led to the 

finding of a hilltop settlement spanning from the Copper Age to the Iron Age. The 

research resulted in a comprehensive monograph (Maggi and Campana 1990) 

enabling a better understanding of the diffusion and function of pre-Roman hilltop 

settlements (Castellari), numerous in Liguria and Piedmont. Sites of this type become 

more frequent during the Middle/Final Bronze Age (1300-900 BC), seem to be 

abandoned in the early Iron Age and tend to be reoccupied in the later Iron Age. In 

Figure 7.1. Castellaro di Uscio: map showing the location of the site. 
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spite of their location 

perched on top of hillocks, 

these settlements do not 

normally show any signs of 

fortification. It is possible 

that the diffusion of 

Castellari relates to the rise 

of a new territorial 

organisation and economy 

during the latest prehistory 

(Tizzoni 1975). 

The site of Uscio lies on a 

limestone formation in eastern Liguria, at the junction between the ridge heading 

inland from the promontory of Portofino and the crests running alongside the coast 

toward Chiavari. Here is Mt. Borgo (732m asl), overlooking the valley of the Lavagna, 

and visually controlling the Gulf of Tigullio and the Gulf of Paradise (figs. 7.1, 7.2, 

7.3). The natural soil on the site consists of an argillic brown earth formed, from top 

to bottom, by an A, A2 (Eb), and Btg horizons (Macphail 1990). 

Along with the excavation, an extensive vegetation survey of the area was carried out 

in the 1980s to better evaluate patterns of landscape modification throughout the 

centuries. At that time the hilltop appeared to be kept clear by local farmers, and 

except for Corylus avellana and Lonicera caprifolium the assemblage was dominated 

by herbaceous taxa and ferns (Brachypodium pinnatum, Bromus erectus, 

Arrhenatherum elatius, Scabiosa 

columbaria, Helianthemum 

mummularium, Pteridium 

aquilinum). The northern, 

southern and northwestern 

slopes were forested, the most 

common trees being Corylus 

avellana and Ostrya carpinifolia, 

and other diffused taxa consisting 

of Acer spp., Castanea sativa, 

Fraxinus ornus, Laburnum 

Figure 7.2. Castellaro di Uscio: the yellow arrow 

indicates the position of the site in relation to the coast 

and the geomorphology of the surrounding territory. 

 

Figure 7.3. View of the Gulf of Tigullio from the site, 

facing south-east. 
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anagyroides, Quercus spp. and Sorbus aria. Alnus glutinosa was recorded only on the 

southern slope near the course of small creeks. Nowadays, due to the end of local 

animal farming, also the excavated area on the hilltop is densely covered in woodland. 

 

 

7.1.2 Previous archaeobotanical and geoarchaeological investigations 

 

Several aspects of the site were examined, including palaeoecology and 

palaeopedology. Charcoal macro-remains have allowed identification of a number of 

tree/shrub taxa (Nisbet 1990). Although up to eleven species in total were recorded, 

during the Final Bronze Age the assemblage was dominated by Quercus pubescens, 

followed by Laburnum anagyroides and Acer sp. (table 7.1). Since only a few species 

reach high percentages, the collection of wood was probably highly selective for 

specific purposes (Nisbet 1990). However, the occurrence of a patchy landscape with 

relatively open and dry areas was suggested on the ground of light-demanding taxa 

such as Juniperus, Pinus and Prunus. The macrofossil record shows instead the 

importance of cereals (Triticum and Hordeum spp.), recovered on the upper terrace 

and in the lower area, and the relevance of legumes and acorn gathering, as shown by 

the amount found in the eastern part of the excavation.  It was suggested that the 

concentration of wheat caryopses on the upper terrace may point to the existence of a 

structure for storing cereals, while acorns may have been collected either for human 

consumption or pig farming (although soil acidity has prevented bone preservation) 

(Nisbet 1990). 

 

Conif. Pin. Junip. Alnus sp Cor. av. Fag. syl. Q. pub. Frax. Fr. or. 

2 1 5 / / 23 57 3 / 

Acer sp Labur. Ost. c. Ost.-Car. Corn.  Prun. Pr.-Sor. Cl. vit. Ind. 

41 56 12 10 / 1 1 1 3 

Table 7.1. Castellaro di Uscio, macro-charcoal remains. Total number of findings from the final 
Bronze Age horizon. Conif. = Coniferae; Pin. = Pinus sp.; Junip. = Juniperus sp.; Cor. av. = Corylus 
avellana; Fag. syl. = Fagus sylvatica; Q. pub.= Quercus cf pubescens; Frax. = Fraxinus sp.; Fr. or. = 
Fraxinus ornus; Labur. = Laburnum cf anagyroides; Ost. c. = Ostrya carpinifolia; Ost.-Car. = Ostrya vel 
Carpinus; Corn. = Cornus sp.; Prun. = Prunus sp.; Pr.-Sor. = Prunus vel Sorbus; Cl. vit. = Clematis vitalba; 
Ind. = Indeterminate. Data re-elaboration from Nisbet 1990. Charred wood of Alnus sp., Corylus 
avellana and Cornus sp. was found only in the Copper Age/early Bronze Age and in the Iron Age. 
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Soil thin sections were made to elucidate formation processes and detect which 

activities had been carried out on the site (Macphail 1990). In the lower area, the 

sterile subsoil beneath the Bronze Age occupation (layer 6F) is likely to be the 

product of colluviation following the erosion of a Bt and A2 horizon, as suggested by 

nodules, papulae and organic matter. On the upper terrace, a similar subsoil was 

found (layer 6K), although this latter appears to be in situ and was interpreted as a 

deforested soil. A pattern of voids resulting from bioturbation in the upper part of 

layer 6K was regarded as a possible evidence for Copper Age cultivation following 

deforestation. The dark overlying Final Bronze Age deposits in the lower area and on 

the upper terrace (layer 3) were taken as indicators of on-site tillage, although this 

explanation was thought to be appropriate especially for the upper terrace, given the 

evidence of a dense domestic occupation in the lower part (potsherds and high values 

of magnetic susceptibility: Macphail 1990). 

 

 

7.1.3 Aims of the new investigation 

 

In view of the high amount of cereal caryopses recovered on the upper terrace 

(Nisbet 1990) and of the possible evidence for on-site tillage suggested by the 

micromorphological report (Macphail et al. 1985; Macphail 1990), the deposit was 

sampled in an attempt to establish whether local cultivation had taken place. The 

study aimed to carry out a palinological analysis of the natural and cultural layers, as 

ancient fields have been successfully identified by means of pollen analysis 

(Kristiansen 1990; Bakels 2000). The slides were scanned for the presence of non-

pollen microfossils in order to identify possible evidence for manuring (e.g. dung 

spores) and irrigation (freshwater algae). 

The study was supplemented by geochemistry (pXRF) to assess the level of P in the 

potential cultivation layer (Oonk et al. 2009; Elliott et al. 2014). The hand-held 

analiser detected the amount of total phosphorus, which includes both, organic P 

(relatively immobile and resistant to dissolution) as well as inorganic P (more Easily 

taken up by plants). All these parameters have been previously used for P analysis in 

geoarchaeology, and both total P and organic P have been shown to be good 

indicators of agricultural use of soils (Leonardi et AL., Holliday and Gartner). 

Although the accuracy of pXRF has been questioned (Shackley 2010; Grave et al. 
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2012), there are studies making use of it to identify the dung components in 

archaeological sites (e.g. Elliot et al.). Moreover, it was originally planned to use the 

hand-held device for in situ analysis of the archaeological deposit. This was not 

possible due to flight restrictions, so that column samples were taken with metal 

boxes, and then analysed with the pXRF. 

The investigation also aimed to use the pollen spectrum to improve the knowledge of 

the environment associated with the occupation of the site, supplementing and 

compensating the picture resulting from macro-charcoal remains (Nisbet 1990). 

Moreover, the late Holocene pollen record of the region largely derives from lake 

sediments at high elevations, whereas terrestrial records are rare (Branch 2013; 

Branch et al. 2014). 

 

 

 

7.2 Results 

7.2.1 Pollen and spore analysis 

 

In both profiles, arboreal pollen prevails only in the recent topsoil (layer 1), whereas 

the lower layers show a wide range of herbaceous taxa (in particular, Scabiosa in the 

upper terrace), the only exceptions being Carpinus (upper terrace) and Alnus (lower 

area). Layer 3 in the lower area is also dominated by trilete spores of Pteridium 

aquilinum. 

Coprophilous spores, eggs of intestinal parasites and aquatic indicators were 

recorded only in layer 1, both in the upper terrace and in the lower area (table 7.2). 

 

Layer Dung 

spores

/g 

Parasite 

eggs 

Aquatics Coproph.  

taxa 

Parasitic 

taxa 

Aquatic taxa 

1U 1611 161 161 Arnium 
Chaetomium 
Gelasinospora 
Sordaria 
Sporormiella 

Dicrocoelium Pseudoschizaea 

1L 2900 0 966 Coniochaeta 
Sporormiella 

/ Arcella 

Table 7.2. Castellaro di Uscio: abundance of coprophilous spores (no./g). 
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7.2.2 Analysis of total phosphorus 

 

The amount of total phosphorus (comprised between 244 and 380ppm) does not 

vary significantly in different layers, the highest values not always being recorded in 

layer 3 (Bronze Age occupation) (table 7.3). 

 

 

Upper 

Terrace 

Ptot Error (1σ) Lower area Ptot Error (1σ) 

Layer 1U 299.78 52.37 Layer 1L 295.43 48.2 

Layer 2U 253.68 52.13 Layer 2L 295.43 58.99 

Layer 3U 327.52 53.34 Layer 3L 380.6 54.98 

Layer 4U 337.81 56.6 Layer 4L 244.68 57.29 

Table 7.3. Castellaro di Uscio: amount of total P from the sampled layers. Values 
expressed as ppm (parts per million). 

 

 

7.3 Interpretation and discussion 

 

Although most pollen studies are conducted on lake sediments, a number of works 

show that terrestrial archives have their own potential for vegetation reconstruction. 

There is now a well-established tradition focusing on samples from cultural layers in 

dryland archaeological sites (Dimbleby 1985; Navarro Camacho et al. 2000; Branch et 

al. 2005; Mercuri et al. 2010; 2014). The results obtained from these contexts cannot 

be straightforwardly employed as a means of palaeoenvironmental reconstruction, 

especially in cases of poor pollen preservation and selective degradation (see above, 

Chapter 4), and when bioturbation is significant (e.g. in brown soils) (Davidson et al. 

1999). According to Dimbleby (1985) pollen grains appear to be mostly locked up in 

humic aggregates, so that only a small fraction is left free to move downwards 

through the profile; moreover, unlike the case of lake sediments, animal-pollinated 

taxa tend to be better represented than wind-pollinated plants (Navarro et al. 2001). 

Davidson et al. (1999) found no evidence for such humic complexes, and using soil 
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micromorphology were able to demonstrate that pollen movements depends on the 

type of soil and the invertebrate population ingesting and transporting grains. 

However, downwashing of pollen was found to be limited (Davidson et al. 1999). 

Bearing these warnings in mind and taking into account that a minority of pollen 

grains may be intrusive, it is possible to fruitfully employ soil pollen analysis to 

dryland cultural layers. 

  

Figure 7.4. Castellaro di Uscio. A: Pollen diagram from the upper terrace. B: Pollen 
diagram from the lower area. Values expressed as percentages of the total pollen. 
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Although the possibility of a mosaic landscape with open areas was mentioned in the 

report on macro-remains, the area of the site was considered to be relatively forested 

throughout all occupation phases (Nisbet 1990). The new pollen spectrum appears to 

bear relevant implications for the reconstruction of the palaeoenvironment of the 

settlement, suggesting an anthropisation stronger than previously thought (fig. 7.4A-

B). 

The pollen content of layer 4U seems to broadly agree with the micropedological 

work, that indicated a deforested soil resulting from pre-Bronze Age clearance. A 

mixed open/wooded condition is suggested by the high values of Scabiosa and 

Carpinus. It is difficult to interpret layer 4L, in which no pollen grains were found. The 

horizon has probably formed through colluviation, and may include eroded materials 

from different horizons (Macphail 1990). 

In light of the previous works, the composition of the dark occupation layers (3U, 3L) 

is particularly significant for the following reasons: 1) the noticeable dominance of 

herbaceous taxa, except for Alnus and Carpinus; 2) the total absence of domestic 

Gramineae, only found in very low percentages in the overlying horizon (2L and 2U); 

3) the total absence or very low values of the most common arboreal taxa recorded in 

the charcoal record; 4) the high percentages of Alnus and Pteridium in layer 4L. 

The value reached by herbs (ca. 60%) is close to what was found elsewhere in cleared 

sites (Mercuri et al. 2013), and 

speaks for a largely open 

environment. The abundance of 

Scabiosa (fig. 7.5) is noteworthy, 

especially when considering that 

its characteristic pollen grains 

have not been frequently 

recorded on other sites (Bottema 

and Woldring 1994; Woldring 

and Bottema 2003). It is likely 

that it results from the local 

presence of the herb on the 

upper terrace, as insect-

pollinated species do not 

disperse their grains over large 

Figure 7.5. Pollen grain of Scabiosa sp. A: polar view 

(scale bar = 20μm). B: equatorial view (scale bar = 

20μm). C-D: details of the surface sculpturing (scale 

bars = 10μm). 
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distances (Navarro et al. 2001). The species is perennial and favours open meadows, 

pastures, and slopes on dry calcareous soils (Grime et al. 1988). Its presence 

(Scabiosa columbaria) was also noted on the site during the vegetation survey before 

the excavation, when the area was kept clear by local farmers (Colella et al. 1990). 

Conversely, the amount of Scabiosa pollen found in the modern surface samples 

(layers 1U-1L) is significantly lower, showing the imcompatibily of the species with a 

close canopy.  

The data also help to clarify the function of the stone terraces built on the site since 

the final Bronze Age. Grass pollen occurs, but no domestic species were recorded 

from this horizon (layer 3U). The scarcity of cereal grains, even from contexts bearing 

unequivocal signs of on-site cultivation (e.g. ard marks) has been stressed before 

(Bakels 2000), and seems explicable in light of the position of the grains which are 

held between the glumes, so that they are only released during threshing (Behre 

1981; Bakels 2000). However, at least a limited amount of grains should be recovered 

(Edwards et al. 2005). Furthermore, in agricultural environments, above-average 

values of weeds and ruderals such as Rumex, Chenopodiaceae, Caryophyllaceae and 

Plantago should be expected (Behre 1981; Dimbleby 1985; Edwards et al. 2005). In 

agreement with the absence of chaff and glume remains in the macrofossil record, it 

can thus be inferred that cereals where cropped and processed at some distance from 

the settlement (e.g. in the valleys), and then brought to the site for consumption and 

storing. This would account for the absence of cereal pollen, as storing of unprocessed 

spikes with pollen trapped in the husks would have probably resulted in a large 

amount of grains incorporated in the deposit (Mercuri et al. 2006). Moreover, 

experiments show that at least a hectare of terrain should be seeded to obtain ca. 

1000/2500 kg of caryopses (Carra et al. 2012). Narrow strips of ground do not seem 

ideal for cereal cultivation, as a relatively large cropped area is necessary in order to 

feed a settlement, albeit small. Once local cultivation is ruled out, the existence on the 

upper terrace of structures for storing seeds suggested by Nisbet (1990) gains 

plausibility. The terraces may then have been built in order to stop soil erosion and 

facilitate the organisation of the domestic space, creating flat surfaces for structures 

and daily activities. 

The pollen diagram also shows the unexpected rarity of the arboreal taxa that 

dominate the charcoal record, these being trees such as Quercus, Laburnum, Acer and 

Fagus (table 7.1). The probable existence of a largely cleared environment has been 
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stressed in relation to the high values of herbaceous taxa from the ancient cultural 

layers, contrasting with the larger amount of arboreal pollen recovered from the 

modern surface samples. With the exception of Carpinus and Alnus, the absence or 

high rarity of tree pollen in the Final Bronze Age raises questions over the extent of 

landscape openness, suggesting that it was not limited to the settled area but 

extended at least to the slopes of the hill. It is indeed singular that not a single pollen 

grain of Quercus, Laburnum and Acer were deposited (nor translocated from the 

upper horizons), although they provided almost the whole of the wood used on the 

site. It seems plausible that wood collection occurred presumably far from the 

settlement and was targeted at specific taxa non present in situ, confirming the high 

selectiveness of the charcoal record (Nisbet 1990). Low soil pH and the excellent 

preservation of the other grains seem to rule out any selective destruction of oak 

pollen. 

A further point should be made in relation to the abundance of Alnus pollen and 

spores of Pteridium aquilinum in the lower area. Alnus glutinosa grows nowdays only 

sporadically on Mt. Borgo, where it is limited to the wet areas along rills on the 

southern slope (Colella et al. 1990). Alnus notoriously requires humid habitats, and 

the condition of the site in the past does not seem to have met this requirements. It is 

difficult to find a convincing explanation; clearance practices may have spared Alnus 

trees thriving along streams, leading to high values in the pollen diagram due to wind 

pollen dispersal. 

Modern dense plots of grey alder on the hills of the Aveto and Trebbia valleys, far 

from the usual riparian environments, are thought to have originated through a 

traditional arboricultural practice diffused in eastern Liguria between the 19th and 

20th century (alnocoltura). This land use system consisted of a cycle (lasting 5-10 

years) involving coppicing of Alnus incana, collection of new branches and leaves as 

fuel and manure, turf stripping and burning, crops sowing and cattle grazing (Moreno 

et al. 1998; Cevasco 2009). Grey alder was selected in view of its fast growth on 

mineral soils and property to fix atmospheric nitrogen, fertilising the soil. Sampling 

terrestrial profiles from former alnocultura sites, Molinari and Montanari (2016) 

have identified the palynological signal for this practice, characterised by low 

percentages of Alnus pollen, coupled with anthropogenic indicators, a rise in 

Ericaceae and high values of charred particles. Once the system is abandoned, the 
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percentages of Alnus pollen rise remarkably (from c. 20% to 50%), as the growth of 

inflorescences is prevented for four years after coppicing. 

It is too early to hypothesise the existence of a specific land use system leading to 

high percentages of Alnus (more than 20%) in layer 3L. However, it is tempting to see 

a connection between historical land use systems and prehistoric wood management. 

In fact, large-scale clearance for the creation of pastureland, still characterising the 

landscape of Uscio only thirty years ago, was initiated in the northern Apennines 

between Copper Age and Bronze Age (Moreno et al. 1992). 

The dominance of Pteridium aquilinum in layer 4L is notable if compared with layer 

4U. Bracken spores are highly invasive and can grow up to a eight of 2 m, so that 

higher values would not be expected in the denser phase of occupation of the site, 

when the lower area was occupied for domestic activities, as shown by hearths, 

querns, pottery and possible huts (Maggi and Melli 1990). Deliberate collection of 

bracken leaves may be suggested, given their utility for thatching hut roofs (Dimbleby 

1985). Arguably, the collapse of a thatched roof would lead to a very abundant 

incorporation of spores in the ground, as they are attached in high numbers to the 

inferior surface of the foliage. 

In an effort to detect evidence for local cultivation on the terraces, the amount of total 

phosphorus (Ptot) in the sampled sections was calculated. P is a good marker for 

human activity, as it is relatively immobile in the soil and it is not washed away by 

leaching. Besides, most forms of soil P are insoluble (Chapin III et al. 2011). Ptot is 

considered to be a better parameter in archaeology than available P, as this latter 

only represents the P available for plants and is more appropriate for agrarian studies 

(Hollyday and Gartner 2007). If the soil was deliberately enriched through the 

addition of organic fertilisers, above-average values of Ptot should be recorded. Soils 

normally have a natural amount of Ptot around 400 ppm, although the range of 

variation is quite broad and also depends on the local geology. In her classical study, 

Eidt (1977) has considered values between 300 and 2000 or more ppm as indicative 

of intense occupation, dump disposal and farming activities, and according to Kim et 

al. (2001) organic farm fields have Ptot value of 2973 ppm. If layer 3U was subjected 

to intensive manuring, much higher contents of Ptot would be expected. In the case of 

terra pretas, the amount Ptot is found to be forty times higher than in the 

surrounding natural Ferrisols (Glaser and Birk 2012). Elliott et al. (2014), have 

provided a number of pXRF measurements for ovi-caprine and cattle dung, which are 
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shown to include around 10,000 ppm of Ptot. The value recorded at Uscio appears to 

be fairly low and very close to the amount of Ptot recorded from the natural subsoil 

and the modern surface (table 7.3), suggesting that no further organic matter was 

added to the soil. The results from the lower area (layer 3L) do not differ significantly 

from the upper terrace, although a higher occupation density was proved by previous 

works in light of enhanced magnetic susceptibility (Macphail 1990). 

The total absence of coprophilous spores in layers 2, 3 and 4 from both profiles points 

to absence of herbivores (and dung) on the site in antiquity. This is a further element 

to rule out manuring practices on the terraces. On the other hand, the frequency of 

dung spores in layer 1 in both sample locations (table 7.2), along with eggs of 

intestinal parasites and aquatic elements probably derived from the water drunk by 

the animals, is consistent with the recent presence of shepherds with their herds, still 

observed on the site in the 1980s (Maggi, personal communication 2015). 
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8. CONCLUSIONS 

 

 

8.1 Natural sequences (Chapters 3 and 4) 

 

The first aim of this work was to test the assumption of human influence and grazing 

pressure in the environment around the upland bog of Prato Spilla ‘A’ and the alluvial 

deposit located on the coast of Genoa. 

 As regards the first site, the data do not allow to reach a univocal view, although, as 

discussed above, there is scant evidence to support prehistoric anthropogenic impact 

in the area. An involvement of prehistoric shepherds in the uplands cannot be totally 

ruled out, but it is likely that the continuous presence of coprophilous fungal spores 

in the middle Holocene sediments originates from wild mountain herbivores, most 

likely ungulates, and perhaps also lagomorphs. The main difficulties for assuming 

pastoralism lie in the distance from known archaeological sites (c. 30km), and the 

unlikelihood of long range transhumance in prehistory, that has often been 

questioned in the literature (Marzatico 2007). Nevertheless, small family-sized 

groups may have produced a low signal compatible with the one detected, and 

contemporary human presence on isolated uplands is witnessed by the case of 

Pratomollo.  

A much stronger evidence for anthropogenic disturbance and farming activities on 

the site (also supported by archaeological and palaeobotanical data) is available for 

the sequence from Genoa Piazza Vittoria. Abundant dung spores largely support 

animal farming around the site, especially in view of its coastal location, that enables 

to rule out mountain herbivores. Occasionally, a correspondence between water 

pools and herbivore presence can be observed. In addition, eggs of intestinal 

parasites specific of wild boar/pig or human hosts have been recovered. In case of 

Suidae this is in agreement with the zooarchaeological analysis, while if the eggs 

belong to humans this would represent the first case of trichuriasis known for the 

Italian Neolithic. 

A range of microfossils identified for the first time through a survey of the extant 

mycological literature point to brackish conditions on the site, as it was also 

suggested by previous pollen analysis (Arobba and Caramiello 2010). Moreover, 

episodes of repeated flooding leading to the creation of temporary pools of still water 
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have been detected through the identification of algal taxa (Zygnemataceae). Algal 

cysts also point to periodic desiccation of the site. 

 

 

8.2 Samples from modern animal enclosures and dung pats (Chapter 5) 

 

Research into variations in dung spore concentrations from modern animal 

enclosures can be successfully linked to animal management practices on herding 

sites. This information can then be employed to better interpret both open air 

archaeological animal enclosures and cave stabling deposits. 

The results demonstrate the validity of coprophilous spore analysis from terrestrial 

samples for identifying ancient animal enclosures, and show that higher 

concentrations seem to be associated with periodically undisturbed sediments and 

locally growing fungi. As stressed for faecal spherulites by Canti (1999), there are no 

univocal relationships between the abundance of coprophilous spores and the 

presence of animal faeces, so that zero counts do not necessarily imply absence of 

dung. Arguably, a wider dataset may enable a future use of spore concentration as a 

parameter to infer the frequency of stabling episodes, so that very high 

concentrations (>100,000 dung spores per cm3) are likely to indicate discontinuous 

animal presence, allowing fungal sporulation to take place. In addition, the 

concentration of parasite eggs and faecal spherulites may provide a useful key to 

distinguishing low values of coprophilous spores resulting from scarce presence of 

animals, from low values due to high animal density and related fungi-destroying soil 

disturbance, as in this latter case the eggs would still be present. 

The pit profile from the rock shelter of Arma delle Manie has shown the potential of 

dung spores as proxies for the identification of stabling cave deposits, a recurrent 

type of site in the later prehistory of the Mediterranean region (Angelucci et al., 

2009). It has been demonstrated that coprophilous spores are able to reflect very 

closely the trend followed by faecal spherulites (Units 1-2), and can therefore be used 

in a similar way to identify localised stabling deposits where spherulites are not 

preserved. Moreover, the total absence of dung spores and the extremely low amount 

of spherulites from Unit 3 suggest that they are left relatively unaffected by 

percolation of liquids such as urine or water through the profile. A different origin for 

Unit 3 is also indicated by higher concentrations of coccolith plates. 
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8.3 Cave of Arene Candide (Chapter 6) 

 

The study of the deposits in the cave of Arene Candide has shown the potential of NPP 

analysis from dryland archaeological stabling deposits to address important research 

questions. 

Assuming a constant presence of the herd on the site based on the previous studies 

(Rowley-Conwy 1997), patterns of abundance and absence of dung spores 

throughout the profile are likely to originate from changes in animal management. 

The explanation which was advanced here makes use of the observations and 

analyses made on contemporary stabling contexts, and deals with a short absence of 

the animals from the site, yet prolonged enough to allow fungal sporulation. If this 

view holds true, the microfossil record would be able to shed some light on subtle and 

short-lived events, although an accurate chronology for the deposit and knowledge of 

accumulation rates would be needed (Angelucci et al. 2009). Possible indicators of 

fresh water were identified along with fungal spores. They might point to the 

environments grazed by the flock, although an origin from temporary pools formed in 

the cave through water dripping is also possible. Zero counts of parasite eggs were 

somewhat unexpected, and it was suggested that this may be accounted for by 

degradation in alkaline soils or specific feeding practices. 

In spite of the limitations exposed above, pollen analysis of the deposit has also 

provided useful data. The assemblage is apparently dominated by resilient pollen 

taxa, although their validity as pasture indicators also suits a pastoral context. Clear 

shifts from Cichoriaeae to Ericaceae may be significant events and represent changes 

in the grazed environments, in the feed brought to the cave or even the spread of 

coastal Mediterranean maquis along the north-western Italian coasts in the Middle 

Holocene (Bellini et al. 2009). 

Given issues in differential preservation related to calcareous soils, future approaches 

may take into account speleothem palynology to complement the record from cave 

layers (McGarry and Caseldine 2004). Palynology of coprolites is already being 

applied to the site and is proving successful (Arobba, in preparation). Further 

attempts, with specific reference to animal dietary habits and grazed environments, 

may be made by sampling residues of dental calculus (Armitage 1975; Dimbleby 

1985; Middleton 1990). 
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At the Cave of Arene Candide, the use of bulk sediment samples to assess the 15N/14N 

ratio has proved promising, and values higher than 9‰ (δ15N ) have been detected. 

This is consistent with the interpretation of the sequence as a fumier deposit resulting 

from the continuous accumulation of animal dung. 

 

 

8.4 Castellaro di Uscio (Chapter 7) 

 

An attempt has been made in order to elucidate the occurrence of on-site manuring 

on agricultural terraces by means of NPP and phosphorus analysis. 

The hilltop site of Uscio was sampled in order to assess whether Bronze Age on-site 

cultivation had occurred and gather further data on the palaeoenvironment 

(Macphail 1990). The analysis of the crucial dark soil horizons showed the absence of 

dung spores possibly indicating manuring, but with the absence of domestic grasses. 

In spite of the finding of caryopses, these data, coupled with average values of total 

phosphorus, do not suggest local cultivation, which is in agreement with the view 

expressed by Nisbet (1990). However, good pollen preservation has enabled a new 

picture of the environment around the site, showing a highly open landscape 

dominated by Scabiosa, which seems to contrast with the number of arboreal taxa 

revealed by charcoal macro-remains (Nisbet 1990). It was concluded that cereals 

were cropped and processed elsewhere (presumably in the lowlands) and then 

brought to the site, and that also most of the wood was probably gathered at some 

distance from the site.  

Palynological analysis (bearing in mind the caveats from dryland layers stressed in 

the relevant chapter) has allowed further insights into the palaeoenvironmental 

reconstruction of the site. The only relatively high values of tree pollen in the diagram 

appear to derive form Carpinus and Alnus, this latter probably pointing the presence 

of rills on the hill slopes providing moist soils. It is also tempting to see a correlation 

between high values of Alnus and prehistoric antecedents of traditional land-use 

systems still used in the region in the early 20th century (Molinari and Montanari 

2016). 

 

 

 



150 
 

8.5 Final considerations and recommendations for future work 

 

The main flaw with the method applied appears to be the low potential of dung 

spores to differentiate between domestic and wild herbivores. This is a crucial point 

to an evaluation of human impact, and when not properly addressed it tends to lead 

to very general and cautious – ultimately, of scarce value – interpretations. A 

successful way to overcome this problem and formulate more confident remarks has 

been pointed by organic geochemistry and DNA metabarcoding, this latter appeared 

only very recently (D’Anjou et al. 2012; Giguet-Covex et al. 2014; Guillemot et al. 

2015). 

A high number of palynomorphs still cannot be successfully employed, in spite of 

their repeated occurrence in the deposits. This is a widespread problem in the field of 

NPP research, where the quantity of obscure microfossils designated merely by a 

code number is constantly increasing (Miola 2012). Although this classificatory effort 

may be of some utility to sort out a diverse assemblage, it is certainly not an end in 

itself. Not many authors seem to be concerned with this point, and long lists of types 

are often given without trying to account for their presence in term of implications 

for past ecology. As far as this research is concerned, a considerable amount of time 

has been spent examining the cryptogamic literature in an attempt to assign a 

probable indicator value to some recurrent palynomorphs and improve previous 

identification. This approach has finally proven fruitful in both sites, as it is illustrated 

by the case of Melanosporaceae, Cirrenalia donnae and basiminuta, fungal hyphopodia 

and other minor taxa. A detailed NPPs analysis also creates room for relevant results 

in the field of palaeomycology (e.g. tracing changes and continuity in ecological 

preferences through time; Tiffney and Barghoorn 1974). Although a closer 

collaboration with mycologists has been advocated (Baker et al. 2013), the analysts 

should have a competence in mycology, at least with regard to their knowledge of the 

main taxa, and their habitats and ecological requirements. 

In spite of an established tradition of study investigating patterns of pollen dispersal, 

the factors governing spore deposition in lakes and mires have been less investigated. 

Robust studies focusing on coprophilous spores – almost exclusively Sporormiella – 

are available (Raper and Bush 2009; Parker and Williams 2012; Etienne et al. 2013), 

although it is not entirely clear which role is played by wind transport in upland 

wetlands and how far spores are carried over long distances in complex hydrological 
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systems with inlets and outlets (see above, Chapter 1). On the one hand spores are 

released very close to the ground, making it easier for them to enter streams and 

rivers when dispersed in their vicinity, while on the other hand this is also likely to 

limit the effect of wind as a carrying agent above the canopy. 

In order to escape the realm of subjective opinion, both a shared way of expressing 

findings and a more robust knowledge of mechanisms controlling dung spore 

abundance in modern contexts are needed. However, the amount of data available for 

grazed areas surrounding modern lakes and the relationship with spore abundance is 

of little help, mainly because NPP values may vary significantly from site to site if 

expressed as total pollen percentages, and because information on animal presence 

(quantity, species, frequency with which they graze around the shore) has rarely been 

recorded in detail. Baker et al. (2013), and Wood and Wilmshurst (2013) have argued 

for the use of accumulation rates as the best independent variable to express 

abundances and enable comparisons between sites. The method has been very 

sporadically applied (Yeloff and van Geel 2006), and recent papers still maintain the 

use of percentages of total pollen (e.g. Szal et al. 2015). 

This approach does not seem very promising for comparisons between sites, although 

accumulation rates would also have complications, such as derived from lake internal 

processes, making them very much site-dependent and poorly understood (Giesecke 

and Fontana 2008; Matthias and Giesecke 2014). The method might work well in the 

Boreal region, thanks to the numerous work conducted on the small lakes of the area, 

but would not be usable for comparison elsewhere (T. Giesecke, pers. comm.). For 

this reason, for the sites investigated in this work the use of total NPP percentages 

has been favoured. This is listed by Baker et al. (2013) among the possible 

alternatives to pollen percentages, and points to a more independent future for NPP 

analysis in the field of palaeoecology (see Wang et al. 2014, with total NPP 

percentages). 

An extensive survey of the mycological literature suggests that the picture of grazing 

pressure resulting from subfossil archives may be highly biased. This is due to the 

scarce visibility of a number of morphologically indistinctive hyaline and coloured 

dung spores that seem to have been neglected in palaeoecological research. The main 

‘invisible’ coprophilous taxa - Pilobolus, Lasiobolus, Thelebolus, Iodophanus, Coprobia, 

Cheylimenia, Petriella, Coprotus, Ascobolus, Saccobolus, Mucor, Coprinus.– ironically, 

are often among the best known species to mycologists (Richardson 1972; 2001; 
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Doveri 2007). This casts doubts on the reliability/unreliability of using only one or 

two well-established dung spores to infer past herbivore abundance (e.g. 

Sporormiella-type; Gill et al. 2013), which has been often done in studies investigating 

Pleistocene megafaunal extinctions (Davis 1987; Burney et al. 2003; Davis and Shafer 

2006). Chapters 3 and 4, as several terrestrial samples analysed in Chapter 5, have 

shown how the dominant coprophilous taxa can be site-specific and driven by 

numerous factors (fungal competition, humidity, dung types), that remain largely 

poorly understood. The awareness of this issue leads to stress once again the 

importance of applying different proxies for herbivore presence, in order to 

understand if and how complementary they are (e.g. do they respond differently to 

different parameters?). Furthermore, it should be borne in mind that not all 

coprophilous fungi are likely to be represented in the NPP record, due to the 

production of scarcely diagnostic or poorly resistant spores (Haberle et al., 2004). It 

follows that, when a dung substrate had been colonised primarily by species such as 

Peziza vesiculosa or Pilobolus spp. (Doveri, 2007), this will not have resulted in a 

clearly detectable signal in the fossil record. 

One of the biggest difficulties in discerning human impact in mid-Holocene off-site 

locations lies with the problem of population estimates. Up to which level the 

population density of a group of early farmers must grow in order for it to leave a 

distinct signal in the limnological record of mires lying tens of kilometres outside 

permanent settlements? 

Several methods have been attempted in order to achieve reliable estimates of past 

populations. Unless complete graveyards associated with settlements are known 

(Cerasuolo 2011 - issues in funerary representation may still occur though), other 

approaches do not seem able to avoid the obligate used of analogies drawn from 

other contexts thought to be more or less comparable with their ancient 

counterparts. The subject has been developed primarily in Mesoamerican contexts, 

through the relationship between total floor area and number of inhabitants (Naroll 

1962; Casselberry 1974). A similar approach makes use of the number of households 

found in a settlement, coupled with a mean value for family size obtained from 

written sources or inferred from ethnographic parallels (Lahiri 1998). When a 

detailed knowledge of the site cannot be achieved, the estimate is obtained by 

multiplying a sensible figure for the number of inhabitants per unit area for the whole 

settled area (e.g. Di Gennaro and Guidi 2010). In order to get reliable estimates, all 
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these approaches need very high data requirements. Even in the most favourable 

cases, it is often difficult to know if all the structures were in use at the same time, and 

to be certain about the total extent of the settlement, especially when patchy areas 

occur among dwellings. 

Although standard modules representing dwelling units are largely known in the 

European Neolithic (e.g. Lepenski Vir or LBK sites: Srejović 1969; Bakels 1982), the 

situation is much more complex for the Neolithic and Copper Age periods in Liguria, 

where permanent settlements (if any) are thought to be buried somewhere in 

lowland coastal plains, and most of the evidence for domestic activities comes from 

caves and rock shelters. Maggi and Nisbet (1991) have argued for small family-sized 

groups acting in the upland on the grounds of the skeletal remains found in burial 

caves at higher elevations. However, the picture might have been quite different in 

coastal areas if our knowledge is severely biased by issues of site visibility (Chapter 

4), as is suggested by the probable presence of a pile-dwelling site at Genoa and by 

the anthropic indicators revealed from the cores taken on the site (Maggi 1996; 

Arobba et al. 2016). 
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Appendix I. Microfossil types from this work (Plates 1-9): codes, morphology, possible determinations and equivalencies with 
previously published articles (Plates 10-11). 
 
 

Code Site Morphology Biological determination Probable equivalence Reference 

UR-1 PSA 1-colpate, spiny Bryophyta?     

UR-2 PSA Inaperturate, scabrate Scutellinia barlae?     

UR-3 PSA 1-porate, scabrate 
Sclerodermataceae? 
Ustilaginaceae?     

UR-4 PSA-AC Inaperturate, verrucate Scutellinia cf hyperborea? EMA-118 Prager et al. 2012 

UR-5 PSA 3-4 septate, psilate       

UR-6 PSA Multiseptate, psilate Sporidesmium socium?     

UR-7 PSA 8-septate, psilate Lophiostoma sp.?     

UR-8 GPV-AC Clustered, psilate 

Uleothyrium sp.? 
Spegazzinia sp.? Sarcinella 
sp.?   Ellis 1971 

UR-9 GPV-AC 2-septate, psilate Triadelphia sp.? UG-1049 · BM-2 
Gelorini et al. 2011; Shumilovskikh 
et al. 2015; Ellis 1976 

UR-10 GPV 6-septate, psilate Bactrodesmium sp. 

[Although considered as 
Bactrodesmium sp., UG-1091 
shows a different 
morphology] Gelorini et al. 2011 

UR-11 GPV 1-2-septate, psilate Brachysporium sp.? HdV-1036 van Geel et al. 2011 

UR-12 GPV Clustered, psilate       

UR-13 GPV Clustered, psilate       

UR-14 GPV Inaperturate, concave, psilate       

UR-15 GPV 1-2-porate, spiny 
Achritarcha? Algae? 
Gasteromycetes? HdV-983 

Carrión and van Geel 1999; 
Carrión and Navarro 2002 

UR-16 GPV 1-porate, scabrate (flagellate?)   HdV-983 
Carrión and van Geel 1999; 
Carrión and Navarro 2002 

UR-17 GPV-AC 4-septate, psilate Clasterosporium sp.?     
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UR-18 GPV Multiseptate, psilate       

UR-19 GPV-AC Inaperturate, spiny       

UR-20 GPV Inaperturate, reticulate   HdV-988 Carrión and van Geel 1999 

UR-21 GPV-AC 
Inaperturate, reticulate and 
spiny       

UR-22 GPV-AC Inaperturate, spiny       

UR-23 GPV 
Inaperturate, furrowed and 
scabrate       

UR-24 GPV-AC Inaperturate, spiny Calostoma sp.? HdV-984 · Form-A 

Carrión and van Geel 1999; Carrión 
and Navarro 2002; Jarzen and Elsik 
1986 

UR-25 GPV Inaperturate, spiny       

UR-26 GPV Inaperturate, spiny       

UR-27 GPV-AC Inaperturate, spiny Bryophyta? HdV-340 · UG-1310 
van Geel et al. 1989; 
Gelorini et al. 2011 

UR-28 GPV-AC Inaperturate, spiny       

UR-29 GPV-AC Inaperturate, spiny   HdV-985 
Carrión and van Geel 1999; 
Carrión and Navarro 2002 

UR-30 GPV-AC Inaperturate, vermiculate   Form-A Jarzen and Elsik 1986 

UR-31 GPV-AC Inaperturate, vermiculate   UG-1285 · Form-A 
Gelorini et al. 2011; 
Jarzen and Elsik 1986 

UR-32 GPV Inaperturate, reticulate   HdV-989 · MO-5 
Carrión and van Geel 1999; 
Torri 2010 

UR-33 GPV-AC Inaperturate, vermiculate Ascodesmis sp.? UG-1285 Gelorini et al. 2011 

UR-34 GPV 1-pored, scabrate Bryophyta? UG-1312? Gelorini et al. 2011 

UR-35 GPV Furrowed? psilate       

UR-36 GPV-AC 1-pored, reticulate   HdV-111 van Geel et al. 1978 

UR-37 GPV-AC Inaperturate, spiny       

UR-38 GPV 1-porate, scabrate   HdV-733 Bakker and van Smeerdjik 1982 

UR-39 GPV 
Inaperturate, gelatin-coated, 
striated       
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UR-40 GPV-AC Inaperturate, gelatin-coated       

UR-41 GPV 1-porate, gelatin-coated       

UR-42 GPV 1-porate, psilate       

UR-43 GPV 1-porate, psilate Chalaropsis sp.?   Ellis 1976 

UR-44 GPV Inaperturate, psilate Craspedodymum elatum?   Ellis 1976 

UR-45 GPV 2-porate, psilate       

UR-46 GPV 2-porate, psilate 
Arnium sp.? Chaetomium 
sp.?     

UR-47 GPV 2-porate, psilate       

UR-48 GPV-AC 2-septate, psilate 
Brachydesmiella biseptata? 
Diporisporitessp.?   Ellis 1971; Jarzen and Elsik 1986 

UR-49 GPV 2-pored, 1-septate psilate Biporisporites sp.   Kalgutkar and Jansonius 2000 

UR-50 GPV 1-septate, striated Dydimosphaeria sp.?   Nitiu et al. 2010 

UR-51 GPV Multiseptate, psilate Trichocladium sp.?     

UR-52 GPV-AC 4-5 septate, psilate Trichocladium sp.?     

UR-53 GPV-AC 3-septate, psilate Trichocladium sp.?     

UR-54 GPV 3-5-septate, psilate Trichocladium opacum HdV-359 · TM-011 
van Geel et al. 1981; Cugny et al. 
2010 

UR-55 GPV-AC Multiseptate, psilate       

UR-56 GPV 4-5-septate, psilate       

UR-57 GPV-AC 4-5-septate, psilate       

UR-58 GPV 5-septate, psilate       

UR-59 GPV-AC 3-septate, psilate 

Brachysporiella sp.? 
Endophragmia 
glanduliformis?   Ellis 1971; Ellis and Ellis 1985 

UR-60 GPV-AC 3-4-septate, psilate Culcitalna achraspora   Ellis 1976 

UR-61 GPV 1-septate, psilate       

UR-62 GPV-AC Clustered, psilate 

Uleothyrium sp.? 
Monodyctis sp.? 
Spegazzinia parkeri?   Ellis 1971; 1976 

UR-63 GPV-AC Muriform, psilate       
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UR-64 GPV Clustered, psilate       

UR-65 GPV Multiseptate, striated       

UR-66 GPV-AC 4-5-septate, scabrate Gilmaniella humicola?   Ellis 1971 

UR-67 GPV Multiseptate, psilate       

UR-68 Modern Inaperturate, psilate       

UR-69 Modern Inaperturate, psilate       

UR-70 Modern 3-4-porate, wrinkled       

UR-71 Modern 3-4-porate, wrinkled, thin-walled       
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Appendix II. Raw data 
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Prato Spilla ‘A’  DEPTHS (cm)                   

TAXA 441 457 473 489 505 521 537 553 569 585 601 

HdV-128B 0 0 0 0 0 0 0 0 0 0 0 

HdV-181 8 17 7 8 7 11 11 15 11 9 11 

HdV-115 0 0 1 0 0 0 0 0 0 0 0 

Pediastrum cf boryanum 17 10 39 4 13 16 8 8 1 1 25 

Zygnema-type 0 0 0 0 0 0 0 0 0 0 0 

Tetraedron (HdV-371) 0 0 1 0 0 0 0 0 0 0 0 

Cirrenalia donnae 10 39 2 14 21 13 17 13 33 11 7 

cf Cirrenalia lignicola/macrocephala 0 0 0 0 0 0 0 0 0 0 0 

Endophragmia/Arthrobotris (HdV-572) 3 8 6 8 17 4 18 21 16 7 4 

Coniochaeta 2 6 5 6 8 2 8 5 0 4 3 

Rosellinia 0 0 4 8 1 2 4 0 0 1 0 

Hypoxylon 1 1 0 0 0 2 1 1 1 0 0 

Xylariaceae 5 2 6 11 3 6 6 4 1 4 1 

Endophragmiella (TM-009) 0 0 0 1 0 0 0 0 0 0 0 

Endophragmiella (TM-224) 0 0 0 0 1 1 0 0 0 0 1 

Endophragmiella (TM-227) 1 1 0 0 0 0 0 0 1 0 0 

Sporidesmium cf pedunculatum/altum 0 2 2 1 2 1 4 1 2 1 1 

Dyctiosporium cf turuloides 0 0 0 0 0 0 0 1 1 1 0 

Trichocladium opacum (TM-011) 0 1 2 0 0 0 0 0 1 0 0 

Brachysporium obovatum (TM-014) 0 0 1 0 0 0 0 0 1 0 0 

Corynesporopsis quercicola (EMA-125) 0 0 0 0 0 1 1 0 1 1 1 

cf Taeniolella rudis 0 1 0 0 0 0 0 0 0 0 0 

Taeniolella cf pulvillus/alta 0 0 0 0 0 0 0 0 0 0 0 

Diplocladiella scalaroides 0 0 0 0 0 0 0 0 0 0 0 

cf Savoryella lignicola (UG-1118) 0 0 0 1 0 0 0 0 0 0 0 

Asterosporium asterospermum 0 0 0 1 0 0 0 0 0 0 0 

Helicomyces/Helicosporium spp. 0 0 0 0 1 0 0 0 0 3 1 

cf Canalisporium 0 0 0 0 0 0 0 0 0 0 0 
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Lophiostoma arundinis 1 0 0 0 0 1 1 0 0 1 0 

cf Ulocladium consortiale 0 0 0 0 0 0 0 0 0 0 0 

Spegazzinia 0 0 0 1 0 0 0 0 0 0 0 

Sporormiella-type 2 0 0 2 2 0 0 0 0 0 0 

Sordaria-type (HdV-55A) 0 0 1 1 0 0 1 0 0 0 0 

Sordaria cf fimicola (gel. sheath) 0 0 1 0 0 0 0 0 0 0 0 

Arnium-type 0 0 0 0 0 0 0 0 1 0 1 

Arnium-type (gel. sheath) 0 1 0 0 0 0 0 0 0 0 0 

cf Arnium imitans 0 0 1 0 0 0 0 0 0 0 0 

Delitschia 0 0 0 0 0 0 1 0 0 0 0 

Chaetomium 1 0 0 0 0 0 0 0 0 0 0 

Gelasinospora cf tetrasperma 0 0 0 0 0 1 0 0 0 0 0 

Apiosordaria verruculosa 0 0 0 0 0 0 0 0 0 0 0 

Melanosporaceae (HdV-55B) 3 4 2 2 3 0 1 1 4 0 0 

Sphaerodes cf fimicola 0 1 0 0 0 0 0 0 0 0 0 

Persiciospora cf moreaui 0 0 0 0 0 0 0 0 0 0 0 

Sordariaceous' ascospores undiff. 0 0 0 0 0 1 1 0 1 0 1 

Cercophora-type 4 1 1 1 0 1 6 1 2 2 0 

Clasterosporium caricinum 1 0 7 5 0 1 1 0 0 2 3 

Kretzschmaria deusta 0 0 0 1 0 0 1 0 0 0 0 

Diporotheca rhizophila 0 1 0 0 0 0 0 0 0 1 1 

Glomus 3 6 4 1 2 7 2 5 1 6 5 

Scleroderma 0 2 4 24 2 2 0 0 0 1 3 

HdV-340 1 0 1 0 0 0 0 0 0 1 0 

cf Ustilago enneapogonis/bullata 0 1 2 5 1 3 2 2 6 3 2 

cf Lactarius (HdV-728) 0 1 1 0 0 1 0 1 0 0 0 

cf Scutellinia hyperborea/minor 0 0 2 0 0 1 1 0 0 0 0 

Sphaerodes 0 0 0 0 0 1 0 1 0 0 0 

UR-1 4 1 6 5 7 8 11 9 13 8 4 

UR-2 0 0 1 1 0 0 0 0 0 0 0 
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HdV-3A 0 0 0 1 0 2 1 1 0 1 0 

HdV-3B 0 1 0 0 3 4 2 3 1 7 2 

HdV-16A 0 0 0 0 2 0 0 2 0 0 0 

HdV-16C 0 0 0 0 0 0 0 0 0 0 0 

HdV-20 0 1 4 3 2 2 4 0 1 3 2 

HdV-38 1 2 1 0 1 1 2 6 1 2 0 

HdV-92 0 1 0 0 1 1 1 2 0 2 0 

HdV-98 0 1 6 0 1 1 0 8 1 1 1 

HdV-120 3 3 4 5 11 5 3 2 3 0 0 

HdV-173A 0 0 0 0 0 0 2 0 1 0 0 

HdV-173B 0 0 0 0 0 0 0 0 0 0 0 

HdV-174 0 0 2 0 0 0 0 0 0 0 0 

HdV-200 2 1 2 5 2 3 3 2 2 1 4 

cf HdV-367 2 0 0 1 1 0 1 1 2 3 1 

HdV-571 0 0 0 1 0 0 0 0 0 0 0 

HdV-707 0 1 1 1 0 1 0 0 0 0 0 

HdV-708 4 8 2 0 3 3 11 7 5 1 5 

HdV-729 0 1 3 0 2 0 0 0 1 0 1 

HdV-730 0 1 0 0 0 0 0 0 0 1 0 

EMA-10/42 0 0 1 0 1 2 4 0 0 0 1 

cf EMA-27 1 2 6 2 7 2 5 4 3 4 4 

IBB-18 0 0 1 0 0 0 0 0 0 0 0 

MO-6 0 0 0 0 0 0 0 0 0 0 0 

TM-4008 0 0 0 1 1 0 0 0 0 0 0 

cf UG-1110 0 0 0 1 0 0 1 1 0 0 1 

cf UG-1141 0 0 0 2 1 1 1 1 1 0 0 

Unknown multicelled (cf Sporidesmium socium) 14 1 0 0 0 1 0 0 3 0 1 

Unknown multicelled (cf HdV-324) 1 0 1 1 4 5 0 2 1 1 1 

Elliptic spores cf HdV-7B/82/306 39 29 17 33 34 18 22 18 13 27 22 

Other ca. 10 μm Ø  globose algal/fungal cells 18 3 5 11 4 1 3 4 6 4 17 
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Other multicelled 28 27 28 23 16 22 27 28 22 31 28 

Other clustered cells 8 0 15 13 7 5 6 11 7 5 9 

Indeterminable/unknown 35 42 14 31 37 28 27 11 38 33 32 

Geoglossum-type 0 0 1 0 0 0 0 0 0 0 0 

cf UG-1081 1 0 0 0 0 0 0 0 0 0 0 

EMA-28 1 0 1 0 0 0 0 0 0 0 0 

EMA-56 1 0 0 0 0 0 0 1 0 0 0 

cf UG-1147 1 0 0 0 0 0 0 0 0 0 0 

(other multi near to HdV-324) 4 0 0 1 0 1 1 0 0 1 0 

HdV-65 1 0 0 0 0 3 1 0 0 0 0 

HdV-121 1 0 2 2 1 0 0 0 0 1 1 

multi-septate conidia 2 1 0 1 1 1 1 1 0 1 0 

cf UG-1185 1 0 0 0 0 0 0 0 0 0 0 

EMA-20 0 1 1 0 2 2 0 0 0 0 0 

cf HdV-87 0 1 0 0 0 0 0 0 0 0 0 

cf HdV-701 0 1 0 0 0 0 0 0 0 0 0 

UG 1036 Brach 0 1 2 0 0 0 0 0 1 0 0 

cf UG-1197 0 1 0 1 0 0 0 0 1 2 2 

HdV-64 0 1 0 0 0 0 1 0 1 0 0 

cf UG-1199 0 1 0 0 0 0 0 0 0 0 0 

Spirogyra 0 2 1 0 0 0 0 1 0 1 0 

cf Thielavia 0 1 0 0 0 0 0 0 0 0 0 

EMA-2 0 0 1 0 0 0 0 0 0 0 0 

HdV-359 0 0 1 2 0 0 1 0 0 0 0 

EMA-33 0 0 1 0 0 0 0 0 0 0 0 

EMA-99 0 0 1 0 0 0 0 0 0 0 0 

HdV-22 0 0 1 0 0 0 0 0 0 1 0 

cf UG-1153 0 0 1 0 0 0 0 0 0 0 0 

HdV-65 0 0 4 1 0 0 0 2 0 1 0 

cf HdV-1055 0 0 0 1 0 0 0 0 0 0 0 
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cf UG 1138/1148 0 0 0 1 0 0 0 0 0 0 1 

cf UG-1098 0 0 0 1 0 0 0 0 0 0 0 

HdV-179 0 0 0 1 0 0 0 0 1 0 0 

cf UG-1105 0 0 0 1 1 1 0 0 0 2 1 

cf UG-1080 0 0 0 0 1 0 0 0 0 0 0 

cf UG-1147 0 0 0 0 1 1 0 0 0 0 0 

cf UG-1005 Brach 0 0 0 0 1 0 0 0 0 0 0 

HdV-308 0 0 0 0 2 0 0 0 0 0 0 

HdV-17 0 0 0 0 1 0 1 0 0 1 1 

pitted Helicosporium 0 0 0 0 1 0 0 0 0 0 0 

HdV-25 0 0 0 0 0 1 0 0 0 0 0 

HdV-715 0 0 0 0 0 1 0 0 0 0 0 

Rivularia? 0 0 0 0 0 1 1 0 0 0 0 

HdV-151 0 0 0 0 0 1 1 0 0 1 0 

Allungato 553-537-521 0 0 0 0 0 1 1 1 0 0 0 

Allungato 537 0 0 0 0 0 0 1 0 0 0 0 

EMA-2 0 0 0 0 0 0 2 0 0 0 0 

EMA-44 0 0 0 0 0 0 1 0 0 0 0 

HdV-51 0 0 0 0 0 0 0 1 0 0 0 

TM-015 0 0 0 0 0 0 0 0 1 0 0 

HdV-10 0 0 0 0 0 0 0 0 1 0 0 

HdV-334 0 0 0 0 0 0 0 0 0 1 0 

HdV-90 0 0 0 0 0 0 0 0 0 1 0 

cf HdV-140 0 0 0 0 0 0 0 0 0 1 1 

cf HdV-381 0 0 0 0 0 0 0 0 0 0 1 

HdV-365 0 0 0 0 0 0 0 0 0 0 1 

HdV-83 0 0 0 0 0 0 0 0 0 0 0 

cf EMA-30 0 0 0 0 0 0 0 0 0 0 0 

HdV-714 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1311 0 0 0 0 0 0 0 0 0 0 0 
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HdV-18 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1307 0 0 0 0 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1111 0 0 0 0 0 0 0 0 0 0 0 

HdV-119 0 0 0 0 0 0 0 0 0 0 0 

HdV-152 0 0 0 0 0 0 0 0 0 0 0 

HdV-360 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1139 0 0 0 0 0 0 0 0 0 0 0 

HdV-99 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1053 0 0 0 0 0 0 0 0 0 0 0 

cf HdV-361 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1203 0 0 0 0 0 0 0 0 0 0 0 

EMA-86 0 0 0 0 0 0 0 0 0 0 0 

EMA-134 0 0 0 0 0 0 0 0 0 0 0 

HdV-33B 0 0 0 0 0 0 0 0 0 0 0 

HdV-5 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1125 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1285 0 0 0 0 0 0 0 0 0 0 0 

Miola III,24 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1221 0 0 0 0 0 0 0 0 0 0 0 

LCE-27 0 0 0 0 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 771 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1319 0 0 0 0 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 0 0 0 0 0 0 

HdV-11 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1110 non septate 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1032 smooth 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1155 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1075 0 0 0 0 0 0 0 0 0 0 0 
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cf UG-1091 0 0 0 0 0 0 0 0 0 0 0 

HdV-502 0 0 0 0 0 0 0 0 0 0 0 

cf T.1162 0 0 0 0 0 0 0 0 0 0 0 

HdV-53 0 0 0 0 0 0 0 0 0 0 0 

HdV-85 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1194 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1124 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1182 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1106 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1046 0 0 0 0 0 0 0 0 0 0 0 

Ellis 589 0 0 0 0 0 0 0 0 0 0 0 

cf EMA-21 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1059 0 0 0 0 0 0 1 0 0 0 1 

HdV-95 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1122 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1352 0 0 0 0 0 0 0 0 0 0 0 

Ellis 355 0 0 0 0 0 0 0 0 0 0 0 

Dydimella D 0 0 0 0 0 0 0 0 0 0 0 

HdV-47 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 0 0 0 0 

Leptospaeria K-N(but 4 cells) or UG-1112 0 0 0 0 0 0 0 0 0 0 0 

cf UG 1084 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1042 Montagnula 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1335 0 0 0 0 0 0 0 0 0 0 0 

Thielavia? 0 0 0 0 0 0 0 0 0 0 0 

HdV-64 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 0 0 0 0 

cf EMA-59 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1311 0 0 0 0 0 0 0 0 0 0 0 
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cf HdV-702 0 0 0 0 0 0 0 0 0 0 0 

EMA-8 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 988 0 0 0 0 0 0 0 0 0 0 0 

cf 698 0 0 0 0 0 0 0 0 0 0 0 

cf HdV-718 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1085 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1344-1796 0 0 0 0 0 0 0 0 0 0 0 

Ellis 1512 0 0 0 0 0 0 0 0 0 0 0 

cf HdV-1223 0 0 0 0 0 0 0 0 0 0 0 

cf HdV-9 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1127 0 0 0 0 0 0 0 0 0 0 0 

HdV-15 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 326 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 0 0 0 0 

HdV-332 0 0 0 0 0 0 0 0 0 0 0 

168 (dung?) 0 0 0 0 0 0 0 0 0 0 0 

cf USNP MS 3163 0 0 0 0 0 0 0 0 0 0 0 

Ellis 306 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1138 0 0 0 0 0 0 0 0 0 0 0 

HdV-306 0 0 0 0 0 0 0 0 0 0 0 

HdV-242 0 0 0 0 0 0 0 0 0 0 0 

HdV-124 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1176 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 365 0 0 0 0 0 0 0 0 0 0 0 

TM-036 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1072 0 0 0 0 0 0 0 0 0 0 0 

Ellis 1096/1156/306 0 0 0 0 0 0 0 0 0 0 0 

cf HdV-733 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1114 0 0 0 0 0 0 0 0 0 0 0 

cf HdV-223 0 0 0 0 0 0 0 0 0 0 0 



223 
 

cf HdV-305 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1185 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1208 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1168 0 0 0 0 0 0 0 0 0 0 0 

HdV-221 0 0 0 0 0 0 0 0 0 0 0 

cf 1125 0 0 0 0 0 0 0 0 0 0 0 

cf HdV-339 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 793 0 0 0 0 0 0 0 0 0 0 0 

cf UG-1276 0 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1271 0 0 0 0 0 0 0 0 0 0 0 

Total 236 243 241 260 244 209 247 210 216 210 217 

                        

Fungal fruiting bodies undiff. (HdV-8) 12 15 11 10 15 15 29 16 14 19 3 

Microthyrium (HdV-8B) 0 2 0 0 0 2 2 4 1 3 4 

HdV-8A 0 1 0 0 0 0 0 0 0 0 0 

HdV-8E 0 0 0 0 0 0 0 0 0 0 0 

HdV-8F 1 1 1 1 0 0 0 0 0 0 0 

HdV-8D 0 0 0 0 0 0 0 1 2 2 0 

Bryophyte capsules 0 0 0 1 0 1 0 0 0 0 0 

Other zoological 26 17 18 4 21 21 24 11 15 10 33 

Chironomidae 10 1 1 2 5 2 1 6 2 5 5 

Neorhabdocoela eggs 0 0 1 0 0 1 1 0 0 0 0 

HdV-52 (body fragments) 0 0 0 0 0 0 1 0 0 0 3 

Arcella 0 0 0 0 1 0 0 1 0 0 2 

                        

                        

                        

                        

Tracheids (EMA-1) 64 124 102 45 54 67 88 96 63 109 156 

Highly corroded wood (EMA-7) 7 11 2 2 0 3 0 3 1 5 27 



224 
 

Wood rays aggregates (EMA-11) 15 12 23 9 11 29 11 19 28 12 17 

Hardwood periderm (EMA-16) 8 9 2 8 1 6 6 10 3 7 10 

Fungal tissue (EMA-95) 95 90 66 65 49 56 85 90 68 47 51 

                        

                        

                        

                        

Lycopodium 320 297 197 60 55 105 92 45 141 20 151 

 

                    

TAXA 609 617 625 633 641 649 657 665 673 

HdV-128B 0 0 1 1 2 4 0 4 7 

HdV-181 8 11 17 19 27 7 11 8 3 

HdV-115 2 0 0 0 0 1 0 1 0 

Pediastrum cf boryanum 0 1 4 0 1 5 0 3 3 

Zygnema-type 0 0 0 1 0 0 0 0 0 

Tetraedron (HdV-371) 0 0 0 0 0 0 0 0 0 

Cirrenalia donnae 22 18 29 17 31 17 18 22 24 

cf Cirrenalia lignicola/macrocephala 0 0 0 1 0 0 0 0 0 

Endophragmia/Arthrobotris (HdV-572) 10 9 14 6 7 14 8 7 12 

Coniochaeta 4 2 2 6 2 1 3 7 6 

Rosellinia 4 3 4 2 1 2 0 1 0 

Hypoxylon 0 2 0 2 2 2 3 4 3 

Xylariaceae 6 10 2 3 3 3 3 4 1 

Endophragmiella (TM-009) 0 0 0 0 0 0 0 0 2 

Endophragmiella (TM-224) 1 0 1 1 1 0 0 0 0 

Endophragmiella (TM-227) 1 1 1 0 0 0 0 0 1 

Sporidesmium cf pedunculatum/altum 1 1 2 2 1 2 0 2 2 

Dyctiosporium cf turuloides 1 2 0 0 0 0 0 1 0 

Trichocladium opacum (TM-011) 1 0 2 3 2 0 1 0 1 



225 
 

Brachysporium obovatum (TM-014) 0 0 0 0 0 0 0 0 0 

Corynesporopsis quercicola (EMA-125) 2 2 1 0 0 1 2 0 1 

cf Taeniolella rudis 0 0 0 0 0 0 0 0 0 

Taeniolella cf pulvillus/alta 0 0 0 0 0 0 0 0 0 

Diplocladiella scalaroides 1 0 0 0 0 0 0 0 0 

cf Savoryella lignicola (UG-1118) 0 0 1 0 0 0 0 0 0 

Asterosporium asterospermum 0 0 0 0 0 0 0 0 0 

Helicomyces/Helicosporium spp. 0 0 0 0 0 0 0 1 0 

cf Canalisporium 0 0 0 0 0 0 0 0 0 

Lophiostoma arundinis 1 0 1 1 1 1 0 0 0 

cf Ulocladium consortiale 0 0 0 0 0 0 0 0 0 

Spegazzinia 0 0 0 0 0 0 0 0 1 

Sporormiella-type 1 0 0 0 0 0 0 0 1 

Sordaria-type (HdV-55A) 0 0 0 0 0 2 0 0 1 

Sordaria cf fimicola (gel. sheath) 0 0 0 0 0 0 0 1 0 

Arnium-type 0 0 0 0 0 0 0 0 0 

Arnium-type (gel. sheath) 0 0 0 0 0 0 0 0 0 

cf Arnium imitans 0 0 0 0 0 0 0 0 0 

Delitschia 0 0 2 0 0 1 0 1 0 

Chaetomium 0 0 0 0 0 0 0 1 0 

Gelasinospora cf tetrasperma 0 0 0 0 0 0 0 0 0 

Apiosordaria verruculosa 0 0 0 0 0 0 0 0 0 

Melanosporaceae (HdV-55B) 2 2 0 2 1 1 0 0 2 

Sphaerodes cf fimicola 0 0 0 0 0 0 0 0 0 

Persiciospora cf moreaui 0 0 0 0 0 0 0 1 0 

Sordariaceous' ascospores undiff. 0 0 1 0 0 0 0 0 0 

Cercophora-type 0 1 2 2 1 1 0 2 4 

Clasterosporium caricinum 6 3 2 1 4 5 8 2 5 

Kretzschmaria deusta 0 1 0 1 0 0 1 0 0 

Diporotheca rhizophila 0 0 0 0 0 0 0 0 0 
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Glomus 8 3 1 4 3 3 1 1 3 

Scleroderma 0 1 0 3 0 3 5 0 1 

HdV-340 1 1 0 0 0 0 1 1 0 

cf Ustilago enneapogonis/bullata 1 0 1 2 2 0 7 2 1 

cf Lactarius (HdV-728) 0 0 0 0 0 0 1 0 0 

cf Scutellinia hyperborea/minor 0 0 0 0 0 1 0 0 0 

Sphaerodes 0 0 0 0 0 0 0 0 0 

UR-1 9 11 4 14 8 12 4 9 7 

UR-2 1 0 0 1 3 0 0 0 1 

HdV-3A 0 0 0 0 0 1 0 0 0 

HdV-3B 2 1 1 2 1 1 3 1 3 

HdV-16A 0 0 2 0 0 0 0 0 0 

HdV-16C 0 0 0 0 0 0 0 0 1 

HdV-20 1 1 3 2 3 0 0 2 2 

HdV-38 2 2 1 4 4 7 8 2 4 

HdV-92 0 1 0 2 2 2 3 1 2 

HdV-98 0 1 2 5 0 1 0 2 2 

HdV-120 0 0 0 2 2 0 2 2 1 

HdV-173A 0 0 0 0 2 1 0 0 0 

HdV-173B 0 0 0 0 0 0 0 0 0 

HdV-174 0 0 0 0 0 1 2 0 0 

HdV-200 1 2 0 1 3 1 1 5 2 

cf HdV-367 1 2 0 0 2 1 0 2 1 

HdV-571 0 0 0 0 0 0 0 0 0 

HdV-707 0 1 0 0 0 1 3 0 0 

HdV-708 6 6 6 0 4 0 0 1 4 

HdV-729 0 1 2 0 0 0 0 0 0 

HdV-730 1 0 0 0 0 0 0 0 0 

EMA-10/42 2 1 0 0 1 0 0 1 0 

cf EMA-27 3 9 4 7 2 5 4 12 1 



227 
 

IBB-18 0 0 0 0 0 0 0 0 1 

MO-6 0 0 1 0 0 0 0 0 0 

TM-4008 0 0 0 0 0 0 0 0 0 

cf UG-1110 0 1 2 0 1 0 0 0 0 

cf UG-1141 1 1 2 2 2 0 2 0 0 

Unknown multicelled (cf Sporidesmium socium) 1 1 0 2 0 0 1 0 0 

Unknown multicelled (cf HdV-324) 5 3 0 1 4 4 9 6 5 

Elliptic spores cf HdV-7B/82/306 16 23 15 29 41 20 25 16 19 

Other ca. 10 μm Ø  globose algal/fungal cells 3 2 0 5 15 18 10 12 7 

Other multicelled 26 30 33 22 36 31 24 27 13 

Other clustered cells 9 14 8 12 9 4 7 2 15 

Indeterminable/unknown 23 16 18 15 30 21 17 26 12 

Geoglossum-type 0 0 1 0 0 0 0 0 1 

cf UG-1081 0 0 0 0 0 0 0 0 0 

EMA-28 0 0 0 0 0 0 0 2 0 

EMA-56 1 1 2 0 0 0 0 0 0 

cf UG-1147 0 0 0 0 0 0 0 0 0 

(other multi near to HdV-324) 1 1 0 1 0 0 0 1 0 

HdV-65 0 0 0 0 0 0 0 0 1 

HdV-121 0 0 0 0 2 0 0 0 0 

multi-septate conidia 0 0 2 2 3 1 2 2 2 

cf UG-1185 0 0 0 0 0 0 0 0 0 

EMA-20 0 0 0 0 0 0 0 0 0 

cf HdV-87 0 0 0 0 0 0 0 0 0 

cf HdV-701 0 0 0 0 0 0 0 0 0 

UG 1036 Brach 1 0 0 0 1 2 1 0 2 

cf UG-1197 1 0 0 0 0 0 0 0 0 

HdV-64 0 0 1 1 0 0 0 0 0 

cf UG-1199 0 0 0 0 0 0 0 0 0 

Spirogyra 1 0 0 0 0 0 0 0 0 
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cf Thielavia 0 0 0 0 0 0 0 0 0 

EMA-2 1 0 0 0 0 0 0 0 1 

HdV-359 1 0 0 0 0 0 0 0 0 

EMA-33 0 0 0 0 0 0 0 0 0 

EMA-99 0 0 0 0 0 0 0 0 0 

HdV-22 0 0 0 0 1 0 1 0 0 

cf UG-1153 0 0 0 0 1 0 0 0 0 

HdV-65 1 0 0 0 0 0 0 0 0 

cf HdV-1055 0 0 0 0 0 0 0 0 0 

cf UG 1138/1148 0 0 0 0 0 0 0 0 0 

cf UG-1098 0 0 0 0 0 0 0 0 0 

HdV-179 0 0 0 0 0 1 0 0 0 

cf UG-1105 1 0 0 0 0 4 0 4 1 

cf UG-1080 0 0 0 0 0 0 0 0 0 

cf UG-1147 1 0 0 1 0 1 0 0 1 

cf UG-1005 Brach 0 0 0 0 0 0 0 0 0 

HdV-308 0 0 0 0 0 0 0 0 0 

HdV-17 0 1 0 0 0 0 0 0 0 

pitted Helicosporium 0 0 0 0 0 0 0 0 0 

HdV-25 0 0 0 0 0 0 0 0 0 

HdV-715 0 0 0 0 0 0 0 0 0 

Rivularia? 0 0 0 0 0 0 0 0 0 

HdV-151 0 0 0 0 0 0 0 0 0 

Allungato 553-537-521 0 0 0 0 0 0 0 0 0 

Allungato 537 0 0 0 0 0 0 0 0 0 

EMA-2 0 0 0 0 0 1 0 0 0 

EMA-44 0 0 0 0 0 0 0 0 0 

HdV-51 0 0 0 0 0 0 0 0 0 

TM-015 0 0 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 0 0 0 0 
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HdV-334 0 0 0 0 0 0 0 0 0 

HdV-90 0 0 2 0 0 0 0 0 0 

cf HdV-140 0 0 0 0 0 1 0 0 0 

cf HdV-381 0 0 0 0 0 0 0 0 0 

HdV-365 0 0 1 0 0 1 0 0 0 

HdV-83 1 0 0 0 0 2 0 0 1 

cf EMA-30 1 0 0 0 0 0 0 0 0 

HdV-714 1 0 0 0 0 0 0 1 0 

cf UG-1311 1 0 0 0 0 0 0 0 0 

HdV-18 1 1 0 0 0 0 0 0 0 

cf UG-1307 1 0 0 0 0 0 0 0 0 

HdV-23 0 1 0 0 0 0 0 0 0 

cf UG-1111 0 1 0 0 0 0 0 0 0 

HdV-119 0 1 0 0 0 0 0 0 0 

HdV-152 0 1 0 0 0 0 0 0 0 

HdV-360 0 1 0 0 0 0 0 0 0 

cf Ellis 1139 0 1 0 0 0 0 0 0 0 

HdV-99 0 1 0 0 0 0 0 0 0 

cf UG-1053 0 1 0 0 0 0 0 0 1 

cf HdV-361 0 0 1 0 0 0 0 0 0 

cf UG-1203 0 0 1 0 0 0 0 0 0 

EMA-86 0 0 1 1 0 0 2 0 2 

EMA-134 0 0 1 0 0 0 0 0 0 

HdV-33B 0 0 1 0 0 0 0 0 0 

HdV-5 0 0 1 0 0 0 0 0 0 

cf UG-1125 0 0 1 0 0 0 0 0 0 

cf UG-1285 0 0 0 1 0 0 0 0 0 

Miola III,24 0 0 0 1 0 0 0 0 0 

cf UG-1221 0 0 0 0 1 0 0 0 0 

LCE-27 0 0 0 0 1 0 0 0 0 
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HdV-23 0 0 0 0 1 0 0 0 0 

cf Ellis 771 0 0 0 0 1 0 0 0 0 

cf UG-1319 0 0 0 0 1 0 0 0 2 

HdV-10 0 0 0 0 0 1 0 0 0 

HdV-11 0 0 0 0 0 1 0 0 0 

cf UG-1110 non septate 0 0 0 0 0 1 0 0 0 

cf UG-1032 smooth 0 0 0 0 0 1 0 0 0 

cf UG-1155 0 0 0 0 0 1 0 0 0 

cf UG-1075 0 0 0 0 0 0 1 0 0 

cf UG-1091 0 0 0 0 0 0 1 0 0 

HdV-502 0 0 0 0 0 0 1 0 0 

cf T.1162 0 0 0 0 0 0 1 0 0 

HdV-53 0 0 0 0 0 0 2 0 0 

HdV-85 0 0 0 0 0 0 1 0 0 

cf UG-1194 0 0 0 0 0 0 1 0 0 

cf UG-1124 0 0 0 0 0 0 0 1 0 

cf UG-1061 0 0 0 0 0 0 0 2 0 

cf UG-1182 0 0 0 0 0 0 0 1 0 

cf UG-1106 0 0 0 0 0 0 0 1 0 

cf Ellis 1046 0 0 0 0 0 0 0 1 0 

Ellis 589 0 0 0 0 0 0 0 1 0 

cf EMA-21 0 0 0 0 0 0 0 1 0 

cf UG-1059 0 0 0 0 1 0 1 0 1 

HdV-95 0 0 0 0 0 0 0 0 1 

cf UG-1122 0 0 0 0 0 0 0 0 1 

cf UG-1352 0 0 0 0 0 0 0 0 1 

Ellis 355 0 0 0 0 0 0 0 0 1 

Dydimella D 0 0 0 0 0 0 0 0 1 

HdV-47 0 0 0 0 0 0 0 0 1 

cf UG-1274 0 0 0 0 0 0 0 0 1 



231 
 

Leptospaeria K-N(but 4 cells) or UG-1112 0 0 0 0 0 0 0 0 1 

cf UG 1084 0 0 0 0 0 0 0 0 0 

cf UG-1042 Montagnula 0 0 0 0 0 0 0 0 0 

cf Ellis 1335 0 0 0 0 0 0 0 0 0 

Thielavia? 0 0 0 0 0 0 0 0 0 

HdV-64 0 0 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 0 0 

cf EMA-59 0 0 0 0 0 0 0 0 0 

cf UG-1311 0 0 0 0 0 0 0 0 0 

cf HdV-702 0 0 0 0 0 0 0 0 0 

EMA-8 0 0 0 0 0 0 0 0 0 

cf Ellis 988 0 0 0 0 0 0 0 0 0 

cf 698 0 0 0 0 0 0 0 0 0 

cf HdV-718 0 0 0 0 0 0 0 0 0 

cf UG-1085 0 0 0 0 0 0 0 0 0 

cf Ellis 1344-1796 0 0 0 0 0 0 0 0 0 

Ellis 1512 0 0 0 0 0 0 0 0 0 

cf HdV-1223 0 0 0 0 0 0 0 0 0 

cf HdV-9 0 0 0 0 0 0 0 0 0 

cf UG-1127 0 0 0 0 0 0 0 0 0 

HdV-15 0 0 0 0 0 0 0 0 0 

cf Ellis 326 0 0 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 0 0 

HdV-332 0 0 0 0 0 0 0 0 0 

168 (dung?) 0 0 0 0 0 0 0 0 0 

cf USNP MS 3163 0 0 0 0 0 0 0 0 0 

Ellis 306 0 0 0 0 0 0 0 0 0 

cf UG-1138 0 0 0 0 0 0 0 0 0 

HdV-306 0 0 0 0 0 0 0 0 0 

HdV-242 0 0 0 0 0 0 0 0 0 
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HdV-124 0 0 0 0 0 0 0 0 0 

cf UG-1176 0 0 0 0 0 0 0 0 0 

cf Ellis 365 0 0 0 0 0 0 0 0 0 

TM-036 0 0 0 0 0 0 0 0 0 

cf UG-1072 0 0 0 0 0 0 0 0 0 

Ellis 1096/1156/306 0 0 0 0 0 0 0 0 0 

cf HdV-733 0 0 0 0 0 0 0 0 0 

cf UG-1114 0 0 0 0 0 0 0 0 0 

cf HdV-223 0 0 0 0 0 0 0 0 0 

cf HdV-305 0 0 0 0 0 0 0 0 0 

cf UG-1185 0 0 0 0 0 0 0 0 0 

cf Ellis 1208 0 0 0 0 0 0 0 0 0 

cf Ellis 1168 0 0 0 0 0 0 0 0 0 

HdV-221 0 0 0 0 0 0 0 0 0 

cf 1125 0 0 0 0 0 0 0 0 0 

cf HdV-339 0 0 0 0 0 0 0 0 0 

cf Ellis 793 0 0 0 0 0 0 0 0 0 

cf UG-1276 0 0 0 0 0 0 0 0 0 

cf Ellis 1271 0 0 0 0 0 0 0 0 0 

Total 213 216 211 216 281 228 213 224 212 

                    

Fungal fruiting bodies undiff. (HdV-8) 29 15 17 21 34 27 12 13 23 

Microthyrium (HdV-8B) 2 1 3 6 1 0 0 3 3 

HdV-8A 0 1 0 0 1 1 0 0 0 

HdV-8E 0 0 0 0 0 0 0 0 0 

HdV-8F 0 0 0 0 0 1 0 0 0 

HdV-8D 1 0 0 1 0 0 0 0 0 

Bryophyte capsules 0 0 0 0 0 1 0 0 0 

Other zoological 19 15 22 9 33 24 9 9 14 

Chironomidae 5 3 5 4 5 0 4 0 3 
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Neorhabdocoela eggs 0 0 0 0 1 1 1 1 0 

HdV-52 (body fragments) 0 0 0 0 0 0 0 0 0 

Arcella 0 0 0 1 0 0 0 0 0 

                    

                    

                    

                    

Tracheids (EMA-1) 77 48 107 104 135 61 83 73 216 

Highly corroded wood (EMA-7) 7 2 4 3 2 7 11 10 13 

Wood rays aggregates (EMA-11) 22 15 33 21 34 23 34 22 57 

Hardwood periderm (EMA-16) 3 2 8 11 8 8 2 5 8 

Fungal tissue (EMA-95) 73 43 75 106 87 45 61 41 81 

                    

                    

                    

                    

Lycopodium 59 92 68 84 154 41 32 19 61 

 

                

TAXA 681 689 697 705 713 721 729 

HdV-128B 13 14 13 36 47 50 79 

HdV-181 3 10 9 16 8 19 7 

HdV-115 0 1 1 0 0 0 0 

Pediastrum cf boryanum 4 6 1 1 2 3 2 

Zygnema-type 0 0 0 0 0 0 0 

Tetraedron (HdV-371) 0 0 0 0 0 0 0 

Cirrenalia donnae 27 10 6 8 8 13 24 

cf Cirrenalia lignicola/macrocephala 0 0 0 0 0 0 0 

Endophragmia/Arthrobotris (HdV-572) 4 8 2 2 4 0 5 

Coniochaeta 0 1 3 1 7 3 9 
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Rosellinia 4 3 1 4 4 3 7 

Hypoxylon 1 2 3 0 4 0 0 

Xylariaceae 2 7 0 3 2 6 1 

Endophragmiella (TM-009) 0 0 0 0 0 0 0 

Endophragmiella (TM-224) 0 0 1 0 0 0 0 

Endophragmiella (TM-227) 0 0 0 0 1 0 1 

Sporidesmium cf pedunculatum/altum 3 3 4 2 2 1 11 

Dyctiosporium cf turuloides 1 1 0 1 2 1 1 

Trichocladium opacum (TM-011) 4 0 1 2 1 1 2 

Brachysporium obovatum (TM-014) 0 0 0 0 0 0 0 

Corynesporopsis quercicola (EMA-125) 1 1 0 1 0 0 0 

cf Taeniolella rudis 0 0 0 0 0 0 0 

Taeniolella cf pulvillus/alta 0 1 0 0 0 0 1 

Diplocladiella scalaroides 0 0 0 0 0 0 0 

cf Savoryella lignicola (UG-1118) 2 0 0 0 0 0 0 

Asterosporium asterospermum 0 0 0 0 0 0 1 

Helicomyces/Helicosporium spp. 0 0 0 0 0 0 0 

cf Canalisporium 0 0 0 1 0 0 0 

Lophiostoma arundinis 0 1 0 0 0 0 0 

cf Ulocladium consortiale 0 0 0 0 1 0 0 

Spegazzinia 0 0 0 0 0 0 0 

Sporormiella-type 0 0 0 0 0 1 1 

Sordaria-type (HdV-55A) 1 0 0 0 0 0 0 

Sordaria cf fimicola (gel. sheath) 0 0 0 0 0 0 0 

Arnium-type 0 0 0 0 0 0 0 

Arnium-type (gel. sheath) 0 0 0 0 0 0 0 

cf Arnium imitans 0 0 0 0 0 1 0 

Delitschia 0 0 0 0 1 4 0 

Chaetomium 0 0 0 0 0 1 0 

Gelasinospora cf tetrasperma 0 0 0 0 0 0 0 
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Apiosordaria verruculosa 0 0 0 1 0 0 0 

Melanosporaceae (HdV-55B) 1 0 1 3 0 2 0 

Sphaerodes cf fimicola 0 0 0 0 0 0 0 

Persiciospora cf moreaui 0 0 0 0 0 0 0 

Sordariaceous' ascospores undiff. 0 0 0 0 0 0 1 

Cercophora-type 2 1 1 1 0 1 1 

Clasterosporium caricinum 2 1 3 8 3 8 3 

Kretzschmaria deusta 1 0 0 0 1 0 0 

Diporotheca rhizophila 0 0 0 1 0 0 0 

Glomus 4 4 10 2 4 2 5 

Scleroderma 3 2 5 1 3 3 1 

HdV-340 0 0 0 4 1 1 0 

cf Ustilago enneapogonis/bullata 2 0 3 7 0 0 0 

cf Lactarius (HdV-728) 0 0 0 0 0 0 0 

cf Scutellinia hyperborea/minor 0 0 0 0 1 0 0 

Sphaerodes 0 0 0 0 0 0 0 

UR-1 7 6 7 5 3 5 11 

UR-2 2 3 2 1 0 4 2 

HdV-3A 0 0 0 0 0 0 0 

HdV-3B 0 0 0 0 1 2 0 

HdV-16A 0 0 0 0 1 0 0 

HdV-16C 1 0 0 1 0 0 0 

HdV-20 1 0 4 3 1 2 7 

HdV-38 3 2 5 4 2 3 3 

HdV-92 0 0 3 3 5 9 5 

HdV-98 0 2 2 0 1 0 0 

HdV-120 2 3 0 1 1 0 3 

HdV-173A 0 1 0 0 1 0 1 

HdV-173B 0 0 0 0 1 0 0 

HdV-174 0 0 0 0 1 1 0 
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HdV-200 5 0 0 1 1 2 2 

cf HdV-367 0 1 5 1 1 1 1 

HdV-571 0 0 0 0 0 0 0 

HdV-707 0 0 0 0 1 0 0 

HdV-708 2 2 6 0 1 1 1 

HdV-729 0 0 0 1 0 0 0 

HdV-730 0 0 0 0 0 0 0 

EMA-10/42 0 2 0 0 0 0 1 

cf EMA-27 1 2 2 1 1 0 4 

IBB-18 0 0 0 0 0 0 0 

MO-6 0 0 0 0 0 0 0 

TM-4008 0 0 0 0 0 0 0 

cf UG-1110 0 0 0 0 2 0 1 

cf UG-1141 1 0 0 0 0 0 1 

Unknown multicelled (cf Sporidesmium socium) 2 1 0 0 0 0 0 

Unknown multicelled (cf HdV-324) 1 5 5 0 1 1 0 

Elliptic spores cf HdV-7B/82/306 25 20 30 8 16 26 23 

Other ca. 10 μm Ø  globose algal/fungal cells 17 8 0 0 1 3 1 

Other multicelled 16 16 17 14 13 18 12 

Other clustered cells 9 8 15 12 15 7 6 

Indeterminable/unknown 28 35 31 42 29 32 43 

Geoglossum-type 0 0 0 0 0 0 1 

cf UG-1081 0 0 0 0 0 0 0 

EMA-28 0 0 0 0 0 0 0 

EMA-56 0 0 0 2 0 0 0 

cf UG-1147 0 0 0 0 0 0 0 

(other multi near to HdV-324) 0 1 0 0 0 1 0 

HdV-65 0 0 3 0 1 0 0 

HdV-121 0 0 0 3 1 0 0 

multi-septate conidia 0 0 1 1 2 4 2 
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cf UG-1185 0 0 0 0 0 0 0 

EMA-20 0 0 0 0 0 0 0 

cf HdV-87 0 0 0 0 0 0 0 

cf HdV-701 0 0 0 0 0 0 0 

UG 1036 Brach 1 0 0 1 0 1 1 

cf UG-1197 0 0 0 0 0 0 0 

HdV-64 0 0 0 1 0 0 0 

cf UG-1199 1 0 0 0 0 0 0 

Spirogyra 0 0 0 0 0 0 0 

cf Thielavia 0 0 0 0 0 0 0 

EMA-2 0 0 0 0 0 1 1 

HdV-359 0 0 0 0 0 0 0 

EMA-33 0 0 0 0 0 0 0 

EMA-99 0 0 0 0 0 0 0 

HdV-22 0 0 0 0 1 0 0 

cf UG-1153 0 0 0 0 1 0 0 

HdV-65 0 1 0 0 0 0 0 

cf HdV-1055 0 0 0 0 0 0 0 

cf UG 1138/1148 0 0 1 1 0 0 0 

cf UG-1098 0 0 0 0 0 0 0 

HdV-179 0 0 0 0 0 0 1 

cf UG-1105 1 0 0 0 2 0 0 

cf UG-1080 0 0 0 0 0 0 0 

cf UG-1147 0 0 0 0 0 0 1 

cf UG-1005 Brach 0 0 0 0 0 0 0 

HdV-308 0 0 0 0 0 0 0 

HdV-17 0 0 0 0 0 0 0 

pitted Helicosporium 0 0 1 0 0 0 0 

HdV-25 0 0 0 0 0 2 0 

HdV-715 0 0 0 0 0 0 0 
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Rivularia? 0 0 0 0 0 0 0 

HdV-151 0 0 0 0 0 0 0 

Allungato 553-537-521 0 0 0 0 0 0 0 

Allungato 537 0 0 0 0 0 0 0 

EMA-2 0 0 0 0 0 0 0 

EMA-44 0 0 0 0 0 0 0 

HdV-51 0 0 0 0 0 0 0 

TM-015 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 1 0 

HdV-334 0 0 0 0 0 0 0 

HdV-90 0 0 0 0 0 0 0 

cf HdV-140 0 0 0 0 0 0 0 

cf HdV-381 0 0 0 0 0 0 0 

HdV-365 0 0 0 0 0 0 0 

HdV-83 1 0 0 0 0 0 0 

cf EMA-30 0 0 0 0 0 0 0 

HdV-714 0 0 0 0 0 0 0 

cf UG-1311 0 0 0 0 0 0 0 

HdV-18 0 0 0 1 0 0 0 

cf UG-1307 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 

cf UG-1111 0 0 0 0 0 0 0 

HdV-119 0 0 0 0 0 0 0 

HdV-152 0 0 0 1 0 0 0 

HdV-360 0 0 0 0 0 0 0 

cf Ellis 1139 0 0 0 0 0 0 0 

HdV-99 0 0 0 0 0 0 0 

cf UG-1053 1 0 0 0 0 0 0 

cf HdV-361 0 0 0 0 0 0 0 

cf UG-1203 0 0 0 0 0 0 0 
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EMA-86 0 0 0 0 0 0 0 

EMA-134 0 0 0 0 0 1 0 

HdV-33B 0 0 0 0 0 0 0 

HdV-5 0 0 0 0 0 0 0 

cf UG-1125 0 0 0 0 0 0 0 

cf UG-1285 0 0 0 0 0 0 0 

Miola III,24 0 0 0 0 0 0 0 

cf UG-1221 0 0 0 0 0 0 0 

LCE-27 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 

cf Ellis 771 0 0 0 0 0 0 0 

cf UG-1319 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 0 0 

HdV-11 0 0 0 1 1 0 0 

cf UG-1110 non septate 0 0 0 0 0 0 0 

cf UG-1032 smooth 0 0 0 0 0 0 0 

cf UG-1155 0 1 0 0 0 0 0 

cf UG-1075 0 0 0 0 0 0 0 

cf UG-1091 0 0 0 0 0 0 0 

HdV-502 1 0 0 0 0 0 0 

cf T.1162 0 0 0 0 0 0 0 

HdV-53 0 0 0 0 0 0 0 

HdV-85 0 0 0 1 0 0 0 

cf UG-1194 0 0 0 0 1 0 0 

cf UG-1124 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 

cf UG-1182 0 0 0 0 0 0 0 

cf UG-1106 0 0 0 0 0 0 0 

cf Ellis 1046 0 0 0 0 0 0 0 

Ellis 589 0 0 0 0 0 0 0 
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cf EMA-21 0 0 0 0 0 0 0 

cf UG-1059 0 2 0 0 0 0 1 

HdV-95 0 0 0 0 0 0 0 

cf UG-1122 0 0 0 0 0 0 0 

cf UG-1352 0 0 0 0 0 0 0 

Ellis 355 0 0 0 0 0 0 0 

Dydimella D 0 0 0 0 0 0 0 

HdV-47 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 

Leptospaeria K-N(but 4 cells) or UG-1112 0 0 0 0 0 0 0 

cf UG 1084 1 0 0 0 0 0 0 

cf UG-1042 Montagnula 1 0 0 2 1 0 0 

cf Ellis 1335 2 0 0 0 0 0 0 

Thielavia? 1 0 0 0 0 0 0 

HdV-64 0 1 0 1 0 0 0 

cf UG-1061 0 1 0 0 0 0 0 

cf EMA-59 0 1 0 0 0 0 0 

cf UG-1311 0 2 0 0 0 0 0 

cf HdV-702 0 1 0 0 0 0 0 

EMA-8 0 2 0 0 0 0 0 

cf Ellis 988 0 1 0 0 0 0 0 

cf 698 0 1 0 0 0 0 0 

cf HdV-718 0 1 0 0 0 0 0 

cf UG-1085 0 0 1 0 0 0 0 

cf Ellis 1344-1796 0 0 1 0 0 0 0 

Ellis 1512 0 0 1 0 0 0 0 

cf HdV-1223 0 0 1 0 0 0 0 

cf HdV-9 0 0 1 0 0 0 0 

cf UG-1127 0 0 0 1 0 0 0 

HdV-15 0 0 0 1 0 0 0 
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cf Ellis 326 0 0 0 1 0 0 0 

cf UG-1274 0 0 0 1 0 0 0 

HdV-332 0 0 0 2 0 0 0 

168 (dung?) 0 0 0 0 1 0 0 

cf USNP MS 3163 0 0 0 0 1 2 0 

Ellis 306 0 0 0 0 1 0 0 

cf UG-1138 0 0 0 0 1 0 0 

HdV-306 0 0 0 0 1 0 0 

HdV-242 0 0 0 0 1 0 0 

HdV-124 0 0 0 0 1 0 0 

cf UG-1176 0 0 0 0 4 0 0 

cf Ellis 365 0 0 0 0 1 1 0 

TM-036 0 0 0 0 0 1 0 

cf UG-1072 0 0 0 0 0 1 1 

Ellis 1096/1156/306 0 0 0 0 0 1 0 

cf HdV-733 0 0 0 0 0 1 0 

cf UG-1114 0 0 0 0 0 1 0 

cf HdV-223 0 0 0 0 0 1 0 

cf HdV-305 0 0 0 0 0 1 0 

cf UG-1185 0 0 0 0 0 1 0 

cf Ellis 1208 0 0 0 0 0 1 0 

cf Ellis 1168 0 0 0 0 0 1 2 

HdV-221 0 0 0 0 0 1 1 

cf 1125 0 0 0 0 0 1 0 

cf HdV-339 0 0 0 0 0 1 0 

cf Ellis 793 0 0 0 0 0 0 1 

cf UG-1276 0 0 0 0 0 0 1 

cf Ellis 1271 0 0 0 0 0 0 1 

Total 219 210 213 226 230 268 306 
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Fungal fruiting bodies undiff. (HdV-8) 17 19 9 4 12 10 12 

Microthyrium (HdV-8B) 2 3 7 3 5 1 3 

HdV-8A 0 1 1 0 0 2 0 

HdV-8E 0 1 0 0 0 0 0 

HdV-8F 0 0 0 0 0 0 0 

HdV-8D 0 0 0 0 0 0 0 

Bryophyte capsules 0 0 0 0 0 0 0 

Other zoological 21 19 9 13 14 15 10 

Chironomidae 0 2 4 2 5 2 2 

Neorhabdocoela eggs 0 0 0 0 1 2 4 

HdV-52 (body fragments) 0 1 0 0 0 3 0 

Arcella 0 0 0 0 0 0 0 

                

                

                

                

Tracheids (EMA-1) 106 70 68 63 37 147 30 

Highly corroded wood (EMA-7) 14 16 10 20 14 6 16 

Wood rays aggregates (EMA-11) 23 19 17 20 17 25 42 

Hardwood periderm (EMA-16) 4 2 5 4 3 3 4 

Fungal tissue (EMA-95) 72 50 61 43 51 30 65 

                

                

                

                

Lycopodium 147 63 83 43 67 29 135 
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Genoa Piazza Vittoria  DEPTHS (cm)                 

TAXA 441 457 473 489 505 521 537 553 569 585 

HdV-128B 0 0 0 0 0 0 0 0 0 0 

HdV-181 8 17 7 8 7 11 11 15 11 9 

HdV-115 0 0 1 0 0 0 0 0 0 0 

Pediastrum cf boryanum 17 10 39 4 13 16 8 8 1 1 

Zygnema-type 0 0 0 0 0 0 0 0 0 0 

Tetraedron (HdV-371) 0 0 1 0 0 0 0 0 0 0 

Cirrenalia donnae 10 39 2 14 21 13 17 13 33 11 

cf Cirrenalia lignicola/macrocephala 0 0 0 0 0 0 0 0 0 0 

Endophragmia/Arthrobotris (HdV-572) 3 8 6 8 17 4 18 21 16 7 

Coniochaeta 2 6 5 6 8 2 8 5 0 4 

Rosellinia 0 0 4 8 1 2 4 0 0 1 

Hypoxylon 1 1 0 0 0 2 1 1 1 0 

Xylariaceae 5 2 6 11 3 6 6 4 1 4 

Endophragmiella (TM-009) 0 0 0 1 0 0 0 0 0 0 

Endophragmiella (TM-224) 0 0 0 0 1 1 0 0 0 0 

Endophragmiella (TM-227) 1 1 0 0 0 0 0 0 1 0 

Sporidesmium cf pedunculatum/altum 0 2 2 1 2 1 4 1 2 1 

Dyctiosporium cf turuloides 0 0 0 0 0 0 0 1 1 1 

Trichocladium opacum (TM-011) 0 1 2 0 0 0 0 0 1 0 

Brachysporium obovatum (TM-014) 0 0 1 0 0 0 0 0 1 0 

Corynesporopsis quercicola (EMA-125) 0 0 0 0 0 1 1 0 1 1 

cf Taeniolella rudis 0 1 0 0 0 0 0 0 0 0 

Taeniolella cf pulvillus/alta 0 0 0 0 0 0 0 0 0 0 

Diplocladiella scalaroides 0 0 0 0 0 0 0 0 0 0 

cf Savoryella lignicola (UG-1118) 0 0 0 1 0 0 0 0 0 0 

Asterosporium asterospermum 0 0 0 1 0 0 0 0 0 0 

Helicomyces/Helicosporium spp. 0 0 0 0 1 0 0 0 0 3 

cf Canalisporium 0 0 0 0 0 0 0 0 0 0 
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Lophiostoma arundinis 1 0 0 0 0 1 1 0 0 1 

cf Ulocladium consortiale 0 0 0 0 0 0 0 0 0 0 

Spegazzinia 0 0 0 1 0 0 0 0 0 0 

Sporormiella-type 2 0 0 2 2 0 0 0 0 0 

Sordaria-type (HdV-55A) 0 0 1 1 0 0 1 0 0 0 

Sordaria cf fimicola (gel. sheath) 0 0 1 0 0 0 0 0 0 0 

Arnium-type 0 0 0 0 0 0 0 0 1 0 

Arnium-type (gel. sheath) 0 1 0 0 0 0 0 0 0 0 

cf Arnium imitans 0 0 1 0 0 0 0 0 0 0 

Delitschia 0 0 0 0 0 0 1 0 0 0 

Chaetomium 1 0 0 0 0 0 0 0 0 0 

Gelasinospora cf tetrasperma 0 0 0 0 0 1 0 0 0 0 

Apiosordaria verruculosa 0 0 0 0 0 0 0 0 0 0 

Melanosporaceae (HdV-55B) 3 4 2 2 3 0 1 1 4 0 

Sphaerodes cf fimicola 0 1 0 0 0 0 0 0 0 0 

Persiciospora cf moreaui 0 0 0 0 0 0 0 0 0 0 

Sordariaceous' ascospores undiff. 0 0 0 0 0 1 1 0 1 0 

Cercophora-type 4 1 1 1 0 1 6 1 2 2 

Clasterosporium caricinum 1 0 7 5 0 1 1 0 0 2 

Kretzschmaria deusta 0 0 0 1 0 0 1 0 0 0 

Diporotheca rhizophila 0 1 0 0 0 0 0 0 0 1 

Glomus 3 6 4 1 2 7 2 5 1 6 

Scleroderma 0 2 4 24 2 2 0 0 0 1 

HdV-340 1 0 1 0 0 0 0 0 0 1 

cf Ustilago enneapogonis/bullata 0 1 2 5 1 3 2 2 6 3 

cf Lactarius (HdV-728) 0 1 1 0 0 1 0 1 0 0 

cf Scutellinia hyperborea/minor 0 0 2 0 0 1 1 0 0 0 

Sphaerodes 0 0 0 0 0 1 0 1 0 0 

UR-1 4 1 6 5 7 8 11 9 13 8 

UR-2 0 0 1 1 0 0 0 0 0 0 
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HdV-3A 0 0 0 1 0 2 1 1 0 1 

HdV-3B 0 1 0 0 3 4 2 3 1 7 

HdV-16A 0 0 0 0 2 0 0 2 0 0 

HdV-16C 0 0 0 0 0 0 0 0 0 0 

HdV-20 0 1 4 3 2 2 4 0 1 3 

HdV-38 1 2 1 0 1 1 2 6 1 2 

HdV-92 0 1 0 0 1 1 1 2 0 2 

HdV-98 0 1 6 0 1 1 0 8 1 1 

HdV-120 3 3 4 5 11 5 3 2 3 0 

HdV-173A 0 0 0 0 0 0 2 0 1 0 

HdV-173B 0 0 0 0 0 0 0 0 0 0 

HdV-174 0 0 2 0 0 0 0 0 0 0 

HdV-200 2 1 2 5 2 3 3 2 2 1 

cf HdV-367 2 0 0 1 1 0 1 1 2 3 

HdV-571 0 0 0 1 0 0 0 0 0 0 

HdV-707 0 1 1 1 0 1 0 0 0 0 

HdV-708 4 8 2 0 3 3 11 7 5 1 

HdV-729 0 1 3 0 2 0 0 0 1 0 

HdV-730 0 1 0 0 0 0 0 0 0 1 

EMA-10/42 0 0 1 0 1 2 4 0 0 0 

cf EMA-27 1 2 6 2 7 2 5 4 3 4 

IBB-18 0 0 1 0 0 0 0 0 0 0 

MO-6 0 0 0 0 0 0 0 0 0 0 

TM-4008 0 0 0 1 1 0 0 0 0 0 

cf UG-1110 0 0 0 1 0 0 1 1 0 0 

cf UG-1141 0 0 0 2 1 1 1 1 1 0 

Unknown multicelled (cf Sporidesmium 
socium) 14 1 0 0 0 1 0 0 3 0 

Unknown multicelled (cf HdV-324) 1 0 1 1 4 5 0 2 1 1 

Elliptic spores cf HdV-7B/82/306 39 29 17 33 34 18 22 18 13 27 
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Other ca. 10 μm Ø  globose algal/fungal cells 18 3 5 11 4 1 3 4 6 4 

Other multicelled 28 27 28 23 16 22 27 28 22 31 

Other clustered cells 8 0 15 13 7 5 6 11 7 5 

Indeterminable/unknown 35 42 14 31 37 28 27 11 38 33 

Geoglossum-type 0 0 1 0 0 0 0 0 0 0 

cf UG-1081 1 0 0 0 0 0 0 0 0 0 

EMA-28 1 0 1 0 0 0 0 0 0 0 

EMA-56 1 0 0 0 0 0 0 1 0 0 

cf UG-1147 1 0 0 0 0 0 0 0 0 0 

(other multi near to HdV-324) 4 0 0 1 0 1 1 0 0 1 

HdV-65 1 0 0 0 0 3 1 0 0 0 

HdV-121 1 0 2 2 1 0 0 0 0 1 

multi-septate conidia 2 1 0 1 1 1 1 1 0 1 

cf UG-1185 1 0 0 0 0 0 0 0 0 0 

EMA-20 0 1 1 0 2 2 0 0 0 0 

cf HdV-87 0 1 0 0 0 0 0 0 0 0 

cf HdV-701 0 1 0 0 0 0 0 0 0 0 

UG 1036 Brach 0 1 2 0 0 0 0 0 1 0 

cf UG-1197 0 1 0 1 0 0 0 0 1 2 

HdV-64 0 1 0 0 0 0 1 0 1 0 

cf UG-1199 0 1 0 0 0 0 0 0 0 0 

Spirogyra 0 2 1 0 0 0 0 1 0 1 

cf Thielavia 0 1 0 0 0 0 0 0 0 0 

EMA-2 0 0 1 0 0 0 0 0 0 0 

HdV-359 0 0 1 2 0 0 1 0 0 0 

EMA-33 0 0 1 0 0 0 0 0 0 0 

EMA-99 0 0 1 0 0 0 0 0 0 0 

HdV-22 0 0 1 0 0 0 0 0 0 1 

cf UG-1153 0 0 1 0 0 0 0 0 0 0 

HdV-65 0 0 4 1 0 0 0 2 0 1 
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cf HdV-1055 0 0 0 1 0 0 0 0 0 0 

cf UG 1138/1148 0 0 0 1 0 0 0 0 0 0 

cf UG-1098 0 0 0 1 0 0 0 0 0 0 

HdV-179 0 0 0 1 0 0 0 0 1 0 

cf UG-1105 0 0 0 1 1 1 0 0 0 2 

cf UG-1080 0 0 0 0 1 0 0 0 0 0 

cf UG-1147 0 0 0 0 1 1 0 0 0 0 

cf UG-1005 Brach 0 0 0 0 1 0 0 0 0 0 

HdV-308 0 0 0 0 2 0 0 0 0 0 

HdV-17 0 0 0 0 1 0 1 0 0 1 

pitted Helicosporium 0 0 0 0 1 0 0 0 0 0 

HdV-25 0 0 0 0 0 1 0 0 0 0 

HdV-715 0 0 0 0 0 1 0 0 0 0 

Rivularia? 0 0 0 0 0 1 1 0 0 0 

HdV-151 0 0 0 0 0 1 1 0 0 1 

Allungato 553-537-521 0 0 0 0 0 1 1 1 0 0 

Allungato 537 0 0 0 0 0 0 1 0 0 0 

EMA-2 0 0 0 0 0 0 2 0 0 0 

EMA-44 0 0 0 0 0 0 1 0 0 0 

HdV-51 0 0 0 0 0 0 0 1 0 0 

TM-015 0 0 0 0 0 0 0 0 1 0 

HdV-10 0 0 0 0 0 0 0 0 1 0 

HdV-334 0 0 0 0 0 0 0 0 0 1 

HdV-90 0 0 0 0 0 0 0 0 0 1 

cf HdV-140 0 0 0 0 0 0 0 0 0 1 

cf HdV-381 0 0 0 0 0 0 0 0 0 0 

HdV-365 0 0 0 0 0 0 0 0 0 0 

HdV-83 0 0 0 0 0 0 0 0 0 0 

cf EMA-30 0 0 0 0 0 0 0 0 0 0 

HdV-714 0 0 0 0 0 0 0 0 0 0 
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cf UG-1311 0 0 0 0 0 0 0 0 0 0 

HdV-18 0 0 0 0 0 0 0 0 0 0 

cf UG-1307 0 0 0 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 0 0 0 

cf UG-1111 0 0 0 0 0 0 0 0 0 0 

HdV-119 0 0 0 0 0 0 0 0 0 0 

HdV-152 0 0 0 0 0 0 0 0 0 0 

HdV-360 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1139 0 0 0 0 0 0 0 0 0 0 

HdV-99 0 0 0 0 0 0 0 0 0 0 

cf UG-1053 0 0 0 0 0 0 0 0 0 0 

cf HdV-361 0 0 0 0 0 0 0 0 0 0 

cf UG-1203 0 0 0 0 0 0 0 0 0 0 

EMA-86 0 0 0 0 0 0 0 0 0 0 

EMA-134 0 0 0 0 0 0 0 0 0 0 

HdV-33B 0 0 0 0 0 0 0 0 0 0 

HdV-5 0 0 0 0 0 0 0 0 0 0 

cf UG-1125 0 0 0 0 0 0 0 0 0 0 

cf UG-1285 0 0 0 0 0 0 0 0 0 0 

Miola III,24 0 0 0 0 0 0 0 0 0 0 

cf UG-1221 0 0 0 0 0 0 0 0 0 0 

LCE-27 0 0 0 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 0 0 0 

cf Ellis 771 0 0 0 0 0 0 0 0 0 0 

cf UG-1319 0 0 0 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 0 0 0 0 0 

HdV-11 0 0 0 0 0 0 0 0 0 0 

cf UG-1110 non septate 0 0 0 0 0 0 0 0 0 0 

cf UG-1032 smooth 0 0 0 0 0 0 0 0 0 0 

cf UG-1155 0 0 0 0 0 0 0 0 0 0 
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cf UG-1075 0 0 0 0 0 0 0 0 0 0 

cf UG-1091 0 0 0 0 0 0 0 0 0 0 

HdV-502 0 0 0 0 0 0 0 0 0 0 

cf T.1162 0 0 0 0 0 0 0 0 0 0 

HdV-53 0 0 0 0 0 0 0 0 0 0 

HdV-85 0 0 0 0 0 0 0 0 0 0 

cf UG-1194 0 0 0 0 0 0 0 0 0 0 

cf UG-1124 0 0 0 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 0 0 0 

cf UG-1182 0 0 0 0 0 0 0 0 0 0 

cf UG-1106 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1046 0 0 0 0 0 0 0 0 0 0 

Ellis 589 0 0 0 0 0 0 0 0 0 0 

cf EMA-21 0 0 0 0 0 0 0 0 0 0 

cf UG-1059 0 0 0 0 0 0 1 0 0 0 

HdV-95 0 0 0 0 0 0 0 0 0 0 

cf UG-1122 0 0 0 0 0 0 0 0 0 0 

cf UG-1352 0 0 0 0 0 0 0 0 0 0 

Ellis 355 0 0 0 0 0 0 0 0 0 0 

Dydimella D 0 0 0 0 0 0 0 0 0 0 

HdV-47 0 0 0 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 0 0 0 

Leptospaeria K-N(but 4 cells) or UG-1112 0 0 0 0 0 0 0 0 0 0 

cf UG 1084 0 0 0 0 0 0 0 0 0 0 

cf UG-1042 Montagnula 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1335 0 0 0 0 0 0 0 0 0 0 

Thielavia? 0 0 0 0 0 0 0 0 0 0 

HdV-64 0 0 0 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 0 0 0 

cf EMA-59 0 0 0 0 0 0 0 0 0 0 
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cf UG-1311 0 0 0 0 0 0 0 0 0 0 

cf HdV-702 0 0 0 0 0 0 0 0 0 0 

EMA-8 0 0 0 0 0 0 0 0 0 0 

cf Ellis 988 0 0 0 0 0 0 0 0 0 0 

cf 698 0 0 0 0 0 0 0 0 0 0 

cf HdV-718 0 0 0 0 0 0 0 0 0 0 

cf UG-1085 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1344-1796 0 0 0 0 0 0 0 0 0 0 

Ellis 1512 0 0 0 0 0 0 0 0 0 0 

cf HdV-1223 0 0 0 0 0 0 0 0 0 0 

cf HdV-9 0 0 0 0 0 0 0 0 0 0 

cf UG-1127 0 0 0 0 0 0 0 0 0 0 

HdV-15 0 0 0 0 0 0 0 0 0 0 

cf Ellis 326 0 0 0 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 0 0 0 

HdV-332 0 0 0 0 0 0 0 0 0 0 

168 (dung?) 0 0 0 0 0 0 0 0 0 0 

cf USNP MS 3163 0 0 0 0 0 0 0 0 0 0 

Ellis 306 0 0 0 0 0 0 0 0 0 0 

cf UG-1138 0 0 0 0 0 0 0 0 0 0 

HdV-306 0 0 0 0 0 0 0 0 0 0 

HdV-242 0 0 0 0 0 0 0 0 0 0 

HdV-124 0 0 0 0 0 0 0 0 0 0 

cf UG-1176 0 0 0 0 0 0 0 0 0 0 

cf Ellis 365 0 0 0 0 0 0 0 0 0 0 

TM-036 0 0 0 0 0 0 0 0 0 0 

cf UG-1072 0 0 0 0 0 0 0 0 0 0 

Ellis 1096/1156/306 0 0 0 0 0 0 0 0 0 0 

cf HdV-733 0 0 0 0 0 0 0 0 0 0 

cf UG-1114 0 0 0 0 0 0 0 0 0 0 
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cf HdV-223 0 0 0 0 0 0 0 0 0 0 

cf HdV-305 0 0 0 0 0 0 0 0 0 0 

cf UG-1185 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1208 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1168 0 0 0 0 0 0 0 0 0 0 

HdV-221 0 0 0 0 0 0 0 0 0 0 

cf 1125 0 0 0 0 0 0 0 0 0 0 

cf HdV-339 0 0 0 0 0 0 0 0 0 0 

cf Ellis 793 0 0 0 0 0 0 0 0 0 0 

cf UG-1276 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1271 0 0 0 0 0 0 0 0 0 0 

Total 236 243 241 260 244 209 247 210 216 210 

                      

Fungal fruiting bodies undiff. (HdV-8) 12 15 11 10 15 15 29 16 14 19 

Microthyrium (HdV-8B) 0 2 0 0 0 2 2 4 1 3 

HdV-8A 0 1 0 0 0 0 0 0 0 0 

HdV-8E 0 0 0 0 0 0 0 0 0 0 

HdV-8F 1 1 1 1 0 0 0 0 0 0 

HdV-8D 0 0 0 0 0 0 0 1 2 2 

Bryophyte capsules 0 0 0 1 0 1 0 0 0 0 

Other zoological 26 17 18 4 21 21 24 11 15 10 

Chironomidae 10 1 1 2 5 2 1 6 2 5 

Neorhabdocoela eggs 0 0 1 0 0 1 1 0 0 0 

HdV-52 (body fragments) 0 0 0 0 0 0 1 0 0 0 

Arcella 0 0 0 0 1 0 0 1 0 0 

                      

                      

                      

                      

Tracheids (EMA-1) 64 124 102 45 54 67 88 96 63 109 
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Highly corroded wood (EMA-7) 7 11 2 2 0 3 0 3 1 5 

Wood rays aggregates (EMA-11) 15 12 23 9 11 29 11 19 28 12 

Hardwood periderm (EMA-16) 8 9 2 8 1 6 6 10 3 7 

Fungal tissue (EMA-95) 95 90 66 65 49 56 85 90 68 47 

                      

                      

                      

                      

Lycopodium 320 297 197 60 55 105 92 45 141 20 

TAXA 601 609 617 625 633 641 649 657 665 673 

HdV-128B 0 0 0 1 1 2 4 0 4 7 

HdV-181 11 8 11 17 19 27 7 11 8 3 

HdV-115 0 2 0 0 0 0 1 0 1 0 

Pediastrum cf boryanum 25 0 1 4 0 1 5 0 3 3 

Zygnema-type 0 0 0 0 1 0 0 0 0 0 

Tetraedron (HdV-371) 0 0 0 0 0 0 0 0 0 0 

Cirrenalia donnae 7 22 18 29 17 31 17 18 22 24 

cf Cirrenalia lignicola/macrocephala 0 0 0 0 1 0 0 0 0 0 

Endophragmia/Arthrobotris (HdV-572) 4 10 9 14 6 7 14 8 7 12 

Coniochaeta 3 4 2 2 6 2 1 3 7 6 

Rosellinia 0 4 3 4 2 1 2 0 1 0 

Hypoxylon 0 0 2 0 2 2 2 3 4 3 

Xylariaceae 1 6 10 2 3 3 3 3 4 1 

Endophragmiella (TM-009) 0 0 0 0 0 0 0 0 0 2 

Endophragmiella (TM-224) 1 1 0 1 1 1 0 0 0 0 

Endophragmiella (TM-227) 0 1 1 1 0 0 0 0 0 1 

Sporidesmium cf pedunculatum/altum 1 1 1 2 2 1 2 0 2 2 

Dyctiosporium cf turuloides 0 1 2 0 0 0 0 0 1 0 

Trichocladium opacum (TM-011) 0 1 0 2 3 2 0 1 0 1 

Brachysporium obovatum (TM-014) 0 0 0 0 0 0 0 0 0 0 
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Corynesporopsis quercicola (EMA-125) 1 2 2 1 0 0 1 2 0 1 

cf Taeniolella rudis 0 0 0 0 0 0 0 0 0 0 

Taeniolella cf pulvillus/alta 0 0 0 0 0 0 0 0 0 0 

Diplocladiella scalaroides 0 1 0 0 0 0 0 0 0 0 

cf Savoryella lignicola (UG-1118) 0 0 0 1 0 0 0 0 0 0 

Asterosporium asterospermum 0 0 0 0 0 0 0 0 0 0 

Helicomyces/Helicosporium spp. 1 0 0 0 0 0 0 0 1 0 

cf Canalisporium 0 0 0 0 0 0 0 0 0 0 

Lophiostoma arundinis 0 1 0 1 1 1 1 0 0 0 

cf Ulocladium consortiale 0 0 0 0 0 0 0 0 0 0 

Spegazzinia 0 0 0 0 0 0 0 0 0 1 

Sporormiella-type 0 1 0 0 0 0 0 0 0 1 

Sordaria-type (HdV-55A) 0 0 0 0 0 0 2 0 0 1 

Sordaria cf fimicola (gel. sheath) 0 0 0 0 0 0 0 0 1 0 

Arnium-type 1 0 0 0 0 0 0 0 0 0 

Arnium-type (gel. sheath) 0 0 0 0 0 0 0 0 0 0 

cf Arnium imitans 0 0 0 0 0 0 0 0 0 0 

Delitschia 0 0 0 2 0 0 1 0 1 0 

Chaetomium 0 0 0 0 0 0 0 0 1 0 

Gelasinospora cf tetrasperma 0 0 0 0 0 0 0 0 0 0 

Apiosordaria verruculosa 0 0 0 0 0 0 0 0 0 0 

Melanosporaceae (HdV-55B) 0 2 2 0 2 1 1 0 0 2 

Sphaerodes cf fimicola 0 0 0 0 0 0 0 0 0 0 

Persiciospora cf moreaui 0 0 0 0 0 0 0 0 1 0 

Sordariaceous' ascospores undiff. 1 0 0 1 0 0 0 0 0 0 

Cercophora-type 0 0 1 2 2 1 1 0 2 4 

Clasterosporium caricinum 3 6 3 2 1 4 5 8 2 5 

Kretzschmaria deusta 0 0 1 0 1 0 0 1 0 0 

Diporotheca rhizophila 1 0 0 0 0 0 0 0 0 0 

Glomus 5 8 3 1 4 3 3 1 1 3 
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Scleroderma 3 0 1 0 3 0 3 5 0 1 

HdV-340 0 1 1 0 0 0 0 1 1 0 

cf Ustilago enneapogonis/bullata 2 1 0 1 2 2 0 7 2 1 

cf Lactarius (HdV-728) 0 0 0 0 0 0 0 1 0 0 

cf Scutellinia hyperborea/minor 0 0 0 0 0 0 1 0 0 0 

Sphaerodes 0 0 0 0 0 0 0 0 0 0 

UR-1 4 9 11 4 14 8 12 4 9 7 

UR-2 0 1 0 0 1 3 0 0 0 1 

HdV-3A 0 0 0 0 0 0 1 0 0 0 

HdV-3B 2 2 1 1 2 1 1 3 1 3 

HdV-16A 0 0 0 2 0 0 0 0 0 0 

HdV-16C 0 0 0 0 0 0 0 0 0 1 

HdV-20 2 1 1 3 2 3 0 0 2 2 

HdV-38 0 2 2 1 4 4 7 8 2 4 

HdV-92 0 0 1 0 2 2 2 3 1 2 

HdV-98 1 0 1 2 5 0 1 0 2 2 

HdV-120 0 0 0 0 2 2 0 2 2 1 

HdV-173A 0 0 0 0 0 2 1 0 0 0 

HdV-173B 0 0 0 0 0 0 0 0 0 0 

HdV-174 0 0 0 0 0 0 1 2 0 0 

HdV-200 4 1 2 0 1 3 1 1 5 2 

cf HdV-367 1 1 2 0 0 2 1 0 2 1 

HdV-571 0 0 0 0 0 0 0 0 0 0 

HdV-707 0 0 1 0 0 0 1 3 0 0 

HdV-708 5 6 6 6 0 4 0 0 1 4 

HdV-729 1 0 1 2 0 0 0 0 0 0 

HdV-730 0 1 0 0 0 0 0 0 0 0 

EMA-10/42 1 2 1 0 0 1 0 0 1 0 

cf EMA-27 4 3 9 4 7 2 5 4 12 1 

IBB-18 0 0 0 0 0 0 0 0 0 1 
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MO-6 0 0 0 1 0 0 0 0 0 0 

TM-4008 0 0 0 0 0 0 0 0 0 0 

cf UG-1110 1 0 1 2 0 1 0 0 0 0 

cf UG-1141 0 1 1 2 2 2 0 2 0 0 

Unknown multicelled (cf Sporidesmium 
socium) 1 1 1 0 2 0 0 1 0 0 

Unknown multicelled (cf HdV-324) 1 5 3 0 1 4 4 9 6 5 

Elliptic spores cf HdV-7B/82/306 22 16 23 15 29 41 20 25 16 19 

Other ca. 10 μm Ø  globose algal/fungal cells 17 3 2 0 5 15 18 10 12 7 

Other multicelled 28 26 30 33 22 36 31 24 27 13 

Other clustered cells 9 9 14 8 12 9 4 7 2 15 

Indeterminable/unknown 32 23 16 18 15 30 21 17 26 12 

Geoglossum-type 0 0 0 1 0 0 0 0 0 1 

cf UG-1081 0 0 0 0 0 0 0 0 0 0 

EMA-28 0 0 0 0 0 0 0 0 2 0 

EMA-56 0 1 1 2 0 0 0 0 0 0 

cf UG-1147 0 0 0 0 0 0 0 0 0 0 

(other multi near to HdV-324) 0 1 1 0 1 0 0 0 1 0 

HdV-65 0 0 0 0 0 0 0 0 0 1 

HdV-121 1 0 0 0 0 2 0 0 0 0 

multi-septate conidia 0 0 0 2 2 3 1 2 2 2 

cf UG-1185 0 0 0 0 0 0 0 0 0 0 

EMA-20 0 0 0 0 0 0 0 0 0 0 

cf HdV-87 0 0 0 0 0 0 0 0 0 0 

cf HdV-701 0 0 0 0 0 0 0 0 0 0 

UG 1036 Brach 0 1 0 0 0 1 2 1 0 2 

cf UG-1197 2 1 0 0 0 0 0 0 0 0 

HdV-64 0 0 0 1 1 0 0 0 0 0 

cf UG-1199 0 0 0 0 0 0 0 0 0 0 

Spirogyra 0 1 0 0 0 0 0 0 0 0 
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cf Thielavia 0 0 0 0 0 0 0 0 0 0 

EMA-2 0 1 0 0 0 0 0 0 0 1 

HdV-359 0 1 0 0 0 0 0 0 0 0 

EMA-33 0 0 0 0 0 0 0 0 0 0 

EMA-99 0 0 0 0 0 0 0 0 0 0 

HdV-22 0 0 0 0 0 1 0 1 0 0 

cf UG-1153 0 0 0 0 0 1 0 0 0 0 

HdV-65 0 1 0 0 0 0 0 0 0 0 

cf HdV-1055 0 0 0 0 0 0 0 0 0 0 

cf UG 1138/1148 1 0 0 0 0 0 0 0 0 0 

cf UG-1098 0 0 0 0 0 0 0 0 0 0 

HdV-179 0 0 0 0 0 0 1 0 0 0 

cf UG-1105 1 1 0 0 0 0 4 0 4 1 

cf UG-1080 0 0 0 0 0 0 0 0 0 0 

cf UG-1147 0 1 0 0 1 0 1 0 0 1 

cf UG-1005 Brach 0 0 0 0 0 0 0 0 0 0 

HdV-308 0 0 0 0 0 0 0 0 0 0 

HdV-17 1 0 1 0 0 0 0 0 0 0 

pitted Helicosporium 0 0 0 0 0 0 0 0 0 0 

HdV-25 0 0 0 0 0 0 0 0 0 0 

HdV-715 0 0 0 0 0 0 0 0 0 0 

Rivularia? 0 0 0 0 0 0 0 0 0 0 

HdV-151 0 0 0 0 0 0 0 0 0 0 

Allungato 553-537-521 0 0 0 0 0 0 0 0 0 0 

Allungato 537 0 0 0 0 0 0 0 0 0 0 

EMA-2 0 0 0 0 0 0 1 0 0 0 

EMA-44 0 0 0 0 0 0 0 0 0 0 

HdV-51 0 0 0 0 0 0 0 0 0 0 

TM-015 0 0 0 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 0 0 0 0 0 



257 
 

HdV-334 0 0 0 0 0 0 0 0 0 0 

HdV-90 0 0 0 2 0 0 0 0 0 0 

cf HdV-140 1 0 0 0 0 0 1 0 0 0 

cf HdV-381 1 0 0 0 0 0 0 0 0 0 

HdV-365 1 0 0 1 0 0 1 0 0 0 

HdV-83 0 1 0 0 0 0 2 0 0 1 

cf EMA-30 0 1 0 0 0 0 0 0 0 0 

HdV-714 0 1 0 0 0 0 0 0 1 0 

cf UG-1311 0 1 0 0 0 0 0 0 0 0 

HdV-18 0 1 1 0 0 0 0 0 0 0 

cf UG-1307 0 1 0 0 0 0 0 0 0 0 

HdV-23 0 0 1 0 0 0 0 0 0 0 

cf UG-1111 0 0 1 0 0 0 0 0 0 0 

HdV-119 0 0 1 0 0 0 0 0 0 0 

HdV-152 0 0 1 0 0 0 0 0 0 0 

HdV-360 0 0 1 0 0 0 0 0 0 0 

cf Ellis 1139 0 0 1 0 0 0 0 0 0 0 

HdV-99 0 0 1 0 0 0 0 0 0 0 

cf UG-1053 0 0 1 0 0 0 0 0 0 1 

cf HdV-361 0 0 0 1 0 0 0 0 0 0 

cf UG-1203 0 0 0 1 0 0 0 0 0 0 

EMA-86 0 0 0 1 1 0 0 2 0 2 

EMA-134 0 0 0 1 0 0 0 0 0 0 

HdV-33B 0 0 0 1 0 0 0 0 0 0 

HdV-5 0 0 0 1 0 0 0 0 0 0 

cf UG-1125 0 0 0 1 0 0 0 0 0 0 

cf UG-1285 0 0 0 0 1 0 0 0 0 0 

Miola III,24 0 0 0 0 1 0 0 0 0 0 

cf UG-1221 0 0 0 0 0 1 0 0 0 0 

LCE-27 0 0 0 0 0 1 0 0 0 0 
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HdV-23 0 0 0 0 0 1 0 0 0 0 

cf Ellis 771 0 0 0 0 0 1 0 0 0 0 

cf UG-1319 0 0 0 0 0 1 0 0 0 2 

HdV-10 0 0 0 0 0 0 1 0 0 0 

HdV-11 0 0 0 0 0 0 1 0 0 0 

cf UG-1110 non septate 0 0 0 0 0 0 1 0 0 0 

cf UG-1032 smooth 0 0 0 0 0 0 1 0 0 0 

cf UG-1155 0 0 0 0 0 0 1 0 0 0 

cf UG-1075 0 0 0 0 0 0 0 1 0 0 

cf UG-1091 0 0 0 0 0 0 0 1 0 0 

HdV-502 0 0 0 0 0 0 0 1 0 0 

cf T.1162 0 0 0 0 0 0 0 1 0 0 

HdV-53 0 0 0 0 0 0 0 2 0 0 

HdV-85 0 0 0 0 0 0 0 1 0 0 

cf UG-1194 0 0 0 0 0 0 0 1 0 0 

cf UG-1124 0 0 0 0 0 0 0 0 1 0 

cf UG-1061 0 0 0 0 0 0 0 0 2 0 

cf UG-1182 0 0 0 0 0 0 0 0 1 0 

cf UG-1106 0 0 0 0 0 0 0 0 1 0 

cf Ellis 1046 0 0 0 0 0 0 0 0 1 0 

Ellis 589 0 0 0 0 0 0 0 0 1 0 

cf EMA-21 0 0 0 0 0 0 0 0 1 0 

cf UG-1059 1 0 0 0 0 1 0 1 0 1 

HdV-95 0 0 0 0 0 0 0 0 0 1 

cf UG-1122 0 0 0 0 0 0 0 0 0 1 

cf UG-1352 0 0 0 0 0 0 0 0 0 1 

Ellis 355 0 0 0 0 0 0 0 0 0 1 

Dydimella D 0 0 0 0 0 0 0 0 0 1 

HdV-47 0 0 0 0 0 0 0 0 0 1 

cf UG-1274 0 0 0 0 0 0 0 0 0 1 



259 
 

Leptospaeria K-N(but 4 cells) or UG-1112 0 0 0 0 0 0 0 0 0 1 

cf UG 1084 0 0 0 0 0 0 0 0 0 0 

cf UG-1042 Montagnula 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1335 0 0 0 0 0 0 0 0 0 0 

Thielavia? 0 0 0 0 0 0 0 0 0 0 

HdV-64 0 0 0 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 0 0 0 

cf EMA-59 0 0 0 0 0 0 0 0 0 0 

cf UG-1311 0 0 0 0 0 0 0 0 0 0 

cf HdV-702 0 0 0 0 0 0 0 0 0 0 

EMA-8 0 0 0 0 0 0 0 0 0 0 

cf Ellis 988 0 0 0 0 0 0 0 0 0 0 

cf 698 0 0 0 0 0 0 0 0 0 0 

cf HdV-718 0 0 0 0 0 0 0 0 0 0 

cf UG-1085 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1344-1796 0 0 0 0 0 0 0 0 0 0 

Ellis 1512 0 0 0 0 0 0 0 0 0 0 

cf HdV-1223 0 0 0 0 0 0 0 0 0 0 

cf HdV-9 0 0 0 0 0 0 0 0 0 0 

cf UG-1127 0 0 0 0 0 0 0 0 0 0 

HdV-15 0 0 0 0 0 0 0 0 0 0 

cf Ellis 326 0 0 0 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 0 0 0 

HdV-332 0 0 0 0 0 0 0 0 0 0 

168 (dung?) 0 0 0 0 0 0 0 0 0 0 

cf USNP MS 3163 0 0 0 0 0 0 0 0 0 0 

Ellis 306 0 0 0 0 0 0 0 0 0 0 

cf UG-1138 0 0 0 0 0 0 0 0 0 0 

HdV-306 0 0 0 0 0 0 0 0 0 0 

HdV-242 0 0 0 0 0 0 0 0 0 0 
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HdV-124 0 0 0 0 0 0 0 0 0 0 

cf UG-1176 0 0 0 0 0 0 0 0 0 0 

cf Ellis 365 0 0 0 0 0 0 0 0 0 0 

TM-036 0 0 0 0 0 0 0 0 0 0 

cf UG-1072 0 0 0 0 0 0 0 0 0 0 

Ellis 1096/1156/306 0 0 0 0 0 0 0 0 0 0 

cf HdV-733 0 0 0 0 0 0 0 0 0 0 

cf UG-1114 0 0 0 0 0 0 0 0 0 0 

cf HdV-223 0 0 0 0 0 0 0 0 0 0 

cf HdV-305 0 0 0 0 0 0 0 0 0 0 

cf UG-1185 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1208 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1168 0 0 0 0 0 0 0 0 0 0 

HdV-221 0 0 0 0 0 0 0 0 0 0 

cf 1125 0 0 0 0 0 0 0 0 0 0 

cf HdV-339 0 0 0 0 0 0 0 0 0 0 

cf Ellis 793 0 0 0 0 0 0 0 0 0 0 

cf UG-1276 0 0 0 0 0 0 0 0 0 0 

cf Ellis 1271 0 0 0 0 0 0 0 0 0 0 

Total 217 213 216 211 216 281 228 213 224 212 

                      

Fungal fruiting bodies undiff. (HdV-8) 3 29 15 17 21 34 27 12 13 23 

Microthyrium (HdV-8B) 4 2 1 3 6 1 0 0 3 3 

HdV-8A 0 0 1 0 0 1 1 0 0 0 

HdV-8E 0 0 0 0 0 0 0 0 0 0 

HdV-8F 0 0 0 0 0 0 1 0 0 0 

HdV-8D 0 1 0 0 1 0 0 0 0 0 

Bryophyte capsules 0 0 0 0 0 0 1 0 0 0 

Other zoological 33 19 15 22 9 33 24 9 9 14 

Chironomidae 5 5 3 5 4 5 0 4 0 3 
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Neorhabdocoela eggs 0 0 0 0 0 1 1 1 1 0 

HdV-52 (body fragments) 3 0 0 0 0 0 0 0 0 0 

Arcella 2 0 0 0 1 0 0 0 0 0 

                      

                      

                      

                      

Tracheids (EMA-1) 156 77 48 107 104 135 61 83 73 216 

Highly corroded wood (EMA-7) 27 7 2 4 3 2 7 11 10 13 

Wood rays aggregates (EMA-11) 17 22 15 33 21 34 23 34 22 57 

Hardwood periderm (EMA-16) 10 3 2 8 11 8 8 2 5 8 

Fungal tissue (EMA-95) 51 73 43 75 106 87 45 61 41 81 

                      

                      

                      

                      

Lycopodium 151 59 92 68 84 154 41 32 19 61 

 

TAXA 681 689 697 705 713 721 729 

HdV-128B 13 14 13 36 47 50 79 

HdV-181 3 10 9 16 8 19 7 

HdV-115 0 1 1 0 0 0 0 

Pediastrum cf boryanum 4 6 1 1 2 3 2 

Zygnema-type 0 0 0 0 0 0 0 

Tetraedron (HdV-371) 0 0 0 0 0 0 0 

Cirrenalia donnae 27 10 6 8 8 13 24 

cf Cirrenalia lignicola/macrocephala 0 0 0 0 0 0 0 

Endophragmia/Arthrobotris (HdV-572) 4 8 2 2 4 0 5 

Coniochaeta 0 1 3 1 7 3 9 

Rosellinia 4 3 1 4 4 3 7 
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Hypoxylon 1 2 3 0 4 0 0 

Xylariaceae 2 7 0 3 2 6 1 

Endophragmiella (TM-009) 0 0 0 0 0 0 0 

Endophragmiella (TM-224) 0 0 1 0 0 0 0 

Endophragmiella (TM-227) 0 0 0 0 1 0 1 

Sporidesmium cf pedunculatum/altum 3 3 4 2 2 1 11 

Dyctiosporium cf turuloides 1 1 0 1 2 1 1 

Trichocladium opacum (TM-011) 4 0 1 2 1 1 2 

Brachysporium obovatum (TM-014) 0 0 0 0 0 0 0 

Corynesporopsis quercicola (EMA-125) 1 1 0 1 0 0 0 

cf Taeniolella rudis 0 0 0 0 0 0 0 

Taeniolella cf pulvillus/alta 0 1 0 0 0 0 1 

Diplocladiella scalaroides 0 0 0 0 0 0 0 

cf Savoryella lignicola (UG-1118) 2 0 0 0 0 0 0 

Asterosporium asterospermum 0 0 0 0 0 0 1 

Helicomyces/Helicosporium spp. 0 0 0 0 0 0 0 

cf Canalisporium 0 0 0 1 0 0 0 

Lophiostoma arundinis 0 1 0 0 0 0 0 

cf Ulocladium consortiale 0 0 0 0 1 0 0 

Spegazzinia 0 0 0 0 0 0 0 

Sporormiella-type 0 0 0 0 0 1 1 

Sordaria-type (HdV-55A) 1 0 0 0 0 0 0 

Sordaria cf fimicola (gel. sheath) 0 0 0 0 0 0 0 

Arnium-type 0 0 0 0 0 0 0 

Arnium-type (gel. sheath) 0 0 0 0 0 0 0 

cf Arnium imitans 0 0 0 0 0 1 0 

Delitschia 0 0 0 0 1 4 0 

Chaetomium 0 0 0 0 0 1 0 

Gelasinospora cf tetrasperma 0 0 0 0 0 0 0 

Apiosordaria verruculosa 0 0 0 1 0 0 0 
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Melanosporaceae (HdV-55B) 1 0 1 3 0 2 0 

Sphaerodes cf fimicola 0 0 0 0 0 0 0 

Persiciospora cf moreaui 0 0 0 0 0 0 0 

Sordariaceous' ascospores undiff. 0 0 0 0 0 0 1 

Cercophora-type 2 1 1 1 0 1 1 

Clasterosporium caricinum 2 1 3 8 3 8 3 

Kretzschmaria deusta 1 0 0 0 1 0 0 

Diporotheca rhizophila 0 0 0 1 0 0 0 

Glomus 4 4 10 2 4 2 5 

Scleroderma 3 2 5 1 3 3 1 

HdV-340 0 0 0 4 1 1 0 

cf Ustilago enneapogonis/bullata 2 0 3 7 0 0 0 

cf Lactarius (HdV-728) 0 0 0 0 0 0 0 

cf Scutellinia hyperborea/minor 0 0 0 0 1 0 0 

Sphaerodes 0 0 0 0 0 0 0 

UR-1 7 6 7 5 3 5 11 

UR-2 2 3 2 1 0 4 2 

HdV-3A 0 0 0 0 0 0 0 

HdV-3B 0 0 0 0 1 2 0 

HdV-16A 0 0 0 0 1 0 0 

HdV-16C 1 0 0 1 0 0 0 

HdV-20 1 0 4 3 1 2 7 

HdV-38 3 2 5 4 2 3 3 

HdV-92 0 0 3 3 5 9 5 

HdV-98 0 2 2 0 1 0 0 

HdV-120 2 3 0 1 1 0 3 

HdV-173A 0 1 0 0 1 0 1 

HdV-173B 0 0 0 0 1 0 0 

HdV-174 0 0 0 0 1 1 0 

HdV-200 5 0 0 1 1 2 2 
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cf HdV-367 0 1 5 1 1 1 1 

HdV-571 0 0 0 0 0 0 0 

HdV-707 0 0 0 0 1 0 0 

HdV-708 2 2 6 0 1 1 1 

HdV-729 0 0 0 1 0 0 0 

HdV-730 0 0 0 0 0 0 0 

EMA-10/42 0 2 0 0 0 0 1 

cf EMA-27 1 2 2 1 1 0 4 

IBB-18 0 0 0 0 0 0 0 

MO-6 0 0 0 0 0 0 0 

TM-4008 0 0 0 0 0 0 0 

cf UG-1110 0 0 0 0 2 0 1 

cf UG-1141 1 0 0 0 0 0 1 

Unknown multicelled (cf Sporidesmium 
socium) 2 1 0 0 0 0 0 

Unknown multicelled (cf HdV-324) 1 5 5 0 1 1 0 

Elliptic spores cf HdV-7B/82/306 25 20 30 8 16 26 23 

Other ca. 10 μm Ø  globose algal/fungal cells 17 8 0 0 1 3 1 

Other multicelled 16 16 17 14 13 18 12 

Other clustered cells 9 8 15 12 15 7 6 

Indeterminable/unknown 28 35 31 42 29 32 43 

Geoglossum-type 0 0 0 0 0 0 1 

cf UG-1081 0 0 0 0 0 0 0 

EMA-28 0 0 0 0 0 0 0 

EMA-56 0 0 0 2 0 0 0 

cf UG-1147 0 0 0 0 0 0 0 

(other multi near to HdV-324) 0 1 0 0 0 1 0 

HdV-65 0 0 3 0 1 0 0 

HdV-121 0 0 0 3 1 0 0 

multi-septate conidia 0 0 1 1 2 4 2 

cf UG-1185 0 0 0 0 0 0 0 
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EMA-20 0 0 0 0 0 0 0 

cf HdV-87 0 0 0 0 0 0 0 

cf HdV-701 0 0 0 0 0 0 0 

UG 1036 Brach 1 0 0 1 0 1 1 

cf UG-1197 0 0 0 0 0 0 0 

HdV-64 0 0 0 1 0 0 0 

cf UG-1199 1 0 0 0 0 0 0 

Spirogyra 0 0 0 0 0 0 0 

cf Thielavia 0 0 0 0 0 0 0 

EMA-2 0 0 0 0 0 1 1 

HdV-359 0 0 0 0 0 0 0 

EMA-33 0 0 0 0 0 0 0 

EMA-99 0 0 0 0 0 0 0 

HdV-22 0 0 0 0 1 0 0 

cf UG-1153 0 0 0 0 1 0 0 

HdV-65 0 1 0 0 0 0 0 

cf HdV-1055 0 0 0 0 0 0 0 

cf UG 1138/1148 0 0 1 1 0 0 0 

cf UG-1098 0 0 0 0 0 0 0 

HdV-179 0 0 0 0 0 0 1 

cf UG-1105 1 0 0 0 2 0 0 

cf UG-1080 0 0 0 0 0 0 0 

cf UG-1147 0 0 0 0 0 0 1 

cf UG-1005 Brach 0 0 0 0 0 0 0 

HdV-308 0 0 0 0 0 0 0 

HdV-17 0 0 0 0 0 0 0 

pitted Helicosporium 0 0 1 0 0 0 0 

HdV-25 0 0 0 0 0 2 0 

HdV-715 0 0 0 0 0 0 0 

Rivularia? 0 0 0 0 0 0 0 
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HdV-151 0 0 0 0 0 0 0 

Allungato 553-537-521 0 0 0 0 0 0 0 

Allungato 537 0 0 0 0 0 0 0 

EMA-2 0 0 0 0 0 0 0 

EMA-44 0 0 0 0 0 0 0 

HdV-51 0 0 0 0 0 0 0 

TM-015 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 1 0 

HdV-334 0 0 0 0 0 0 0 

HdV-90 0 0 0 0 0 0 0 

cf HdV-140 0 0 0 0 0 0 0 

cf HdV-381 0 0 0 0 0 0 0 

HdV-365 0 0 0 0 0 0 0 

HdV-83 1 0 0 0 0 0 0 

cf EMA-30 0 0 0 0 0 0 0 

HdV-714 0 0 0 0 0 0 0 

cf UG-1311 0 0 0 0 0 0 0 

HdV-18 0 0 0 1 0 0 0 

cf UG-1307 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 

cf UG-1111 0 0 0 0 0 0 0 

HdV-119 0 0 0 0 0 0 0 

HdV-152 0 0 0 1 0 0 0 

HdV-360 0 0 0 0 0 0 0 

cf Ellis 1139 0 0 0 0 0 0 0 

HdV-99 0 0 0 0 0 0 0 

cf UG-1053 1 0 0 0 0 0 0 

cf HdV-361 0 0 0 0 0 0 0 

cf UG-1203 0 0 0 0 0 0 0 

EMA-86 0 0 0 0 0 0 0 
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EMA-134 0 0 0 0 0 1 0 

HdV-33B 0 0 0 0 0 0 0 

HdV-5 0 0 0 0 0 0 0 

cf UG-1125 0 0 0 0 0 0 0 

cf UG-1285 0 0 0 0 0 0 0 

Miola III,24 0 0 0 0 0 0 0 

cf UG-1221 0 0 0 0 0 0 0 

LCE-27 0 0 0 0 0 0 0 

HdV-23 0 0 0 0 0 0 0 

cf Ellis 771 0 0 0 0 0 0 0 

cf UG-1319 0 0 0 0 0 0 0 

HdV-10 0 0 0 0 0 0 0 

HdV-11 0 0 0 1 1 0 0 

cf UG-1110 non septate 0 0 0 0 0 0 0 

cf UG-1032 smooth 0 0 0 0 0 0 0 

cf UG-1155 0 1 0 0 0 0 0 

cf UG-1075 0 0 0 0 0 0 0 

cf UG-1091 0 0 0 0 0 0 0 

HdV-502 1 0 0 0 0 0 0 

cf T.1162 0 0 0 0 0 0 0 

HdV-53 0 0 0 0 0 0 0 

HdV-85 0 0 0 1 0 0 0 

cf UG-1194 0 0 0 0 1 0 0 

cf UG-1124 0 0 0 0 0 0 0 

cf UG-1061 0 0 0 0 0 0 0 

cf UG-1182 0 0 0 0 0 0 0 

cf UG-1106 0 0 0 0 0 0 0 

cf Ellis 1046 0 0 0 0 0 0 0 

Ellis 589 0 0 0 0 0 0 0 

cf EMA-21 0 0 0 0 0 0 0 
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cf UG-1059 0 2 0 0 0 0 1 

HdV-95 0 0 0 0 0 0 0 

cf UG-1122 0 0 0 0 0 0 0 

cf UG-1352 0 0 0 0 0 0 0 

Ellis 355 0 0 0 0 0 0 0 

Dydimella D 0 0 0 0 0 0 0 

HdV-47 0 0 0 0 0 0 0 

cf UG-1274 0 0 0 0 0 0 0 

Leptospaeria K-N(but 4 cells) or UG-1112 0 0 0 0 0 0 0 

cf UG 1084 1 0 0 0 0 0 0 

cf UG-1042 Montagnula 1 0 0 2 1 0 0 

cf Ellis 1335 2 0 0 0 0 0 0 

Thielavia? 1 0 0 0 0 0 0 

HdV-64 0 1 0 1 0 0 0 

cf UG-1061 0 1 0 0 0 0 0 

cf EMA-59 0 1 0 0 0 0 0 

cf UG-1311 0 2 0 0 0 0 0 

cf HdV-702 0 1 0 0 0 0 0 

EMA-8 0 2 0 0 0 0 0 

cf Ellis 988 0 1 0 0 0 0 0 

cf 698 0 1 0 0 0 0 0 

cf HdV-718 0 1 0 0 0 0 0 

cf UG-1085 0 0 1 0 0 0 0 

cf Ellis 1344-1796 0 0 1 0 0 0 0 

Ellis 1512 0 0 1 0 0 0 0 

cf HdV-1223 0 0 1 0 0 0 0 

cf HdV-9 0 0 1 0 0 0 0 

cf UG-1127 0 0 0 1 0 0 0 

HdV-15 0 0 0 1 0 0 0 

cf Ellis 326 0 0 0 1 0 0 0 
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cf UG-1274 0 0 0 1 0 0 0 

HdV-332 0 0 0 2 0 0 0 

168 (dung?) 0 0 0 0 1 0 0 

cf USNP MS 3163 0 0 0 0 1 2 0 

Ellis 306 0 0 0 0 1 0 0 

cf UG-1138 0 0 0 0 1 0 0 

HdV-306 0 0 0 0 1 0 0 

HdV-242 0 0 0 0 1 0 0 

HdV-124 0 0 0 0 1 0 0 

cf UG-1176 0 0 0 0 4 0 0 

cf Ellis 365 0 0 0 0 1 1 0 

TM-036 0 0 0 0 0 1 0 

cf UG-1072 0 0 0 0 0 1 1 

Ellis 1096/1156/306 0 0 0 0 0 1 0 

cf HdV-733 0 0 0 0 0 1 0 

cf UG-1114 0 0 0 0 0 1 0 

cf HdV-223 0 0 0 0 0 1 0 

cf HdV-305 0 0 0 0 0 1 0 

cf UG-1185 0 0 0 0 0 1 0 

cf Ellis 1208 0 0 0 0 0 1 0 

cf Ellis 1168 0 0 0 0 0 1 2 

HdV-221 0 0 0 0 0 1 1 

cf 1125 0 0 0 0 0 1 0 

cf HdV-339 0 0 0 0 0 1 0 

cf Ellis 793 0 0 0 0 0 0 1 

cf UG-1276 0 0 0 0 0 0 1 

cf Ellis 1271 0 0 0 0 0 0 1 

Total 219 210 213 226 230 268 306 

                

Fungal fruiting bodies undiff. (HdV-8) 17 19 9 4 12 10 12 
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Microthyrium (HdV-8B) 2 3 7 3 5 1 3 

HdV-8A 0 1 1 0 0 2 0 

HdV-8E 0 1 0 0 0 0 0 

HdV-8F 0 0 0 0 0 0 0 

HdV-8D 0 0 0 0 0 0 0 

Bryophyte capsules 0 0 0 0 0 0 0 

Other zoological 21 19 9 13 14 15 10 

Chironomidae 0 2 4 2 5 2 2 

Neorhabdocoela eggs 0 0 0 0 1 2 4 

HdV-52 (body fragments) 0 1 0 0 0 3 0 

Arcella 0 0 0 0 0 0 0 

                

                

                

                

Tracheids (EMA-1) 106 70 68 63 37 147 30 

Highly corroded wood (EMA-7) 14 16 10 20 14 6 16 

Wood rays aggregates (EMA-11) 23 19 17 20 17 25 42 

Hardwood periderm (EMA-16) 4 2 5 4 3 3 4 

Fungal tissue (EMA-95) 72 50 61 43 51 30 65 

                

                

                

                

Lycopodium 147 63 83 43 67 29 135 
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TAXA 
Modern samples - 
Number per cm3                   

Sample Sordaria Podosp. Arnium S. fimicola Spororm. Delitsc. Conioch. Chaetom. Apiosord. Gelasinosp. Cercoph. 

1 0 0 0 0 0 0 0 0 0 0 0 

2 116 0 0 0 0 0 0 0 0 0 0 

3 31 0 31 124 0 0 15 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 340 340 0 0 0 

6 26460 0 20047 0 42497 0 1604 12028 0 4009 0 

7 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 47 0 24 0 0 0 0 

9 324 54 0 0 216 0 0 54 0 0 0 

10 1384 0 125 125 1133 0 504 252 0 125 125 

11 1611 0 0 0 4833 0 0 1611 3222 0 4833 

12 17869 0 32761 0 20848 0 0 23826 0 0 0 

13 2690 0 4371 0 2017 0 0 1681 3026 673 0 

14 2719 0 32631 0 11784 906 0 0 906 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 239 0 0 0 0 0 0 0 

20 0 0 0 0 1158 0 0 0 0 0 0 

21 1017 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 2156 0 0 0 0 0 0 

23 6254 0 0 0 12508 0 0 2085 2085 0 0 

24 0 0 0 0 111189 0 0 0 13899 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 

26 977 0 0 0 326 0 0 0 0 0 0 

27a 389 0 0 213 0 0 0 389 213 0 0 



272 
 

27b 3912 0 0 0 0 0 0 0 0 0 1956 

28 36958 2843 0 0 110306 569 0 0 0 0 0 

TAXA                         

Sample Sphaerod. Neurosp. Ascodesm. 
HdV-
55B Thermomyc. UR-1 UR-2 

HdV-
708 UR-68 UR-69 UR-70 UR-71 

1 0 0 0 0 0 0 1985 0 0 0 0 0 

2 0 0 0 0 0 0 1347554 0 0 0 0 0 

3 0 0 0 0 311 0 0 0 0 0 0 0 

4 0 0 0 0 4833 0 3305772 0 0 0 0 0 

5 0 0 0 0 15940   0 0 0 0 0 0 

6 0 0 0 8018 0 15235 10424 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 216 0 0 0 0 0 

10 125 0 0 0 0 0 0 0 0 0 0 0 

11 0 1611 1611 0 1611 0 0 0 0 0 0 0 

12 0 0   5957 62544 0 0 5956 0 0 0 0 

13 0 0 0 0 0 0 1345 0 0 0 0 0 

14 0 0 0 0 0 0 13596 0 0 0 0 0 

15 0 0 0 0 0 0 2062080 0 0 0 0 0 

16 0 0 0 0 0 0 908604 0 1051661 0 0 0 

17 0 0 0 0 0 0 1208 0 0 2819 0 
15103

1 

18 0 0 0 0 0 0 0 0 0 71242 0 0 

19 0 0 0 0 477 0 0 0 0 32220 0 9785 

20 0 0 0 0 0 0 16251 
23511

9 0 0 0 0 

21 0 0 0 0 1017 0 0 
11395

7 0 5087 0 
29404

9 

22 0 0 0 0 0 0 2865 
14377

9 0 0 46000 22285 
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23 0 0 0 0 0 0 14593 
16469

9 0 0 0 
17929

2 

24 0 0 0 0 0 0 17373 48645 0 0 97290 
53509

8 

25 0 0 0 0 0 0 8736 0 0 0 0 0 

26 0 0 0 0 0 0 29969 0 0 0 0 0 

27a 0 0 0 0 0 0 0 0 0 0 0 0 

27b 0 0 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 0 0 
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 Arma delle Manie DEPTHS (cm)         

TAXA 0 4 8 12 16 17 

Chaetomium 1723 0 43 0 0 0 

Chaetomium thin-
walled 0 66 25 147 0 62 

Sporormiella-type 16 9 77 8 0 2 

Sporormiella-type 2 2 0 4 0 0 4 

sordaria (type 55A) 0 12 9 6 3 8 

Trichodelitschia 1 24 2 5 0 2 

Coniochaeta cf 
lignaria 3 6 14 12 3 10 

Cercophora-type 0 6 0 0 3 0 

Apiosordaria 0 0 1 0 0 0 

Delitschia 1 0 0 0 0 0 

Arnium-type 3 9 1 11 0 8 

Rhytidospora 0 3 4 0 0 0 

Podospora 1 0 5 0 0 1 

Sphaerodes cf 
fimicola 1 0 0 0 0 0 

cf Podospora 
inequalis 0 30 6 8 0 12 

Sordaria (gel sheath) 0 3 0 0 0 0 

Hypocopra 0 0 1 0 0 0 

Pseudochizaea 0 0 2 2 0 6 

Trichuris trichiura 4 0 5 3 0 2 

Ascaris lumbricoides 2 3 4 1 0 0 

Dicrocoelium eggs 1 0 1 0 0 0 

sample quantity 10 10 10 10 10 10 

Lycopodium added 19332 19332 19332 19332 19332 19332 

Lycopodium counted 94 105 139 161 243 214 
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Cave of Arene Candide DEPTHS (cm)             

TAXA 42 34 -14 -38 -112 -134 -166 -182 

Quercus undiff. 32 4 8   14 8 2 32 

Quercus robur type (deciduous) 8     9         

Quercus ilex type (evergreen) 9     3 1 1     

Quercus suber type (evergreen)               4 

Fagus     7           

Corylus 4     6 2 1     

Alnus         5 1   4 

Salix           1 1   

Tilia         1       

Ulmus 4               

Abies 4   8 3 7 18   24 

Pinus presence       1   1   

Ulex         1       

Carpinus         1       

Vitis           2     

Cupressaceae 20 2             

Cichorieae <18 72 54     3     4 

Cichorieae 18-25 88 219   180 50 216 304 100 

Cichorieae >25   4   9   5     

Chenopodiaceae   7 14 12 2 2 2 4 

Caryophillaceae     15   1 20 2 20 

Ericaceae 20 3 77   134 11 7 48 

Asteroideae 8   7 6 12 2 2 16 

Apiaceae   1 69           

Urtica         1       

Centaurea nigra   2         1   

Althaea         1 6 1   

Lavatera/Malva         2       

Helianthemum   1 8   1       
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Pulsatilla     7         8 

Pulsatilla               8 

Cuscuta         1       

Myriophillum spicatum         1       

Cyperaceae     22   10     8 

Gramineae smooth     21           

Gramineae 8 4 42 90 60 10 12 12 

Gramineae >42 μm     6 3     1 4 

Filicales spores 24   35 9 25 66 3 28 

Pteridium aquilinum                 

Polypodium cf vulgare     14 3 5 28     

Polypodium cf interjectum 4   1848   3 2     

Botrychium           1 1   

other triletes   1 7       3   

Undeterminable pollen 48 10 182 69 97 55 19 104 

Undeterminable pollen/NPP 20 15   36 30   2 72 

Euphorbia 4               

Carya 4               

Valerianella presence               

                  

Total 381 301 311 321 312 304 336 296 
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Castellaro di Uscio 

LOWER SECTION Layer 1 Layer 2 Layer 3 UPPER SECTION   Layer 1 Layer 2 Layer 3 Layer 4 

Centaurea 0 4 4 Centaurea   0 8 0 6 

Scabiosa 0 6 1 Scabiosa columbaria   0 8 52 126 

Carpinus 28 0 3 Carpinus   60 0 50 72 

Ophioglossum 0 10 0 Ophioglossum   0 24 40 6 

Cichorieae 0 44 19 Cichorieae   0 36 10 0 

Asteraceae 0 16 9 Asteraceae   0 18 4 0 

Pteridium aquilinum 0 2 104 Pteridium aquilinum   0 0 2 0 

Poaceae 7 10 10 Poaceae   15 2 8 0 

Pinus 21 58 7 Pinus   45 22 2 0 

Geranium 0 4 0 Geranium   0 2 4 0 

Abies 28 2 2 Abies   60 12 4 0 

Indeterminable 6 14 12 Indeterminable   15 18 14 0 

Cyperaceae 7 0 20 Cyperaceae   15 30 24 0 

Quercus 104 0 0 Ericaceae   0 48 0 0 

Ostrya carpinifolia 6 4 0 Ostrya-type   15 4 0 0 

Phyllirea 7 0 2 Cerealia   0 2 0 0 

Ericaceae 0 10 7 cf Ephedra   0 6 0 0 

Apiaceae 0 0 6 Trifolium   0 2 0 0 

Spergularia 0 2 1 Corylus   0 2 0 0 

Plantago lanceolata 0 0 5 cf Solanum   0 1 0 0 

Caryophillaceae 0 2 3 Monolete spores   0 2 0 0 

Corylus 0 2 3 Urticularia   0 2 0 0 

Monolete spore 0 0 3 Alnus   0 2 0 0 

Alnus 0 0 36 Teucrium   0 1 0 0 

Teucrium 0 14 2 
Convolvulus arvensis-
type   0 2 0 0 

Other trilete spores 0 0 1 Fraxinus   0 2 0 0 

Senecio-type 0 2 0 Phyllirea   2 6 0 0 
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cf Ephedra 0 10 0 Quercus   15 0 0 0 

Cerealia 0 2 0 Total   242 262 214 210 

Fraxinus 0 12 0             

Fagus 0 2 0             

Total 214 232 260             
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Appendix III. Papers resulting from work undertaken in this thesis 


