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Abstract 
Proteins are essential molecules for the functioning of all living organisms. Thus, studying the 

structure of proteins enables us to better determine their function. Experimental methods for structural 

determination, namely X-ray crystallography and NMR, are timely and are costly. Hence, a more 

efficient method for structure determination are computational methods. 

 

Structural annotation of proteomes, where the structure of all proteins in a proteome are determined is 

more routinely undertaken, as whole genome sequencing, using NGS technology, of large numbers of 

organisms have been undertaken. The gap between protein sequence and experimental structure is 

widening at an exponential rate. Thus, computational methods for protein structure prediction are 

essential to help close this gap. 

 

Synonyms 

Fold recognition; Protein structure; Protein structure modeling; Protein structure prediction; Sequence 

alignments; Structural genomics; Template-based modeling; Template-free modeling 

 

 

Definition 

Protein structure prediction methods aim to predict the structures of proteins from their amino acid 

sequences, utilizing various computational algorithms. Structural genome annotation is the process of 
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attaching biological information to every protein encoded within a genome via the production of 

three-dimensional protein models. 

 

 

Introduction 

Proteins are essential molecules involved in both structural and functional roles of all living cells. 

Numerous diseases, notably Alzheimer’s, Parkinson’s, heart disease, and cancers, involve mutations 

in specific proteins, which affect their function. Thus, determining protein structure is essential to 

understanding functionality and is potentially helpful in developing treatments for the diseases or 

disorders. The ultimate goal is to determine the function of a protein from sequence computationally, 

but often sequence information alone is insufficient. During the course of evolution, protein structure 

has been more conserved than amino acid sequence, therefore the analysis of protein structures often 

leads to a greater understanding of protein function than can be obtained from just studying their 

sequences (McGuffin 2008a). 

Experimental methods which include X-ray crystallography and nuclear magnetic resonance (NMR) 

are commonly used for protein structural determination, but they have several limitations. The 

cloning, expression, and purification of a protein and in the case of the X-ray crystallography, the 

subsequent production of diffraction quality crystals for protein structure determination, are time 

consuming and costly. Conversely, computational methods for protein structure prediction are easily 

automated, fast, and cheap. Predicted structures allow the inference of function, lead to a better 

understanding of protein evolution, and guide experimental work in drug discovery, 

biopharmaceuticals, industrial enzymes, ligand–protein interactions, and cancer biology, to name a 

few applications. 

In this post-genomic era, the gap between protein sequence and structure is widening. At the time of 

writing, there are <133,000 protein structures in the Protein Data Bank (PDB) and ~200 million 

sequences in the GenBank database (Fig. 1). The rate at which 3D structures are being solved is 

evidently unable to compete with the speed of genome sequencing. However, the use of 

bioinformatics tools may be used to help close the gap between sequence and structure, help in 

proteome annotation, and speed up the elucidation of protein structures by the production of high 

quality homology models for molecular replacement. 
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Protein Structure Prediction and Structural Annotation of Proteomes, Fig. 1 

The number of sequences deposited in sequence databases including GenBank, EMBL, Swiss-Prot, 

and KEGG GENES is dwarfing the number of protein structures in the PDB by a factor of over 2000 



(Data taken from the PDB and sequence databases). ( a) The number of sequences in sequence 

databases and the number of protein structures in the PDB are plotted against the years of entry, just 

focusing on the PDB and GenBank. ( b) As in ( a) but updated to take into account the growth 

between 2010 and 2017. ( c) The number of sequences in sequence databases and the number of 

protein structures in the PDB is plotted against the years of entry, focusing on the growth between 

2010 and 2017, for the PDB and GenBank. 

 

 

Sequence Alignment in Protein Structure Prediction 

Sequence alignment algorithms are subdivided into global and local sequence alignment methods. 

Global sequence alignment algorithms seek to align two sequences over the whole length of the 

protein to produce a score, which determines the evolutionarily relatedness of the two proteins. Local 

sequence alignment algorithms align evolutionarily related segments of proteins, which include 

binding sites, domains, and sequence repeats that are important to the protein, but may exist in other 

proteins, which are distantly evolutionarily related and have unrelated functions (Fig. 2) (Altschul et 

al. 1990, 1997; Lipman and Pearson 1985). 
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Protein Structure Prediction and Structural Annotation of Proteomes, Fig. 2 

Multiple sequence alignment of the PKD1 domain 1 (PDB 1B4R), showing highly conserved 

sequence motif WDFGDGS. The eight species were aligned using ClustalW2, and the HHpred color 

scheme was utilized to illustrate amino acids with similar biochemical properties 

The first global sequence alignment algorithm was developed by Needleman and Wunsch in 1970 

(Needleman and Wunsch 1970), which was the first application of dynamic programming for 

sequence comparison. This was followed in 1981 by Smith and Waterman’s (Smith and Waterman 

1981) development of an algorithm for local sequence alignment possessing a high degree of 

similarity, which included the addition of a weighting for gap penalties and the use of a matrix to 

identify sequence pairs. 

Lipman and Pearson developed FASTA (Lipman and Pearson 1985) in 1985 with an update to the 

algorithm in 1988. FASTA is a local sequence alignment method, which is still widely used. FASTA 

was one of the first sequence alignment algorithms that could be run on a standard desktop PC of the 

era, through the introduction of the concept of “ktups.” Ktups are segments of an amino acid 

sequence, with ktup = 1 being one amino acid long, ktup = 2 is two amino acids long and so forth. 

This concept is used to increase the speed of the algorithm, as the number of searches is reduced. The 

higher the ktup value, the faster the speed. FASTA utilizes ktup = 2 as the default for amino acid 

sequence alignment and ktup = 6 for DNA sequence alignment (Lipman and Pearson 1985). 

BLAST – Basic Local Alignment Search Tool – (Altschul et al. 1990) is a rapid sequence alignment 

algorithm for homology searching of sequence libraries. BLAST, like FASTA, also utilizes the ktups 

method but refers to ktups as “words,” with the default “word” size set to three for amino acid 
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sequences and 11 for DNA sequences. Gapped BLAST and PSI-BLAST (Position Specific Iterative-

BLAST), introduced in 1997 (Altschul et al. 1997), further improved the sensitivity and speed of the 

BLAST algorithm. Gapped BLAST generates a single gapped alignment, which increases the speed 

for pairwise sequence alignment, whereas the original BLAST program often finds several alignments 

involving a single database sequence, which when considered together were statistically significant. 

Using the Gapped BLAST alignment algorithm, it then becomes necessary to find only one rather 

than all of the ungapped alignments significantly increasing the speed of the algorithm. PSI-BLAST is 

more sensitive for the detection of weak, but biologically relevant sequence similarities. PSI-BLAST 

uses a sequence-profile alignment method, with a position-specific scoring matrix generated from 

significant alignments in round i which are then used in round i + 1 to generate a matrix for the next 

round. This iterative searching and profile construction process significantly increases the sensitivity 

of searching the sequence and structure databases. PSI-BLAST is an integral part of most successful 

tertiary structure prediction pipelines. 

 

 

Critical Assessment of Techniques for Protein Structure 

Prediction (CASP) 

The continual development of more advanced protein structure prediction tools is driven by the 

Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition. CASP is a 

biennial competition, with the aim of advancing the methods of predicting protein structures from 

sequence, by the provision of objective testing of the methods via blind prediction. CASP is currently 

divided into a number of categories prediction categories: (1) tertiary structure prediction – template-

based and free modeling, (2) disorder prediction, (3) domain prediction, (4) contact prediction, (5) 

quality assessment, (6) binding site prediction and more recently (7) structural refinement (Moult et 

al. 2009 ) (Kryshtafovych et al., 2016). 

There have been major improvements seen in the structure prediction category in each successive 

CASP. The previous three CASP experiments showed that fully automated structure prediction 

servers can produce models close in quality to those produced by the very best expert human 

modelers (Kryshtafovych et al. 2009). Server performance is extremely important, since they are the 

only choice for high throughput modeling. The number of servers involved in CASP has increased 

from 53 in CASP5 to 79 in CASP9, additionally 85 in CASP11, showing an increase in interest for 

protein structure prediction and increased competition in the field. 

 

 

Tertiary Structure Prediction 

Protein tertiary structure prediction methods are divided into template-based and template-free 

modeling methods. If a structural template is available within the PDB, template-based modeling 

methods such as homology modeling and fold recognition can be utilized, but if a structural template 

is unavailable free modeling will have to be utilized (Table 1).Protein Structure Prediction and 

Structural Annotation of Proteomes, Table 1 

Established techniques for the modeling of protein folds fall into three major categories, which is 

dependent on the level of information that is known about the protein sequence (McGuffin 2008b) 

Method category Requirements 
Relative 

computational 

Relative 

speed 

Theoretical 

sequence 

http://dx.doi.org/10.1007/978-3-642-16712-6_417


difficulty coverage 

Homology/comparative 

modeling 

Homologous 

(>30% sequence 

ID) to a template 

structure from the 

PDB 

Easy Fast Minimum 

Fold 

recognition/threading 

A template fold of 

known structure 

from the PDB 

Medium Medium Medium 

Ab intio/new fold/free 

modeling 

The target 

sequence and/or a 

fragment library 

Hard Slow Maximum 

 

 

Template-Based Modeling 

The success of template-based modeling (TBM) methods is based on three key facts: (1) similar 

sequences fold into similar structures, (2) many unrelated sequences also fold into similar structures, 

and (3) there are only a relatively small number of unique folds when compared with the number of 

proteins found in nature; most of the fold space has been structurally annotated and few new folds are 

being solved (McGuffin 2008b). 

Traditionally, template-based modeling is divided into two subcategories: homology modeling and 

fold recognition. Homology modeling, also known as comparative modeling, is dependent on finding 

a sequence alignment between the target and the template structure with a sequence ID > 30%. Fold 

recognition methods go beyond simple sequence searching, when the sequence identity between the 

target and template sequence is within the twilight zone (20–35% sequence ID). However, it is 

becoming increasingly difficult to differentiate between homology modeling and fold recognition 

algorithms, as most successful methods now utilize profile–profile-based sequence searching 

algorithms to identify very distant relationships between targets and templates (McGuffin 2008b). 

HHsearch is a popular, rapid, and accurate profile–profile-based fold recognition method (Soding 

2005), which utilizes the PSI-BLAST position-specific scoring matrices and PSIPRED (Jones 1999) 

secondary structure predictions, to build profile-Hidden Markov Models (HMMs) of the target 

sequences. The profile-HMMs are then compared to a fold library of profile-HMMs that have been 

built for proteins with known structure. Once target-template alignments have been constructed, then 

3D models of the target structure can be built from the coordinates of the template structures (Fig. 3) 

(Table 2). 
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Protein Structure Prediction and Structural Annotation of Proteomes, Fig. 3 

Template-based modeling pipeline, such as that used by IntFOLD-TS 

Protein Structure Prediction and Structural Annotation of Proteomes, Table 2 

Some of the top publicly available template-based modeling servers in CASP11 

Server URL 

BioSerf http://bioinf.cs.ucl.ac.uk/bio_serf/public_job 

HHpred http://toolkit.lmb.uni-muenchen.de/hhpred 

IntFOLD http://www.reading.ac.uk/bioinf/IntFOLD/ 

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER/ 

LOMETS http://zhanglab.ccmb.med.umich.edu/LOMETS/ 

PCONS http://pcons.net/ 

Phyre2 http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index 

http://bioinf.cs.ucl.ac.uk/bio_serf/public_job
http://toolkit.lmb.uni-muenchen.de/hhpred
http://www.reading.ac.uk/bioinf/IntFOLD/
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://pcons.net/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index


pro-sp3-TASSER http://cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/index.html 

A user-friendly template-based modeling prediction pipeline – IntFOLD3-TS - is now available which 

combines profile–profile alignment outputs from several different methods to produce up to 40 

alternative fold recognition models, which are subsequently ranked utilizing the ModFOLDclust2 

(McGuffin and Roche 2010) model quality assessment method. The IntFOLD server (Roche et al. 

2011) (McGuffin et al., 2015) also integrates the ModFOLD5 method for model quality assessment, 

the DISOclust3 method for protein intrinsic disorder prediction, the DomFOLD3 method for domain 

boundary prediction, and the FunFOLD3 method for the prediction of ligand-binding site residues. 

 

 

Template-Free Modeling 

Free modeling has also been referred to as ab initio modeling, modeling from first principles, or de 

novo modeling. Template-free modeling is the prediction of a protein’s tertiary structure from 

sequence without the use of a protein structure as a template. The use of free modeling is necessary 

when a template cannot be found to predict the structure of the protein. Free modeling usually carries 

out conformational searches under the assistance of a designed energy function, which generates 

several structural decoys based on possible conformations that the final model is selected from. 

Energy functions for free modeling are generally classified into physics-based energy functions and 

knowledge-based energy functions, which depend on the use of statistics from structurally elucidated 

proteins (Table 3) (Lee et al. 2009).Protein Structure Prediction and Structural Annotation of 

Proteomes, Table 3 

Some of the top publicly available free modeling web servers in CASP11 

Server URL 

TASSER-VMT http:// http://cssb.biology.gatech.edu/skolnick/webservice/TASSER-VMT/index.html 

MULTICOM-NOVEL http://sysbio.rnet.missouri.edu/multicom_toolbox/index.html 

QUARK http://zhanglab.ccmb.med.umich.edu/QUARK 

RAPTORX http://raptorx.uchicago.edu 

Robetta http://robetta.bakerlab.org/ 

 

 

Physics-Based Methods 
Physics-based methods are defined as methods that utilize interactions between atoms based on 

quantum mechanics and electrostatic interactions. Physics-based methods also utilize a small number 

of critical parameters, which include electron charge and Planck’s constant, with atoms additionally 

described by their atom type, where only the number of atoms is relevant. The use of quantum 

mechanics has not yet been used to predict even small structures, due to the computational resources 

needed for such calculations. Without the use of quantum mechanics, the most practical starting point 

for free modeling is to utilize a compromised force field, with a large number of selected atom types. 

Within each atom type the physicochemical properties are calculated from information on crystal 

http://cssb.biology.gatech.edu/skolnick/webservice/pro-sp3-TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
http://zhanglab.ccmb.med.umich.edu/QUARK
http://raptorx.uchicago.edu/
http://robetta.bakerlab.org/


packing or quantum mechanical theory. Examples of all-atom physics-based force fields include 

AMBER, CHARMM, and OPLS, which also contain terms in relation to bond length, angles, torsion 

angles, van der Waals, and electrostatic interactions (Lee et al. 2009). 

 

 

Knowledge-Based Methods 
Knowledge-based methods are generally more successful and utilize empirical energy terms, derived 

from structurally elucidated proteins deposited in the PDB. These energy terms are further divided 

into two sub-classifications. The first energy term encompasses genetic and sequence-independent 

terms, which include hydrogen bonding and the local backbone stiffness of a polypeptide chain. The 

second energy term encompasses amino acid or protein sequence-dependent information, which 

include: pairwise residue contact potentials, distance dependent atomic contact potentials and 

secondary structure propensity. Despite most knowledge-based methods utilizing secondary structure 

propensities, local structures may be rather difficult to reproduce when modeling. One way in which 

this problem can be counteracted is the utilization of secondary structure fragments, acquired from 

sequence or profile alignments, for the initial model construction. This is also advantageous as the 

entropy of the conformational search is reduced (Lee et al. 2009). The fragment assembly method for 

knowledge-based free modeling was utilized in FRAGFOLD (Jones 2001), ROSETTA and the 

QUARK servers (Table 3). 

 

 

Model Quality Prediction 

Once a selection of models has been produced for a target sequence, the quality of each model must 

then be assessed. Being provided with details about the potential errors in 3D models arguably makes 

them more useful in the context of guiding experimental work. Model quality assessment programs 

(MQAPs) are used for the prediction of 3D model quality of proteins (McGuffin and Roche 2010). 

MQAPs can be classified into two categories: single model–based methods, which are able to assess 

the quality of individual models, and the clustering-based methods, which compare multiple models 

against each other. According to recent CASP experiments, the clustering-based MQAP methods, 

such as ModFOLDclust2 (McGuffin and Roche 2010), are currently the most accurate methods if 

multiple alternative models can be obtained. However, the single model methods, such as 

ModFOLD6 (Maghrabi and McGuffin, 2017), which produce absolute scores for individual models, 

are potentially more useful if few models are available. 

 

 

Structural Annotation of Genomes 

The structural annotation of genomes is extremely important for the functional determination of the 

encoded protein sequences. Traditionally, functional annotation of protein sequences has been carried 

out using simple sequence alignment methods. With the rapid growth in the number of genome 

projects, the need for accurate annotation has also increased. However, sequence-based structural 

annotation is inadequate for protein sequences, which have a low pairwise sequence identity (<30%) 

to proteins with known structures. Thus, structural annotation methods, which attempt to carry out 

fold recognition on a genomic scale, can help to increase the level of annotation beyond the twilight 

zone of sequence identity. 

http://dx.doi.org/10.1007/978-3-642-16712-6_148


 

 

Structural Annotation Databases 

Several databases have been developed providing structural annotations of genomes, including 

Gene3D (Yeats et al. 2008), SUPERFAMILY (de Lima Morais et al. 2011), and the Genomic 

Threading Database (McGuffin et al. 2004). These databases have been constructed via the use of 

sequence-based searching methods and fold recognition in order to structurally annotate entire 

proteomes. Gene3D provides an up-to-date comprehensive database for structural and functional 

annotations of the majority of available protein sequences, including UniProt, RefSeq, and Integr8. 

Structural annotations of genomes, are generated via a detailed search of the CATH structural 

database profile-HMM library. Functional annotation is also carried out by the Gene3D database 

utilizing GO assignments, FunCat, KEGG, active site data, disordered predictions utilizing 

DISOPRED2, and data from microarray experiments (Yeats et al. 2008). 

 

 

Methods for Structural Annotation 

Both intensive fold recognition methods such as IntFOLD-TS and rapid methods such as HHsearch 

(Soding 2005) can be utilized for structural annotation of entire proteomes. McGuffin et al. 

structurally annotated the entire human proteome utilizing the mGenTHREADER method (McGuffin 

and Jones 2003) in just over 24 h by harnessing 515 CPUs. This study provided the proof of concept 

that intensive fold recognition can be carried out for rapid proteome annotation via the use of grid 

technology (McGuffin et al. 2006). Recently, we undertook the structure annotation of 1,838,675 

proteins from over 600 genomes, derived from metagenomic or single sequencing (Roche and Bruls, 

2015). This showed that it is now possible to carry out large-scale structural annotation of proteomes 

routinely (Roche and Bruls, 2015).  

 

 

Summary 

Computational methods for prediction of protein structure are essential in the post-genomic era as 

experimental-based methods are unable to keep pace with the speed of genome sequencing. The 

production of 3D protein models, along with the structural annotation of entire proteomes, allows for 

both the interpretation of the proteins general function and the prediction of the binding site residues. 

These predictions may be exploited subsequently in in silico studies for the design of novel proteins 

for both medical and industrial applications, along with the development of drugs that will act as 

agonists or inhibitors for these proteins in order to modify their activity in disease pathways. 

 

Future perspectives 
With the advent of genomic medicine, where whole genome sequencing (WGS) is routinely 

undertaken on patients, to enable a better understanding of the patient’s disease or illness, or to 

improve diagnosis. The key is to understand how the variant / mutation at the genome level affects the 

protein structure and function. Hence, it is important to examine the variant/mutation in the content of 

the protein, how this mutation will affect the protein structure and its function. As medical diagnostics 

needs to be carried out under time constraints, traditional methods for determining the structure of the 

mutant protein and how this mutation/mutations effect function is not possible, hence structure 



prediction methods and structural annotation of proteomes are becoming more routinely used in 

medical diagnostics. In addition, as most diseases are multi-factorial, involving multiple proteins it 

will become extremely important to integrate the structural annotation of a patient’s proteome with 

the whole genome sequencing studies. Furthermore, structurally annotation of proteomes can be 

useful in drug discovery pipelines and for numerous other industrial applications. In conclusion, we 

expect to see in the near future computational protein structure prediction and structural annotation of 

proteomes in personalised medicine, to enable more accurate disease diagnosis.   
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