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Abstract 
 
The hospital outpatient non-attendance imposes 

huge financial burden on hospitals every year. The non-
attendance issue roots in multiple diverse reasons which 
makes the problem space particularly complicated and 
undiscovered. The aim of this research is to build an 
advanced predictive model for non-attendance 
considering whole spectrum of factors and their 
complexities from big hospital data. We proposed a 
novel non-attendance prediction model based on deep 
neural networks.  The proposed method is based on 
sparse stacked denoising autoencoders (SSDAEs).  

Different with exiting deep learning applications in 
hospital data which have separated data reconstruction 
and prediction phases, our model integrated both 
phases aiming to have higher performance than divided-
classification model in predicting tasks from EPR. The 
proposed method is compared with some well-known 
machine learning classifiers and representative 
research works for non-attendance prediction. The 
evaluation results reveal that the proposed deep 
approach drastically outperforms other methods in 
practice.  
 
1. Introduction  

 
Missed appointments have obvious operation and 

financial implications for health-care systems around 
the world and health impact for the patient group who 
have unmet health needs [1]. For example, in 2014 to 
2015 around 5.6 million (9% of the total) NHS 
outpatient appointments were missed in England [2], 
[3]. The non-attendance can lead to worse care for 
patients, inefficient use of staff, and increased waiting 
times. An estimate by the National Audit Office claimed 
that missed first outpatient appointments cost the NHS 
up to £225 million in 2012 to 2013 [4]. Another estimate 
has placed the cost of missed UK general practice (GP; 

community-based family medicine) appointments at 
£150 million per year[5]. Recent Scottish government 
data suggest that each missed hospital outpatient 
appointment costs National Health Services (NHS) 
Scotland £120 [6]. Similarly, in USA, it is reported that 
an average no-show rate of 62 appointments per day and 
an estimated annual cost of $3 million in a community 
hospital setting [7]. It is also found that no-show and 
cancellation represented 31.1% of overall scheduled 
appointments among approximately 45,000 patients per 
year at a large family practice center with an estimated 
total annual revenue shortfall of 3 % to 14 % [8].  

Understanding the complexity of factors that 
contribute to non-attendance and predicting patients’ 
behaviors can develop targeted/personalized 
intervention to increase patient engagement and 
effective use of healthcare resources. Existing research 
on hospital non-attendance mainly focus on finding 
associated factors in specific patient groups such as 
cardiovascular and diabetes. A wider variables that 
incorporate social economic, patient demographic and 
practice factors was proposed to investigate non-
attendance patterns for general practices appointment in 
Scotland but those variables were not analyzed with data 
yet [9]. Although there are digital innovations 
developed for secondary hospitals to engage patients 
through mobile text message reminders, there is no 
evidence about what the reminder should contain in 
order to minimize missed appointments [2]. The key 
challenge is that there is scarce knowledge in pattern 
recognition and risk prediction of non-attendance in 
secondary hospital appointment. Moreover, patient 
behaviour and health usage problems result from a 
complex interplay of several forces. It includes 
behaviours, social environment, surrounding physical 
environments, as well as health care access and quality 
[10]. There are very few researches studying whole 
spectrum of big data incorporating those factors and 
their complexities for non-attendance prediction.  
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In this research, we develop a novel method to 
predict non-attendance based on state-of-the-art 
machine learning algorithms and big data (both in-
hospital and outside-hospital data). The proposed 
method is an end-to-end deep learning model based on 
sparse stacked denoising autoencoders (SSDAE) that is 
among the latest autoencoders introduced in the 
literature. We adopt the SSDAE for data reconstruction 
and prediction. Our model firstly learns the compact 
representation of data by which having missing values 
recovered, resulting in a better data representation. Then 
it uses a direct layer to predict the non- attendance event 
with an integrated softmax classification layer. Our 
approach is demonstrated to be more accurate 
incorporating the prediction model into hospital systems 
and daily practices. This research will benefit the 
hospitals for more targeted intervention and messages to 
patients and reduce non-attendance rate.  

 
2. Related Work 
 

Existing research on non-attendance mainly focuses 
on traditional quantitative and qualitative methods 
analysing factors and probability estimation for 
population groups.  

 
2.1. Existing methods in analysing non-
attendance in hospital appointments    

 
Most of research in this domain studies factors 

contributing to non-attendance in both specific specialty 
and all appointments from hospital or general practice. 
A variety of factors were found effective on patient’s 
attendance in pediatric urology unit [11], pulmonary 
rehabilitation [12], [13], psychiatric [14]–[16] and HIV 
[17], primary care [18], inpatient and outpatient in the 
hospital [19] through analyzing multiple correlation 
from hospital administrative database. A few studies 
also used survey and interviews to explore and compare 
the views of patient and health professionals on the 
reasons of non-attendance [20]–[23]. The factors relate 
to inaccessibility, including physical location [24], 
opening hours and days [25], and barriers such as 
language, stigma and cultural differences [26], [27]  
may all be important. However, the interplay between 
the accessibility of a service and the perceived 
worthiness of the attendee, or ‘candidacy’, competing 
priorities [20], [22], [28], [29] (both self-perceived and 
as perceived by the service provider) can also lead to 
differences in how likely particular groups are to ‘get 
into, through and on’ with services [30]. Morbidity 
differences can also affect attendance where the illness 
reduces the ability to navigate access to the health care 
system[14]. Variation in social and economic 

circumstances may mean certain times are inconvenient 
[31] and/or that the perceived importance of the 
appointment may vary between social groups in and of 
itself, or in the context of wider life complexities. 
Within psychiatry for example, one study found that 
alcohol and drug users had particularly high non-
attendance rates [6], [14]. However above studies have 
focused single disease areas. Studies of single disease 
area have produced conflicting results when it comes to 
designing effective interventions to reduce non-
attendance [32]–[35]. This may due to a reliance on 
small data sets and limited variables in certain specialty 
settings. The non-attendance in primary care [18], 
hospital inpatient and outpatient from all specialties [19] 
are studied focusing on single missed appointment. 
Factors reported to be associated include age, sex, 
transport logistics, and clinic or practitioner factors such 
as booking efficiency and the rapport between staff and 
patients [21], [22], [31], [33], [36], [37].  Williamson et 
al. [9] and Ellis et al. [1] focused on the patient 
demographic and practice factors that predict serial 
missed appointments in general practice. Although 
those studies considered multiple missing appointments 
as one of the factors, only a limited number of patient 
(age, gender, SIMD, distance, ethnicity, number of 
consultants per year per patient) and practice variables 
(SIMD, appointment delay, number of available 
appointments per patient, average appointment length 
per patient, urban/rural classification). This has led to a 
limited coverage of personal health, behavioral, 
environmental and social support information in the 
prediction model, lacking the capability of revealing 
whole spectrum of patterns at the individual level. How 
the whole spectrum of patterns affects patients’ behavior 
in attendance remains unclear. Furthermore, those 
studies use population-based techniques rather than at 
an individual patient level. For example, logistic 
regression is mostly used to predict the probability of 
non-attendance by fitting numerical or categorical 
predictor variables in data to a logit function [1], [38]. 
The problem with these population-based methods is 
that they do not differentiate between the behaviors of 
individual persons and are based on small datasets 
therefore it will affect the effectiveness of predicting 
results in practice. At present, little agreement exists on 
what works in practice to reduce missed appointments 
[1]. We will use deep learning method to consider a 
wide range of factors and extract important features and 
complexities towards meaningful patterns from large 
dataset and more accurate at the individual level.  
 
2.2 Deep learning in healthcare  
 

Compared with traditional statistical methods, deep 
learning methods have attracted many researchers and 
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institutions in clinical research tasks which are difficult 
or even impossible to solve with traditional methods 
[39], [40]. They are more robust to learn knowledge 
from high-dimensional and high-volume data such as 
health, social economics and environmental 
information. It has proven to be competent to identify 
patterns and dependencies with cases superior to human 
experts. Therefore, deep learning methods provide great 
potential to present a whole picture embedded in large 
scale data and reveal unknown structure to better serve 
prediction of non-attendance risk and effective 
engagement to optimize the health resource usage.  

Deep learning classification from EPR is initially 
studied to predict disease progression. For example, 
Choi et al [41] applied recurrent neural network (RNN) 
in longitudinal time stamped EPR to predict diagnoses 
and medications for the subsequent visit by building a 
generic temporal predictive model that covers observed 
medical conditions and medication uses, followed by 
the development of specific heart failure prediction 
model. Pham et al [42] utilize the long-short memory 
(LSTM) method to model disease progression and 
predict future risk. Recently more attention is received 
in using deep learning method to predict the risk of 
readmission. For example, Nguyen et al. [43] and Wang 
et al. [44] applied convolutional neural network 
methods to detect and combines predictive local clinical 
motifs to stratify the risk of readmission. Jamei et al. 
[45] developed an artificial neural network model to 
predict all cause risk of 30- day hospital readmission and 
Xiao et al. [46] developed a hybrid deep learning model 
that combines topic modelling and RNN to embed 
clinical concepts in short-term local context and long 
term global context to predict readmission. Rajkomar et 
al. [47] further developed a scalable deep learning 
model using RNN for prediction across multiple centers 
without site-specific data harmonization which is 
validated in readmission task. However, to best of our 
knowledge, there is no research available to predict non-
attendance risk using deep learning methods. 
 
3. Deep learning model based on sparse 
stacked denoising autoencoders (SSDAE)  
    

   It is well-known that in hospital systems there are 
large amount of missing values [48]. There are several 
algorithms in the literature to deal with such issues. The 
simplest way is to replace the missing values with the 
mean values, median values, or some other statistics. It 
is obviously fast and simple but not effective as it does 
not include the relations of such missing values with 
other known/unknown values. To this point, the SSDAE 
is an AI solution for reconstructing whole data instead 
on recovering each of which independently. 

Additionally, learning highly non-linear and 
complicated patterns such as the relations among input 
features is one the prominent characteristics of SSDAE 
[49]. To this end, in this paper, the SSDAE was 
employed for recovering whole data at the first step 
(after data preparation from our hospital EPR system).  

 A denoising autoencoder (DAE) is simply a neural 
network with one hidden layer that should be trained to 
reconstruct a clean version of input X from a 
corrupted/current version of x’. It is accomplished by a 
so-called encoder that is a deterministic mapping from 
an input vector x into hidden representation y. X is the 
in-hospital and outside hospital datasets with variables 
to predict patient’s non-attendance. 

𝑓" 𝐱 = 𝑠(𝐖𝐱 + 𝐛) 

where the parameter 𝜃 is (𝐖, 𝐛), 𝐖 is a weight matrix 
indicating the weight of each of contributing variables 
of patients with non-attendance, 𝑏 is an encoding bias 
vector.  

In stacking SSDAE as demonstrated in Figure 1, the 
auto-encoder layers are placed on top of each other. 
Each layer is trained independently (‘greedily’) and then 
is stacked on top of previous one. In denoising 
autoencoders, the loss function is to minimizing the 
reconstruction loss between a clean X and its 
reconstruction from Y [50]. A decoder is then used to 
mapped the latent representation !   into a reconstructed 
(‘repaired’) vector such as 𝑧 ∈ 0,1 2 

𝒛 = g5′ 𝐲 = 𝑠(𝐖′𝒚 + 𝐛′) 

𝐖8  is a decoding matrix, and 𝐛8  is decoding bias 
vector; The SSDAE could have several layers.  For 
training a SSDAE, each layer is trained on top of 
previous one. The training process starts with per-
training the first hidden layer fed the training samples as 
input, training the second hidden layer with the outputs 
flowing from the first hidden layer, and so on. This was 
how autoencoders stack hierarchically to form a deep 
SSDAE. The parameters of the model θ and θ′ are 
optimized during the training phase to minimize the 
average reconstruction error, 

𝜃, 𝜃′∗ = 		𝑎𝑟𝑔min
","′∗

𝐿 𝐱, 𝐳 = argmin
","′∗

	
1
𝑁

𝐿 𝐱 𝐢 , 𝐳 𝐢 ,
G

HIJ

 

where 𝐿(𝐱, 𝐳) is a loss function and N is the number of 
data samples in the training set. The reconstruction 
cross-entropy function is usually used as loss as 
depicted in the equation below: 

𝐿K 𝐱, 𝐳 = 	− [𝐱𝐤𝑙𝑜𝑔𝐳𝐤 + (1 − 𝐱𝐤)log	(1 − 𝐳𝐤)]
2

TIJ
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One serious issue concerning autoencoders is the 
size of the hidden layer that could be potentially affect 
the performance. If the dimensionality of the hidden unit 
(number of neurons) is the same as or larger than the 
input layer, this approach could potentially learn the 
identity function. it means that the model would overfit 
to input data instead of learning non-linear relations. 
Furthermore, employing larger dimensionality conduct 
the model to learn sparse representation of data which 
may result in learning more latent variables and non-
linear relations. Considering merely using the denoising 
type may ultimately result in learning the identity 
function whereas, Xie et al [51] showed that sparse type 
of denoising autoencoders could learn other features 
than the denoising type. To this regard, espousing a 
sparsity constraint could practically solve such issues 
providing SSDAEs with more hidden units of larger 
dimensionality.  The equation below depicts a sparsity 
constraint added to the previous equation.  

𝑆𝐶 = 	𝐿 𝐗, 𝐙 + 𝛾 𝐾𝐿(𝜌||𝜌])
K

^IJ

 

where γ denotes the weight of penalty factor, H is 
the number of hidden units, ρ is a sparsity parameter 
and is typically a small value close to zero,  𝜌] is the 
average activation value of hidden unit j over the 
training set, 	𝐾𝐿(𝜌||𝜌])  is the Kullback–Leibler (KL) 
divergence as defined bellow.  

𝐾𝐿(𝜌||𝜌]) = 	𝜌 log 𝜌 𝜌]
+ 1 − 𝜌 log[(1 − 𝜌) (1 − 𝜌])] 

The KL is principally an asymmetric measure of the 
distance between two given sample distributions. It 
provides the sparsity constraint on the coding. For 
instance, if two distributions are equal (e.g., 𝜌 = 𝜌]), the 
KL would be zero. A standard backpropagation 
algorithm then can be used to solve this optimization 
problem. 

Besides data recovery and construction by non-
linear transformation resulting ultimately in a compact 
representation, the SSDAEs could include a standard 
predictor to do the predictions as well. This layer could 
be a proper function like logistic regression, max, 
softmax etc. In this work, we used a softmax layer as has 
a proven performance in most recent application. We 
will not only predict binary classification but also more 
detailed patients’ attendance behaviors including 
attendance, non-attendance without prior notification 
and non-attendance with prior notification through 
multi-classification as the next step future research. 
Furthermore, using softmax will get a probability 
distribution which we can apply cross entropy loss	
function on. This layer contains a softmax function as 
depicted below.  

𝑝(`I]|a) =
𝑒ac

𝑒adG
TIJ

 

 
 

Figure 1 Non-attendance prediction model integrated with hospital appointment system  
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where x is a N dimensional vector of real numbers 

from the previous hidden unit and transform it into a 
vector of real number in range (0,1) thus it is the output 
probabilities for each class. As is clear in the equation, 
the output is always positive numbers which has been 
also normalized. 

In brief, the training of the model comprises of two 
phases. At first, the model is trained using training 
dataset together with its associated labels. In the former 
phase, we try to minimize the difference between the 
recovered and ground truth training dataset: X vs X̂. In 
the later phase, purpose is to optimize the model in terms 
of supervised prediction performance.  

It is worth mentioning that training the model using 
standard backpropagation algorithms usually yields 
poor performance.  To this end, a greedy layerwise 
unsupervised learning algorithm is proposed by [52] to 
pre-train the SSDAEs layer by layer in a bottom–up 
way. Just afterward, fine-tuning the model’s parameters 
in a top–down direction is applied with backpropagation 
to improve the performance at the same time. The 
training procedures of this study briefly involves the 
following steps drawn from the proposed algorithms of 
[52], [53]. 
Step 1: Minimize the objective function of the first 

autoencoder over the input data 
Step 2: Minimize the second autoencoder’s objective 

function over the output of the previous layer  
Step 3: Iterates through steps 1 and 2 
Step 4: Obtain the probability of no-show patient class 

based on the output of the last hidden layer 
Step 5: Optimize whole network with backpropagation 

algorithms 

     The first three steps are literally unsupervised as is 
aimed to minimize the reconstruction error; whereas in 
the last step, where the generated labels from the last 
autoencoder fed to a softmax layer, all stacked layers 
will be optimized using backpropagation as a whole 
network. The optimization is performed in a supervised 
way based on the respective class labels. 

Moreover, it is critical to consider that the number of 
hidden layers could potentially leverage the 
performance of SSDAE. Very shallow structure of 
SSDAE could result in poor performance whereas a 
very deep structure (i.e., with many hidden unit) make 
the constructed model very complex and diversely effect 
the performance as well. We pre-evaluated some 
architectures and found a three-layer SSDAE works 
better for our application. Selecting a specific 
architecture by testing over whole data is highly 
resource-intensive and not always applicable. Some 
shallower (one-Layer) to deeper (5-Layer) architectures 
were assessed using only validation set. The shallower 
networks resulted in poorer performance as failed to 

learn proper representation while going very deeper 
added just complexity than any improvement. Our 
empirical observation was already reported in [50] as 
they also found stability of results (error convergence) 
on the three layer architecture specially for sparse types.  	 
 
4. Non-attendance risk prediction using 
SSDAE  
 
4.1 Data and variables  
 

The data source is from in-hospital data (e.g. EPR) 
and outside hospital data (e.g. environment and social 
economic data). In EPR, the information of over 
150,000 outpatients spanning on around 1.6 million 
records was gathered. The information is unevenly 
distributed in 6 years beginning from 2010 and going 
through the early 2018. Considering the period, the 
more records there is in the most recent years as the EPR 
system is more extending. Variables selected from 
different tables and different database can be classified 
into 7 categories including demographic, appointment 
history, inpatient history, outpatient history, deprivation 
index and weather information, health status. Those 
variables are identified through literatures and focus 
groups with hospital operation teams. The inpatient 
database contains information about in-hospital 
patients. Nevertheless, we used it to take the advantages 
of possibly available historic health data about new-
coming patients. Such historic health records contain 
diagnostic codes which in turn could be used to draw 
some very informative variables such as psychiatric 
variables for example. If there was a patient had 
inpatient records for more than once, we will only use 
the record where there was an overlap between inpatient 
period and outpatient appointment time and less than 14 
days gap between discharge and outpatient date. This is 
from focus group that patient may choose not to attend 
the outpatient appointment if it is within their inpatient 
time or it is close to their discharge date. It should be 
noted that some variables are particularly conditional. 
For instance, length of stay (LOS) is used as an input. 
The LOS is non-zero if and only if the patient had an 
immediate inpatient record in the EPR. The zero value 
is used in every empty element in the resulting table. 

After digitization, a normalization procedure was 
applied to center the data and making them in a closed 
range [0,1]. The normalization considerably diminishes 
the inverse effect of large-scale variables to hinder the 
network from incorporating small-scale attribute in both 
the neural networks and classification models [54]. 
Beside the input variables, the target variable that is 
indeed a binary event i.e., show & no-show, should be 
constructed. The target vector contains either zero or 
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one respective to the corresponding event to each row of 
information. It should be mentioned that each patient 
may have several records from which a few might be 
positive event type. Hence, the model should predict the 
patient’s behavior given a specific time point and 
historic information. 

 
4.2 Model training  

 
For training the model, we use all the information 

before mid 2017 as training set and validation set. The 
remaining records were utilized as testing data for 
evaluating the model performance. We tried to use a 
natural split as the model is going to be run over the live 
data, the most recent data samples were used for testing 
the model comprising statistically around 25% of all 
samples. The remaining samples were divided using 
stratified random sampling into of 15% validation and 
85% training sets. The Stratified random sampling [55] 
is essential to maintain the original class distribution 
among both subsets.  

In brief, the training model is to minimize the 
difference between the feeding data and recovered 
replicate (i.e., the output of the autoencoders) while 
trying to build an overall high-performance 
classification model with backpropagation. It is 
noteworthy that the pre-training the SSDAE layers are 
literally unsupervised as no label is being used. 
However, the optimization process is supervised as we 
exploit the target vector (i.e., prepared binary labels 
indicating attendance vs non-attendance). Our method 
was implemented and evaluated with SQL Server (for 
fetching data, preparing tables, some cleansing, etc.), 
Matlab 2018a (deep learning and machine learning 
packages) and Jupyter Notebook. The experiments were 
conducted on CPU 4Ghz, RAM 32GB, Highest Speed 
SSD: 1TB, and VGA Card: GTX 1080TI with 11GB of 
RAM having over 3600 CUDA cores.  
 
4.3 Evaluation 
       
      The evaluation phase consists of three practical 
stages. In the first stage, the original test data was fed 
into the previously trained model. The trained model 
will elucidate the recovered version of the feeding test 
data while at the same time produce a probability of no-
show event. One important advantage of this model is 
its flexibility about missing values or incomplete 
information that is widespread in real-world practical 
application. Another advantage is the performance of 
the final model is highly better than a traditional model 
with the same time complexity. We should notice there 
is two complexities in terms of time involved in building 
practical models. Time complexity in training and the 
final product. This models and similar machine learning 

models in comparison with some traditional models 
such as logistic regression produce the result in a few 
milliseconds without any extra efforts. We do not need 
to do anything else once the model is built. One critical 
benefit of our proposed approach is the scalability. 
Scalability defines in three different ways: (1) in terms 
of number of variables and (2) in terms of number of 
samples we can use and most importantly (3) in terms 
of updating the model over time. We could add new 
variables to existing model with the same practice. New 
variables provide a way to incorporate more information 
to the model resulting in more reliable model for 
managers.  
       The proposed method was applied to the test data 
and its performance compared with commonly-used 
classifiers and representative methods. The Five well-
known machine learning classifiers were used first to 
give us some insight about complexity of prediction. 
Support vector machines (SVM) (with Linear kernel), 
k-nearest neighbours algorithm (KNN, K=3), Decision 
Tree (DT), Naïve Bayes, and Random Forest based on 
the parameter settings suggested by [56] for imbalanced 
high-dimensional data. The random forest classifier was 
used from the widely-used ‘sklearn.ensemble‘ library in 
python with all  the default parameter settings but the 
number of tree which was set to 100 instead of its default 
(10) . 
      Considering parameter settings, it is important to 
note that we could not feed all data into the neural 
network either during the training or testing phase. Data 
should be fed in to the model in small parts called batch. 
The batch size containing 64 samples was used as 
adopted primarily in Adam optimizer [57] and 
suggested by the previous work of  [45]. Other 
parameters such as sparsity weight has not been altered 
from default values. Furthermore logistic regression is 
the only method  used to predict the probability of non-
attendance so far [38]. Hence, it is also included as one 
of the baseline classifier to compare with our non-
attendance model. Table 1 demonstrates the 
performance of proposed method with baseline 
classifiers. 

In our comparison, we evaluate a similar 
architecture used previously in healthcare [48], as well 
as a representative work of  [1] and logistic-regression-
based method that are basically belong to statistical 
modelling. As it is obvious in Table 1, the proposed 
method markedly outperforms all the conventional 
methods in various aspects. It could obtain a general 
accuracy of almost 70%. Only the Deep Patient [48] 
which has a similar deep learning architecture used for 
disease prediction comes near in performance. However, 
as aforementioned in the introduction, our proposed 
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architecture is more integrative than those methods 
having separated the prediction phase and the 
construction phase. 

Regarding other machine learning classifiers, 
Decision Tree along with KNN had the lowest 
performance. Nonetheless, the Random Forest and 
SVM achieved the highest accuracy among other 
common methods. The RF classifier with higher 
running time in our experiments had slightly better 
performance than SVM. One reason behind that could 
be because the random forests usually does not require 
many tweaking as long as the number of estimators (the 
trees) is large enough. we selected the model with 100 
trees which outperforms other baseline methods.  

Furthermore, it is worth noting these baseline 
methods were utilized mostly without fine-tuning hyper 
parameter settings since it is highly time-consuming 
considering various settings and improvement steps. So, 
one reason of such significant different in performance 
of these method is because of that fact. The other reason 
is the complexity of hypothesis space which influence 
directly the performance of classifiers. For instance, 
decision tree which is expected usually to have a better 
performance particularly on high-dimensional 
unbalanced datasets [58], [59] obtained poorer accuracy 
than SVM and Naïve Bayes (although it was run with 
automatic hyper-parameter optimization in Matlab 
toolset). One reason as aforementioned is the tweaking 
issues and the other could be because of conflicting rules 
in the decision surface. In such cases, a proper  rule 
induction method like [60] could significantly help out 
to build a better model that is out of this paper scope. 
Also, considering the AUC area of those models that are 
under 0.5 -which actually perform poorer than a random 
classifier- it is essential to note about the possibility of 

having such models. Assume a case when a model learnt 
wrong patterns thereby generating wrong class labels a. 
Such issues could be because of the fix improper data-
split, overfitting over training sets, missing values, 
class-imbalance, and other matters. 

The proposed method significantly outperformed 
these methods in terms of various evaluation metrics. 
Nevertheless, the fine-tuning procedures and dealing 
with several free parameters are quite challenging. 
Perhaps in future with advancing AI technology, we 
would see high-scale self-adaptable algorithms. In other 
viewpoint, more relevant data and higher quality 
improves the performance of all current models. We 
believe the current trends for developing health-care 
systems in UK follow a growing consistent strategy to 
reduce operational costs, reduce clinical costs, and 
improve clinical outcomes at the same time. adopting 
such intelligent algorithms in health-care application 
with high-scale dimension could potentially contributes 
to this process.  
 
5. Conclusions 

 
In this study, we represented a novel non-

attendance prediction method incorporating wide 
spectrum of factors relating to health, social economics 
and environment for improved understanding and 
prediction of patient behaviors. Our approach is 
applicable upon hospital big data from EPR systems. 
The proposed approach is an end-to-end deep learning 
model which adopted the latest architecture of sparse 
stacked denoising autoencoders (SSDAEs). The 
SSDAEs were used both for data reconstruction and 
classification. As for reconstruction, the stacked 
autoencoders were exploited to deal with the missing 

Table 1 Performance of different prediction methods (including existing non-attendance method 
and representative deep learning methods used in EPR)  

 

Method 
Measures 

AUC-ROC Precision Recall Accuracy 

Our Method 0.71 0.69 0.78 0.69 
DeepPatient-SVM [48] 0.69 0.73 0.67 0.67 

Logistic Regression non-
attendance model  [1] 0.54 0.60 0.52 0.51 

Logistic + Bayesian non-
attendance model [38] 0.49 0.61 0.45 0.46 

Random Forest 0.54 0.63 0.46 0.51 
SVM 0.51 0.58 0.49 0.47 
KNN 0.17 0.14 0.33 0.17 

Naïve Bayes	 0.33	 0.25	 0.76	 0.32	

Decision Tree	 0.29	 0.27	 0.69	 0.27	
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values for recovering them and provide a dense 
representation. In prediction phase, a softmax layer that 
has been used in modern deep learning models was 
added to the network. This layer produced probability of 
non-attendance event based on the outputs of the last 
hidden unit in SSDAE. 

Practically developing the proposed model required 
three main phases. First was the data preparation that 
was gathering and combining various variables from 
different data tables and databases in the EPR system. 
Collating data itself is not enough. Hence, digitization 
and normalization on the whole data were performed to 
obtain a proper input for the model. The data was 
separated into testing, training and evaluation sets. A 
target vector notating the non-attendance events 
containing wither zero or one was created for supervised 
training the model afterwards. The model was trained on 
the training samples and evaluated upon the testing 
samples. The performance of the model over the test set 
was compared with other classification models 
including logistic regression. The experiments 
illustrated that the proposed model significantly 
outperformed other models in terms of important 
evaluation metrics including AUC-ROC, Precision, 
Recall, and Accuracy.  

The constructed model was finally deployed on 
current infrastructure to being connected to a reminder 
system. The limitation of this research is that only 
“specialty” covers clinical related information on 
consultant’s skill and expertise. More detailed clinical 
data such as diagnosis, treatment specialty, attendance 
type (main procedure) will be included in our future 
work for better results. We will involve wider features 
from hospital database and use methods such as 
Recursive Feature Elimination (RFE) for feature 
selection to improve accuracy. Further research will also 
be conducted to predict more detailed patients’ 
attendance behaviors including attendance, non-
attendance without prior notification and non-
attendance with prior notification through multi-
classification.  
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